
VU Research Portal

Fast-timescale Line Failure Control in Power Systems

Guo, Linqi; Liang, Chen; Zocca, Alessandro; Low, Steven H.; Wierman, Adam

2020

Link to publication in VU Research Portal

citation for published version (APA)
Guo, L., Liang, C., Zocca, A., Low, S. H., & Wierman, A. (2020). Fast-timescale Line Failure Control in Power
Systems.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 05. Nov. 2022

https://research.vu.nl/en/publications/f5d364a4-de43-424c-8f01-4be264d3570c


Fast-timescale Line Failure Control in Power Systems
Linqi Guo, Chen Liang, Alessandro Zocca, Steven H. Low, and Adam Wierman

Abstract— Transmission line failures in power systems prop-
agate and cascade non-locally. In this work, we propose a
fast-timescale distributed control strategy that offers strong
guarantees in both the mitigation and localization of line
failures. Specifically, we leverage the properties of network
bridge-block decomposition and a frequency regulation method
called the unified control. If the balancing areas over which
the unified control operates coincide with the bridge-blocks of
the network, the proposed strategy drives the post-contingency
system to a steady state where the impact of initial line outages
is localized within the areas where they occurred whenever
possible, stopping the cascading process. When the initial line
outages cannot be localized, the proposed control strategy
provides a configurable design that progressively involves and
coordinates more balancing areas. We compare the proposed
control strategy with the classical Automatic Generation Con-
trol (AGC) on the IEEE 118-bus and 2736-bus test networks.
Simulation results show that our strategy greatly improves
overall reliability in terms of the N − k security standard,
and localizes the impact of initial failures in majority of the
simulated contingencies. Moreover, the proposed framework
incurs significantly less load loss, if any, compared to AGC,
in all our case studies.

I. INTRODUCTION

Transmission line failures in power systems propagate
both locally and non-locally, making it challenging to design
control methods that reliably prevent and control line failure
cascades in power networks [1], [2]. Current industry practice
for failure prevention and mitigation mostly relies on N − 1
security constrained OPF as well as simulation-based contin-
gency analysis [3], which are often implemented in tertiary
control and operates on a slow timescale. As a result, such
control usually prescribes a conservative operation point that
strictly prohibits line overloads in all possible scenarios.

Since tertiary control can take effect 5 minutes to more than
an hour after the disturbance, most literature on cascading
failure analysis adopts the assumption that injections remain
unchanged after a line failure if the post contingency network
remains connected (and are changed only after a bridge failure
according to a generic balancing rule that re-balances power
in each island) [1], [4]–[6]. This assumption, however, is
unrealistic and tends to be pessimistic: it does not take
into account of frequency control mechanisms that adjust
injections of controllable generators and loads immediately
in response to line outages, on a faster timescale than that of
post-contingency line tripping.

In this paper, we augment the existing steady state cas-
cading failure models with fast-timescale frequency control
dynamics that affect power flow redistribution in the new

This work has been supported by Resnick Fellowship, Linde Institute
Research Award, NWO Rubicon grant 680.50.1529, NSF through grants CCF
1637598, ECCS 1619352, ECCS 1931662, CNS 1545096, CNS 1518941,
CPS ECCS 1739355, CPS 154471.

LG, CL, SHL, AW are with the Department of Computing and Mathemat-
ical Sciences, California Institute of Technology, Pasadena, CA, 91125, USA.
Email: {lguo, cliang2, slow, adamw}@caltech.edu. AZ is
with the Department of Mathematics of the Vrije Universiteit Amsterdam,
1081HV, Netherlands. Email: a.zocca@vu.nl.

equilibrium post contingency. This integrated failure model
is not only more realistic, but also offers additional means
to mitigate cascading failure through better design of the
frequency control mechanism. Our proposed control strategy
builds upon this extra freedom and reacts to line outages on
a timescale of minutes.

Contributions of this paper: We integrate a fast-timescale
distributed frequency control strategy with a tree-partitioned
network to provide provable failure mitigation and local-
ization guarantees on line failures. This strategy operates
on a different timescale and supplements current practice,
improving both grid reliability and operation efficiency. To
the best of our knowledge, this is the first attempt to leverage
results from the frequency regulation literature in the context
of cascading failures, bringing new perspectives and insights
to both literature. Our control strategy guarantees that (a)
whenever it is feasible to avoid it, line failures do not
propagate, and (b) the impact of line failures is localized as
much as possible in a manner configurable by the system
operator. A preliminary version of this work is presented
in [7]. We include in this paper detailed proofs that were
omitted in [7] and extend our simulations to further illustrate
the performance of our approach.

We introduce the main idea of this new control strategy
in Section IV, which makes use of the so-called Unified
Controller (UC), a recent mechanism developed in the fre-
quency regulation literature [8]–[12]. We specifically leverage
the ability of UC to enforce line limits on a fast timescale
whenever possible. Our design revolves around the properties
that emerge when the balancing areas that UC manages are
connected in a tree structure. More specifically, in Section V,
we characterize how UC responds to an initial failure, and
prove that any non-critical failure is automatically mitigated
and localized. Later, in Section VI, we discuss how the system
operator can configure its mitigation strategy to minimize the
impact of critical failures, and show that UC can be extended
to detect such scenarios as part of its normal operation.

In order to establish these results, we propose an integrated
failure propagation model in Section II, which lies at
the interface between the fast-timescale of the frequency
dynamics and the slow-timescale of the line tripping process.
We further prove new results on the UC optimization problem
with the spectral representation of DC power flow equations.
Lastly, we apply classical results from convex optimization
to show that critical failures can be detected in a distributed
fashion.

In Section VII, we compare the proposed control strategy
with classical Automatic Generation Control (AGC) using the
IEEE 118-bus and 2736-bus test networks. We demonstrate
that by switching off only a small number of transmission
lines and adopting UC as the fast-timescale controller, one
can significantly improve overall grid reliability in terms
of the N − k security standard. Moreover, in a majority
of the load profiles that are examined, our control strategy
localizes the impact of initial failures to the balancing area
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where they occur, leaving the operating points of all other
areas unchanged. This decoupling across balancing areas
is important in practice. Lastly, we highlight that when
load shedding is necessary, the proposed strategy incurs
significantly smaller load loss.

Load shedding as a mitigation approach for cascading
failures has been studied in the literature, e.g., using reinforce-
ment learning [13], by shedding only the interruptible part of
each load [14], by adaptively using affine control based on
observed states [15], by formulating it as a DC OPF problem
[16], or by treating the cascading process as a discrete-time
optimal control problem [17]. In this paper we use the same
DC power flow model as [15]–[17], but, unlike these works,
we do not propose separate load shedding schemes to be
implemented on a slow (power flow) timescale. Instead, load
and generation control under the UC framework is performed
as part of frequency regulation on a fast timescale, during
both normal operation and a contingency.

II. AN INTEGRATED FAILURE PROPAGATION MODEL

In this section, we present an integrated cascading failure
model that incorporates frequency control dynamics and
generalizes the steady-state DC failure model.

A. Fast-timescale Dynamics
Consider a power transmission network described by a

graph G = (N , E), where N is the set of buses and E ⊂
N ×N are transmission lines. Using the notation in Table I,
the post-contingency linearized frequency dynamics are:

θ̇j = ωj , j ∈ N (1a)

Mjω̇j = rj + dj −Djωj −
∑
e∈E

Cjefe, j ∈ N (1b)

fij = Bij(θi − θj), (i, j) ∈ E . (1c)

The above differential equations model the fast-timescale
response of the system to a transmission line failure. The post-
contingency injection deviation pj(t) := rj+dj(t) is the sum
of the post-contingency disruption rj and the system response
dj(t). The vector d(t) := (dj(t), j ∈ N ) models frequency
control and their values are determined by a feedback control
mechanism (a non-controllable constant-power load is simply
a special case where the controls are set as dj(t) ≡ dj). We
assume in this paper that the feedback controller is stabilizing
and drives the closed-loop system towards an equilibrium as
long as the post-contingency disruption r := (rj , j ∈ N ) can
be feasibly mitigated (see Section VI for more discussion).

Definition 1. A state x∗ := (θ∗, ω∗, d∗, f∗) ∈ R3n+m is said
to be a closed-loop equilibrium or simply an equilibrium
of (1) if the right hand sides of (1a)(1b) are zero and (1c)
is satisfied at x∗.

The frequency dynamics (1) implies that any equilibrium
configuration x∗ satisfies

w∗ = 0, p∗ = r + d∗ = Cf∗, f∗ = BCT θ∗,

In other words, x∗ satisfies the DC power flow model.1

1In primary frequency control literature (see [8], [10] for instance), the
right hand side of (1a) is not required to be zero for an equilibrium point
x∗. We impose this requirement on (1a) here as our discussion focuses
on controllers that achieve secondary frequency control and thus ω∗ = 0
always holds. Our model and results can be readily extended to the case
where ω∗ 6= 0; see Appendix V for more details.

TABLE I: Variables associated with buses and transmission lines.

θ := (θj , j ∈ N )
bus voltage angle deviations from pre-
contingency values

ω := (ωj , j ∈ N )
bus frequency deviations from pre-
contingency values

r := (rj , j ∈ N ) system disturbances

d := (dj , j ∈ N )
power injection/controllable load deviations
from pre-contingency values for genera-
tor/load buses

p := (pj , j ∈ N )
aggregate post-contingency injection devia-
tion

dj , dj , j ∈ N
upper and lower limits for the adjustable
injection dj

Djωj , j ∈ N
aggregate generator damping for generator
buses; aggregate load frequency response for
load buses

Mj , j ∈ N inertia constants

f := (fe, e ∈ E) branch flow deviations from pre-contingency
values

fe, fe, e ∈ E
upper and lower limits for branch flow
deviations

n := |N | number of buses
m := |E| number of transmission lines

C ∈ Rn×m

post-contingency incidence matrix of G:
Cje = 1 if j is the source of e, Cje = −1
if j is the destination of e, and Cje = 0
otherwise

B := diag(Be, e ∈ E)
branch flow linearization coefficients that de-
pend on line susceptances, nominal voltage
magnitudes and reference phase angles

The equilibrium to which the closed-loop system (1)
converges thus determines the post-contingency DC power
flow solution and can in turn impact how failures propagate
in the network. A key insight from [8]–[12] is that the closed-
loop equilibrium x∗ of (1) is also an optimal solution of a
certain DC-based optimization problem that can be deter-
mined explicitly. Different frequency controllers d(t) induce
different dynamics (1), whose closed-loop equilibria solve
optimization problems with corresponding objective functions
and constraints. As such, different frequency controllers can
alternatively be modelled by the underlying optimization
problems that their equilibria solve.

B. Failure Propagation
In full generality, the failure model and the control strategy

we introduce later apply to both generator failures and line
failures, but, to simplify the presentation, in this paper we
focus only on the latter. We describe the cascading failure
process by keeping track of the set of outaged lines B(n) ⊂ E
over stages n ∈ {1, 2, . . . , N} at steady state. Following a
line outage, we assume that the system evolves on a fast
timescale according to the frequency dynamics (1) during the
transient phase. When it eventually converges to a closed-
loop equilibrium, overloaded lines are tripped and the cycle
repeats, as illustrated in Fig. 1.

More specifically, for each stage n ∈ {1, 2, . . . , N},
the system evolves according to the dynamics (1) on the
topology G(n), and converges to an equilibrium point x∗(n) =
(θ∗(n), ω∗(n), d∗(n), f∗(n)) that solves an optimization prob-
lem over G(n) = (N , E \ B(n)). If at equilibrium all branch
flows f∗(n) are within the corresponding line limits, then
x∗(n) is a secure operating point and the cascade stops.
Otherwise, let F(n) be the subset of lines whose branch
flows exceed the corresponding line limits. The lines in F(n)
operate above their limits at steady state, so we assume they
trip at the end of stage n and set B(n+ 1) = B(n) ∪ F(n).
Line overloads during the transient phase before the system
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Fig. 1: An illustration of the failure propagation model.

converges to x∗(n) are considered tolerable because the
transient dynamics in (1) does not last long enough to overheat
a line [10] (spanning only seconds to a few minutes). This
process then repeats for the subsequent stages.

The crux of our failure propagation model lies in the
interplay between the slow-timescale line tripping process
and the fast-timescale dynamics. By explicitly modeling fast-
timescale frequency control dynamics as part of the cascading
process, our model offers more flexibility in controller design.
Different choices of d(t) induce different cascading failure
processes. For instance, as shown in Appendix V, if we
adopt droop control for d(t), the failure model in [6], [18]
(where injections do not change after a non-cut failure, and
a bridge failure impact the injections following a certain
power balancing rule R) can be readily recovered. As another
example, if AGC is adopted for d(t), the cascading process
will unfold in a way where injections and line flows are
changed even after a non-cut failure. Since traditional AGC
does not enforce line limits (congestion is managed on a slow
timescale), some lines may carry flows above their thermal
limits and are tripped subsequently.

This integrated model offers an additional means to mitigate
cascading failures through a better design of the frequency
control mechanism on a fast timescale. Our proposed approach
leverages this extra freedom and adopts a recent frequency
control approach known as Unified Controller (UC) for d(t).
In contrast to traditional AGC, UC drives the closed-loop
system to an equilibrium that respects line limits whenever
possible. We will show in Section V that it will in fact
localize the impact even when the outaged lines disconnect
the network.

III. THE BRIDGE-BLOCK DECOMPOSITION AND THE
UNIFIED CONTROLLER

The bridge-block decomposition and the unified controller
have recently emerged as two important tools for grid
reliability [10], [19], [20]. The two concepts operate on
different timescales to improve the power system robustness:
the bridge-block decomposition aims to localize the failure
propagation, while the unified controller aims to stabilize a
disturbed system. In this section, we review these concepts
and elaborate on how they can be integrated as a novel control
framework for failure localization and mitigation.

A. Bridge-block Decomposition
Given a power network G = (N , E), a partition of G

is defined as a finite collection P = {N1,N2, · · · ,Nk} of
nonempty and disjoint subsets of N such that

⋃k
i=1Ni = N .

For a partition P , each edge can be classified as either a
tie-line if the two endpoints belong to different subsets of N
or an internal line otherwise.

We define an equivalence relation on N such that two
nodes are in the same equivalence class if and only if there

Fig. 2: Bridge-block decomposition of a graph.

are two edge-disjoint paths connecting them. For this specific
partition, the tie-lines connecting different components are
exactly the bridges (cut-edges) of the graph. We thus refer
to this partition as bridge-block decomposition PBB of the
power network (see Fig. 2 for an example).

It is shown in [19] that each graph has a unique bridge-
block decomposition, which can be found in linear time.
In particular, the bridge-block decomposition encodes rich
information on failure propagation.

B. Unified Controller (UC)
UC is a control approach recently proposed in the frequency

regulation literature [8]–[12]. Compared to classical droop
control or AGC [21], UC simultaneously integrates primary
control, secondary control, and congestion management on a
fast timescale. The key feature of UC is that the closed-loop
equilibrium of (1) under UC solves the following optimization
problem on the post-contingency network:

min
θ,ω,d,f

∑
j∈N

cj(dj) (2a)

s.t. ω = 0, (2b)
r + d− Cf = 0, (2c)
f = BCT θ, (2d)
ECf = 0, (2e)
f
e
≤ fe ≤ fe, e ∈ E , (2f)

dj ≤ dj ≤ dj , j ∈ N , (2g)

where cj(·)’s are associated cost functions that penalize
deviations from the last optimal dispatch (and hence attain
minimum at dj = 0), (2b) ensures secondary frequency
regulation is achieved, (2c) guarantees power balance at each
bus, (2d) is the DC power flow equation, (2e) enforces zero
area control error [21], (2f) and (2g) are the flow and control
limits. The matrix E encodes balancing area information as
follows. Given a partition PUC = {N1,N2, · · · ,Nk} of G
that specifies the balancing areas for secondary frequency
control, E ∈ {0, 1}|P

UC|×n is defined by Elj = 1 if bus j is
in balancing area Nl and Elj = 0 otherwise. As a result, the
l-th row of ECf = 0 ensures that the branch flow deviations
on the tie-lines connected to balancing area Nl sum to zero.

UC is designed so that its controller dynamics, combined
with the system dynamics (1), form a variant of projected
primal-dual algorithms to solve (2). It is shown in [8]–[12]
that when the optimization problem (2) is feasible, under
mild assumptions, the closed-loop equilibrium under UC is
globally asymptotically stable and it is an optimal point of
(2). Such an optimal point is unique (up to a constant shift of
θ) if the cost functions cj(·) are strictly convex. This means
that, after a (cut or non-cut) failure, the post-contingency



system is driven by UC to an optimal solution of (2) (under
appropriate assumptions). We refer the readers to [8]–[12]
for specific controller designs and their analysis.

C. Connecting UC and the Bridge-Block Decomposition
We have introduced two partitions of a power network:

the bridge-block decomposition PBB and the balancing area
partition PUC, which in general are different from each
other. However, when they do coincide, the underlying power
grid inherits analytical properties from both bridge-block
decomposition and UC, making the system particularly robust
against failures. Our proposed control strategy leverages
precisely this feature, as we present in Section IV.

In practice, the balancing areas over which UC operates are
usually connected by multiple tie-lines in a mesh structure.
However, in order to align with the bridge-block decomposi-
tion, we may have to switch off a few tie-lines of PUC. The
selection of these tie-lines can be systematically optimized,
e.g., to minimize line congestion or inter-area flows on the
resulting network; see [22] for more details. We henceforth
assume that PBB = PUC. We refer to such a network as
the tree-partitioned network since the balancing areas are
connected in a tree structure prescribed by its bridge-block
decomposition.

Definition 2. Given a cascading failure process described
by B(n), with n ∈ {1, 2, . . . , N}, the set B(1) is said to
be its initial failure. An initial failure B(1) is said to be
critical if the UC optimization (2) is infeasible over G(1) :=
(N , E\B(1)), or non-critical otherwise.

To formally state our localization result, we define the
following concept to clarify the precise meaning of an area
being “local” with respect to an initial failure.

Definition 3. Given an initial failure B(1), we say that a
tree-partitioned balancing area Nl is associated with B(1)
if there exists an edge e = (i, j) ∈ B(1) such that either
i ∈ Nl or j ∈ Nl.

As we discuss below, our control strategy possesses a
strong localization property for both non-critical and critical
failures in the sense that only the operation of the associated
areas are adjusted whenever possible.

IV. PROPOSED CONTROL STRATEGY: SUMMARY

Our strategy consists of two phases: a planning phase in
which tree-partitioned networks are created and an operation
phase during which UC actively monitors and autonomously
reacts to line failures during its operation.

A. Planning Phase: Align Bridge-blocks and Balancing Areas
Each balancing area of a multi-area power network is

managed by an independent system operator (ISO). Although
these areas exchange power with each other as prescribed by
economic dispatch, their operations are relatively independent.
This is usually achieved via the zero area control error
constraint in secondary frequency control [21], which is
enforced by UC with (2e). As mentioned in previous sections,
such balancing areas typically do not form bridge-blocks, as
redundant lines are believed to be critical in maintaining
N − 1 security of grid [1], [2], [21].

We propose to create bridge-blocks whose components
coincide with the balancing areas over which UC operates.

This can be done by switching off a small subset of the
tie-lines so that areas are connected in a tree structure. The
switching actions only need to be carried out in the planning
phase, as line failures that occur during the operating phase do
not affect the bridge-blocks already in place.2 It is interesting
to notice that when the subset of lines to switch off is chosen
carefully, the tree-partitioned network not only localizes the
impact of line failures, but can also improves overall reliability.
This seemingly counter-intuitive phenomenon is illustrated
by our case studies in Section VII-A.

In practice, the switching actions should be performed
judiciously without jeopardizing the network operations.
Any line switching action leads to power redistribution on
remaining lines and may cause overload. It is thus crucial
to assess the impact of each set of switching actions and
avoid creating any congested line. We refer interested readers
to [22] for an efficient algorithm to optimize the selection of
switched lines.

B. Operating Phase: Extending Unified Controller
Once the tree-partitioned areas are formed, the power

network operates under UC as a closed-loop system and
responds to disturbances such as line failures or loss of
generator/load in an autonomous manner. In normal conditions
where the system disturbances are small, UC always drives
the power network back to an equilibrium point that can be
interpreted as an optimal solution of (2). This is the case, for
instance, when non-critical failures (see Definition 2) happen,
and therefore such failures are always successfully mitigated.

However, in extreme scenarios where a major disturbance
(e.g., a critical failure) happens, the optimization problem (2)
can be infeasible. In other words, it is physically impossible
for UC to achieve all of its control objectives after such
a disturbance. This makes UC unstable (see Proposition 6)
and may lead to successive failures. There is therefore a
need to extend the version of UC proposed in [8]–[12] with
two features: (a) a detection mechanism that monitors the
system state and detects critical failures promptly; and (b) a
constraint-lifting mechanism that responds to critical failures
by proactively relaxing certain constraints of (2) to ensure
system stability can be reached at minimal cost.

Our technical results in Section VI-A suggest a way to
implement both components as part of the normal operation of
UC. System operators can prioritize different balancing areas
by specifying the sequence of constraints to lift in response
to extreme events. This allows the non-associated areas to
be progressively involved and coordinated in a systematic
fashion when mitigating critical failures. We discuss some
potential schemes in Section VI-B.

C. Guaranteed Mitigation and Localization
We show in detail in Sections V and VI that the proposed

strategy provides strong guarantees in the mitigation and local-
ization of both non-critical and critical failures. Specifically, it
ensures that the cascading process is always stopped (a) after
a non-critical failure by the associated areas, and the operating
points of non-associated areas are not impacted in equilibrium
or (b) after a critical failure when constraints in (2) are lifted
in a progressive manner specified by the system operator.

2In fact, line failures can lead to a “finer” bridge-block decomposition,
as more bridge blocks are potentially created when lines are removed from
service.



Thus the proposed strategy can always prevent successive
failures, while localizing the impact of the initial failures as
much as possible.

We remark that our strategy can maintain the N−1 security
standard even though the balancing areas are connected in a
tree structure. Unlike other classical approaches where failures
that disconnect the network tend to incur more severe impact,
our strategy can mitigate such failures as much as possible
by autonomously adjusting the injections to rebalance and
stabilize the system in each of the surviving component. In
fact, our fast-timescale control can significantly improve the
grid reliability in N − k sense as we show in the numerical
experiments in Section VII.

V. LOCALIZING NON-CRITICAL FAILURES

In this section, we consider non-critical failures, as defined
in Section III, and prove that such failures are always fully
mitigated within the associated balacing areas.

We first characterize how the system operating point
shifts in response to such failures. Recall that if an ini-
tial failure B(1) is non-critical, the UC optimization (2)
is feasible and thus the new operating point x∗(1) :=
(θ∗(1), ω∗(1), d∗(1), f∗(1)) satisfies all the constraints in (2).
In particular, none of the line limits is violated at x∗(1) by
(2f), i.e. x∗(1) is a secure operating point and the cascade
stops (F(1) = ∅). Moreover the power flows on bridges
remain unchanged in equilibrium from their pre-contingency
values, as the next result says.

Lemma 4. Given a non-critical initial failure B(1), the new
operating point x∗(1) prescribed by the UC satisfies f∗e (1) =
0 for every bridge e of the network.

This lemma, proved in Appendix I, shows that tree-
partitioned areas enable UC to achieve more than what it
was originally designed for in [8]–[12]: the extended UC not
only enforces zero area control errors through (2e), it also
guarantees zero flow deviations on all bridges.

The following proposition is another result of this type,
which clarifies how the tree-partitioned network induces a
localization property under UC. See Appendix II for a proof.

Proposition 5. Assume cj(·) is strictly convex and achieves
its minimum at dj = 0 for all j ∈ N . Given a non-critical
initial failure B(1), if an area Nl is not associated with B(1),
then at equilibrium x∗(1) we have d∗j (1) = 0 for all j ∈ Nl.

Proposition 5 reveals that with the proposed control strategy,
after a non-critical failure, the injections and power flows
in non-associated areas remain unchanged at equilibrium,
even though they fluctuate during transient according to (1).
Our control scheme guarantees that non-critical failures in a
balancing area do not impact the operations of other areas,
achieving stronger balancing area independence than that
ensured by zero area control error alone.

Furthermore, traditional control strategies usually treat
failures that disconnects the system differently, i.e. the post-
contingency injections normally stay constant, but can be
changed if the system are disconnected due to the line
failures [6]. Under our scheme, failures that disconnect the
system are treated in exactly the same way as failures that
do not, provided that they are non-critical. Moreover, the
impact of a failure that disconnects the system is localized
and properly mitigated to the associated areas as well. This
is in stark contrast with the global and severe impact of a

bridge failure [20] and is the key benefit of integrating UC
with the bridge-block decomposition.

VI. CONTROLLING CRITICAL FAILURES

We now consider the case where the initial failure is critical.
This may happen when a major generator or transmission
line is disconnected from the grid.

A. Unified Controller under Critical Failures
Since UC is a concept that has emerged from the frequency

regulation literature, the underlying optimization (2) is always
assumed to be feasible in existing studies [8]–[12]. As such,
little is known about the behavior of UC if this assumption is
violated when a critical failure happens. We now characterize
the limiting behavior of UC in this setting.

In order to do this, we first formulate the exact controller
dynamics of UC. Unfortunately, there is no standard way to
do this as multiple designs of UC have been proposed in
the literature [8]–[12], each with its own strengths and weak-
nesses. Nevertheless, all of the proposed controller designs
are (approximately) projected primal-dual algorithms for the
optimization problem (2) satisfying two assumptions that we
now state. Let λi, for i ∈

{
1, 2, · · · , n+ 3m+

∣∣PUC
∣∣}, be

the dual variables corresponding to the constraints (2c)-(2f).
UC1: For all j ∈ N , dj ≤ dj(t) ≤ dj is satisfied for all t.

This is achieved either via a projection operator that maps
dj(t) to this interval or by requiring the cost function cj(·)
to approach infinity near these boundaries.

UC2: The primal variables f, θ and the dual variables λi
are updated by a primal-dual algorithm3 to solve (2).

Proposition 6. Assume UC1 and UC2 hold. If (2) is
infeasible, then there exists a dual variable λi such that
lim supt→∞ |λi(t)| =∞.

Proposition 6, which is proved in Appendix III, implies that,
after a critical failure, UC cannot drive the system to a proper
and safe operating point. This type of instability suggests a
way to detect critical failures. Specifically, since Proposition 6
guarantees that at least one dual variable becomes arbitrarily
large in UC operation when (2) is infeasible, we can set
thresholds for the dual variables and raise an infeasibility
warning if any of them is exceeded. By doing so, critical
failures can be detected in a distributed fashion during the
normal operations of UC.

Since non-critical failures may also cause relatively large
dual variable values in transient states, the choice of the
thresholds inevitably involves tradeoffs. Tighter thresholds
allow critical failures to be detected more promptly, yet also
lead to a larger false alarm rate. In practice, these thresholds
should be chosen carefully by the operator in accordance to
specific system parameters and application scenarios.

B. Constraint Lifting as a Remedy
In the event of a critical failure, it is impossible for UC

to simultaneously achieve all of its control objectives and
constraints. This can lead to instability and thus successive
failures. We can mitigate this by progressively lifting certain
constraints from UC in two different ways without compro-
mising the basic objective of stabilizing the system:

3We do not consider the specific variants of primal-dual algorithms that
are proposed in different designs of UC, since the standard primal-dual
algorithm is often a good approximation.



• The zero area control error constraints (2e) between
specific pairs of balancing areas can be lifted. This
means the controller now involves more balancing areas
in failure mitigation.

• Loads can be shedded, which is reflected in (2) by
enlarging the range [dj , dj ] for corresponding load buses.

By iteratively lifting these two types of constraints, we can
guarantee the feasibility of (2) and ensure that the system
converges to a stable point that is free from successive
failures. This, however, comes with the cost of potential load
loss, and thus must be carried out judiciously. The iterative
relaxation procedure can follow predetermined rules specified
by the system operator to prioritize different objectives. As
an example, one can minimize load loss by relaxing possibly
all area control error constraints before relaxing injection
bounds on load buses. This will utilize all the contingency
and regulation reserves globally across all areas to meet
demand and shed load only as a last resort. In contrast, if
the localization of failure impact should be prioritized, the
operator can choose to first lift load injection bounds in the
associated areas and then progressively lift area control error
constraints to get more balancing areas involved.

VII. CASE STUDIES

In this section, we evaluate the performance of the proposed
control strategy on the IEEE 118-bus and IEEE 2736-bus (the
Polish network) test systems, with respect to N − k security
standard and localization performance under different levels
of system congestion.

A. N − k Security under Different Congestion Levels
We first focus on system robustness with respect to N − k

security standard on the IEEE 118-bus system. This test
network has two balancing areas shown as Area 1 and Are
2 in Appendix IV. To form a tree-partitioned network, three
lines are switched off, obtaining what we henceforth refer to
as the revised network.

We compare UC on the tree-partitioned revised network, as
specified by our proposal, and classical AGC on the original
network. UC is modeled by the optimization problem (2)
and AGC is modeled by (2) without the line limits (2f). A
failure scenario is said to be vulnerable if the initial failure
leads to successive failures or loss of load. To compare the
performance between our proposed approach and AGC, we
collect statistics on (a) vulnerable scenarios as a percentage
of the total simulated scenarios, and (b) load loss rate (LLR)
which is defined as the ratio of the total load loss to the
original total demand. We do not perform time-domain
simulations, but assume the closed-loop systems under UC
and AGC converge to their respective equilibrium points that
solve corresponding optimizations respectively.

The failure scenarios are created as follows. First, we
generate a variety of load injections (as summarized in
Table IV in Appendix IV) by adding random perturbations
to the nominal load profile from [23] and then solve the
DC OPF to obtain the corresponding generator operating
points. Second, we sample over the collection of all subsets
that consist of k transmission lines of the IEEE 118-bus test
network. Finally, for each sampled subset of k lines, we
remove all lines in this subset as initial failure and simulate
the cascading process thus triggered. Our simulations cover
the cases k = 1, 2, 3 with roughly 138,600 failure scenarios.
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Fig. 3: System robustness in terms of the N − k security standard.
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Fig. 4: System robustness under different levels of congestion obtained
scaling line capacities by the factor α.

Fig. 3(a) shows the average, minimum, and maximum
percentage of vulnerable scenarios across all sampled failure
scenarios, while Fig. 3(b) plots the complementary cumulative
distribution (CCDF) of the load loss rates. The simulation
results show that the proposed control incurs both substantially
fewer vulnerable scenarios and much less loss of load in
all cases compared to AGC. This difference is particularly
pronounced when multiple lines are tripped simultaneously
(k = 2, 3). We highlight that in our simulations, UC operates
over the tree-partitioned network (while AGC operates over
the original network) in which some of the tie-lines are
switched off and hence some transfer capacity is removed
from the system. Moreover, the newly created bridge (30, 38)
in the tree-partitioned network is never vulnerable under the
proposed control in all the scenarios we have studied.

We then illustrate the improvement of the proposed
approach over AGC under different congestion levels. To
do so, we scale down the line capacities to α = 0.9, 0.8, 0.7
of the base values and collect statistics for all single line
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Fig. 5: Generator response over IEEE 118-bus and Polish network.

initial failures (k = 1). Our results are summarized in Fig. 4,
which again show that the proposed approach significantly
outperforms AGC in all scenarios, especially those in which
the system is congested. Again in all these scenarios, the
bridge is never vulnerable under the proposed control.

B. Localized Failure Mitigation
In this subsection, we consider a specific constraint lifting

rule that progressively involves other areas by relaxing area
control error constraints only if local load shedding within the
associated areas is not enough to make problem (2) feasible.
This rule prioritizes localization of the initial failure. By
implementing it, we show that the proposed control strategy
can localize cascading failures within the associated areas
with negligible load loss. The experiments are carried out
over two networks: (a) a finer tree-partitioned version of the
IEEE 118-bus test network, and (b) the much larger-scale
Polish network, consisting of 2736 buses and 3504 lines.

For the IEEE 118-bus test network, we switch off 4
additional lines, which refines the bridge-blocks used in the
previous subsection since it further decomposes Area 2 into
two balancing areas (as shown in Fig. 6 in Appendix IV).
The generator capacities are scaled down by 60% so that the
total generation reserve is roughly 20%. We create different
congestion levels by scaling the line capacities according to a
factor α = 0.9, 0.8, 0.7 and iterate over all single transmission
lines as initial failures. The injections are the same as that
for the N − 1 test in the previous subsection.

The statistics on the fraction of vulnerable scenarios and
load loss rates (LLRs) for this experiment are summarized in
Table II. We observe that the proposed control strategy never
incurs more than 2.21% LLR across all tested injections and
congestion levels. Furthermore, for this specific network, the
proposed approach localizes all failures to the associated areas,
i.e., the tie-line constraints are never lifted. This localization
phenomenon can more clearly be noticed in Fig. 5(a), which
shows the CCDF of the number of generators whose operating
points are adjusted in response to the initial failures. The
majority of failures lead to operating point adjustments on
less than 15 generators, which is roughly the number of
generators within a single balancing area. The small portion
of failures that impact more than 15 generators are bridge

TABLE II: Statistics on failure localization over the IEEE 118-bus test
network.

Line Capacity α = 0.9 α = 0.8 α = 0.7

Avg. % of Vul. Sce. 3.53 3.68 3.82
Avg. (Max.) LLR(%) 0.55 (1.06) 0.56 (2.17) 0.59 (2.21)

TABLE III: Statistics on failure localization over the Polish network.
Line Capacity α = 0.9 α = 0.8 α = 0.7

Scenarios Mitigated with
one Area (%)

92.39 88.63 86.91

Scenarios Mitigated with
2-3 Areas (%)

6.44 9.48 10.40

Scenarios Mitigated with
All Areas (%)

1.17 1.89 2.69

Avg. (Max.) LLR(%) 0.05 (2.93) 0.05 (2.94) 0.07 (3.24)
Avg. # of Gen. Adj. 6.52 11.66 16.37

failures, which by definition have two associated areas and
thus more associated generators.

For the Polish network, we switch off 78 transmission lines
from the original network, creating a tree-partitioned network
with 4 areas of 1430, 818, 359 and 129 buses respectively.
Similar to the setup for the IEEE-118 test network, the
generation capacities are scaled properly so that the total
generation reserve is roughly 20%, and the line capacities are
scaled down to α = 0.9, 0.8, 0.7 to create different congestion
levels. We then iterate over all single line failures and the
statistics from our experiments are summarized in Table III.
Our results show that for this test network, more than 86% of
the single line failures can be mitigated locally within a single
area for all congestion levels. In addition, the worst case LLR
is roughly 3% across all simulated scenarios, with an average
that is no higher than 0.07%. Similar to the IEEE 118-bus test
network, the number of generators whose operating points
are adjusted by the proposed control strategy in response to
the failures is small, as shown in Fig. 5(b), confirming failure
localization.

VIII. CONCLUSION

In this paper, we have proposed a complementary approach
to grid reliability by integrating the network bridge-block
decomposition and the unified controller for frequency regula-
tion to achieve fast-timescale failure control. It provides strong
analytical guarantees of both the localization and mitigation
of failures. Our case studies on the IEEE 118-bus and 2736-
bus test systems show that the proposed control scheme can
greatly improve overall reliability compared to the current
practice. In particular, the new control prevents successive
failures from happening while localizing the impacts of initial
failures. When load shedding is inevitable, the proposed
strategy incurs significantly less load loss.
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APPENDIX I
PROOF OF LEMMA 4

To simplify the notation, we drop the stage index (1)
from x∗ and denote x∗ = (θ∗, ω∗, d∗, f∗). Given a bridge
e = (j1, j2) of G, removing e partitions G into two connected
components, say C1 and C2. Without loss of generality, assume
j1 ∈ C1 and j2 ∈ C2. For an area Nv from the partition P ,
we say Nv is within C1 if for any j ∈ Nv we have j ∈ C1.
It is easy to check from the definition of a tree-partitioned
network that any area Nv from P is either within C1 or within
C2, and that e is the only edge in G that has one endpoint in
C1 and the other endpoint in C2.

Let P ′ be the subset of areas within C1 from P , and let
1P′ ∈ {0, 1}|P| be its characteristic vector (that is, the l-th
component of 1P′ is 1 if Nl ∈ P ′ and 0 otherwise). Given
two buses i and j, we denote i→ j if (i, j) ∈ E and j → i

if (j, i) ∈ E . With these notations, from (2e), we have

0 = 1TP′ECf∗

=
∑

l:Nl∈P′

∑
i∈Nl

( ∑
j:j→i

f∗ji −
∑
j:i→j

f∗ij
)

=
∑
i:i∈C1

( ∑
j:j→i

f∗ji −
∑
j:i→j

f∗ij
)

= f∗e +
∑
i:i∈C1

( ∑
j:j→i,j∈C1

f∗ji −
∑

j:i→j,j∈C1

f∗ij
)
, (3)

where (3) follows because the only edge with one endpoint
in C1 and the other endpoint in C2 is e. Note that

0 =
∑

(i,j)∈E1

(
f∗ij − f∗ij

)
=
∑
i:i∈C1

( ∑
j:j→i,j∈C1

f∗ji −
∑

j:i→j,j∈C1

f∗ij
)
,

where E1 is the set of edges with both endpoints in C1. From
(3), we see that f∗e = 0. Since the bridge e is arbitrary, we
have thus proved the desired result.

APPENDIX II
PROOF OF PROPOSITION 5

To simplify the notation, we drop the stage index from
the equilibrium x∗ and write x∗ = (θ∗, ω∗, d∗, f∗) and p∗ =
r + d∗.

First, we construct a different point x̃∗ = (θ̃∗, ω̃∗, d̃∗, f̃∗)
by changing certain entries of x∗ within a non-associated area
Nl as follows: (a) replace d∗j with d̃∗j = 0 for all j ∈ Nl; (b)
replace f∗e with f̃∗e = 0 for e ∈ E that have both endpoints
in Nl; and (c) replace θ∗ by a solution θ̃∗ = L†p̃∗ obtained
from solving the DC power flow equations with injections
p̃∗ = r + d̃∗. All other entries of x∗ remain unchanged in
x̃∗. Since cj(·) attains its minimum at dj = 0, x̃∗ achieves
at most the same objective value (2a) as x∗. Thus x̃∗ must
be an optimal point of (2), provided it is feasible.

When the cost functions cj(·) are strictly convex, the
optimal solution to (2) is unique in d∗ and f∗ (θ∗ is also
unique up to an arbitrary reference angle). As a result, if the
constructed point x̃∗ is feasible, We can then conclude that
x̃∗ = x∗ (up to an arbitrary reference angle).

We now prove the feasibility of x̃∗. The construction of
x̃∗ ensures that (2e)(2f)(2g) are satisfied. If we can show that
f̃∗ = BCT θ̃∗, then since θ̃∗ is obtained by solving the DC
power flow equations from CBCT θ̃∗ = p̃∗, constraints (2c)
and (2d) are also satisfied, proving the feasibility of x̃∗. It
thus suffices show f̃∗ = BCT θ̃∗. To do so, we first establish
the following lemma:

Lemma 7. For any tree-partitioned area Nz in P , we have∑
j∈Nz

p∗j =
∑
j∈Nz

p̃∗j = 0.

Proof. Let 1Nz ∈ R|N | be the characteristic vector of
Nz , that is, the j-th component of 1Nz is 1 if j ∈ Nz
and 0 otherwise. Summing (2c) over j ∈ Nz , we have:∑
j∈Nz

p∗j = 1TNz
Cf = (ECf)z = 0, where (ECf)z is the

z-th row of ECf . If Nz = Nl, we have p̃∗j = 0 for j ∈ Nl
by construction and hence

∑
j∈Nz

p̃∗j = 0. For Nz 6= Nl,
we have p̃∗j = p∗j for any j ∈ Nz by construction. Thus,∑

j∈Nz
p̃∗j = 0, completing the proof.



Consider now an area Nw that is different from Nl. In
this case, we do not change the injections from x∗ when
constructing x̃∗, thus p∗j − p̃∗j = 0 for all j ∈ Nw. From
Lemma 7, we see that

∑
j∈Nz

(
p∗j − p̃∗j

)
= 0 for all z.

Since both (p∗, θ∗) and (p̃∗, θ̃∗) satisfy the DC power flow
equations, we have CBCT (θ∗ − θ̃∗) = p∗ − p̃∗.

Lemma 8. Let P = {N1,N2, · · · ,Nk} be the tree-
partitioned areas of G and consider a vector b ∈ Rn such
that bj = 0 for all j ∈ N1 and

∑
j∈Nz

bj = 0 for z 6= 1.
Then the Laplacian equation Lx = b is solvable, and any
solution x satisfies xi = xj for all i, j ∈ N 1, where
N 1 := {j : ∃ i ∈ N1 s.t. (i, j) ∈ E or (j, i) ∈ E}.

See [7] for a detailed proof of this lemma. By Lemma 8,
we then have θ∗j − θ̃∗j is a constant over N l, and thus θ̃∗i −
θ̃∗j = θ∗i − θ∗j for all i, j ∈ N l. This in particular implies
f̃∗e = f∗e = Be(θ

∗
i −θ∗j ) = Be(θ̃

∗
i − θ̃∗j ) for all e = (i, j)

such that i ∈ Nw or j ∈ Nw.
Finally, consider the area Nl. We have p̃∗j = 0 by

construction. From Lemma 7 we have
∑
j∈Nz

p̃∗j = 0 for all
z. Since CBCT θ̃∗ = p̃∗, we know θ̃∗i = θ̃∗j for all i, j ∈ N l.
This implies that for any edge e = (i, j) within Nl, we have
f̃∗e = 0 = Be(θ̃

∗
i − θ̃∗j ). and therefore f̃∗e = Be(θ̃

∗
i − θ̃∗j ) for

all e ∈ E , concluding the proof.

APPENDIX III
PROOF OF PROPOSITION 6

First, collect in the vector x = (θ, ω, d, f) ∈ R3n+m all
the decision variables of the UC optimization (2) and rewrite
it in a more standard form as

min
d≤d≤d

c(d) s.t. Ax ≤ g, Cx = h (4)

where A,C, g, h are matrices (vectors) of proper dimensions
that can be recovered from the full formulation in (2). Let
λ1, λ2 be the corresponding dual variables, and set λ :=
[λ1;λ2] ([·; ·] here means matrix concatenation as a column).
We can then write the Lagrangian for (4) as

L(x, λ) = c(p) + λT1 (Ax− g) + λT2 (Cx− h).

By the assumption UC2, we know that:

λ̇1 = [Ax− g]+λ1
, λ̇2 = Cx− h

with the projection operator [·]+a defined component-wise by
([x]+a )i = xi if xi > 0 or (a)i > 0, and ([x]+a )i = 0 otherwise.
Consider two closed convex sets S1 = {x | Ax ≤ g, Cx = h}
and S2 = {x | d ≤ d ≤ d}. If the optimization (2) is
infeasible, then S1 ∩ S2 = ∅. As a result, we can find a
hyper-plane that separates S1 and S2: more specifically, there
exists q ∈ R3n+m, q0 ∈ R such that

qTx > q0, ∀x ∈ S1 and qTx ≤ q0, ∀x ∈ S2.

This fact then implies that the system{
Ax ≤ g, Cx = h, qTx ≤ q0

}
is not solvable. By

Farkas’ Lemma, we can thus find vectors w1, w2, w3

such that w1 ≥ 0, w3 ≥ 0 (the inequality is
component-wise), ATw1 + CTw2 + qw3 = 0, and

gTw1 + hTw2 + q0w3 = −ε < 0. Define z = [w1;w2]. We
then see that under the UC controller, we have for any t:

zT λ̇(t) = wT1 [Ax(t)− g]+λ + wT2 (Cx(t)− h)
≥ wT1 [Ax(t)− g]+λ + wT2 (Cx(t)− h)

+ w3(q
Tx(t)− q0) (5a)

≥ wT1 (Ax(t)− g) + wT2 (Cx(t)− h)
+ w3(q

Tx(t)− q0) (5b)
=
(
ATw1 + CTw2 + qw3

)
x(t)

−
(
wT1 g + wT2 h+ w3q0

)
= 0 + ε > 0

where (5a) follows from w3 ≥ 0 and assumption UC1, which
ensures x(t) ∈ S2 and thus qTx(t) − q0 ≤ 0, and (5b)
comes from w1 ≥ 0 and the fact that [x]+λ ≥ x for all x
(the inequality is component-wise). Consequently,zTλ(t)−
zTλ(0) > εt and thus limt→∞ zTλ(t) = ∞. Finally,
by noting limt→∞ zTλ(t) ≤ wT1 lim supt→∞ |λ1(t)| +
|w2|T lim supt→∞ |λ2(t)| , the desired result follows.

APPENDIX IV
DETAILED SIMULATION SETUP

The original IEEE 118-bus test network is shown by the
solid lines and nodes in Fig. 6, in which the balancing areas
are connected by multiple tie-lines, yielding a trivial bridge-
block decomposition with a single bridge-block for the whole
network. For our experiments in Section VII-A, we switch
off three lines (15, 33), (19, 34), and (23, 24) to form a tree-
partitioned network with two bridge-blocks, shown as Area 1
and Area 2 (which consists of Area 2(a) and Area 2(b)) in the
diagram. For our experiments in Section VII-B, we further
switch off the lines (77, 82), (96, 97), (98, 100), (99, 100) to
create a tree-partitioned network with three bridge-blocks.

To provide a comprehensive comparison between the
proposed control strategy and AGC, we generate severall
failure scenarios as summarized in Table IV and simulate
the corresponding cascading processes. We adopt data from
MatPower [23] as the nominal load profile, and add up to 25%
random perturbations to the base value. For k = 1, 2, 3 initial
line failures, we generate 100, 15, and 15 load profiles and
further compute the optimal generation dispatch by DC OPF.
For each load profile, we iterate over every single transmission
line failure, and sample 3,000 and 5,000 failure scenarios for
k = 2, 3 line failures respectively. In total, 136,000 failure
scenarios are simulated for each control method.

TABLE IV: Simulation setup for N − k security evaluation.
Case k = 1 k = 2 k = 3

# of Load Profiles 100 15 15
# of Sampled Failures 186 3000 5000

Total Scenarios 18600 45000 75000

APPENDIX V
RECOVERING PREVIOUS MODELS

The dynamic model (1) in Section II models secondary
frequency control where the frequency deviations ω(t) are
driven to zero. When we focus on controllers that only achieve
primary frequency control, the equilibrium frequency ω∗ may
be nonzero. That is, as the system converges in this sense,
the phase angles θ∗(t) do not necessarily stay at a constant
value, but may change in constant rate over time. In such
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Fig. 6: One line diagram of the IEEE 118-bus test network.

context, we can modify (1) as follows to describe primary
frequency dynamics:

Mjω̇j = rj + dj −Djωj −
∑
e∈E

Cjefe, j ∈ N (6a)

fij = Bij(θi − θj), (i, j) ∈ E . (6b)

By relaxing the requirement on ω∗ = 0 at equilibrium, the
above model enables extra freedom in the choice of dj . We
now show that by using the classical droop control [21] as
the dynamics for dj’s in (6), the cascading failure models
from [20] and previous literature such as [6], [18] can be
readily recovered. Indeed, as shown in [10], the closed-loop
equilibrium of (6) under droop control is the unique4 optimal
solution to the following optimization on the post-contingency
network:

min
θ,ω,d,f

∑
j∈N

d2j
2Zj

+
Djw

2
j

2
(7a)

s.t. r − d−Dω = Cf (7b)
f −BCT θ = 0 (7c)
p
j
≤ rj − dj ≤ pj , j ∈ N , (7d)

where Zj’s are the generators’ participation factors [21]. By
plugging (7c) into (7b), it is easy to check that any feasible
point x = (θ, ω, d, f) of (7) satisfies

∑
j rj =

∑
j(dj +

4The equilibrium is unique up to an arbitrary reference phase angle.

Djωj). Cauchy-Schwarz inequality then implies that(∑
j∈N

rj

)2
=
[∑
j∈N

(
dj +Djωj

)]2
≤
∑
j∈N

( d2j
2Zj

+
Djω

2
j

2

)∑
j∈N

(
2Zj + 2Dj

)
,

for which equality holds if and only if

dj =
Zj∑

j

(
Zj +Dj

) ∑
j

rj , ωj =

∑
j rj∑

j

(
Zj +Dj

) . (8)

Therefore, if the control limits (7d) are not active, (8) is
always satisfied at the optimal point x∗ = (θ∗, ω∗, d∗, f∗).

Now, consider a line e being tripped from the transmission
network G, and for simplicity assume the control limits (7d)
are not active. If e is a bridge, the tripping of e results in two
islands of G, say D1 and D2, and two optimization problems
(7) correspondingly. For l = 1, 2,

∑
j∈Dl

rj represents the
total net power imbalance in Dl, and therefore (8) implies
that droop control adjusts the system injections so that the
power imbalance is distributed to all generators proportional
to their participation factors in both D1 and D2. If e = (i, j)
is not a bridge, denoting the original flow on e before it is
tripped as fe, then ri = fe, rj = −fe and rk = 0 otherwise.
As a result, we have

∑
j∈N rj = 0 in this case and thus

(8) implies the system operating point remains unchanged in
equilibrium, i.e., dj = ωj = 0,∀j ∈ N . Moreover, one can
show that this still holds when (7d) is active with a more
involved analysis on the KKT conditions of (7). This droop
control mechanism recovers the failure propagation model
in [20] and underlies some of previous results in the literature
on cascading failures in power systems [5], [6], [18].
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