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Chapter 4
Controlling Your Mental Models:
Using Metacognition to Control Use
and Adaptation for Multiple
Mental Models

Jan Treur

Abstract Learning processes can be described by adaptive mental (or neural)
network models. If metacognition is used to regulate learning, the adaptation of the
mental network becomes itself adaptive as well: second-order adaptation. In this
chapter, a second-order adaptive mental network model is introduced for
metacognitive regulation of learning processes. The focus is on the role of multiple
internal mental models, in particular, the case of visualisation to support learning of
numerical or symbolic skills. The second-order adaptive network model is illus-
trated by a case scenario for the role of visualisation to support learning multipli-
cation at the primary school.

Keywords Metacognition � Control � Mental model � Multiple representation

4.1 Introduction

Metacognition (Darling-Hammond et al. 2008; Shannon 2008; Mahdavi 2014;
Flavell 1979; Koriat 2007; Pintrich 2000) is a form of cognition about cognition. In
(Koriat 2007) it is described as what people know about their own cognitive pro-
cesses and how they put that knowledge to use in regulating their cognitive pro-
cessing and behavior. A sometimes used closely related term is self-regulation and
when the cognitive processes addressed by metacognition concern learning, the
term self-regulated learning is used. For example, in (Pintrich 2000), self-regulated
learning is described as an active, constructive process whereby learners set goals
for their learning and then attempt to monitor, regulate, and control their cognition,
motivation, and behavior, guided and constrained by their goals and context.
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In learning, often different mental models play a role; e.g., (Gentner and Stevens
1983; Greca and Moreira 2000; Skemp 1971; Seel 2006). A specific case where the
role of metacognition in learning processes is considered within educational sci-
ence, is the use of multiple mental models such as in visualisation to support
learning of more abstract (numerical or symbolic) skills; e.g., (Bruner 1966; Du
Plooy 2016). An important metacognitive control decision in this context is whether
or not and when to switch from one mental model to another one. In the educational
science literature, much more can be found on this case, particularly for learning
arithmetic or algebraic skills in primary or secondary schools supported by visu-
alisation; see also (Bruner 1977; Bidwell 1972; Day and Hurell 2015; Freudenthal
1973; Freudenthal 1986; Koedinger and Terao 2002; Larbi and Mavis 2016; Lovitt
et al. 1984; Renkema 2019; Roberts 1989).

From a network-oriented modeling perspective, learning is usually described by
adaptive mental (or neural) network models, where some of the network charac-
teristics such as connection weights or excitability thresholds change over time. If,
in addition, metacognition is used to regulate or control the learning, this implies
that the adaptation (by learning) of the mental network is itself adaptive as well,
which is called second-order adaptation. Thus, a network model for such processes
has to address such complex structures and behaviour. In the current chapter, using
the modeling approach for higher-order adaptive networks from (Treur 2018,2020a,
b), a second-order adaptive mental network model is introduced for metacognitive
regulation of such learning processes. Here, the focus is on the role of multiple
mental models in case of visualisation to support learning of more abstract (nu-
merical or symbolic) skills. The adaptive network model is illustrated for a case
study on the role of visualisation to support learning multiplication at the primary
school as described, for example, in (Bruner 1966; Day and Hurrell 2015; Du Plooy
2016; Freudenthal 1973,1986; Rivera, 2011).

In this chapter, first in Sect. 4.2 more background knowledge is discussed on
metacognition and the role of visualisation in learning processes. In Sect. 4.3 the
network-oriented modeling approach used is briefly explained. Next, in Sect. 4.4
the introduced second-order adaptive network model is described in some detail. In
Sect. 4.5, it is shown how this model was used to perform simulations for the
illustrative example scenario. Finally, Sect. 4.6 is a discussion.

4.2 Metacognition and Multiple Mental Models

Literature on metacognition, sometimes also called self-regulation, can be found,
for example in (Darling-Hammond et al. 2008; Shannon 2008; Mahdavi 2014;
Flavell 1979; Koriat 2007; Pintrich 2000). The focus is here on the role of
metacognition in learning. For example, in (Pintrich 2000, pp. 452–453) the fol-
lowing assumptions for self-regulated learning are described:
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• It is a process whereby learners set goals for their learning and monitor and
control their cognition, motivation, and behavior guided by these goals.

• Learners actively construct their own meanings, goals, and strategies.
• Learners can monitor, control, and regulate certain aspects of their own cog-

nition, motivation, and behavior, and some elements of their environment.
• Some type of criterion or standard is used to assess whether the process should

continue as is or if some type of change is necessary.
• Self-regulatory activities are mediators between personal and contextual char-

acteristics and actual performance.

In line with these assumptions, in (Pintrich 2000, pp. 453–461, Table 1, p. 454),
the following phases for self-regulation are described:

• Cognitive planning and activation
• Cognitive monitoring
• Cognitive control and regulation
• Cognitive reaction and reflection

In (Koriat 2007, p. 290), metacognition is described by what people know about
cognition and in particular their own cognitive processes, and how they use that in
regulating their cognitive processes and behavior. Assumptions mentioned there
are:

• Self-controlled cognitive processes have measurable effects on behavior (Koriat
2007), pp. 292–293

• Feelings, such as the feeling of knowing are part of monitoring, and exert a
causal role on the control of cognitive processing (Koriat 2007), p. 293, p. 314–
315

• There is a causal relation from monitoring to control (Koriat 2007), p. 315

So, in both descriptions of Pintrich (2000) and Koriat (2007) on metacognition
(as well as in most other literature on metacognition), monitoring and control of the
own cognitive processes are central concepts (where Koriat also emphasizes the
feeling or experiencing that comes together with monitoring). These processes work
through a causal cycle where the own cognitive processes affect the metacognitive
monitoring, this monitoring in turn affects the metacognitive control, and this
control affects the own cognitive processes. This causal cycle will indeed be
incorporated in the adaptive network model introduced in Sect. 4. Note that
metacognitive monitoring is usually based on forming and maintaining a self-model
describing a (subjective) estimation of some relevant aspects of the own cognitive
processes.

In the area of learning using multiple mental models (Gentner and Stevens 1983;
Greca and Moreira 2000; Skemp 1971; Seel 2006), metacognition plays an
important role for the decisions about when to switch from one mental model to
another one. In particular, this takes place when learning numerical or symbolic
skills in arithmetic or mathematics is supported by visualisations; e.g., see (Bruner
1966,1977; Bidwell 1972; Day and Hurell 2015; Du Plooy 2016; Freudenthal
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1973,1986; Koedinger and Terao 2002; Larbi and Mavis 2016; Lovitt et al. 1984;
Renkema 2019; Roberts 1989). Here, when at some point during working with a
numerical or symbolic mental model, a learner monitors that the cognitive pro-
cesses get stuck, the control decision can be made by the learner to switch to
working with a mental model based on visualisation, after which the outcomes can
be fed back to the numerical or symbolic mental model. Within the literature in
educational science as mentioned above, it is extensively described how such a
detour via a visualisation can support the learning of numerical or symbolic skills.
This type of use of metacognition for using multiple mental models is the main
focus in the current chapter.

Table 4.1 The states in the adaptive network model

X1 N1 Base state for number a
X2 N2 Base state for number b
X3 N3 Base state for number c
X4 S23 Base state for number b + c
X5 P12 Base state for number a*b
X6 P13 Base state for number a*c
X7 PS123 Base state for number a*(b + c)
X8 SP1213 Base state for number a*b + a*c
X9 RDvert Vertical dimension of the rectangles
X10 RDhor1 Horizontal dimension of rectangle 1
X11 RDhor2 Horizontal dimension of rectangle 2
X12 RDhor3 Horizontal dimension of rectangle 3
X13 RA1 Area of rectangle 1
X14 RA2 Area of rectangle 2
X15 RA3 Area of rectangle 3
X16 RA12 Area of rectangles 1 and 2 together
X17 WP112 Representation state for the weight of the connection from N1 to P12

X18 WP212 Representation state for the weight of the connection from N2 to P12

X19 WP113 Representation state for the weight of the connection from N1 to P13

X20 WP313 Representation state for the weight of the connection from N3 to P13

X21 WSP121213 Representation state for the weight of the connection from P12 to SP1213

X22 WSP131213 Representation state for the weight of the connection from P13 to SP1213

X23 RWP
Mental representation state concerning the weights of the connections to P12

and P13

X24 RWSP
Mental representation state concerning the weights of the connections to 
SP1213

X25 WRDvert
Representation state used for execution of control decision CWRDvert, repre-
senting the weight of the connection from N1 to RDvert

X26 WRDhor1
Representation state used for execution of control decision CWRDhor1, rep-
resenting the weight of the connection from N2 to RDhor1

X27 WRDhor2
Representation state used for execution of control decision CWRDhor2, rep-
resenting the weight of the connection from N3 to RDhor2

X28 RSnum Representation of the self-model for the own numerical skills
X29 RSgeo Representation of the self-model for the own geometric skills

X30 CWRDvert
Control state for the switch to the geometric mental model: representation of 
the weight of the connection from RWPSP to WRDvert

X31 CWRDhor1
Control state for the switch to the geometric mental model: representation of 
the weight of the connection from RWPSP to WRDhor1

X32 CWRDhor2
Control state for the switch to the geometric mental model: representation of 
the weight of the connection from RWPSP to WRDhor2
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4.3 Higher-Order Adaptive Network Models

In this section, the network-oriented modeling approach used is briefly introduced.
Following (Treur 2016,2020b), a temporal-causal network model is characterised
by (here X and Y denote nodes of the network, also called states):

• Connectivity characteristics
Connections from a state X to a state Y and their weights xX,Y

• Aggregation characteristics
For any state Y, some combination function cY(..) defines the aggregation that
is applied to the impacts xX,YX(t) on Y from its incoming connections from
states X

• Timing characteristics
Each state Y has a speed factor ηY defining how fast it changes for given causal
impact.

The following difference (or differential) equations that are used for simulation
purposes and also for analysis of temporal-causal networks incorporate these net-
work characteristics xX,Y, cY(..), ηY in a standard numerical format:

Y tþDtð Þ ¼ Y tð Þþ gY ½cYðxX1;YX1 tð Þ; . . .;xXk;YXk tð ÞÞ � Y tð Þ�Dt ð4:1Þ
for any state Y and where X1 to Xk are the states from which Y gets its incoming
connections. Within the software environment described in (Treur 2020b, Ch. 9), a
large number of around 40 useful basic combination functions are included in a
combination function library.

The above concepts enable to design network models and their dynamics in a
declarative manner, based on mathematically defined functions and relations.
Realistic network models are usually adaptive: often not only their states but also
some of their network characteristics change over time. By using a self-modeling
network (also called a reified network), a similar network-oriented conceptualisa-
tion can also be applied to adaptive networks to obtain a declarative description
using mathematically defined functions and relations for them as well; see (Treur
2018, 2020a, b). This works through the addition of new states to the network
(called self-model states) which represent (adaptive) network characteristics. In the
graphical 3D-format as shown in Sect. 4, such additional states are depicted at a
next level (called self-model level or reification level), where the original network is
at the base level. As an example, the weight xX,Y of a connection from state X to
state Y can be represented (at a next self-model level) by a self-model state named
WX,Y (objective representation actually used) or RWX,Y (subjective representation
for a person-related self-model). Similarly, all other network characteristics from
xX,Y, cY(..), ηY can be made adaptive by including self-model states for them. For
example, an adaptive speed factor ηY can be represented by a self-model state
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named HY and an adaptive excitability threshold parameter sY can be represented by
a self-model state named TY.

As the outcome of such a process of network reification is also a temporal-causal
network model itself, as has been proven in (Treur 2020b, Ch 10), this
self-modeling network construction can easily be applied iteratively to obtain
multiple orders of self-models at multiple self-model levels. In the current chapter, a
multi-level self-modeling network will be applied to obtain a second-order adaptive
mental network model addressing metacognitive control of learning in a multiple
mental models context.

4.4 A Mental Network Model for Metacognitive Control
of Learning from Multiple Internal Mental Models

In this section, the adaptive mental network model for metacognitive control on
learning using multiple mental models is introduced. This adaptive mental network
model has processes at three levels:

• The base level network for the (multiple) internal mental models used
• The first-order self-model level for the learning of the internal mental models by

adaptations of them
• The second-order self-model level for control by adaptation of the first-order

network for the learning

These three levels of processes have been modeled by a second-order adaptive
self-modeling network (Treur 2018, 2020a,b) briefly described in Sect. 3; the
connectivity of this network model is depicted in Fig. 4.2. The states used are
explained in Table 4.1. For the example mental models at the base level, on the left
hand side in Fig. 4.2 an internal numerical mental model for an arithmetic task is
included and on the right hand side a visual, geometrical mental model for it. The
example task is to show (in the numerical representation) for certain given natural
numbers a, b and c that

a�ðbþ cÞ ¼ a�bþ a�c ð4:2Þ

Note that this is often applied in calculations, for example, when calculating
9*48 by splitting it as 9 � 40þ 9 � 8 ¼ 360þ 72 ¼ 432, or by calculating
27*7 + 27*3 as 27*(7 + 3) = 270.

The detour via visualisation considers two rectangles with vertical dimension
a and horizontal dimensions b and c and their areas that are together equal to the
area of a rectangle with vertical dimension a and horizontal dimension b + c, as
shown in Fig. 4.1.
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4.4.1 Network Characteristics: Connectivity and Timing

At the base level, for the numerical mental model, the base states N1, N2 and N3

represent the given numbers a, b, and c. Base states P12 and P13 represent the
products a*b and a*c, respectively, whereas state S12 represents the sum
b + c. Finally, base state SP1213 represents the sum of P12 and P13 which is
a*b + a*c, while base state PS123 represents the product of N1 and S23 which is a*
(b + c). For the geometric mental model, base states RDvert, RDhor1, RDhor2, and
RDhor3 represent the vertical and horizontal dimensions of the rectangles in
Fig. 4.1, respectively. Moreover, RA1, RA2 and RA3 represent the areas of the
three rectangles with horizontal dimension b, c, and b + c, respectively, and RA12

the area of the two smaller rectangles together.
At the first-order self-model level, the learning of the adaptive connections of the

numerical mental model is modeled by the W-states and as input for the the
self-model for the metacognitive monitoring the learnt relations as estimated by the
learner are represented by the two (subjective) RW-states X23 and X24. Moreover,
the WRD-states X25 to X27 model the adaptive connections from the numerical
mental model to the geometric mental model used to dynamically switch from one
to the other; this is part of effectuating the metacognitive control.

At the second-order self-model level, the self-model for the status of the learning
(for the own estimated learnt numerical and geometric skills) for the metacognitive
monitoring is represented by the two RS-states X28 and X29 and the metacognitive
control decisions (to switch to the geometric mental model) are modeled by the
CWRD-states X30 to X32, based on the impact from the self-model obtained by the
metacognitive monitoring.

There are two types of connections: intra-level connections (in Fig. 4.2 depicted
in black) and interlevel connections (depicted in blue for upward and in pink for
downward). At the base level, within each of the two mental models, the con-
nections define these mental models by their internal causal impacts. For example,
the connections N1 ! P12 and N2 ! P12 define that within the numerical mental
model the product of a and b represented by base state P12 depends on base states
N1 and N2 representing these numbers.

a

b c

b + cFig. 4.1 Visualisation for the
task expressed numerically by
(2)
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In addition, at the base level a number of connections define how the two mental
models relate to each other. For example, the connection N1 ! RDvert from the
numerical mental model to the geometric mental model defines that the vertical
dimension of the rectangles within the geometric mental model depends on the
number a represented by numerical state N1. Moreover, a connection back from the
geometric to the numerical mental model such as RA12 ! SP1213 defines the
influence of the outcomes of the geometric process on the numerical process as a
form of reinforcement to amplify the learning of the numerical mental model.

The upward connections to the first-order self-model W-states provide impact to
the W-states so that they can adapt over time, which is modeled according to a
qualitative Hebbian learning (Hebb 1949) principle specified by (4.6) below. For
example, connections N3 ! WP313 and P13 ! WP313 provide impact to WP313 so
that WP313 can adapt over time. On the other hand, the downward connection from
a W-state makes that the value of it is actually used in the processing of the mental
model. For example, the connection WP313 ! P13 takes care for this for WP313 so
that for the weight of the connection N3 ! P13 the value of WP313 is used.
Furthermore, the upward connections to the first-order self-model RW-states make
that a representation for the status of some connections of the numerical mental
model is formed and maintained. This is a first step toward a self-model which is
the basis of the metacognitive monitoring of the own cognitive processes.

RA12

RA1
RDvert

RDhor1

RA2RDhor2

RDhor3 RA3

SP1213

P12
N1N2

P13
N3

S23

PS123

Second-order self-model level
Control of network adaptation

First-order self-model level
Network adaptation

Base level
Base network

WRDvert

WRDhor1

WRDhor2

RWP

WSP121213WP112

WP313

WP113

WP212 WSP131213

RWSP

CWRDhor1

CWRDvert

CWRDhor2

RSnum

RSgeo

Fig. 4.2 Graphical representation of the connectivity of the second-order adaptive mental network
model for metacognitive control of learning for multiple mental models
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At the second-order self-model level, based on impact from the RW-states at the
first-order self-model level, the self-model is formed and maintained by the states
RSnum and RSgeo. Via their outgoing connections, the states RSnum and RSgeo of
this self-model have their impact on the control decisions modeled by the CWRD-
states. By their downward connections, the CWRD-states for control decisions
determine the incoming connections to the corresponding WRD-states, so that the
control decision is executed by realising that these WRD-states get values 1. In
turn, once the WRD-state has a value 1, it makes that at the base level the corre-
sponding connection from numerical mental model to geometric mental model is 1,
which then leads to the geometric mental model states RDvert, RDhor1, and RDhor2

getting the appropriate values from states N1, N2, and N3 of the numerical mental
model.

In Box 4.1 the complete role matrix specification of the connectivity and timing
characteristics of the designed adaptive network model can be found. Here in each
role matrix, each state has its row where it is listed which are the impacts on it from
that role. Role matrix mb lists the other states (at the same or lower level) from
which the state gets its incoming connections, whereas in role matrix mcw the
connection weights are listed for these connections. Note that nonadaptive con-
nection weights are indicated by a number (in a green shaded cell), but adaptive
connection weights are indicated by a reference to the (self-model) state repre-
senting the adaptive value (in a peach-red shaded cell). For example, state X5 (=
P12) has incoming connections from X1 (= N1), X2 (= N2), and X13 (= RA1) with
connection weights represented by X17 (= WP112) and X18 (= WP212) and 1,
respectively. These two adaptive connection weights model the reinforced (by RA1)
Hebbian learning. Also, the states RDvert, RDhor1, RDhor2 for the dimensions of the
rectangles in the geometric mental model have adaptive connection weights. These
adaptive connections are used to model the metacognitive control of the switch
from numerical mental model to geometric mental model: if the control decision is
made to switch, then these connection weights (represented by the WRD-states)
quickly become 1 to transfer the numbers a, b and c to the geometric mental model.
This rapid transition is specified in role matrix ms for the timing, where it is
indicated that the speed factors of the WRD-states X25 to X27 are adaptive and
immediately change from 0 to 1 as soon as the CWRD-states X30 to X32 for
metacognitive control at the second-order self-model level change to 1.
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Box 4.1. Role matrices for the connectivity and timing characteristics of
the network model

mb              base  
 connectivity 1 2 3

X1 N1 X1 

X2 N2 X2 

X3 N3 X3

X4 S23 X2 X3 

X5 P12 X1 X2 X13

X6 P13 X1 X3 X14

X7 PS123 X1 X4 X15

X8 SP1213 X5 X6 X16

X9 RDvert X1

X10 RDhor1 X2

X11 RDhor2 X3

X12 RDhor3 X10 X11

X13 RA1 X9 X10

X14 RA2 X9 X11

X15 RA3 X9 X12

X16 RA12 X13 X14 

X17 WP112 X1 X5 X17 

X18 WP212 X2 X5 X18

X19 WP113 X1 X6 X19

X20 WP313 X3 X6 X20

X21 WSP121213 X5 X8 X21

X22 WSP131213 X6 X8 X22

X23 RWP X5 X6

X24 RWSP X5 X6 X8

X25 WRDvert X25

X26 WRDhor1 X26

X27 WRDhor2 X27

X28 RSnum X23 X24

X29 RSgeo X28

X30 CWRDvert X25 X29

X31 CWRDhor1 X25 X29

X32 CWRDhor2 X25 X29 

mcw   connection  
 weights  1 2 3

X1 N1 1
X2 N2 1
X3 N3 1
X4 S23 1 1
X5 P12 X17 X18 1
X6 P13 X19 X20 1
X7 PS123 1 1 1
X8 SP1213 X21 X22 1 
X9 RDvert X25

X10 RDhor1 X26

X11 RDhor2 X27

X12 RDhor3 1 1
X13 RA1 1 1
X14 RA2 1 1
X15 RA3 1 1
X16 RA12 1 1
X17 WP112 1 1 1
X18 WP212 1 1 1
X19 WP113 1 1 1
X20 WP313 1 1 1
X21 WSP121213 1 1 1
X22 WSP131213 1 1 1
X23 RWP 1 1
X24 RWSP 1 1 1
X25 WRDvert 0
X26 WRDhor1 0
X27 WRDhor2 0
X28 RSnum 1 1 
X29 RSgeo 1 
X30 CWRDvert -0.1 1
X31 CWRDhor1 -0.1 1
X32 CWRDhor2 -0.1 1

ms  speed  
factors             1

X1 N1 0
X2 N2 0
X3 N3 0
X4 S1 0.5 
X5 P12 0.5 
X6 P13 0.5 
X7 PS123 0.5 
X8 SP1213 0.5 
X9 RDvert 0.5 
X10 RDhor1 0.5 
X11 RDhor2 0.5 
X12 RDhor3 0.5 
X13 RA1 0.5 
X14 RA2 0.5 
X15 RA3 0.15 
X16 RA12 0.05
X17 WP112 0.02 
X18 WP212 0.02
X19 WP113 0.02
X20 WP313 0.02
X21 WSP121213 0.02
X22 WSP131213 0.02
X23 RWP 0.1
X24 RWSP 0.1
X25 WRDvert X30

X26 WRDhor1 X31

X27 WRDhor2 X32

X28 RSnum 0.1
X29 RSgeo 0.5
X30 CWRDvert 0.5
X31 CWRDhor1 0.5
X32 CWRDhor2 0.5

4.4.2 Network Characteristics: Aggregation

The network characteristics for aggregation are defined by the selection of com-
bination functions from the library and values for their parameters. First the six
combination functions used for the model are specified by

mcf ¼ ½1; 2; 39; 22; 23; 4�
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¼ eucl; alogistic; hebbqual; complement� id; product;max� composition½ �

Here the numbers are the numbers of the listed functions in the library. Next, it is
specified which state uses which combination function. This can be seen in role
matrix mcfw in Box 4.2.

Box 4.2. Role matrices for the aggregation characteristics: combination
functions and their parameters

mcfw      combi-
nation function 
weights

1 
eucl 

2 
alog-
istic

3 
hebb-
qual

4 
comp

-id

5 
pro-
duct

6 
max-
comp

X1 N1 1
X2 N2 1 
X3 N3 1 
X4 S23 1 
X5 P12 1
X6 P13 1
X7 PS123 1
X8 SP1213 1
X9 RDvert 1 
X10 RDhor1 1 
X11 RDhor2 1 
X12 RDhor3 1 
X13 RA1 1
X14 RA2 1 
X15 RA3 1 
X16 RA12 1
X17 WP112 1
X18 WP212 1
X19 WP113 1
X20 WP313 1
X21 WSP121213 1
X22 WSP131213 1
X23 RWP 1
X24 RWSP 1
X25 WRDvert 1 
X26 WRDhor1 1 
X27 WRDhor2 1 
X28 RSnum 1 
X29 RSgeo 1
X30 CWRDvert 1
X31 CWRDhor1 1
X32 CWRDhor2 1

mcfp combina-
tion function 
parameters    

1 
eucl

2 
alog-
istic

3 
hebb
-qual

4 
comp

-id 

5 
pro-
duct

6 
max-
comp

1
n

2  1 2 1 2 1  2 1 2 1 
1

2 
2

X1 N1 1 1
X2 N2 1 1
X3 N3 1 1
X4 S23 1 1
X5 P12 23 1 
X6 P13 23 1 
X7 PS123 23 1 
X8 SP1213 1 1 
X9 RDvert 1 1
X10 RDhor1 1 1
X11 RDhor2 1 1
X12 RDhor3 1 1
X13 RA1

X14 RA2

X15 RA3

X16 RA12 1 1
X17 WP112 1
X18 WP212 1
X19 WP113 1
X20 WP313 1
X21 WSP121213 1
X22 WSP131213 1
X23 RWP 8 1.5
X24 RWSP 8 2 
X25 WRDvert

X26 WRDhor1

X27 WRDhor2

X28 RSnum 8 1.5
X29 RSgeo

X30 CWRDvert 18 0.2
X31 CWRDhor1 18 0.2
X32 CWRDhor2 18 0.2

The combination functions from the library used in the introduced network
model are defined as follows:

• The Euclidean combination function eucln,k(V1, …, Vk) is defined by
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eucln;k V1; . . .;Vkð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vn
1 þ . . .þVn

k
n
p ð4:3Þ

where n is the order and k a scaling factor and V1, …, Vk are the impacts from the
states from which the considered state Y gets incoming connections. Note that if
both parameters have value 1, then this is just the sum function and when there is
only one incoming connection the identity function. This is always the case in the
current model, as can be seen in role matrix mcfp.

• The product combination function product(V1, V2) is defined by

product V1;V2ð Þ ¼ V1V2 ð4:4Þ

• The advanced logistic sum combination function alogisticr,s(V1, …, Vk) is
defined by:

alogisticr;s V1; . . .;Vkð Þ ¼ 1
1þ e�r V1 þ ...þVk�sð Þ �

1
1þ er;sÞ

� �
1þ e�r;sð Þ ð4:5Þ

where r is a steepness parameter and s a threshold parameter and V1, …, Vk are
the impacts from the states from which the considered state Y gets incoming
connections

• The qualitative Hebbian learning combination function hebbquall(V1, V2, W) is
defined by

hebbqual V1;V2;Wð Þ ¼ V�
1V

�
2 1�Wð Þþ lW ð4:6Þ

where l is a persistence parameter, W represents the weight of their connection,
and V�

i is 1 if Vi > 0.1 and else 0 (here V1, V2 are the activation levels of the
connected states).

• The complemental identity combination function complement-id(V) is defined
by

complement� id Vð Þ ¼ 1� V ð4:7Þ

where V is the incoming impact from a connected state

• The max-composing combination function max-compositionm,n(V1, V2, V3) is
defined by

max� compositionm;n V1;V2;V3ð Þ ¼ maxðbcf m; 1; 1 ;� ½V1;V2½ �ð Þ;
bcf n; 1; 1 ;� ½V3½ �ð Þ ð4:8Þ

where bcf(i,p,v) is the ith basic combination function from the library. This
function composes two other combination functions from the library by using
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the max-function. It is actually defined as a special case using a more general
function available in the combination function library that enables to create any
function composition of any combination functions from the library: the
function

composedbcfs h; p; nrs; ps; vs; ksð Þ

which is defined as a function

bcf h; p; bcfvalues nrs; ps; vs; ksð Þð Þ

where m = length(nrs) is the number of functions composed with function
number h, p is a list of parameter values of the composing function number h,
nrs a list for the numbers of the composed functions, ps for their parameters, vs
for their values and ks the numbers of their arguments, and (assuming two
parameters per function)

bcfvalues nrs; ps; vs; ksð Þ ¼ bcf nrs 1ð Þ; ps 1ð Þ; ps 2ð Þ½ �; vs 1ð Þ; . . .; v ks 1ð Þð Þ½ �; . . .;ð½
bcf nrs mð Þ; ps 2m� 1ð Þ; ps 2mð Þ½ �;ð vs 1þRm�1

i¼1 ks ið Þ� �
; . . .;

�

vs Rm
i¼1ks ið Þ� ����

The combination function eucln,k(…) for n and k both 1, is used to model
addition, product(V1, V2) to model multiplication, hebbquall(V1, V2, W) to model
learning of arithmetic operations, and alogisticr,s(V1, …, Vk) and complement-id
(V) to model internal metacognitive monitoring and control states for the learning.
The combination function max-compositionm,n(V1, V2, V3) is used to reinforce the
learning in the numerical mental model through the outcomes from the geometric
mental model.

4.5 Example Simulation Scenarios

In this section, simulations of two example scenarios will be discussed to illustrate
the introduced second-order adaptive network model. Both scenarios address the
example task discussed in Sect. 3 (see also Fig. 4.1) for a = 2, b = 3, c = 2, which
are used as constant values for base states N1, N2, and N3, respectively. The first
scenario shows how someone who has good arithmetic skills addresses the task,
without involving any switch to the geometric mental model; see Fig. 4.3. As can
be seen, as one of the first, state S23 comes up which determines the sum of N2

representing b and N3 representing c, which correctly ends up in value 5 (the blue
line). At about the same time state P12 (the red line) for the product of N1 and N2
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representing a and b comes up, correctly ending up at 6. Similarly, P13 (the
blue-green line) for the product of N1 (for a) and N2 (for c) correctly reaches 4.

Next, PS123 of N1 and S23 representing the product of a and b + c is determined,
which correctly ends up in 10 (the light dark green line). The determines the left
hand side of the Eq. (4.2). At the same time, the right hand side of (2) is addressed.
Therefore, SP1213 (again the dark green line) for the sum of P12 and P13 comes up
and correctly reaches 10. This shows that the right hand side of (2) is indeed equal
to the left hand side of (2), what solves the task. In the meantime it can be seen in
Fig. 4.3 that the self-model about the numerical mental model is formed: the two
lines for the two RW-states all end up at 1, and also based on them the third
(orange) line for RSnum, which as a form of metacognitive monitoring tells the
learner that the arithmetic skills are OK. Therefore, in this case no control decision
to switch to the geometric mental model is made, and also no further learning is
needed.

The second scenario is the more interesting one (see Fig. 4.4). Here the learner
has still good arithmetic skills (connection weights 1) to address the left hand side
of (2), but not for the right hand side (connection weights are only 0.1). Therefore
the light brown and purple lines in the upper graph in Fig. 4.4 are the same as in
Fig. 4.3, but not the lines for P12, P13, and SP1213 needed for the right hand side of
(2). Because that side gets stuck, and the self-model used for monitoring has low
values showing a lack of arithmetic skills, the control decision is made to switch to
the geometric mental model: all three CWRD-states come up soon and reach 1
shortly after time 5 (the purple line in the lower graph of Fig. 4.4). As a conse-
quence, to execute this control decision, the WRD-states become 1 around time 5
(the red line in the lower graph of Fig. 4.4).

Because of that the RD-states representing the dimensions of the rectangles get
their values 2, 3, and 5. Based on these, the RA-states for the areas of the rectangles
are determined and get their values 4, 6 and 10. As these RA-states provide a
reinforcing impact on the states P12, P13, and SP1213 in the numerical mental model,
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0 5 10 15 20 25 30 35 40 45 50

X4 - S23 X5 - P12 X6 - P13 X7 - PS123
X8 - SP1213 X23 - RW-P X24 - RW-SP X28 - RSnum

Fig. 4.3 Using the arithmetic mental model and formation of the self-model for metacognitive
monitoring
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it can be seen that with a small delay the latter states follow the RA-states to also
reach values 4, 6 and 10 (the red, light blue, and dark green line in Fig. 4.4, upper
graph). In the lower graph of Fig. 4.4 it can be seen what happens further con-
cerning the adaptation levels. The lines starting at 0.1 are the W-states, and it is
shown that after time 6 they start to increase to finally reach values close to 1. This
is the reinforced Hebbian learning process for the numerical mental model: rein-
forced by the impact from the geometric mental model. Also the two RW-states and
state RSnum for the self-model for the numerical mental model, starting at 0.3, 0.5
and 0.4, increase after time 6. Note that the RSgeo (light green line with peak near
0.9) also increases thereby supporting the decision to switch to the geometric
mental model, but later on (after time 15) goes down just like the CWRD-states for
the control themselves do (after time 25), as after learning the full arithmetic mental
model, by the monitoring via the self-model the learner feels that there is no reason
anymore to consider switching to the geometric mental model.
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0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Switching to the Geometric Mental Model

X4 - S23 X5 - P12 X6 - P13 X7 - PS123 X8- SP1213
X9 - RDvert X10 - RDhor1 X11 - RDhor2 X12 - RDhor3 X13 - RA1
X14 - RA2 X15 - RA3 X16 - RA12
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0.4
0.5
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0.9
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1.1
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Adapta on and Metacogni ve Control

X17 - W-P112 X18 - W-P212 X19 - W-P113 X20 - W-P313
X21 - W-SP121213 X22 - W-SP131213 X23 - RW-P X24 - RW-SP
X25 - WRDvert X26 - WRDhor1 X27 - WRDhor2 X28 - RSnum
X29 - RSgeo X30 - CWRDvert X31 - CWRDhor1 X32 - CWRDhor2

Fig. 4.4 Switching to the geometric mental model and adaptation and metacognitive control of it
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4.6 Discussion

Learning processes can be described by adaptive mental (or neural) network
models. If metacognition is used to regulate learning (Pintrich 2000), the adaptation
of the mental network becomes itself adaptive as well, so then it involves
second-order adaptation. In this chapter, a second-order adaptive mental network
model was introduced for metacognitive regulation of learning processes using
multiple internal mental models. Part of the material was adopted from (Treur
2021).

The focus was on the role of multiple mental models (Gentner and Stevens 1983;
Greca and Moreira 2000; Skemp 1971; Seel 2006), in particular, the case of vi-
sualisation to support learning of numerical or symbolic skills (Bruner 1966, 1977;
Bidwell 1972; Day and Hurell 2015; Du Plooy 2016; Freudenthal 1973,1986;
Koedinger and Terao 2002; Larbi and Mavis 2016; Lovitt et al. 1984; Renkema
2019; Roberts 1989). The second-order adaptive network model was illustrated for
the role of visualisation to support learning multiplication at the primary school.

It was shown how a second-order self-modeling network model provides ade-
quate means to model the different aspects that make the addressed topic complex:
the network has a self-model about its own structure, it models mental models and
their adaptation for learning, and it models dynamic metacognitive control of this
adaptation. The model was applied to simulate some example scenarios that
illustrate what the model does. In further work other scenarios can be addressed as
well.
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