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Chapter 13
Taking Control of Your Bonding:
Controlled Social Network Adaptation
Using Mental Models

Jan Treur

Abstract In this chapter, the role of subjective elements and control in social
network adaptation is analysed computationally. In particular, it is analysed: (1) how
the coevolution of social contagion and bonding by homophily may be controlled
by the persons involved, and (2) how subjective representation states (e.g., what
they know) can play a role in this coevolution and its control. To address this, a
second-order adaptive social network model is presented in which persons do have
a form of control over the coevolution process, and, in relation to this, their bonding
depends on their subjective representation states about themselves and about each
other, and social contagion depends on their subjective representation states about
their connections.

Keywords Controlled social network adaptation · Bonding by homophily

13.1 Introduction

Social networks often do not only show dynamics within the network but also
dynamics of the network, where the latter is also called network adaptation. These
combined dynamics are sometimes referred to as coevolution of the network states
and the network connections. An often studied case for social networks is the coevo-
lution of social contagion (for the dynamics of the network nodes or states) and
bonding by homophily (for the dynamics of the weights of the network connec-
tions). The bonding by homophily adaptation principle expresses how ‘being alike’
strengthens the connection between two persons, also explained as ‘birds of a feather
flock together’; e.g., (McPherson et al. 2001; Pearson et al. 2006). On the other hand,
social contagion makes that network states affect each other through their connec-
tions, which implies that the stronger two persons are connected, the more they will
become alike (Levy and Nail 1993). This makes circular, reciprocal causal relations
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between the two processes. It has been found in simulations that, as in the real world,
the emerging behaviour of adaptive network models based on coevolution of these
two processes, often shows a form of clustering, segregation or community forma-
tion; e.g., (Blankendaal et al. 2016; Boomgaard et al. 2018; Holme and Newman
2006; Sharpanskykh and Treur 2014; Treur 2017, 2019; Vazquez 2013; Vazquez
et al. 2007).

Usually, in literature as mentioned, these social processes are considered without
taking into account subjective elements for the persons involved. For example, do the
persons themselves actually know in how far they are alike? Do they have to know
that to let the bonding work properly? Do they know their connections? Are persons
able to have some control over their bonding? Or are they just will-less victims
of objective social laws independent of what they know or what they want? Such
subjective aspects are lacking in (computational) research on bonding by homophily
as mentioned, as usually these coevolution processes are addressed exclusively from
the perspective of an objective social world. Note that in other in Social Science
literature such as (Casciaro et al. 1999; Krackhardt 1987; Vaisey and Lizardo 2010)
from awider perspective also the role of cognitive and cultural interpretation in social
dynamics is emphasized.

In the current chapter, it is assumed that such subjective elements indeed domatter
and it is analysed computationally how some of them can play their role in the coevo-
lution process. More specifically, it is analysed: (1) how the coevolution of social
contagion and bonding by homophily may be controlled by the persons involved, and
(2) how subjective states representingwhat they know about themselves, about others
and about their connections play a role in this coevolution and its control. To this end
a second-order adaptive social network model has been developed in which persons
have control over the coevolution process, and their bonding and social contagion
depend on subjective representations of the involved persons about themselves and
each other, and about their connections.

In the chapter, in Sect. 13.2 the higher-order adaptive network-oriented modeling
approach from (Treur 2020) used is briefly explained. In Sect. 13.3 the designed
second-order adaptive social network model is presented. Section 13.4 addresses
simulation results for a case study on adaptation in tretradic relationships. Finally,
Sect. 13.5 is a discussion section, where, among others, it is discussed how the model
can predict that faking your properties can be an effective way to achieve a desired
bonding.

13.2 Higher-Order Adaptive Network Models

In this section, the network-oriented modeling approach used is briefly introduced.
Following Treur (2016, 2020b), a temporal-causal network model is characterised
by:

• Connectivity characteristics Connections from a state X to a state Y and their
weights ωX,Y
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• Aggregation characteristics For any node Y, some combination function cY (..)
defines aggregation that is applied to the impacts ωXi ,Y Xi (t) on Y from its
incoming connections from statesX1, . . . , Xk

• Timing characteristics Each state Y has a speed factor ηY defining how fast it
changes for given causal impact

The following difference (or differential) equations that are useful for simulation
purposes and also for analysis of temporal-causal networks incorporate these network
characteristics ωX,Y , cY (..), ηY :

Y (t + �t) = Y (t) + ηY

[
cY (ωX1,Y X1(t), ...,ωXk ,Y Xk(t)) − Y (t)

]
�t (13.1)

for any state Y andwhere X1, . . . , Xk are the states fromwhich it gets its incoming
connections. Within the software environment described in (Treur 2020b), Chap. 9
a large number > 35 of useful combination functions are included in a combination
function library. The three combination functions from this library used for states Y
in the introduced network model are:

• the Euclidean combination function eucln,λ(V1, . . . , Vk) defined by

eucln,λ(V1, . . . , Vk) = n

√
V n
1 + . . . + V n

k

λ
(13.2)

where n is the order and λ a scaling factor and V 1, …, V k are the impacts from
the states from which the considered state Y gets incoming connections.

• the advanced logistic sum combination function alogisticσ,τ(V1, . . . , Vk) defined
by:

alogisticσ,τlog
(V1, . . . , Vk) = [ 1

1 + e−σ (V1+...+Vk−τlog)
− 1

1 + eστlog
](1 + e−στlog )

(13.3)

where σ is a steepness parameter and τlog a threshold parameter and V 1, …, V k

are the impacts from the states from which the considered state Y gets incoming
connections

• the simple linear homophily combination function slhomoα,τhomo(V1, V2, W )

defined by

slhomoα,τhomo(V1, V2, W ) = W + αW (1 − W )(τhomo − |V1 − V2|) (13.4)

where α is an amplification parameter and τhomo the tipping point parameter and
V 1, V 2 are a person’s representations of the two persons’ states involved and W
represents the weight of their connection.
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In Sect. 13.3, the combination function eucln, λ(…) be used to model social conta-
gion and formation of internal state representations, slhomoα,τhomo

(V1, V2, W ) to
model bonding based on homophily by internal connection weight representations,
and alogisticσ,τlog

(. . .) to model control of the bonding. Note that the homophily
tipping point τhomo is the point where the difference between the states of the two
individuals (represented by |V 1 − V 2|) turns an increase of bonding (outcome >W)
into a decrease (outcome < W), and conversely.

The above concepts enable to design network models and their dynamics in a
declarative manner, based on mathematically defined functions and relations. Real-
istic network models are usually adaptive: often some of their network characteris-
tics change over time. By using self-modeling networks (or network reification), a
similar network-oriented conceptualisation can also be applied to adaptive networks
to obtain a declarative description using mathematically defined functions and rela-
tions for them as well; see Treur (2020a, b). This works through the addition of new
states to the network called self-model states (or reification states) which represent
network characteristics by network states. If such self-model states are dynamic, they
describe adaptive network characteristics. In a graphical 3D-format, such self-model
states are depicted at a next level (self-model level), where the original network is
at a base level. As an example, the weight ωX,Y of a connection from state X to
state Y can be represented (at a next self-model level) by a self-model state named
WX,Y (objective representation) or RWX,Y (subjective representation). Similarly, all
other network characteristics from ωX,Y , cY (..), ηY can bemade adaptive by including
self-model states for them.

As a self-modeling network model is also a temporal-causal network model itself,
as has been proven in Treur (2020b), Chap. 10, this self-modeling construction can
easily be applied iteratively to obtain multiple self-model levels. This can provide
higher-order adaptive network models, and has turned out quite useful to model, for
example, plasticity and metaplasticity as known from neuroscience, in the form of a
second-order adaptivemental networkwith three levels, one base level and a first- and
a second-order self-model level; e.g., (Abraham and Bear 1996; Magerl et al. 2018;
Treur 2020b), Chap. 4. In the current chapter, multi-level network self-modeling will
be applied for higher-order adaptive social network models in particular.

13.3 A Network Model for Controlled Social Network
Adaptation

This section presents the introduced network model for controlled social network
adaptation by using subjective representations. This network model integrates three
types of interacting processes:

• The social network’s within-network dynamics based on social contagion
• First-order social network adaptation based on bonding by homophily
• Second-order social network adaptation to control the network adaptation



13 Taking Control of Your Bonding: Controlled Social Network … 351

The above three types of processes have been modeled by a second-order adaptive
network architecture based on multi-level self-modeling as described in Sect. 13.2,
with connectivity as depicted in Fig. 13.1. In this 3D picture, each of the three planes
models one of the three types of processes mentioned above.

The types of states and connections used at and between the three levels within
this network model are shown in Tables13.1 and 13.2 Here A and B are variables over
persons and Y is a type of state of a person, for example, how much the person likes
to watch Netflix series. At the base level, social contagion is modelled by connec-
tions SA,Y → SB,Y . Each person has subjective internal representation states of other
persons’ states Y (and the state of her or himself) and of his or her connections to
others. This is modeled by the first-order self-model. A person B’s internal represen-
tation state for person A having state Y is modeled by state representation RSA,B,Y .
A person A’s subjective representation of his or her connection to B is modeled by
connection weight representation RWA,B,Y . There are two pathways that contribute
to formation of state representations RSA,B,Y . First, these representations can be

a

b

c

Fig. 13.1 Overview of the connectivity of the second-order adaptive social networkmodel for three
example persons A, B and C
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Table 13.1 Types of states in the introduced controlled adaptive social network model

SB,Y Objective state Y of person B
RSA,B,Y Subjective representation of person B for state Y of person A

RWA,B,Y
Subjective representation of person A for the connection weight from 
person A to person B

CCA,B,Y
Control state for communication from A to B: representation of the 
weight of the connection from RSA,A,Y to RSA,B,Y

COA,B,Y
Control state for observation by B: representation of the weight of the 
connection from SA,Y to RSA,B,Y for the state Y of A observed by B

communicated between persons. For example, if A communicates his or her subjec-
tive representationRSA,A,Y of the own state SA,Y to B, this is modeled by a connection
RSA,A,Y → RSA,B,Y . A second pathway for a person B to get information on person
A’s state is through observation of SA,Y by B. This is modeled by a connection SA,Y

→ RSA,B,Y .
As indicated, person A’s representation of her or his connection to person B is

modeled by RWA,B,Y . It is assumed that the adaptive change of the represented
connections depends on the internal representation states RSA,B,Y . As the changes
considered here are based on a homophily principle for state Y, this adaptation is
supported by connectionsRSA,A,Y →RWA,B,Y andRSB,A,Y →RWA,B,Y . The connec-
tion representations RWA,B,Y in turn affect the social contagion within the social
network, which is modeled by downward connections RWA,B,Y→ SB,Y .

To control the social network adaptation processes, two types of control actions
are considered in particular:

• controlling the communication of state Y from person A to person B, modeled by
control states CCA,B,Y

• controlling the observation of state Y from person A by person B, modeled by
control states COA,B,Y

Activation of a communication control state CCA,B,Y makes that the connection
RSA,A,Y → RSA,B,Y from A’s state RSA,A,Y to B’s state RSA,B,Y gets a high value

(1 or close to 1) so that the transfer of information by communication happens;
this is modeled by connections COA,B,Y → RSA,B,Y . This can be considered as B
asking A for the information about him or herself, upon which A communicates this
information. Similarly, activation of an observation control state COA,B,Y makes that
the connection SA,Y → RSA,B,Y from A’s state SA,Y to B’s state RSA,B,Y gets a high
value (1 or close to 1) so that the transfer of information by observation takes place;
this is modeled by connections COA,B,Y → RSA,B,Y . As an example used in the case
study in Sect. 13.4, the control states CCA,B,Y and COA,B,Y themselves may become
active depending on B’s state RSB,B,Y ; this is modeled by connections RSB,B,Y →
COA,B,Y and RSB,B,Y → COA,B,Y . But this can be addressed in many other ways as
well, including externally determined control, for example, by enabling or allowing
observation or communication (only) at specific time slots.
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13.4 Simulation for a Tetradic Relationship Example

In this section, a simulation of an example scenario will be discussed to illustrate
the introduced second-order adaptive social network model. The example scenario
describes an adaptive tetradic relationship configuration with initially two couples
all four of which are friends: Mark and Dion, and Ann and Jenny. After the process
described in the scenario they find themselves in a slightly changed configura-
tion, where Mark and Jenny, and Dion and Ann have the stronger connections; see
Fig. 13.2. This adaptation process takes place because Mark and Jenny realize that
they have more in common with as an example used here their preference to watch
Netflix series. Similarly, Dion and Ann realize that they also have more in common,
in their case disliking watching Netflix series (and instead a preference for outdoor
activities).

To specify a network model according to the approach from (Treur 2020b), as
discussed in Sect. 13.2, three types of network characteristics are to be addressed:
connectivity, aggregation and timing characteristics. They have been specified in
role matrix format as shown in the Appendix Sect. 13.8 and used for the simulation
discussed after. For the sake of simplicity, the subscript Y (which for the example
stands for a preference to watch Netflix series) has been left out here. Role matrices
indicate in rows successively for all network states, the factors that affect them from
different roles. In role matrixmb (see Sect. 13.8), for each state it is indicated from
which other states it has incoming connections from the same or a lower level. In
the same box in role matrix mcw, it is indicated what are the connection weights
for the connected states indicated in mb. If the connection weights are static, their
static value is indicated in matrix mb, but if the connection weight is adaptive, the
self-model state representing this weight is indicated, as in that case at each time
point this is where the (dynamic) connection weight value can be found. This can
be seen for all incoming connections for the first four states X1 to X4, and for all
incoming connections for the state representation states X9 to X20. Indicating these
adaptive value representations, defines the downward connections of Fig. 13.1. Also
the speed factors are shown in Sect. 13.8 (role matrixms, which actually is a vector).

In the second box in Sect. 13.8, showing the aggregation characteristics, it can be
seen which states use which combination functions (role matrix mcfw) and which
parameter values for them (role matrixmcfp); also the initial values for the example
simulation are shown here.

InFigs. 13.3 and13.4 the simulation for the example scenario is shown. InFig. 13.3

M

J

D

A

M

J

D

A

Fig. 13.2 Example scenario for a tetradic relationship configuration where initially M and D and
J and A have strong connections and in the end M and J and D and A have the strong connections
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X1 - S-M X2 - S-D X3 - S-J X4 - S-A
X21 - RW-MD X22 - RW-MJ X23 - RW-MA X24 - RW-DJ
X25 - RW-DA X26 - RW-JA X27 - RW-DM X28 - RW-JM

Fig. 13.3 Outcomes for the example scenario simulation: the changes in all relationships

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
X1 - S-M X3 - S-J X5 - RS-MM X7 - RS-JJ
X10 - RS-MJ X16 - RS-JM X22 - RW-MJ X28 - RW-JM
X34 - CC-MJ X40 - CC-JM X46 - CO-MJ X52 - CO-JM

Fig. 13.4 The role of control and subjective states for the relationship between Mark and Jenny

the co-evolution of changing states and connection (self-model) representations is
shownwithout showing the underlying personal state representations. Here the states
SA are slowly changing whereas the connection representationsRWA,B are changing
faster. It indeed can be seen that for Mark and Jenny both directional connection
representations RWM,J and RWJ,M start to increase from timepoint 5 resp. 10 on
to finally end up at a value (close to) 1. Similarly, the connection representations
RWD,A and RWA,D between Dion and Ann start to increase after time 5. In the same
time period, the connection representations RWM,D and RWD,M between Mark and
Dion and RWJ,A and RWA,J between Jenny and Ann decrease to (close to) 0. All
these changes are a consequence of the homophily principle, as the state values SM
and SJ for Mark and Jenny are close to each other (0.8 and 0.9), and SD and SA
for Dion and Ann also (0.2 and 0.3); note that the tipping point for similarity set
was 0.25, so (only) a difference < 0.25 is strengthening a relationship. In contrast,
the values for Mark and Dion differ a lot (0.8 vs. 0.3), which is much higher than
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the tipping point 0.25 and therefore has a decreasing effect on their relationship; the
same pattern holds for Jenny and Ann.

Finally, in the right lower corner it can be seen that the other connection repre-
sentations (for example, for Jenny and Dion) were already low and still became
lower because of big differences in their states. It can be noted that all connection
representations converge to 0 or 1, which shows that clustering (and segregation)
takes place, where the emerging clusters are Mark-Jenny and Dion-Ann, whereas
the initial configuration (approximately) had clusters Mark-Dion and Jenny-Ann
(also see Fig. 13.2).

In Fig. 13.4, the focus is on the development of the connections between Mark
and Jenny and in particular it zooms in on the role that is played by the control states
CCA,B,Y andCOA,B,Y and the subjective representation statesRSA,B,Y . The dark purple
line that gets close to 1 before time 10 indicates the control states CCA,B,Y for the
communication between them, which makes that at that time their mutual commu-
nication channelsRSA,A,Y → RSA,B,Y get weights close to 1. This implies that before
time 10 they indeed both communicate to each other that they like watching Netflix
series. These control states for the communication are triggered in this example
scenario because each of them observes his or her own behaviour and therefore they
form representations RSA,A of their own states SA concerning watching the series.
Next, around time point 20 the control states COA,B,Y for observation (the grey line)
get close to 1, triggered in a similar way (but just a bit slower) as the control states
for communication. This gives the relevant observation channel SA,Y → RSA,B,Y a
weight close to 1. Due to that, mutual observation takes place.

Because of these communication and observation actions, the mutual subjec-
tive representations RSM,J,Y of Jenny about Mark (the dark green line) and RSJ,M,Y

of Mark about Jenny (the light green line) are formed and around time 20 reach
levels around 0.8 (Jenny representing Mark) and 0.9 (Mark representing Jenny),
respectively; these representations are close to the actual values, as are the repre-
sentations RSA,A of their own states, so all of them achieve faithful representations.
Only now these subjective representations have been formed in a controlled manner,
the homophily principle can start to work: the bonding works through the (subjec-
tive) representation statesRSA,B,Y , not through the (objective) states SA,Y themselves.
More specifically, from the moment on that the subjective representations of Jenny
about Mark and Jenny’s own subjective representation about herself get closer than
0.25, (which is somewhere before time point 10 but not earlier), her self-model repre-
sentation RWJ,M,Y of her connection to Mark (the pink line) starts to increase from
0.2 or lower to finally becoming very close to 1. Similarly, the effect of the subjective
representations of Mark for Jenny and Mark’s own subjective self-model represen-
tation about himself, on the subsequent increase of his representation RWM,J,Y of
his connection to Jenny (the blue line) can be noted. Before that point in time their
connections were not increasing, but instead go slightly downward; this illustrates
the effect of the control via the subjective self-model representation states on the
adaptation.
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13.5 A Social Network Model for Bonding Based on Faking

Next, another example of controlled social network adaptation is addressed. This
example concerns howbonding can take place based on faked homophily. Like above,
this self-modeling network model integrates three types of interacting processes,
modeled at three different levels:

• The considered social base network itself with its (within-network) dynamics for
social contagion (Levy and Nail 1993)

• Change of this social network over time based on bonding by homophily
(McPherson et al. 2001; Pearson et al. 2006): first-order social network adaptation

• Control of the first-order social network adaptation: second-order social network
adaptation

As above, the bonding is not assumed to depend on the objective states for the two
persons, but on how these states are perceived and represented by the persons through
the formation of subjective state representation states. By controlling the formation
of these subjective state representation states, indirectly the bonding is affected;
contrarily, if you don’t take care to acquire information about the other person, then
youmiss a good reason for stronger or weaker bonding. To cover this, the above three
types of processes have beenmodeled by a second-order self-modeling network using
a first-order self-model (for formation of the subjective state representation states and
for the bonding based on them) and a second-order self-model (for the control of the
formation of the subjective representation states). This offers some room to model
cheating about one’s own properties, as regularly happens in real life: by faking an
own state, the other person will make a false representation for it, which then will
affect that person’s bonding in a false manner.

The model’s connectivity is depicted in Fig. 13.5 by an example for two persons,
one of which is faking his or her properties in order to achieve successful bonding.
In this 3D picture, each of the three planes models one of the three types of processes
mentioned above; for an explanation of the states, see Table 13.3.

The types of connections used at and between the three levels within this network
model are shown in Table 13.2. Here Z is a type of state of a person, for example,
how often the person listens to a certain type of music; to keep the notations simple,
this type is left out of them; if needed, the Z could be used as an additional subscript.

At the base level, social contagion ismodelled by intra-level connections (depicted
by black arrows in the lower plane in Fig. 13.5) such as SA → SB, FSB → SA, and
SA → FSB. Here the last connection models B faking by intentionally listening to
the same type of music as A just at the moments that A can observe it. In contrast
to FSB, state SB indicates how much B normally listens to that type of music. In the
simulated scenario, SA will have high values and SB low values, whereas by copying
SA also FSB gets high values.

Within the first-order self-model, each person has subjective internal representa-
tion states of other persons’ states Z and the of state Z of her or himself, and also of
his or her connections to others. This first-order self-model is modeled in the middle
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Second-order self-model:
Control of base network adaptation

First-order self-model:
Base network adaptation

Base network

SA
SB

FSB

RWA,B

RSB,B

RWB,A
RSA,B

RFSB,B

RSB,A

RSA,A

COB,A

CCB,A

CCA,B

COA,B

Fig. 13.5 Overview of the connectivity of the second-order adaptive social network model for
bonding by homophily for two persons A and B, where B is faking the homophily for A

Table 13.3 Types of states in the introduced controlled adaptive social network model

SA Objective state Z of person A 
SB Objective state Z of person B 
FSB Objective state of person B faking state Z of person A
RSA,A Subjective representation of person A for state Z of person A
RSB,B Subjective representation of person B for state Z of person B
RSA,B Subjective representation of person B for state Z of person A
RSB,A Subjective representation of person A for state Z of person B
RFSB,B Subjective representation of person B for his or her faked state Z

RWA,B
Subjective representation of person A for the weight of the connection 
from person A to person B

RWB,A
Subjective representation of person B for the weight of the connection 
from person B to person A

CCA,B
Control state for communication from A to B for the state Z of A: repre-
sentation of the weight of the connection from RSA,A to RSA,B

CCB,A
Control state for communication from B to A for the state Z of B: repre-
sentation of the weight of the connection from RSB,B to RSB,A

COA,B
Control state for observation by B for the state Z of A observed by B: 
representation of the weight of the connection from SA to RSA,B

COB,A
Control state for observation by A for the state Z of B observed by A: 
representation of the weight of the connection from SB to RSB,A
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plane. For example, person A’s internal representation state for person B having state
Z is modeled by state representation RSB,A, and A’s subjective representation of his
or her connection to B is modeled by connection weight representation RWA,B.

There are two pathways that contribute to formation of state representations such
as RSA,B. First, these representations can be obtained through observation of SA by
B. This is modeled by an upward interlevel connection SA → RSA,B from the base
network to the first-order self-model. As B is faking his or her base state, observation
by A is modeled not by a connection SB → RSB,A but by connection FSB → RSB,A.

A second pathway for a person B to get information on person A’s state is through
communication between persons. For example, if A communicates his or her subjec-
tive representation RSA,A of the own state SA to B (e.g., ‘I often play this type of
music!’), this is modeled by an intra-level connection RSA,A → RSA,B within the
middle plane for the first-order self-model. Also in the communication, B is faking;
therefore communication from B to A is not modeled by a connection RSA,B →
RSB,A, but by connection RFSB,B → RSB,A (so that B may falsely communicate
‘What a coincidence, I also often play that type of music!’) Table 13.4.

As indicated, person A’s representation of her or his connection to person B is
modeled by RWA,B. It is assumed that for the bonding by homophily adaptation
principle, the adaptive change of the represented connection for A to B depends
on the internal representation states RSB,A and RSA,A. Therefore, this adaptation
is supported by intra-level connections RSA,A → RWA,B and RSB,A → RWA,B

within the first-order self-model. The connection representations by RW-states in
turn affect the social contagion within the social network, which is modeled by
downward interlevel connectionsRWA,B →SB andRWB,A →SA from thefirst-order
self-model in the middle plane to the base network.

To control the social network adaptation processes, two types of control actions
are considered in particular:

• controlling the observation of state Z from person A by person B is modeled by
control state COA,B and from person B by person A is modeled by control state
COB,A

• controlling the communication about state Z from person A to person B, modeled
by control state CCA,B and the communication about state Z from person B to
person A, is modeled by control state CCB,A.

Activation of a communication control state makes that the related connection in
the first-order self-model in the middle plane gets a high value (1 or close to 1); this is
achieved by interlevel connections from control states to RS-states in the first-order
self-model. For example, activation of communication control stateCCA,B makes that
the connection RSA,A → RSA,B from A’s state RSA,A to B’s state RSA,B gets a high
value (1 or close to 1) so that the transfer of information by communication happens;
this is modeled by interlevel connection COA,B → RSA,B. This can be considered as
B asking A for the information about him or herself, upon which A communicates



360 J. Treur

Table 13.4 Connections in the controlled adaptive social network model and their explanation

Intralevel connections

SA → SB Social contagion from A to B for state Z

FSB → SA Social contagion from B’s faked state for Z to A

SA → FSB Faking contagion from state Z of A to faked state Z of B

RSA,A → RSA,B Communication of state Z from A to B

RFSB,B → RSB,A Communication of faked state Z from B to A

RSA,A → RWA,B Effect of represented state Z of A by A on the connection from A to B
(bonding by homophily)

RSB,A → RWA,B Effect of represented state Z of B by A on the connection from A to B
(bonding by homophily)

RFSB,B → RWB,A Effect of represented faked state Z of B by B on the connection from B to
A (bonding by homophily)

RSA,B → RWB,A Effect of represented state Z of A by B on the connection from B to A
(bonding by homophily)

Interlevel connections

SA → RSA,A Impact of observation of A’s state
Z by A on A’s representation of
A’s state Z

Upward from base network to
first-order self-model

SB → RSB,B Impact of observation of B’s state
Z by B on B’s representation of
B’s state Z

SA → RSA,B Impact of observation of A’s state
Z by B on B’s representation of
A’s state Z

FSB → RSB,A Impact of observation of B’s faked
state Z by A on A’s representation
of B’s state Z

RWA,B → SB Effectuation of base connection
weight for social contagion from
state Z of A to state Z of B

Downward from first-order
self-model to base network

RWB,A → SA Effectuation of base connection
weight for social contagion from
faked state Z of B to state Z of A

RSA,A → CCB,A Communication control
monitoring connection for A

Upward from first-order self-model
to second-order self-model

RSB,B → CCA,B Communication control
monitoring connection for B

RSA,A → COB,A Observation control monitoring
connection for A

RSB,B → COA,B Observation control monitoring
connection for B

CCB,A → RSB,A Effectuation of control of
communication from B by A

Downward from second-order
self-model to first-order self-model

(continued)
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Table 13.4 (continued)

CCA,B → RSA,B Effectuation of control of
communication from A by B

COB,A → RSB,A Effectuation of control of
observation of B by A

COA,B → RSA,B Effectuation of control of
observation of A by B

this information. Similarly, activation of an observation control state COA,B makes
that the connection SA →RSA,B fromA’s state SA to B’s stateRSA,B gets a high value
(1 or close to 1) so that the transfer of information by observation takes place; this
is modeled by connection COA,B → RSA,B. In the case modeled here, control states
such as CCA,B and COA,B themselves may become active depending on B’s state
RSB,B; this is modeled by connections RSB,B → CCA,B and RSB,B → COA,B. But
this may be addressed in many other ways as well, including externally determined
control, for example, by enabling or allowing observation or communication (only)
at specific time slots.

To specify a network model according to the approach described in Casciaro
et al. (1999), as discussed in Sect. 13.2, three types of network characteristics are
to be covered: connectivity, aggregation and timing characteristics. Any state in the
network is causally affected by all of such characteristics, each from its own specific
role. Following the role matrices specification format defined in Treur (2020b)
(pp. 39–41, 89), they are specified by role matrices as shown in Box 1 which are
used as input for the dedicated software environment to automatically obtain the
simulation discussed In Sect. 13.4.

More specifically, role matrices indicate in rows successively for all network
states, the factors that causally affect them from the different roles. So in the row for
a state Y, in each column a causal relation is specified affecting state Y for the role
described by that role matrix. In this way, role matrices describe the network model
by mathematical relations and functions.

In the first place, concerning connectivity roles, each state is causally affected
by the other states from which it has incoming connections and by the weights of
these connections. In rolematrixmb (see Fig. 13.6), for each state it is indicated from
which other states it has incoming connections from the same or a lower level. In role
matrixmcw, it is indicated what are the connection weights for the connected states
indicated in mb. If these weights are static, their value is indicated, in green shaded
cells (here always 1), but if the connection weight is adaptive, instead of a number the
self-model state representing this weight is indicated in role matrix mcw. This can
be seen (cells shaded in a peach-red colour) in mcw for the incoming connections
for the first two states X1 and X2, and for the incoming connections for the states
X7 and X8. Indicating these adaptive value representations, defines the downward
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Fig. 13.6 Full specification of the adaptive self-modeling network model by role matrices for all
(connectivity, aggregation and timing) characteristics causally affecting the network states

connections of Fig. 13.1. From the timing role, also its speed factor causally affects
a state; they are shown in Fig. 13.6 (role matrixms, which actually is a vector).

In the lower part of Fig. 13.6, showing the aggregation roles causally affecting
a state, it can be seen which states use which combination functions (role matrix
mcfw) and which parameter values for them (role matrix mcfp). In addition to the
five role matrices for the different roles of causal impacts, the initial values for the
example simulation are also shown in Fig. 13.6, which may be considered as initial
causal impacts.

13.6 Simulation: Faking Homophily for Bonding

In this section, a simulation of a simulated example scenario will be discussed to
illustrate the introduced second-order adaptive causal social networkmodel for faking
homophily. In Fig. 13.7 the simulation for the example scenario is shown. Here the
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Fig. 13.7 Outcomes for the example scenario simulation

states SX are slowly changing whereas the connection representations in the form
of the RW-states are changing faster. It indeed can be seen that for A and B both
directional connection representationsRWA,B and RWB,A start to gradually increase
from time point 5 on to reach values above 0.7 which in the long run eventually
reach a value (close to) 1. These changes of the connections are a consequence of
the homophily principle, as the values of state SA of A and the faked states FSB
and RFSB,B for B quickly get close to each other; note that the tipping point for
similarity set was 0.25, so a difference between the relevant representation states <
0.25 is strengthening a connection.

In Fig. 13.7, also the roles that are played by the control states in the form of
the CO- and CC-states and by the RS-states for subjective representations can be
seen. The two lines that start at 0 and get close to 1 around or soon after time 10
indicate the control statesCOA,B and COB,A (light green) for observation and CCA,B

and CCB,A (light blue) for communication, respectively. This makes that at that time
their mutual observation and communication channels SA → RSA,B and FSB →
RSB,A, and RSA,A → RSA,B and RFSB,B → RSB,A get weights close to 1. This
implies that then they indeed both observe and communicate to each other about
the type of music they usually listen to. These control states are triggered in this
example scenario because each of the persons automatically observes his or herself
and therefore they quickly (before time point 4) form representation states RSA,A
and RSB,B of their own S-states concerning music (the red lines, starting at 0.4 for
B and at 0.7 for A).

Because of these communication and observation actions, the mutual subjective
representations RSA,B of B about A (the dark green line) and RSB,A of A about B
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(the orange line) based on fake information are formed, and around time 20 reach
levels close to 0.9. Only now these subjective representations have been formed in a
controlled manner, the homophily principle can start to work, as the bonding works
through the (subjective) representation RS-states, not through the (objective) states
SX themselves. More specifically, from the moment on that the subjective represen-
tations of A about B and A’s own subjective representation about her- or himself
get closer than 0.25 (which is just before time point 5), her/his self-model repre-
sentation RWA,B of her connection to B (the pink line) starts to gradually increase.
Similarly, the effect of the subjective representations of B for A and B’s own subjec-
tive self-model representation about him or herself, on the subsequent increase of his
representationRWB,A of this connection toA (the blue line) can be noted. Before that
point in time their connectionswere not increasing, but instead go slightly downward;
this illustrates the effect of the control via the subjective self-model representation
states on the adaptation.

13.7 Discussion

In this chapter, a computational analysis was made of the role of subjective elements
and control in social network adaptation. Part of the content is based on (Treur
2021). It was analysed: (1) how the coevolution of social contagion and bonding
by homophily may be controlled by the persons involved, and (2) how subjective
representation states (e.g., what they knowabout themselves and each other and about
their connections) can play a role in this coevolution and its control. To address this, a
second-order adaptive social network model was presented in which persons do have
a form of control over the coevolution process, and, in relation to this, their bonding
depends on their subjective representation states about themselves and about each
other, and social contagion depends on their subjective representation states about
their connections.

Concerning evaluation, the model behaviour is as expected from the mentioned
literature. Moreover, based on mathematical analysis, from Formula (13.3) for the
homophily function it can be predicted that when the model reaches an equilibrium,
it holds:

W = 0 or W = 1 or |V1 − V2| = τhomo

This is indeed the case, as can also be seen in the case study simulation in Fig. 13.3
where all connection weight representations end up in 0 or 1.

Also note that a basic design choice for the model is that the subjective repre-
sentations of the connections determine the actual social contagion in the objective
social world. This is based on the assumption that persons socially behave according
to what they know or believe about their connections. Also here misrepresentation
can be modeled easily by introducing some deviations in the subjective bonding by
homophily mechanism within the model. Then the social behaviour leading to social
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contagion will (falsely) take place based on these misrepresentations of connections.
On the other hand, it may as well be assumed that the subjective representations of
the connections do not play an exclusive role in the social behaviour, but also a more
objective form of connectionsmay have influence. To cover this, themodel can easily
be extended by also adding (in parallel) a more standard objective mechanism for
bonding by homophily based on the objective states and then combine (according to
some chosen ratio) both the objective and subjective connection representations to
jointly make social contagion work. Also this may be worked out in more detail for
a possible extended version for a journal.

The proposed computational network model where mental states are modeled as
a basis for social mechanisms also roughly relates to (noncomputational) literature
in Social Science such as (Casciaro et al. 1999; Krackhardt 1987; Vaisey and Lizardo
2010)which addressesmore in general the role of cognitive interpretation and cultural
influence on social interactions. Such literature may provide inspiration to design
computational network models for other situations where mental states and social
dynamics interact.

Adaptation inhibition of social networks (e.g., for terrorists), is a topic addressed in
Carley (2002, 2006). It can be an interesting challenge to explore in how far a similar
architecture for controlling social network adaptation as discussed in the current
chapter can be applied to these types of inhibited adaptive social networks. Other
possible extensions may consider the integration of different adaptation principles,
such as addressed (without control), for example, in Beukel et al. (2019).

13.8 Specification of the Main Adaptive Network Model

First box: Role matrices mb and mcw for the connectivity and ms for timing
characteristics of the network model. Fig. 13.9

Second box: Role matrices mcfw and mcfp for the aggregation characteristics and
the initial values of the network model. Fig. 13.8, 13.9.
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Fig. 13.8 Role matricesmb, mcw and ms for the first example
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Fig. 13.9 Role matricesmcfw, mcfp and the initial values ms for the first example
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