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Chapter 18
Where is This Leading Me: Stationary
Point and Equilibrium Analysis
for Self-Modeling Network Models

Jan Treur

Abstract In this chapter, analysis methods for the dynamics of self-modeling
network models in relation to their network structure are presented. In particular,
stationary points and equilibria are addressed and related to the network structure. It
is shownhowsuch analyses can be used for verification purposes: to verifywhether an
implemented network model used for simulation is correct with respect to the design
description of the network’s structure. An always applicable method is presented
first. It is based on substitution of state values from simulations in stationary point or
equilibrium equations, which can always be done. In addition, methods are presented
that are applicable for certain groups of network models, where the aggregation is
specified by combination functions for which equilibrium equations can be solved
symbolically. As shown, these methods cover cases of self-model states for adapta-
tion principles such as Hebbian learning for mental networks and Bonding based on
homophily for social networks. In addition, such methods are shown to cover cases
where the combination functions for aggregation satisfy certain properties such as
being monotonically increasing, scalar-free, and normalised. The analysis for this
class of functions used for aggregation also takes into account the network’s connec-
tivity in termsof its strongly connected components. This provides a class of functions
which includes nonlinear functions but in contrast to often held beliefs, still enables
analysis of the emerging network dynamics as well as linear functions do.Within this
class, two specific subclasses of nonlinear functions (weighted Euclidean functions
and weighted geometric functions) are addressed. Focusing on them in particular, it
is illustrated in detail how methods for equilibrium analysis as normally only used
for linear functions (based on a symbolic linear equation solver), can be applied
to predict the state values in equilibria for such nonlinear cases as well. Finally, it
shown how a stratified form of the condensation graph based on a network’s strongly
connected components can be used in equilibrium analysis.
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18.1 Introduction

Self-modeling network models can show complex dynamics. Usually, emerging
dynamic properties of dynamical models can be analysed by conducting simulation
experiments. But some specific types of properties can also be found bymathematical
analysis. Examples of properties that can be analyzed in such a manner are:

• Properties describing whether for some values for the states no change occurs
(stationary points or equilibria), and how such values may depend on the values
of the characteristics of the network model and/or the initial values for the states

• Properties describing whether certain states in the model converge to some joint
limit value and how this may depend on the values of the characteristics of the
network model and/or the initial values for the states

• Properties describing whether some state within the network model will show
monotonically increasing or decreasing values over time (monotonicity)

• Properties describing situations in which no convergence takes place but in the
end a specific sequence of values is repeated all the time (limit cycle).

Three types of emerging dynamics are often distinguished:

• Reaching an equilibrium
In this case a socalled equilibrium state is reached, in which for all states the
values do not change anymore. This often happens; for example, see Fig. 18.4.

• Ending up in a limit cycle
The behaviour ends up in a regular repeating pattern of values (a periodic pattern)
for the states; this is called a limit cycle. In Fig. 18.2 an example of this is shown,
taken from (Treur 2016).

• Chaotic behaviour
The behaviour is usually (loosely) called chaotic if there is no observed regularity
in it like for the first two types: no equilibrium is reached and also no periodic
pattern as a limit cycle. Lorenz (1963) used as title for his paper on chaotic
behaviour ‘Deterministic Nonperiodic Flow’. In Mathematics, the area of Chaos
Theory has developed more specific definitions for chaotic behaviour, usually
involving that the outcome is very sensitive for the values of the initial settings;
e.g., (Lorenz 1963): the present determines the future but the approximate present
does not approximately determine the future. An often cited example or metaphor
is that a butterfly at one place in the world can cause a tornado somewhere else
(the butterfly effect).

An example (seemingly) showing the third type of emerging behaviour may be found
in (Treur 2020a), Ch. 6. Note that a pattern can initially look like this last type, but
later on may still turn out to end up into one of the other two types.

Such properties of a networkmodel’s dynamics as found and analysed can be used
for verification of the network model by checking them against the values observed
in simulation experiments. Typically such properties take the form of equations for
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values of one state in relation to values of connected states. If one of these equa-
tions is not (approximately) fulfilled by the values found in a simulation (and the
mathematical analysis was done in a correct manner), then this reveals that there is
some error in the implementation of the model in comparison to its design descrip-
tion. In some cases, but certainly not always, such equations can also be solved in
an analytical manner in the sense that equilibrium state values are expressed by a
symbolic expression (a formula) in terms of the network characteristics. However,
for the purpose of verification, solving equilibrium equations is not required as the
equations can also be checked by substitution of simulation values in them.

In this chapter some methods to analyse dynamics in network models will be
described in particular in the setting of self-modeling network models with self-
model states for adaptation principles such as Hebbian learning for mental networks
and bonding based on homophily for social networks.

As another case, social dynamics described by dynamics of node states (for
example, for the individuals’ opinions, intentions, emotions, beliefs, …) within
social network models also depend on a number of network characteristics such
as the weights of the connections and the aggregation of impacts from different
nodes. While for networks usually there is much attention for the structure of
nodes and connections, the role of the aggregation characteristics is often neglected.
Nevertheless, these aggregation characteristics also play an important role in the
dynamics within a network; for example, whether or not within a well-connected
group in the end a common opinion, intention, emotion or belief is reached (a joint
value for all node states) also depends on the aggregation characteristics. Often,
only silent assumptions are made about these aggregation characteristics. For social
network models usually linear forms of aggregation are applied. Indeed, when using
linear aggregation theorems exist specifying conditions under which all node states
converge to the same value, in particular when the network is strongly connected in
the sense that from every node there is a path to every other node. In contrast, for
neural networkmodels traditionally often some type of logistic sum format is applied
and for such functions analysis is indeed much harder than for linear functions.

The often occurring use of linear functions for aggregation for social network
models may be based on a more general belief that dynamical system models can be
analysed better for linear functions than for nonlinear functions. Although there may
be some truth in this if specifically logistic nonlinear functions are compared to linear
functions, in the current chapter it is shown that such a belief is not correct in general.
It is shown that also classes of nonlinear functions exist that enable good analysis
possibilities when it comes to the emerging dynamics within a network model. Such
classes and the dynamics they entail are analysed here in some depth, thereby also not
using any conditions on the connectivity but instead exploiting for any network its
structure of strongly connected components. Among others, following (Treur 2020a)
in the current chapter theorems are discussed specifying conditions under which all
node states converge to the same value (for example, achieving a common decision or
belief within a group). These theorems do not impose any conditions on connectivity
and for aggregation apply to such classes of nonlinear functions as well as they apply
to the class of linear functions. Moreover, for some (but not all) of these classes
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of ‘well-behaving’ nonlinear functions it is found out that they can be (indirectly)
related to linear functions by some form of function transformation, which then
enables application of linear analysis methods such as symbolically solving sets of
linear equations including parameters.

In this chapter, first in Sect. 18.2 for some aspects of dynamics (in particular,
stationary points and equilibria) of network models criteria are introduced in terms
of the network structure characteristics such as aggregation and connectivity charac-
teristics. These criteria can be used to verify (the implementation of) a networkmodel
against its design description based on inspection of stationary points or equilibria
in three different manners:

• by substitution of observed simulation values in the equations (addressed in
Sect. 18.3)

• by symbolically solving these equations to obtain symbolic expressions in terms of
network characteristics and comparing these expressions to observed simulation
values (addressed for different cases in Sects. 18.4–18.8)

• by deriving general theorems from them of the form ‘network structure prop-
erties imply network behaviour properties’ and comparing their conclusions to
simulation values (addressed in some depth in Sects. 18.9–18.12)

18.2 Modeling and Analysis of Dynamics within Network
Models

In this section, the underlying network-oriented modelling approach used is briefly
discussed. Following (Treur 2020b), a temporal-causal network model is specified
by the following types of network characteristics (here X and Y denote nodes of the
network, also called states, which have state values X(t) and Y(t) over time t):

• Connectivity Characteristics

Connections from a state X to a state Y and their weights ωX,Y

• Aggregation Characteristics

For any state Y, some combination function cY (V 1, …, V k) defines the aggrega-
tion that is applied to the single impacts Vi = ωXi ,Y Xi (t) on Y from its incoming
connections from states X1, …, Xk .

• Timing Characteristics

Each state Y has a speed factor ηY defining how fast it changes for given impact.

The following generic (canonical) difference equation used for simulation and
analysis purposes incorporates these network characteristics ωX,Y , cY , ηY in a
numerical format:

Y (t + �t) = Y (t) + ηY [aggimpactY (t) − Y (t)]�t (18.1)
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Fig. 18.1 Example network simulation ending up in a limit cycle; adopted from (Treur 2016)

Network Structure Characteristics Within-Network Dynamics

Fig. 18.2 The general principle that a network’s structure implies the within-network dynamics

where

aggimpactY (t) = cY (ωX1,Y X1(t), ...,ωXk ,Y Xk(t))

for any state Y and where X1 to Xk are the states from which Y gets its incoming
connections.

This is a specific way of expressing the general principle that within-network
dynamics is implied (or entailed) by the network’s structure characteristics; see also
Fig. 18.1.

The timing characteristics specified by speed factors ηY enable to model more
realistic processes for which not all states change in a synchronous manner. Network
models that do not possess this option are less flexible as they silently impose
synchronous processing as an artefact. The aggregation characteristics specified
by the choice of combination functions cY and their parameters provide another
form of flexibility to fit better to specific realistic applications. Also in this case,
network models that do not possess such an option are less flexible and also silently
impose artefacts that may make them fit less to specific applications. For example,
for aggregation in social networks often linear functions are used for aggregation,
which sometimesmay be consideredmore like a tradition or custom than a deliberate
choice.

The following types of properties are often considered to analyse the behaviour
of dynamical systems in general.

Definition (stationary point, increasing, decreasing, equilibrium) Let Y be a
network state

• Y has a stationary point at t if dY (t)/dt = 0
• Y is increasing at t if dY (t)/dt > 0
• Y is decreasing at t if dY (t)/dt < 0
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• The network model is in equilibrium a t if every state Y of the model has a
stationary point at t.

For the specific case of network models, the following criteria in terms of the
network characteristics ωX,Y , cY , ηY can be derived from the generic difference
Eq. (18.1); see also (Treur 2016, 2018).

Criteria for Within-Network Dynamics
Let Y be a state and X1, …, Xk the states connected toward Y. For nonzero speed
factors ηY the following criterion (18.2) for a stationary point can be directly derived
from the standard canonical Eq. (18.1):

cY (ωX1,Y X1(t), . . .,ωXk ,Y Xk(t)) = Y (t) (18.2)

As can be noted, the above criterion for a network having a stationary point (or
being in an equilibrium) shows how such a property of network dynamics depends
on the aggregation characteristics specified by the combination functions cY and the
connectivity characteristics specified by the connection weights ωXi ,Y . Moreover,
note that the equation is not a dynamic but a static equation for the values at the
same time point t. For the sake of simplicity, if no confusion is expected often
the variables in such an equation are named after the related state names (thereby
accepting overloading of these names); then the equation simply is:

cY (ωX1,Y X1, . . .,ωXk ,Y Xk) = Y (18.3)

where now X1, …, Xk , Y are variables indicating numbers. This static equation in
terms of the network structure characteristics is called a stationary point equation,
and if an equilibrium is considered it is called an equilibrium equation. Again, note
that although this equation is used to analyse the network’s behaviour, this essentially
is an equation expressed in terms of the network’s structure. It also reflects the above-
mentioned general principle that a network’s behaviour is implied (or entailed) by
the network’s structure, as depicted in Fig. 18.2. The criteria for the different cases
are summarised in Table 18.1.

Table 18.1 Criteria for types of dynamics in terms of network characteristics (assuming nonzero
speed factors)

Dynamics Criterion in terms of network characteristics

Y has a stationary point at t aggimpactY (t) = Y(t) cY (ωX1,Y X1, . . .,ωXk ,Y Xk) = Y

Y is increasing at t aggimpactY (t) > Y(t) cY (ωX1,Y X1, . . .,ωXk ,Y Xk) > Y

Y is decreasing at t aggimpactY (t) < Y(t) cY (ωX1,Y X1, . . .,ωXk ,Y Xk) < Y

The network model is in
equilibrium a t

aggimpactY (t) = Y(t)
for every state Y

cY (ωX1,Y X1, . . .,ωXk ,Y Xk) = Y
for every state Y
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Table 18.2 Overview of deviations for stationary point or equilibrium equations

State nr State name Y Time point t aggimpactY (t) Y(t) Deviation

X4 psa 35 0.999315 0.99903 0.00029

X5 srse 35 … … …

18.3 Verification of a Network Model via Checking
the Stationary Point Equations

Asalreadypreviewed in the introductionSect. 18.1, the criteria described inSect. 18.2
can be used to verify (the implementation of) a network model based on inspection
of stationary points or equilibria in three different manners:

• by substitution of observed simulation values in the equations (addressed in the
current section)

• by symbolically solving these equations to obtain symbolic expressions in terms of
network characteristics and comparing these expressions to observed simulation
values (addressed for different cases in Sects. 18.4–18.8)

• by deriving general theorems from them of the form ‘network structure prop-
erties imply network behaviour properties’ and comparing their conclusions to
simulation values (addressed in some depth in Sects. 18.9–18.12).

Note that in a given simulation the stationary points that are identified are usually
approximately stationary; how closely they are approximated depends on different
aspects, for example on the step size, or on how long the simulation is done.

1. Generate a simulation
2. For a number of states Y identify stationary points with their time points t and

state values Y(t)
3. For each of these stationary points for a state Y at time t identify the values

X1(t), …, Xk(t) at that time of the states X1, …, Xk connected toward Y
4. Substitute all these values Y(t) and X1(t), …, Xk(t) in the criterion

cY (ωX1,Y X1, . . .,ωXk ,Y Xk) = Y
5. If the equation holds (for example, with an accuracy < 10–2), then this test

succeeds, otherwise it fails
6. If this test fails, then it has to be explored were the error can be found.

To illustrate these notions and analysismethod, consider the examplewith connec-
tivity depicted in Fig. 18.3, and an example simulation shown in Fig. 18.4. This is
a mental network model for how a person is sensing (sensor state sss) a stimulus s
in the world (word state wss), represents this (representation state srss), and is trig-
gered to prepare (preparation state psa) and perform (execution state esa) action a,
after evaluation of the predicted (predicted effect representation state srse) effect e
of this action. In simulations it can be seen that as a result of a constant value a
of stimulus wss all state values are increasing until they reach an equilibrium value
a as well. The question then is whether these observations based on one or more
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Fig. 18.3 Connectivity of the example model
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Fig. 18.4 Simulation example for the model depicted in Fig. 18.1 using identity and sum
combination functions

simulation experiments are in agreement with a mathematical analysis. Combina-
tion functions are here the sum function and the identity function, and all connections
have weight 1, except the connections to psa, which have weight 0.5. Later on the
type of combination function will be varied.

In Fig. 18.4 it can be seen that as a result of the stimulus all states are increasing
until time point 35, after which they start to decrease as the stimulus disappears. Just
before time point 35 all states are almost stationary. If the stimulus is not taken away
after this time point this trend is continued, and an equilibrium state is approximated.
The question then is whether these observations based on one or more simulation
experiments are in agreement with amathematical analysis. If it is found out that they
are in agreement with the mathematical analysis, then this provides some extent of
evidence that the implemented model is correct in comparison to the design descrip-
tion. If they turn out not to be in agreement with the mathematical analysis, then
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this indicates that probably there is something wrong, and further inspection and
correction is needed.

The analysis method described above can be illustrated for this example of
Figs. 18.3 and 18.4 as follows. For example, consider state psa (which is X4).
According to the criterion in Sect. 18.2, Table 18.1 the equation expressing that
state psa is stationary at time t is

ωrespondingX3(t) + ωamplifyingX5(t) = X4(t) (18.4)

Now time t is left out of the equation by using variables Xi for the values X3 =X3(t),
X4 = X4(t), and X5 = X5(t). Then this becomes the following (static) equation in
variables Xi, called the stationary point equation:

ωrespondingX3 + ωamplifyingX5 = X4 (18.5)

At time point t = 35 (where all states are close to being stationary) the following
simulation values occur:

X3 = srss(35) = 1.00000

X4 = psa(35) = 0.99903

X5 = srse(35) = 0.99863

Moreover, in the simulationωresponding = ωamplifying = 0.5 was used. All these values
can be substituted in the above equation:

0.5∗1.00000 + 0.5∗0.99863 = 0.99903

0.999315 = 0.99903

It turns out that the equation is fulfilled with a very small deviation < 10–3. This
gives a piece of evidence that the network model as implemented indeed does what
it was meant to do according to the design description. The step size �t for the
simulation here was 0.5, which is not even so small. For still more accurate results
it is advisable to choose a smaller step size. So, having the equations for stationary
points for all states provides a means to verify the implemented model in comparison
to the model’s design description. The equations for stationary points themselves can
easily be obtained from the design description in a systematic manner according to
the criteria in Sect. 18.2.

Note that this method works without having to solve the equations, only substitu-
tion takes place; therefore it works for any choice of combination function.Moreover,
note that the method also works when there is no equilibrium but the values of the
states fluctuate all the time, according to a recurring pattern (a limit cycle), like in
Fig. 18.1. In such cases for each state there are maxima (peaks) and minima (dips)
which also are stationary just for an instant. The method can be applied to such a
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type of stationary points as well; here it is still more important to choose a small step
size as each stationary point occurs at just one time point.

18.4 Verification of a Network Model via Solving
Equilibrium Equations

There is still another method possible that is sometimes proposed; this method is
applied for the case of an equilibrium (where all states have a stationary point simul-
taneously), and is based on solving the equations for the equilibrium values first. This
can provide explicit expressions for equilibrium values in terms of the parameters of
the model. Such expressions can be used to predict equilibrium values for specific
simulations, based on the choice of parameter values. This method provides more
than the previous method, but it should be kept in mind that some types of equations
cannot be solved symbolically (but still numerically). For example, when logistic
combination functions are used the equations cannot be solved symbolically. The
method in general works best for equilibria, so it is described for that case; it goes
as follows.

1. Consider the equilibrium equations for all states Y:

cY (ωX1,Y X1(t), . . .,ωXk ,Y Xk(t)) = Y (t) (18.6)

2. Leave the t out and as in Sect. 18.2 denote the values Xi(t) and Y(t) by variables
Xi and Y

cY (ωX1,Y X1, . . .,ωXk ,Y Xk) = Y (18.7)

For the n states X1, …, Xn of the model, equilibria for the network are described
by solutions X1, …, Xn of the following set of n equilibrium equations:

cX1(ωX1,X1 X1, . . . ,ωXn ,X1 Xn) = X1

...........................

cXn (ωX1,Xn X1, . . . ,ωXn ,Xn Xn) = Xn (18.8)

3. If possible, solve these equations mathematically in an explicit analytical form:
for each state Xi a mathematical formula X i = … in terms of the network char-
acteristics of the model (connection weights and parameters in the combination
function cXi (..), such as scaling factors λ or the steepness σ and threshold τ in a
logistic sum combination function); more than one solution is possible. If that’s
not possible symbolically, use a numerical solver to find a solution.

4. Generate a simulation
5. Identify equilibrium values in this simulation
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6. If for all states Y the predicted value Y from a solution of the equilibrium
equations equals the value for Y obtained from the simulation (for example,
with a deviation < 10–2), then this test succeeds, otherwise it fails

7. If this test fails, then it has to be explored where the error can be found.

As an illustration, for the example shown in Fig. 18.3 (using the sum function), the
equations for all states found in step 2 are as shown in Table 18.3. In Sect. 18.5 it is
shown how they can be solved easily by using a symbolic linear solver.

Note that sometimes the method can also be applied to part of a network that
concerns states that all have a stationary point simultaneously. In subsequent sections,
it will be illustrated how this method based on solving the equilibrium equations
works for a number of cases, not only for cases with linear combinations functions,
but also for cases with nonlinear combination functions. In particular, the following
examples of this are addressed in subsequent sections:

• for linear combination functions
– a (scaled) sum combination function (Sect. 18.5)

• for nonlinear combination functions
– for Euclidean combination functions (Sect. 18.6)
– for geometric combination functions (Sect. 18.7)
– for self-model states for the Hebbian learning principle (Sect. 18.8)
– for self-model states for the bonding by homophily principle (Sect. 18.8).

For the cases described in Sects. 18.5–18.8 below, explicit symbolic expressions
are found for the (predicted) equilibrium values in terms of the network charac-
teristics such as connection weights ω and combination function parameters as
scaling factors λ, persistence factors μ and tipping points τ (so, for these no specific
simulation values are needed at forehand).

However, note that there are also cases inwhich explicit symbolic solutions cannot
be determined, for example, when logistic combination functions are used. In such
cases an explicit analytical solution by a more generic expression which depends,
as a function, on the network characteristics (as enabled by method in the current
section) cannot be obtained. In these cases equilibria can still be determined for
specific cases either by numerically solving the equations by some numerical approx-
imation method, or by the substitution method discussed in Sect. 18.3. In addition,
for some classes of (linear and nonlinear) combination functions, general theorems
can be found relating equilibria to network characteristics that can be applied (as
will be shown in Sects. 18.9–18.12).
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18.5 Using a Linear Solver to Symbolically Solve Linear
Equilibrium Equations

In this section it will be illustrated how the analysis method described in Sect. 18.4
can be used for linear combination functions thereby using a symbolic linear equation
solver. Linear equations with parameters can be solved symbolically in an automated
manner by such a symbolic linear solver, for example, theWIMSLinear Solver freely
available online at URL.

https://wims.univ-cotedazur.fr/wims/en_tool~linear~linsolver.en.html
Recall the linear equations from Sect. 18.4, Table 18.3. When the ω is replaced by
w, they can directly be copied as input for the WIMS Linear Solver, resulting in the
upper picture in Fig. 18.5. Note that the network characteristicsωsensing and so on and
the constant stimulus value a have to be entered in the slot for equation parameters
below the main slot for the equations; this prevents the solver to mistakenly consider
them as variables instead of parameters of the equations.

Summarizing, by this symbolic solver the equilibrium values for all states have
been expressed in terms of the value a of the external state wss and the connection
weights (apparently assuming ωamplifying ωpredicting �= 1, but as ωamplifying = 0.5 and
ωpredicting = 1 in the example simulation this is fulfilled) a shown in Table 18.4. For
example, if the external stimulus has level a = 1 this becomes:

X1 = 1

X2 = ωsensing

X3 = ωrepresentingωsensing

X4 = ωrespondingωrepresentingωsensing/(1 − ωamplifyingωpredicting)

X5 = ωpredictingωrespondingωrepresentingωsensing/(1 − ωamplifyingωpredicting)

X6 = ωexecutingωpredictingωrespondingωrepresentingωsensing/(1 − ωamplifyingωpredicting)

Moreover, if all connection weights are 1, except that ωresponding = 0.5 and ωamplifying

= 0.5, as in the example simulation shown in Fig. 18.4, the values all become 1.
Indeed, in the example simulation in Fig. 18.4 it can be seen that in the time period
that the world state has value a = 1 all values go to 1. The solution of the equilib-
rium equations in terms of the connection weights can be used to predict that when

Table 18.3 Overview of
linear equilibrium equations
for the example of Figs. 18.3
and 18.4

State nr State name Equilibrium equation

X1 wss X1 = a

X2 sss ωsensing X1 = X2

X3 srss ωrepresenting X2 = X3

X4 psa ωresponding X3 + ωamplifying X5 = X4

X5 srse ωpredicting X4 = X5

X6 esa ωexecuting X5 = X6

https://wims.univ-cotedazur.fr/wims/en_tool~linear~linsolver.en.html
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Fig. 18.5 Upper picture: the input interface of the Linear Solver after copying the linear equations
in it. Lower picture, the provided output after running the solver; the solutions are in the shaded
area

Table 18.4 Overview of the solutions for the linear equilibrium equations for the example of
Figs. 18.3 and 18.4

State nr State name Solutions

X1 wss X1 = a

X2 sss X2 = ωsensing a

X3 srss X3 = ωrepresenting ωsensing a

X4 psa X4 = ωresponding ωrepresenting ωsensinga/(1 − ωamplifying ωpredicting)

X5 srse X5 = ωpredicting ωresponding ωrepresenting ωsensing a/(1 − ωamplifying
ωpredicting)

X6 esa X6 = ωexecuting ωpredicting ωresponding ωrepresenting ωsensing a/(1 −
ωamplifying ωpredicting)



504 J. Treur

the connection weights have different values, also these equilibrium values will be
different. Similarly, it can be seen that within the time period that the world state has
value a = 0 all values go to 0, which is also indicated by the above expressions for
the solutions when a = 0 is substituted.

18.6 Solving Nonlinear Equilibrium Equations
for Euclidean Functions

It turns out that in certain cases a linear solver also can be used to solve nonlinear
equilibrium equations. The idea is then to transform nonlinear equations in some
way into linear equations that can be solved by a linear solver, after which the found
solutions are transformed back. This will be illustrated in particular for equilibrium
equations involving the euclidean combination function and the geometric combi-
nation function. In the current section, the euclidean function eucln,λ is addressed,
which is defined by

eucln,λ(V1, . . . , Vk) = n

√
V n
1 + . . . + V n

k

λ
(18.9)

An equilibrium equation involving this combination function for a state Y = Xj

typically is of the form

X j = n

√
V n
1 + . . . + V n

k

λ
(18.10)

where Vi = ωXi ,X j Xi (t) are single impacts
Assume all values are nonnegative. By applying the nth power, this can be rewritten
into

Xn
j = (ωn

X1,X j
Xn
1 + . . . + ωn

Xk ,X j
Xn

k /λ (18.11)

Now take Yi = Xn
i (with inverse relation Xi = n

√
Yi ) and rewrite the above equation

into a linear equation in Yi; this obtains

Y j = (ωn
X1,X j

Y1 + . . . + ωn
Xk ,X j

Yk)/λ

λY j = ωn
X1,X j

Y1 + . . . + ωn
Xk ,X j

Yk (18.12)

For the example network model for n = 2; for state X4 this is the following
equation
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√
((ωrespondingX3)2 + (ωamplifyingX5)2)/λ = X4 (18.13)

By applying squares this can be rewritten as

((ωrespondingX3)
2 + (ωamplifyingX5)

2)/λ = X2
4 (18.14)

Then using variable Yi = Xi
2 this becomes a linear equation in the Yi:

(ω2
respondingY3 + ω2

amplifyingY5)/λ = Y4 (18.15)

Similarly, the set of all equations becomes as shown in Table 18.5. This transforms
the quadratic equations in the Xi into linear equations in Yi. As in Sect. 18.5, these
linear equations can be solved symbolically by theWIMS Linear Solver. In Fig. 18.6
it is shown how this set of equations is entered in this Linear Solver and (in the shaded
lower area) what solutions are found. These solutions are (note that a is used as a
parameter for an assumed stimulus level represented by X1) translated back from the
Yi to the solutions in terms of the Xi as follows:

X2
1 = a2

X2
2 = ω2

sensinga
2

X2
3 = ω2

representingω
2
sensinga

2

X2
4 = ω2

respondingω
2
representingω

2
sensinga

2/(λ − ω2
amplifyingω

2
predicting)

X2
5 = ω2

predictingω
2
respondingω

2
representingω

2
sensinga

2/(λ − ω2
amplifyingω

2
predicting)

X2
6 = ω2

executingω
2
predictingω

2
respondingω

2
representingω

2
sensinga

2/(λ − ω2
amplifyingω

2
predicting)

Therefore, the solutions are obtained by applying the square root on these expressions
(all is assumed nonnegative here); see Table 18.6. This provides explicit predictions
for the equilibrium values that are reached.

In particular, for all connection weights 1 except ωresponding and ωamplifying which
are 0.5 and λ = 0.5, the predicted values are Xi = a for all i, which is confirmed by
example simulations performed.

Table 18.5 Overview of
linear equilibrium equations
for the example of Fig. 18.3
with euclidean combination
functions

State nr State name Equilibrium equation

Y1 wss Y1 = Y1

Y2 sss ωsensing
2 Y1 = Y2

Y3 srss ωrepresenting
2 Y2 = Y3

Y4 psa ωresponding
2Y3 + ωamplifying

2 Y5 = λ Y4

Y5 srse ωpredicting
2 Y4 = Y5

Y6 esa ωexecuting
2 Y5 = Y6
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Fig. 18.6 Using theWIMSLinear Solver to solve the nonlinear equilibriumequations forEuclidean
functions used for aggregation within the example network

Table 18.6 Overview of the solutions for the Euclidean equilibrium equations for the example of
Figs. 18.3 and 18.4

State nr State name Solutions

X1 wss X1 = a

X2 sss X2 = ωsensing a

X3 srss X3 = ωrepresenting ωsensing a

X4 psa X4 = ωresponding ωrepresenting ωsensing a/
√
(λ − ωamplifying

2

ωpredicting
2)

X5 srse X5 = ωpredicting ωresponding ωrepresenting ωsensing a/
√
(λ − ω2

amplifying

ω2
predicting)

X6 esa X6 = ωexecuting ωpredicting ωresponding ωrepresenting ωsensing a/
√
(λ −

ωamplifying
2 ωpredicting

2)
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18.7 Solving Nonlinear Equilibrium Equations
for Geometric Functions

In this section the geometric combination function sgeomeanλ is addressed:

sgeomeanλ(V1, . . . , Vk) = k

√
V1 . . . Vk

λ
(18.16)

An equilibrium equation involving this geometric combination function for state Y
= Xj typically is of the form

X j = k

√
V1 . . . Vk

λ
(18.17)

where Vi = ωXi ,X j Xi (t) are single impacts. Assume all values are positive. By
applying the kth power and the natural log function, this can be rewritten into

Xk
j = (ωX1,X j X1 . . . ωXk ,X j Xk)/λ

λXk
j = ωX1,X j X1 . . . ωXk ,X j Xk

log(λXk
j ) = log(ωX1,X j X1 . . . ωXk ,X j Xk)

log(λ) + k log(X j ) = log(ωX1,X j ) + log(X1) + . . . + log(ωXk ,X j ) + log(Xk)

(18.18)

Now taking Yi = log(Xi) (with inverse relation X j = exp(Y j )) this can be rewritten
into a linear equation in Yi as follows

log(λ) + kY j = log(ωX1,X j ) + Y1 + . . . + log(ωXk ,X j ) + Yk

Y1 + . . . + Yk − kY j = log(λ) − (log(ωX1,X j ) + . . . + log(ωXk ,X j ))

Y1 + . . . + Yk − kY j = log(λ/(ωX1,X j . . . ωXk ,X j )) (18.19)

As an illustration, assume in the example of Fig. 18.3 for psa (which is X4) the
combination function sgeomeanλ is used, with k = 2 and λ = 0.5 and for the other
states X2, X3, X5, X6 the function sgeomeanλ(V 1) is used, with λ = 1, which is the
identity function. Then the equation for X4 becomes

Y3 + Y5 − 2Y4 = log(λ/(ωrespondingωamplifying)) (18.20)

Using Yi = log(Xi ) for all states all equations are transformed into the set of linear
equations shown in Table 18.7. Again applying the Linear Solver to them, as shown
in Fig. 18.7, provides the following solutions:
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Table 18.7 Overview of linear equilibrium equations for the example of Fig. 18.3 with geometric
combination functions

State nr State name Equilibrium equation

Y1 wss Y1 = Y1

Y2 sss log(ωsensing) + Y1 = Y2

Y3 srss log(ωrepresenting) + Y2 = Y3

Y4 psa Y3 + Y5 − 2Y4 = log(λ/(ωrespondingωamplifying))

Y5 srse log(ωpredicting) + Y4 = Y5

Y6 esa log(ωexecuting) + Y5 = Y6

Fig. 18.7 Using theWIMSLinear Solver to solve the nonlinear equilibrium equations for weighted
geometric functions used for aggregation within the example network

b = log(λ/(ωrespondingωamplifying))

log(X1) = log(a)

log(X2) = log(ωsensing) + log(a)

log(X3) = log(ωrepresenting) + log(ωsensing) + log(a)

log(X4) = log(ωresponding) + log(ωrepresenting) + log(ωsensing) + log(a) − b

log(X5) = 2log(ωpredicting) + log(ωrepresenting) + log(ωsensing) + log(a) − b

log(X6) = log(ωexecuting) + 2log(ωpredicting) + log(ωrepresenting) + log(ωsensing)

+ log(a) − b

Therefore, the solutions for the Xi are obtained by substituting

log(λ/(ωrespondingωamplifying))

For b and applying the standard exponential function; see Table 18.8.
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Table 18.8 Overview of the solutions for the geometric equilibrium equations for the example of
Figs. 18.3 and 18.4

State nr State name Solutions

X1 wss X1 = a

X2 sss X2 = ωsensing a

X3 srss X3 = ωrepresentingωsensinga

X4 psa X4 = ωrespondingωrepresentingωsensingωrespondingωamplifying a/λ

X5 srse X5 = ωpredicting
2 ωrepresentingωsensing ωrespondingωamplifying a/λ

X6 esa X6 = ωexecutingωpredicting
2 ωrepresentingωsensing ωrespondingωamplifying a/λ

Substituting 0.5 for ωresponding, ωamplifying, and λ, and 1 for the other connection
weights again provides Xi = a for all i, which again is confirmed by example
simulations.

18.8 Solving Nonlinear Equilibrium Equations
for Examples of Self-Model States

Note that as self-modeling networks are networks, in principle the methods and
concepts from this entire chapter apply to them too. This will be illustrated in the
current section, in particular for themethod of solving stationary point or equilibrium
equations applied to self-model states. In Sects. 18.6 and 18.7 examples of nonlinear
functions were addressed by transforming their equilibrium equations into linear
equations. Such a transformation is not always possible. Nevertheless, in some cases
nonlinear equations can still be solved without being able to transform them into
linear equations. In this section two of such cases are discussed, applied to self-model
states for adaptive connections.

18.8.1 Solving Nonlinear Equations for Self-Model States
for Hebbian Learning

Hebbian learning is often summarised in a simplified form as.

Neurons that fire together, wire together.

(Hebb 1949; Keysers and Gazzola 2014; Shatz 1992)

In relation to this, for Hebbian learning the combination function hebbμ(..) is often
used; it is defined by

hebbμ(V1, V2, W ) = V1V2(1 − W ) + μW (18.21)
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Here μ is the persistence parameter, V 1 stands for Xi(t), V 2 for Y(t) and W for the
self-model stateWXi ,Y(t) for connection weight ωXi ,Y(t). The parameter persistence
parameter describes in how far a learnt connection persists over time. Full persistence
is indicated by μ = 1 and full extinction takes place for μ = 0. If 0 < μ < 1, then a
fraction μ of what was learned persists and a fraction 1-μ of extinction takes place
per time unit. For example, if μ = 0.95, then 5% of the learned value is lost per
time unit. In the first part of the formula, the expression V 1V 2 models the condition
‘neurons that fire together’, and the factor (1-W ) takes care that the connectionweight
stays in the [0, 1] interval.

In Box 18.1 it is shown how a stationary point equation for this combination
function can be analysed by expressing W in terms of V 1, V 2 and μ. For example, it
is found that when μ < 1, in an equilibrium state the value of W is always < 1. For
more options for Hebbian learning functions and their analysis, see (Treur 2020a),
Chap. 14.

Box 18.1 Analysis of the stationary point equation for a Hebbian learning
function.

For a stationary point, applying criterion (2) provides the following stationary
point equation for the above Hebbian learning combination function:

W = hebbμ(V1, V2, W ) = V1V2(1 − W ) + μW ⇔
W = V1V2 − V1V2W + μW ⇔
W (1 + V1V2 − μ) = V1V2 ⇔
W = V1V2

1 − μ + V1V2
For example

• When μ = 1 (no extinction) and V 1 and V 2 are nonzero, then W = 1
• When both V 1 and V 2 have value 1, then W = 1

2−μ
.

18.8.2 Solving the Nonlinear Equations for Self-Model
States for Bonding by Homophily

Bonding by homophily is often summarised as

Birds of a feather flock together.

(McPherson et al. 2001)

For the bonding by homophily principle from (Treur 2016), Chapter 11, an option
for the combination function is the simple linear homophily function slhomoσ,τ(..):

slhomoσ,τ(V1, V2, W ) = W + α(τ − |V1 − V2|)(1 − W )W (18.22)
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Here α is the homophily modulation factor, and τ the tipping point. The part
(τ – |V 1 – V 2|) models the condition ‘birds of a feather’: this part is positive if
the difference between V 1 and V 2 is less than the tipping point τ (‘birds of a feather’
holds) and negative when this difference is more than τ (‘birds of a feather’ does
not hold). The factor (1 – W )W takes care that W stays within the [0, 1] interval. As
long as W is not 0 or 1, in the first case by the combination function a positive term
is added to W, so the connection weight will increase; in the second case a negative
term is added, so the connection weight will decrease.

In Box 18.2 it is shown how a stationary point equation for this combination
function can be analysed. It is found that usually a form of clustering takes place. In
(Treur 2020a), Chapter 13 more options for functions for bonding by homophily are
analysed.

Box 18.2 Analysis of the stationary point equation for a simple linear function
for bonding by homophily.

For the combination function for bonding based on homophily case, for a
stationary point applying the criterion (2) provides the following stationary
point equation (assuming α > 0):

W = slhomoσ,τ(V1, V2, W ) = W + α(τ − |V1 − V2|)(1 − W )W ⇔
α(τ − |V1 − V2|)(1 − W )W = 0 ⇔
W = 0 or W = 1 or |V1 − V2| = τ

As in simulations the third option here often turns out to be not attracting, this
shows that in an equilibrium a form of clustering is achieved with connection
weights 1 between states within one cluster and connection weights 0 between
states in different clusters.

18.9 General Equilibrium Analysis for a Class of Nonlinear
Functions

In this section the analysis is addressed not at the level of specific network structures
and implied within-network dynamics but at a more abstract level of properties of
network structures and properties of within-network dynamics implied by them; see
Fig. 18.8.

In Sects. 18.7 and 18.8 a specific approachwas followed that for specific combina-
tion functions chosen, obtains detailed formulae for the predicted equilibrium values
in terms of the network characteristics. In contrast, in the current section a general
perspective is followed and theorems are discussed for a large class of nonlinear and
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Network Structure Characteristics Within-Network Dynamics

Properties of 
Network Structure Characteristics

Properties of 
Within-Network Dynamics

Fig. 18.8 Relating properties of within-network dynamics to properties of network structure

linear functions that have been found (Treur 2020b). This general perspective makes
use of the notion of (strongly connected) component of a network; this is a maximal
subnetwork C such that every node within C can be reached from every other node
via a path following the direction of the connections; e.g., (Bloem et al. 2006; Harary
et al. 1965; Łacki 2013; Wijs et al. 2016). These components form a partition of the
set of nodes of the network. This is illustrated in Fig. 18.9 by an example network
borrowed from (Treur 2020a), where the components are C1 to C4.

As another illustration, consider the example of a mental network model with
connectivity depicted in Fig. 18.3. In Fig. 18.10, the components of this network
are shown: from left to right components C1 to C5. In (Treur 2020b) the notion of
stratificationwas introduced for such a partition of a network so that each component
gets a level (or stratum) assigned. In this case, following the components in the
direction of the connections the levels are 0 to 4 as indicated in Fig. 18.10 from left
to right. Note that in the general case, by the stratification multiple components can

Fig. 18.9 Strongly
connected components for
the example network model
from (Treur 2020a) and their
stratification levels

C3
level 1

C4
level 2

C1
level 0

C2
level 0

X4

X3

X2

X1

X6

X7

X5

X8

X10

X9
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X1 - wss

ωpredicting

X4 - psasss

X5 -

esaX3 - srss

ωp

X4 - ps

X5 -

X3 - srsssX1 - w esa
ωsensing ωresponding

ωamplifying

ωrepresenting ωexecuting

X2 -

srse

X6 -

C1 
level 0

C2 
level 1 

C3 
level 2 

C4 
level 3 

C5 
level 4 

Fig. 18.10 Strongly connected components for the example network model of Fig. 18.3 and their
stratification levels

get the same level. For example, in Fig. 18.9 there are two different components C1

and C2 that each has no incoming connection, then both components are at level 0;
see also (Treur 2020b). In Fig. 18.9, component C3 is at level 1 and component C4 at
level 2 (because C4 has an incoming connection from a level 1 component, namely
C3).

Based on the levels defined by this notion of stratification, a number of general
theorems and corollaria have been found and proven as presented in (Treur 2020a);
see also (Treur 2020b), Chaps. 12 and 15. For aggregation, these results are not
limited to linear functions and for connectivity no condition at all is demanded;
some of the main results are the following. The definitions are as follows.

Definition (weakly scalar-free and scalar-free functions) Consider functions f : Rk

→ R and θ: R → R for some subset R⊆R which is R or R>0.

(a) A function f : Rk → R is called weakly scalar-free for function θ if for all V 1,
…, Vk ∈ R and all α ∈ R it holds

f (αV1, . . . , αVk) = θ(α) f (V1, . . . , Vk)

(b) A function f : Rk → R is called scalar-free if for all V 1, …, V k ∈ R and all α ∈
R it holds

f (αV1, . . . , αVk) = α f (V1, . . . , Vk)

(c) A function f : Rk → R is called strictly (monotonically) increasing if for all
U1, …, Uk,V 1, …, Vk ∈ R such that Ui ≤ Vi for all i and Uj < V j for at least
one j it holds

f (U1, . . . , Uk) < f (V1, . . . , Vk)

(d) A function f :Rk →R used as combination function for a state Y in a network is
called normalised if f(ω1, …, ωk) = 1, where the ω’s are the weights of the
incoming connections of Y in the network.
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Theorem 1 (Equilibrium values related to strongly connected components) If the
following aggregation conditions are fulfilled

• The combination functions are normalised, scalar-free and strictly increasing

then in an achieved equilibrium:

(a) In any level 0 component C

• All states have the same equilibrium value V
• This V is between the highest and lowest initial value of states within C

(b) If for any level i > 0 component C the components C1,.., Ck are the strongly
connected components from which C gets an incoming connection, then

• If all states in C1,.., Ck have the same equilibrium value V, then also all
states in C have this same equilibrium value V

• The equilibrium values of the states in C are between the highest and lowest
equilibrium values of the states in C1,.., Ck

The following corollary can be immediately derived from Theorem 1.

Corollary 1 (dependence of all equilibrium values on the values in level 0
components)
If the following aggregation conditions are fulfilled

• The combination functions are normalised, scalar-free and strictly increasing

then in an achieved equilibrium:

(a) If all states in all level 0 components C have the same equilibrium value V,
then all states of the whole network have that same equilibrium value V

(b) The equilibrium values of all states in the network

• are between the highest and lowest equilibrium values of the states in the
level 0 components

• are between the highest and lowest initial values of the states in the level 0
components

For a strongly connected network (consisting of only one component, which then
is a level 0 component), the following is obtained as a special case of the above:

Corollary 2 (strongly connected networks)
If the following connectivity and aggregation conditions are fulfilled

• The network is strongly connected
• The combination functions are normalised, scalar-free and strictly increasing

then in an achieved equilibrium:

• All states have the same equilibrium value V
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• This equilibrium value V is between the highest and lowest initial values of the
states

Given that in the example network model there is only one level 0 component
with constant value a, by Theorem 1 or Corollary 1 above it can be concluded that
all states will have equilibrium value a, as long as the aggregation conditions are
fulfilled.

In this section a specific class of linear and nonlinear functions has been identified
(strictly increasing, scalar-free, and normalised) which all share a similar mathemat-
ical analysis for equilibria of network models using such functions. It is sometimes
believed that for dynamical models the borderline between linear and nonlinear
functions is also the borderline between well-analyzable behavior and less well-
analyzable behavior. In contrast to this, for contagion in social networks it has been
found here that this borderline between well-analyzable behavior and less well-
analyzable behavior lies somewherewithin the domain of nonlinear functions: it is not
between linear and nonlinear functions but between one class (of strictly increasing,
scalar-free, normalised functions) covering both linear and nonlinear functions and
another subclass of the class of nonlinear functions not satisfying these conditions. In
the next two sections this class of functions is explored in some more mathematical
detail.

18.10 Additive, Multiplicative, Log-like and Exp-like
Functions

In this section a few basic types of functions needed in Sect. 18.11 and further are
briefly reviewed. Proofs can be found in the Appendix. Below, the subset R ⊆R used
as domain for the considered functions θ in principle will be R or an interval within
R of the form R>0 = (0, ∞), although in some cases also other intervals may be
considered. Note that the symbol ◦ is used to denote function composition (g ◦ f is
read for functions f and g as ‘g over f ’ or ‘g on f ’). Sometimes it is left out: gf means
g ◦ f. The domain of a function f is denoted by Dom(f ) and the range f(Dom(f )) by
Range(f ).

Definition (additive, multiplicative, log-like, exp-like)

(a) A function θ: R → R is called additive if θ (α + β) = θ (α) + θ (β) for all α, β
∈ R

(b) A function θ: R → R is called multiplicative if θ (αβ) = θ (α)θ (β) for all α, β
∈ R

(c) A function θ: R → R is called log-like if θ (αβ) = θ (α)+θ (β) for all α, β ∈ R
(d) A function θ: R → R is called exp-like if θ (α+β) = θ (α)θ (β) for all α, β ∈ R
(e) The standard (natural, based on the number e) exponential and logarithmic

functions will be denoted by exp and log, respectively.
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Note that multiplicative and log-like functions are typically used for domains R
that are closed under multiplication and division such as R = R>0, whereas additive
and exp-like functions are typically used for domainsR that are closed under addition
and subtraction such as R = R.

Proposition 1 (relating additive, multiplicative, log-like, and exp-like functions) Let
θ: R → S be any function for a finite or infinite interval R in R, then the following
hold:

(a) If θ is multiplicative and S ⊆ R>0, then log ◦ θ is log-like.
(b) If R ⊆ R>0 and θ is log-like, then θ ◦ exp is additive.
(c) If θ is exp-like, then log ◦ θ is additive.
(d) If θ is multiplicative and S ⊆ R>0, then log ◦ θ ◦ exp is additive.
(e) For any multiplicative function such that θ (α) = 0 for some α �= 0, it holds

that θ (α) = 0 for all α. For any nonzero multiplicative function θ it holds θ (1)
= 1 and θ (α −1) = θ (α)−1 for all α.

(f) If a multiplicative θ is injective on Dom(θ ), then it has an inverse θ −1 with
Dom(θ −1) = Range(θ ) and Range(θ −1) = Dom(θ ); this inverse θ −1 is also
multiplicative.

The following theorem provides simple characterisations of the different types of
functions defined above.

Theorem 2 (characterisation of additive, multiplicative, log-like and exp-like)
Let θ: R → R be continuous. Then the following hold.

(a) Assume R ⊆ R is closed under addition and subtraction with 1 ∈ R, then it
holds:
θ is additive ⇔ for some c ∈ R for all X it holds θ (X) = c X.

(b) Assume R ⊆ R>0 is closed under multiplication and division with e ∈ R, then
it holds:
θ is multiplicative ⇔ for some c ∈ R for all X it holds θ (X) = Xc.

(c) Assume R ⊆ R>0 is closed under multiplication and division with e ∈ R, then
it holds:
θ is log-like ⇔ for some c ∈ R for all X it holds θ (X) = c log(X).

(d) Assume R = R is closed under addition and subtraction with 1 ∈ R, then it
holds:
θ is exp-like ⇔for some c ∈ R for all X it holds θ (X) = exp(cX).
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18.11 Weakly Scalar-Free and Scalar-Free Functions

Whether or not combination functions are scalar-free is an important factor deter-
mining whether or not by social contagion all members of a well-connected social
network converge to the same level of emotion, opinion, information, belief, inten-
tion, or any other mental or physical state; e.g., (Treur 2020a) and (Treur 2020b),
Chaps. 11 and 12. The class of scalar-free functions includes all linear functions but
goes far beyond the class of linear functions: a number of types of nonlinear functions
are known that are scalar-free, such as the Euclidean functions and geometric mean
functions (as will be defined below). However, it is not exactly clear how far exactly
this class of scalar-free functions reaches. To get some more insight in this, in this
section some further analysis is made of scalar-free functions, thereby also using a
weakened variant of them called weakly scalar-free functions.

The following basic properties can easily be verified:

Proposition 2 (scalar-free and strictly increasing functions)

(a) Any function composition of scalar-free functions is scalar-free
(b) Any function composition of strictly increasing functions is strictly increasing
(c) All linear functions with positive coefficients are scalar-free and strictly

increasing
(d) Any scalar-free function f is weakly scalar-free for θ = id, the identity function.

Examples (weakly scalar-free functions) There aremany examples ofweakly scalar-
free functions. For example, the following functions on proper domains are weakly
scalar-free

f (V ) = V k

f (V1, . . . , Vk) = V1 ∗ . . . ∗ Vk (18.23)

These are both weakly scalar-free with function

θ(α) = αk (18.24)

The example

f (V1, V2, V3) = w1V1V2 + w2V2V3 + w3V3V1 (18.25)

is weakly scalar-free with function

θ(α) = α2 (18.26)

Definition (Cartesian product function) For functions θ1,.., θ k:R → R their cartesian
product function.

Xk
i=1θi : Rk → Rk is defined by
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Xk
i=1θi (V1, . . . , Vk) = (θ1(V1), . . . , θk(Vk))

When all θ i are equal to one θ, this cartesian product function Xi=1
kθ i is also

denoted by Xkθ, and then is also called a cartesian power function of θ.

The following theoremdescribes some properties of scalar-free andweakly scalar-
free functions. Again, proofs can be found in the Appendix.

Theorem 3 (relating weakly scalar-free and scalar-free functions)
Consider functions f : Rk → R and θ: R → R for some subset R⊆R which is R

or R>0.

(a) If a nonzero function f is weakly scalar-free for function θ, then θ is
multiplicative.

If, moreover, f is (strictly) monotonically increasing and has at least one positive
value, then θ is also (strictly) monotonically increasing.

Therefore for the strict monotonically increasing case, θ is injective and has an
inverse θ -1 on Range(θ ), which is also multiplicative.

(b) Any nonzero multiplicative function θ is weakly scalar-free for itself.
(c) For any weakly scalar-free function f for θ the following are equivalent:

(i) Range(f ) ⊆ Range(θ )
(ii) For all V 1, …, Vk an α exists such that f(αV 1, …, αVk) = 1

(d) For eachweakly scalar-free function f :Rk →R for any injective θ, the function
g: Range(θ )k →Rdefinedbyg = f Xkθ −1 is scalar-free. If,moreover,Range(f )
⊆ Range(θ ), then also the function h: Rk → R defined by h = θ−1f is scalar-
free. For strictly increasing f and θ, these functions g,h are strictly increasing
too.

(e) For each set of strictly increasing and weakly scalar-free functions f i: Rk →
R≥0 for the same strictly increasing θ, for any linear combination f of the f i

with positive coefficients, the function g: Rk → R defined by g = f Xkθ−1 is
strictly increasing and scalar-free. If, moreover, Range(f ) ⊆ Range(θ ), then
also the function h: Rk → R defined by h = θ−1f is strictly increasing and
scalar-free.

(f) If f : Rk → R is scalar-free, θ: R → R is multiplicative and g = f ◦ Xkθ: Rk →
R, then g is weakly scalar-free for θ . This holds in particular if f is linear.

Examples (from weakly scalar-free to scalar-free functions) From Theorem 3d it
follows that for the function f of (18.25) and θ of (18.26) the function

g(V1, V2, V3) = θ−1 f (V1, V2, V3) = √
w1V1 ∗ V2 + w2V2 ∗ V3 + w3V3 ∗ V1

(18.27)

is scalar-free. Also, by Theorem 3e the function
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h(V1, V2, V3) =
[
V1 + V2 + V3 + √

(w1V1 ∗ V2 + w2V2 ∗ V3 + w3V3 ∗ V1)
]
/λ

(18.28)

is scalar-free.

18.12 Scalar-Free Functions based on Function Conjugates

In this section it is analysed how from given scalar-free functions other scalar-free
functions can be obtained by applying some transformation. The type of transfor-
mation applied can be interpreted as a form of scale transformation or coordinate
transformation. It is done by generating conjugates of scalar-free functions defined as
follows. This perspective provides an explanation of what was achieved in Sects. 18.6
and 18.7 where nonlinear equations were transformed into linear equations.

Definition (function conjugates). Let subsets R, S ⊆ R be given. The function g: Sk

→ S is a (function) conjugate of f : Rk → R by θ if θ: S → R is a bijective function
and

g = θ−1 ◦ f ◦ Xkθ

The following proposition describes in some more depth how a function f and its
conjugates g relate to each other.

Proposition 3 (function conjugate operator) Let subsets R, S ⊆ R be given, and
functions g: Sk → S, f : Rk → R, and bijective θ: S → R. Then the following hold:

(a) Then the following are equivalent:

(i) g is a function conjugate of f by θ

(ii) The following commutation rules for θ, f and g hold:

θg = f Xkθ

θ−1 f = gXkθ−1

(b) If a)(i) and (ii) hold, then for any g such an f is unique and can be denoted
by f = Sθ (g) for a function conjugate operator Sθ ; similarly, g = Sθ−1 (f) for
function conjugate operator Sθ−1 , so it holds:

θg = Sθ (g)Xkθ

θ−1 f = Sθ−1( f )Xkθ−1

These operators Sθ and Sθ−1 are each other’s inverse and they preserve function
addition and composition: for all functions f , g, f 1, f 2, g1 and g2 of proper types it
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holds

Sθ−1 Sθ (g) = g

Sθ Sθ−1( f ) = f

Sθ (g1 + g2) = Sθ (g1) + Sθ (g2)

Sθ (g1 ◦ g2) = Sθ (g1) ◦ Sθ (g2)

Sθ−1( f1 + f2) = Sθ−1( f1) + Sθ−1( f2)

Sθ−1( f1 ◦ f2) = Sθ−1( f1) ◦ Sθ−1( f2)

Moreover, when conjugate operators Sθ1 and Sθ2 for θ1 and θ2 are applied in turn, it
holds

Sθ1θ2(g) = Sθ1 Sθ2(g)Sθ1(X
kθ2)Xkθ1Xkθ−1

2 Xkθ−1
1 for all g

If in addition, θ1 and θ2 commute (i.e., θ1θ2 = θ2θ1), then Sθ1 Sθ2 = Sθ1θ2 :
Sθ1 Sθ2(g) = Sθ1θ2(g) for all g

The condition that θ1 and θ2 commute is always fullfilled when θ1 and θ2 are both
multiplicative, both additive, or both log-like or exp-like.

Definition (weighted Euclidean and geometric functions)

(a) A function g is a weighted euclidean function of order n if

g(V1, . . . , Vk) = n

√
w1V n

1 + . . . + wk V n
k

For some weights w1,.., wk . A weighted euclidean function is normalised if g(V, …,
V) = V for all V, i.e., if the sum of its weights is 1, in which case it is called aweighted
euclidean average function. A weighted euclidean function of order n = 1 is called
a linear function.

(b) A function g is a weighted geometric function if

g(V1, . . . , Vk) = V w1
1 . . . V wk

k

For some weights w1,.., wk . A weighted geometric function is normalised if g(V,
…, V) = V for all V, i.e., if the sum of its weights is 1, in which case it is called a
weighted geometric mean function.

In this section, it is established that the above-defined nonlinear functions are
scalar-free. Note that the scaled euclidean function eucln,λ of order n is a special
case of a weighted euclidean function. Moreover, the scaled geometric function
sgeomean1 is a special case of a weighted geometric function with all weights
1, whereas sgeomeanλ for λ �= 1 is not a weighted geometric function itself but
sgeomeanλ is a constant factor c = 1/ k

√
λ times the weighted geometric function

sgeomean1.
First, in a more general setting this will be addressed for weighted euclidean

functions. Moreover, it is analysed how weighted euclidean functions can be related
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to linear functions: it turns out that they can be interpreted as conjugates of linear
functions via some multiplicative function θ. This is explained by the following
theorem.

Theorem 4 (from scalar-free functions to scalar-free conjugates by multiplicative
θ )

(a) For any scalar-free function f : Rk → R with R = R≥0, all of its conjugates
θ −1 ◦ f ◦ Xkθ by a multiplicative θ: R → R are also scalar-free.

(b) More specifically, for any scalar-free function f , for any positive real number
n the function g defined by

g(V1, . . . , Vk) = n

√
f (V n

1 , . . . , V n
k )

is a conjugate θ −1 o f o Xkθ of f by the multiplicative function θ: X → Xn and
therefore is also scalar-free.

(c) All weighted euclidean functions are conjugates of linear functions by a multi-
plicative function θ and therefore are scalar-free. In particular, this holds for
all functions eucln,λ.

As an illustration of Theorem 4, the function eucln,λ can be written as a conjugate
function of a linear function as follows:

eucln,λ = θ−1 ◦ f ◦ Xkθ (18.29)

where θ(X) = Xn and

f (V1, . . . , Vk) = (V1 + . . . + Vk)/λ (18.30)

This can be verified as follows:

θ−1 ◦ f ◦ Xkθ(V1, . . . , Vk) = θ−1 ◦ f (V n
1 , . . . , V n

k )

= θ−1((V n
1 + . . . + V n

k )/λ)

= n

√
(V n

1 + . . . + V n
k )/λ

This describes the function transformation underlying the equation transformation
that has been used in Sect. 18.6 to transform the nonlinear euclidean equilibrium
equations into linear equations.

Next, in a more general setting in Theorem 5 it is established that weighted
geometric functions are scalar-free and how they can be related to linear functions.
Again, it turns out that they can be considered conjugates of linear functions, this
time not via a multiplicative function but via a log-like function θ. This is explained
by the following:
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Theorem 5 (from linear to scalar-free conjugates by log-like θ )

(a) For any linear function with sum of coefficients 1 all of its conjugates
θ −1 ◦ f ◦ Xkθ by a log-like θ are scalar-free.

(b) More specifically, for any linear function f with sum of coefficients 1, the
function g defined by

g(V1, . . . , Vk) = exp( f (log(V1), . . . , log(Vk)))

is a conjugate θ −1 ◦ f ◦ Xkθ of a linear function by the standard log-like function θ

= log and therefore is scalar-free.

(c) All weighted geometric functions are conjugates of a linear function by a log-
like function θ and therefore are scalar-free. In particular, this also holds for
all functions sgeomeanλ.

As an illustration of Theorem4, the function sgeomean1 can bewritten as a conjugate
function of a linear function as follows:

sgeomean1 = θ−1 ◦ f ◦ Xkθ (18.31)

Holds for θ = log and

f (V1, . . . , Vk) = (V1 + . . . + Vk)/k (18.32)

This can be verified as follows:

θ−1 ◦ f ◦ Xkθ(V1, . . . , Vk) = θ−1 ◦ f (log(V1), . . . , log(Vk))

= θ−1((log(V1) + . . . + log(Vk))/k)

= exp((log(V1) + . . . + log(Vk))/k)

= exp(log(V1 . . . Vk)/k)

= exp(log(V1 . . . Vk))
1/k

= (V1 . . . Vk)
1/k

= k
√

V1 . . . Vk

= sgeomean1(V1, . . . , Vk)

This shows in Theorem 4c) why sgeomean1 is a conjugate of a linear function and
therefore is scalar-free. Given this, the scaled geometric mean function sgeomeanλ

for any λ can be written as

sgeomeanλ = c sgeomean1

with a constant factor c = 1/ k
√

λ and therefore
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sgeomeanλ = cθ−1 ◦ f ◦ Xkθ

Therefore, also sgeomeanλ is scalar-free. This describes the function transformation
underlying the equation transformation that has been used in Sect. 18.7 to transform
the nonlinear geometric equilibrium equations into linear equations.

18.13 Appendix: Proofs

In this section proofs for Proposition 1 and Theorems 2 to 5 from Sects. 18.10–18.12
can be found.

18.13.1 Additive, Multiplicative, Log-Like and Exp-Like
Functions

Proposition 1 (relating additive, multiplicative, log-like, and exp-like functions) Let
θ: R → R be any function for a finite or infinite interval R in R, then the following
hold:

(a) If θ is multiplicative, then log ◦ θ is log-like.
(b) If θ is log-like, then θ ◦ exp is additive.
(c) If θ is exp-like, then log ◦ θ is additive.
(d) If θ is multiplicative, then log ◦ θ ◦ exp is additive.
(e) For any multiplicative function such that θ (α) = 0 for some α �= 0, it holds

that θ (α) = 0 for all α. For any nonzero multiplicative function θ it holds θ (1)
= 1 and θ (α −1) = θ (α)−1 for all α.

(f) If θ is multiplicative then θ (1) = 1 and θ (α −1) = θ (α)−1. If a multiplicative θ

is injective on Dom(θ ), then it has an inverse θ −1 with Dom(θ −1)= Range(θ )
and Range(θ −1) = Dom(θ ); this inverse θ −1 is also multiplicative.

Proof

(a) This follows from

log(θ(αβ)) = log(θ(α)θ(β)) = log(θ(α)) + log(θ(β))

(b) This follows from

θ(exp(α + β)) = θ(exp(α)exp(β)) = θ(exp(α)) + θ(exp(β))

(c) This follows from

log(θ(α + β)) = log(θ(α)θ(β)) = log(θ(α)) + log(θ(β))
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(d) This immediately follows from a) and b).
(e) Suppose θ (α) = 0 for some α �= 0, then for any β it holds θ(β) = θ(αβα−1) =

θ(α)θ(βα−1) = 0. Next, for any nonzero θ it holds θ(1) = θ(12) = θ(1)2;
as it cannot be 0 from this it follows that θ (1) = 1. The last part follows from
θ(α)θ(α−1) = θ(αα−1) = θ(1) = 1.

(f) Choose any α′, β ′ ∈ Range(θ ), then α′ = θ (α) and β ′ = θ (β) for some α,β ∈
Dom(θ ). Then this follows from

θ−1(α′β ′) = θ−1(θ(α)θ(β)) = θ−1(θ(αβ)) = αβ = θ−1(α′)θ−1(β ′)

■

Theorem 2 (characterisation of additive, multiplicative, log-like and exp-like
functions) Let θ : R → R be continuous. Then the following hold.

(a) Assume R ⊆ R is closed under addition and subtraction with 1 ∈ R, then it
holds.

θ is additive ⇔ for some c ∈ R for all X it holds θ (X) = c X.
(b) Assume R ⊆ R>0 is closed under multiplication and division with e ∈ R, then

it holds.
θ is multiplicative ⇔ for some c ∈ R for all X it holds θ (X) = Xc.

(c) Assume R ⊆ R>0 is closed under multiplication and division with e ∈ R, then
it holds.

θ is log-like ⇔ for some c ∈ R for all X it holds θ (X) = c log(X).
(d) Assume R = R is closed under addition and subtraction with 1 ∈ R, then it

holds.
θ is exp-like ⇔ for some c ∈ R for all X it holds θ (X) = exp(cX).

Proof Note that all implications from right to left are easy to verify. The opposite
implications can be found as follows.

(a) Note that 0 = 1 – 1 ∈ R and θ (0) = 0 as from additivity it follows

θ(0) = θ(0 + 0) = 2θ(0)

Therefore for any c ∈ R it holds θ (X) = cX for X = 0. Now, first for positive rational
numbers X = p/q ∈ R with p, q ∈ N with p, q > 0, from additivity it follows

qθ(X) = θ(qp/q) = θ(p) = pθ(1)

And therefore

θ(X) = cX

where c = θ (1). Moreover, for any negative rational number X = - p/q ∈ R with p, q
> 0 it holds
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θ(−p/q) + θ(p/q ) = θ(0) = 0

And therefore

θ(X) = θ(−p/q) = −θ(p/q) = −cp/q = cX

This proves that θ (X) = cX for all rational numbers X.

Next, as any real number X is the limit of a sequence rn, n ∈N of rational numbers
and both θ and the function X → cX are continuous it holds

θ(X) = θ( lim
n→∞ rn) = lim

n→∞ θ(rn) = lim
n→∞ c rn = c lim

n→∞ rn = cX

(b) Note that R′ = log(R) is closed under addition and subtraction and 1 = log(e)
∈ R′. By Proposition 1d) the function log ◦ θ ◦ exp on R′ is additive. Therefore,
by a) it follows that there is a c ∈ R such that for any X ∈ R for Y = log(X) it
holds

log ◦ θ ◦ exp(Y ) = cY

From this it follows

exp(log ◦ θ ◦ exp(Y )) = exp(cY )

θ ◦ exp(Y ) = exp(cY )

θ ◦ exp(Y ) = exp(Y )c

θ(X) = Xc

(c) Note that R′ = log(R) is closed under addition and subtraction and 1 = log(e)
∈ R′. By Proposition 1b) the function θ ◦ exp is additive on R′. Therefore, by
a) it follows that there is a c ∈ R such that for any X ∈ R for Y = log(X) it
holds

θ ◦ exp(Y ) = cY

θ ◦ exp(log(X)) = clog(X)

θ(X) = clog(X)

(d) By Proposition 1c) the function log ◦ θ is additive. Therefore, by a) it follows
that there is a c ∈ R such that for all X ∈ R it holds

log ◦ θ(X) = cX

exp(log ◦ θ(X)) = exp(cX)

θ(X) = exp(cX)

■



526 J. Treur

18.13.2 Weakly Scalar-Free And Scalar-Free Functions

Theorem 3 (relating weakly scalar-free and scalar-free functions)
Consider functions f : Rk → R and θ: R → R for some subset R⊆R which is R or
R>0.

(a) If a nonzero function f is weakly scalar-free for function θ, then θ is multi-
plicative. If, moreover, f is (strictly) monotonically increasing and has at least
one positive value, then θ is also (strictly) monotonically increasing. Therefore
for the strict monotonically increasing case, θ is injective and has an inverse
θ -1 on Range(θ ), which is also multiplicative.

(b) Any nonzero multiplicative function θ is weakly scalar-free for itself.
(c) For any weakly scalar-free function f for θ the following are equivalent:

(iii) Range(f ) ⊆ Range(θ )
(iv) For all V 1, …, Vk an α exists such that f(αV 1, …, αVk) = 1

(d) For eachweakly scalar-free function f :Rk →R for any injective θ, the function
g: Range(θ )k →R defined by g = f Xkθ−1 is scalar-free. If,moreover, Range(f )
⊆ Range(θ ), then also the function h: Rk → R defined by h = θ−1f is scalar-
free. For strictly increasing f and θ, these functions g,h are strictly increasing
too.

(e) For each set of strictly increasing and weakly scalar-free functions f i: Rk →
R≥0 for the same strictly increasing θ, for any linear combination f of the f i

with positive coefficients, the function g: Rk → R defined by g = f Xkθ−1 is
strictly increasing and scalar-free. If, moreover, Range(f ) ⊆ Range(θ ), then
also the function h: Rk → R defined by h = θ−1f is strictly increasing and
scalar-free.

(f) If f : Rk → R is scalar-free, θ: R → R is multiplicative and g = f o Xkθ: Rk →
R, then g is weakly scalar-free forθ . This holds in particular if f is linear.

Proof

(a) Suppose f (V1, . . . , Vk) �= 0, then from

θ(αβ) f (V1, . . . , Vk) = f (αβV1, . . . , αβVk) = θ(α) f (βV1, . . . , βVk) =
θ(α)θ(β) f (V1, . . . , Vk)

it follows that θ is multiplicative.

Suppose, moreover, f is (strictly) monotonically increasing and positive for at least
one point f (V1, . . . , Vk) > 0 and α ≤ β then from

θ(α) f (V1, . . . , Vk) = f (αV1, . . . , αVk) ≤ f (βV1, . . . , βVk) = θ(β) f (V1, . . . , Vk)

it follows that θ (α) ≤ θ (β); it works similarly for the strict condition.

(b) This follows from θ(αβ) = θ(α)θ(β).
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(c) (i) ⇒ (ii) Conversely suppose Range(f ) ⊆ Range(θ ), then for any V 1, …, Vk

it holds.

f(V 1, …, Vk) ∈ Range(θ ).
f(V 1, …, Vk) = θ (β) for some β ∈ Dom(θ ).
Then

θ(β)−1 f (V1, . . . , Vk) = 1

Now pick α = β −1, then it follows.
f (αV1, . . . , αVk) = θ(α) f (V1, . . . , Vk) = θ(β−1) f (V1, . . . , Vk) =

θ(β)−1 f (V1, . . . , Vk) = 1
(ii) ⇒ (i) Suppose for any given V 1, …, V k an α exists such that f(αV 1, …, αVk) =
1, then:

f (V1, . . . , Vk) = f (α−1αV1, . . . , α
−1αVk) = θ(α−1) f (αV1, . . . , αVk)

= θ(α−1) ∈ Range(θ)

(d) For g the first part follows from

g(αV1, . . . , αVk) = f (θ−1(αV1), . . . , θ
−1(αVk))

= f (θ−1(α)θ−1(V1), . . . , θ
−1(α)θ−1(Vk))

= θθ−1(α) f (θ−1(V1), . . . , θ
−1(Vk))

= α f (θ−1(V1), . . . , θ
−1(Vk))

= αg(V1, . . . , Vk)

And for h from

h(αV1, . . . , αVk) = θ−1( f (αV1, . . . , αVk))

= θ−1(θ(α) f (V1, . . . , Vk))

= θ−1θ(α)θ−1( f (V1, . . . , Vk))

= αθ−1( f (V1, . . . , Vk))

= αh(V1, . . . , Vk)

The second part follows from (a).

(e) This follows from (d) and (a).
(f) This follows from.

g(αV1, . . . , αVk) = f (θ(αV1), . . . , θ(αVk))

= f (θ(α)θ(V1), . . . , θ(α)θ(Vk))

= θ(α) f (θ(V1), . . . , θ(Vk))

= θ(α)g(V1, . . . , Vk)

■
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18.13.3 Creating Scalar-Free Functions Based
on Conjugates

Proposition 3 (function conjugate operator) Let subsets R, S ⊆ R be given, and
functions g: Sk → S, f : Rk → R, and bijective θ: S → R. Then the following hold:

(a) Then the following are equivalent:

(i) g is a function conjugate of f by θ

(ii) The following commutation rules for θ, f and g hold:

θg = f Xkθ

θ−1 f = gXkθ−1

(b) If a)(i) and (ii) hold, then for any g such an f is unique and can be denoted
by f = Sθ (g) for a function conjugate operator Sθ ; similarly, g = Sθ−1 (f) for
function conjugate operator Sθ−1 , so it holds:

θg = Sθ (g)Xkθ

θ−1 f = Sθ−1( f )Xkθ−1

These operators Sθ and Sθ−1 are each other’s inverse and they preserve function
addition and composition: for all f , g, f 1, f 2, g1 and g2 of proper types it holds

Sθ−1 Sθ (g) = g

Sθ Sθ−1( f ) = f

Sθ (g1 + g2) = Sθ (g1) + Sθ (g2)

Sθ (g1 ◦ g2) = Sθ (g1) ◦ Sθ (g2)

Sθ−1( f1 + f2) = Sθ−1( f1) + Sθ−1( f2)

Sθ−1( f1 ◦ f2) = Sθ−1( f1) ◦ Sθ−1( f2)

Moreover, when conjugate operators Sθ1 and Sθ1 for θ1 and θ2 are applied in
turn, it holds.

Sθ1θ2(g) = Sθ1 Sθ2(g)Sθ1(X
kθ2)Xkθ1Xkθ−1

2 Xkθ−1
1 for all g.

If in addition, θ1 and θ2 commute (i.e., θ1θ2 = θ2θ1), then Sθ1 Sθ2 = Sθ1θ2 :
Sθ1 Sθ2(g) = Sθ1θ2(g) for all g.

The condition that θ1 and θ2 commute is always fullfilled when θ1 and θ2 are
both multiplicative, both additive, or both log-like or exp-like.

Proof

(a) (i) ⇒ (ii) This follows from.

θg = θθ−1 ◦ f ◦ Xkθ = f ◦ Xkθ
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and

θ−1 f = θ−1 f XkθXkθ−1 = gXkθ−1

(ii) ⇒ (i) This follows from

g = θ−1θg = θ−1 ◦ f ◦ Xkθ

(b) First, suppose θg = f1Xkθ = f2Xkθ, then from θ bijective it follows f 1 = f 2.
Then an operator Sθ exists and it holds

θg = Sθ (g)Xkθ

θ−1 f = Sθ−1( f )Xkθ−1

Furthermore, consider

θ(g1 + g2) = Sθ (g1 + g2)X
kθ

θ(g1 + g2) = θg1 + θg2 = Sθ (g1)X
kθ + Sθ (g2)X

kθ = (Sθ (g1) + Sθ (g2))X
kθ

Then,

Sθ (g1 + g2)X
kθ = (Sθ (g1) + Sθ (g2))X

kθ

Sθ (g1 + g2) = Sθ (g1) + Sθ (g2)

Also,

θ( g1 ◦ g2) = Sθ (g1 ◦ g2)X
kθ

(θg1) ◦ g2 = Sθ (g1)X
k1θg2 = Sθ (g1)Sθ (g2)X

k1k2θ

Here k1k2 = k; therefore,

Sθ (g1 ◦ g2) = Sθ (g1) ◦ Sθ (g2)

And the same applies to θ−1.

When conjugate operators Sθ1 and Sθ2 for θ1 and θ2 are applied in turn, it holds

(θ1θ2)g = Sθ1θ2(g)Xkθ1θ2 = Sθ1θ2(g)Xkθ1X
kθ2

θ1(θ2g) = θ1Sθ2(g)Xkθ2 = Sθ1(Sθ2(g)Xkθ2)X
kθ1 = Sθ1 Sθ2(g)Sθ1(X

kθ2)X
kθ1

Therefore

Sθ1θ2(g)Xkθ1X
kθ2 = Sθ1 Sθ2(g)Sθ1(X

kθ2)X
kθ1
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Sθ1θ2(g)Xkθ1 = Sθ1 Sθ2(g)Sθ1(X
kθ2)X

kθ1X
kθ−1

2

Sθ1θ2(g) = Sθ1 Sθ2(g)Sθ1(X
kθ2)X

kθ1X
kθ−1

2 Xkθ−1
1

If θ1 and θ2 commute, then Sθ1(X
kθ2) = Xkθ2 and therefore, this becomes

Sθ1θ2(g) = Sθ1 Sθ2(g)Xkθ2X
kθ1X

kθ−1
2 Xkθ−1

1

Sθ1θ2(g) = Sθ1 Sθ2(g)

From Theorem 2 it follows that the condition that θ1 and θ2 commute is always
fullfilled when θ1 and θ2 are both multiplicative, both additive, or both log-like or
exp-like. By applying this to θ1 = θ and θ2 = θ −1 which also commute, it follows
that Sθ and Sθ−1 are inverses of each other (here id indicates the identity mapping):

Sθ−1 Sθ (g) = Sθ−1θ (g) = Sid(g) = id(g)

Sθ Sθ−1( f ) = Sθθ−1( f ) = Sid( f ) = id( f )

■

Theorem 4 (from scalar-free functions to scalar-free conjugates by multiplicative
θ )

(a) For any scalar-free function f : Rk → R with R = R≥0, all of its conjugates by
a multiplicative θ: R → R are also scalar-free.

(b) More specifically, for any scalar-free function f , for any positive real number
n the function g defined by

g(V1, . . . , Vk) = n

√
f (V n

1 , . . . , V n
k )

Is a conjugate of f by the multiplicative function θ: X → Xn and therefore is also
scalar-free.

(c) All weighted euclidean functions are conjugates of linear functions by a multi-
plicative function θ and therefore are scalar-free. In particular, this holds for
all functions eucln,λ(..).

Proof

(a) If f(V 1, …, Vk) scalar-free and θ multiplicative and g = θ−1 ◦ f ◦ Xkθ, i.e.,

g(V1, . . . , Vk) = θ−1( f (θ(V1), . . . , θ(Vk))

Then:

g(αV1, . . . , αVk) = θ−1( f (θ(αV1), . . . , θ(αVk))

= θ−1( f (θ(α)θ(V1), . . . , θ(α)θ(Vk))
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= θ−1(θ(α) f (θ(V1), . . . , θ(Vk))

= θ−1(θ(α))θ−1( f (θ(V1), . . . , θ(Vk)))

= αg(V1, . . . , Vk)

Therefore g is scalar-free.

(b) Substitute θ (X) = Xn and θ−1(X) = X (1/n), then

g(V1, . . . , Vk) = θ−1( f (θ(V1), . . . , θ(Vk)) = n

√
f (V n

1 , . . . , V n
k )

Then by (a) this function is scalar-free.

(c) When starting with a linear function in b), you get the general format of a
weighted Euclidean function g.

g(V1, . . . , Vk) = θ−1( f (θ(V1), . . . , θ(Vk))

= θ−1( f (V n
1 , . . . , V n

k ))

= θ−1(w1V n
1 + . . . + wk V n

k )

= n

√
w1V n

1 + . . . + wk V n
k

■

Theorem 5 (from linear to scalar-free conjugates by log-like θ )

(a) For any linear function with sum of coefficients 1 all of its conjugates by a
log-like θ are scalar-free.

(b) More specifically, for any linear function f with sum of coefficients 1 the
function g defined by

g(V1, . . . , Vk) = exp( f (log(V1), . . . , log(Vk)))

is a conjugate of a linear function by the standard log-like function θ = log
and therefore is scalar-free.

(c) All weighted geometric functions are conjugates of a linear function by a log-
like function θ and therefore are scalar-free. In particular, this also holds for
all functions sgeomeanλ(..).

Proof

(a) If f(V 1, …, V k) linear with sum of coefficients 1 and θ log-like and
g = θ −1 ◦ f ◦ Xkθ, i.e.,

g(V1, . . . , Vk) = θ−1( f (θ(V1), . . . , θ(Vk))
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Then g is scalar-free:

g(αV1, . . . , αVk) = θ−1( f (θ(αV1), . . . , θ(αVk))

= θ−1( f (θ(α) + θ(V1), . . . , θ(α) + θ(Vk))

= θ−1( f (θ(α), . . . , θ(α)) + f (θ(V1), . . . , θ(Vk)))

= θ−1( f (θ(α), . . . , θ(α) )) ∗ θ−1( f (θ(V1), . . . , θ(Vk)))

= θ−1(θ(α)) ∗ g(V1, . . . , Vk)

= αg(V1, . . . , Vk)

(b) If

f (V1, . . . , Vk) = w1V1 + . . . + wk Vk

Then

g(V1, . . . , Vk) = exp(w1 log(V1) + . . . + wk log(Vk))

= exp(log(V w1
1 ) + . . . + log(V wk

k ))

= exp(log(V w1
1 . . . V wk

k ))

= V w1
1 . . . V wk

k

(c) This immediately follows from b). As sgeomeanλ(..) is theweighted geometric
function sgeomean1(..) times a constant factor, it is also scalar-free. ■

18.14 Discussion

The contents of this chapter are based on parts of Treur (2016, 2018, 2021) and Treur
(2020b), Ch 12. In this chapter it was discussed how mathematical analysis can be
used to find out some properties of the dynamics of a network model. By comparing
such properties foundbymathematical analysis and properties observed in simulation
experiments, verification can be done of whether an implemented network model is
correct with respect to its design specification. If the mathematical analysis expects a
certain property but an example simulation does not satisfy this property, this should
be a reason to inspect the implementation of the model and correct errors (and/or
check whether the mathematical analysis is correct). This option for evaluation and
feedback can be very useful during a development process of a network model.

Useful mathematical techniques for such types of analysis in general have been
around already for quite some time; e.g., (Brauer and Nohel 1969; Lotka 1924;
Picard 1891; Poincaré 1881, 1892). Mathematical analysis may not always be easy.
The more easy options are when linear functions (for example, scaled sum combi-
nation functions) are used so that linear equilibrium equations occur that by using
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a linear solver in principle can be solved symbolically, thereby obtaining expres-
sions for equilibrium values in terms of the characteristics of the network model. On
the other hand, equilibrium equations involving logistic functions cannot be solved
symbolically in that way. Nevertheless, for such cases still specific instances can be
addressed: as shown in Sect. 18.2, verification of a network model does not depend
exclusively on finding explicit symbolic solutions of the equilibrium equations. For
verification purposes, it is sufficient if the equilibrium equations have been identi-
fied, which is always possible using the criterion based on the standard difference
or differential equation used for network models here. Then, for any simulation,
observed equilibrium values can be substituted in these equations and by this it is
checked whether they satisfy the equations.

To analyse and predict at forehand from its structure what behaviour a given
network model will eventually show can in general be a more challenging issue. For
example, do all states in a social network model converge to the same value? Some
earlier results address the case of acyclic, fully connected or strongly connected
networks and for linear combination functions only; e.g., (Bosse et al. 2015). It is
often believed that when nonlinear functions are used, such results cannot be found
anymore. Also, networks that are not strongly connected are usually not addressed
by analysis as they are assumed to be more difficult to handle. This chapter discussed
more recently foundmuchmore general results showing what is still possible beyond
the case of linear combination functions (for aggregation) and also beyond the case of
strongly connected networks (for connectivity). These general results relate network
behaviour to the network structure characteristics of two types in particular:

• Network connectivity characteristics in terms of the network’s strongly connected
components and their mutual connections and the stratification they induce

• Network aggregation characteristics in terms of the combination functions used
to aggregate multiple incoming connections (in particular, monotonicity, scalar-
freeness and normalisation).

The first item makes the network analysis approach applicable to any type
of network connectivity, thus going beyond the limitation to strongly connected
networks or acyclic networks. The second itemmakes the network analysis approach
applicable to a wider class of combination functions (most of which are nonlinear)
going beyond the limitation to linear functions. For some specific types of nonlinear
functions in this class (weighted Euclidean functions and weighted geometric func-
tions), it has been shown how they can be transformed (by conjugates) into linear
functions and how after such a transformation linear equilibrium equations are
obtained that can be solved easily. Also, for some other types of nonlinear func-
tions it was shown how they can be handled: functions for Hebbian learning and
functions for bonding by homophily as used for connectivity self-model states in
self-modeling networks.

So, it was shown how, in contrast to often held beliefs, certain classes of nonlinear
functions used for aggregation in network models enable analysis of the emerging
within-network dynamics as easily as linear functions do. The chapter uses elements
from Treur (2020a) and (2020b), Chapters 11 and 12, but also introduces a number of
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new concepts and methods for this type of network analysis, such as weakly scalar-
free function, conjugate functions and the use of a linear solver to solve nonlinear
equations. These new concepts and methods enable to get more insight in some of
the types of nonlinear functions for which network analysis by solving equilibrium
equations is well-feasible.

From scalar-free functions in a combinatorial manner new scalar-free functions
can be generated easily, using (1) linear combinations of them, (2) function compo-
sitions of them, and (3) conjugates of them. By iteratively combining these three
methods, scalar-free functions can be built of arbitrarily high complexity. This shows
that there is a very large spaceof suchnonlinear functions,which still arewell-suitable
for analysis. However, no complete classification of all possible types of nonlinear
functions that are easy to handle (e.g., because of being scalar-free) has been obtained
yet; there are still some remaining challenges for this.

References

Bosse, T., Duell, R., Memon, Z.A., Treur, J., van der Wal, C.N.: Agent-based modelling of emotion
contagion in groups. Cogn. Comp. 7(1), 111–136 (2015)

Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected component analysis in
n log n Symbolic Steps. Form. Meth. Syst. Des. 28, 37–56 (2006)

Brauer, F., Nohel, J.A.: Qualitative Theory of Ordinary Differential Equations. Benjamin (1969)
Harary, F., Norman, R.Z., Cartwright, D.: Structural Models: An Introduction to the Theory of
Directed Graphs. Wiley, New York (1965)

Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Wiley (1949)
Keysers, C., Gazzola, V.: Hebbian learning and predictive mirror neurons for actions, sensations
and emotions. Philos. Trans. r. Soc. Lond. b: Biol. Sci. 369, 20130175 (2014)

Łacki, J.: Improved deterministic algorithms for decremental reachability and strongly connected
components. ACM Trans. Algorithms 9(3), Article 27 (2013)

Lotka, A.J.: Elements of Physical Biology. Williams and Wilkins Co. (1924), Dover Publications,
2nd ed. (1956)

McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks.
Annu. Rev. Sociol. 27, 415–444 (2001)

Picard, E.: Traité d’Analyse, vol. 1 (1891), vol. 2 (1893)
Poincaré, H.: Mémoire sur les courbes défine par une équation différentielle (On curves defined by
differential equations) (1881–1882)

Poincaré, H.: NewMethods of CelestialMechanics, 3 vols. (1892–1899) English translation, (1967)
Shatz, C.J.: The developing brain. Sci. Am. 267, 60–67 (1992). https://doi.org/10.1038/scientificam
erican0992-60

Treur, J.: Verification of temporal-causal network models by mathematical analysis. Vietnam J.
Comput. Sci. 3, 207–221 (2016)

Treur, J.: Relating emerging network behaviour to network structure. In: Proceedings of the 7th
International Conference on Complex Networks and their Applications, ComplexNetworks’18,
vol. 1. Studies in Computational Intelligence, vol. 812, pp. 619–634. Springer Publishers (2018)

Treur, J.: Analysis of a network’s asymptotic behaviour via its structure involving its strongly
connected components. Netw. Sci. 8(S1), S82–S109 (2020a)

Treur, J.: Network-oriented modeling for adaptive networks: designing higher-order adaptive
biological, mental and social network models. Springer Nature Publishers (2020b)

https://doi.org/10.1038/scientificamerican0992-60


18 Where is This Leading Me: Stationary Point and Equilibrium Analysis … 535

Treur, J.: Equilibrium analysis for within-network dynamics: from linear to nonlinear aggregation.
In: Nguyen,N.T., et al. (eds.), Proceedings of the 13th International Conference onComputational
Collective Intelligence, ICCCI’21. Lecture Notes in AI, vol. 12876, pp. 94-110. Springer Nature
(2021)

Wijs, A., Katoen, J.P., Bošnacki, D.: Efficient GPU algorithms for parallel decomposition of graphs
into strongly connected and maximal end components. Formal Methods Syst. Des. 48, 274–300
(2016)


	18 Where is This Leading Me: Stationary Point and Equilibrium Analysis for Self-Modeling Network Models
	18.1 Introduction
	18.2 Modeling and Analysis of Dynamics within Network Models
	18.3 Verification of a Network Model via Checking the Stationary Point Equations
	18.4 Verification of a Network Model via Solving Equilibrium Equations
	18.5 Using a Linear Solver to Symbolically Solve Linear Equilibrium Equations
	18.6 Solving Nonlinear Equilibrium Equations for Euclidean Functions
	18.7 Solving Nonlinear Equilibrium Equations for Geometric Functions
	18.8 Solving Nonlinear Equilibrium Equations for Examples of Self-Model States
	18.8.1 Solving Nonlinear Equations for Self-Model States for Hebbian Learning
	18.8.2 Solving the Nonlinear Equations for Self-Model States for Bonding by Homophily

	18.9 General Equilibrium Analysis for a Class of Nonlinear Functions
	18.10 Additive, Multiplicative, Log-like and Exp-like Functions
	18.11 Weakly Scalar-Free and Scalar-Free Functions
	18.12 Scalar-Free Functions based on Function Conjugates
	18.13 Appendix: Proofs
	18.13.1 Additive, Multiplicative, Log-Like and Exp-Like Functions
	18.13.2 Weakly Scalar-Free And Scalar-Free Functions
	18.13.3 Creating Scalar-Free Functions Based on Conjugates

	18.14 Discussion
	References




