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Chapter 1. General Introduction 
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Background 

Psychiatric disorders are burdensome for a significant proportion of children and adolescents 

worldwide, affecting not just them, but also their families and society at large. Prevalence rates vary 

across different disorders like attention deficit hyperactivity disorder (ADHD), anxiety and depressive 

disorders, autism spectrum disorders (ASD), conduct disorders among others, but overall rates of up 

to 13.4% have been reported 1, 2. Globally, psychiatric disorders are the leading cause of disability in 

children and youth, accounting for a substantial proportion of all years lived with disability (YLDs) and 

disability-adjusted life years (DALYs), particularly in high-income countries 3, 4.  

Course and comorbidity in childhood psychopathology  

Research has shown that a substantial proportion of children and adolescents with psychopathology 

continue to suffer from psychiatric health problems in adulthood, and are at increased risk of 

psychopathology compared to adults without a history of psychiatric problems 5-9. This can take the 

form of homotypic continuity, where the same disorder continues across time, or heterotypic 

continuity, where childhood disorders precede other psychopathology 10. Longitudinal cohort-based 

studies have shown that the onset of adult disorders including major depressive disorder (MDD), 

schizophrenia (SCZ) and substance use disorders, are often preceded by childhood externalizing 

problems like attention-deficit/hyperactivity disorder (ADHD) and oppositional defiant disorder 

(ODD) 11-14 as well as internalizing problems like depression and anxiety 7, 14-16. Further, the 

consequences of psychopathology are not restricted to long-term mental health, but appear to 

extend to socio-economic and physical health outcomes. Prospective studies have shown that 

children with attention problems, obsessive compulsive disorder, depression, bipolar and anxiety 

disorders, went on to have reduced educational attainment, increased BMI, and insomnia in later life 

5, 6, 8, 17-22.  

Comorbidity, the presence of two or more psychiatric disorders in the same individual, is also a 

common feature of psychopathology in childhood. A common example is observed in children with 

ADHD, who often have comorbid symptoms of ODD or conduct disorder (CD). Likewise, internalizing 

problems like anxiety and depression also frequently co-occur with externalizing disorders like ADHD 

and CD, as well as with each other 23. Importantly, individuals with comorbid psychiatric disorders 

can be at risk of poorer prognosis due to more severe symptoms, as well as longer duration of 

illness, and more functional disability 24. Thus, knowledge of the aetiology of childhood 

psychopathology is crucial in order to understand their development and progression across the 

lifespan, and ultimately to provide targets for early intervention. 
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Childhood psychopathology investigated in this thesis encompasses a range of psychiatric disorders 

and traits that generally manifest across childhood and adolescence. Neurodevelopmental disorders 

like ADHD and ASD, which by definition have their onset during the developmental period (infancy, 

childhood, and adolescence), typically start during childhood, while others like depression can start 

anytime across the lifespan including during childhood 25. While most disorders can be diagnosed from 

childhood onwards, it is rare for some, such as substance use disorders, bipolar disorders and 

schizophrenia, to be diagnosed before the age of 12.  

Heritability and genetic architecture of childhood psychopathology 

Twin-family and adoption studies have shown that psychiatric disorders and traits aggregate in 

families and that this aggregation is mainly due to genetic factors 26. This also applies to childhood 

psychiatric traits. The proportion of phenotypic variance explained by variation in genetic factors 

varies by trait, with estimates around 40% for anxiety and symptoms of depression, and up to 70% 

for ADHD and ASD 26. The knowledge that psychiatric disorders are heritable has led to new 

questions, including which specific genetic variants are associated with these traits, and whether 

such genetic factors can also explain comorbidity/co-occurrence of different traits, as well as 

stability across development. These are important questions to investigate as variation in genetic 

variants may eventually give rise to phenotypic differences between individuals.  

One such variant type are single nucleotide polymorphisms (SNPs) which are the result of single base 

changes in the DNA at specific genomic locations. Genome-wide association studies (GWAS) allow us 

to evaluate associations between a large number of SNPs and complex traits such as a psychiatric 

disorders, and have been used to show that these disorders are polygenic i.e. they are influenced by 

many genetic variants 27. Importantly, the SNPs investigated in GWAS are typically common, i.e. their 

minor allele is present in more than 1% of the population (minor allele frequency MAF >1%). GWAS 

have enabled the identification of many genetic variants associated with psychiatric traits 27. 

Moreover, GWAS results also facilitate other genetic methodologies that allow further investigation 

of the aetiology of complex traits. These include methods for estimating the proportion of 

phenotypic variance that is explained by measured variants/SNPs (SNP heritability), detecting and 

quantifying to what extent there is genetic overlap across both psychiatric and related phenotypes 

(genetic correlation), as well as testing causal relationships between different traits 27-30. These 

methods can be used to assess and identify the contributions of genetic variants to the stability of 

psychopathology across the life span. They have been relatively successful for adult psychiatric traits 

such as schizophrenia and major depression, as well as anthropometric traits like height, where 
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hundreds of trait-associated loci have been identified, and numerous genetic associations with other 

traits have been observed 31-33.   

One major finding from GWAS is that effect sizes for common variants associated with 

psychopathology are small, and the amount of variance explained by SNPs, i.e. SNP heritability, is 

substantially lower than what is estimated from twin studies, even in very large samples 27. One 

reason for this is that methods for estimating SNP heritability are limited to effects of genetic 

variants that are captured or measured on current DNA genotyping arrays used in GWAS. Commonly 

used SNP arrays contain up to 2,000,000 SNPs, which is substantially less than the 3.2 billion base 

pairs of the human genome. In general, the more SNPs are measured, the more variance can be 

explained 34. This has been shown for traits like schizophrenia where along with increasing sample 

size, an increase in the number of variants tested has facilitated the identification of more 

associated variants 31, 35, 36. Additionally, GWAS only study common variants while other types of 

genetic variants play a role in the aetiology of psychiatric disorders and traits as well, including rare 

variants (SNPs with MAF < 0.1%). Rare variants are not measured on genotyping arrays, rather whole 

genome sequence (WGS) or whole exome sequence (WES) data are needed to assess their 

contribution to psychiatric traits 37. Overall, significant advances in statistical and molecular genetics 

methods have enabled attempts to answer these questions and facilitate further understanding of 

the aetiology of psychiatric disorders and traits. 

This thesis 

On the whole, the genetics of childhood psychopathology is understudied compared to adult traits, 

and many questions remain to be answered. The overarching aim of this thesis is to elucidate the 

role of genetic factors in the occurrence, course, and comorbidity of psychiatric symptoms across 

childhood and adolescence.  The use of different methodologies makes it possible to pursue 

different lines of inquiry in order to achieve a well-rounded understanding of the mechanisms 

underlying psychiatric traits and psychopathology across development. As such, I employed different 

statistical genetic methods and approaches with the aim of investigating polygenic and 

environmental contributions to childhood psychopathology, as well as gaining insight into their 

underlying architecture.  

When my PhD began in 2017, the first large GWAS of childhood psychopathology (> 55,000 

individuals included) had just been published online 38. Since then, more studies have been 

published, with similar aims of identifying genetic variants associated with childhood psychiatric 

traits and the roles they play in aetiology. Chapter 2 of this thesis focuses on a timely review of these 

studies, aimed at a clinical readership. Chapters 3 to 5 focus on the role of common genetic factors 
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in the continuity of psychopathology and prediction of long-term outcomes. Chapter 6 compares the 

effect of common versus rare variants and their underlying biological mechanisms in schizophrenia. 

Finally, chapter 7 contains a discussion of findings from the thesis. Each chapter is described further 

in the chapters outlined below. 

Chapter 2: Systematic review of molecular genetic studies of child and adolescent psychiatric 

disorders 

In this chapter, we performed a systematic review of studies published from 2008 to 2020 that used 

statistical genetic methods to evaluate the contribution of common genetic variants to psychiatric 

disorders and traits. We were interested in studies that investigated childhood onset or childhood 

measured psychiatric traits with the aim of either 1) identifying common trait-associated genetic 

variants, 2) estimating SNP heritability, 3) investigating genetic overlap between psychiatric traits or 

4) investigating the contribution of genetic factors to the stability of traits across development. 

Importantly, these studies must have employed one or more of four popular techniques including 

GWAS, polygenic scores (PGS), genetic relationship matrix restricted maximum likelihood (GREML), 

or linkage disequilibrium score regression (LDSC). These methods are described in more detail in the 

chapter. 

Chapter 3: Longitudinal analyses of genetic associations between childhood psychopathology and 

adult traits 

In this chapter, we investigated genetic associations between repeated measures of childhood 

psychopathology (ADHD symptoms, internalizing problems, and social problems), and polygenic 

scores (PGS) of adult traits including major depression, bipolar disorder, subjective wellbeing, 

neuroticism, insomnia, educational attainment, and BMI constructed in almost 43,000 children age 6 

to 17 years. We performed further analyses to ascertain whether variables including age, type of 

childhood psychopathology, measurement instrument, or rater were moderators of the association 

between the childhood measures and adult trait PGS. 

Chapter 4: Multivariate analyses of genetic associations between childhood psychopathology and 

adult traits 

We followed up the analyses from chapter 3 by using structural equation modelling to investigate 

the extent to which the genetic associations observed between childhood psychopathology and 

adult traits are explained by correlations between the adult trait PGS, as well as correlations 

between the childhood measures. While the analyses in chapter 3 may be described as multivariate 

due to the analyses of multiple traits, the reference to multivariate analyses in this chapter is related 
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to the fact that we simultaneously modelled the associations between all phenotypes and account 

for the correlations between them.  

Chapter 5: A genetically informed prediction model for aggression and intentional self-harm 

In this chapter, we combined genetic, environmental and psychosocial (risk) factors to produce a 

model for the prediction of intentional self-harm, aggression, or a combination of both by age 20. In 

order to determine which factors most predict self-harm and aggressive behaviours, we combined 

genetic predictors for aggression, ADHD, ASD, and other psychiatric and anthropometric traits, with 

environmental and behavioural risk factors such as behavioural problem scores, social difficulty, 

substance abuse and measures of family dynamics. 

Chapter 6: Ultra-rare, rare, and common genetic variants implicate negative selection and neuronal 

processes in the aetiology of schizophrenia 

In this chapter, we investigated the extent to which common variant and rare variant enrichment 

analyses converge to similar results for schizophrenia. Specifically, we assessed the effects of 

schizophrenia-associated common and (ultra-)rare protein-truncating variants (PTVs) in multiple 

gene sets defined for various brain cell types and synaptic functions, as well as a gene set of PTV-

intolerant (PI) genes. Finally, we assessed the extent to which gene sets implicated by (ultra-)rare 

variants were correlated with those implicated by common variants, as this may shed light on 

whether common and rare variants act on these disorders through the same or different pathways. 

Chapter 7: Summary and general discussion of findings 

Here I bring together the findings from the previous chapters, focusing on their implications and how 

they may guide future research in child psychiatric genetics. 
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Chapter 2. Systematic review of molecular genetic studies of child and 

adolescent psychiatric disorders 
 

Published as: Akingbuwa, W. A., Hammerschlag, A. R., Bartels, M., & Middeldorp, C. M. (2021). 

Systematic Review: Molecular Studies of Common Genetic Variation in Child and Adolescent 

Psychiatric Disorders. Journal of the American Academy of Child & Adolescent Psychiatry. 

*Supplementary accessible at https://doi.org/10.1016/j.jaac.2021.03.020  
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ABSTRACT 

Objective: We conducted a systematic review of studies using molecular genetics and statistical 

approaches to investigate the role of common genetic variation in the development, persistence, and 

comorbidity of childhood psychiatric traits. 

Method: A literature review was performed on the Pubmed database, following the Preferred 

Reporting Items for Meta-Analyses (PRISMA) guidelines. There were 131 studies meeting inclusion 

criteria, having investigated at least one type of childhood-onset or childhood measured psychiatric 

disorder or trait with the aim of 1) identifying trait-associated common genetic variants, 2) estimating 

the contribution of single nucleotide polymorphisms (SNPs) to the amount of variance explained (SNP-

heritability), 3) investigating genetic overlap between psychiatric traits, or 4) investigating whether 

stability in traits or the association with adult traits is explained by genetic factors.  

Results: The first robustly associated genetic variants have started to be identified for childhood 

psychiatric traits. There were substantial contributions of common genetic variants to many traits, 

with variation in SNP-heritability estimates depending on age and raters. Moreover, genetic variants 

also appeared to explain comorbidity as well as stability across a range of psychiatric traits in childhood 

and across the lifespan.  

Conclusion: Common genetic variation plays a substantial role in childhood psychiatric traits. 

Increased sample sizes will lead to increased power to identify genetic variants and to understand 

genetic architecture, which will ultimately be beneficial to targeted and prevention strategies. This 

can be achieved by harmonizing phenotype measurements as is already proposed by large 

international consortia and by including the collection of genetic material in every study. 

Key words: child and adolescent psychiatry, genetic variation, child and adolescent genetics, 

systematic review, molecular genetics 
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INTRODUCTION 

Over the past decade, the field of psychiatric genetics, including childhood psychiatry, has made 

remarkable progress with many new discoveries. This has been facilitated by rapid progress in 

molecular genetic methods. That psychiatric disorders are heritable is well established via twin studies 

26, with estimates varying from around 70-80% for bipolar disorder and schizophrenia 39, 40, to 40-50% 

for anxiety and depression 41. Estimates for childhood onset and childhood-measured phenotypes are 

equally high. Both attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder 

(ASD) have heritability estimates ranging from 60-90% 42, while estimates for parent-reported 

childhood anxiety and depressive symptoms average around 40% 43, 44. Further, twin studies have been 

used to show that stability and comorbidity among childhood and adolescent psychopathology traits 

are largely genetically mediated 30, 45.  

The most widely applied method to investigate specific genetic variants contributing to heritability is 

genome-wide association (GWA) analysis, in which millions of common variants are tested for 

association with a complex trait 46, 47. Initial GWA analyses showed that large sample sizes are required 

to identify the typically small, polygenic effects of trait-associated genetic variants 27, 48. This gave rise 

to extensive collaborations which collated large amounts of data for genetic analyses in consortia 

within the field of genetics, like the EArly Genetics and Lifecourse Epidemiology (EAGLE) consortium 

49, Psychiatric Genomics Consortium (PGC) 50, and The Social Science Genetics Association Consortium 

(SSGAC). As a result, genetic variants have been identified for psychiatric disorders including ADHD, 

ASD, schizophrenia, bipolar disorder, and major depressive disorder (MDD) 32, 38, 51-54. Furthermore, 

there has been rapid development of polygenic techniques 55-57 that investigate the joint effect of 

genetic variants, in order to assess the genetic architecture of traits 27-30. These studies have provided 

insight into the contribution of common genetic variation to heritability estimates, as well as the role 

of genetic factors in the persistence of symptoms over time and in frequently occurring comorbidity.  

With increasing sample sizes for childhood phenotypes, it is timely to provide an overview of findings 

on the contribution of common genetic variants to child and adolescent psychiatric traits. We were 

specifically interested in studies that investigate disorders/traits that typically have their onset in 

childhood e.g. neurodevelopmental disorders such as ASD and ADHD, as well as studies investigating 

traits that can be diagnosed across the lifespan, but are measured in childhood samples. To this end 

we systematically reviewed publications using genome-wide approaches to identify common genetic 

variants underlying vulnerability to these disorders, and studies using polygenic analyses aiming to 

increase our understanding of factors influencing comorbidity and continuity in psychiatric disorders.  

Methods in studies focusing on common genetic variation 
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Before describing our search strategy and the results of the studies included in the review, we provide 

brief summaries of popular methods applied in molecular genetic studies focusing on common genetic 

variation. Extensive descriptions of these methods are provided in recently published reviews, e.g. 27-

30.  

Identification of common variants 

Genome-wide association studies (GWAS) 

GWA analyses test the associations between a trait and genetic markers across the genome, usually 

single base changes in the DNA sequence called single nucleotide polymorphisms (SNPs). If a SNP is 

significantly more common in cases or controls, this suggests that the SNP in question is associated 

with the trait and may play a role in its aetiology, conferring risk or protective effects 58, 59. GWAS are 

not limited to dichotomous phenotypes, and quantitatively measured traits such as symptom counts 

can also be investigated using this method. GWAS typically use a significance threshold of 5×10−8, 

based on an approximation of independent markers that are tested. This stringent threshold means 

that large samples are required to identify the typically small effects of genetic variants. In order to 

increase the statistical power to detect associated genetic variants for a given trait, multiple 

independent GWA analyses performed across distinct cohorts can be meta-analysed.  

Estimation of SNP heritability 

Linkage disequilibrium score regression (LDSC)  

SNP-based heritability indicates what proportion of the variance of a trait is explained by measured 

SNPs, in contrast to broad heritability estimates based on twin-family studies. LDSC estimates SNP-

based heritability using summary data from GWAS 56. As a result of various evolutionary mechanisms, 

combinations of alleles/SNPs can occur. Linkage disequilibrium (LD) occurs when SNPs are non-

randomly correlated with other SNPs at different loci i.e. they are more or less frequently associated 

than would be expected at random 60. LDSC uses a measure of LD, called LD score, that is estimated 

for each SNP by taking the sum of correlations between that SNP and all nearby SNPs, and is calculated 

in an ancestrally similar reference sample when individual genotype data is unavailable for the GWAS 

sample. The slope from a regression of LD scores on GWAS test statistics is proportional to the SNP-

based heritability of the trait examined in the GWAS.  

Genetic relationship matrix restricted maximum likelihood (GREML) 

GREML, as implemented in Genome-wide complex trait analysis (GCTA) software, estimates the 

phenotypic variance explained by all measured SNPs simultaneously 57. First, a genetic relatedness 
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matrix is built for a sample of unrelated individuals, indicating the genetic similarities between all 

individuals based on their genome-wide genotypes. Next, using a linear mixed model that includes the 

genetic relatedness matrix, it is calculated to what extent the phenotypic similarity between unrelated 

individuals is due to their genetic similarity 57, 61.  

Because, LD-structure differences between reference and sample data can bias LDSC estimates 28, 62, 

GREML is generally preferred where individual level is available. However, in the absence of individual 

level data, and at very large sample sizes, LDSC is more computationally efficient and provides a good 

alternative 28, 63. 

Estimation of shared genetic variance explaining comorbidity or continuity of symptoms over time 

GREML and LDSC 

Both GREML and LDSC can be extended to bivariate analyses that allow the estimation of the genetic 

co-heritability, i.e., the amount of variance shared between two traits as a result of genetics, also 

known as their genetic correlation 64, 65. These bivariate analyses can be performed both on non-

overlapping samples, as well as on traits measured in the same individuals.  

Polygenic risk scores (PRS) 

To calculate PRS, a GWAS is conducted in a discovery sample to define risk alleles of SNPs and their 

effect sizes. Next, in an independent target sample, for each individual, a polygenic risk score is 

calculated by totalling the number of risk alleles the individual has (based on the discovery GWAS) and 

weighting the score by the effect sizes of each allele 30. The proportion of risk alleles included in a 

score are generally selected based on thresholds depending on the exact methodology used. The PRS 

represents an individual’s genetic liability for a trait.  

The method was initially developed to test the theory of polygenic inheritance when the first GWA 

studies lacked significant effects. PRS based on a GWAS without any or with few significant hits were 

used to predict the same trait in another sample, in this way showing that there was an effect captured 

in these common variants that likely would become significant when sample sizes became large 

enough 55. Presently, they are generally used to assess genetic associations between different traits 

or the same trait measured at different ages. Typically, an outcome measure of interest from a target 

sample (e.g., depression) is regressed on their PRS for another trait (e.g., ADHD) to test the association 

between them. A significant result suggests that genetic variants common to both traits underlie their 

association. While LDSC and GREML require tens of thousands of subjects for both sets of traits being 

investigated, PRS work if the discovery sample is large but the target sample is small (~2,000 subjects 

at least). This is particularly advantageous when a target trait is rare or expensive to measure.   
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METHOD 

Search strategy 

The literature search was conducted on the PubMed database for studies published from 2008 up till 

the 9th of August 2020, as the most relevant/powerful molecular genetic studies are likely to have 

been published during the last decade. We included studies that investigated traits that have their 

onset in childhood, or that investigated traits that can be diagnosed across the lifespan, but were 

measured in childhood or adolescent samples. We followed the Preferred Reporting Items for Meta-

Analyses (PRISMA) guidelines 66 (Figure 1). Search terms included psychiatry and psychopathology 

outcomes: autis*, depress*, mood, emotion*, affective disorder*, internali*, anxi*, worry, fear*, 

obses*, compul*, OCD, panic, phobi*, inhibit*, shy*, withdrawn, behav*, attenti*, inattenti* 

externalising, externalizing, conduct disorder*, ADHD*, hyperactiv*, impuls*, disruptive*, problem*, 

aggress*, violen*, oppositional, ODD, psychiatr*, and psychopatholog*. Additionally, each search 

included terms that were designed to produce studies using statistical methods to analyse molecular 

genetic data including: GWAS, genome-wide*, association stud*, polygenic*, polygenic scores, risk 

scores, PRS, summary statistics, LD score regress*, LD score, GCTA, GREML, LDSR, LDSC. Finally, we 

included terms designed to limit results to childhood and adolescent samples as well as include 

longitudinal genetic studies, using the following terms: child*, adolescen*, teen*, youth, develop*, 

continuity*, stab*, change*.  

 

Study inclusion criteria 

The studies included in this review met the following criteria: published in English in a peer-reviewed 

journal; investigated at least one type of childhood/adolescent-onset or childhood/adolescent 

measured psychiatric disorder or trait; aimed to 1) identify common trait-/disorder-associated genetic 

variants, 2) estimate the contribution of SNPs to the amount of variance explained, 3) investigate 

whether associations between psychiatric traits are explained by genetic factors, or 4) investigate 

whether the stability in traits or the association with adult traits is explained by genetic factors. Finally, 

results published were based on analyses using one or more of the following methods: GWAS, LDSC, 

GREML, and PRS.  
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Figure 1. PRISMA Flowchart Showing Selection of Studies For Inclusion In Review 
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RESULTS 

We identified 131 studies that addressed at least one aim of this review. See Table 1 for the proportion 

of them that used each method, address each trait and assess each relevant research question.   

Table 1: Characteristics of Studies Included in Review 

Research question addressed Method(s) Number of studies 

Variant identification GWAS 50 

SNP-heritability estimation GREML, LDSC 34 

Genetic contributions to 

comorbidity 

GREML, LDSC 5 

PRS 18 

Genetic contributions to 

stability or associations with 

adult traits  

GREML, LDSC 16 

PRS 63 

Note: The sum of studies in this table is greater than the total number of studies included in this review due to 
multiple studies addressing multiple aims. This table does not account for studies investigating childhood within-
trait analyses as they do not strictly fit the aims of the review. GREML = genetic relationship matrix restricted 
maximum likelihood; GWAS = genome wide association study; LDSC = linkage disequilibrium score regression; 

PRS = polygenic risk score; SNP = single nucleotide polymorphisms. 

Identification of common variants  

Of 50 relevant GWAS studies of childhood psychiatric traits, 15 reported significant genetic variants  

(Table S1, available online). The most commonly investigated phenotypes were ADHD and ASD, and 

their related continuous measures. Early studies were family-based, primarily made up of 

probands/cases and their unaffected parents and/or siblings, with more recent studies additionally 

including unrelated cases and controls.  

Significant genetic variants were detected for clinical measures of ADHD 38, 67-69, ASD 53, 70-72, anorexia 

nervosa 73, and Tourette syndrome 74, as well as continuous measures of ASD-related traits/symptoms 

such as social communication problems 75, 76 and restrictive and repetitive behaviours 77, for depressive 

symptoms 78, and for the anhedonia domain of self-reported psychotic-like experiences 79. Only results 

from the recent ASD 53 and ADHD 38 studies were replicated in independent samples. The ASD GWAS 

identified three loci, while the ADHD GWAS identified 12 loci. The direction of effect for the top loci 

from both GWAS were replicated in five cohorts for ASD, and three for ADHD. Further, all 12 loci from 

the ADHD GWAS were significant in at least one of three replication meta-analyses. It is becoming 

common practice to perform functional annotation analyses of GWAS results in order to further clarify 



Chapter 2 

17 
 

the biological basis for genetic associations. Such analyses have implicated dopamine regulation and 

brain development in the aetiology of ADHD and ASD respectively 38, 53. It is important to note that the 

most recent findings from the case-control analyses were based on mixed adult and childhood 

samples, likely in a bid to maximise the power to detect significant variants. 

SNP heritability 

We identified 34 studies that estimated the SNP heritability of childhood psychopathology traits using 

GREML or LDSC (Table S2, available online). Analyses of clinically diagnosed traits generally used the 

same samples in subsequent analyses. We thus report estimates from the most recent studies, with 

estimates from individual studies described in Table S2, available online. SNP-based heritability 

estimates for clinical disorders were based on mixed adult and childhood samples, and were 17%, 

11.8%, and 21% for ADHD 69, ASD 53, and Tourette syndrome 74 respectively, while estimates ranged 

from 11% to 17% for anorexia nervosa depending on the assumed lifetime prevalence of the disorder 

73 (Figure 2). Age-stratified analyses of childhood ADHD 69 and ASD 53 yielded heritability estimates of 

19% and 4.9% respectively, while sex-stratified ADHD analyses found estimates to be significantly 

higher in male participants (24.7%) than female participants (12.3%) 68. 

Estimates for continuous measures were mostly low and non-significant, likely due to a lack of power 

from individual studies. They also showed more variation across age, rater and methodology, 

compared to clinically measured traits. We grouped results from relevant studies according to 

domains and meta-analysed estimates from different traits across these domains, combining 

estimates across age, rater and methods. We identified domains for ADHD symptoms, ASD symptoms, 

externalizing problems, internalizing problems, psychotic experiences, and general/overall 

psychopathology. Meta-analyses results, as well as studies and traits included per domain are 

described in Figures S1-S6, available online. Heritability estimates from these meta-analyses ranged 

from 6.48% to 14.5%, and are lower than relevant twin-based heritability estimates (Figure 2). 
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Figure 2. Comparison of Single Nucleotide Polymorphisms (SNP)- and Twin-based Heritability 

Estimates of Childhood Psychiatric Traits 

 

Note: SNP-based estimates are those reported in the current review, while twin/family-based heritability 
estimates are of similar measures from other studies. Bars represent confidence intervals corresponding to α = 
0.05, and are plotted for estimates for which they are provided. Twin-based heritability estimate sources (specific 
trait names from publications in brackets): ADHD (hyperkinetic disorders) 26, ASD (pervasive developmental 
disorders) 26, anorexia (eating disorders) 26, externalizing problems (conduct disorder) 26, internalizing problems 
(depression + anxiety + emotional disorder) 26, overall psychopathology (mental and behavioural disorders) 26, 
psychotic experiences 80, Tourette syndrome (Tic disorders) 26. All twin-based estimates were obtained from 
Polderman et al 2015 using the MaTCH tool (http://match.ctglab.nl/#/home), apart from psychotic experiences, 
which was obtained from a recent publication that used similar measures and samples to the SNP-based 
estimates. Abbreviations: ADHD = attention-deficit/hyperactivity disorder;  ASD = autism spectrum disorder; SNP 
= single nucleotide polymorphism. 

Aside from directly measured traits, the heritability of latent psychopathology factors were also 

investigated, with estimates of 38% for a general psychopathology factor, capturing the correlations 

between parent, teacher, and self-reported measures across multiple domains of internalizing and 

externalizing problems 81. This indicates that it is possible to capture the genetic variation that is 

related to an individual’s broad risk of psychopathology. An estimate of 14% was also reported for 

stable genetic factors affecting emotional problems across childhood and adolescence 82, suggesting 

that while genetic variants may have varying effects across development, it is also likely that a set of 

SNPs exist which have effects throughout development. These estimates were meta-analysed in the 

general psychopathology, and internalizing problems domains respectively.  

In summary, estimates for continuous measures showed variation across different population-based 

samples, while estimates for clinical measures were more stable. Differences between samples in age, 

http://match.ctglab.nl/#/home
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rater, and instrument used to measure the continuous outcomes might contribute to the higher 

variation, although we did not detect overall trends of differences between these variables.  

Genetic overlap and stability of traits across time 

Genetic factors explaining associations between childhood traits 

PRS 

Childhood cross-trait analyses were mostly limited to ADHD and ASD (Table S3, available online), 

with studies showing associations between PRS of ADHD and ASD, and childhood conduct disorder 

symptoms, irritability, ADHD symptoms, social communication problems/autistic traits, eating 

disorder symptoms, anxiety and depression, as well as higher symptom levels in latent externalizing, 

internalizing, and general psychopathology factors 67, 83-96 (Table 2). Further, female participants with 

clinical diagnoses of anxiety and depression were found to have higher ADHD PRS than male 

participants 84, while male, but not female participants, with higher ADHD PRS had higher autistic 

trait scores 88.  

GREML/LDSC 

As with the PRS analyses, childhood cross-trait analyses using GREML/LDSC generally focused on 

ADHD and ASD, with reported genetic correlations of up to 0.37 based on clinical samples 53, 97, 98 

(Figure 3, Table S4, available online).  

Findings from childhood within-trait analyses do not strictly fit our aims but are described in Table 

S5, available online. Overall, they show associations between clinical measures of ADHD and ASD in 

one sample and clinical or continuous measures of the same trait in a different sample, suggesting 

the same underlying construct. Sex-stratified analyses of ADHD also reported a genetic correlation of 

almost 1 between male and female participants, suggesting that the same genetic variants underlie 

ADHD in both sexes 68, while PRS analyses showed higher ADHD PRS in female ADHD cases than male 

cases in some studies 99, 100, but not others 84. 

Genetic factors explaining stability in traits, or associations with adult traits 

PRS 

PRS analyses investigating the role of genetic factors in the continuity of symptoms across childhood 

were limited. Longitudinal analyses of aggression found that PRS of aggression were not associated 

with aggression measured at different ages across childhood 101 (Table S6, available online). However 

this may have been the result of a stringent threshold at which SNPs were included in the score, 

resulting in a lower number of SNPs included than usual. We further identified a subset of studies 
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that used PRS to investigate developmental trajectories for childhood psychopathology (Table S7, 

available online). They showed that higher ADHD PRS was associated with a trajectory of persistent 

ADHD 102, 103, as well as high-persistent, and increasing trajectories for irritability 104. In contrast, 

aggression PRS was not associated with any symptom-defined conduct disorder trajectories, 

although it moderated the effect of interventions on trajectory class membership 105.  

More studies have focused on the association between adult and childhood traits, investigating 

similar or different symptoms across development, as well as disorder trajectories (Table 2, Table S6 

and S7, available online). Associations were reported between PRS of adult traits including 

schizophrenia, MDD, OCD, anxiety and externalizing disorder, and clinical and continuous measures 

of the same/similar trait in childhood and adolescence 79, 82, 96, 106-117 or in those at high risk 118, 119, 

although this was not always the case 92, 107, 108, 120-126. An exception is bipolar disorder, for which no 

significant associations with similar childhood traits, such as mania were identified 106. Still, PRS 

analyses of bipolar disorder performed in relatives of individuals with bipolar disorder indicated that, 

as expected, children and siblings had higher PRS for bipolar disorder compared to control 

participants 127, 128.  

Similarly, there were a myriad of cross-trait associations observed between PRS of adult psychiatric 

traits, and dissimilar childhood traits including ADHD, depression, anxiety, OCD, conduct disorder, 

ASD, internalizing and externalizing problems, irritability, psychotic-like experiences, binge eating as 

well as trajectories for increasing, early- and adolescent-onset emotional problems 53, 86, 92, 113, 122, 123, 

126, 129-135, though significant associations were not observed in all studies for all pairings 67, 83, 89, 93-95, 

102, 108, 115, 123, 132, 136-142 (Table 2, Table S6 and S7, available online). Significant findings were generally 

more common in analyses with schizophrenia PRS, compared to other adult traits including bipolar 

disorder, MDD, anxiety and OCD. Given genetic correlations between schizophrenia and bipolar 

disorder, findings that bipolar disorder PRS were not related to the measured childhood phenotypes 

while schizophrenia scores were, may be related to higher statistical power for schizophrenia GWAS 

compared to bipolar disorder. Schizophrenia was the first psychiatric disorder for which samples 

were large enough to obtain sufficient statistical power. Longitudinal analyses further showed 

associations between schizophrenia PRS and internalizing and externalizing problems at different 

ages from age 3 to 16 92, 122, 134, with one report of an increase in the strength of association with 

increasing age 134. Similar longitudinal analyses of depression PRS found that associations with 

childhood psychopathology were not moderated by age, rater, or the type of childhood 

psychopathology, suggesting the existence of stable genetic factors that affect multiple traits across 

the life span 115.  
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PRS of ADHD and ASD were differentially associated with adult traits including MDD, anxiety, adult 

ADHD, bipolar disorder schizophrenia, as well as high decreasing trajectory for externalizing 

behaviours 69, 133, 143, 144. ADHD PRS was also found to distinguish bipolar disorder cases with 

childhood ADHD from controls without bipolar disorder 145.  

Table 2: Genetic Associations Between Childhood Psychiatric Traits and Other Psychiatric Traits 

Using Polygenic risk scores (PRS) 

Discovery trait 

(PRS) 

Target trait Target sample 

size 

Variance 

explained (%) 

Study 

references  

Childhood cross-trait 

ADHD 

 

ASD 1238 0.80 93 

ASD symptoms 

 

1921 – 6854  

5653 – 6854  

0.40 – 3.00 

0.00 – 0.10 

88, 91 

91, 100 

Eating disorder 

symptoms 

5674 – 5680  

5668 

0.10 – 0.13 

0.00 

87 

87 

Externalizing problems 394 – 6854  

1902 – 7975 

0.41 – 1.99 

0.00 – 0.30 

91, 92, 94 

86, 91, 92 

Internalizing problems 6603 – 7975 

1843 – 7975 

0.20 – 0.42 

0.00 – 0.27  

86, 91 

86, 91, 92 

Irritability 560 – 5584  

4023 – 4960  

0.40 – 1.70 

0.01 – 0.20  

83 

83 

Neurodevelopmental 

problems 

7975 

7975 

0.90 

0.10 

86 

86 

Overall psychopathology 6603 – 7975  0.86 – 1.06 86, 91 

ASD ADHD 433 – 1688  0.13 – 0.34 67, 93, 94 

ADHD symptoms 1134 0.77 89 
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394 0.19 94 

Childhood onset 

schizophrenia 

233 6.48 96 

Externalizing problems 1902 – 7975  0.00 – 0.13 86, 92 

Internalizing problems 1843 – 7975  0.00 – 0.05  86, 92 

Neurodevelopmental 

problems 

7975 0.00 86 

Overall psychopathology 7975 0.00 – 0.10 86 

Childhood-adult within 

Anxiety disorder 

 

Internalizing problems 5703 – 12,220 

3755 

0.09 – 0.41 

0.07 

82, 106 

106 

Bipolar disorder Bipolar disorder 

symptoms 

3808 0.023 106 

Depression Internalizing problems 7975 – 42,998  

932 – 7975  

0.17 – 0.30  

0.10 – 0.60  

86, 115 

86, 123 

Depressive 

symptoms 

Depressive symptoms 709 1.50 116 

Externalizing 

disorder 

Externalizing problems 246 5.00 114 

MDD Depression 466 5.00 112 

Depressive symptoms 1450 – 6826 0.20 – 0.73 106, 112 

Internalizing problems 5703 – 12,220 

1843 – 2202 

0.44 – 0.48 

0.004 – 0.02  

82, 106 

92 

OCD OCD symptoms 650 – 3982 

650 – 13,400  

0.23 – 2.28 

0.01 – 0.85 

106, 117 

106, 117 

Schizophrenia Childhood onset 

schizophrenia 

233 18.52 96 



Chapter 2 

23 
 

Psychotic symptoms 2096 – 10,098 

2133 – 8665 

0.08 – 0.70 

0.00 – 0.30  

79, 106, 107, 109 

79, 107, 121 

Tics/Tourette 

syndrome 

Tics/Tourette symptoms 1043 – 13,396 

4813 

0.12 – 0.46 

0.16 

106, 139 

139 

Childhood-adult cross-trait 

ADHD Anxiety disorder 120,362 0.06 143 

Bipolar disorder 120,019 0.04 143 

MDD 126,605 0.11 143 

Schizophrenia 118,075 0.05 143 

ADHD (childhood) ADHD (adult) 22,406 0.41 69 

Anorexia nervosa ADHD symptoms 13,451 – 13,455  0.02 – 0.03 87 

Anxiety disorder ADHD symptoms 5154 0.02 138 

ASD Bipolar disorder 11,810 0.08 133 

MDD 16,610 0.12 133 

Schizophrenia 17,115 0.04 133 

Bipolar disorder 

 

ADHD 5422 – 6105  

727 – 6102  

0.18 – 0.88  

0.11 – 0.99  

133, 141 

67, 129, 141  

ADHD symptoms 1134 – 42,998  0.00 – 0.16 89, 115, 141 

ASD 10,263 0.08 133 

ASD symptoms 6128 – 42,998 0.002 – 0.2  115, 141 

Borderline personality 

disorder traits 

5246 0.00 141 

Externalizing problems 1843 – 6133  0.02 – 4.00 92, 141 

Internalizing problems 1843 – 42,998 0.01 – 3.00 92, 115, 141 

Overall psychopathology 6111 – 42,998  0.00 – 0.003 115, 141 
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Prosocial behaviour 6138 0.00 141 

Psychotic symptoms 8665 

2133 – 10,098  

0.12 

0.00 – 0.1  

79 

79, 121 

Depression ADHD symptoms 42,998 0.25 115 

ASD symptoms  42,998 0.16 115 

Externalizing problems 932 – 7975  0.00 – 0.40 86, 123 

Neurodevelopmental 

problems 

7975 0.00 86 

Overall psychopathology 42,998 

7975 

0.17 

0.10 – 0.20 

115 

86 

Depressive 

symptoms 

Externalizing problems 709 1.40 116 

Externalizing 

disorder 

ADHD symptoms 246 7.00 114 

MDD ADHD 1688 0.25 67 

ADHD symptoms 1134 0.19 89 

Externalizing problems 1843 – 2202  0.01 – 0.08  92 

Irritability 560 – 5584  0.01- 0.10 83 

Psychotic symptoms 6579 – 10,098 

6297 – 8665  

0.08 – 0.11 

0.004 – 0.03  

79 

79 

OCD ADHD symptoms 5154 0.02 138 

Tics/Tourette syndrome 461 -1.20  142 

OCD+TS OCD 580 1.70 142 

Tics/Tourette syndrome 461 0.20 142 

Polygenic p factor Overall psychopathology 7026 0.64 – 0.76  146 

Schizophrenia ADHD 727 0.45 129 
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433 – 1688 0.08 – 0.58  67, 93, 94 

ADHD symptoms 394 – 2992 0.00 – 0.83 89, 94, 132 

ADHD/ASD 1631 0.30 93 

Anxiety disorder 4107 0.50 107 

ASD 10,263 

1238 

0.09 

0.2 

133 

93 

ASD symptoms 3978 – 5137  0.10 – 0.43 147 

Externalizing problems 1154 – 2202 

545 – 7975 

0.10 – 1.10 

0.00 – 0.15  

92, 123, 132 

86, 92, 123, 132 

Internalizing problems 1843 – 7975  

932 – 7975  

0.20 – 0.77 

0.00 – 0.40  

86, 92, 107 

86, 123, 132 

Irritability 1358 

 

0.10 

0.00 

132 

132 

MDD 4106 0.005 107 

Neurodevelopmental 

problems 

7975 0.00 86 

OCD 813 3.17 130 

Overall psychopathology 7975 0.20 – 0.40 86 

Tics/Tourette 

syndrome 

ADHD symptoms 6046 0.10 139 

ASD symptoms 6019 0.12 139 

OCD 580 0.04 142 

OCD symptoms 6006 0.11 139 

Note: Variance explained from PRS analyses of childhood psychopathology traits, as well as study references 
for the estimates. Estimates are included for studies that reported them. Boldface type indicates estimates 
from significant association. Similar target traits were grouped by domain across different studies and ages 
(see Table S8, available online, for domain classifications). ADHD = attention-deficit/hyperactivity disorder; ASD 
= autism spectrum disorder; MDD = major depressive disorder; OCD = obsessive-compulsive disorder. 
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GREML/LDSC 

Social communication problems, peer problems and ADHD symptoms showed partly stable genetic 

effects across ages, with correlations between measures obtained from age 7 to 17 ranging from 0.1 

to 1. Comparable estimates were also reported for cross-trait genetic correlations between traits. In 

all scenarios, correlations were highest at adjacent timepoints 76, 85, 148.  

Studies also showed moderate to strong genetic correlations between ADHD, ASD, childhood 

emotional problems, anorexia nervosa, social communication problems, and symptoms of psychotic 

experiences including cognitive disorganization and anhedonia, and several adult psychiatric 

disorders 38, 53, 73, 82, 97, 98, 147, 149-153. The largest correlations were observed with depression while 

correlations with bipolar disorder were lower (Figure 3, Table S9, available online). 

Figure 3. Genetic Correlations Between Childhood Psychiatric Disorders/Traits and Other 

Psychiatric Traits 

 

Note: Correlation estimates are separated by analysis type. Included in this plot are associations between traits 
for which genetic correlation estimates are provided in their respective studies. Similar traits were grouped by 
domain (see Table S8, available online, for domain classifications). Trait pairs for which there were multiple 
estimates were meta-analysed to a single estimate. Point sizes correspond to the inverse of the estimate 
standard errors such that larger sizes represent estimates with smaller standard errors. Estimates with 
overlapping points are labelled for the sake of clarity. Relevant results from Barkhuizen et al 153 are not plotted 
as they were not reported with standard errors in the original study, while estimates from Anttila et al 98 are 
excluded due to negative standard errors being reported in the original study. ADHD = attention-
deficit/hyperactivity disorder; ASD = autism spectrum disorder; MDD = major depressive disorder; OCD = 
obsessive-compulsive disorder; PGC = Psychiatric Genomics Consortium 



Chapter 2 

27 
 

 

In summary, although findings regarding genetic overlap were not always consistent, they provide 

evidence of pleiotropic effects in childhood psychopathology traits, i.e. the existence of a set of 

genetic variants influencing multiple traits. They also suggest the existence of genetic variants that 

influence psychopathology across development and across multiple psychiatric traits. Non-significant 

findings may point to a lack of power in either discovery GWAS, target samples, or both, rather than 

an absence of pleiotropy. It is also important to highlight that effect sizes for PRS associations were 

generally low with variance by PRS ranging from 0 to 18%. This is largely a function of the 

methodology and effect sizes are likely to increase with increasing GWAS sample sizes.  
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DISCUSSION 

In this paper, we review findings from molecular and statistical genetic approaches explaining the 

contribution of common genetic variants to childhood psychiatric traits. We highlight recent GWA 

studies which have identified the first robustly associated genetic variants for childhood psychiatric 

traits. Further, we describe results based on genetic techniques including GREML and LDSC, which 

have enabled estimations of the heritability based on measured SNPs, and showed substantial 

contribution of common genetic variants to many childhood psychiatric traits. As well as PRS, these 

methods have been used to study genetic overlap across traits and/or across time, which resulted in 

abundant genetic associations between multiple childhood psychiatric traits, as well as between 

childhood and adult traits, providing evidence for the presence of shared co-heritability.  

On the whole, the identification of trait-associated variants appears to be associated with increasing 

sample sizes (Table S1, available online). Many GWA studies in this review that did not identify 

significant variants were likely underpowered. An increase in collaborative efforts and consortia-

focused analyses have resulted in increasing sample sizes over the last few years, resulting in the 

identification of the first robust genetic risk variants for ASD and ADHD. This suggests similar outcomes 

for other childhood traits in the near future. It is important to highlight that large sample sizes for 

traits including ADHD and ASD were achieved by combining childhood and adult samples. This 

increases the power to detect trait-associated variants if these disorders are genetically 

similar/identical in childhood and later life. Studies have shown moderate to strong correlations 

between adult depression and anxiety, and childhood emotional problems 82, as well as between adult 

ADHD and childhood ADHD, suggesting similar underlying architecture 69. Further, GWAS analyses of 

ADHD identified significant loci in combined analyses, but not in separate analyses of adult, and 

childhood ADHD. This was despite the fact that heritability estimates were slightly higher in the 

separate samples compared to the combined 69, further highlighting the importance of statistical 

power to detect effects. Nevertheless, there is considerable need for well-powered childhood-sample 

GWAS and/or age-stratified analyses as other traits may have different architecture across 

development. Other explanations for the lack of significant findings include heterogeneity and 

measurement error in phenotype definitions 154. Heterogeneity may be introduced by the use of 

different raters and instruments to measure the same psychiatric traits. For example, varying degrees 

of concordance have been reported for measures of aggression depending on rater, and item content 

of available measures 155, 156. Rather than combining different measurements in order to achieve large 

sample sizes, more stringent phenotyping to obtain more homogeneous phenotypes may contribute 

to the identification of associated variants and SNP-based heritability 154, 155. Results from GWAS can 

also be informative in understanding the underlying genetic architecture and biological mechanisms 
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of childhood psychiatric traits and the identification of genome-wide significant hits is an important 

first step this, as observed by the implication of dopamine regulation in ADHD 38. Further, ADHD GWAS 

results have been utilized to investigate potential genes and pathways that can be targeted by existing 

drugs 157. This study implicated signal transduction and cell adhesion as potential treatment targets, 

and future studies for other childhood psychiatric disorders may provide potential novel avenues for 

treatment as well.  

For all traits considered in this review, SNP-based heritability estimates from LDSC and GREML are 

substantially lower than estimates from twin studies. This is in part because both methods are limited 

to additive effects of causal variants tagged by the common SNPs on current DNA genotyping arrays 

used in GWAS. Analyses on BMI and height suggest that the difference between family- and SNP-based 

heritability estimates may be explained by rare variants 158. It is likely that this also holds for other 

complex traits like childhood psychiatric traits. Indeed, increased burden of rare and de novo variants 

have been associated with disorders including ASD, ADHD and OCD 159-161, and children carrying 

specific pathogenic/disorder-associated CNVs have increased frequency of psychiatric disorders 

including ASD and ADHD, as well as anxiety disorders and oppositional defiant disorders 162, 163. Sample 

sizes are still generally low for such analyses in childhood traits, but may increase in future as the cost 

of sequencing decreases, providing new opportunities to broaden our insight on the genetic 

architecture of these traits. 

A major observation of the current review is a range of within- and cross-trait associations in childhood 

psychopathology using both PRS and GREML/LDSC. Childhood psychiatric traits were associated with 

other childhood traits, as well as adult disorders including MDD and schizophrenia. Further, modelling 

of genome-wide joint architecture of psychiatric disorders identified a factor comprised of childhood-

onset disorders including ADHD, ASD and Tourette syndrome, as well as MDD 97. There was also 

evidence of a general psychopathology (p) factor 146, which has been shown to explain a substantial 

amount of phenotypic and genetic variance across multiple childhood, and adult psychiatric disorders 

164, 165. Combined with the observed genetic overlap, these findings demonstrate a contribution of 

pleiotropic genetic effects to the development of psychopathology, and may suggest shared biological 

pathways. The findings of cross-trait associations may be informative for the validity of current 

diagnostic practices which define disorders in distinct categories based on the symptoms displayed 

166. Commonly occurring symptom overlap combined with substantial genetic overlap across disorders 

suggests a spectrum of psychopathology, and thus the need for a re-evaluation of current diagnostic 

categories as they may not be accurate 167, 168.  
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Along with pleiotropic effects, recent studies have also provided evidence of specific genetic effects 

contributing to psychopathology. A recent study has shown differential genetic and phenotypic 

associations between ADHD and neurodevelopmental, versus externalising or internalizing disorders, 

after accounting for the p factor in a large sample 169. Another study showed that the p factor explained 

considerable variance in childhood psychopathology measures, but inclusion of more specific 

emotional, behavioural and neurodevelopmental factors explained even more variance than just the 

p factor alone. The amount of (phenotypic) variance explained by the different factors differed 

depending on the childhood measure. For instance, for ADHD, most of the variance was explained by 

the p factor while variance in anxiety/mood problems were explained more by the emotional factor. 

The strength of associations between PRS of different psychiatric traits and these factors also varied 

depending on the PRS, and whether the associations were tested in univariate or multivariate model 

which included PRS of other traits. For example, depression PRS were not independently associated 

with the p factor but were associated with the emotional problems factor, while schizophrenia and 

ADHD PRS were associated with both the p factor and more specific neurodevelopmental and 

emotional problem factors 86, 91. Combined with evidence of pleiotropy described above, these results 

suggest the existence of both general as well as specific genetic factors/variants which are involved in 

psychiatric aetiology. Future studies combining multivariate methodology with molecular data should 

focus on investigating and identifying both shared and specific genetic variants across childhood traits.  

Some of the observed PRS associations are present at different ages across childhood and adolescence 

92, 115, 122, 134. This suggests the presence of genetic variants affecting psychopathology across the 

lifetime, not only explaining homotypic continuity of the same disorder across time, but also 

heterotypic continuity, where one disorder precedes/predicts another at a later time 10. This may 

provide opportunities to identify children at risk for chronic course early, and provide targeted 

treatment. Although they currently explain too little variance to be clinically valid for individual risk 

prediction, there is potential for PRS to be combined with other risk factors to build a more complete 

picture of risk profiles and eventually improve disorder risk prediction. Schizophrenia PRS have shown 

improved predictive value of psychosis in individuals at high risk 119. Predictive accuracy will likely 

increase with increasing sample sizes of genetic studies, and the inclusion of PRS of correlated traits 

in multi-trait analyses has been shown to improve predictive power for ASD and will likely show similar 

results for other traits 53. 

We conducted a further search on the bioRxiv and medRxiv servers for relevant studies that were not 

included with the main results, as they are yet to undergo peer-review. We identified 17 additional 

studies initially published on either server from March 2019 to September 2020. In these studies, there 

were no genetic variants detected for aggression 155, internalizing symptoms 170, obsessive compulsive 
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traits 171, and total childhood problem scores 172, although 6 loci were identified in a cross-disorder 

meta-analysis of ADHD, ASD, OCD and Tourette syndrome 173, and 14 in a cross-disorder analyses of 

MDD and ADHD 174. Reported SNP-heritabilities were similarly low to moderate, ranging from 2 to 21% 

for traits including ADHD, obsessive-compulsive traits, aggression, internalizing problems, and 

psychotic symptoms 155, 170-172, 174-177. Again, there was evidence of both within- and cross-trait genetic 

associations 155, 171, 173-185.  

Overall we identified numerous positive findings regarding the genetics of childhood 

psychopathology, particularly relating to cross-trait genetic overlap. However, we would be remiss not 

to address the important issue of publication bias in our reporting. Publication bias occurs when 

results from research influence whether or not it is published, such that published studies are skewed 

in favour of those with positive results. While not formally assessed in this review, we cannot rule out 

the possibility that our findings are affected by this phenomenon. In addition, while we did not filter 

on genetic ancestry, there was a clear Eurocentric focus on populations investigated, with a handful 

of studies also investigating East Asian populations. Future studies and data collection plans should 

include samples from more diverse ancestry. The accuracy of methods like genetic risk prediction is 

reduced when discovery and target samples are ancestry divergent 186, 187, which may preclude the use 

of genomic medicine in individuals of other ancestries. 

The results of this review show that understanding of the genetic architecture of childhood 

psychiatric traits is increasing. Common trait-associated variants are starting to be identified, and 

studies show abundant genetic overlap between multiple psychiatric traits. There remain many 

challenges to further increase our understanding of the genetic architecture of childhood psychiatric 

traits. Increasing sample sizes in diverse ancestries in order to identify more trait-associated variants 

is crucial and may be achieved in a variety of ways. For instance, by collecting genetic data in studies 

that do not have the identification of genetic variants as a primary aim, such as clinical trials and 

randomised controlled trials; this may also lead to better prediction of treatment outcomes. 

Moreover, the harmonization of data across studies and study types is crucial, in order to maximise 

power to detect effect 188, 189. Continuation of large-scale collaborative consortia efforts to collect 

longitudinal data beyond what is currently available is also important. Findings from genetic studies 

have potential to impact disease prediction in children at risk, allowing for the possibility of earlier 

interventions which may enable them to have a more favourable course. 

  



Chapter 3 

32 
 

Chapter 3. Longitudinal analyses of genetic associations between 

childhood psychopathology and adult traits 
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ABSTRACT  

Importance  Adult mood disorders are often preceded by behavioral and emotional problems in 

childhood. It is yet unclear what explains the associations between childhood psychopathology and 

adult traits. 

Objective  To investigate whether genetic risk for adult mood disorders and associated traits is 

associated with childhood disorders. 

Design, Setting, and Participants  This meta-analysis examined data from 7 ongoing longitudinal 

birth and childhood cohorts from the UK, the Netherlands, Sweden, Norway, and Finland. Starting 

points of data collection ranged from July 1985 to April 2002. Participants were repeatedly assessed 

for childhood psychopathology from ages 6 to 17 years. Data analysis occurred from September 

2017 to May 2019. 

Exposures  Individual polygenic scores (PGS) were constructed in children based on genome-wide 

association studies of adult major depression, bipolar disorder, subjective well-being, neuroticism, 

insomnia, educational attainment, and body mass index (BMI). 

Main Outcomes and Measures  Regression meta-analyses were used to test associations between 

PGS and attention-deficit/hyperactivity disorder (ADHD) symptoms and internalizing and social 

problems measured repeatedly across childhood and adolescence and whether these associations 

depended on childhood phenotype, age, and rater. 

Results  The sample included 42 998 participants aged 6 to 17 years. Male participants varied from 

43.0% (1040 of 2417 participants) to 53.1% (2434 of 4583 participants) by age and across all cohorts. 

The PGS of adult major depression, neuroticism, BMI, and insomnia were positively associated with 

childhood psychopathology (β estimate range, 0.023-0.042 [95% CI, 0.017–0.049]), while 

associations with PGS of subjective well-being and educational attainment were negative (β, −0.026 

to −0.046 [95% CI, −0.020 to −0.057]). There was no moderation of age, type of childhood 

phenotype, or rater with the associations. The exceptions were stronger associations between 

educational attainment PGS and ADHD compared with internalizing problems (Δβ, 0.0561 [Δ95% CI, 

0.0318-0.0804]; ΔSE, 0.0124) and social problems (Δβ, 0.0528 [Δ95% CI, 0.0282-0.0775]; ΔSE, 

0.0126), and between BMI PGS and ADHD and social problems (Δβ, −0.0001 [Δ95% CI, −0.0102 to 

0.0100]; ΔSE, 0.0052), compared with internalizing problems (Δβ, −0.0310 [Δ95% CI, −0.0456 to 

−0.0164]; ΔSE, 0.0074). Furthermore, the association between educational attainment PGS and 

ADHD increased with age (Δβ, −0.0032 [Δ 95% CI, −0.0048 to −0.0017]; ΔSE, 0.0008). 
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Conclusions and Relevance  Results from this study suggest the existence of a set of genetic factors 

influencing a range of traits across the life span with stable associations present throughout 

childhood. Knowledge of underlying mechanisms may affect treatment and long-term outcomes of 

individuals with psychopathology. 
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INTRODUCTION 

Longitudinal studies indicate that the onset of mood disorders in adulthood, including depression 

and bipolar disorder (BD), is often preceded by childhood problems. These include not only 

internalizing problems, such as depression and anxiety,190, 191 but also externalizing traits, such as 

attention-deficit/hyperactivity disorder (ADHD) and aggression.12, 192, 193 Moreover, both in 

prospective and retrospective studies, behavioral and emotional problems during childhood and 

adolescence have been associated with other adult outcomes that are associated with adult mood 

disorders, including educational attainment (EA),5, 17, 194, 195 insomnia,18, 196 subjective well-being 

(SWB),197 personality,198-201 and body mass index (BMI; calculated as weight in kilograms divided by 

height in meters squared).202-204  

Both twin/family and molecular genetic studies have reported heritability26, 98, 205 and stability44, 82, 

206 of psychopathology over time. Studies of BD in high-risk families also show that children of 

parents with BD are susceptible to psychiatric disorders and symptoms in childhood,207 adolescence, 

and early adulthood.208, 209 These results suggest that genetic factors may underlie the persistence of 

symptoms or the transition from one disorder to another between childhood and adulthood. 

Polygenic score (PGS) analyses enable the examination of the genetic association between adult 

traits and childhood symptoms of psychopathology. 

Polygenic scores are aggregate scores of an individual’s genetic risk for a trait, calculated by 

summing risk alleles from a discovery genome-wide association study (GWAS), weighted by their 

effect sizes.30 For complex (ie, polygenic) traits influenced by many genetic variants, PGS summarize 

genetic risk across loci that are not individually significant in a GWAS. A statistically significant 

association between measured traits and PGS based on another trait suggests a shared genetic 

etiology. Results of studies using PGS to investigate the association of childhood psychopathology 

with mood disorders and associated traits vary. Analyses investigating depression and BD PGS have 

found no evidence of associations with emotional and behavior problems during childhood and 

adolescence, although there is evidence of association between depression PGS and emotional 

problems in adulthood.92, 140, 210 Associations between PGS of EA and ADHD or attention problems 

have been more consistent, with multiple studies92, 140, 211, 212 showing strong genetic associations 

between EA and ADHD or attention problems in childhood and adolescence. 

The last 2 years have seen ever-larger GWAS for traits, including major depression (MD),32, 

51 BD,52 EA,213 and BMI,33 consequently increasing accuracy of PGS.214 Combined with the substantial 

increase in individuals genotyped in large longitudinal childhood cohorts that assess 

psychopathology, this provides an opportunity to rigorously investigate whether genetic factors 
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underlie the associations between childhood psychopathology and adult mood disorders and 

associated nonpsychiatric traits (EA, insomnia, SWB, neuroticism, and BMI) and determine whether 

this association depends on age. Using 7 childhood population-based cohorts, we studied 42 998 

individuals with repeated measures of ADHD symptoms, internalizing, and social problems. We 

performed meta-analyses to test whether PGS of adult traits are associated with childhood and 

adolescent psychopathology and whether this association depends on various factors, including age, 

type of psychopathology, type of scale used to measure psychopathology, and the informant. 
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METHODS 

Participants and Measures 

We obtained self-rated or maternal-rated measures of ADHD symptoms, internalizing, and social 

problems from 7 population-based cohorts (Table 1). Data collection was approved by each cohort’s 

local institutional review or ethics board, waiving the need for informed consent for this study. The 

starting points of data collection varied, ranging from July 1985 to April 2002. Data analysis was 

performed from September 2017 to May 2019. Cohort descriptions can be found in the eAppendix 2 

in the Supplement. 

Table 1. Sample characteristics 

Cohort Approximate age 
groups 

Scale(s) Phenotype(s) measured Rater Sample size 

Avon 
Longitudinal 
Study of 
Parents and 
Children 

7, 10, 12, 14, 16 Strength and 
Difficulties 
Questionnaire 

ADHD symptoms, 
internalizing problems, 
social problems 

Maternal 6502 

Child and 
Adolescent 
Twin Study in 
Sweden 

9, 12, 15 Autism-Tics, 
AD/HD and other 
comorbidities 
inventory, Screen 
for Child Anxiety 
Related Emotional 
Disorders, Short 
Mood and Feelings 
Questionnaire, 
Strength and 
Difficulties 
Questionnaire 

ADHD symptoms, 
internalizing problems, 
social problems 

Maternal, self 11039 

Generation R 6, 10 Achenbach System 
of Empirically 
Based Assessment 
(Child Behaviour 
Checklist) 

ADHD symptoms, 
internalizing problems, 
social problems 

Maternal 2438 

Norwegian 
Mother and 
Child Cohort 
Study 

8 Screen for Child 
Anxiety Related 
Emotional 
Disorders, Short 
Mood and Feelings 
Questionnaire, 
Rating Scale for 
Disruptive 

ADHD symptoms, 
internalizing problems 

Maternal 4583 
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Behaviour 
Disorders 

Northern 
Finland Birth 
Cohort of 1986 

16 Achenbach System 
of Empirically 
Based Assessment 
(Youth Self Report) 

ADHD symptoms, 
internalizing problems, 
social problems 

Self 3409 

Netherlands 
Twin Register 

7, 10, 12, 14, 17 Achenbach System 
of Empirically 
Based Assessment 
(Child Behaviour 
Checklist & Youth 
Self Report) 

ADHD symptoms, 
internalizing problems, 
social problems 

Maternal, self 5501 

Twins Early 
Development 
Study 

7, 8, 9, 12, 14, 16 SDQ, Conners’ 
Parent Rating 
Scale 

ADHD symptoms, 
internalizing problems, 
social problems 

Maternal, self 9526 

Abbreviation: ADHD, attention-deficit/hyperactivity disorder 

Genotyping and Polygenic Scores 

Genotyping and quality control were performed by each cohort, following common standards 

(eAppendix 2 in the Supplement). In each cohort, PGS were constructed for the following adult 

traits: MD,51 BD,52 SWB,215 neuroticism,215 insomnia,216 EA,213 and BMI.33 Height33 was included as a 

control phenotype (eTable 1 in the Supplement contains the GWAS discovery sample size for each 

trait). To avoid overlap between discovery and target samples, summary statistics omitting the 

target cohort or cohorts were used. Analyses were limited to individuals of European ancestry. 

Polygenic scores were estimated using LDpred, a method that takes into account the level of linkage 

disequilibrium between measured single-nucleotide variants (SNVs; often called single-nucleotide 

polymorphisms) to avoid inflation of effect sizes.217 The method LDpred requires the inclusion of 

prior probabilities corresponding to the fraction of SNVs thought to be causal, which allows for 

testing varying proportions of SNVs associated with the outcome of interest. We thus tested a range 

of priors (0.75, 0.50, 0.30, 0.10, and 0.03) to assess the prior at which assessment was optimal. We 

restricted analyses to common variants, using SNV inclusion criteria of minor allele frequency 

greater than 5% and imputation quality of R2 greater than 0.90. 

Cohort-Specific Association Analyses 

In each cohort, associations between childhood psychopathology and adult traits were estimated by 

regressing each outcome measure (ie, ADHD symptoms, internalizing, and social problems) stratified 
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by age and rater, on the calculated PGS of the 8 adult traits at the 5 priors. A wide variety of surveys 

were used to further characterize the cohort.218-224  

Where cohorts included related individuals, regressions were performed using the exchangeable 

model in generalized estimating equations to correct for relatedness in samples.225 Scales were 

coded such that higher scores reflected more childhood problems. Both childhood psychopathology 

scores and PGS were standardized to a mean of 0 and an SD of 1, allowing for comparable βs across 

cohorts. Sex, age, batch effects, and genetic principal components (which correct for population 

stratification) were included as covariates in the regression (eAppendix 2 in the Supplement). 

Multivariate Meta-analyses 

Meta-analyses were performed using the metafor package in R version 3.6.0 (R Foundation for 

Statistical Computing).226 To obtain the prior that provided the strongest estimate of the association 

with overall childhood psychopathology, we performed a random-effects meta-analysis for each of 

the 5 priors for each adult-trait PGS. Specifying random effects accounts for heterogeneity in the 

true associations attributable to factors that contribute to sample variation across cohorts, such as 

differences in measurements and sample characteristics. Subsequent analyses for each adult trait 

were conducted based on the selected prior from the previous analysis (ie, the one that provided 

the highest estimate of the association). As a sensitivity check, we repeated all analyses using a prior 

of 0.50 and compared these results to those using the prior with the highest estimate. We selected 

the prior of 0.50, because it represents a reasonable estimation of the proportion of associated SNVs 

across the different types of complex traits we tested. 

To correct for dependency in the outcome variables attributable to repeated measures of the same 

individuals over time, we specified the variance-covariance matrix between their sampling errors. 

Because errors were assumed to be independent between cohorts, we combined variance-

covariance matrices across cohorts by setting correlations between cohorts to 0 in the matrix, 

further accounting for differences between cohorts.134 To test whether the error covariance matrix 

alone suitably accounted for differences between cohorts, we applied for each adult trait an analysis 

of variance (ANOVA) test to compare models with the random effects dropped with those where 

they were specified along with the error covariance matrix. 

Subsequent meta-analyses to test the association between each adult-trait PGS and overall 

childhood psychopathology (ie, all 3 childhood measures analyzed jointly) were performed on the 

reduced model (no random effects), if dropping them did not result in a significant loss of fit 
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compared with the full model (random effects plus error covariance matrix). We also tested the 

association between the PGS and each individual childhood psychopathology measure. 

Because both the childhood outcomes, and PGS measures are correlated, we estimated the effective 

number of tests between both sets of variables under the assumption that they are 

nonindependent.227, 228 We corrected the meta-analysis results for multiple testing by applying 

Bonferroni correction (P = .05/number of tests) to the effective number of tests (2015.04 effective 

tests; α = 2.48 × 10−5) (eTable 2 in the Supplement). 

Multimodel Inference Analyses to Identify Moderators 

To ascertain whether the variables age, type of childhood psychopathology (ie, ADHD symptoms, 

internalizing problems, or social problems), measurement instrument (eg, Strength and Difficulties 

Questionnaire,218 Achenbach System of Empirically Based Assessment222), and rater (ie, maternal or 

self) moderated association between childhood psychopathology and adult-trait PGS, we performed 

multimodel inference analyses using the glmulti package in R version 3.6.0.229 The glmulti package 

allows the definition of a function that takes into account all potential moderators and generates all 

possible models for the association of interest, returning the best models based on a specified 

information criterion; in our study, this was Akaike information criterion.230 Furthermore, it provides 

parameter estimates based on all possible models, rather than a single-top model, while considering 

the relative importance of each potential moderator by weighting them. The averaged model avoids 

relying too strongly on a single best model. 

In summary, for each adult-trait PGS, we selected the prior that provide the strongest estimate of its 

association with childhood psychopathology by performing random-effects meta-analyses at each 

prior. This was followed by ANOVA tests to determine whether our error covariance matrix suitably 

accounted for differences between cohorts. We then performed multivariate meta-analyses testing 

the associations of PGS of adult traits with childhood psychopathology at all ages. Finally, we 

performed multimodel inference analyses to ascertain whether moderators affected the association 

between each adult-trait PGS and childhood psychopathology. 
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RESULTS 

The 7 included cohorts combined participants from the Netherlands, UK, Sweden, Norway, and 

Finland in a combined sample of 42 998 unique participants aged 6 to 17 years old. The percentage 

of male participants ranged from 43.0% (1040 of 2417 participants) to 53.1% (2434 of 4583 

participants) by age and across all cohorts. 

Cohort-Specific Association Analyses 

Cohort-specific descriptive statistics and correlation matrices of the 3 psychopathology measures, 

ADHD symptoms, internalizing problems, and social problems are described in eTables 3, 4, 5, 6, 7, 8, 

and 9 in the Supplement. Correlation matrices show the observed variability or stability of childhood 

psychopathology over time. Based on cohorts with multiple or consistent measures of 

psychopathology across development, we observed moderate correlations across different ages. 

Estimates were highest for measurements of the same trait at adjacent ages, around 0.50, and 

lowest between self-rated and maternally rated measures, around 0.20. The results of the univariate 

analyses in each cohort are displayed in eTables 10, 11, 12, 13, 14, 15, and 16 in the Supplement. 

Meta-analyses 

Random-effects meta-analyses corresponding to the 5 priors showed that the prior that provided 

the strongest association estimates were 0.75 for EA and BMI; 0.50 for MD, insomnia, and height; 

0.30 for neuroticism; 0.10 for BD; and 0.03 for SWB (eTable 17 in the Supplement). A reduced model 

(error matrix alone) was used in the multivariate and subsequent analyses for all traits except for the 

EA and BMI PGS, for which we used the full model (random effect plus the error covariance matrix). 

This was because ANOVA tests comparing the full model with the reduced model suggested that the 

error covariance matrix alone insufficiently accounted for differences between cohorts (ANOVA 

results, eTable 18 in the Supplement). 

Subsequent meta-analyses of the association between PGS of each adult trait and overall childhood 

psychopathology (all 3 childhood measures in the same model) showed that the directions of 

associations were as expected (Figure 1). Significant positive associations were observed for PGS of 

MD (β, 0.042 [95% CI, 0.036-0.049]; SE, 0.003; P = 2.48 × 10−37; R2, 0.002), neuroticism (β, 0.035 [95% 

CI, 0.029-0.042]; SE, 0.003; P = 1.22 × 10−26; R2, 0.001), insomnia (β, 0.023 [95% CI, 0.017-0.030]; SE, 

0.003; P = 2.36 × 10−12; R2, 0.0005), and BMI (β, 0.035 [95% CI, 0.025-0.046]; SE, 

0.005; P = 2.23 × 10−11; R2, 0.001), while associations for SWB (β, −0.026 [95% CI, −0.020 to −0.033]; 

SE, 0.003; P = 1.92 × 10−15; R2, 0.0006) and EA (β, −0.046 [95% CI, −0.035 to −0.057]; SE, 

0.006; P = 6.74 × 10−17; R2, 0.002) were negative. There was no evidence for association with BD PGS 
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(β, 0.005 [95% CI, −0.001 to 0.012]; SE, 0.003; P = .11; R2, 2.50 × 10−5). No associations were found 

with the PGS of height. 

Figure 1.  Multivariate Meta-analysis Estimates of the Associations Between Adult Traits and 

Overall Childhood Psychopathology 

 

Bars represent confidence intervals corresponding to α = .05. ADHD indicates attention-deficit/hyperactivity 
disorder. aIndicates significance after correction for multiple testing (α = 2.48 × 10−5). 
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Moderators 

Using model averaging, we considered the effect of 4 moderators (ie, outcome, age, measurement 

instrument, and rater) across all possible models. Using a P value threshold of .0125 (α = .05/number 

of moderators), we found evidence of moderation for EA and BMI PGS (Table 2). The association 

between EA PGS and childhood psychopathology varied as a function of outcome, rater, and age. 

The EA PGS were associated with ADHD symptoms but not internalizing problems (Δβ, 0.0561 [Δ95% 

CI, 0.0318-0.0804]; ΔSE, 0.0124) or social problems (Δβ, 0.0528 [Δ95% CI, 0.0282-0.0775]; ΔSE, 

0.0126); Figure 1). Additionally, the association between ADHD symptoms and EA PGS increased 

with age (Δβ, −0.0032 [Δ 95% CI, −0.0048 to −0.0017]; ΔSE, 0.0008) in maternal ratings, while self-

ratings showed the opposite (Δβ, 0.0463 [Δ95% CI, 0.0315-0.0611]; ΔSE, 0.0075). However, the 

influence of rater on the associations appears to be driven by a single outlier aged around 17 years 

in the self-reported data (Figure 2). The association between BMI PGS and childhood 

psychopathology also varied across outcomes. Associations were strongest with ADHD and social 

problems (Δβ, −0.0001 [Δ95%CI, −0.0102 to 0.0100]; ΔSE, 0.0052), compared with internalizing 

problems (Δβ, −0.0310 [Δ95% CI, −0.0456 to −0.0164]; ΔSE, 0.0074). Moderators did not influence 

associations between the other adult-trait PGS and childhood psychopathology (eTable 19 in 

the Supplement). 

Figure 2.  Moderator Effects of Age and Rater on the Association Between Educational Attainment 

Polygenic Scores and Attention-Deficit/Hyperactivity Disorder 

 

Each point represents β estimates from univariate analyses of the association between educational attainment 
polygenic scores and attention-deficit/hyperactivity disorder symptoms at different ages. Overall, the negative 
association becomes stronger with increasing age (Table 2). The gray shadow around the trend line represents 
the 95% CI of the age effect size. 
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Table 2. Model-averaged moderator effects for Educational Attainment and Body Mass Indexa 

EDUCATIONAL 
ATTAINMENT 

Estimate SE z Value P value ci.lb ci.ub Importance 

Intercept -0.0770 0.0092 -8.4072 4.20x10-17b -0.0950 -0.0591 1.0000 

Rater – self 0.0463 0.0075 6.1370 8.41x10-10b 0.0315 0.0611 1.0000 

Age -0.0032 0.0008 -4.0563 4.99x10-5b -0.0048 -0.0017 0.9896 

Outcome – 
internalizing 
problems 

0.0561 0.0124 4.5239 6.07x10-6b 0.0318 0.0804 0.9606 

Outcome – social 
problems 

0.0528 0.0126 4.2076 2.58x10-5b 0.0282 0.0775 0.9606 

Scale – ATAC 0.0008 0.0016 0.4956 0.6202 -0.0023 0.0039 0.0194 

Scale – Conners' 0.0008 0.0016 0.4898 0.6243 -0.0023 0.0039 0.0194 

Scale – RS-DBD 0.0007 0.0015 0.4737 0.6357 -0.0022 0.0037 0.0194 

Scale – SCARED 0.0001 0.0004 0.1861 0.8524 -0.0007 0.0008 0.0194 

Scale – SDQ -0.0002 0.0004 -0.4316 0.6660 -0.0010 0.0007 0.0194 

Scale – SMFQ -0.0008 0.0016 -0.4923 0.6225 -0.0038 0.0023 0.0194 

               

BMI Estimate SE z Value p Value ci.lb ci.ub Importance 

Intercept 0.0468 0.0064 7.3531 1.94x10-13b 0.0343 0.0593 1.0000 

Outcome – 
internalizing 
problems 

-0.0310 0.0074 -4.1744 2.99x10-5b -0.0456 -0.0164 0.9374 

Outcome – social 
problems 

-0.0001 0.0052 -0.0192 0.9847 -0.0102 0.0100 0.9374 

Rater – self -0.0011 0.0022 -0.5068 0.6123 -0.0055 0.0033 0.0923 

Age 7.48x10-6 2.32x10-5 0.3223 0.7473 -3.80x10-5 0.0001 0.0195 

Scale – ATAC -1.42x10-9 3.35x10-9 -0.4241 0.6715 -7.99x10-9 5.14x10-9 8.21x10-8 

Scale – Conners' 2.77x10-12 1.62x10-9 0.0017 0.9986 -3.18x10-9 3.19x10-9 8.21x10-8 

Scale – RS-DBD -1.03x10-9 3.12x10-9 -0.3290 0.7422 -7.15x10-9 5.09x10-9 8.21x10-8 

Scale – SCARED -3.32x10-9 6.90x10-9 -0.4809 0.6306 -1.68x10-8 1.02x10-8 8.21x10-8 

Scale – SDQ -1.05x10-9 2.47x10-9 -0.4260 0.6701 -5.90x10-9 3.80x10-9 8.21x10-8 

Scale – SMFQ 2.69x10-10 1.67x10-9 0.1612 0.8720 -3.00x10-9 3.54x10-9 8.21x10-8 
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Abbreviations: A-TAC, Autism-Tics, ADHD, and Other Comorbidities Inventory; BMI, body mass index (calculated 

as weight in kilograms divided by height in meters squared); RS-DBD, Rating Scale for Disruptive Behavior 

Disorders; SCARED, Screen for Child Anxiety Related Emotional Disorders; SDQ, Strength and Difficulties 

Questionnaire; SMFQ, Short Mood and Feelings Questionnaire, ci.lb, confidence interval lower bounds; ci.ub, 

confidence interval upper bounds 

a The intercept estimate contains information from the reference variable of each moderator, selected in 

alphabetical order or with the lowest value, in the case of numerical moderators. Hence the intercept reflects 

the association estimate between educational attainment or BMI and Achenbach System of Empirically Based 

Assessment measured, maternally rated attention problems at approximately age 6 years. The other estimates 

show the change in association estimates depending on the moderator variable. The importance value for each 

moderator represents their overall support across all models. Moderators present in multiple models with large 

weights will have higher importance, and the closer this value is to 1, the more important the moderator is for 

the association being considered. 

b Values were significant when adjusted for 4 moderators (α = .05/4 = .0125). 

Sensitivity Analyses 

Using a prior of 0.50 sensitivity analyses showed similar results to the main analyses, except for the 

moderation of outcome on the association with BMI PGS (intercept: β, 0.0439; SE, 0.0087 [95% CI, 

0.0269-0.0609]; internalizing problems: Δβ, −0.0257; ΔSE, 0.0130 [Δ 95% CI, −0.0512 to −0.0003]; 

social problems: Δβ, −0.0018; ΔSE, 0.0055 [Δ 95% CI, −0.0126 to 0.0089]; eFigure in the Supplement). 

While this was nominally significant (P = .047), it did not remain after adjusting for the 4 moderators 

tested (α = .0125; eTable 20 in the Supplement). Results from the main analyses also remained the 

same when all meta-analyses included random effects. 
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DISCUSSION 

We investigated genetic associations between childhood psychopathology and adult mood disorders 

and associated traits over time. Using results of well-powered GWAS meta-analyses of adult traits, 

we calculated PGS in what is, to our knowledge, the largest childhood target sample to date for this 

type of study (N = 42 998). We revealed strong evidence of associations of PGS for adult MD, SWB, 

neuroticism, insomnia, EA, and BMI with childhood ADHD symptoms, internalizing problems, and 

social problems. We found no evidence of associations between BD PGS and childhood 

psychopathology. In addition, we found no evidence of the moderators age, outcome, measurement 

instrument, and rater on these associations, except for EA PGS and BMI PGS. While EA PGS was 

more strongly associated with ADHD symptoms compared with the 2 other outcomes, BMI PGS was 

more strongly associated with ADHD symptoms and social problems than with internalizing 

problems. The association between EA PGS and ADHD symptoms increased with age and was 

stronger for maternal-rated ADHD symptoms compared with self-rated ADHD symptoms. 

Our results indicate a consistent pattern of genetic associations between PGS of adult depression 

and associated traits and childhood psychopathology across age. This has not been observed 

previously, which is likely partly attributable to the increased power of our larger discovery and 

target samples compared with previous studies.92, 210 Moreover, previous studies focused on 

separate childhood phenotypes38, 231 as opposed to our approach of simultaneously analyzing 

multiple childhood problems at different ages. Consistent genetic associations across age suggest a 

set of genetic variants that influence a range of traits across the life span. 

The exceptions to these consistent associations were EA and BMI PGS, which showed moderation on 

the associations by the different types of childhood outcome. While both were genetically 

associated with ADHD in accordance with previous research,38, 140, 211, 212 they were not associated 

with internalizing problems, or social problems, in the case of EA. The lack of association with 

internalizing problems was somewhat unexpected, given genetic correlations previously found for 

BMI and EA with adult MD.32, 51 These results suggest that genetic associations between EA and BMI 

and MD may become more apparent after adolescence, while they are already present for childhood 

ADHD and social problems (for BMI). 

We did not identify associations between BD PGS and childhood psychopathology. This is intriguing 

because moderate genetic correlations with BD have been observed for MD and ADHD, as well as 

other behavioral-cognitive phenotypes, such as SWB and EA.98 However, previous analyses of BD 

PGS also found no associations with continuous measures of psychopathology in childhood92, 141 or 

adolescence.106 These results may be explained by less powerful BD GWAS compared with MD and 
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other traits, which might result in underpowered PGS. Nevertheless, the lack of association with BD 

PGS may also suggest that genetic risk for BD does not manifest until later in development, but given 

the higher prevalence rates of childhood psychopathology in offspring of parents with BD, this seems 

less likely.209, 232, 233 It will be interesting to see if the observation holds as more powerful GWAS 

become available for BD. 

Limitations 

A limitation of our study is that analyses are limited to European ancestry, and therefore results are 

not generalizable to populations of differing ancestry. Second, associations between PGS and 

childhood psychopathology measures may be confounded by unaccounted passive gene-

environment correlations, an association between a child’s genotype and familial environment 

resulting from parents providing environments that are influenced by their own (parental) 

genotypes.137, 234 Consequently, associations observed with adult PGS may be the result of both 

direct and indirect (environmentally-mediated) genetic effects. Third, dropout may have influenced 

our results. Previous analyses in longitudinal cohorts have reported negative associations between 

PGS for schizophrenia, ADHD, and depression and participation in childhood and adolescence.235, 

236 Nonparticipation in adolescence is also associated with higher psychopathology scores at earlier 

ages.134 These results suggest that individuals with higher genetic risk for psychiatric disorders and 

higher childhood psychopathology are more likely to drop out of longitudinal studies. Genetic 

associations and the magnitude of associations reported may therefore be underestimated. Finally, 

because we combined data from different cohorts, we introduced heterogeneity in the assessment 

of childhood psychopathology. However, the meta-regression showed in general, consistent effect 

sizes across scales and raters. Moreover, combining multiple cohorts resulted in a large sample size, 

increasing statistical power compared with previous studies, which is a strength of this study. 

Conclusions 

The general lack of an influence of age and type of childhood psychopathology on our identified 

associations supports evidence of a common genetic psychopathology factor that remains stable 

across development.237 Polygenic scores by themselves are not sufficient to identify individual 

children at high risk for persistence (they explain <1% of the variance in childhood psychopathology 

in this study). Nevertheless, these findings are of major importance because the individuals who are 

affected across the life span with consequences on other outcomes, such as EA and BMI, should be 

the focus of attention for targeted treatment. Furthermore, PGS could be combined with other risk 

factors for risk assessment in clinical samples, as was recently done for psychosis risk using 

schizophrenia PGS.119 Future studies focusing on samples from high-risk populations are warranted 
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to investigate whether PGS for adult traits, together with other variables, can be used to build risk 

profiles with reasonable accuracy. These may allow for the stratification of children into high-risk 

and low-risk groups for persistence, as well as test whether early intervention or more intense 

treatments for the former group can prevent poor outcomes.238 

In conclusion, we demonstrate the power of combining genetic longitudinal population data to 

elucidate developmental patterns in psychopathology. Our study provides novel evidence for the 

presence of shared genetic factors between childhood psychopathology and depression and 

associated adult traits, as well as their stability across development. Insight into these associations 

may aid identification of children at risk for a relatively chronic course of illness, ultimately 

facilitating targeted treatment to this vulnerable group. 
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ABSTRACT 

Ubiquitous associations have been detected between different types of childhood psychopathology 

and polygenic risk scores based on adult psychiatric disorders and related adult outcomes, indicating 

that genetic factors partly explain the association between childhood psychopathology and adult 

outcomes. However, these analyses in general do not take into account the correlations between 

the adult trait polygenic risk scores or between the childhood psychiatric traits. This study aimed to 

further clarify the influence of genetic factors on continuity of symptoms by accounting for 

correlations within adult and within childhood traits. Using a multivariate multivariable regression, 

we analysed associations of childhood attention-deficit/hyperactivity disorder (ADHD), internalizing, 

and social problems, with polygenic scores (PGS) of adult traits including major depression, bipolar 

disorder, subjective well-being, neuroticism, insomnia, educational attainment, and body mass index 

(BMI), derived for 20,539 children aged 8.5 to 10.5 years. After correcting for correlations between 

traits, major depression PGS were associated with all three childhood traits, i.e., ADHD, internalizing, 

and social problems. In addition, BMI PGS were associated with ADHD symptoms and social 

problems, while neuroticism PGS were only associated with internalizing problems and educational 

attainment PGS were only associated with ADHD symptoms. PGS of bipolar disorder, subjective well-

being, and insomnia were not associated with any childhood traits. Our findings suggest that 

associations between childhood psychopathology and adult traits like insomnia and subjective well-

being may be primarily driven by genetic factors that influence adult major depression. Additionally, 

specific childhood phenotypes are genetically associated with educational attainment, BMI and 

neuroticism.  
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INTRODUCTION 

Psychiatric disorders cause significant distress and impaired functioning. They are also highly 

comorbid, with extensive phenotypic and symptom overlap. Comorbidity and symptom overlap has 

been observed between a range of disorder types including mood disorders like depression and 

anxiety 239, 240, childhood-onset neurodevelopmental disorders like attention-deficit/hyperactivity 

disorder (ADHD), autism spectrum disorder (ASD), and Tourette syndrome 241, as well as between 

ADHD and anxiety disorders and depression 242, 243. Importantly, a substantial proportion of children 

and adolescents with psychopathology continue to have psychiatric disorders in adulthood, as well 

as poorer outcomes related to physical health and functional outcomes, including higher body mass 

index (BMI), and lower educational attainment among others 5, 6, 8, 244-246. Thus psychopathology traits 

are correlated with each other, and are linked to increased risk for negative outcomes, both related 

to mental health and beyond.  

Using both twin- and molecular-based analyses, studies have shown genetic influences on the 

stability and continuity of psychopathology traits including attention problems, anxiety, and 

depression over time. Indeed there is evidence of genetic influence both for homotypic continuity 

(when a disorder is predicted by itself at a later time point) and heterotypic continuity (when one 

disorder predicts another at a later time point, e.g., childhood anxiety is associated with 

schizophrenia later in life) 44, 45, 78, 115, 206, 247. Many studies investigating such genetic associations 

between childhood psychopathology and adult traits have employed polygenic scores (PGS), which 

index an individual’s genetic risk for a trait based on previously determined effect sizes for alleles 

associated with the trait 30. They have been used to show that shared genetic overlap likely underlies 

associations between childhood psychopathology and adult mood disorders including depression 

and anxiety, as well as related traits like neuroticism, insomnia, and subjective well-being 115, 248. 

Furthermore, PGS have also been used to demonstrate genetic overlap between childhood 

psychopathology and mood disorder-related functional outcomes, such as educational attainment, 

and BMI 92, 115, 212.  

Crucially, these associations are typically analysed in univariate analyses. However, both the adult, 

and the childhood traits are phenotypically and genetically correlated 86, 98, 164, 249-252. This raises the 

question of whether the ubiquitous genetic associations observed are genuine or whether they are 

driven by unaccounted correlations between related traits. For instance, a previous study reported 

genetic associations between major depression PGS and childhood ADHD, internalizing, and social 

problems 115. However, it is possible that the association with all three childhood traits is explained 

primarily by an association between major depression PGS and internalizing problems, with the 
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associations between major depression PGS and ADHD symptoms and social problems being the 

result of correlations between the three traits rather than genuine genetic associations between 

ADHD and social problems, and adult major depression. Knowledge of how underlying correlations 

influence genetic associations may provide insight into trans-diagnostic continuity of 

psychopathology across the lifespan and can be of importance for building prediction models for 

outcomes of childhood psychopathology.    

In the current study, we performed a preregistered (https://osf.io/7nkw8) multivariate analysis to 

investigate genetic associations between childhood ADHD symptoms, internalizing, and social 

problems, and adult depression and related traits. Specifically, we were interested in exploring how 

accounting for the correlations between the adult trait PGS and between the childhood measures 

affects previously observed univariate genetic associations between them. As previous analyses 

largely showed no age effects in associations between childhood psychopathology and PGS of adult 

traits, we focused the current analysis at the age at which we had the most combined data which 

was at age 9-10. We obtained maternal-rated data for 20,539 children across three cohorts. 

 

https://osf.io/7nkw8
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METHODS 

Participants and Measures   

Maternal-rated measures of ADHD symptoms, internalizing, and social problems were obtained for 

children aged 9 – 10 years from four population-based cohorts including the Avon Longitudinal Study 

of Parents and Children (ALSPAC) 253-255, Child and Adolescent Twin Study in Sweden (CATSS) 256, 

Netherlands Twin Register (NTR) 257, and Twins Early Development Study (TEDS) 258 (Table 1). CATSS, 

NTR and TEDS are population based twin cohorts while ALSPAC is a population based birth cohort 

that recruited all pregnant women in the former county of Avon with an expected due date between 

April 1991 and December 1992 Childhood psychopathology was measured in ALSPAC and TEDS using 

the hyperactivity-inattention, emotional symptoms, and peer relationship problems subscales of the 

Strength and Difficulties Questionnaire (SDQ) 218, while in the NTR, the attention, internalizing, and 

social problems subscales of the Child Behaviour Checklist (CBCL) 222 were used. In CATSS, the AD/HD 

module of the Autism-Tics, AD/HD and other comorbidities inventory 219, was used to measure 

ADHD symptoms. For internalizing problems, the  Screen for Child Anxiety Related Emotional 

Disorders (SCARED) 220 was selected over the Short Mood and Feelings Questionnaire (SMFQ) 221. 

This is because while they both had comparable psychometric properties, the SCARED measures 

symptoms over the past three months, which is more in line with the longer-term measures of the 

CBCL (two months) and SDQ (six months) used by other cohorts, compared to the SMFQ which 

measures symptoms over the past two weeks. The CATSS cohort did not have a measure of social 

problems at age 9-10. 

Genotyping and quality control were performed by each cohort according to common standards and 

have been previously described 115. We obtained PGS for traits including major depression 51, bipolar 

disorder 52, subjective well-being, neuroticism 215, insomnia 216, educational attainment 213 and BMI 

33, calculated using LDpred 217. LDpred allows the inclusion of prior probabilities which correspond to 

the assumed proportion of genetic variants thought to be causal for a given trait. We used PGS at 

the most predictive priors per trait, determined from previous univariate analyses 115. Data collection 

was approved by each cohort’s local institutional review or ethics board, waiving the need for 

informed consent for this study. Analyses were limited to individuals of European ancestry. 

Statistical Analyses 

The main model tested is described in Figure 1. The model represents a multivariate regression with 

three dependent and seven independent variables, as well as additional covariates. The dependent 
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variables are the maternal-rated measures of ADHD symptoms, internalizing, and social problems, 

while the independent variables are PGS of major depression, bipolar disorder, subjective well-

being, neuroticism, insomnia, educational attainment, and BMI. Multivariate multivariable 

regression analyses were performed in R using path specification in the OpenMx package 259-262. Full 

information maximum likelihood (FIML) estimation 263, optimized in OpenMx was used to account 

for missingness in the outcome (childhood measures) data. We also accounted for the effects of sex, 

age, genetic principal components (to correct for population stratification), genotyping chip, and 

batch effects on the childhood measures, by including them as covariates in the model (Table 1). 

Table 1. Sample characteristics 

Cohort Phenotype(s) 
measured 

Scale(s) Sample size Covariates 
included in 
regression model 

ALSPAC ADHD symptoms, 
internalizing problems, 
social problems 

SDQ 5025 10 genetic PCs, 
age, sex 

CATSS ADHD symptoms, 
internalizing problems 

A-TAC, SCARED 7284 10 genetic PCs, sex 

NTR ADHD symptoms, 
internalizing problems, 
social problems 

ASEBA-CBCL 3652 10 genetic PCs, 
genotyping chip, 
age, sex 

TEDS ADHD symptoms, 
internalizing problems, 
social problems 

SDQ 4578 10 genetic PCs, 
genotyping chip, 
genotyping batch, 
age, sex  

Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; CATSS, Child and Adolescent Twin 
Study in Sweden; NTR, Netherlands Twin Register; TEDS, Twins Early Development Study; ASEBA, Achenbach 
System of Empirically Based Assessment 222; A-TAC, Autism-Tics, AD/HD and other comorbidities inventory 219; 
CBCL, Child Behaviour Checklist 222; SDQ, Strength and Difficulties Questionnaire 218; SCARED, Screen for Child 
Anxiety Related Emotional Disorders 220; PCs, principal components. 

 

Both the childhood measures and the PGS were scaled so that they each had a mean of zero and 

standard deviation of 1. This allowed for data to be jointly analysed across cohorts using a multi-

group model, which aggregates fit statistics from separate submodels specified for each cohort. 

Correlations and regression coefficients were constrained to be equal across cohorts, while 

estimates for the PCs, genotyping chip and batch effects, as well as their variances which were 

estimated separately per cohort. We corrected for relatedness in the twin samples (CATSS, NTR, 
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TEDS) by estimating the cross-twin covariance for each outcome measure, as well as cross-twin 

cross-trait covariances.  

We adjusted our significance threshold to account for multiple testing, using Bonferroni adjustment 

(α = 0.05/number of tests), where the number of tests is the number of outcome measures 

multiplied by the number of predictors (α = 0.05/(3 x 7)=0.00238).   
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RESULTS 

Across all cohorts, 20,539 children were included in the current analyses. Their ages ranged from 8.5 

to 10.5 years. Full descriptive statistics per cohort for age and childhood measures, as well as sex-

based information are provided in Supplementary Tables 1 and 2. 

Associations between adult trait PGS and childhood traits 

We fitted a multivariate multivariable regression model investigating associations between the three 

childhood outcome measures, and PGS at a prior of 0.75 for educational attainment and BMI, 0.5 for 

major depression, and insomnia, 0.3 for neuroticism, 0.1 for bipolar disorder, and 0.03 for subjective 

wellbeing. We observed moderate phenotypic correlations between the childhood measures; 0.32 

between ADHD symptoms and internalizing problems, 0.35 between ADHD symptoms and social 

problems and 0.46 between internalizing and social problems (Figure 2). Negative correlations 

between the PGS ranged from -0.009 to -0.305 while positive correlations ranged from 0.011 to 

0.306 (Table 2). The pattern of correlations between the adult trait PGS was similar to those seen in 

previous analyses, with high correlations between variables on the depression-wellbeing spectrum 

including neuroticism, and lower associations with other traits like BMI, educational attainment and 

bipolar disorder 98, 205, 215, 216. Further, insomnia, subjective wellbeing, and neuroticism were also 

correlated with each other, although to a slightly lesser extent. 

Table 2. Polygenic scores correlation matrix 
 

Major 
depression 

Bipolar 
disorder 

Subjective 
wellbeing 

Neuroticism Insomnia Educational 
attainment 

BMI 

Major 
depression 

1 0.184 -0.215 0.306 0.191 -0.125 0.05 

Bipolar 
disorder 

0.184 1 -0.03 0.068 0.014 0.068 -0.009 

Subjective 
wellbeing 

-0.215 -0.03 1 -0.305 -0.118 0.047 0.011 

Neuroticism 0.306 0.068 -0.305 1 0.244 -0.152 -0.082 

Insomnia 0.191 0.014 -0.118 0.244 1 -0.152 0.04 

Educational 
attainment 

-0.125 0.068 0.047 -0.152 -0.152 1 -0.201 

BMI 0.05 -0.009 0.011 -0.082 0.04 -0.201 1 

 Note: matrix represents the average correlation between the scaled PGS of the adult traits across four cohorts 

After correction for multiple testing (α = 0.00238), we observed significant positive associations 

between BMI PGS and ADHD symptoms (beta = 0.024, 95% C.I = 0.008 to 0.039, SE = 0.008, p = 

0.002) and social problems (beta = 0.057, 95% C.I. = 0.039 to 0.076, SE = 0.009 , p = 1.37×10-09), 

between major depression PGS and ADHD symptoms (beta = 0.035, 95% C.I. = 0.019 to 0.051, SE = 

0.008, p = 2.23×10-05), internalizing (beta = 0.027, 95% C.I. = 0.010 to 0.044, SE = 0.009, p = 0.002), 
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and social problems (beta = 0.034, 95% C.I. = 0.014 to 0.053, SE = 0.010, p = 0.001), and finally 

between neuroticism and internalizing problems (beta = 0.041, 95% C.I. = 0.024 to 0.059, SE = 0.009, 

p = 4.97×10-06). We also observed significant negative associations between educational attainment 

PGS and ADHD symptoms (beta = -0.087(95% C.I. = -0.071 to -0.102), SE = 0.008, p = 2.45×10-28) 

(Figure 2). Other associations between childhood measures and PGS were not statistically significant 

(Table 3).   
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DISCUSSION 

So far, studies have primarily used univariate analyses to investigate genetic associations between 

childhood psychopathology and PGS of adult mood disorders and related traits like neuroticism, 

insomnia and subjective-well-being, as well as functional outcomes like educational attainment and 

BMI 115, 248. In the current study, we performed a multivariate multivariable regression analysis with 

the aim of exploring how underlying correlations between these variables influences the 

strength/presence of previously observed associations. Using a multivariate model, we accounted 

for correlations between the PGS of adult traits as well as correlations between childhood ADHD 

symptoms, internalizing, and social problems. We found that major depression PGS were 

significantly associated with all three measures of childhood psychopathology. In addition, BMI PGS 

were positively associated with ADHD symptoms and social problems, and neuroticism PGS were 

positively associated with internalizing problems, while educational attainment PGS were negatively 

associated with ADHD symptoms. Previously reported associations of childhood psychopathology 

with PGS of insomnia, neuroticism, and subjective well-being were largely no longer present.  

We observed differential genetic associations between childhood psychopathology and adult traits, 

with all childhood problems investigated associated with genetic risk for major depression. On the 

other hand, genetic risk for traits like neuroticism, educational attainment and BMI appeared to be 

related to specific childhood psychopathology measures. The non-specific association of childhood 

psychopathology with depression PGS suggests that there are genetic variants associated with 

depression and shared across the three childhood traits, which might be indicative of a dimensional 

structure of psychopathology where any type of childhood psychopathology is linked to genetic risk 

for depression. To some extent, we observed the same for PGS of BMI, which showed associations 

with social problems and ADHD symptoms i.e. there are genetic variants associated with BMI which 

are shared with both traits. However we did not observe this with PGS of educational attainment, 

and neuroticism, which were associated with only ADHD symptoms and internalizing problems 

respectively. This indicates that there are also specific genetic factors that are associated with 

educational attainment and ADHD symptoms, and with neuroticism and internalizing problems, 

which are not shared with the other childhood traits. This is despite the fact that we observed 

modest correlations between the childhood traits (Figure 2).  

These findings highlight the importance of both general and unique genetic factors to the 

understanding of psychiatric aetiology. Moreover, these results also suggest that many of the 

previously detected genetic associations between childhood traits and PGS of adult depression-

related traits may be the result of their genetic correlations with depression. An exception was 
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neuroticism PGS, which were still associated with internalizing symptoms. Additionally, we observed 

no associations between bipolar disorder and childhood psychopathology, despite the fact that 

bipolar disorder also shows moderate genetic correlations with major depression 98. This may be due 

to a lack of power in the bipolar disorder discovery GWAS.  

We showed that the use of multivariate methodology is important in furthering our understanding 

of genetic mechanisms underlying psychopathology across childhood and adulthood, but also 

associations between childhood psychopathology traits and functional outcomes in adulthood. 

Importantly, genetic risk for depression appeared to be linked to a myriad of childhood 

psychopathology traits, suggesting shared heritability across development. While this is perhaps 

expected for associations with internalizing problems, observed cross-disorder associations between 

major depression PGS and ADHD and social problems have implications for trans-diagnostic 

continuity across development. It contests the view of psychiatric traits or disorders as enduring 

discreet conditions, and raises clinically important questions as to the validity of distinct diagnostic 

boundaries. The observed substantial phenotypic correlations between the childhood traits may hint 

at symptom overlap, while non-specific associations with depression suggest shared genetic risk for 

them. Neither of these are strongly supportive of categorical classifications of psychopathology.  

The observed associations may also be indicative of a causal association between childhood 

measures and depression in adulthood, which warrants future analyses of causality. The 

independent effect of neuroticism PGS on internalizing problems, on top of the effect of PGS for 

major depression is also interesting in this regard. It could be speculated that the measurement of 

internalizing problems in childhood is more reflective of a trait of emotional instability just like 

neuroticism, than of a depressive state like major depression. Furthermore, in conceptualizing causal 

factors underlying comorbidity between childhood psychopathology, negative emotionality (also 

known as neuroticism) has been proposed to be a common feature underlying all childhood 

psychopathology 23, 264. Interestingly we only observe associations between neuroticism PGS and 

internalizing problems. However the nature of PGS is such that the variance that they explain is very 

small. This means that it is likely/certain that associations observed do not reflect the total genetic 

overlap between neuroticism and childhood psychopathology. Replication of this result with PGS 

from larger GWAS are necessary.  

Our findings regarding educational attainment and BMI replicate well established findings for 

genetic overlap between reduced educational attainment and ADHD symptoms in childhood 92, 211, 

212, as well as for BMI and childhood psychopathology, particularly ADHD 98, 143. Genetic analyses of 

causal mechanisms between ADHD and BMI have so far been inconclusive, with evidence of 
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causality in both directions 265-267. Analyses of causality between ADHD and educational attainment 

are fewer still, with one study showing evidence of bidirectional causal associations 268. We add to 

the growing body of literature supporting associations between genetic risk for psychopathology, 

and health and sociodemographic outcomes in later life. The effect sizes reported were generally 

quite small which perhaps suggest that interpretations of our findings should be made cautiously. 

Nevertheless, more studies with a focus on causality are crucial, as knowledge of causal mechanisms 

may eventually inform clinical interventions, as well as risk for adverse effects of functional 

outcomes in the long-term.  

Our study had some limitations. PGS analyses have been shown to include the effects of passive 

gene-environment correlation – an association between a child’s genotype and familial environment 

as result of parents providing environments that are influenced by their own genotypes 137, which 

are unaccounted for in the present study and may have affected our findings. Secondly, while PGS 

involve aggregating the effects of many trait-associated variants, they are not informative about 

which specific genetic variants drive the observed associations and further fine-mapping and variant 

prioritization analyses are required to shed more light on this. Further, the small proportion of 

variance explained by the PGS means that they are currently unable to be used clinically. However, 

the aim of the current study was primarily to investigate the underlying genetic architecture. Finally, 

the case samples from the major depression GWAS used to construct the PGS in the current study 

were ascertained using minimal phenotyping. Minimal phenotyping involves leveraging information 

from sources including hospital registers, self-reported symptoms, help seeking, or medication, in 

order to maximise statistical power to detect genetic variants. Major depression defined through 

minimal phenotyping has been shown to have different genetic architecture from strictly/clinically 

defined major depressive disorder (MDD), with genetic loci that are not specific to MDD 269. 

Therefore, our findings regarding major depression may be a function of the non-specific nature of 

genetic factors associated with minimally phenotyped depression. However, major depression 

defined in this manner shows strong correlation with MDD, as well as good PGS-based prediction of 

MDD in independent samples 51, 269. Nevertheless, similar analyses using clinical measures of MDD 

are important to further confirm our findings.  

Results from this study show differential genetic associations between childhood psychopathology 

and adult depression and related traits, which may be suggestive of both shared and unique genetic 

factors underlying these associations. Future studies combining multivariate methodology with 

molecular data should focus on further unravelling these effects not just for psychopathology traits, 

but also associated functional and non-psychiatric outcomes such as educational attainment, and 

BMI.  
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In preparation as: Tate, A.*, Akingbuwa, W. A.*, Hammerschlag, A. R., van Beijsterveldt, C., 

Pool, R., Lichtenstein, P., … & Bartels, M. A Genetically Informed Prediction Model for Self-

Harm & Aggression in Teens. 

*shared first author 

**Supplementary materials accessible at 

https://drive.google.com/drive/folders/1qnSiHRqPQP4tkiEZS3OsA5zlOKNmMc25?usp=sharin

g  

https://drive.google.com/drive/folders/1qnSiHRqPQP4tkiEZS3OsA5zlOKNmMc25?usp=sharing
https://drive.google.com/drive/folders/1qnSiHRqPQP4tkiEZS3OsA5zlOKNmMc25?usp=sharing


Chapter 5 

65 
 

ABSTRACT 

Self-harm and aggressive behaviours cause significant personal and societal burden. They are linked 

to a myriad of adverse outcomes in later life, making prediction of these behaviours an important 

endeavour. The current study aimed to create a model to predict self-harm and aggressive 

behaviours in late adolescence. Our data featured a training sample of 5,990 twins from the Child 

and Adolescent Twin Study in Sweden (CATSS) and an external validation sample of 1,975 individuals 

from the Netherland Twin Register (NTR). Using a combination of genetic, environmental, and 

psychosocial predictors derived from parental and self-report data we created a stacked ensemble 

model that contained a gradient boosted machine, random forest, elastic net, and a neural network, 

Model performance was assessed using area under the receiver operating characteristic curve 

(AUC). The neural network model was ultimately not included in the ensemble model. Model 

performance was uniform between the datasets (train set 0.981 [0.995 – 0.965]; tune set 0.683 

[0.624 – 0.731]; test set 0.663 [0.616 – 0.721]; NTR data 0.729 [0.703 – 0.761] ), suggesting 

generalizability in population-based samples across Northern Europe. Additionally, we evaluated 

variable importance of the predictors in the gradient boosted machines and random forest models 

which showed that aggression in mid-adolescence, as well as genetic risk for psychiatric traits 

indexed by polygenic scores were most important to the model.  

Ultimately, our model would not be suitable for clinical use. However we improved on the 

performance of current prediction models that predict self-harm and aggression as well as show that 

genetic variables may have a role to play in predictive models of adolescent psychopathology.  
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INTRODUCTION 

Aggressive behaviour and self-harm behaviours, with or without suicidal intent, cause significant 

disruptions on a personal and societal level 270-272. Although both behaviors are often seen as separate 

constructs, there is evidence for an intrinsic link 273-275. Many overlapping risk factors for these 

behaviours have been implicated across psychological symptoms, and home environmental factors 

276. Self-harm and aggression have been shown to be associated with internalizing symptoms such as 

depression, substance abuse, family dysfunction, neglect, abuse and maltreatment amidst a myriad 

of risk factors 276-280. However, sex is a major distinguishing risk factor as females are more likely to 

report self-harm while men have higher instances of aggressive behaviour and criminal acts 281, 282. 

Given their severity and enmeshment, it is of interest to create a model that can determine who is 

most likely to self-harm or exhibit aggressive behaviour.  

Overlap between self-harm and aggression 

Impulsivity is a common thread between the co-occurrence of aggressive behaviour and self-harm 283, 

284. For example, individuals with emotional dysregulation, i.e. an inability to regulate emotional 

intensity combined with impulsive and maladaptive behaviour to escape unwanted feelings, are at the 

greatest risk for intentional self-harm, and spontaneous aggression 285-289. This is observed in 

psychiatric disorders such as attention-deficit hyperactivity disorder (ADHD) and borderline 

personality disorder 290-293. Thus, certain traits may suggest a tendency towards impulsive-aggressive 

behaviour in a subset of individuals. In other words, the inability to control their behaviour in response 

to extreme, irritable emotions leaves both themselves and others at risk for victimization and harm. 

Additionally, there is evidence for genetic influence on self-harm and aggressive behaviours 294-296, 

though little is known regarding genetic overlap between them. 

Predicting self-harm and aggressive behaviour 

Many studies have looked into predicting suicide or aggressive behaviour. While many models exist 

for prediction of suicide behaviours in the clinical population, there are relatively fewer studies which 

examine self-harm in population-based samples 297, 298. Additionally, while research in forensic 

psychology has worked to predict recidivism and violent criminal behaviour in general 299-301, specific 

prediction of aggression is less common. Moreover, only a handful of studies using a clinical 

population have examined these interlinked behaviours together as an outcome 302, 303. Therefore, it 

is of interest to create a prediction model that combines aggressive behaviours, and self-harm based 

on a large scale, epidemiological sample. A combination of genetic, environmental, and psychosocial 

factors obtained from epidemiological cohorts would theoretically allow for a highly generalizable, 
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comprehensive model that could further inform future models for clinical prediction and decision-

making.  

Polygenic scores (PGS), which represent an aggregate score of an individual’s genetic risk for a trait 

based on effect sizes from genome-wide association studies (GWAS), can be used to measure genetic 

overlap between traits 304. As genetic associations have been reported between self-harm behaviours 

and psychiatric traits like anxiety, depression, schizophrenia and subjective well-being 294, as well as 

between aggression and psychiatric traits including ADHD  autism spectrum disorder (ASD), well-

being, and neuroticism 296,  incorporating genetic risk factors like PGS may add information that 

improves prediction.  

Thus, our goal is to create a binary model that can predict who will have intentionally self-harmed, 

and/or show high levels of aggression when individuals are 18 years old. While aggressive behaviour 

tends to be childhood- and adolescent-limited, there is a subset of individuals for who aggressive 

behaviour persists into adulthood. This trajectory is associated with poorer outcomes in adulthood 305. 

Thus identifying those who remain aggressive at late adolescence or older may identify those who will 

remain aggressive throughout their lifetime 306. Additionally, given the significant overlap between 

risk factors and instances of co-occurrence, combining aggression and self-harm as an outcome for a 

tool to identify high-risk individuals may have a knock-on effect for reducing the likelihood of either 

behaviour.  
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METHODS 

Participants 

A total of 9,433 participants from population-based twin cohorts, who completed self-report 

questionnaires about self-harm, suicidal ideation and aggression between ages 17 and 21 were 

included in this study. Our sample comprised of 6,669 participants from the Child and Adolescent Twin 

Study in Sweden (CATSS) 307 and 2,764 participants from the Netherlands Twin Register (NTR) 308. 

Further cohort descriptions are provided in the Supplementary text.  

Measures 

CATSS: Aggression  and self-harm was measured using the Life History of Aggression Checklist 309. A 

score of 15 out of a possible 40 was used as a cut-off for determining aggression cases 309. Self-harm 

was determined using two binary questions, “Deliberately attempted to injure yourself physically 

when you were angry or despondent” and  “Deliberately attempted to kill yourself when you were 

angry or despondent”. Participants who endorsed either question were classified as self-harming. 

We included 19 predictors collected at age 9 or 12 (first wave) and 15 (second wave) which included 

psychiatric symptoms, parent and child relationship characteristics, as well as substance use were 

derived from the Autism Tics ADHD and other Comorbidities (ATAC) 219, Statin Child Monitoring (SCM) 

310, Strengths and Difficulties Questionnaire (SDQ) 311, Parent Child Relationship Inventory 312, the 

Reactive-Proactive Aggression Questionnaire respectively 313 and self-reported drug and alcohol use. 

These variables were continuous or naturally binary, e.g. sex or lifetime history of trying marijuana, 

thus no cut-offs were used for any of the predictors. A full list of variables used can be found in 

Supplementary Table 1. 

NTR: Aggression and self-harm were measured using the Young Adult Self Report (YASR) and Adult 

Self Report (ASR) of the Achenbach System of Empirically Based Assessment (ASEBA) 314. The 

aggression cut-off was derived using a T-score cut off of 64 from their respective aggressive behaviour 

subscales 314, which was equivalent to the 91.24% percentile of the NTR sample. Self-harm/suicidal 

ideation was measured using two related items from the internalizing problems subscales (“I 

deliberately try to hurt or kill myself”) and (“I think about killing myself”), where items were rated 0 

(Not at all/Never/Not true), 1 (Somewhat true/Sometimes true) or 2 (Very true/Often true) by 

participants. Participants were classed as having the self-harm outcome if they rated either item 

anything other than 0. 
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The predictors, collected at age 12 (first wave) and 16 (second wave), were derived from demographic 

information, as well as the Child Behaviour Checklist (CBCL) and Youth Self Report (YSR) 222. Similar to 

CATSS, variables were kept continuous when possible and no cut-offs were used to create the 

predictors. 

Polygenic scores  

Polygenic scores (PGS) were constructed using summary data from recent GWAS. A complete list of 

traits, and associated GWAS on which PGS are based can be found in Supplementary Table 2. Leave-

out summary statistics excluding CATSS and/or NTR data samples were generated for any traits for 

which they were included in the discovery GWAS. Analyses were limited to individuals of European 

ancestry. Genotyping and quality control were performed in both samples and are described in the 

Supplementary text.  

PGS were derived using LDpred, which accounts for the linkage disequilibrium between single 

nucleotide polymorphisms (SNPs) to avoid inflation of effect sizes 217. LDpred requires the specification 

of prior probabilities which correspond to the fraction of SNPs from the discovery samples considered 

causal with the trait, and we created scores at a range of priors (0.01, 0.1, 0.3, 0.5, 1). Typically, the 

prior with the strongest association with an outcome is selected for subsequent prediction. However 

this can vary depending on the trait the PGS is based on and the outcome being investigated, and may 

also lead to type 1 errors if multiple testing is unaccounted for. In order to reduce the complexity 

inherent in having multiple PGS predictors and outcome variables, we performed principal component 

analysis (PCA) on all priors for each trait PGS, and included the first principal component (PCA-PGS) 

for each trait in our model according to Coombes, et al. 315. PCA analysis is an unsupervised machine 

learning technique which reduces the dimensionality of datasets while maintaining as much variability 

as possible; the resulting principal components (PCs) represent a certain amount of variation within 

the dataset. The first PC can be interpreted to represent the most variation within the data 316. This 

method has been shown to prevent overfitting each PGS to each outcome and removes the need to 

select a single prior across all PGS 315. We subsequently created a genetic general psychopathology 

score 317 by performing PCA analysis on the PCA-PGS scores related to mental health.  

Data Pre-processing 

All analysis were performed in R. First, all predictor variables, except for our binary variable sex, were 

scaled in each cohort order to account for variations in measurement tools. Participants with more 

than half of variables missing were removed from the analysis (Figure 1). This was done for two 

reasons: first, although a standard strategy is to maximize the number of data points this may not be 
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the best approach when considering data quality, and a model can only be as good as the data 

included. Secondly, we used K-nearest neighbours for imputation, which requires a certain number of 

complete cases, as the full dataset did not adequately provide the correct ratio between participants 

with missing data and complete cases, removing those with more than half the data missing provided 

us with a suitable ratio. 

Next, PCA analysis was completed on the entire CATSS dataset to determine the distances between 

those who were classified as aggressive and/or self-harming  as well as to identify outliers  318. Outliers 

were determined through the first principal component, participants with values that fell outside of 

the four quartiles were removed. This process was repeated separately in the NTR dataset. 

Next, CATSS was broken down into a training set, a tuning set, and a test set based on an 80/10/10 

split. As twins are more similar to each other compared to other participants, we stratified based on 

family number in order to prevent overfitting that could occur from twin pairs being separated 

between the data subsets. Additionally, we stratified on the outcome to ensure that the outcome 

proportion was balanced across the data subsets. Descriptive statistics were checked to determine 

the consistency of the split. The NTR dataset was used as an external validation set to determine the 

generalizability of the model across Northern Europe, and was thus not split in this manner. 

Missing predictor data was imputed using K-nearest neighbours, a k of 6 was chosen by finding the 

square root of the number of columns in our dataset  319. In order to avoid bias during this step, the 

test set as well as the external validation data were imputed separately. The outcome variable was 

not included as an informative imputation variable. As PCA analysis requires complete cases, we 

wanted to ensure that there were no outliers in those with missing data that did not have complete 

cases. Therefore, we completed another check for outliers in the imputed datasets to capture outliers. 

This was repeated separately in the NTR data and test set. This led to a total sample size of 7,965 

participants (N training set = 4,779; N tuning set = 594; N test set = 617; N Dutch data = 1975) (Figure 

1). 
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Figure 1. Flow chart of data set creation 

 

* Principal component analysis (PCA) was completed separately for CATSS and NTR. Participants with a 1st 
principal component (PC) score outside the first four quartiles were used to determine outlier status. 

**3 separate PCA analyses were completed: combined train and tune set, test set, and NTR.  

Abbreviations: CATSS = Child and Adolescent Twin Study of Sweden;  NTR = Netherlands Twin Register 

 

 

 



Chapter 5 

72 
 

Statistical Analysis 

Main Analysis 

R package H2O 320 was used for all supervised machine learning analyses. Model performance was 

determined by area under the receiver operating characteristic curve (AUC), with the threshold 

determined by the optimal F1 threshold. This is the threshold where sensitivity and specificity are 

balanced at their highest point. AUC is a popular measure of predictive accuracy with values ranging 

from 0.5 (random guess), to 1.0 (perfect prediction). A generally accepted heuristic for prediction 

using AUC is that an AUC > 0.9 suggests excellent model prediction, 0.8-0.9 is good, 0.7-0.8 is fair, and 

<0.7 is poor 321. However, this rule of thumb is context specific and an AUC above 0.95 is desirable for 

medical use. During the model creation process, each model was trained using the training set and 

the tune set was used to evaluate performance at each iteration. Neither the test set nor the external 

validation set (the NTR dataset) were used during this process. 

First, as our dataset had an imbalance between those with and without an outcome, we added weights 

to the training set to improve the positive predictive performance of the model 322. A weight of 3 for 

those with an outcome and a weight of 1 for those without an outcome was determined by taking the 

number of the majority class over the minority class. This means that during the learning process each 

model resampled individuals in the training set with an outcome three times, while those without an 

outcome were not resampled. 

We created a stacked ensemble model, i.e. a model which combines input predictions from separate 

models, that contained a gradient boosted machine (GBM), random forest (RF), elastic net, and a 

neural network (NN) 323. These models were selected based on their availability in H2O. Each model 

was trained separately using cross validation (CV) with 3 folds in the training set until the AUC did not 

improve by 0.0001 for five rounds based on performance within the CV folds. The model was then put 

to the tuning test to determine if the model training process should continue. A combination of grid 

search and random search was used to tune the hyper-parameters of each model (Supplementary 

Tables 3 – 6). Scaled variable importance scores were obtained from our tree-based models GBM and 

RF, with the overall variable importance rankings determined using the average of scores across both 

models. The variable importance in models built with H2O can be interpreted as the improvement in 

the squared error when the feature is split on a node 320. As these scores were calculated during the 

learning process these values are solely based on the training set. These values were then scaled for 

ease of interpretation. 
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Once each of the 6 models reached satisfactory performance in the tune set, the models were 

combined into a stacked ensemble model, and tested on the test and the NTR data. The model was 

not modified after this step. 

In order to account for population stratification, we also included the first five genetic PCs as 

predictors in our model. 

Sensitivity analysis  

To determine the stability of the variable importance for the model we trained a GBM and RF using 

the NTR data. For these analyses we used the same analysis process and range of parameters as the 

main analysis. However, no validation set was created so the data was split based on an 80/20 split 

stratified by family ID as well as the outcomes. The test set was reserved until a satisfactory 

performance was found for each model based on the performance of each cross-validation fold. 
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RESULTS 

Descriptive Statistics 

The data was well balanced between the training, tune, and test set (Table 1). The age of the sample 

at the measurement of the outcomes ranged from 17 to 21. The percentage of those with aggression 

or self-harm varied between the CATSS and NTR data sets. While the CATSS data had a much higher 

proportion of individuals who reported self-harm (CATSS = 12.94%; NTR = 2.38%), the NTR data had 

an increased proportion of individuals who were classified as aggressive (CATSS = 7.46%; NTR = 

14.53%). The final proportion of individuals with aggression in the NTR does not correspond to the 

previously described T-score percentile because the T-score percentile was based on the total NTR 

sample while the final proportion is based on the sample after data cleaning. Overall, 25.19% of 

individuals in the CATSS data set were classed to have endorsed the outcome, compared to 18.78% in 

the NTR data set. PCA analysis did not show a clear distinction between individuals with and without 

the outcome (Supplementary Figure 1).  

We further investigated the discrepancy in the self-harm outcome by performing a logistic regression 

where self-harm was regressed on cohort and measurement year. We observed a significant positive 

association with measurement year with the NTR showing increased endorsement of self-harm items 

with time (β, 0.063; SE, 0.015; P = 2.41 × 10−05), and a significant negative association with cohort (β, -

1.561; SE, 0.165; P < 2.00 × 10−16). This may be a combination of differences in the start of data 

collection for both cohorts (1987 in the NTR and 2004 in CATSS) as well as differences in the wording 

of the questions across both cohorts, and may indicate that the higher rate observed in CATSS could 

be partly due to the later year of measurement.  

Table 1. Descriptive statistics for all datasets 

Description N  
(% Female) 

N Outcome (%) Self-Harm Aggression Both 

Total data 7,965 (59.38%) 1,880 (23.60%) 822 (10.32%) 734 (9.22%) 324 (4.07%) 

NTR 1,975 (69.06 %) 371 (18.78%) 47 (2.38%) 287 (14.53%) 37 (1.87%) 

CATSS  5,990 (56.19%) 1,509 (25.19%) 775 (12.94%) 447 (7.46%) 287 (4.79%) 

Training set  4,779 (56.02%) 3,551 (25.7%) 617 (12.91%) 375 (7.85%) 236 (4.94%) 

Tune set 594 (56.06%) 143 (24.07%) 83 (13.97%) 30 (5.05%) 30 (5.05%) 

Test set 617 (57.70%) 479 (23.79%) 75 (11.65%) 42 (7.49%) 21 (4.66%) 
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Model Performance 

Ultimately, three models were included in the ensemble model: GBM (AUC [1000 bootstrap, 95% CIs]; 

train set 0.868 [0.837– 0.870]; tune set 0.661 [0.601 – 0.861]), RF (train set 1.000 [1.000 – 1.000]; tune 

set 0.676 [0.622 – 0.724]), and elastic net (train set 0.683 [0.630 – 0.728]; tune set 0.682 [0.664 – 

0.700]). The neural network model (train set 1.000 [1.000 – 1.000]; tune set 0.606 [0.564 – 0.669]) did 

not have a suitable performance. Overall the model performance for the ensemble model was uniform 

between the datasets (train set 0.981 [0.995 – 0.965]; tune set 0.683 [0.624 – 0.731]; test set 0.663 

[0.616 – 0.721]; NTR data 0.729 [0.703 – 0.761] )  (Figure 2).  For each dataset the positive predictive 

value (PPV) was lower than the negative predictive value (NPV) (Train set PPV = 56.3%, NPV = 99.9%; 

Tune set PPV = 33.9%, NPV = 87.3%: Test set PPV = 28.9% NPV = 84.6%; NTR data PPV = 26.6%, NPV = 

91.4%) (See Supplementary Table 7 for breakdown based on NTR data). Based on a threshold of 0.219 

determined by the maximum F1 statistic, the sensitivity (train set = 0.998; tune set = 0.755; test set = 

0.667; NTR data = 0.801) and specificity (train set = 0.732; tune set = 0.532; test set = 0.528; NTR data 

= 0.489) of the models varied extensively.  

Figure 2. ROC curves for each data set 

 

Note: Training set AUC (95% CI) = 0.981 (0.995 – 0.965); Tune set =  0.663 (0.616 – 0.721); Test set = 0.729 (0.703 
– 0.761); Netherlands Twin Register (NTR) = 0.729 (0.703 – 0.761) 
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Variable Importance 

Importance rankings across GBM and RF were inconsistent, although aggression at age 15/16 was 

ranked as most informative overall, followed by PGS of psychiatric traits, and then internalizing 

problems at age 15/16. Although confidence intervals overlapped across both models, RF was the 

better performing model and generally rated self-reported psychopathology symptoms at age 15/16 

as the most informative, compared to PGS variables, parent reported symptoms at age 9/12, and 

environmental variables. On the other hand, aggressive symptoms at age 15/16 as well as various PGS 

variables were rated highest by GBM (Figure 3, Supplementary Table 8).  

Figure 3. Scaled variable importance for the top 25 scores  

 



Chapter 5 

77 
 

Variable Importance represents the reduction in mean squared error when the variable was split on a node. 
Abbreviations: w1 = Measured at wave 1; w2 = Measured at wave 2; PGS = Polygenic score; PC = Principal 
component 

Gradient Boosted Machines (GBM) Final AUC [1000 bootstrap, 95% CIs] train set: 0.868 [0.837– 0.870];  

GBM Final AUC tune set: 0.661 [0.601 – 0.861] 

Random Forest (RF) Final AUC train set: 1.000 [1.000 – 1.000] 

RF Final AUC tune set: 0.676 [0.622 – 0.724]) 

Sensitivity analysis  

The sensitivity analysis showed an over reliance on self-reported aggression at age 15/16 for both the 

GBM and RF models (Supplementary Figure 2; Supplementary Table 9). Additionally, the model 

performance was poor on the combined CATSS data set for both the GBM (AUC [1000 bootstrap, 95% 

CIs]; NTR train set 0.937 [0.924 – 0.950]; NTR test set 0.758 [0.694– 0.817]; CATSS data 0.585 [0.568 – 

0.602] ) and RF model (NTR train set 0.932 [0.995 – 0.965]; NTR test set 0.727 0.653– 0.789]; CATSS 

data 0.598  [0.580 – 0.614]). 
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DISCUSSION 

In the current study we created a model to identify adolescents at a high risk of self-harm and/or 

aggressive behaviour, using a wide range of predictors including parental- and self-reported symptoms 

of psychopathology, behavioural measures, and genetic risk for different traits and psychiatric 

disorders. By training the model in the CATSS sample and validating it in the NTR sample, we tested 

the cross-cultural/external prediction of the model. Although the model  had a lower final AUC of 

0.663 in the CATSS test set, it performed satisfactorily in the NTR sample with a final AUC of 0.729, 

uniform with the CATSS training and tune set. A clinical cut-off of 80% for sensitivity and 50% for 

specificity has been previously proposed 324, and although the sensitivity (CATSS 0.667; NTR 0.801) and 

specificity (CATSS 0.528; NTR 0.489) was partially met in the samples, the performance across both 

metrics did not suffice in either dataset. However the model performance in the NTR suggests it is 

generalizable across national twin registers in the Netherlands and Sweden.  

While the specificity and sensitivity of the model remain independent of the sample size, the PPV (the 

probability of correctly predicting the presence of the outcome) and NPV (the probability of correctly 

predicting the absence of the outcome) are influenced by the absolute number of cases and non-

cases. Thus, we expected the PPV scores (CATSS 28.9%; NTR 26.6%) to be lower than the NPV scores 

(CATSS 84.6%; NTR 91.4%) for each of the datasets as the number of cases were relatively small 

compared to non-cases, i.e. class imbalance. The PPV scores indicate that the model was correct 29% 

and 27% of the time when it classified participants as having the outcome. This should be considered 

in the context of the true prevalence of the outcome which was 23.6% in the entire sample.  

Overall, our study shows comparable or marginally improved prediction compared to previous studies 

investigating both self-harm and aggression outcomes in clinical settings. A previous study which 

developed a clinical risk assessment implemented by psychologists for self-harm and aggression had 

an average AUC of 0.63 and 0.66 respectively 302. Another clinical study predicting self-harm and 

aggression in patients reported a PPV of 24% 303. Our model shows improved prediction and arguably 

provides a less time-intensive approach geared towards the general population, as we did not use a 

clinical sample nor data from clinical interviews. We also observed improved prediction when 

comparing our model to models examining only one of the outcomes, i.e. aggression OR self-harm but 

not both. For example, our model had improved performance when compared to a study examining 

aggression in a prison sample 325. Moreover, based on systematic reviews of studies conducted 

primarily in psychiatric populations and military veterans, our study improves upon the weighted AUC 

of 0.61 for self-injurious behaviour and a pooled PPV of 26.3% 297, 298, 326. Thus, our study shows 
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improvement compared to past models, and its usefulness in a clinical setting is worth testing to see 

if prediction improves.  

As we investigated a range of predictor types across many years, we were also interested in examining 

the predictiveness of key risk factor domains: home environment, genetic, behavioural, and 

psychiatric. Unfortunately the variable importance rankings for the GBM and RF models were 

somewhat inconsistent and did not paint a clear picture of which predictors could be considered most 

informative, though aggressive and internalizing symptoms at age 15/16, as well as PGS of psychiatric 

traits ranked highest on average. The high ranking of PGS of various traits may be indicative of genetic 

associations between the PGS and the outcome variables. In general, the variance explained from PGS 

of psychiatric traits are not high enough to be clinically relevant. Particularly, PGS of childhood 

psychopathology traits like ADHD and ASD are based on GWAS with relatively low sample sizes, and 

the variance explained will likely increase as GWAS become more powerful. These results support that 

an increase in power should be an important focus in the field of psychiatric genetics, as our results 

suggest that they are already more important than some other variables. Thus, while on their own 

PGS are currently not powerful enough to be clinically useful, our results suggest that they may 

provide additional information which improves prediction when combined with other variables/risk 

factors 327. Clinically, such prediction may be useful in selecting individuals at highest risk for a chronic 

course or non-response to treatment. Finally, the sensitivity analyses where the model was based on 

the NTR sample showed a similar trend to the RF model in the main analyses. Self-reported symptoms 

of psychopathology measured at the second wave were the most important predictors of the 

outcome. However this should be interpreted with care as this model heavily relied on aggression 

measured at the second wave (Supplementary Figure 2). This might be because the prevalence of 

aggression in the NTR data was much higher than self-harm. 

The strengths of this study include the diverse, longitudinal data across and the use of two 

international twin cohorts. Our study featured self and parental reported measures at multiple age 

points as well as genetic data in the form of PGS for many psychiatric disorders and other physical 

traits. Moreover, we were able to validate our model through an externally collected data source, 

which was able to provide evidence that the performance of the model was not driven by overfitting, 

i.e. the model closely fitting the training data as to not be generalizable to new data. However, our 

study comes with caveats. First, it is likely that our model would be improved by a larger sample size. 

Similarly, it is likely that additional variables related to emotional dysregulation and additional 

psychiatric symptoms would also increase our models performance. Thus, future studies which seek 

to create a model to predict self-harm and aggression in early adulthood should include more 
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predictors, especially during middle teenage years. As we only used self-reported predictors for this 

time point, it would also be of interest to also include parent or teacher reported predictors. Next, 

due to power concerns we do not distinguish self-harm with suicidal intent from self-harm without 

suicidal intent. This distinction may also be an interesting avenue for future research. Finally, our 

measure of self-harm were somewhat inconsistent across both cohorts, as the measure of self-harm 

in the NTR also included suicidal ideation. While self-harm and suicidal ideation are linked and highly 

correlated 294, 328, they are not exactly the same. 

Conclusions 

Our model improved upon previous prediction models examining aggression and self-harm. The 

results suggest that aggressive behaviour in mid-adolescence is a key indicator for later aggression 

and self-harm behaviours. This upholds previous literature that aggressive behaviour in childhood is 

an indicator for a higher risk of negative outcomes later in life 329-331. Additionally, internalizing 

problems in mid-adolescence as well as PGS of psychiatric traits were highly informative to the model. 

Future studies should investigate multiple raters, e.g. teachers, self, or parents, for questionnaires 

across each time point to examine whether the predictive importance of psychopathology in mid-

adolescence is a function of timing or rater. For example, previous studies have shown that patterns 

of co-occurence between childhood aggression and internalizing/externalizing problems were largely 

rater independent 332. However, SNP-based heritability estimates of self-rated aggression have been 

shown to be higher than maternal-rated aggression 296. Finally, additional work should be done 

distinguishing between the different classes i.e. multilevel models with aggression and self-harm as 

separate outcomes.  

As of now, by and large, machine learning models are not ready for clinical use in psychiatric clinics 

and our model is no different 273. However, we improve upon the performance of current prediction 

models that look at self-harm and aggression individually and provide a population-based model 

which combines the two.  

 

  



Chapter 6 

81 
 

Chapter 6: Ultra-rare, rare and common genetic variants implicate 

negative selection and neuronal processes in the aetiology of 

schizophrenia 
 

Under revision as: Akingbuwa, W. A., Hammerschlag, A. R., Bartels, M., Nivard, M. G.*, & 

Middeldorp, C. M.* (2021). Ultra-rare, rare, and common genetic variant analysis converge to 

implicate negative selection and neuronal processes in the aetiology of schizophrenia. 

 *shared last author 

**Supplementary materials accessible at https://doi.org/10.1101/2021.05.26.21257794   

https://doi.org/10.1101/2021.05.26.21257794


Chapter 6 

82 
 

ABSTRACT 

Both common and rare genetic variants (minor allele frequency > 1% and < 0.1% respectively) have 

been implicated in the aetiology of schizophrenia. In this study, we integrate single-cell gene 

expression data with publicly available Genome-Wide Association Study (GWAS) and exome 

sequenced data in order to investigate in parallel, the enrichment of common and (ultra-)rare 

variants related to schizophrenia in several functionally relevant gene sets. Four types of gene sets 

were constructed 1) protein-truncating variant (PTV)-intolerant (PI) genes 2) genes expressed in 

brain cell types and neurons ascertained from mouse and human brain tissue 3) genes defined by 

synaptic function and location and 4) intersection genes, i.e., PI genes that are expressed in the 

human and mouse brain cell gene sets. We show that common as well as (ultra-)rare schizophrenia-

associated variants are overrepresented in PI genes, in excitatory neurons from the prefrontal cortex 

and hippocampus, medium spiny neurons, and genes enriched for synaptic processes. We also 

observed stronger enrichment in the intersection genes. Our findings suggest that across the allele 

frequency spectrum, genes and genetic variants likely to be under stringent selection, and those 

expressed in particular brain cell types, are involved in the same biological pathways influencing the 

risk for schizophrenia.  
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INTRODUCTION 

Schizophrenia is a severe and highly heritable psychiatric disorder with onset in late adolescence or 

early adulthood. It is associated with early mortality and greatly reduced fertility 333, 334, which put 

selective pressure on genetic variants related to schizophrenia. Despite apparent negative selection, 

schizophrenia remains highly heritable, with a relatively high prevalence 335. Its severe clinical 

presentation and persistence despite negative selection make understanding the nature of the 

genetic effects on schizophrenia essential.  

There is abundant evidence that both common (minor allele frequency > 1%) and rare genetic 

variants are related to schizophrenia 336-338, with the effects of the variants inversely correlated to 

their frequency. Rare novel variants can have larger effect, while common variants can only persist 

in the presence of negative selection if their effects are small 339, 340. However, common variants, 

despite smaller individual effects, collectively explain a substantial proportion of the total genetic 

variance in schizophrenia 338, 341. The presence of negative selection results in extreme polygenicity 

where substantial portions of the genome carry variants with tiny individual effects on 

schizophrenia, yet only critical (core) genes when perturbed by an influential mutation would 

strongly impact the disorder 342.  

The genetic architecture of schizophrenia has forced two separate lines of enquiry into its genetic 

aetiology. Genome wide associations studies (GWAS) have successfully targeted common variant 

with small individual effects 54, 338, 343. Importantly, they have resulted in valuable leads for functional 

follow-up studies of individual loci. For example, in-depth study of the lead genome wide hit for SCZ 

in the Major Histocompatibility Complex (MHC) locus has implicated complement component 4 (C4) 

gene expression and possibly synaptic pruning in puberty in the aetiology of schizophrenia 344. While 

further analysis of the schizophrenia locus in the SLC39A8 gene implicated manganese (Mn) related 

brain phenotypes in the aetiology of schizophrenia 345.  

At the same time, whole exome sequencing (WES) has been used to identify rare mutations with 

larger effects. Since the variants of interest are rare, these studies require equally large samples. To 

reduce the multiple testing burden, early research has focused on specific classes of variants for 

which one can assume a deleterious (risk increasing) effect a-priori. Specifically, researchers have 

leveraged modest sample sizes by focusing on singleton (i.e. only observed once) variants in genes 

intolerant to mutations, that are predicted to be protein-truncating variants (PTVs) (i.e. disruptive 

and likely lead to loss of gene function). These variants and genes are the ones most likely to 

increase the risk of schizophrenia when perturbed by a mutation of consequence 336, 346-348. This has 
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been borne out by results from these studies, with a recent study implicating 10 genes in which 

ultra-rare variants are significantly associated with schizophrenia 336.  

These parallel lines of genetic inquiry based on different analytical strategies share a common goal: 

increased understanding of the neuro-biology of schizophrenia. Subsequently, functional genomic 

analyses are crucial for understanding the pathways and mechanisms via which these disorder-

associated genetic variants may act. Functional analyses of common variants from GWAS have 

implicated the brain and brain-expressed genes in the aetiology of schizophrenia 54, 338. WES studies, 

which make it possible to test for a burden of rare variants across shared functional units such as 

genes or gene sets, have similarly implicated the brain in schizophrenia aetiology 346, 347. More 

recently, high throughput single-cell RNA sequencing techniques, which are able to provide 

expression profiles of individual brain cells at greater resolution, have been developed. They allow 

prioritization of specific brain cell types associated with disorders or traits. Single-cell expression 

data of mouse and human brain cells reveal that disorder-associated common and rare variants are 

enriched in genes expressed in (excitatory) neurons more than in other (non-neuronal) brain cells 336, 

349, 350.  

In this preregistered study (https://osf.io/uyv2s ), we integrated single-cell gene expression data 

with results from GWAS and exome sequenced data in order to investigate, in parallel, the 

enrichment of common and (ultra-)rare variants related to schizophrenia in specific brain cell types. 

We investigated whether trait-associated common and (ultra-)rare variants were enriched in classes 

of genes that are functionally relevant for schizophrenia. These included sets of genes expressed in 

different brain cell types and neurons, as well as PTV-intolerant (PI) genes, i.e. genes under stringent 

selection. As synaptic functions have previously been implicated in the aetiology of schizophrenia, 

we included gene sets based on synaptic processes and composition. Finally, we investigated gene 

sets made up of the intersection of PI genes and the brain expressed genes (i.e. PI genes that are 

expressed in the brain) as these are potentially smaller gene sets rich in genes related to the biology 

of schizophrenia and therefore of considerable value in follow-up analysis, if proven relevant. By 

synchronizing the functional analyses across common and rare variants, the current study attempts 

to answer two questions: 1) Do common and (ultra-)rare variant gene set and cell type enrichment 

analyses converge to similar results for schizophrenia and if so, 2) What gene sets are implicated 

across both (ultra-)rare and common variant analyses? The current analyses may shed light on 

whether common and (ultra-)rare variants reveal unique aspects of the aetiology of schizophrenia, 

or implicate the same pathways.   

https://osf.io/uyv2s
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METHODS 

Data and sources 

GWAS data  

To identify gene sets enriched for common variants, we obtained summary data from large publicly 

available GWAS results of schizophrenia in individuals of European ancestry 54, as well as those of 

East Asian ancestry 341.  

Exome sequencing data 

To identify gene sets enriched for (ultra-)rare variants, we obtained genotype and phenotype data 

from the Swedish Schizophrenia Exome Sequencing Project 346, a case-control sample of 12380 

unrelated Swedish individuals. Cases primarily had diagnoses of schizophrenia, although a small 

proportion of individuals were diagnosed with bipolar disorder. See data availability for more 

information on this data set.  

Gene sets 

Protein-truncating variant (PTV)-intolerant (PI) genes were obtained from the Genome Aggregation 

Database (gnomAD), and ascertained using the probability of loss-of-function intolerance (pLI) 

metric. We selected genes with pLI > 0.9, producing a list of 3063 genes 351.  

Human brain cell gene sets were based on single-nucleus RNA-sequence (snRNA-seq) data generated 

on the Genotype-Tissue Expression (GTEx) project brain tissues 352. We included a total of 14 cell 

types as ascertained in the study referenced. Sources and processing of expression data are 

described there. Excluding sporadic genes and genes with low expression, for the 14 cell types we 

selected the top 1600 (roughly 15%) differentially expressed genes in each cell type, which likely 

cover all, or most, genes that have a vital function in a specific cell type.  

Mouse brain cell gene sets were based on data obtained from a previous study 350. Extensive 

description of sources and processing of expression data are described there. In that study, cells 

were assigned to level 1 classification, with subtypes of level 1 assigned as level 2 on the basis of 

single-cell RNA-sequence (scRNA-seq) data and clustering analyses. We focused our analyses on the 

24 level 1 gene sets. As the scRNA-seq data were from mouse brains, we mapped the gene homologs 

using the human-mouse homolog reference from Mouse Genome Informatics. Similar to the human 

brain gene sets, we selected the top 1600 differentially expressed genes in each cell type.  

Synaptic gene sets were selected based on synaptic gene ontology from the SynGo database 353, 

including gene sets defined by cellular component, i.e. the location in which the genes are active, or 
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by biological process, i.e. the synaptic processes/functions they influence. In order to ensure that 

gene sets were powered enough to detect significant effects, we selected only gene sets containing 

50 or more genes, resulting in a total of 35 gene sets.   

PI x brain cell gene sets contained the intersection genes that are PTV-intolerant and are present in 

each human and mouse brain cell gene set. Although the PI x brain cell type are smaller than either 

the PI-gene set or the brain cell type specific gene set, they are potentially more strongly enriched 

given the genes are (1) relevant to brain function and (2) under strong negative selection.  

In total 112 different gene sets were included in the analyses. All genes included in each gene set are 

available in Supplementary Table 1.  

Common variant analyses  

Common variant enrichment was evaluated using competitive analyses in MAGMA (v1.08b) 354. 

MAGMA is a commonly used program for gene and gene set analysis that applies the principles of 

linear regression. It works by first computing gene-level associations in which p-values for individuals 

SNPs around a gene are averaged, while taking linkage disequilibrium (LD) structure into account. LD 

is estimated using ancestry-appropriate reference panels for each population investigated. We used 

the European panel of 1000 Genomes Project phase 3 for LD estimation in the GWAS based on 

individuals of European ancestry, and the East Asian panel in the GWAS based on individuals of East 

Asian ancestry. Subsequently, gene-based p-values were converted to z scores to test associations 

between each gene set and schizophrenia diagnosis. For each GWAS summary dataset, we excluded 

SNPs with INFO <0.8, as well as duplicate SNPs. Gene location information with start and stop sites 

were obtained from the MAGMA website, with no windows specified around the genes.  

Rare variant analyses 

Analyses of exome sequenced data including QC was mainly performed using Hail 0.2 (Hail Team. 

Hail 0.2.62-84fa81b9ea3d. https://github.com/hail-is/hail/commit/84fa81b9ea3d). QC generally 

followed those described in a previous study 347, as well as those detailed here: 

https://astheeggeggs.github.io/BipEx/index.html. Full description, including variant annotation and 

(ultra-)rare variant definitions are provided in the Supplementary text.  

Gene set (association) analyses  

We assessed (ultra-)rare variant enrichment in each gene set using logistic regression, testing the 

association between the burden of (ultra-)rare variants, and schizophrenia diagnosis. Sex and 10 

genetic PCs were included as covariates in each set of analyses. We excluded individuals who were 

https://github.com/hail-is/hail/commit/84fa81b9ea3d
https://astheeggeggs.github.io/BipEx/index.html
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more than 4 median absolute deviations from the study specific median number of synonymous 

(ultra-)rare variants. The significance threshold was set to 5% false discovery rate in analyses across 

all gene sets per variant allele frequency.   

We deviated from the pre-registration outlined by omitting parallel analyses for autism spectrum 

disorder. As analyses of autism exome sequence data unexpectedly required considerably more 

processing than the schizophrenia dataset, publication of the current valuable results for 

schizophrenia would be unreasonably delayed. 
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RESULTS 

Common variants 

We used MAGMA to evaluate the enrichment of common schizophrenia-associated variants in PI 

genes, as well as genes expressed in brain cells and synapses. In the European sample, 

schizophrenia-associated common variants were strongly enriched in PI genes, as well as genes 

highly expressed in human brain cells. Enrichment in genes expressed in mouse brain cells was also 

present across the different cell types, but not to the same extent as the human brain cells. Across 

brain cell types, we observed higher association betas at the intersection of PI and brain cell 

expressed genes suggesting stronger enrichment, although confidence intervals were largely 

overlapping (Figure 1). Wider standard errors in these analyses likely reflect the loss of power from 

selecting only intersecting genes. Across the human brain cell types analysed, enrichment was 

strongest for genes expressed in excitatory neurons from the hippocampus (pyramidal and granule) 

and prefrontal cortex, as well as GABAergic interneurons and oligodendrocyte cells. In mouse brain 

cells enrichment was strongest in pyramidal cortical and hippocampal neurons, as well as medium 

spiny neurons (a type of GABAergic neuron). Again we observed more significantly enriched gene 

sets in the PI and mouse brain interaction gene sets, additionally implicating dopaminergic, and 

serotonergic neurons as well as interneurons. Finally, we observed significant enrichment in genes 

associated with synaptic processes. Common variants were most enriched in postsynaptic cellular 

components and biological processes. The standard errors for these associations were wide, likely 

due to the lower number of genes per gene set (Supplementary Figure 1). 

In analyses of individuals of East-Asian ancestry we observed a similar pattern of results as the in the 

analyses of European individuals, in that there was stronger enrichment at the intersection of PI and 

brain cell expressed genes. However, we only observed significant enrichment in four gene sets, 

including the PI gene set (Supplementary Figures 2 and 3). This may have been related to power as 

this GWAS had a smaller sample size.  
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Figure 1. Common variant enrichment in PI and brain cell gene sets. 

 

Red stars denote significant gene sets after multiple testing correction. ASC=astrocytes, 
exCA1/exCA3=pyramidal neurons from the Hippocampal Cornu Ammonis regions, exDG=granule neurons from 
the Hippocampal dentate gyrus region, exPFC1/exPFC2=pyramidal neurons from the prefrontal cortex, 
GABA1/GABA2=GABAergic interneurons. Although not included in the figure, the synaptic gene sets were 
included in multiple testing correction.  
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 (Ultra-)rare variants 

After QC, 10592 individuals (4623 cases and 5969 controls) were included in the ultra-rare variants 

analyses, while 10553 individuals (4603 cases and 5950 controls) were included in the rare variant 

analyses. The sample sizes were different across both sets of analyses due to the exclusion of 

individuals who were more than 4 median absolute deviations from the study specific median 

number of synonymous variants. We tested the association between the burden of rare (AF < 0.1%) 

or ultra-rare PTVs and schizophrenia diagnosis. Ultra-rare variants were those observed in 1 out of 

188,023 individuals (our sample + gnomAD + DiscovEHR). Schizophrenia cases had a significantly 

higher burden of both ultra-rare (β = 0.082, SE = 0.017, P = 2.79 x 10-6) and rare (β = 0.026, SE = 

0.007, P = 0.0004) PTVs compared to controls. As a negative control, burden scores for synonymous 

variants were computed, which were not significantly different between cases and controls for ultra-

rare (β = 0.013, SE = 0.009, P = 0.151) or rare (β = 0.0008, SE = 0.002, P = 0.718) variants.  

Next, we assessed (ultra-)rare variant enrichment in each gene set using logistic regression, testing 

the association between the burden of (ultra-)rare variants and schizophrenia diagnosis. Both rare 

and ultra-rare variants were significantly enriched in PI genes. Overall, there was greater enrichment 

of ultra-rare PTVs compared to rare PTVs across gene sets analysed. Similar to common variants, 

enrichment of rare and ultra-rare PTVs was greater at the intersection of PI genes and genes 

expressed in mouse and human brain cells (Figure 2), though in this case there was more enrichment 

of genes expressed in mouse brain cells compared to human brain cells. Across the brain cell types, 

enrichment was again strongest for genes expressed in excitatory neurons from the hippocampus 

and prefrontal cortex, as well as GABAergic interneurons, oligodendrocyte cells, and medium spiny 

neurons. We also observed enrichment in synaptic genes (Supplementary Figure 4). Complete 

regression results for PTVs and synonymous variants are described in Supplementary Tables 2 – 5.  
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Figure 2. (Ultra-)rare variant enrichment in PI and brain cell gene sets. 

 

Red stars denote significant gene sets after multiple testing correction. ASC=astrocytes, 
exCA1/exCA3=pyramidal neurons from the Hippocampal Cornu Ammonis regions, exDG=granule neurons from 
the Hippocampal dentate gyrus region, exPFC1/exPFC2=pyramidal neurons from the prefrontal cortex, 
GABA1/GABA2=GABAergic interneurons. Although not included in the figure, the synaptic gene sets were 
included in multiple testing correction. 
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Convergence of enrichment across allele frequency spectrum  

We investigated whether common and (ultra-)rare variants converged to similar results by rank 

correlating the association betas across the three allele frequencies for each gene set. We also 

evaluated overlapping gene set enrichment across the allele frequency spectrum. 

We observed moderate to high correlations of effect sizes across the three pairs of comparisons. 

Correlation estimates ranged from 0.515 to 0.740, and from 0.561 to 0.802 when weighted by the 

inverse of standard errors from each association estimate (weighting precise estimates more heavily 

than imprecise estimates when comparing across common and rare enrichment results) (Figures 3 – 

5). Additionally, 16 gene sets were significantly enriched across all three allele frequencies, 

implicating PI genes, medium spiny neurons, and pyramidal neurons from the mouse brain, as well 

as multiple intersection gene sets, across the allele frequency spectrum. 28 gene sets were 

significantly enriched across common and ultra-rare variants, 17 across rare and ultra-rare variants, 

and 16 across common and rare variants.  
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Figure 3. Correlation between gene set enrichment in common vs ultra-rare variants. 

 

Point sizes represent the weight assigned to each correlation estimate, obtained by calculating the inverse of 
the product of both standard errors. Correlation estimate is 0.537, while weighted correlation is 0.708. Labelled 
gene sets are significantly enriched across both common and rare variants 
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Figure 4. Correlation between gene set enrichment in rare vs ultra-rare variants. 

 

Point sizes represent the weight assigned to each correlation estimate, obtained by calculating the inverse of 
the product of both standard errors. Correlation estimate is 0.740, while weighted correlation is 0.802. Labelled 
gene sets are significantly enriched across both common and rare variants 
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Figure 5. Correlation between gene set enrichment in common vs rare variants. 

 

Point sizes represent the weight assigned to each correlation estimate, obtained by calculating the inverse of 
the product of both standard errors. Correlation estimate is 0.515, while weighted correlation is 0.561. Labelled 
gene sets are significantly enriched across both common and rare variants 
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DISCUSSION 

We used GWAS and whole exome analyses of schizophrenia to investigate whether common and 

(ultra-)rare PTV enrichment converge to similar results in terms of what gene sets are implicated 

across analyses. We observed partial convergence across the gene sets significantly enriched for 

common and (ultra-)rare variants, in that multiple gene sets were significantly enriched across all 

three variant classes. Enrichment analyses implicated mainly excitatory neurons from the prefrontal 

cortex and hippocampus, medium spiny neurons, and GABAergic neurons, as well as PI genes, 

synaptic components, and processes. Moreover, across all three allele frequencies, enrichment was 

stronger in the gene sets containing the intersection of brain cell types and PI genes compared to 

the brain cell gene sets. 

Brain cell enrichment findings are consistent with findings from previous analyses of both common 

and (ultra-)rare variants associated with schizophrenia 336, 338, 349, 350. Overlapping significant 

enrichment between ultra-rare and common variants provides additional evidence of some 

convergence in genes and biological mechanisms implicated by genetic variants across the allelic 

spectrum. Recent analyses showed significant enrichment of ultra-rare variants in genes implicated 

by schizophrenia GWAS, and that two genes implicated in rare variant analyses also showed 

associations in the schizophrenia GWAS 336. Additionally, we showed that genes likely to be under 

stringent selection (PI genes) are implicated in both common and (ultra-)rare variants, while 

stronger enrichment in the intersection of brain cell types and PI genes suggests that PI genes are 

generally important, but even more so in these cell types. These gene sets, particularly the 

intersection gene sets, potentially provide a manageable set of genes and biological processes to 

target for follow-up analyses.  

An important factor to consider in light of our and similar findings, is how much progress the results 

represent with regards to disease biology. Analyses of common variant cell-type enrichment support 

current distinctions between neurological disorders like Parkinson’s disease and Alzheimer’s disease, 

versus psychiatric disorders, as they have shown different association patterns. Parkinson’s disease 

has implicated cholinergic and monoaminergic neurons, Alzheimer’s disease has implicated 

microglial cells, while psychiatric disorders like schizophrenia have implicated excitatory neurons 349, 

355, 356. Findings across psychiatric disorders are less clear. Analyses of individual psychiatric disorders 

suggest similar patterns of cell-type associations for disorders including schizophrenia, bipolar 

disorder, MDD, and anorexia nervosa, although enrichment was generally strongest for 

schizophrenia 73, 349. However, analyses of psychiatric disorder factors have shown that common 

variant enrichment in excitatory and GABAergic genes from human brain cells is limited to a 
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psychotic disorder factor (comprised of schizophrenia and bipolar disorder), with no enrichment 

observed in compulsive (anorexia nervosa, obsessive compulsive disorder, Tourette syndrome), 

neurodevelopmental (attention deficit/hyperactivity disorder, autism spectrum disorder, post-

traumatic stress disorder, and MDD), or internalizing factors (post-traumatic stress disorder, MDD 

and anxiety disorders) 357. Importantly, similar neuronal enrichment has been observed for non-

psychiatric cognitive traits including intelligence, educational attainment, neuroticism, and body 

mass index (BMI), which show modest but robust genetic correlations with psychiatric disorders 

including schizophrenia 349, 358-360.  

These findings suggest that at the current resolution of analyses (expression differences between all 

cell types), common variant enrichment in genes predominantly expressed in neurons is non-specific 

and pervasive across various behavioural traits, although the lack of findings for most psychiatric 

disorders may also point to differences in statistical power across the GWAS. Future analyses, for 

example based on more comprehensive single-cell sequencing of all neuron subtypes, could identify 

genes that are specific to certain developmental stages in order to seek out cell types, cell functions 

or developmental phases that are specific to schizophrenia. Such analyses using whole-brain 

developmental expression profiles have shown enrichment of schizophrenia-associated common 

variants in the prefrontal cortex during early midfetal development 361. Limits on data availability 

currently make it difficult to investigate whether these similarities across various traits in common 

variant cell type enrichment translate to (ultra-)rare variant enrichment, and is a significant avenue 

for future research, although brain-expressed genes have also been found to be enriched for ultra-

rare variants associated with educational attainment 362. This is vital as the importance/contribution 

of variant classes along the allelic spectrum may vary depending on phenotype.  

Our study, as well as other results 336, 338, further suggest that polygenicity, where very many genetic 

loci are implicated in a disorder like schizophrenia, complicates the search for individual risk loci in 

both common and (ultra-)rare variant analyses. As gene set analyses are strongly correlated 

between GWAS and (ultra-)rare variant analysis, it is not unlikely that analyses at the level of the 

gene show similar correlations between common and (ultra)rare variants. Strong correlations at the 

level of the gene may call for meta-analysis across GWAS and rare variant studies, or more subtle 

information integration that accounts for both the weight of evidence, as well as the 

regions/features/functions of the gene that are influenced by rare or common variation.  

Our findings should be considered in light of some limitations. Firstly, our findings are limited by the 

current definitions of ultra-rare variants, and results might be subject to change if definitions change 

as more data becomes available. Secondly, our analyses are likely affected by the size of gene sets. 
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Larger gene sets likely have more power to detect effects compared to the smaller gene sets. This 

was particularly evident in the interaction and synaptic gene sets which had wide confidence 

intervals. Finally, our analyses were limited to individuals of European ancestry, making it not 

generalizable to individuals of other ancestry. Overall similar analyses typically contain limited non-

European samples, with non-European samples making up 20% of the most recent schizophrenia 

GWAS 338 and 26% of the most recent WES-based schizophrenia analyses 336.  

In conclusion, we show that there is at least partial overlap in the genes disrupted by both common 

and (ultra-)rare variants associated with schizophrenia suggesting involvement of the same 

biological mechanisms. Genes influencing neuronal processes as well as genes likely to be under 

stringent selection are implicated in schizophrenia aetiology across common and (ultra-)rare 

variants. Future studies integrating information across the allele frequency spectrum might prove 

useful in furthering our understanding of schizophrenia aetiology. 
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Chapter 7. Conclusion and general discussion of findings  
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Childhood and adolescence are important developmental stages that can set the tone for long-term 

outcomes across the lifespan. In particular, children with psychopathology have an increased risk of 

continued psychopathology in adulthood compared to the general population 5-9. Moreover, 

psychopathology in childhood has been repeatedly identified as a risk factor for other adverse health 

and socio-economic outcomes. Therefore an understanding of the genetic underpinnings of such 

traits could be crucial in identifying children most at risk of adverse outcomes, as well as in 

developing intervention or prevention strategies that may prove useful to them. Over the past 

decade, there has been major progress in the field of molecular and statistical genetics that 

facilitated research on the genetic aetiology of psychopathology and psychiatric traits. However, for 

various reasons, including availability of larger datasets and less developmental variance, the bulk of 

this research has been on adult traits. Therefore, we performed studies with the aim of investigating 

genetic mechanisms underlying the persistence of psychiatric traits in children and adolescents, as 

well as understanding how they develop into adulthood. By performing analyses across the allele 

frequency spectrum, we further investigated both common and rare genetic variants and their 

contribution to psychopathology. In this chapter I summarise the major findings from these studies 

as well as their implications and I discuss them in the context of other findings in the field. Finally, I 

discuss potential future research directions in childhood psychopathology and psychiatric genomics, 

informed by findings from the studies in the thesis.  

As with initial GWAS of adult traits, the first GWAS of childhood psychopathology traits did not 

identify any convincing trait-associated genetic variants as a result of small sample sizes. However, 

results from analyses of SNP-based heritability were low but promising, thus hinting at the possibility 

of eventually identifying trait-associated variants. Similarly, polygenic scores (PGS) which were 

initially developed to test the theory of polygenic inheritance, were able to predict the same trait in 

another sample even when based on GWAS with few or no significant hits. This further hinted at 

effects captured in common variants which could become significant with appropriately large 

sample sizes.  

By the start of my PhD in 2017, studies using various types of polygenic analyses had been 

performed for over a decade, with incremental improvements and findings with increased sample 

sizes in each new study. The systematic review performed in chapter 2 was born out of an interest in 

assessing how far the field had come with regards to findings on molecular genetic analyses of 

childhood psychopathology. Specifically, we were interested in the extent to which molecular and 

statistical genetic approaches could be used to explain development, stability, and comorbidity of 

childhood psychiatric traits. We showed that larger sample sizes facilitate the discovery of trait-

associated genetic variants, as well as provide evidence of heritability based on measured genetic 
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variants, known as SNP-based heritability. The review also showed that these SNP-heritability 

estimates are lower than estimates from twin studies, a known phenomenon across all traits GWAS 

called the “missing heritability” problem, which was already well known for adult psychopathology 

363. Finally, we observed abundant cross-trait associations across psychopathology traits, suggesting 

a role for pleiotropic genetic effects (where multiple traits are influenced by the same genetic 

variant) in the aetiology of psychopathology across development. On the whole this review showed 

that while substantial progress has been made regarding the genetics of childhood psychopathology, 

gaps in knowledge remain, and various avenues for research need to be exploited in order to further 

our understanding. These include analyses of causality, more inclusion of non-European populations 

in analyses, analyses of larger, phenotypically homogeneous samples, as well as integrating 

information from rare genetic variants in analyses. 

Concurrent with the review described in chapter 2, we were interested in the genetic underpinnings 

of observed phenotypic associations between psychopathology in childhood and adult mood 

disorders, and related functional outcomes. Building further on the findings described in the review, 

in chapter 3 we used polygenic scores (PGS) to investigate whether genetic risk for adult mood 

disorders and related traits are associated with childhood psychopathology. Combining childhood 

data from multiple longitudinal birth and population cohorts across Europe, we assembled the 

largest sample of a study of this kind (N=42,998), testing associations between PGS of adult major 

depression, bipolar disorder, neuroticism, insomnia, subjective wellbeing, educational attainment, 

and body mass index (BMI), and phenotypic measures of childhood attention-deficit/hyperactivity 

disorder (ADHD) symptoms, internalizing, and social problems. We showed a consistent pattern of 

mostly stable genetic associations between adult trait PGS and childhood psychopathology across 

age, indicating the existence of a set of genetic factors that influence psychopathology and related 

traits across the lifespan. Additionally, we showed differential associations between educational 

attainment and BMI PGS, and types of childhood psychopathology. Specifically, educational 

attainment PGS was only associated with ADHD symptoms, while BMI PGS was associated with 

ADHD symptoms and social problems but not internalizing problems. 

As both the adult and childhood traits investigated are genetically correlated, it raised the question 

of whether the ubiquitous genetic associations observed in chapter 3 are influenced by correlations 

between related traits. Thus, in chapter 4, we extended our previous analyses by performing 

multivariate multivariable regression analyses of all the traits from our previous study using 

OpenMx, which allowed us to account for correlations between the childhood traits and between 

the adult trait PGS. Again, we observed differential associations between educational attainment 

and BMI PGS, and childhood psychopathology, i.e. educational attainment PGS was associated with 
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ADHD symptoms, while BMI PGS was associated with ADHD symptoms and social problems. 

Crucially, previously observed associations between neuroticism, insomnia, and wellbeing PGS and 

childhood psychopathology measures were no longer present. Only major depression PGS remained 

associated with all three childhood psychopathology measures, suggesting that while shared genetic 

factors have a role in our understanding of psychopathology, unique genetic factors are likely also 

important. Additionally, neuroticism only remained associated with internalizing problems which 

might be indicative of shared item- or symptom-level measures of both traits.   

One of the major aims of studying psychopathology is prediction of who will eventually develop 

psychopathology. While genetics clearly play a role in psychiatric aetiology, non-

genetic/environmental variables also play a role and potentially represent modifiable risk factors for 

targeted intervention or prevention strategies. Unfortunately such factors are difficult to account for 

in typical molecular genetic studies. Prediction models represent one method of assessing the 

relative contribution of different variable types in the development of an outcome. We used this 

strategy in chapter 5, where we combined genetic and early life environmental and psychosocial 

variables in order to predict aggression and/or self-harm in late adolescence/early adulthood. 

Although as expected the model performance indicated it would not be suitable for clinical use, our 

results suggested that aggressive symptoms in mid-adolescence as well as PGS of psychiatric 

disorders were important predictors of aggression and/or self-harm. We also showed that a 

combination of different types of predictors, including both genetic, environmental and psychosocial 

factors, provided the best model for predicting our outcome. 

The analyses described so far largely involved common genetic variants (MAF > 1%) and their role in 

psychopathology. However, studies have shown that the contribution of rare variants is non-trivial. 

In chapter 6 we compared schizophrenia-associated common and (ultra-)rare variant enrichment in 

gene sets that are functionally relevant for schizophrenia. Our analyses implicated genes likely to be 

under stringent selection, as well as those expressed in excitatory and medium spiny neurons. 

Moreover, results showed partial convergence across common and (ultra-)rare variants, indicating 

that the same biological mechanisms are implicated across the allele frequency spectrum. While 

studying schizophrenia may represent a deviation from the childhood traits studied in previous 

chapters, it is one of few traits with appropriate data and statistical power for this kind of analysis 

and provides proof of concept for how analyses like these might be useful in childhood traits as well.  

General discussion and implications of findings 

Pervasive genetic overlap across psychopathology   
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One of the main findings from chapters 2, 3 and 4 is of pervasive genetic overlap amongst a variety 

of traits across age, indicating pleiotropy. Pleiotropy occurs when a single genetic variant or gene 

influences multiple phenotypes. These findings are consistent with numerous studies showing the 

existence of widespread pleiotropy across psychiatric traits in general, with a recent GWAS analysing 

over 500 traits including psychiatric traits finding that more than 60% of trait-associated genes were 

pleiotropic 364. In chapters 3 and 4, we show genetic associations between childhood 

psychopathology and multiple adult traits not restricted to psychiatric disorders/traits. These results 

have implications for the continuity of psychopathology across the lifespan, as well as showing that 

beyond psychopathology, genetics also underlie associations between childhood psychopathology 

and adult health and socio-economic status (SES) outcomes like BMI and educational attainment. 

Pleiotropy can be the result of multiple genetic mechanisms including horizontal pleiotropy – where 

a genetic variant has direct biological influence on multiple traits, and vertical pleiotropy – where a 

variant influences one trait and that trait has a causal effect on another 166, 365. While the polygenic 

analyses described in these chapters can provide insight into the genetic architecture of traits, they 

are not informative about the specific mechanism(s) of pleiotropy that might be at play. Yet this 

knowledge may be important to be able to use genetic information for future clinical applications. 

Additionally they are not able to indicate which specific variants or genome regions are responsible 

for the observed effects. One way in which such pleiotropic variants may be identified is via cross-

disorder GWAS meta-analyses. This method has been recently applied in joint analyses of disorders 

including anorexia nervosa, ADHD, ASD, bipolar disorder, major depression, obsessive compulsive 

disorder (OCD), schizophrenia, and Tourette’s syndrome (TS), performed by the Psychiatric 

Genomics Consortium’s Cross-Disorder Group (PGC-CDG) 97. Of the 146 genome-wide significant loci 

identified in this study, 109 (about 75%) were found to be pleiotropic, affecting two or more 

disorders, while 23 loci (about 16%) affected four or more disorders. The early-onset 

neurodevelopmental disorders including ASD, ADHD, and TS were implicated in 36%, 16%, and 14% 

of the pleiotropic loci respectively. The identification of these variants link the occurrence of 

pleiotropy to specific genetic variants, and represent an important step in understanding this 

phenomenon and its contribution/role in explaining psychopathology. 

Importantly, pleiotropy underlying cross-trait associations may have clinical implications. One of the 

most pertinent is the implication for current clinical boundaries on which diagnoses are based. 

Disorders are generally categorised as distinct syndromes based on the presence of specific 

symptoms as well as other indicators. However, the observation of widespread genetic overlap 

across different traits as shown by numerous studies raises questions as to the validity of current 

diagnostic classifications. While useful and practical, current research results indicate the need for a 
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different, more nuanced approach to current classification systems. Namely, one that is also 

informed by genetic aetiology, particularly with regards to disorders like depression where symptom 

profiles are highly heterogeneous across patients. For example, genetic information may be 

leveraged to better define more homogeneous disorder subtypes that better reflect underlying 

aetiology. Additionally, pleiotropy may have implications for drug development in that development 

of drugs targeting pleiotropic genes or loci might mean that these drug therapies are useful for 

treating a range of disorders. 

Shared and unique genetic factors likely underlie childhood psychopathology 

Observations of correlation, comorbidity, and pleiotropy, have fuelled a line of inquiry into the 

general factor of psychopathology, so-called p factor; the idea that psychopathology exists along a 

shared continuum and that a broad latent dimension captures variance across all psychopathology 

traits 164, 165, 366. Both phenotypic and genetic analyses of psychopathology have provided evidence 

for this phenomenon, with the p factor found to be associated with a range of psychopathology in 

childhood 164, 251. These findings further highlight the role of shared genetic factors to the 

architecture of childhood psychopathology. However, in chapter 4 we observed that while major 

depression was genetically associated with all childhood measures of psychopathology investigated, 

educational attainment, BMI, and neuroticism were genetically associated with specific childhood 

phenotypes. Further, the finding that major depression PGS remained associated with all three 

childhood psychopathology measures was interesting and suggests that previously observed 

associations of childhood psychopathology with adult trait PGS are influenced by their genetic 

correlations with depression, and that genetic factors influencing adult major depression are 

associated with childhood psychopathology over and above genetic factors influencing other 

outcomes. The results suggest that genetic variants associated with depression are important for all 

childhood psychopathology measures investigated. However, it would be interesting to know if 

other childhood psychopathology measures, for example externalizing traits, show this association 

with depression as well. Modest genetic correlations have been observed with childhood aggression 

for example 296. Furthermore, our findings highlight the importance of multivariate methods in 

building a more complete picture of genetic associations.  

Together, our findings suggest that a combination of shared and specific genetic factors may 

underlie childhood psychopathology and explain their genetic overlap with adult traits. This finding 

is in line with studies that show that while different psychopathology traits typically load unto a 

common factor, there is evidence of unique contributions as well 251. For example, in chapter 2 we 

describe a study that showed differential genetic and phenotypic associations between ADHD and 
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neurodevelopmental disorders, versus externalising or internalizing disorders, after accounting for 

the p factor 169, as well as another study that showed that while the p factor explained considerable 

variance in childhood psychopathology measures, inclusion of more specific emotional, behavioural 

and neurodevelopmental factors explained even more variance than just the p factor alone 367. 

Additionally, factor analyses of genetic covariance across psychiatric disorders suggest that three 97 

or four 357 correlated genetic factor models, including one characterised primarily by childhood-

onset neurodevelopmental disorders including ASD and ADHD, best explain genetic overlap between 

disorders. 

Prediction of psychopathology; PGS as clinically relevant risk factors  

A major aim of studying psychopathology is psychiatric risk prediction. Analyses of heritability has 

shown that while complex traits are influenced by genes, they also have substantial environmental 

components. Thus accurate prediction of psychopathology is unlikely to be achieved using only 

genetic information. In chapter 5 we showed that a combination of genetic, behavioural, 

environmental, and psychiatric variables predict aggression and self-harm behaviours in late 

adolescence/early adulthood. Importantly, we show that genetic predictors indexed via PGS provide 

important information for improving prediction, suggesting a potential role for them in the future as 

predictive risk factors.  

Genetic prediction of complex traits like psychiatric disorders is a potential avenue for clinical use of 

PGS, potentially allowing for early identification of risk, better characterization of psychopathology, 

and effective treatment. The use of PGS as clinical measures is attractive for many reasons. They are 

relatively easy to obtain, non-invasive, immutable, and the cost of generating them is getting 

cheaper as genotyping techniques also become cheaper. However, the predictive power of PGS does 

not appear clinically relevant as of yet. As observed in chapter 5, in our prediction model for self-

harm and aggressive behaviours where PGS of psychiatric disorders ranked highly, the overall model 

performance was only average. In chapter 3, we also observed that the best predictive PGS of adult 

traits explained <1% of the variance in childhood psychopathology. This is the result of many 

different factors, including that this particular analysis represented cross-trait predictions of traits at 

a different age, although as described in chapter 2, similarly low variance explained has been 

reported in studies performing within-trait prediction.  

Though the scale of GWAS has greatly improved over the last decade, adequate sample sizes are still 

lacking for most traits for GWAS to produce clinically useful PGS, with childhood traits particularly 

lagging behind until fairly recently 170, 296. Even then, large sample sizes have only been achieved for 

population-based samples, with polygenic scores in these studies explaining between 0.036% to 
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0.44% of phenotypic variance. It is possible that increased prediction might be achieved using a 

target sample with clinical diagnosis. Recent multivariable analyses showed that PGS of educational 

attainment and smoking initiation jointly explained up to 5.9% of variance when predicting case-

control status in a clinical psychiatric child and adolescent 368, higher than observed in other similar 

studies using population-based samples. The highest variance explained estimate from univariate 

analyses (3.99% for educational attainment) in the same study was also higher than in comparable 

analyses using larger population-based samples. However, large enough sample sizes are generally 

difficult to obtain for psychiatric disorders, and more so childhood psychiatric samples, given the 

relatively low prevalence of these disorders.  

Some of the most predictive PGS of complex traits include those for height and educational 

attainment, with the proportion of variance explained by each up to 24% and 13% respectively 369. 

While substantial, these estimates are still well off the estimates from twin and family based studies 

26. Moreover, there is evidence that these values might be optimistic, as recent studies have shown 

that indirect parental effects might influence PGS prediction. Non-inherited parental genes which 

influence the environments they select for their children (genetic nurture) has been shown to impact 

prediction in cognitive traits like intelligence and educational attainment 137, 370, 371, which are 

modestly correlated with many psychiatric traits. Although yet to be proven, this may also be the 

case for (childhood) psychiatric traits. 

So far, PGS of childhood psychiatric phenotypes, including ADHD and ASD, have been able to achieve 

group-level discrimination, i.e. distinguish cases from controls 38, 53, and schizophrenia PGS has been 

shown to be significantly higher in adolescents at high risk of psychosis who went on to develop 

psychosis 119. However, individual-level prediction is currently not feasible, and PGS are unlikely to 

ever be stand-alone predictors of disorders. Nevertheless, they remain a useful research tool to 

investigate genetic overlap in traits for which samples are not large enough to employ other 

methods. They have potential as biomarkers in psychiatry and could eventually be used in 

combination with other risk factors to improve disorder risk prediction 327, 372, as we do in chapter 5. 

Improving phenotyping in order to decrease the heterogeneity of samples included in GWAS, as well 

as increasing GWAS sample sizes are some of the most viable avenues of improving their predictive 

ability. Unfortunately, there is a lack of large clinical samples of childhood psychiatric traits 

compared to population-based or adult samples; which remains a stumbling block for improving PGS 

prediction and further assessing their clinical utility. Prediction based on GWAS of population-based 

samples is unlikely to ever be precise enough for stand-alone clinical use as prevalence rates of 

disorders are too low in such samples. Additionally, clinical samples are more likely to carry a 

broader range of genetic variation associated with a given disorder. A focus on high-risk groups, i.e. 
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clinical samples, is warranted to address this. The results from Jansen et al., (2021) indicate the 

importance of large scale genetic data collection in clinical samples, in order to facilitate well 

powered studies in high-risk samples. 

The role of rare variants  

One of the reasons why PGS prediction remains limited is because the GWAS on which they are 

based are limited to common genetic variants with allele frequencies of at least 1% in the 

population. However, other types of genetic variants also play a role in the genetic architecture of 

psychiatric traits including rare, de novo, and structural variants. Next generation sequencing of 

protein-coding regions of the genome has allowed for the identification of trait-associated genes or 

sets of genes which are enriched for rare deleterious/disruptive variants 348. Recent work has 

suggested that rare variants may offer an insight into genes central to the biology of complex 

disorders but which cannot be studied from common variant analysis. Due to strong negative 

selection, common variants that influence key genes are not allowed to persists in the population 342. 

On the other hand, newer variants with more deleterious impact arise due to high mutation rates 

and are necessarily rare as they have not had time to be removed from the population 339, 340. This 

complementary line of enquiry is important to pursue as genetic variants at different allele 

frequencies likely show differential contribution to the architecture of psychiatric disorders. 

Moreover, association studies across the allele frequency spectrum have had differing levels of 

success for different disorders. For example, while rare variant analyses have been more successful 

and implicated more genes for ASD and developmental disorders compared to common variant 

studies, studies on schizophrenia have generally had success across both rare and common variant 

analyses 373. GWAS of ASD have identified 5 associated loci compared to 270 for schizophrenia, while 

over 100 genes enriched for rare coding variants have been identified for ASD (especially ASD 

comorbid with intellectual disability) compared to 10 for schizophrenia 31, 336, 373. Overall, large copy 

number variants (CNVs) have provided the strongest evidence for specific trait-associated rare 

variants. While there are important methodological considerations regarding these findings, 

statistical power not being the least of them, it is not impossible that different classes of variants are 

differentially important for different disorders. 

As gene discovery studies require large sample sizes to gain enough power to identify risk genes for 

disorders, gene-set analyses provide a statistical advantage. By aggregating genomic effects from 

multiple variants, we increase the power to detect associations with a trait/phenotype. Additionally, 

as gene sets can be constructed to correspond to biological functions, mechanisms, pathways, 

and/or networks, associations with a phenotype are informative for potential mechanism discovery, 
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as we demonstrate in chapter 6. We used gene sets to show that schizophrenia-associated common 

variants as well as (ultra-)rare protein-truncating variants (PTVs) are significantly enriched in PTV-

intolerant (PI) genes which are likely to be under stringent selection, as well as in excitatory neurons 

from the prefrontal cortex and hippocampus, medium spiny neurons, and genes enriched for 

synaptic processes. Our results suggested some convergence in the pathways/mechanisms 

underlying schizophrenia aetiology across the allele frequency spectrum. Additionally, we evaluated 

findings from other studies regarding common variant enrichment of similar gene sets to those we 

investigated in other psychiatric and neurological disorders, to assess the specificity of ours and 

similar findings. We showed that the same genes and brain cell types are implicated in other 

psychiatric disorders as well as cognitive traits like intelligence and educational attainment, further 

indicating, perhaps unsurprisingly, that pleiotropy remains prevalent at this level of analysis. 

Additionally, cross-disorder analyses have also used gene sets to show that pleiotropic risk loci were 

significantly enriched in pathways related to neurodevelopment 97. Pleiotropic effects have also 

been observed for rare variants, with studies showing that genes enriched for rare disruptive 

variants overlap across schizophrenia, ASD, and intellectual disability 374.   

Future directions and considerations 

Disentangling shared and specific genetic factors 

Overall, the current body of evidence regarding genetic overlap suggests that while pleiotropy is 

clearly an important factor underlying psychopathology, specific genetic factors likely also play an 

important role. Future studies focused on further disentangling these effects will be important in 

better addressing or explaining genetic overlap across psychopathology. For example, recent 

analyses leveraging the genetic factor structure underlying anxiety and depression were able to 

disentangle their shared genetic architecture, identifying shared genetic regions associated with 

both traits, regions associated with each, and regions associated with both but via separate variants 

375. More studies like this will be useful in further unravelling shared and unique effects amongst 

traits. This is especially crucial for traits like schizophrenia and bipolar disorder, which represent 

distinct phenotypes/diagnoses, but are highly genetically correlated. Additionally, analyses that are 

stratified across age, such as in chapter 3, are needed to shed light on developmental mechanisms 

underlying childhood psychopathology.  

Causal inference in psychopathology across development 

An important consideration regarding pleiotropy is that it might be induced by causation (vertical 

pleiotropy). Standard polygenic analyses are not informative on the direction of causation in 
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observed associations, or if the genetic associations are the result of causal mechanisms in the first 

place. Genetic associations could also be the result of cross-trait assortative mating, where genes for 

two traits are passed down and inherited together due to mating between people who score high on 

one trait and those who score high on the second 376. Nevertheless, knowledge regarding potential 

causal mechanisms is crucial given the long-term implications of psychopathology in childhood. 

Additionally, evidence exists for disorders such as bipolar disorder, where onset in childhood was 

associated with poorer outcomes, compared to adult-onset bipolar disorder 377. Crucially, poorer 

outcomes extend beyond psychopathology, and we showed in chapters 3 and 4 that childhood 

psychopathology is not only correlated with adult major depression, but with health and socio-

economic status (SES) outcomes including BMI and educational attainment. An understanding of 

causal mechanisms is therefore crucial for identifying children most at risk for unfavourable 

outcomes in adulthood, and to ensure proper early mitigations. Methods like Mendelian 

randomization 378 use genetic markers (either a single SNP or a combination of multiple SNPs such as 

PGS) that are associated with a modifiable exposure as instrumental variables in order to investigate 

whether the association between the exposure and an outcome is causal. In chapter 4 we highlight 

recent studies that have tried to disentangle causal relationships between ADHD and BMI 265-267, and 

between ADHD and educational attainment 268, with limited success. More investigations in this vein 

are necessary as identification of modifiable causal variables may provide useful avenues for 

targeted intervention or prevention.   

How PGS may be useful for clinical purposes 

Improved PGS prediction represents a very important avenue for identifying children at the greatest 

risk for continuity not just related to psychopathology, but also adverse health and SES outcomes. It 

is therefore important to begin to consider how PGS could be used should they become viable 

clinical tools. They are unlikely to have any preventative utility; most treatments for psychiatric 

disorders cannot be administered prophylactically and moreover, in most cases, genetic risk alone is 

not sufficient to lead to the development of a disorder. As we show in chapter 5, a combination of 

genetic, behavioural, and environmental factors produced the best performing predictive model of 

aggression and/or self-harm. However, they could for example be used in the early stages of 

disorders where other risk factors are present, but a specific diagnosis is not possible 372. This could 

be particularly important in disorders for which early intervention may improve long-term 

outcomes, for example stratifying children into groups according to their risk for persistence, as well 

as resulting treatment requirements. Should PGS eventually become useful in developing 

preventative strategies, for example in combination with family history and genetic nurturing 

effects, ethical concerns regarding screening otherwise healthy children for risk of psychopathology, 
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make it unlikely to be an immediately viable approach. Another important consideration, or even a 

huge limitation, regarding PGS and any potential future use is that currently, most GWAS are 

performed in individuals of European ancestry (up to 80% Europeans in studies that include samples 

of multiple ancestries). Unsurprisingly, studies that have subsequently analysed the predictive value 

of PGS across different populations have found that prediction of individual risk is better in 

Europeans than non-Europeans 187. If PGS became clinically viable biomarkers today, they would 

likely only be useful for those of European ancestry. We (scientists) have ethical and moral 

obligations to prioritise diversifying samples in genomic studies to ensure that this does not become 

another avenue in which social/societal inequalities are further exacerbated. 

A holistic approach to understanding aetiology 

It is clear that analyses of common variants alone will be limited in sufficiently furthering our 

understanding of the genetic aetiology of psychopathology. Even in non-psychiatric traits like height 

where analyses are based on large sample sizes, only a fraction of its 80% twin-based heritability 

estimate has been captured by measured common variants 33. While it is possible that this is due to 

various methodological factors related to common variant analyses, it is also clear that a proportion 

of heritability is likely explained by rare variants. In fact, a recent study has used whole genome 

sequence data to show that for height and BMI, integration of common and rare variant information 

moved heritability estimates closer to those estimated in twin and family studies 379. It is possible 

that this is also the case for psychiatric traits, which in turn has implications for any future genetic-

based prediction of psychopathology. This is also in line with findings that show that for disorders 

such as schizophrenia and ASD, as well as severe neurodevelopmental disorders, both common and 

rare variants contributed to the risk for these disorders 380-382. An important caveat to this is that 

height is a much more precise phenotype to measure than psychiatric disorders, and phenotypic 

heterogeneity may reflect genotypic heterogeneity which blurs the estimate. All in all, a combination 

of common and rare variants appears to underlie psychopathology, and an incorporation of both 

might prove to be the most predictive genetic variable. For example, combining burden scores based 

on rare variants with PGS from common variants to see if this increases prediction/variance 

explained.  

Finally, there are epistatic genetic effects as well as environmental interactions at play which 

underlie disorder aetiology. They are largely unaccounted for in the methods described so far and 

represent complementary lines of research that should be pursued to ensure more complete picture 

of childhood psychopathology. 

Conclusions 
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It is clear that much progress has been and is being made with regards to understanding the genetics 

of childhood psychopathology. An increase in the availability of ethnically diverse research samples 

at different developmental stages represents a key step to further this, and will aid the identification 

of trait-associated variants in the first instance. Beyond this, a move from genetic variation to 

disease mechanisms and biological pathways is crucial, something that gene sets can hint at, but 

resolution beyond that is also important. As we still observe widespread pleiotropy at that level, it is 

important to go beyond this as the mechanisms underlying these traits might be different even 

though the same gene sets and thus pathways are implicated. The hope is that in the coming years, 

increasing sample sizes along with the integration of genomic and functional approaches will 

converge onto specific systems, cell types, mechanisms, and developmental stages that better 

explain disorder aetiology. Although widespread polygenicity and pleiotropy in psychiatric disorders 

make translating genetic findings to biological understanding difficult, leveraging both in order to 

further our understanding of psychopathology, and eventually enhance clinical utility of research 

findings, will be important in the years to come. 
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