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Mountain building depends on the disequilibrium between boundary stresses,

either at the base of the deforming lithosphere or its lateral boundaries, and buoy-

ancy stresses arising form lateral density variations within the lithosphere itself.

On the basis of the thin viscous sheet approximation, we propose a model which

accounts for both crustal and lithospheric thicknesses variations. The deforma-

tion is controlled by the sum of the moments of density anomalies (i.e. density

anomalies times depth) of compositional and thermal origins. The transport of

the compositional moment is obtained from the continuity equation while the

transport of the thermal moment is obtained from the heat equation. The result-

ing set of equations controls the coupled behavior of the crust and lithosphere.

It shows that various type of solutions can exist: unstable, stable and propagat-

ing. When propagation occurs, the crustal and the lithospheric thickness vari-

ations are out of phase. The tectonic waves propagate with velocities around 5

mm yr−1 that increase with the crustal thickness and decrease with the litho-

spheric viscosity. We discuss these solutions and argue that continents may in

large part be in a domain of propagating tectonic waves.
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1. Introduction

The fundamental role of crustal thickness variations in the stress balance has been acknowl-

edged since Argand [1924], and almost all tectonic models account for it. The lithosphere is a

thermal boundary layer and its lateral thickness variations in time and space during an orogen-

esis are also associated with density variations. Whereas the crust constantly tends to approach

a uniform thickness because it is lighter than the underlying mantle, the cooling lithospheric

mantle is denser than the underlying asthenosphere and may become unstable, (e.g. [House-

man, 1981; Neil and Houseman, 1999; Conrad, 2000]). The dynamics of orogenesis results

from the balance between competiting processes of crustal and lithospheric thickening.

2. The Model

A thin viscous sheet approximation has been extensively used to describe the dynamics of the

crust, (e.g. [England and McKenzie, 1982; Houseman and England, 1993; Husson and Ricard,

2004]). This approximation is based on the vertical integration of the Navier-Stokes equations,

coupled with mass conservation of the crust which controls the time evolution of the model.

Lemery et al. [2000] have extended this approach in the case of thermal density variations to

derive a boundary layer model of convection at very large Rayleigh number. In the present paper

we couple these approaches to take into account both compositional and thermal heterogeneities

in the deforming lithosphere.

The main assumption of the thin sheet viscous models is that the vertical variations of the

horizontal velocity can be neglected within the lithosphere. This holds when the lithosphere is

stiff enough with respect to the underlying asthenosphere and when the deformations occur at

wavelengths larger than the lithospheric thickness.
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2.1. Stress balance

We assume that the lithosphere behaves like an incompressible viscous fluid of viscosity η

and that isostasy holds across the whole lithosphere. If the upper and lower boundaries of

the lithosphere are traction free, the horizontal equilibrium equation relates the lateral density

variations to the viscous stresses by

4L0

∂

∂x
η
∂u

∂x
=

∂M

∂x
, (1)

where u denotes the vertically average velocity and L0 the uniform averaged thickness of the

mechanical lithosphere [Lemery et al., 2000]. The quantity M is the moment of the lithospheric

mass anomalies and is written [Artyushkov, 1973; Fleitout and Froidevaux, 1982]

M =

∫

+∞

0

δρgz dz, (2)

where δρ is the lateral density variation, g the gravitational acceleration, z the depth measured

downward from sea level. This equation assumes that below some compensation depth the

density heterogeneities δρ vanish so that equation (2) remains finite.

In the lithosphere, the total moment M can be divided into a compositional component Mc

which relates to the difference between crustal and mantle densities ρc and ρm, and a thermal

moment Mθ

Mc =
1

2
ρcg(1 − ρc

ρm

)S2, Mθ =

∫

+∞

0

zρmgαθ dz, (3)

where S is the non uniform crustal thickness, α the thermal expansion coefficient and θ the

temperature of the lithosphere minus the deep mantle temperature (i.e. θ and Mθ are negative).

Using (3), we make the approximation that the products expansivity times density are the same

in the crust and in the lithosphere.
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The crustal moment Mc depends on the squared crustal thickness S [England and McKenzie,

1982, 1983]. If the vertical temperature gradient is constant across a thermal lithosphere of

thickness L, the thermal moment writes

Mθ = −1

3
ρmα∆θgL2, (4)

where ∆θ is the temperature increase across the lithosphere. The thermal moment is therefore

related to the squared lithospheric thickness.

By isostasy the surface topography h can be expressed in terms of S and L (or in terms of Mc

and Mθ using (3)

h =
ρm−ρc

ρm

S − 1

2
α∆θL. (5)

The lithospheric contribution to isostasy is generally small compared to the crustal contribution.

2.2. Transport

The time-dependence of the crustal moment is obtained by assuming crustal mass conserva-

tion:
∂Mc

∂t
+ u

∂Mc

∂x
+ 2Mc

∂u

∂x
= 0, (6)

the coefficient 2 in the last term of the left hand side of (6) comes from the fact that Mc ∝ S2

(see (3)). The heat equation multiplied by z and integrated vertically yields the transport of the

thermal moment [Lemery et al., 2000]

∂Mθ

∂t
+ u

∂Mθ

∂x
+ 2Mθ

∂u

∂x
= κ

∂2Mθ

∂x2
, (7)

(κ is the thermal diffusivity). The third term of the left hand side expresses the fact that the

lithosphere can become thinner by developing cold downwelling instabilities. In equation (7)

we have neglected the secular increase in lithospheric thickness due to the difference between
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surface cooling (a term which goes as −κρmgα∆θ in Lemery et al. [2000]) and internal radioac-

tive mantle production. In other terms we assume that the planet surface heat flux equals the

rate of radiogenic heat production. The secular cooling term is uniform and keeping a modest

cooling rate in the equations would not affect our conclusions.

3. Dynamics of the Lithosphere

The dynamics of the lithosphere is therefore controlled at long wavelength by equations (1),

(6) and (7). The stability/instability of the crust-lithosphere combination on top of the mantle is

akin to that of a light/heavy fluid layer on top of another fluid, namely akin to Rayleigh-Taylor

instability. However, due to the thermal diffusive term in the transport equation in (7) but not

in (6), the coupled dynamics of the crust and lithosphere yields some surprising behavior with

respect to the classical Rayleigh-Taylor instability.

3.1. Stability analysis

In order to solve our system of equations we can replace x,t, u, Mc, Mθ by L0x̃,(L2
0/κ)t̃,

(κ/L0)ũ, (ηκ/L0)M̃c, (ηκ/L0)M̃θ where the˜variables are now dimensionless. To study the

stability of our system, let us assume that the solution consists in a uniform state without any

tectonic velocity plus infinitesimal perturbations, M̃c = M0
c +εmc(x, t), M̃θ = M0

θ +εmθ(x, t),

ũ = εu(x, t), where M 0
c and M0

θ are the uniform dimensionless moments and ε << 1. Assum-

ing all terms of order ε go as exp(ikx + σt), our governing equations (1), (6) and (7) yield to

first order in ε

4uk + i(mc + mθ) = 0,

σmc + 2ikM0

c u = 0,

σmθ + 2ikM0

θ u + k2mθ = 0.

(8)
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Solving for σ leads to the dispersion relation

2σ2 + σ(M0

θ + M0

c + 2k2) + k2M0

c = 0. (9)

Depending of the sign of the discriminant of this second degree equation, σ can either be real

or imaginary. Let us define k1 and k2

k1 =
(
√

|M0
θ | −

√

M0
c )√

2
, k2 =

(
√

|M0
θ | +

√

M0
c )√

2
. (10)

If 0 < k < |k1| or k > k2, the two roots of the dispersion equation are real and the growth rate

σ is

σ =
1

2
(k1k2 − k2) ± 1

2

√

(k2
1 − k2)(k2

2 − k2). (11)

On the contrary, when |k1| < k < k2, the roots are imaginary numbers (i.e. σ = Real(σ)+ iω),

Real(σ) =
1

2
(k1k2 − k2), ω =

1

2

√

(k2 − k2
1)(k

2
2 − k2) (12)

The roots of the dispersion equation are depicted in Figure 1. When M 0
θ + M0

c > 0 (dotted

lines, k1 < 0) the lithosphere is everywhere stable. On the contrary, when M 0
θ + M0

c < 0

(solid lines, k1 > 0) long wavelength perturbations (k < k1) are unstable (the two σ roots

are positive). This is the typical case of Rayleigh-Taylor instabilities with a dense fluid on top

of a lighter fluid. However, the dynamics are different from the Rayleigh-Taylor situation at

shorter wavelengths. For the shortest wavelengths (k > k2), lithospheric thermal anomalies

are erased by thermal diffusion and any perturbation vanishes. For 0 < k1 < k < k2, a

propagating unstable mode becomes a propagating stable mode as k increases. This tectonic

wave propagates as a plane wave at phase velocity ω/k and physically, as it is a dispersive

wave, at the group velocity dω/dk. When Real(σ) = 0, a pure propagating mode of constant
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amplitude exists with wavenumber and angular frequency

k0 =
√

k1k2, and ω =
1

2
k0(k2 − k1). (13)

This particular wave propagates with the maximum phase velocity and its group and phase

velocities are equal. Its velocity that can easily be expressed in dimensional units by

vp =
1

2

√

κρc(ρm − ρc)g

L0ηρm

S. (14)

The existence of a propagating mode is surprising in a context where only diffusive processes

occur (diffusion of momentum and diffusion of heat). The propagation occurs while the undu-

lations of the crust and the lithosphere are not in phase. This can be shown by solving (8) which

implies that the ratio of the crustal and lithospheric deformations is a complex number,

mθ = − mc

(k1 − k2)2

(

(k2

1 + k2

2 − 2k2) + 4iω
)

. (15)

We can compare to real geological situations by redimensionalizing our results. The only

parameter value whose value is debatable is the lithospheric viscosity. We choose a rather

low stiffness of the lithosphere, L0 = 50 km, η = 2 1021 Pa s, which is however the kind

of values commonly used to model orogeny [England, 1986; Husson and Ricard, 2004]. The

other parameters are standard and yield k1 = 0.1 and k2 = 12 for S = 40 km and L = 83

km (see parameters in the caption of Figure 2). The compositional and lithospheric moment

have opposite signs and similar amplitudes, M 0
c = 71, M0

θ = −73. With this parameters,

propagation takes place for wavelengths between 26 km and 3140 km. This suggests that much

of continental tectonics is either in the unstable regime or in the propagating regime. Only the

shortest wavelengths are stable (wavelengths less than 26 km). In this uninteresting domain,

however, our long wavelength approximation breaks down.
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As seen on Figure 2, the phase and group velocities have typical values from 5 to 10 which in

real units corresponds to 3.2 to 6.4 mm yr−1. With the same parameters, S = 40 km and L = 83

km, propagation at constant amplitude occurs for a wavelength of 287 km and a velocity of 3.7

mm yr−1 (see 14).

3.2. Non-Linear Solutions

The previous results have been obtained in the linear stability approximations where the non-

linear terms have been neglected. We can also compute the whole non-linear solution using

a standard finite difference algorithm with periodic boundary conditions and explicit time-

stepping.

In Figure 3, we depicted the solutions for three different cases. The lithospheric thickness has

been reduced from (a) to (c) (86, 83 and 80 km thick), so that the dynamics for a wavelength of

1250 km corresponds, unstable, propagating unstable and propagating stable cases, respectively.

The initial interfaces are depicted by dashed lines, the final interfaces are depicted by solid lines.

In the case of a thick lithosphere (a), the instability rapidly destabilizes the whole layer and

leads to a finite time singularity analog to that discussed in Lemery et al. [2000]. In panels

(b) and (c) the propagation to the right of a wave-like deformation is clearly noticeable. The

maxima of the lithospheric thickness are shifted to the right with velocities of order 5 mm

yr−1 in agreement with the marginal stability study. Due to the asymmetry of the lithospheric

thickening of panel (b), lithosphere evolves toward what could be interpreted as a series of

subduction zones.

The physics of the topography propagation is easy to understand (see Figure 4): the thickness

variations of the lithosphere are in advance to those of the crust, in the direction of propagation.
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They induced a compression and thus a thickening on the right hand side of the mountain ranges

that collapse on their left hand side. Thermal diffusion controls the maximum of the lithospheric

thickness and mitigates the overall instability. In the simulations of Figure 3, the difference of

phase is difficult to see as it only amounts to about 2o according to (15).

4. Conclusions

The long wavelength tectonic waves exist when the compositional and thermal moments have

somewhat similar amplitudes. This balance is however the typical situation of a mature litho-

sphere that thickens (Mθ + Mc > 0) until it starts destabilizing (Mθ + Mc < 0). The tectonic

wave have velocities given by (14). These velocities are increasing with the average crustal

thickness, S and decreasing with the root mean square resistance of the lithosphere,
√

L0η.

This traveling mode of tectonics should at any rate be present on Earth or on other planets

taking into account the large range of crust and lithosphere thicknesses that can be found.

In orogenic places like Andes and Tibet, the crust is very thick and the lithosphere rather

weak, which should signicantly increase the propagation velocity of our tectonic waves. The

eastward migration of the compressive front of the Central Andes [Lamb et al., 2001] and the

ongoing acceleration of the deformation in the Eastern Cordillera [Kennan, 2000] relate to the

emplacement of the cold and dense mantle root evidenced in seismic tomography [Baumont

et al., 2002]. In Tibet, the Northeastward developement of the plateau during Tertiary and the

accompanying thickening of the lithosphere mantle Tapponnier et al. [2001] can be elegantly

explained by the situation described in the panel (b) of Figure 3.

The model is based on a long wavelength analytical model that could be improved to include

higher order terms [Medvedev et al., 1999]. It seems however that a natural development of this
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study should now use a complete numerical model to take into account the short wavelength

deformations and to couple the mechanical lithosphere (here of uniform thickness L0) to the

variable thermal lithosphere.
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Figure 1. Decay rate σ and angular frequency ω of a perturbation of the crust or the lithospheric

thicknesses as a function of the wavenumber k. The solid line corresponds to a case where

the lithosphere is globally unstable. As the wavenumber increases, the dynamics shifts from

unstable to stable. Between |k1| and k2 propagating tectonic waves are excited. The dashed

line is for a stable lithosphere. For the clarity of the plot, we used the geologically non relevant

values k1 = 1 and k2 = 4 (solid line) and k1 = −1 and k2 = 4 (dashed lines).
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Figure 2. Phase (solid line) and group (dashed line) velocity of a tectonic wave as a function

of the normalized wavelength. We use the following parameters: S = 40 km, L = 83 km,

η = 2 1021Pa s, κ = 10−6m2s−1, L0 = 50 km, ρc = 2800 kg m−3, ρm = 3200 kg m−3, g = 9.8

m s−2, α = 3 10−5 K−1, θm = 1350 K). With real units, a normalized velocity of 6 corresponds

to 3.7 mm yr−1
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Figure 3. Evolution of the crust and lithosphere with time. The initial sinusoidal interfaces are

depicted with dashed lines, the final interfaces with solid lines. The crust, mantle lithosphere

and asthenosphere are shaded (darker, intermediate and lighter shades). The initial wavelength

is in the domain of unstable ((a) with an initial lithospheric thickness of 86 km), propagating ((b)

initial lithospheric thickness of 83 km), and stable ((c) 80 km) regime. For clarity the surface

topography has been multiplied by a factor 5. The final solutions have been computed after 19

myrs, (a), and 64 myrs, (b) and (c).

PHASE SHIFT

Figure 4. In the propagating mode, the crustal and lithospheric thickening are out of phase,

this induces a compression on one side of the mountains, an extension on the other side. This

peculiar tectonic setting can then propagate.
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