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a b s t r a c t 

We explore the possibility to compare positions in different directed and undirected graphs. We assume 

an agent to have a preference relation over positions in different weighted (directed and undirected) 

graphs, stating pairwise comparisons between these positions. Ideally, such a preference relation can be 

expressed by a utility function, where positions are evaluated by their assigned ‘utility’. Extending pref- 

erence relations over the mixture set containing all lotteries over graph positions, we specify axioms on 

preferences that allow them to be represented by von Neumann–Morgenstern expected utility functions. 

For directed graphs, we show that the only vNM expected utility function that satisfies a certain risk 

neutrality, is the function that assigns to every position in a weighted directed graph the same linear 

combination of its outdegree and indegree . For undirected graphs, we show that the only vNM expected 

utility function that satisfies this risk neutrality, is the degree measure that assigns to every position in 

a weighted graph its degree. In this way, our results provide a utility foundation for degree centrality 

as a vNM expected utility function. We obtain the results following the utility approach to the Shapley 

value for cooperative transferable utility games of Roth (1977b), noticing that undirected graphs form a 

subclass of cooperative games as expressed by Deng and Papadimitriou (1994). For directed graphs, we 

extend this result to a class of generalized games. Using the relation between cooperative games and 

networks, we apply our results to some applications in Economics and Operations Research. 

© 2021 Published by Elsevier B.V. 
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. Introduction 

Network theory and network centrality play a growing role in 

he analysis of economic organizations. Network theory is devel- 

ped in a wide variety of disciplines. The fact that the theory of 

conomic and social networks have a strong connection is illus- 

rated by, for example, the often cited book Social and Economic 

etworks of Jackson (2008) . Whereas economic networks usually 

tudy economic processes that take place on a network (such as 

rade networks, firm hierarchies, etc.), in social networks usually 

he analysis of centrality is solely based on the information about 
� This research has been initiated when René van den Brink was Visiting Profes- 
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usinowska acknowledges the support by the National Agency for Research (Agence 
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icularly Stefano Moretti for pointing out the relation between graphs and coopera- 

ive TU-games. 
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he network structure. Although social network centrality mea- 

ures are often applied in economic models, a foundation of net- 

ork centrality measures as utility functions is missing. The main 

oal of the underlying paper is to provide a first step in such a 

oundation. 

In this paper, we consider weighted (directed and undirected) 

etworks, where each bilateral link has a nonnegative weight. We 

ssume an agent to have a preference relation over network po- 

itions in different weighted directed networks, stating pairwise 

omparisons between these network positions. Under certain con- 

itions, this preference relation can be expressed by a utility func- 

ion over network positions, meaning that the agent prefers a par- 

icular network position over another position if and only if the 

utility” of the first position is greater than that of the second 

osition. Extending the preference relation over the mixture set 

ontaining all lotteries over network positions, we specify axioms 

n the preferences that allow them to be represented by a von 

eumann–Morgenstern expected utility function ( von Neumann & 

orgenstern, 1944 ). In this way, we can compare different network 

ositions in different networks. Questions that can be addressed in 

his context are, for example, does an agent prefer to be the top of 

https://doi.org/10.1016/j.ejor.2021.10.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2021.10.017&domain=pdf
mailto:jrbrink@feweb.vu.nl
mailto:agnieszka.rusinowska@univ-paris1.fr
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 small organization or a middle manager in a large organization 

directed networks), or does an agent prefer to be in the fringe of 

 large network or in the center of a small network (undirected 

etworks)? 

Mathematically, a utility function over network positions as de- 

cribed above, is identical to a social network power measure (for 

irected networks) or centrality measure (for undirected networks). 

he study of network centrality originates from the social network 

iterature where different types of network centrality are distin- 

uished such as degree, closeness, betweenness, prestige, etc. Var- 

ous centrality measures are developed measuring these types of 

entrality. In the literature on cooperative transferable utility (TU) 

ames, Roth (1977b) developed a utility theory where an agent has 

 preference relation over different player roles in different cooper- 

tive TU-games. Requiring certain axioms on these preference rela- 

ions, he gave interpretations to game solutions, such as the Shap- 

ey value ( Shapley, 1953 ) and Banzhaf value ( Banzhaf, 1965 ) as von

eumann–Morgenstern expected utility functions over player roles 

n different games. A crucial axiom is ordinary risk neutrality which 

nvolves the uncertainty that arises from lotteries. 

Applied to networks, neutrality to ordinary risk means that an 

gent is indifferent between taking a position in a convex combi- 

ation of two networks, and playing a lottery over the two net- 

orks with the corresponding probabilities. Assuming some regu- 

arity axioms on network preference relations, we show that regu- 

ar preferences are neutral to ordinary risk if and only if they can 

e represented by a utility function that assigns to every network 

osition in any network a linear combination of its outdegree and 

ndegree (for directed networks), respectively, its degree (for undi- 

ected networks). 1 In this way, the degree measures can be seen 

s a von Neumann–Morgenstern expected utility function for posi- 

ions in networks. 

For undirected networks, this also gives a third important in- 

erpretation of the degree measure, besides its known myopic and 

arsighted interpretation. The myopic interpretation of the degree 

easure is that it is a centrality measure that only takes account 

f direct relations, and completely ignores indirect relations. How- 

ver, it can also be considered as a farsighted centrality measure 

n the sense that for a simple connected network, the probability 

hat a random walk will be found at a node in the limit of long

ime is proportional to the degree of that node, see e.g. Newman 

2010) page 159. 

We finally apply our results to three applications in Economics 

nd Operations Research. As argued by Deng & Papadimitriou 

1994) , weighted undirected graphs can be equivalently repre- 

ented by cooperative 2-additive games, being zero-normalized 

ames where the worth of every coalition containing at least two 

layers equals the sum of the worths of its two-player subcoali- 

ions (see Appendix A for more details). This implies that all appli- 

ations in Economics and Operations Research that are modelled as 

-additive games can be represented as graphs. Using this insight, 

e apply our results to three classes of 2-additive games: broad- 

asting games, queueing games and telecommunication games. 

elated literature In this paper, we use the approach of Roth 

1977b) to interpret the degree centrality measure as an expected 

tility function. Building on the utility theory over mixture sets of 

erstein & Milnor (1953) , Roth (1977b) develops a foundation of 

he Shapley value as a von Neumann–Morgenstern expected utility 

unction reflecting preferences over player positions in cooperative 

ames which permits to compare being different players in differ- 

nt games, see also Roth (1977a, 1977c, 1988) , for related studies 

n this issue. Roth (1977b) extends the preference relation to lot- 
1 Under these conditions, also any positive affine transformation of the degree 

easure represents these preferences. 

t

1034 
eries over games and shows that the Shapley value is an expected 

tility function reflecting preferences neutral to both ordinary and 

trategic risk. 2 Deng & Papadimitriou (1994) argues that any undi- 

ected network can be represented by a TU-game, more specifically 

y a so-called 2-additive game , and shows that the Shapley value 

f the associated game assigns to every player half of its degree 

n the network, see Appendix A. Whereas Roth (1977b) uses both 

rdinary and strategic risk neutrality, we only need to consider the 

rst type of risk. 

The degree measure is one of the most natural and famous 

entrality concepts which can be seen as an index of the node’s 

ommunication ability. A simple network is a network where the 

inks have either weight zero or one, reflecting that we only know 

hether a link is present or not, but nothing is known about the 

strength” of the links. In such simple networks, the degree of a 

ode boils down to the number of links formed by that node, i.e. 

he number of its neighbours. Inspired by some experimental stud- 

es, Shaw (1954) presents the degree centrality as a measure to 

e used for predicting the behavior of individuals in small groups. 

ieminen (1974) and van den Brink & Gilles (20 0 0) analyze the 

egree centrality from an axiomatic point of view. 

The present paper is also related to the literature on social net- 

orks and centrality; for some pioneering articles see e.g. Bavelas 

1948, 1950) , Katz (1953) , Beauchamp (1965) , Sabidussi (1966) , 

reeman (1977, 1979) , and Bonacich (1972, 1987) , for surveys see 

.g. Borgatti (2005) , Goyal (2007) , Jackson (2008) , and Newman 

2010) . Our research is particularly related to works using the 

xiomatic approach to centrality measures. This stream of litera- 

ure focusses mainly on specific centrality measures. For instance, 

arg (2009) characterizes axiomatically the degree, decay and 

loseness centralities. Bouyssou & Marchant (2018) and van den 

rink & Gilles (20 0 0) axiomatize power measures for directed net- 

orks. Some prestige and eigenvector-related centrality measures 

re characterized in Palacios-Huerta & Volij (2004) , Slutzki & Volij 

2006) , Dequiedt & Zenou (2017) , and Kitti (2016) . Bloch, Jackson, 

 Tebaldi (2016) characterizes the standard centrality measures 

ithin a unified framework and shows that they all are charac- 

erized by a common set of axioms. Although the present paper 

lso uses the axiomatic approach to centrality measures and char- 

cterizes the degree measure, our main aim is to show that this 

easure can be interpreted as an expected utility function reflect- 

ng preferences over positions in weighted networks. 

An issue closely related to centrality is the ranking of nodes 

hich is treated by using a ranking method . Formally, a ranking 

ethod assigns to every (weighted) network a (complete) preorder 

n the set of nodes. This preorder is a ranking of the nodes in or-

er of “importance” or “centrality” in the network. Various rank- 

ng methods are characterized in the literature, in particular, meth- 

ds based on directed networks, see e.g. Rubinstein (1980) for the 

anking by outdegree on the class of tournaments, see also Henriet 

1985) and Bouyssou (1992) for the ranking by Copeland score 

 Bouyssou & Perny, 1992; van den Brink & Gilles, 2003; Copeland, 

951 ) for the ranking by outdegree for arbitrary directed networks, 

an den Brink & Rusinowska (2021) for the degree ratio rank- 

ng method for directed networks, and van den Brink & Gilles 

2009) for the outflow ranking method for weighted directed net- 

orks. Du, Lehrer, & Pauzner (2015) investigates ranking of items 

n a network determined by choice of utility function. More pre- 

isely, the network is transformed into an exchange economy and 

he competitive equilibrium prices of the network nodes are used 

or the ranking. Some recent studies characterize ranking methods 

ased on evaluations or citations which consider one-sided set- 

ings (e.g. Demange, 2014 ) and ranking methods in two-sided set- 
2 For an overview of Roth’s approach to the Shapley value, see also Pintér (2014) . 
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ings (e.g. Demange, 2017 ). An important difference between such 

anking methods and the topic of this paper is that ranking meth- 

ds only compare the positions in one and the same network. This 

s useful if one wants to rank, for example, teams in a sports com- 

etition, alternatives in a preference relation, web pages on the in- 

ernet, etc. Besides such comparisons within one network, a main 

oal of the underlying paper is to compare positions in different 

etworks. For example, we want to know if an agent prefers a 

central” position in a small network to a position in the fringe 

f a large network. In order to answer these questions we need to 

e able to compare positions in different networks. 

This paper is organized as follows. In Section 2 , we discuss pre- 

iminaries on networks and Herstein & Milnor (1953) ’s expected 

tility theory over mixture sets. In Section 3 , we characterize linear 

ombinations of the out- and indegree measures as von Neumann–

orgenstern expected utility functions for directed networks. We 

se as intermediary results axiomatizations of these measures as 

ower measure for directed networks, and relate properties of net- 

ork power measures to properties of preference relations over 

irected network positions. In Section 4 , we consider undirected 

etworks, which form a special subclass of directed networks. 

n Section 5 we discuss three applications. Section 6 contains 

oncluding remarks. The paper ends with three appendices: Ap- 

endix A on networks as cooperative games, Appendix B contain- 

ng proofs, and Appendix C showing logical independence of the 

xioms in our main theorem. 

. Preliminaries 

In this section, we present basic concepts and notation that will 

e used in the paper. 

eighted directed graphs 

A weighted directed graph, or weighted digraph for short, is a 

air (N, ω) consisting of a finite set of nodes N ⊂ IN that can rep-

esent individuals or agents, and a directed weight function ω : 

 × N → R + assigning to every arc (i, j) ∈ N × N (i.e., to every or-

ered pair of nodes) a nonnegative weight ω(i, j) . An arc (i, j) rep-

esents a directed bilateral relationship between nodes i and j. In 

his model, a weight ω(i, j) = 0 means that there is no arc from

ode i to node j. We only consider weighted digraphs that satisfy 

(i, i ) = 0 for every i ∈ N. We denote the collection of all directed

eight functions on N by WD 

N . We often refer to a weighted di- 

raph simply as a directed graph or digraph. Since we take the set 

f nodes N to be fixed, we represent a weighted digraph (N, ω) by 

ts directed weight function ω. 

A power measure for digraphs is a function f : WD 

N → IR 

N that 

ssigns a real number to every node in every digraph. The outde- 

ree of node i in weighted digraph ω is the sum of the weights of 

 ’s outgoing arcs, and thus is defined by 

ut i (ω) = 

∑ 

j∈ N 
ω(i, j) (1) 

he indegree of node i in weighted digraph ω is the sum of the 

eights of its ingoing arcs, and is given by 

n i (ω) = 

∑ 

j∈ N 
ω( j, i ) (2) 

The outdegree-, respectively indegree, measure is the centrality 

easure that assigns to any node i in any digraph ω its outdegree 

ut i (ω) , respectively its indegree in i (ω) . Let �(N) be the collection

f all permutations π : N → N. 3 For a digraph ω ∈ WD 

N and a per-

utation π ∈ �(N) , the permuted digraph πω ∈ WD 

N is given by 

ω(i, j) = ω(π−1 (i ) , π−1 ( j)) for every (i, j) ∈ N × N. 
3 A permutation is a bijection π : N → N, and thus for every i ∈ N there is exactly 

ne j ∈ N such that π( j) = i . 

g

a

f

1035 
We say that node i ∈ N is isolated in ω ∈ WD 

N if ω(i, j) =
( j, i ) = 0 for all j ∈ N. We denote the set of weighted digraphs

here i is an isolated node by WD 

N 
i 

. Further, we denote by 

 

0 ∈ WD 

N the empty digraph given by ω 

0 (i, j) = 0 for all i, j ∈
. Furthermore, ω 

i ∈ WD 

N is the standard outward oriented star 

raph with i as center, given by ω 

i (i, j) = 1 for all j ∈ N \ { i } , and

 

i (h, j) = 0 otherwise. 

eighted undirected graphs 

A weighted undirected graph is a pair (N, ω) consisting of a fi- 

ite set of nodes N ⊂ IN and a weight function ω : L c → R + , where

 

c = {{ i, j} | i, j ∈ N, i � = j} denotes the complete undirected graph

n N. An element { i, j} ∈ L c is a subset of N of size two and is

alled a link . A link { i, j} represents a certain bilateral relation- 

hip between nodes i and j. A weight function gives a nonnega- 

ive weight ω({ i, j} ) to every link that can be interpreted as the

importance” or “strength” of that relationship. By WG N we denote 

he collection of all weight functions on N. When there is no con- 

usion, in this paper we refer to a weighted undirected graph sim- 

ly as a graph. A graph with ω({ i, j} ) ∈ { 0 , 1 } for all { i, j} ∈ L c , is

sually called a simple graph. A simple graph just describes the re- 

ationships that are present, but says nothing about their intensity. 

ince N is assumed to be fixed, we represent a graph (N, ω) by the 

eight function ω. 4 

A centrality measure for undirected graphs is a function f : 

G N → IR 

N that assigns a real number to every node in every undi- 

ected graph that reflects the “centrality” of the nodes in the graph. 

he degree of node i ∈ N in graph ω is defined as the sum of the

eights of all links containing i , and thus is given by 

 i (ω) = 

∑ 

j∈ N\{ i } 
ω({ i, j} ) (3) 

The degree measure is the centrality measure that assigns to any 

ode i in any graph ω its degree d i (ω) . 

We can consider the class of undirected graphs as a special 

ubclass of directed graphs, where an undirected graph ω ∈ WG N 
an be represented by the digraph ω ∈ WD 

N given by ω (i, j) = 

 ( j, i ) = ω({ i, j} ) for all { i, j} ∈ L c . Note that, in that case, both the

ndegree as well as the outdegree of every node i ∈ N in ω , equals 

 ’s degree in ω, showing that both the outdegree as well as the 

ndegree can be seen as generalizations of the degree. 

For a graph ω ∈ WG N and a permutation π ∈ �(N) , 

he permuted graph πω ∈ WG N is given by πω({ i, j} ) = 

({ π−1 (i ) , π−1 ( j) } ) for every { i, j} ∈ L c . 

We say that node i ∈ N is isolated in ω ∈ WG N if ω({ i, j} ) = 0 for

ll j ∈ N. We denote the set of weighted undirected graphs where 

 is an isolated node by WG N 
i 

. Further, we denote by ω 

0 ∈ WG N 

he empty graph given by ω 

0 ({ i, j} ) = 0 for all i, j ∈ N. By ω 

i ∈
G N , we denote the simple star graph with i as center given by 

 

i ({ i, j} ) = 1 for all j ∈ N \ { i } and ω 

i ({ h, j} ) = 0 if i �∈ { h, j} . 
xpected utility 

We recapitulate the utility theory on mixture sets of Herstein 

 Milnor (1953) (for some related works and literature on lin- 

ar utility representation theorems, see e.g. Trockel, 1989; Trockel, 

992 , and Neuefeind & Trockel, 1995 ). Consider a set M. The (sim-

le) lottery between two elements a, b ∈ M where element a oc- 

urs with probability p ∈ [0 , 1] is denoted by [ pa ; (1 − p) b] . A set

is a mixture set if for any a, b ∈ M and any p ∈ [0 , 1] , the lottery

 pa ; (1 − p) b] also belongs to M. Notice that this implies that also

ll compound lotteries, i.e. lotteries over lotteries, etc., belong to 
4 Notice that ω(i, j) , respectively, ω({ i, j} ) clarifies whether we consider directed 

raphs or undirected graphs. Moreover, the cases of directed and undirected graphs 

re presented in separate sections, i.e., in Sections 3 and 4, respectively, and there- 

ore it will be clear from the context if we deal with WD N or WG N . 
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5 We could do with the weaker axiom that requires that there is at least one 

position that is strictly better than being isolated, but in most applications it seems 

reasonable that this holds for the center of a star. 
6 As shown in the proof of Theorem 1 in Appendix B, α cannot be equal to zero 

since (i) the utility of a node in the empty digraph equals zero, and (ii) the utility 

of being the center of the outward oriented star is α times its outdegree (being 

| N| − 1 ). Therefore, ‘center of the star is strictly better than being isolated’ (Axiom 

7 ), implies that α shoud be positive. 
. It is assumed that for all a, b ∈ M and p, q ∈ [0 , 1] , the following

tandard equalities hold: 

[1 a ; 0 b] = a, [ pa ; (1 − p) b] = [(1 − p) b; pa ] , 

[ q [ pa ; (1 − p) b] ; (1 − q ) b] = [ pqa ; (1 − pq ) b] . (4) 

A preference relation on M is a binary relation � with the inter- 

retation that a � b means that “a is at least as good as b”. 

A function u : M → R is an expected utility function representing 

he preference relation � if for all a, b ∈ M and p ∈ [0 , 1] , it holds

hat 

(i ) u (a ) ≥ u (b) if and only if a � b , and 

ii ) u ([ pa ; (1 − p) b]) = pu (a ) + (1 − p) u (b) . (5) 

It is well-known that, if u is an expected utility function rep- 

esenting the preference relation �, then also every positive affine 

ransformation ū given by ū (a ) = αu (a ) + β , for some α > 0 , β ∈
 , represents this preference relation. We write [ a 	 b] if [ a � b and

 �� a ] , and [ a ∼ b] if [ a � b and b � a ] . The following axioms guar-

ntee that an expected utility function representing � exists. 

xiom 1 (Completeness) . For any a, b ∈ M, either a � b or b � a . 

xiom 2 (Transitivity) . For any a, b, c ∈ M such that a � b and b �
, it holds that a � c. 

xiom 3 (Continuity) . For any a, b, c ∈ M, the sets { p | [ pa ; (1 −
p) b] � c} and { p | c � [ pa ; (1 − p) b] } are closed. 

xiom 4 (Substitutability) . If a, a ′ ∈ M and a ∼ a ′ , then for every

 ∈ M, [ 1 2 a ; 1 
2 b] ∼ [ 1 2 a 

′ ; 1 
2 b] . 

We assume throughout the paper that preferences satisfy these 

xioms. We refer to preferences satisfying these axioms as regular 

references. 

. Centrality and utility in digraphs 

We refer to a pair (i, ω) ∈ N × WD 

N as a digraph position . We

ssume that a preference relation � is defined on the set N × WD 

N 

f digraph positions. We interpret (i, ω) � ( j, ω 

′ ) as “it is at least

s good to be in the position of node i in digraph ω as to be in the

osition of node j in digraph ω 

′ ”. Let M be the mixture set gener- 

ted by all digraph positions (i, ω) ∈ N × WD 

N containing all sim- 

le and compound lotteries over digraph positions, lotteries over 

otteries, etc. For (i, ω) , ( j, ω 

′ ) ∈ N × WD 

N and p ∈ [0 , 1] , the lot-

ery [ p(i, ω) ; (1 − p)( j, ω 

′ )] considers a type of risk with respect to

aking a position in a digraph. It means that with probability p the 

gent takes the position of node i in digraph ω, and with prob- 

bility (1 − p) he takes the position of node j in digraph ω 

′ . We

xtend the preference relation over digraph positions to the mix- 

ure set M. Then an expected utility function for digraph positions 

s a function φ : M → IR assigning a utility value to every mixture 

f digraph positions satisfying conditions (5) . 

Inspired by Roth (1977b) , besides the standard axioms on mix- 

ure sets stated in the preliminaries (Axioms 1 –4 ), we introduce 

ome axioms that are specific for preferences over digraph posi- 

ions. 

Anonymity (Axiom 5 ) requires that relabeling the nodes in a di- 

raph yields a corresponding reordering in the preference relation. 

xiom 5 (Anonymity) . For all ω ∈ WD 

N , i ∈ N and π ∈ �(N) , it

olds that (i, ω) ∼ (π(i ) , πω) . 

The following two axioms, Axioms 6 and 7 below, compare dif- 

erent digraph positions, expressing what is the worst that can 

appen, and specifying at least one digraph position that is strictly 

etter than a worst position. Regarding what is the worst, we as- 

ume that an agent weakly prefers any position in any digraph 

bove being isolated. 
1036 
xiom 6 (Isolated is the worst) . For all i ∈ N, ω ∈ WD 

N and ω 

′ ∈
D 

N 
i 

, i.e., i is isolated in ω 

′ , it holds that (i, ω) � (i, ω 

′ ) . 

Notice, that this implies that an agent is indifferent between 

ny two digraphs where he is isolated. Specifically, an agent is in- 

ifferent between being in the empty graph ω 

0 and being isolated 

n any other digraph. We want to remark that this rules out ex- 

ernalities in the sense that as long as an agent is isolated, he is 

ndifferent with respect to the way the other nodes are connected. 

lthough from an economic viewpoint there might be reason why 

uch externalities exist, this property is satisfied by almost all so- 

ial network centrality measures. 

Next, we assume that it is strictly better to be the center of the 

utward oriented star graph ω 

i , than being in the empty graph. 5 

xiom 7 (Center of the star is strictly better than being iso- 

ated) . For all i ∈ N, it holds that (i, ω 

i ) 	 (i, ω 

0 ) . 

Finally, we apply one of the two risk neutrality axioms in- 

roduced by Roth (1977b) for TU-games, namely neutrality to or- 

inary risk . For p ∈ [0 , 1] , consider the convex combination pω +
1 − p) ω 

′ of two digraphs ω and ω 

′ , i.e. (pω + (1 − p) ω 

′ )(i, j) =
p · ω(i, j) + (1 − p) · ω 

′ (i, j) for all i, j ∈ N. Neutrality to ordinary 

isk requires that an agent is indifferent between taking a position 

n digraph pω + (1 − p) ω 

′ for sure, and playing a lottery over the

igraphs ω and ω 

′ with the corresponding probabilities. 

xiom 8 (Neutrality to ordinary risk) . For all ω , ω 

′ ∈ WD 

N and i ∈
, it holds that (i, pω + (1 − p) ω 

′ ) ∼ [ p(i, ω) ; (1 − p)(i, ω 

′ )] . 

Neutrality to ordinary risk reflects a risk neutrality with re- 

pect to lotteries in situations where the outcome (in this case the 

eights of links) is unknown, but the probability distribution over 

he outcomes is known. As we will see below, this allows an agent 

o make decisions based on expected utility, which is a common 

ractice in Economics and Operations Research. 

It turns out that a utility function for digraph positions that 

epresents regular preferences satisfying the four axioms of this 

ection, must be a linear combination of the outdegree and in- 

egree measures with positive weight on the outdegree and non- 

egative weight on the indegree measure. By scale invariance, this 

mplies that such a preference relation can be represented by a 

onvex combination of the outdegree and indegree measures with 

ositive weight on the outdegree. 

heorem 1. The utility function φ represents a regular preference re- 

ation that satisfies anonymity, isolated is the worst, center of the star 

s strictly better than being isolated, and neutrality to ordinary risk 

f and only if there exists α ∈ (0 , 1] such that φ(i, ω) = α · out i (ω) +
1 − α) · in i (ω) for all (i, ω) ∈ N × WD 

N , where out i (ω) and in i (ω)

re, respectively the outdegree and indegree of node i in digraph ω, 

ee (1) and (2) . 

The proof of Theorem 1 and all other results of this section, 

an be found in Appendix B. We show logical independence of the 

xioms in Theorem 1 in Appendix C. 

The class of utility functions/power measures characterized in 

his theorem contains the outdegree ( α = 1 ) and the average of the 

ut- and indegree ( α = 

1 
2 ) as special cases. 6 

Theorem 1 can be shown by (i) characterizing the linear com- 

inations of the outdegree and indegree measures as those power 
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easures that satisfy four properties of power measures for di- 

raphs ( Proposition 1 below), and (ii) relating those four graph 

easure properties to properties of preference relations over di- 

raph positions ( Lemma 1 below). 

Note that power measures f and utility functions φ are math- 

matically the same and both assign values to nodes in digraphs, 

ut their interpretations are different. Because of this difference in 

nterpretation, we use different notation. In this paper, we bring 

hese interpretations together. 

First, anonymity of a power measure means that the labeling of 

he nodes in a digraph has no effect on their power. 7 

roperty 1 (Anonymity) . For every ω ∈ WD 

N and permutation π ∈ 

(N) , it holds that f i (ω) = f π(i ) ( πω ) . 

Second, the isolated node property requires that the power of 

n isolated node does not depend on the structure of the rest of 

he graph. Notice that this implies that for isolated nodes there are 

o externalities with respect to how other nodes are connected. 

roperty 2 (Isolated node property) . For every ω , ω 

′ ∈ WD 

N 
i 

, i.e., i ∈
is isolated in both digraphs, it holds that f i (ω) = f i (ω 

′ ) . 

Scale invariance states that if the weights of all arcs in a di- 

raph are multiplied by a common factor, then the powers of the 

odes in that digraph are multiplied by the same factor. 

roperty 3 (Scale invariance) . Let ω ∈ WD 

N and α ∈ IR + . Then 

f (αω) = α f (ω) , where αω ∈ WD 

N is given by αω(i, j) = α · ω(i, j)

or all i, j ∈ N, i � = j. 

Finally, additivity means that the power in the digraph obtained 

y adding two digraphs, is equal to the sum of the powers of these 

wo digraphs. 

roperty 4 (Additivity) . For ω , ω 

′ ∈ WD 

N , it holds that f (ω + ω 

′ ) =
f (ω) + f (ω 

′ ) , where (ω + ω 

′ )(i, j) = ω(i, j) + ω 

′ (i, j) for all i, j ∈
, i � = j. 

These four properties characterize the linear combinations of 

he outdegree- and indegree measures. 

roposition 1. A power measure f on WD 

N satisfies anonymity, the 

solated node property, scale invariance and additivity, if and only if 

f ∈ Lin { out, in } , i.e., there exist α, β ∈ IR such that 

f i (ω) = α · out i (ω) + β · in i (ω) for all (i, ω) ∈ N × WD 

N . (6)

Although a further characterization of specific values of α and 

is beyond the goal of this paper, intuitively, (i) when α = β out- 

oing and ingoing arcs are evaluated equally, which is reasonable 

hen ‘connectedness’ is the main issue irrespective of the role on 

he arc, while (ii) with β = 0 , α > 0 only outgoing arcs are taken

nto account when evaluating the desirability of graph positions, 

nd thus it fully focusses on ‘dominance’. 8 

Theorem 1 follows from Proposition 1 by the following lemma 

hich shows how the four properties for graph power measures 

re implied by the axioms on preferences discussed before. 

emma 1. Consider an expected utility function φ : N × WD 

N → IR 

or positions in a digraph that is determined by a power measure f

s follows: φ(i, ω) = f i (ω) . 
7 For some properties, we use the same name for preference relations as for 

ower measures. The context makes clear if we speak about preferences or power 

easures. 
8 It follows from the proof of Proposition 1 in the appendix that adding score 

ormalization as in van den Brink & Gilles (20 0 0) , requiring that for every digraph 

he sum of the power values equals the sum of the weights over all arcs in the 

igraph, implies that β = 1 − α. 

A

l

A  

N

a

r

1037 
(i) If expected utility function φ represents a regular preference re- 

lation � satisfying anonymity (Axiom 5 ), then power measure 

f satisfies anonymity. 

(ii) If expected utility function φ represents a regular preference re- 

lation � satisfying isolated is the worst (Axiom 6 ), then power 

measure f satisfies the isolated node property. 

(iii) If expected utility function φ represents a regular preference 

relation � satisfying anonymity, isolated is the worst and ordi- 

nary risk neutrality (Axioms 5 , 6 , 8 ), then f is a power measure

that satisfies scale invariance and additivity. 

Notice that Proposition 1 and Lemma 1 directly imply that the 

xioms in Theorem 1 determine that the utility function is a linear 

ombination of the indegree and outdegree measure. The proofs of 

roposition 1, Lemma 1 and Theorem 1 can be found in Appendix 

. 

Our main result ( Theorem 1 ) gives an interpretation of 

ower measures for digraphs as von Neumann–Morgenstern ex- 

ected utility functions. Using Lemma 1 , this follows from 

roposition 1 which is a social network result that characterizes 

he (linear combinations of the) outdegree- and indegree measures 

s a digraph power measure. Lemma 1 “bridges” social network 

heory with economic utility theory in the sense that properties 

f preference relations are related to properties of power measures 

epresenting these preferences. 

In Section 5 , we implement the axioms on preference relations 

nd power measures in terms of broadcasting games, queueing 

ames and telecommunication games. First, in the next section we 

onsider undirected graphs. 

. Centrality and utility in undirected graphs 

Next, we consider the subclass of undirected graphs, and inter- 

ret centrality measures for undirected graphs as von Neumann–

orgenstern expected utility functions. We refer to a pair (i, ω) ∈ 

 × WG N as a (undirected) graph position . Similar as in the previ- 

us section on digraphs, we assume that a preference relation � is 

efined on the set N × WG N of undirected graph positions, and in- 

erpret (i, ω) � ( j, ω 

′ ) as “it is at least as good to be in the position

f node i in graph ω as to be in the position of node j in graph ω 

′ ”.

et M again be the mixture set generated by all undirected graph 

ositions (i, ω) ∈ N × WG N containing all simple and compound 

otteries over graph positions. Preference relations �, expected util- 

ty functions φ : M → IR and lotteries [ p(i, ω) ; (1 − p)( j, ω 

′ )] , are

efined similar as in the previous section for the more general di- 

ected graphs. 

Besides the standard axioms stated in the preliminaries, we 

se the axioms of the previous section, but applied to undirected 

raphs. For completeness, we explicitly give the axioms for undi- 

ected graphs, although three of them are obtained by directly ap- 

lying the corresponding axioms of the previous section by putting 

or each link { i, j} two arcs, (i, j) and ( j, i ) , oriented in opposite di-

ections. 

xiom 9 (Anonymity) . For all ω ∈ WG N , i ∈ N and π ∈ �(N) , it

olds that (i, ω) ∼ (π(i ) , πω) . 

xiom 10 (Isolated is the worst) . For all i ∈ N, ω ∈ WG N and ω 

′ ∈
G N 

i 
, i.e., i is isolated in ω 

′ , it holds that (i, ω) � (i, ω 

′ ) . 

xiom 11 (Center of the star is strictly better than being iso- 

ated) . For all i ∈ N, it holds that (i, ω 

i ) 	 (i, ω 

0 ) . 

xiom 12 (Neutrality to ordinary risk) . For all ω , ω 

′ ∈ WG N and i ∈
, it holds that (i, pω + (1 − p) ω 

′ ) ∼ [ p(i, ω) ; (1 − p)(i, ω 

′ )] . 

Notice that Axioms 9, 10 and 12 are stated exactly the same 

s the corresponding axioms in the previous section, and are di- 

ect applications of these axioms to the special class of undirected 
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raphs. Regarding Axiom 11 , the outward oriented star in directed 

raphs, that is used in Axiom 7 , cannot be represented as an undi-

ected graph, and alternatively is replaced by the star in undirected 

raphs. 9 

The main result of this section characterizes the degree mea- 

ure for undirected graphs as expected utility function that repre- 

ents a regular preference relation that is neutral to ordinary risk. 

heorem 2. A preference relation � over graph positions N × WG N 
s regular and satisfies anonymity, isolated is the worst, center of the 

tar is strictly better than being isolated, and neutrality to ordinary 

isk if and only if it can be represented by utility function φ(i, ω) =
 i (ω) for all (i, ω) ∈ N × WG N , where d i (ω) is the degree of node i

n graph ω, see (3) . 

This theorem gives the degree measure, which is a well-known 

entrality measure in social network theory, an interpretation as a 

on Neumann–Morgenstern expected utility function. Similarly as 

n the previous section, Theorem 2 can be shown by (i) character- 

zing the multiples of the degree measure as those centrality mea- 

ures that satisfy four properties of centrality measures for graphs 

 Proposition 2 below), and (ii) relating those four graph central- 

ty properties to properties of preference relations over graph po- 

itions ( Lemma 2 below). Although the results of this section do 

ot follow as a corollary of Roth (1977b) , by realizing that graphs 

orm a special class of cooperative TU-games, the proofs are very 

lose to those of Roth (1977b) . Therefore, we omit the proofs of 

his section. 10 

A centrality measure f on WG N satisfies: 

• Anonymity if for every ω ∈ WG N and permutation π ∈ �(N) , it 

holds that f i (ω) = f π(i ) ( πω ) ; 

• Scale invariance if for every ω ∈ WG N and α ∈ IR + , it holds that 

f (αω) = α f (ω) where αω ∈ WG N is given by αω({ i, j} ) = α ·
ω({ i, j} ) for all { i, j} ∈ L c ; 

• Isolated node property if for every ω , ω 

′ ∈ WG N 
i 

, it holds that

f i (ω) = f i (ω 

′ ) ; 
• Additivity if for every ω , ω 

′ ∈ WG N , it holds that f (ω + ω 

′ ) =
f (ω) + f (ω 

′ ) , where (ω + ω 

′ )({ i, j} ) = ω({ i, j} ) + ω 

′ ({ i, j} ) for

all { i, j} ∈ L c . 

roposition 2. A centrality measure f satisfies anonymity, the iso- 

ated node property, scale invariance and additivity if and only if there 

xists an α ∈ IR such that 

f i (ω) = αd i (ω) for all (i, ω) ∈ N × WG N . (7) 

The four properties in Proposition 2 are similar to the 

nonymity, null player, scale invariance and additivity properties 

hat, together with efficiency, characterize the Shapley value for 

U-games. Since the Shapley value of the 2-additive game associ- 

ted to a graph (see Appendix A) assigns to every player half of its 

egree (see Deng & Papadimitriou, 1994 , Theorem 1), this proposi- 

ion can be interpreted as saying that Shapley’s axiomatization is 

lso valid on the subclass of “graph games’. This is, for example, 

ot true for other subclasses of games such as, e.g., simple games, 

ssignment games ( van den Brink & Pintér, 2015 ), etc. 

Theorem 2 follows from Proposition 2 by the following lemma 

hich shows how the four properties for graph centrality measures 

re implied by the Axioms 9 –12 on preferences. 

emma 2. Consider an expected utility function φ : M → IR for po- 

itions in a graph that is determined by a centrality measure f as 

ollows: φ(i, ω) = f i (ω) . 
9 Again, we could do with a weaker version of Axiom 11 requiring that there is 

t least one graph position that is strictly better than being isolated. This is often 

equired when measuring centrality in the social network literature, see e.g. Gómez 

t al. (2003) . 
10 The proofs of this section can be obtained from the authors on request. 

c

a

T

n

a

1038 
(i) If expected utility function φ represents a preference relation 

� satisfying anonymity (Axiom 9 ), then centrality measure f

satisfies anonymity. 

(ii) If expected utility function φ represents a preference relation 

� satisfying isolated is the worst (Axiom 10 ), then centrality 

measure f satisfies the isolated node property. 

(iii) If expected utility function φ represents a preference relation 

� satisfying anonymity, isolated is the worst and ordinary risk 

neutrality (Axioms 9 , 10 , 12 ), then f is a centrality measure 

that satisfies scale invariance and additivity. 

Notice that Proposition 2 and Lemma 2 directly imply that the 

xioms in Theorem 2 determine that the utility function is a mul- 

iple of the degree measure. 

Similarly as for directed graphs, Theorem 2 interprets central- 

ty measures as von Neumann–Morgenstern expected utility func- 

ions. Using Lemma 2 , this follows from Proposition 2 which is 

 social network result that characterizes the (multiples of the) 

egree measure as a graph centrality measure. In this sense, 

emma 2 “bridges” social network theory with economic utility 

heory. 

. Applications 

Cooperative games where worth is generated by cooperation 

n two-player coalitions, referred to as 2-additive games, have 

any applications in Economics and Operations Research. Exam- 

les are broadcasting games (see Bergantiños & Moreno-Ternero, 

020 ), queueing games (see Maniquet, 2003 ) and telecommunica- 

ion games (see van den Nouweland, Borm, van Golstein Brouwers, 

ruinderink, & Tijs, 1996 ). In this section, we discuss the implica- 

ion of our results on these three applications. 

In all these applications, the Shapley value plays an important 

ole. For 2-additive games, the Shapley value coincides with several 

ther game theory solutions such as the nucleolus ( Schmeidler, 

969 ), the τ -value ( Tijs, 1981 ) and the proportional allocation of 

onseparable cost ( Moulin, 1987 ), see van den Nouweland et al. 

1996) . As argued by Deng & Papadimitriou (1994) , for undirected 

raphs, the Shapley value coincides with the degree measure. 

To have a uniform notation in this paper, we put all notions in 

his section in terms of weighted digraphs which is an equivalent 

epresentation as the models in the mentioned literature. We pre- 

er the notation of weighted graphs and digraphs, since these are 

ery well-known models in the literature, in particular, in the Op- 

rations Research literature. 11 

.1. Broadcasting games 

The broadcasting games of Bergantiños & Moreno-Ternero 

2020) consider soccer competitions where every team plays twice 

gainst every other team, once at each team’s home stadium. The 

eague of all teams has to decide how to share the revenues from 

roadcasting rights among the teams. The teams are represented 

y the set N, and the revenues of the match between teams i 

nd j at the home stadium of team i are given by weight ω(i, j) .

ne of the allocation rules considered by Bergantiños & Moreno- 

ernero (2020) is the equal-split rule that is given by ES i (N, ω) =
 

j∈ N\{ i } ω (i, j)+ ω ( j,i ) 
2 for all i ∈ N. 12 

They show that this rule is the unique rule that satisfies: 
11 In this section we state several claims without proof, since they all follow as 

orollaries from, or small variations of, the results in this paper. Explicit proofs are 

vailable from the authors on request. 
12 Although this situation is represented by a digraph, Bergantiños & Moreno- 

ernero (2020) shows that this value coincides with the Shapley value (and thus 

ucleolus, τ -value, proportional division of nonseparable cost) of the associated 2- 

dditive standard game where the worth of every coalition equals the sum of the 
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(i) Equal treatment of equals: f i (ω) = f j (ω) if ω(i, k ) =
ω( j, k ) and ω(k, i ) = ω(k, j) for all k ∈ N \ { i, j} ; 

(ii) Additivity: is defined the same as in Sections 3 and 4 , see 

Property 4 ; 

(iii) Null team: f i (ω) = 0 if i is isolated (i.e. if ω(i, k ) = ω(k, i ) =
0 for all k ∈ N \ { i } ). 

Comparing these axioms with the axioms in Proposition 1 , we 

an conclude that: 

(i) Equal treatment of equals is not related to anonymity. Equal 

treatment of equals as defined by Bergantiños & Moreno- 

Ternero (2020) is rather strong since it requires equal pay- 

offs between two players, even when there is a difference 

between the revenues of the home and away match be- 

tween them. This generates that, if we only consider the 

two matches (i, j) and ( j, i ) , the two teams i and j are

“equal”, and thus equally share the sum of the revenues of 

the two matches between the two of them (since by null 

team the other teams get zero share in this). As follows from 

Proposition 1 , our axioms allow an unequal sharing between 

the home and away team. 

(ii) Additivity is a standard axiom for allocation rules and graph 

power measures. 

(iii) Null team requires zero payoffs for teams that generate zero 

revenues. Our isolated node property is weaker and only re- 

quires that the teams k ∈ N \ { i, j} all get the same share

in the revenues of the matches between i and j, and this 

share is at most equal to the share of i and j. However, to- 

gether with additivity, this share is zero (see the proof of 

Proposition 1 in the appendix). 

Our axioms allow any sharing of the revenue of the matches 

etween i and j among these two players. However, the shares 

and β that are assigned to the home and away team are the 

ame over all matches in the competition (again, see the proof of 

roposition 1 ). 

If we add the normalization used by Bergantiños & Moreno- 

ernero (2020) , namely that 
∑ 

i ∈ N f i (ω) = 

∑ 

i, j∈ N ω(i, j) , then we 

onclude that β = 1 − α, and thus the revenues of every match 

re shared exactly between the two teams who play the match. 

oncluding, Proposition 1 applied to broadcasting games, together 

ith the normalization, characterizes the class of rules that share 

he revenue of every match between the two teams who play the 

atch, where for each match the home team gets share α ∈ [0 , 1]

nd the away team gets share 1 − α in the revenues of this match. 

bviously, the equal-split rule is obtained by taking α = 

1 
2 . 

A preference relation � on the teams in a broadcasting game, 

an be interpreted as saying (i, ω) � ( j, ω 

′ ) if and only if team i

n competition ω is “more profitable” than team j in competition 

 

′ . Considering the interpretation of our class of rules, and specifi- 

ally the equal-split rule, as utility function representing such pref- 

rences, we cannot only compare teams within one competition, 

ut also teams in different competitions. For example, we can com- 

are Real Madrid (say team i ) in the Spanish Football League (say 

ompetition ω) with Liverpool Football Club (say team j) in the 

nglish Premier League (say competition ω 

′ ). Comparing the prof- 

tability of teams in sport competitions can be useful to determine 

he attractiveness of these teams from the viewpoint of the rev- 

nues. For example, this can help investors who want to invest in 

uch teams, or when a league wants to determine what is a “fair”
eights between teams in the coalition. Alternatively, this value can be obtained as 

he value of Sánchez & Bergantiños (1997) of the associated generalized character- 

stic function game (see Nowak & Radzik, 1994 ) where the worth of every ordered 

oalition equals the sum of the weights of the arcs oriented in the direction of this 

rdered coalition, between teams in this coalition. 

t

1

s

t

1039 
ay to allocate the revenues, where this fairness is determined by 

he underlying axioms. 

Translating our axioms 1–4 in terms of broadcasting games, we 

btain: 

(i) Anonymity has the usual interpretation, implying indiffer- 

ence between two teams that take similar positions. 

(ii) Isolated is the worst requires that a team such that none of 

its matches generates any revenue, should be the least prof- 

itable (which is implied when using ( Bergantiños & Moreno- 

Ternero, 2020 )’s Null team axiom). 

(iii) Center of the star is strictly better than being isolated implies 

that, if there is a team such that every match with pos- 

itive revenue involves this team (being an essential team 

in the terminology of Bergantiños & Moreno-Ternero, 2020 ), 

then this team should be more profitable than a null team 

that generates no revenue. This is implied by Bergantiños 

& Moreno-Ternero (2020) ’s stronger essential team and null 

team axiom which requires that such a team gets all rev- 

enues. 13 

(iv) Neutrality to ordinary risk considers situations of risk with 

respect to the revenues. Suppose that beforehand it is not 

known what will be the revenues, but the probability dis- 

tribution over the possible outcomes is known. For example, 

the revenues might depend on weather conditions or maybe 

the contract with the broadcasting company will be renewed 

or it might happen that for some reason not all scheduled 

matches in the competition will be played. Neutrality to or- 

dinary risk implies that, in that case, one can compare the 

profitability of different teams in one competition by com- 

paring them in the “expected” competition where the rev- 

enues of all matches are simply obtained as the expected 

value of these revenues under the given probability distri- 

bution. 

.2. Queueing games 

The queueing games of Maniquet (2003) describe situations 

here a set of agents are waiting to be served on a machine. 

ach agent i ∈ N has a fixed nonnegative unit waiting cost θi , and 

he machine can only serve one agent at a time. It is efficient to 

ive priority to agents with a higher waiting cost (assuming all 

gents have the same processing time), and the question is how 

gents that get priority (i.e. the agents with high waiting cost) 

hould compensate agents that have to wait longer in the queue 

i.e. agents with lower waiting cost). An allocation assigns to each 

gent a position in the queue and a (positive or negative) mone- 

ary transfer. A rule assigns an allocation to every queueing prob- 

em. Assuming quasilinear utility functions, where the utility of an 

gent for an allocation is the sum of its total waiting cost (depend- 

ng on its position in the queue) and the monetary transfer, the 

iterature considers “fair” rules for queueing problems. One of the 

ost famous rules is the minimal transfer rule of Maniquet (2003) , 

hich associated utility function is obtained as the Shapley value 

f the queueing game where the worth of a coalition equals the 

inimal total cost for the agents in this coalition (i.e. the cost if 

hey are in an efficient queue among themselves) if they are served 

efore all other agents. Since these games are 2-additive games, 

here the worth of a two-player coalition equals the minimum of 

he waiting costs of the two agents in this coalition (see Lemma 

 in Maniquet, 2003 ), the minimal transfer rule is also obtained 
13 Obviously, the equal-split rule does not satisfy the stronger essential team ver- 

ion in Bergantiños & Moreno-Ternero (2020) , who use this to characterize the al- 

ernative concede-and-divide rule. 
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s the nucleolus, τ -value, or proportional division of nonseparable 

ost of the associated queueing game. 

The preference relation expresses preferences over being in dif- 

erent queueing problems with different waiting costs. Beforehand, 

t is not clear what would be a better queue to be in. On one hand,

aving a high (respectively low) waiting cost has the advantage 

respectively disadvantage) that one will be served earlier (respec- 

ively later) in the queue. But on the other hand, having a high 

respectively low) waiting cost has the disadvantage (respectively 

dvantage) that one has to pay a higher monetary transfer (respec- 

ively will receive a higher monetary transfer). For this application, 

he axioms of Theorem 2 can be interpreted as follows (where we 

ake into account that this is a cost allocation game): 

(i) Anonymity has the usual interpretation, implying indiffer- 

ence between agents with the same waiting costs in queues 

with the same waiting cost distribution. 

(ii) An agent is isolated if and only if (i) its cost is zero, or (ii)

it is the only agent with a positive waiting cost (in which 

case all agents are isolated). Isolated is the worst requires 

that such an agent should have the lowest contribution in 

the cost. This expresses that an agent with zero waiting cost 

can be asked to contribute to the total cost of the queue, but 

cannot be exploited in the sense that it should always be an 

agent with the lowest contribution. In case an agent is the 

only agent with a positive waiting cost, since he should also 

not contribute more than the other agents, this implies that 

the positive cost agent is served first, and there are no com- 

pensations for the other agents, who can wait for zero cost. 

(iii) The only star graph that is possible in this case, is a star 

with only one link, which means that there are exactly 

two agents with positive waiting cost. 14 Center of the star is 

strictly better than being isolated , then implies that the two 

agents with positive waiting cost contribute at least as much 

(in terms of transfer and position in the queue) as the agents 

with zero waiting cost. (Notice that the total cost in a queue 

with at least two agents with positive waiting cost is posi- 

tive.) 

(iv) Neutrality to ordinary risk again considers situations of risk, 

now with respect to the waiting costs of all agents. Sim- 

ilar to broadcasting games, suppose that beforehand it is 

not known what will be the waiting costs in the queue, 

but the probability distribution over the possible outcomes 

is known. Then, one can compare the desirability of differ- 

ent agents in a queue by comparing them in the “expected”

queue where the waiting costs are simply obtained as the 

expected value of the waiting costs under this probability 

distribution. 

Our main result implies that the minimal transfer rule is the 

nly utility function that represents such preferences, and thus 

an be seen as a vNM expected utility function if the axioms un- 

erlying the preferences are satisfied. Since the class of queueing 

ames form a proper subclass of 2-additive games, it is not obvi- 

us that our axioms characterize the class of rules as described in 

roposition 2 . 

.3. Telecommunication games 

The telecommunication games of van den Nouweland et al. 

1996) describe situations where operators of the Terrestrial Flight 

elephone System (TFTS) use each other’s ground stations and de- 

ide how to share the revenues from in flight telephone calls. 
14 If there are two links with positive weight, say { i, j} and { i, h } , then the cost 

f all three agents must be positive, and therefore also the weight of link { j, h } is 
ositive. 

s

g

i

1040 
n the associated coalitional game, the players are the coun- 

ries whose national operators participate in the cooperation. Each 

ountry invests in ground stations to cover its area, and in appara- 

us in airplanes of airlines that have their home base in this coun- 

ry. The contribution of a specific country to the amount of tele- 

hone calls that are made using TFTS consists of two parts: (i) the 

elephone calls that are provided with the service by the country 

tself, and (ii) the telephone calls that are made from airplanes fly- 

ng over the country. We can model this by ω(i, j) being the rev- 

nues of telephone calls made by airplanes of country j that are 

sing the ground stations at country i . Notice that in this applica- 

ion, the graph is not irreflexive, i.e. ω(i, i ) can be positive if rev-

nues are made by country i ’s own airplanes flying over i ’s own 

erritory. As a result the associated TFTS game is the sum of an 

nessential (or 1-additive) game 15 and a 2-additive game. However, 

e can straightforward apply our results also in this case. 16 

In this application, a preference relation reflects the position of 

ountries in this revenue sharing problem. For ease of interpreta- 

ion, we assume that all internal revenues are zero, i.e ω(i, i ) = 0

or all i ∈ N. The axioms of Theorem 2 can be interpreted as fol-

ows: 

(i) Anonymity again has the usual interpretation, implying indif- 

ference between similar positions regarding the use of other 

countries’ ground stations. 

(ii) A country is an isolated node if and only if its airplanes do 

not use other countries ground station, and its own ground 

station is not used by foreign airplanes. Isolated is the worst 

then requires that such a country should have the lowest 

share in the revenues (besides its own internal revenues). 

(iii) A country is a center of the star if and only if this coun- 

try is the unique country that generates revenue with other 

countries (either by using the ground stations of other coun- 

tries, or other countries’ using its ground station). Center of 

the star is strictly better than being isolated says that such a 

country is strictly better off than a country that does not 

generate any revenue with other countries (again ignoring 

internal revenues). 

(iv) Neutrality to ordinary risk considers situations of risk with 

respect to the phone calls made in flights. Suppose that be- 

forehand it is not known what phone calls will be made, 

but the probability distribution over the possible outcomes 

is known. Then one can compare the profitability of differ- 

ent countries by comparing them in the ‘expected’ situation 

where the revenues are based on the expected number of 

phone calls that are made. 

. Concluding remarks 

The goal of this paper is to (i) give a utility foundation to cen- 

rality measures, and in that way to connect social network theory 

ith economic utility theory, (ii) show that ( Roth, 1977b )’s util- 

ty foundation of the Shapley value also holds on the smaller class 

f undirected graphs or 2-additive games with applications such 

s telecommunication games and queueing games, and (iii) to ex- 

end these results to digraphs which include applications such as 

roadcasting (revenue sharing) games. This paper can be seen as a 

tarting point to build such a utility foundation of graph centrality. 

ince economic decision making is based on preferences of eco- 

omic decision makers, a utility foundation is fundamental for the 

pplication of graph centrality measures in economic models. 
15 An inessential or 1-additive game is a game where the worth is determined by 

ingletons, i.e. v (S) = 

∑ 

i ∈ S v ({ i } ) for all S ⊆ N. 
16 This is because of additivity of the Shapley value, and thus it assigns to a TFTS 

ame simply the worth of a country in the 1-additive game and its Shapley value 

n the 2-additive game. 
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17 In terms of the so-called Harsanyi dividends ( Harsanyi, 1959 ) this can also be 

defined as the class of games where only two-player coalitions have a nonzero div- 

idend being equal to the weight of the corresponding link. 
A next step would be to analyze (economic) processes on a net- 

ork and to combine utility of positions in a network with util- 

ty generation from processes on a network. Also, we remark that, 

lthough we assumed the set of nodes to be fixed, we can still 

nalyze networks of different size, since we did not assume the 

etwork to be connected. So, we can compare ‘large’ networks (for 

xample connecting all the nodes) with ‘small’ networks (when we 

ave many components). 

The approach followed in this paper is of crucial importance, 

ince the interpretation of the degree measure as expected util- 

ty function for graph positions permits to compare different posi- 

ions in different graphs. Despite its simplicity, the degree measure 

s sufficient for measuring involvement or communication ability 

f an agent in the graph. Moreover, the simplicity of the degree 

easure is an advantage, since only the local structure around a 

ode must be known for calculations, for instance, when using so- 

ial survey data. Our utility interpretation is also an alternative to 

he usual interpretation of the degree as either a myopic central- 

ty measure that only takes account of direct relations, or as a far- 

ighted centrality measure in the sense that for a simple connected 

raph, the probability that a random walk will be found at node i 

n the limit of long time is proportional to the degree of that node, 

ee e.g., Newman (2010) . 

Moreover, in applications of 2-additive games, the degree mea- 

ure is equivalent to the Shapley value which, on that class of 

ames coincides with several other well-known solutions such as 

he nucleolus, τ -value and proportional allocation of nonseparable 

osts. 

Besides its applications to Economics and Operations Research, 

he present paper is also related to the literature on social net- 

orks and centrality; for surveys see, e.g. Freeman (1979) , Jackson 

2008) , and Newman (2010) . 

Axiomatic approaches to the degree measure can be found in, 

.g. Garg (2009) , Bouyssou & Marchant (2018) , and van den Brink 

 Gilles (20 0 0) , whereas Bloch et al. (2016) characterizes the stan-

ard centrality measures within a unified framework and shows 

hat they all are characterized by a common set of axioms. 

Besides considering the degree measure (or Shapley value) as 

 centrality measure for graphs (or allocation rule for 2-additive 

ames), we mainly considered them as utility function represent- 

ng preferences over graph (or player) positions. This generalizes 

he idea of ranking of nodes in a graph. Formally, a ranking method 

ssigns to every (weighted) graph a (complete) preorder on the set 

f nodes. 

Ranking methods based on (out- or in-) degree are character- 

zed in, e.g., Rubinstein (1980) (for the ranking by outdegree on 

he class of tournaments), Bouyssou & Perny (1992) , van den Brink 

 Gilles (2003) (for the ranking by outdegree for arbitrary di- 

raphs), and van den Brink & Gilles (2009) (for the outflow ranking 

ethod for weighted digraphs). Du et al. (2015) investigates rank- 

ng of items in a graph determined by choice of utility function, 

hereas the network nodes are used for the ranking. Demange 

2014, 2017) characterizes ranking methods based on evaluations 

r citations. An important difference between such ranking meth- 

ds and the topic of the underlying paper is that ranking methods 

nly compare the positions in one and the same network. This is 

seful if one wants to rank, for example, teams in a sports com- 

etition, alternatives in a preference relation, web pages on the in- 

ernet, etc. Besides such comparisons within one network, a main 

oal of the underlying paper is to compare positions in different 

etworks. For example, we want to know if an agent prefers a ‘cen- 

ral’ position in a small network to a position in the fringe of a 

arge network. In order to answer these questions we need to be 

ble to compare positions in different networks. As mentioned be- 

ore, although we assumed the set of nodes to be fixed, we can 

ompare positions in different networks, since we did not assume 
1041 
he network to be connected, and thus one can compare positions 

n network components of different size. 

We plan a number of follow-up research projects. We intend 

o relax the assumption of risk neutrality to find utility founda- 

ions of other centrality measures. Another issue is how to incor- 

orate externalities in measuring network centrality, allowing that 

n agent’s utility depends on the way how other agents are con- 

ected. As mentioned in Sections 3 and 4 , it is very common for 

ocial network centrality measures to ignore these externalities. 

ut also in economics, as benchmark cases, often externality-free 

olutions are proposed such as the externality-free solution for par- 

ition function form games in de Clippel & Serrano (2008) , and the 

xternality-free solutions for river water sharing in Ambec & Ehlers 

2008) . 

Considering digraphs, we can consider more possibilities about 

hat is the worst possible position, even when there are no exter- 

alities. For example, under the regularity axioms of this paper, the 

tility function assigns zero to every isolated node in any network. 

or undirected graphs, it seems reasonable to assume that being 

solated is the worst position (as reflected by Axiom 10 ). However, 

or digraphs, it is not obvious whether it is worse to be isolated 

r to be connected, but having only ingoing arcs. For broadcast- 

ng games the assumption of the underlying paper seems reason- 

ble. But, for example, in social choice theory the famous Copeland 

core ( Copeland, 1951 ) (being the difference between the outde- 

ree and indegree) assumes a negative effect of a higher indegree. 

lso for broadcasting games, by relaxing some assumptions we can 

rovide a utility foundation for other rules than the equal-split 

ule, such as the concede-and-divide rule that is also considered 

y Bergantiños & Moreno-Ternero (2020) . Besides these theoreti- 

al research extensions, we plan to do an experimental study, both 

esting measures of centrality with and without externalities. 

ppendix A. The Shapley value and cooperative 2-additive 

ames 

A situation in which a finite set of players N ⊂ N can gener- 

te certain payoffs by cooperation can be described by a coopera- 

ive game with transferable utility (or simply a TU-game), being a 

air (N, v ) where v : 2 N → R is a characteristic function on N satis-

ying v (∅ ) = 0 . For every coalition S ⊆ N, v (S) ∈ R is the worth of

oalition S, i.e. the members of coalition S can obtain a total payoff

f v (S) by agreeing to cooperate. Since the set of players/nodes is 

xed, we represent a TU-game (N, v ) by its characteristic function 

 . 

A payoff vector for game v on N is an | N| -dimensional vec- 

or x ∈ R 

N assigning a payoff x i ∈ R to any player i ∈ N. A (single-

alued) solution for TU-games is a function f that assigns a payoff

ector f (v ) ∈ R 

N to every TU-game v on N. One of the most fa-

ous solutions for TU-games is the Shapley value ( Shapley, 1953 ) 

iven by 

h i (v ) = 

∑ 

S⊆N: i ∈ S 

(| S| − 1)!(| N| − | S| )! 

| N| ! ( v (S) − v (S \ { i } ) ) . 

Deng & Papadimitriou (1994) argues that any undirected graph 

an be represented by a 2-additive TU-game v , where the worth of 

ny two player coalition is the weight of the link, and the worth 

f any other coalition equals the sum of the worths of all two 

layer subcoalitions. In other words, the TU-game v ω associated to 

ndirected graph ω ∈ WG N is given by v ω (S) = 

∑ 

T ⊆S, | T | =2 v (T ) . 17 

s Deng & Papadimitriou (1994) shows, the Shapley value of the 
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18 Although Roth (1977b) takes specifically that r 1 is the unanimity game with 

player i as only nonnull player, we do not specify r 1 . It is sufficient that there ex- 

ists a graph position that is strictly preferred to being in the empty graph, as is 

guaranteed by Axiom 7 with the center of the outward oriented star graph (i, ω 

i ) . 
ssociated game v ω assigns to every player half of its degree 

n ω. Moreover, van den Nouweland et al. (1996) and Brown & 

ousman (1988) show that on this class of games, the Shapley 

alue coincides with other TU-game solutions such as the nucle- 

lus ( Schmeidler, 1969 ) and the τ -value ( Tijs, 1981 ). 

Whereas undirected graphs can be seen as a special subclass of 

U-games, this is not the case for digraphs. Without going into de- 

ails, digraphs can be considered as a special class of cooperative 

ames in generalized characteristic function form where the worth 

f a coalition depends on the order in which the players enter the 

oalition. From the various extensions of the Shapley value to gen- 

ralized TU-games, the outdegree measure is obtained by apply- 

ng the extension of the Shapley value by Nowak & Radzik (1994) , 

hile the average of the outdegree and indegree is obtained by ap- 

lying the alternative extension of the Shapley value by Sánchez & 

ergantiños (1997) . 

ppendix B. Proofs of Section 3 

In this appendix, we give the proofs of Section 3 . Although the 

roofs follow similar steps as Roth (1977b) , this cannot be seen as 

n application of this paper since digraphs cannot be represented 

y cooperative TU-games. 

roof of Proposition 1 

It is straightforward to verify that power measures as given by 

6) satisfy the four properties. To show uniqueness, suppose that 

ower measure f satisfies the four properties, and consider ω ∈ 

D 

N . 

First, consider the empty graph ω 

0 and any graph ω ∈ WD 

N . 

dditivity implies that f i (ω + ω 

0 ) = f i (ω) + f i (ω 

0 ) . Since ω +
 

0 = ω, this implies that f i (ω) = f i (ω) + f i (ω 

0 ) , and thus f i (ω 

0 ) =
 for all i ∈ N. By the isolated node property, f i (ω) = 0 for all

 ∈ WD 

N 
i 

where i is isolated. 

Next, take a pair i, j ∈ N, i � = j, and define WD 

N 
i j 

= { ω ∈ WD 

N |
(i, j) � = 0 and ω(h, g) = 0 for all (h, g) � = (i, j) } , being the class

f graphs where only arc (i, j) has a nonzero weight. By the iso- 

ated node property, f k (ω) = 0 for all k ∈ N \ { i, j} . By scale invari-

nce, there exist α, β ∈ IR such that f i (ω) = α · ω(i, j) and f j (ω) =
· ω(i, j) for any ω ∈ WD 

N 
i j 

. 

Now take any (h, g) ∈ N × N, h � = g, (h, g) � = (i, j) , and ω 

′ ∈
D 

N 
hg 

. By anonymity and the class WD 

N 
i j 

discussed above, we have 

f h (ω 

′ ) = α · ω 

′ (h, g) , f g (ω 

′ ) = β · ω 

′ (h, g) and f k (ω 

′ ) = 0 for all k ∈
 \ { h, g} . 

Finally, consider any ω ∈ WG N . For every i, j ∈ N, i � = j, define

 

i j (i, j) = ω(i, j) and ω 

i j (h, g) = 0 for all (h, g) � = (i, j) . Then,

dditivity implies that for all i ∈ N, f i (ω) = 

∑ 

h,g∈ N 
h � = g 

f i (ω 

hg ) =
 

j∈ N\{ i } 
(

f i (ω 

i j ) + f i (ω 

ji ) 
)

= 

∑ 

j∈ N\{ i } ( α · ω(i, j) + β · ω( j, i ) ) = ∑ 

j∈ N\{ i } ω(i, j) + β
∑ 

j∈ N\{ i } ω( j, i ) = α · out i (ω) + β · in i (ω) . 

roof of Lemma 1 

(i) This follows immediately from Axiom 5 . 

(ii) If expected utility function φ represents a preference rela- 

tion � satisfying Axiom 6 , then for every ω , ω 

′ ∈ WD 

N 
i 

, we

have (i, ω) ∼ (i, ω 

′ ) , and thus f i (ω) = φ(i, ω) = φ(i, ω 

′ ) =
f i (ω 

′ ) . 
(iii) Consider ω ∈ WD 

N and c > 1 . Suppose that � satisfies neu- 

trality to ordinary risk. Taking p = 

1 
c , ω 

′ = ω 

0 and consider- 

ing the graph cω, neutrality to ordinary risk implies that 
(

i, 

(
1 

c 
cω + (1 − 1 

c 
) ω 

0 
))

∼
[ 

1 

c 
(i, cω) ; (1 − 1 

c 
)(i, ω 

0 ) 
] 

which is equivalent to 

(i, ω) ∼
[ 

1 

c 
(i, cω) ; (1 − 1 

c 
)(i, ω 

0 ) 
] 
. (B.1) 
1042 
Now, let u be a utility function representing a preference re- 

lation � satisfying Axioms 1 –4 from the preliminaries. From 

Herstein & Milnor (1953) , it follows that there exist r 0 , r 1 ∈
M with r 1 	 r 0 such that an expected utility function φ over 

the positions in a digraph ω can be written as 

φ(i, ω) = 

p ab (i, ω) − p ab (r 0 ) 

p ab ( r 1 ) − p ab (r 0 ) 
(B.2) 

for some a, b ∈ M with a � (i, ω) � b and a � r 1 	 r 0 �
b with probabilities p ab (i, ω) defined such that (i, ω) ∼
[ p ab (i, ω) a ; (1 − p ab (i, ω)) b] . 

By Axiom 6 , we can take b = r 0 = (i, ω 

0 ) , and thus p ab (r 0 ) =
p ab (i, ω 

0 ) = 0 for all a ∈ M. 

To show that the preference relation can be represented by a 

cale invariant power measure, we distinguish the following two 

ases with respect to (i, ω) ∈ WD 

N and c > 1 . 

ase 1: Suppose that (i, cω) � r 1 . 
18 

Take a = (i, cω) . Then by (B.2) , φ(i, cω) = 

p ab (i,cω) 

p ab (r 1 ) 
= 

p ab (a ) 

p ab (r 1 ) 
=

1 
p ab (r 1 ) 

. 

By (B.1) , we have (i, ω) ∼ [ 1 c (i, cω) ; (1 − 1 
c )(i, ω 

0 )] , so

p ab (i, ω) = 

1 
c . But then f i (ω) = φ(i, ω) = 

p ab (i,ω) 

p ab (r 1 ) 
= 

1 
c · 1 

p ab (r 1 ) 
=

1 
c φ(i, cω) = 

1 
c f i (cω) . So, scale invariance is satisfied in this case. 

ase 2: Suppose that r 1 � (i, cω) . 

Take a = r 1 . Then p ab (r 1 ) = 1 , and so φ(i, cω) =
p ab (i, cω) . By (B.1) , we have (i, ω) ∼ [ 1 c (i, cω) ; (1 −
1 
c )(i, ω 

0 )] ∼ [ 1 c [ p ab (i, cω) a ; (1 − p ab (i, cω)) b] ; (1 − 1 
c )(i, ω 

0 )] = 

 

1 
c p ab (i, cω) a ; (1 − 1 

c p ab (i, cω)) b] , where the equality follows

rom the third equality in (4) and the fact that we took 

 = (i, ω 

0 ) . So, p ab (i, ω) = 

1 
c p ab (i, cω) . Then, by (B.2) , we have

(i, ω) = p ab (i, ω) = 

1 
c p ab (i, cω ) , and thus f i (ω ) = φ(i, ω) =

1 
c p ab (i, cω) = 

1 
c φ(i, cω) = 

1 
c f i (cω) . So, scale invariance is also

atisfied in this case. 

To prove that the preference relation can be represented by 

n additive power measure, consider any ω , ω 

′ ∈ WD 

N . Note 

hat for every i ∈ N, neutrality to ordinary risk implies that 

i, 1 2 ω + 

1 
2 ω 

′ ) ∼ [ 1 2 (i, ω) ; 1 
2 (i, ω 

′ )] and thus φ(i, 1 2 ω + 

1 
2 ω 

′ ) =
([ 1 2 (i, ω) ; 1 

2 (i, ω 

′ )]) = 

1 
2 φ(i, ω) + 

1 
2 φ(i, ω 

′ ) , where the first equal-

ty follows from neutrality to ordinary risk and the second from 

5) . But then f i (ω + ω 

′ ) = f i (2( 1 2 ω + 

1 
2 ω 

′ )) = 2 f i ( 
1 
2 ω + 

1 
2 ω 

′ ) =
 φ(i, 1 2 ω + 

1 
2 ω 

′ ) = 2( 1 2 φ(i, ω) + 

1 
2 φ(i, ω 

′ )) = φ(i, ω) + φ(i, ω 

′ ) = 

f i (ω) + f i (ω 

′ ) , where the second equality follows from scale 

nvariance of f . So, additivity is satisfied. 

roof of Theorem 1 

To prove the ‘only if’ part, note that it follows from 

emma 1 and Proposition 1 that, if expected utility function φ
epresents a regular preference relation that satisfies Axioms 5 –

 , then these preferences can be represented by a utility function 

(i, ω) = α · out i (ω) + β · in i (ω) for some α, β ∈ IR . Then φi (ω 

0 ) =
 for all i ∈ N. By Axiom 7 , it must hold that φ(i, ω 

i ) = α(| N| −
) > 0 = φ(i, ω 

0 ) , and thus α > 0 . By Axiom 6 , it must hold that

( j, ω 

i ) = β ≥ 0 = φ( j, ω 

0 ) for all j ∈ N \ { i } , and thus β ≥ 0 . By

cale invariance, we can rescale such that α + β = 1 , and thus 

he preferences can be represented by a utility function φ(i, ω) = 

· out i (ω) + (1 − α) · in i (ω) for some α ∈ (0 , 1] . 

To prove the ‘if’ part, let � be the preference rela- 

ion based on φ(i, ω) = α · out i (ω) + (1 − α) · in i (ω) with

∈ (0 , 1] , i.e. (i, ω) � ( j, ω 

′ ) if and only if α · out i (ω) + (1 −
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) · in i (ω) ≥ α · out i (ω 

′ ) + (1 − α) · in i (ω 

′ ) . It is straightforward

o check that � satisfies Axiom 5 . Axiom 6 follows since 

i) α · out i (ω) + (1 − α) · in i (ω) ≥ 0 for all ω ∈ WD 

N , and (ii)

· out i (ω 

′ ) + (1 − α) · in i (ω 

′ ) = 0 for all ω 

′ ∈ WD 

N 
i 

. Axiom 7 fol-

ows since α · out i (ω 

i ) + (1 − α) · in i (ω 

i ) > 0 . Finally, to prove

eutrality to ordinary risk, consider ω , ω 

′ ∈ WD 

N and i ∈ N. Then,

or p ∈ [0 , 1] we have φ(i, pω + (1 − p) ω 

′ ) = α · out i (pω + (1 −
p) ω 

′ ) + (1 − α) · in i (pω + (1 − p) ω 

′ ) = α · out i (pω) + α · out i ((1 −
p) ω 

′ ) + (1 − α) · in i (pω) + (1 − α) · in i ((1 − p) ω 

′ ) = pα · out i (ω) + 

1 − p) α · out i (ω 

′ ) + p(1 − α) · in i (ω) + (1 − p)(1 − α) · in i (ω 

′ ) = 

p(α · out i (ω) + (1 − α) · in i (ω)) + (1 − p)(α · out i (ω 

′ ) + (1 − α) ·
n i (ω 

′ )) = pφ(i, ω) + (1 − p) φ(i, ω 

′ ) = φ([ p(i, ω) ; (1 − p)(i, ω 

′ )]) , 

here the last equality follows from (5) . 

ppendix C. Logical independence of the axioms in Theorem 1 

In this appendix, we give four regular utility functions repre- 

enting preference relations over graph positions that each satisfy 

hree, but not all four, of the additional axioms in Theorem 1 . 

1. Consider weights (αi ) i ∈ N such that αi ∈ ( 1 2 , 1] for all i ∈ N,

with αi � = α j for at least one pair of nodes, and consider the 

utility function over graph positions φ(i, ω) = αi out i (ω) + 

(1 − αi ) in i (ω) for all (i, ω) ∈ N × WD 

N . The associated pref-

erence relation satisfies isolated is the worst, center of the 

star is strictly better than being isolated, and neutrality to 

ordinary risk. It does not satisfy anonymity. 

2. Consider the utility function over graph positions φ(i, ω) = 

out i (ω) − in i (ω) for all (i, ω) ∈ N × WD 

N . This is known as

the Copeland score ( Copeland, 1951 ). The associated prefer- 

ence relation satisfies anonymity, center of the star is strictly 

better than being isolated, and neutrality to ordinary risk. It 

does not satisfy isolated is the worst. 

3. Consider the utility function over graph positions φ(i, ω) = 1 

for all (i, ω) ∈ N × WD 

N . The associated preference relation 

satisfies anonymity, isolated is the worst, and neutrality to 

ordinary risk. It does not satisfy center of the star is strictly 

better than being isolated. 

4. Consider the utility function over graph positions φ(i, ω) = 

1 if i is the center of (a multiple of) a star, i.e., ω(i, j) > 0

for all j ∈ N \ { i } and ω( j, k ) = 0 for all j ∈ N \ { i } and k ∈
N \ { j} , and φ(i, ω) = 0 otherwise. The associated preference

relation satisfies anonymity, isolated is the worst, and center 

of the star is strictly better than being isolated. It does not 

satisfy neutrality to ordinary risk. 
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