
VU Research Portal

Automating the modular method for Q-curves to solve Diophantine equations

van Langen, Joey Matthias

2022

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
van Langen, J. M. (2022). Automating the modular method for Q-curves to solve Diophantine equations. [PhD-
Thesis - Research and graduation internal, Vrije Universiteit Amsterdam].

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 03. Mar. 2023

https://research.vu.nl/en/publications/7a245a6d-3f74-4d3e-bf7d-e81a04aef92a

VRIJE UNIVERSITEIT

Automating the modular method for Q-curves
to solve Diophantine equations

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor of Philosophy aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. C.M. van Praag,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Bètawetenschappen

op donderdag 27 januari 2022 om 13.45 uur
in een bijeenkomst van de universiteit,

De Boelelaan 1105

door

Joey Matthias van Langen

geboren te Haarlemmermeer

promotor: prof.dr. R.M.H. de Jeu

copromotor: dr. S.R. Dahmen

promotiecommissie: prof.dr. R.C.A.M. van der Vorst
prof.dr. G.L.M. Cornelissen
prof.dr. M.A. Bennett
dr. P.J. Bruin
dr. V. Patel

Deze publicatie maakt deel uit van het project
“New Diophantine directions” (met projectnummer
639.032.613) van het onderzoeksprogramma Vidi dat
(mede) is gefinancierd door de Nederlandse Organisatie
voor Wetenschappelijk Onderzoek (NWO).

Table of contents

Table of contents 3

Introduction 6

Notation & Conventions 9

1 Computing Conductors of Frey Curves 12
1.1 A quick overview of Tate’s algorithm 13
1.2 Tate’s algorithm for curves with parameters 17
1.3 Roots modulo a prime power . 19

1.3.1 Hensel lifting . 21
1.3.2 The algorithm . 22

1.4 p-adic trees . 24
1.5 A finite step 7 subalgorithm. 26
1.6 SageMath implementation . 31

1.6.1 p-adics . 32
1.6.2 p-adic trees . 32
1.6.3 p-adic solver . 34
1.6.4 Conditions . 34
1.6.5 Tate’s algorithm . 37
1.6.6 Frey curves . 38

1.7 Comparison to other methods . 42
1.7.1 Papadopoulos’ tables . 43
1.7.2 Chen’s approach . 44

2 Q-curve computations 49
2.1 Generic properties of Q-curves 50
2.2 The algebra associated to a Q-curve 55
2.3 Computing a splitting map . 60
2.4 Local conditions of splitting characters 62
2.5 Correcting the splitting map . 66

Joey Matthias van Langen

4 Table of contents

2.6 Different splitting maps . 80
2.7 Fields of Q-curves . 82
2.8 Associated Galois representations 89
2.9 Computing the newform levels 96
2.10 Traces of Frobenius . 103
2.11 Some irreducibility results . 116

3 Automating the modular method 121
3.1 The modular method . 122
3.2 Wrapped newforms . 127
3.3 Elimination methods . 129

3.3.1 Elimination by trace . 130
3.3.2 Kraus method . 134
3.3.3 Convenience methods . 136

4 On the sum of fourth powers in arithmetic progression 139
4.1 Introduction . 139
4.2 Preliminaries . 142
4.3 Cases for Small l . 144

4.3.1 Case l = 2 . 144
4.3.2 Case l = 3 . 144
4.3.3 Case l = 5 . 147

4.4 The Frey Curves . 149
4.5 A Hilbert Modular Approach . 151
4.6 Q-curves . 154

4.6.1 Basic invariants . 155
4.6.2 A decomposable twist . 156
4.6.3 Modularity of Q-curves 157
4.6.4 Level lowering . 159
4.6.5 Newform elimination . 162

5 Explicitly determining perfect powers in several elliptic divisi-
bility sequences 165
5.1 Introduction . 165
5.2 Associating a Q-curve . 166

5.2.1 a only depends on class modulo [2]ED(Q) 169
5.3 Level lowering results . 173
5.4 The case a = 1 . 175
5.5 Explicit examples . 181

Automating the modular method for Q-curves to solve Diophantine equations

5

5.5.1 Example for D = 125 . 181
5.5.2 Example for D = −17 . 184
5.5.3 Further examples . 188
5.5.4 Small exponent values . 188
5.5.5 Alternative approaches for some examples 190

6 Discussion 192

Summary 194

Acknowledgements 196

A Proof of Theorem 2.9.8 197

Bibliography 203

Joey Matthias van Langen

Introduction

Diophantine equations – polynomial equations for which we seek integer solu-
tions – have interested mathematicians for millennia. Certain solutions – like
the formulas found for Pythagorean triples in Euclid’s “Elements” – have been
known for a similar amount of time, but the scribbling of Fermat in a copy of
Diophantus’ “Arithmetica” posed a problem that would take centuries to solve.
Fermat claimed that the equation xn + yn = zn had no integer solutions x, y, z, n
with xyz 6= 0 and n > 2, but that the margin had too little room for his proof.
The search for the proof of – what was later known as – Fermat’s Last The-
orem incited many new techniques to solve Diophantine equations. The final
technique that finished the proof has since grown into the modular method, a
technique that can be applied to various (exponential) Diophantine equations to
prove the non-existence of solutions, possibly outside some particular solutions
that do exist.

A basic form of the modular method boils down to the following. To a pu-
tative solution of a Diophantine equation one associates an elliptic curve E/Q
known as a Frey curve. Using the modularity theorem one then shows that
there is a newform associated with this Frey curve, in the sense that their Ga-
lois representations are isomorphic. By constructing the Frey curve such that
some additional constraints are satisfied with respect to a prime exponent l ap-
pearing in the Diophantine equation, level lowering results can be used to ensure
the mod l Galois representation of E is also isomorphic to a mod λ | l Galois
representation of a newform f , whose level N no longer depends on the putative
solution but only on the Diophantine equation. By computing the newforms of
level N one then verifies that none can have such an isomorphic mod λ | l Galois
representation, thereby proving the non-existence of the putative solution.

This simple form of the modular method can and has been extended in var-
ious ways. Most commonly we replace the Frey curve E/Q with an elliptic
curve E/K with K a number field for which modularity is (conjecturally or
partially) known. In this dissertation we will look at Frey curves which are
also Q-curves, i.e. elliptic curves that are isogenous to all their Galois conju-
gates. Modularity for non-CM Q-curves was proven by Ribet in [Rib04] based

Automating the modular method for Q-curves to solve Diophantine equations

7

on the Serre conjectures now proven by Khare and Wintenberger [KW09a,
KW09b]. Using Frey Q-curves in the modular method has already proven useful
to solve various Diophantine equations, see e.g. [DU09], [Ell04], [Che10], [BC12],
and [BCDY14].

The modular method involves quite some computational work. Besides the
spaces of newforms that should be computed, the level of these newforms de-
pends on the conductor of the Frey curve. For Frey Q-curves there is also
some Q-curve data that should be computed to determine the levels of the asso-
ciated newforms. Furthermore the latter can only be done for a certain twist of
a Frey Q-curve which should be computed as well. Finally there is also the com-
parison of Galois representations with which the final contradiction should be
reached, which in this dissertation relies on the computation of traces of Frobe-
nius. In the first three chapters of this dissertation we discuss how these steps
can be automated to easily apply the modular method to a new Diophantine
problem.

Chapter 1 discusses how the conductor of a Frey curve can be computed
automatically. This relies on a special implementation of Tate’s algorithm which
works for elliptic curves in which the coefficients depend on a putative solution.
Besides explaining how this implementation works, we also compare it to other
semi-automated methods in Section 1.7.

Chapter 2 introduces the basic theory for Q-curves that is needed for the
modular method. Most of this theory is standard and can be found in [Que00,
Rib04]. In this dissertation we however focus on automation, describing how
the level and character of a corresponding newform can be computed, as well as
how to compute a corresponding Galois representation. We also introduce some
new results: Proposition 2.5.5, which helps compute the twist of the Q-curve for
which newform levels can be computed, Theorem 2.10.1 and Theorem 2.10.7,
which allow the computation of traces of Frobenius for the corresponding Galois
representations, and Theorem 2.11.1, which expands Proposition 3.2 in [Ell04].

Chapter 3 presents an outline of the modular method for Frey Q-curves
and shows how Chapter 1 and Chapter 2 can be used to automate the first
part thereof. It then fills in the last part of the automation by presenting an
automated way of eliminating newforms.

Throughout the first three chapters we also discuss the framework [vL21a],
which is an implementation in SageMath [Sag20] of all the automation de-
scribed in these chapters. Besides explanation of the functionality in the frame-
work [vL21a] throughout the text, there are also explicit code examples con-
tained in the examples in these chapters.

The framework [vL21a] also comes with a variety of examples which contain

Joey Matthias van Langen

8 Introduction

written text interjected with code fragments. The files containing these exam-
ples are referenced in this dissertation by a boxed text and can be found in the
examples folder. Amongst them are worked out examples from the literature,

which are all listed in Table 3.1. Furthermore there are files that verify all the
computations in the examples in this dissertation, which are mentioned at the
start of the corresponding examples.

In Chapter 4 and Chapter 5 we apply the framework [vL21a] to two distinct
Diophantine problems. Chapter 4 is based on the article [vL21b] and solves
the exponential Diophantine equation (x− y)4 + x4 + (x+ y)4 = zn in coprime
integers x, y with z, n ∈ Z and n > 1. Chapter 5 is joint work with Sander
Dahmen of which a modified version will be submitted as an article. In that
chapter we prove that certain elliptic divisibility sequences do not contain l-th
powers for l a sufficiently large prime number.

After this introduction there is a section containing notation and conventions
that are used throughout the dissertation. The dissertation ends with a brief
discussion in Chapter 6. Here we reflect on the strengths and weaknesses of the
framework [vL21a], and discuss possible future improvements.

Automating the modular method for Q-curves to solve Diophantine equations

https://github.com/jmvlangen/modular-method-package/blob/master/examples/

Notation & Conventions

Throughout the thesis we will use the following notation and conventions.

� For a field K we will denote by K an algebraic closure, which we will as-
sume to be fixed unless otherwise stated. Furthermore we assume for finite
field extensions L/K that L = K by making appropriate identifications if
necessary.

� We will denote the Galois group of a Galois field extension L/K by GLK .

If K is a perfect field we use GK to denote the absolute Galois group GKK
of K.

� We denote the action of a Galois element σ ∈ GLK by a prescript on the top
left. For example we write σx for σ acting on an element x ∈ L and σE
for σ acting on an elliptic curve E defined over L.

� Within an algebraically closed field K we will denote a fixed primitive n-th
root of unity by ζn. Here we assume n is not divisible by the characteristic
of K, and choices are made such that ζn = ζkm if n = mk with k,m, n ∈ Z
strictly positive.

� For a number field or p-adic field K we will denote the ring of integers
by OK . As usual p-adic field means a non-archimedean local field of
characteristic 0, i.e. a finite extension of Qp for some prime number p.

� For a number field or p-adic field K we will use the term prime to indicate
a maximal ideal of OK . Therefore primes in this dissertation are always
finite unless explicitly stated otherwise. We denote primes by m, p, q,

� For a prime p of a number field or p-adic field K we denote the corre-
sponding normalised valuation by ordp. The corresponding completion
(when K is a number field) is denoted by Kp.

� We denote the residue field of a prime p by Fp. Similarly we denote by Fp
the field of order p when p is a prime number.

Joey Matthias van Langen

10 Notation & Conventions

� We assume elliptic curves E are always given by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

We use the same notation as in [Sil09, III.1] for invariants associated to
such a Weierstrass equation, and talk about such invariants as invariants
of E.

� For a finite field extension L/K and an abelian variety A/L we denote
by ResLK A the restriction of scalars of A over K. The restriction of
scalars ResLK A – also known as the Weil restriction – is defined as a
variety B/K together with an L-morphism π : BL → A such that for any
variety T/K together with an L-morphism TL → A we can complete the
commutative diagram

T B

TL BL A.

∃!

∃! π

Here TL and BL are the base changes of T and B over L, the top horizontal
map is a K-morphism, and the bottom horizontal maps are L-morphisms.
We will also use that if L/K is Galois then BL =

∏
σ∈GLK

σA. Note that

the universal property makes B with π unique up to unique isomorphism.
For existence see e.g. Section 1.3 in [Wei82].

� We often implicitly change the field over which an elliptic curve E is
defined. For a field extension L/K we might talk about an elliptic curve E
defined over K as if it were defined over L without explicitly stating we
base change E over L. Similarly if E were originally defined over L we
may talk about E as if defined over K if there is an elliptic curve E′/K
that base changed to L is the same as E. We do the same for (abelian)
varieties and morphisms.

� For classical modular forms we shall denote by Sk(Γ) the space of cusp
forms of weight k with respect to the modular group Γ. The subspace
of Sk(Γ1(N)) that is spanned by the eigenforms with character χ is denoted
by Sk(N,χ).

� For a newform f ∈ S2(Γ1(N)) we denote by Af the abelian variety associ-
ated to f as defined in Definition 6.6.3 of [DS05]. This is a quotient of the

Automating the modular method for Q-curves to solve Diophantine equations

11

jacobian J1(N) of the modular curveX1(N). We denote byKf the number
field generated by the Fourier coefficients of f ([DS05, Definition 6.5.3]).
Furthermore we will use ρf,λ : GQ → GL2(Kf,λ) and ρf,λ : GQ → GL2(Fλ)
to denote the λ-adic and mod λ Galois representations associated to f for
any prime λ of Kf , as defined in Section 9.5 and Section 9.6 of [DS05].
Section 2.8 talks a bit more about the definition of these representations.

� In code examples throughout this dissertation we will use \ to denote a
line break that was not part of the original output.

Joey Matthias van Langen

Chapter 1

Computing Conductors of
Frey Curves

One important part of the modular method is the computation of the conductor
of a given Frey elliptic curve as it determines the level of associated newforms.
For an explicit elliptic curve this is a straightforward computation on the co-
efficients that is often implemented using Tate’s algorithm. For Frey curves
this may not be as straightforward a calculation as the coefficients depend on a
putative solution of a Diophantine equation.

Manually one can still try to perform Tate’s algorithm on a Frey curve. In
each step of the algorithm one can make case distinctions depending on the
corresponding solution if necessary. This is a tedious process that is very error
prone when done by hand. Therefore the author has worked on an automated
approach to Tate’s algorithm, that works for elliptic curves of which the coeffi-
cients may be polynomials in some parameters.

In this chapter we will discuss how this automated Tate’s algorithm works.
First Tate’s algorithm is outlined in Section 1.1. Section 1.2 then dissects the
algorithm into smaller parts that should be automated to perform Tate’s algo-
rithm. An efficient method for one of the most prominent parts – computing
roots of a polynomial modulo a prime power – is provided in Section 1.3. Sec-
tion 1.4 then discusses an alternative way of storing the data for the case distinc-
tions made in Tate’s algorithm. It is followed by Section 1.5 which proves that
finitely many steps in the subalgorithm in Step 7 of Tate’s algorithm suffice, if
one is only interested in the conductor exponent, Kodaira symbol, or number
of geometrically irreducible components.

Section 1.6 talks about the implementation by the author [vL21a] of the
theory in the previous sections. Most subsections here give an outline of the
various classes and methods in this implementation. Section 1.6.4 introduces
classes in the framework [vL21a] that can be used to enforce restrictions that
might arise from a Diophantine equation. Everything culminates in Section 1.6.6

Automating the modular method for Q-curves to solve Diophantine equations

Section 1.1: A quick overview of Tate’s algorithm 13

where the class representing a Frey curve is introduced. This final subsection
also includes an explicit example with SageMath syntax.

Finally Section 1.7 compares the automated approach discussed here to other
semi-automated approaches. These other approaches include ‘looking up’ the
conductor using the table by Papadopoulos and the more algorithmic approach
introduced by Chen.

Section 1.1

A quick overview of Tate’s algorithm

Let K be a p-adic field with prime p. We will write v = ordp : K∗ → Z and
let π be a uniformizer, i.e. an element such that p = πOK . Let

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, (1.1)

be an elliptic curve over K with integral coefficients, i.e. a1, a2, a3, a4, a6 ∈ OK .
For u ∈ K∗ and r, s, t ∈ K we note that substituting both X = u2X ′ + r

and Y = u3Y ′ + u2sX ′ + t in Equation (1.1) gives a Weierstrass equation

E′ : Y ′2 + a′1X
′Y ′ + a′3Y

′ = X ′3 + a′2X
′2 + a′4X

′ + a′6,

of an isomorphic elliptic curve. We call such a change in Weierstrass model a
(u, r, s, t)-transformation or simply a u-scaling if r = s = t = 0. The way the
corresponding invariants change by such a transformation is written out fully
in [Sil09, III.1, Table 3.1].

Using this notation we can now describe Tate’s algorithm for the curve E.
Whenever the algorithm terminates it will produce the value of the following
quantities it has then computed.

� Emin: A minimal model of E, i.e. a (u, r, s, t)-transformation of E with
the highest possible v(u), such that the coefficients of Emin are still in OK .

� Type: The Kodaira symbol that describes the reduction type of the special
fiber of Emin over Fp.

� m: The number of components of the special fiber of Emin over Fp, counted
with multiplicity.

� f : The exponent of the conductor of E.

Joey Matthias van Langen

14 Chapter 1: Computing Conductors of Frey Curves

� c: The number of components of the special fiber of Emin over Fp that
have multiplicity 1 and are defined over Fp.

Below is the description of Tate’s algorithm in pseudocode. Note that it is a
function with input E, but also requiresOK , v and a choice of π. Mathematically
these can be inferred from E, but for an actual implementation they have to be
specified explicitly. For the framework [vL21a] this happens through a single
object specified in Section 1.6.1. On the left of the algorithm are several labels
that can be used as jumping points. Most of these correspond to steps of the
algorithm as given in [Sil94, IV.9]. These steps are the same, except that we
reformulated the stopping conditions in some cases such that they are easier to
work with later on.

Function TatesAlgorithm(E; OK , v, π)

Step 1: If v(∆) < 1
Return Emin = E, Type I0, m = 1, f = 0, c = 0

(good reduction)

Step 2: With a solution x0, y0 ∈ OK to y2
0 + a1x0y0 + a3y0 ≡ x3

0 + a2x
2
0 + a4x0 + a6

a1y0 ≡ 3x2
0 + 2 a2x0 + a4

2 y0 + a1x0 + a3 ≡ 0
(mod p)

Perform a (1, x0, 0, y0)-transformation on E
If v(b2) < 1
If T 2 + a1T − a2 ∈ OK [T] has roots in Fp

Return Emin = E, Type Iv(∆), m = v(∆), f = 1, c = v(∆)
(split multiplicative reduction)

Else

If v(∆) is odd
Return Emin = E, Type Iv(∆), m = v(∆), f = 1, c = 1

(non-split multiplicative reduction)
Else

Return Emin = E, Type Iv(∆), m = v(∆), f = 1, c = 2
(non-split multiplicative reduction)

Step 3: If v(a6) < 2
Return Emin = E, Type II, m = 1, f = v(∆), c = 1

Automating the modular method for Q-curves to solve Diophantine equations

Section 1.1: A quick overview of Tate’s algorithm 15

Step 4: If v(b8) < 3
Return Emin = E, Type III, m = 2, f = v(∆)− 1, c = 2

Step 5: If v(b6) < 3
If T 2 + a3

π T −
a6
π2 has roots in Fp

Return Emin = E, Type IV, m = 3, f = v(∆)− 2, c = 3
Else

Return Emin = E, Type IV, m = 3, f = v(∆)− 2, c = 1

Step 6: With a solution α, β ∈ OK of
2α ≡ −a1

α2 ≡ −a2

2β ≡ −a3π
β2 ≡ − a6

π2

(mod p)

Perform a (1, 0, α, βπ)-transformation on E
If v(−4 a3

2a6 + a2
2a

2
4 − 4 a3

4 − 27 a2
6 + 18 a2a4a6) < 7

Return Emin = E, Type I∗0, m = 5, f = v(∆)− 4,
c = 1 + #

{
T ∈ Fp : T 3 + a2

π T
2 + a4

π2T + a6
π3 = 0

}
Step 7: If v(3 a4 − a2

2) < 3

Subalgorithm: With a solution x1 ∈ OK of{
x3

1 + a2
π x

2
1 + a4

π2x1 + a6
π3 ≡ 0

3x2
1 + 2 a2

π x1 + a4
π2 ≡ 0

(mod p)

Perform a (1, x1π, 0, 0)-transformation on E
Set n := 1
Set k := 2

Substep n (odd): If v(b6) < n+ 4
If T 2 + a3

πk
T − a6

π2k has roots in Fp

Return Emin = E, Type I∗n, m = n+ 5, f = v(∆)− n− 4, c = 4
Else

Return Emin = E, Type I∗n, m = n+ 5, f = v(∆)− n− 4, c = 2
With a solution yk ∈ OK of

y2
k +

a3

πk
yk −

a6

π2k
≡ 0 (mod p)

Perform a (1, 0, 0, ykπ
k)-transformation on E

Set n := n+ 1

Joey Matthias van Langen

16 Chapter 1: Computing Conductors of Frey Curves

Substep n (even): If v(a2
4 − 4 a2a6) < n+ 5

If a2
π T

2 + a4
πk+1T + a6

π2k+1 has roots in Fp

Return Emin = E, Type I∗n, m = n+ 5, f = v(∆)− n− 4, c = 4
Else

Return Emin = E, Type I∗n, m = n+ 5, f = v(∆)− n− 4, c = 2
With a solution xk ∈ OK of

a2

π
x2
k +

a4

πk+1
xk +

a6

π2k+1
≡ 0 (mod p)

Perform a (1, xkπ
k, 0, 0)-transformation on E

Set n := n+ 1
Set k := k + 1
Jump to Substep n (odd)

Step 8: With a solution x1 ∈ OK of

x3
1 +

a2

π
x2

1 +
a4

π2
x1 +

a6

π3
≡ 0 (mod p)

Perform a (1, x1π, 0, 0)-transformation on E
If v(b6) < 5
If T 2 + a3

π2T − a6
π4 has roots in Fp

Return Emin = E, Type IV∗, m = 7, f = v(∆)− 6, c = 3
Else

Return Emin = E, Type IV∗, m = 7, f = v(∆)− 6, c = 1

Step 9: With a solution y1 ∈ OK of

y2
1 +

a3

π2
y1 −

a6

π4
≡ 0 (mod p)

Perform a (1, 0, 0, y1π
2)-transformation on E

If v(a4) < 4
Return Emin = E, Type III∗, m = 8, f = v(∆)− 7, c = 2

Step 10: If v(a6) < 6
Return Emin = E, Type II∗, m = 9, f = v(∆)− 8, c = 1

Step 11: Perform a (π, 0, 0, 0)-transformation on E
Jump to Step 1

Automating the modular method for Q-curves to solve Diophantine equations

Section 1.2: Tate’s algorithm for curves with parameters 17

Section 1.2

Tate’s algorithm for curves with parameters

Looking closely at the algorithm as presented above, it is clear that this algo-
rithm can be successfully used if one is able to perform four types of checks.

1. Determine whether a polynomial in the coefficients of E has valuation
smaller than a given bound.

2. Find solutions in Fp of polynomial equations of which the coefficients are
polynomials in the coefficients of E.

3. Determine the number of roots of a polynomial over Fp where the coeffi-
cients of the polynomial are polynomials in the coefficients of E.

4. Determine the exact valuation of a polynomial in the coefficients of E.

If the coefficients of E are polynomials in some parameters, one can still try
to determine the values of the parameters for which the different outcomes of
these checks arise. In fact for each of the first three checks the outcome only
depends on the value of the parameters modulo some sufficiently high power of
the prime ideal p. The same is not true for a check of type 4, but note that
such a check is only needed for the valuation of the discriminant and some of
the return values. In most use cases – where one is not necessarily interested
in all of the return values – this valuation is bounded, meaning we can find a
sufficiently high power of p for this check as well. In case Fp is finite, this makes
every check a finite computation.

Example 1.2.1. Conductor.rst We will illustrate these checks by performing
the first four steps of Tate’s algorithm on the curve

E : Y 2 = X(X −A)(X +B)

with undetermined parameters A,B ∈ Z such that AB(A+B) 6= 0. We inter-
pret this as an elliptic curve over Q2.

Step 1: Since ∆ = 24A2B2 (A+B)
2

it is clear that v(∆) ≥ 1.

Step 2: The equations in x0, y0 ∈ Z2 become y2
0 ≡ x3

0 + (B −A)x2
0 −ABx0

0 ≡ x2
0 −AB

0 ≡ 0
(mod 2)

Joey Matthias van Langen

https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Conductor.rst#example-121

18 Chapter 1: Computing Conductors of Frey Curves

and by substituting every value for A and B modulo 2 we find the solution

(x0, y0) =

{
(0, 0) if AB ≡ 0 (mod 2)
(1, 0) if AB ≡ 1 (mod 2).

This check of type 2 tells us that from now on we have two cases to consider
with respective models

E :

Y 2 = X3 + (B −A)X2 −ABX if AB ≡ 0 (mod 2)
Y 2 = X3 + (B −A+ 3)X2

+ (2B − 2A+ 3−AB)X
+ 1 +B −A−AB if AB ≡ 1 (mod 2).

Now we find that

b2 =

{
4 (B −A) if AB ≡ 0 (mod 2)
4 (B −A+ 3) if AB ≡ 1 (mod 2),

so clearly v(b2) ≥ 1 in both cases.

Step 3: We have that

a6 =

{
0 if AB ≡ 0 (mod 2)
(1−A)(1 +B) if AB ≡ 1 (mod 2).

We can see that in both cases we have v(a6) ≥ 2.

Step 4: We have that

b8 =

{
−A2B2 if AB ≡ 0 (mod 2)

3− 4A+ 4B − 6AB −A2B2 if AB ≡ 1 (mod 2).

By substituting the possible values of A and B modulo 8 we can deter-
mine for which cases we have v(b8) < 3. By doing this check of type 1
we determine that this is the case if and only if v(AB(A+B)) = 1. To
determine the conductor exponent in that case we also need to perform
a check of type 4 to find the valuation of ∆ = 24A2B2(A+B)2. Using
what we determined before, this is easily computed to be 6 giving us the
local data for Type III: m = 2, f = 5, c = 2, and

Emin :

Y 2 = X3 + (B −A)X2 −ABX if AB ≡ 0 (mod 2)
Y 2 = X3 + (B −A+ 3)X2

+ (2B − 2A+ 3−AB)X
+ 1 +B −A−AB if AB ≡ 1 (mod 2).

Automating the modular method for Q-curves to solve Diophantine equations

Section 1.3: Roots modulo a prime power 19

Note that there are a few different ways in which Tate’s algorithm might
not terminate for a curve depending on parameters. For example the algorithm
does not terminate when a1, a2, a3, a4, a6 are taken as parameters, as for any
values for which Tate’s algorithm ends in the n-th iteration one has a set of
values that ends in the n+ 1-th iteration by scaling these coefficients. For most
Frey curves coprimality conditions on the solution ensure that the valuations
of a1, a2, a3, a4, a6 can not all be unbounded, implying that the algorithm can
not infinitely loop through Step 11. An infinite loop in the Step 7 Subalgorithm
is still possible, but can be prevented if one is only interested in the conductor
as will be discussed in Section 1.5. Finally we might have a case in which
we terminate but the valuation of the discriminant remains unbounded. As
mentioned before, this seems not to happen in practice, as either coprimality
conditions on the parameters force v(∆) to be bounded, or one is simply not
interested in a return value that requires v(∆) to be computed.

From now on suppose a1, a2, a3, a4, a6 ∈ L[x1, . . . , xn] with L be a number
field. We will assume that x1, . . . , xn take on explicit, yet unspecified values
in OK for some subfield K ⊆ L, such that the Weierstrass equation with co-
efficients a1, . . . , an defines an elliptic curve E over L. Therefore for a finite
prime q of L we can also consider E as an elliptic curve over Lq. Since we
leave x1, . . . , xn unspecified we can use the strategy above to compute the pos-
sible local data of E at q using Tate’s algorithm. This will involve making case
distinctions based on the value of x1, . . . , xn modulo some power of p = q ∩ OK .
Note that all the computations in this case can just be done in L as none of the
steps in the algorithm actually require additional elements from Lq.

We will not discuss the algorithm in detail as it is just performing Tate’s
algorithm as described before, distinguishing cases for each of the checks per-
formed. We will however discuss how to perform a check of type 1 in an efficient
way using Hensel lifting in the next section.

Section 1.3

Roots modulo a prime power

In this section we will describe how to perform a check of type 1 on the elliptic
curve E in an efficient way. In such a check we have a bound r and a polyno-
mial f ∈ L[x1, . . . , xn] in the parameters. Our goal is to determine for which
values x1, . . . , xn ∈ OK we have ordq f(x1, . . . , xn) ≥ r. By rescaling f such
that the coefficients are q-integral and adjusting r accordingly, this is equivalent
to finding all roots of f(x1, . . . , xn) modulo qr. We may assume here that r ≥ 0

Joey Matthias van Langen

20 Chapter 1: Computing Conductors of Frey Curves

as after rescaling the solutions for r < 0 are the same as for r = 0.
One could easily try to solve this problem by substituting every possi-

ble value of x1, . . . , xn modulo qr ∩ OK . When qr ∩ OK (p we can compute
which x1, . . . , xn are roots faster by using a process called Hensel Lifting. Since
this is quite subtle for our case where we might have K 6= L we discuss this in
detail here.

Fix the localizations R = {a ∈ K : ordp a ≥ 0} and S = {b ∈ L : ordq b ≥ 0}
of OK and OL respectively. Since OK and OL are Dedekind domains and
not fields, we know that R and S are discrete valuation rings. This implies
that pR = πR and qS = ρS for some π ∈ p and ρ ∈ q. A choice of these elements
will be our fixed uniformizers from now on, which they also are in Kp and Lq

respectively.
We can now reformulate the problem that needs to be solved to

Problem 1.3.1. For a polynomial f ∈ S[x1, . . . , xn] and fixed r ∈ Z≥0 find
all a1, . . . , an ∈ R such that

f(a1, . . . , an) ≡ 0 (mod ρr). (1.2)

Note that we have here slightly deviated from the setup we described before.
Originally we would consider a1, . . . , an to be elements of OK . We shall later
see that the distinctions are made modulo powers of p, hence we may as well
work in the bigger ring R.

Choose a set A ⊂ R such that the canonical map R→ R/πR ∼= Fp restricted
to A is surjective. Since R embeds into OKp

the elements a1, . . . , an are p-adic
integers. Therefore all ai ∈ R can be written as power series ai =

∑∞
j=0 αi,jπ

j

with αi,j ∈ A. If we write ai,k =
∑k−1
j=0 αi,jπ

j for any fixed k ∈ Z>0 we find that

f(a1, . . . , an) = f(a1,k, . . . , an,k) (1.3)

+

n∑
i=1

∂f

∂xi
(a1,k, . . . , an,k) · αi,k πk +O(πk+1),

for any k ∈ Z>0. This allows us to make two important observations:

1. The value of f(a1, . . . , an) modulo πk for some k ∈ Z>0 is completely
determined by the values of a1,k, . . . , an,k.

2. The value of f(a1, . . . , an) modulo πk+1 for k ∈ Z>0 can be computed
using only the values of the function f and its first order derivatives
in a1,k, . . . , an,k, together with the values of α1,k, . . . , αn,k.

Automating the modular method for Q-curves to solve Diophantine equations

Section 1.3: Roots modulo a prime power 21

These two observations allow us to solve Problem 1.3.1 by Hensel lifting.

Subsection 1.3.1

Hensel lifting

Note that there is some s ∈ Z>0 such that ρsS = πS. Now assume that we
have f(a1,k, . . . , an,k) ≡ 0 (mod πk) for some k ≥ 1. For any integer r such
that sk < r ≤ s(k + 1) Equation (1.3) shows us that f(a1, . . . , an) ≡ 0 (mod ρr)
if and only if

0 ≡ f(a1,k, . . . , an,k)

πk
+

n∑
i=1

∂f

∂xi
(a1,k, . . . , an,k) · αi,k (mod ρr0), (1.4)

where r0 = r − sk. Note that S/ρr0S is a vector space over Fp = R/πR, as the
canonical map R→ S → S/ρr0S has kernel πR. Equation (1.4) is thus a set of
linear equations over Fp in the variables α1,k, . . . , αn,k, which could be explicity
solved. Computing a root modulo a higher power in this way is what is known
as Hensel Lifting.

For s > 1 or r0 > 1 determining the vector space structure of S/ρr0S is not
trivial. To see what this vector space structure is, we note that for 1 < r0 ≤ s
we have a short exact sequence

0 S/ρr0−1S S/ρr0S S/ρS 0,
·ρ

of Fp-vector spaces. In this short exact sequence the first non-zero map is
induced by multiplication by ρ on S.

Since a short exact sequence of vector spaces is split we can immediately
conclude that S/ρr0S ∼= S/ρS ⊕ S/ρr0−1S. Furthermore, this isomorphism can
be made explicit if we fix a section σ : S/ρS → S/ρr0S. In this case an ele-
ment a ∈ S/ρr0S maps to an element (b, c) ∈ S/ρS ⊕ S/ρr0−1S, where b is the
reduction of a modulo ρ and c is the unique element that maps to a− σ(b) under
multiplication by ρ. By induction we get an isomorphism S/ρr0S ∼= (S/ρS)

r0 ,
for any r0 ∈ {1, . . . , s}, which can be made explicit using the explicit lifts de-
scribed before.

It remains to represent S/ρS as an Fp-vector space. Note that S/ρS ∼= Fq

is the residue field of q and hence a field extension of Fp. Furthermore, as Fq is
a finite field, the group of units is generated by a single element γ. Therefore
we have that Fq = Fp[γ], hence the isomorphism Fmp → Fq is explicitly given

by (ci)
m−1
i=0 7→

∑m−1
i=0 ciγ

i.

Joey Matthias van Langen

22 Chapter 1: Computing Conductors of Frey Curves

Remark 1.3.2. Note that cases where s > 1 can make the process of Hensel
lifting considerably faster. Computing roots of a polynomial modulo ρr will
only require

⌈
r
s

⌉
− 1 steps, as each increase in the power of π increases the

power of ρ by s. Therefore Tate’s algorithm for Frey curves defined over a
number field K might actually be faster than Tate’s algorithm for Frey curves
over Q, if the parameters are all in Z. This often happens in practice when the
parameters are the solutions of Diophantine equations over Z.

We have tried to find an example that illustrates the Hensel lifting in the case
where s > 1 and r0 > 1 using Tate’s algorithm on a Frey curve. Unfortunately
for the Frey curves we tried, the distinctions between cases are made modulo ρr

with r ≤ s or r ≡ 1 (mod s), or made in one of the transformations. Therefore
these Frey curves do not seem to provide examples that illustrate the true
potential of this type of Hensel lifting.

Subsection 1.3.2

The algorithm

Using Hensel lifting as described in the previous section, we now have an efficient
algorithm to solve Problem 1.3.1. We here give a pseudocode outline of this
algorithm. It includes two helper functions Vector1 and Vector2 that convert
an element x ∈ S/ρrS into an appropriate vector in Frq and Frmp .

Function Vector1(x, r; ρ, Fq, LiftS)
Set xq := x ∈ Fq

If r = 1
Return [xq]

Else

Return [xq, Vector1(x− LiftS(xq))/ρ, r − 1)]

Function Vector2(x, r; ρ, Fq, LiftS, ψ)
Set v := []
For w in Vector1(x, r)
Set v := [v, ψ(w)]

Return v

Function ComputeRootsModulo(f , r; π, ρ, Fp, Fq, LiftR, LiftS, ψ)
Set B := {}
If r ≤ s
For [v1, . . . , vn] in Fnp
Set a1 := LiftR(v1), a2 := LiftR(v2), . . ., an := LiftR(vn)
If ρr | f(a1, ..., an)

Automating the modular method for Q-curves to solve Diophantine equations

Section 1.3: Roots modulo a prime power 23

Set B := B ∪ {(a1, . . . , an)}
Else

Set k :=
⌈
r
s

⌉
− 1

Set r0 := r − ks
For (a1, ..., an) in ComputeRootsModulo(f , ks)

Set M :=

Vector2(∂f

∂x1
(a1, ..., an), r0)

Vector2(∂f
∂x2

(a1, ..., an), r0)
...

Vector2(∂f
∂xn

(a1, ..., an), r0)

Set w := Vector2(f(a1, ..., an)/πk, r0)

For [v1, . . . , vn] in {v ∈ Fnp : Mv = w}
Set b1 := LiftR(v1), b2 := LiftR(v2), . . ., bn := LiftR(vn)
Set B := B ∪ {(a1 + b1π

k, . . . , an + bnπ
k)}

Return B

The arguments π, ρ, Fp, Fq, LiftR, LiftS, and ψ are part of the context.
Mathematically they could either be inferred from the other arguments or their
choice does not matter. They are given to indicate that an actual implemen-
tation might need them as an input. The statement xq := x ∈ Fq means we
are taking the image of x under the canonical map to Fq. The maps LiftR

and LiftS are right inverses of the canonical maps R→ Fp and S → Fq respec-
tively, that map 0 to 0. The map ψ is the inverse of the map Fmp → Fq given

by (ci)
m
i=1 7→

∑m
i=1 ciγ

i.

To solve Problem 1.3.1 for a specific polynomial f and r ∈ Z≥0 one simply
calls the function computeRootsModulo with these arguments. Note that the
result of this function is not all possible roots, but rather representatives of the
roots modulo πk, where k =

⌈
r
s

⌉
. According to Equation (1.3) these are actually

sufficient to determine all solutions, as the solutions only depend on their value
modulo πk.

We can see that this algorithm would perform better than naively trying
all possible roots when r > s. First of all the algorithm does not have to try
all solutions, but only those that were solutions for r′ =

(⌈
r
s

⌉
− 1
)
s. Secondly

the most expensive computation – evaluating a polynomial – only has to be
done n+ 1 times for each of these solutions for r′, rather than once for every
derived solution, i.e. #Fnp times. Instead we do some linear algebra to find the
derived solutions directly.

Joey Matthias van Langen

24 Chapter 1: Computing Conductors of Frey Curves

Section 1.4

p-adic trees

Looking at the algorithm in the previous section, we see that multiple solutions
come from the same solutions modulo a lower power. It would therefore make
sense to store each solution modulo a lower power once, and store only the
additional coefficients in the p-adic expansion for each solution modulo a higher
power. This naturally gives rise to a tree structure, that we will call a p-adic
tree.

Definition 1.4.1. Let A be a finite set. A labeled tree is a directed and possibly
infinite graph T such that:

1. There exists a unique node in T with no incoming arrow. We call this
node the root of the tree.

2. For each node of T there is a unique finite path from the root to that
node.

3. Each arrow is labeled by an element of A such that all outgoing arrows at
a node have a distinct label.

We call A the set of labels of T . We say that a labeled tree is full if each node
has an outgoing arrow for each label.

A p-adic tree is a labeled tree with as set of labels the residue field Fp of p,
or more generally Fnp for some n > 0. If p = (p) we will also write p-adic tree
instead of p-adic tree. We call n the width of the tree.

As an example of a p-adic tree look at the case K = Q and p = (2). We can
label our arrows using the numbers 0 and 1 as F2 = {0, 1}. A possible 2-adic
tree might now be represented as follows.

•

• •

• • • •

0 1

0 1 0 1

0 1 0 1 0 1 0 1

Automating the modular method for Q-curves to solve Diophantine equations

Section 1.4: p-adic trees 25

Here we put the root on top and assume that all arrows point downward. Fur-
thermore the tree continues with infinitely many nodes.

Note that the bijection A→ Fp allows one to interpret a path in a p-adic
tree as a sequence of coefficients of a power series in π, i.e. as p-adic numbers.
In fact each element of the ring of integers Op of the corresponding local field
corresponds to a unique infinite path of a full p-adic tree in this way. If we
limit ourselves to finite paths of length n starting at the root we get instead a
one-to-one correspondence with Op/p

n.
The idea now is to use a p-adic tree to represent the set of solutions to Prob-

lem 1.3.1. A priori it might seem that this would require an infinite amount of
information to be stored, but note that a full tree is completely fixed. Therefore,
if a node contains all possible nodes beneath it, we only have to store that this
node is the root of a full subtree.

Explicitly, we would start with a full p-adic tree in the algorithm in Sec-
tion 1.3.2. We would modify this tree in each call of ComputeRootsModulo as
follows.

� If r ≤ s we remove all the labelled arrows of the root that do not corre-
spond to roots of the equation f(x1, . . . , xn) ≡ 0 (mod qr) and return the
remaining tree.

� If r > s we look at the nodes at level k =
⌈
r
s

⌉
of the tree produced by

the recursive call to computeRootsModulo. For each of these nodes, we
take a1, . . . , an as the elements of R corresponding to the finite power series
in π represented by the path to that node. These are representatives of
the corresponding element in

(
OK/pk

)n
. Next we keep all the arrows

connected to this node with any of the labels b1, . . . , bn that follow from
the calculation thereafter, and remove all other arrows. After doing this
for each node at level k we return the resulting tree.

Here the level of a node is simply the length of the unique path from the root to
that point. Note that the resulting tree will contain all infinite paths of elements
of R ⊂ Op that correspond to solutions of Problem 1.3.1, and not contain the
infinite paths corresponding to non-solutions.

A useful property of using p-adic trees in the algorithm is that we do not
have to start with a full tree. We may for example start with a tree containing
only those paths corresponding to previous calculations and limit it to those
that also solve a specific instance of Problem 1.3.1. This is what will happen
most often in performing Tate’s algorithm. Furthermore it is also easy to keep
track of the elements that do not solve Problem 1.3.1 by just keeping track of

Joey Matthias van Langen

26 Chapter 1: Computing Conductors of Frey Curves

the nodes that would be removed. Therefore the p-adic trees seem a good way
to keep track of the different cases we might encounter when performing Tate’s
algorithm on an elliptic curve depending on parameters.

Section 1.5

A finite step 7 subalgorithm.

We will now look again at the subalgorithm of Step 7 of Tate’s algorithm as
discussed in Section 1.1. Looking at it closely we will find that we only have to do
a finite number of steps if we are only interested in the conductor, Kodaira type,
minimal model, or the total number of geometrically irreducible components.
We are not aware of this being explicitly stated somewhere else in the literature,
but in retrospect we found that the final result – as stated in Corollary 1.5.4 –
can also be obtained from the tables in [Pap93] with some careful analysis.

Let
E : y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6

be a model of an elliptic curve at the start of some substep in the subalgorithm
of Step 7. We here again use the conventions of Section 1.1, so E is a curve over
a p-adic field K with valuation v. In Substep n of this subalgorithm we may
assume that this model satisfies

v(a1) ≥ 1

v(a2) = 1

v(a3) ≥
⌈
n+ 3

2

⌉
v(a4) ≥

⌈
n+ 4

2

⌉
v(a6) ≥ n+ 3,

which we will prove later by induction. We stop the algorithm at Substep n if
the polynomial T

2 + a3

π
n+3
2

T + a6
πn+3 if n is odd

a2
π T

2 + a4

π
n+4
2

T + a6
πn+3 if n is even

has distinct roots in Fp. In that case the reduction information is given by

Type I∗n, m = n+ 5, f = v(∆)− n− 4, c =

{
4 if all roots are in Fp

2 otherwise.

Automating the modular method for Q-curves to solve Diophantine equations

Section 1.5: A finite step 7 subalgorithm. 27

Otherwise we will continue towards step n+ 1. Since in that case there is
a double root for the polynomial which necessarily lives in Fp, we can do a
transformation on E to change the double root to 0, thereby guaranteeing the
assumptions for step n+ 1 are satisfied. Note that the assumptions for Substep 1
can be satisfied by performing the necessary transformations before starting the
subalgorithm, as described on page 367 of [Sil94].

We now prove some results about the invariants if we end in Substep n.

Lemma 1.5.1. If the subalgorithm ends at Substep n the corresponding model
for E satisfies

v(b2) =

{
2v(a1) if v(a1) ≤ v(2)

2v(2) + 1 if v(a1) > v(2)

v(b8) = n+ 4.

Proof. For the first part note that b2 = a2
1 + 4 a2. We have that v(a2

1) = 2 v(a1)
is even and v(4 a2) = 2 v(2) + 1 is odd, hence v(b2) is the smallest of the two.
This immediately implies the mentioned result.

Now for the result about v(b8) we first mention that

b8 = a2
1a6 − a1a3a4 + a2a

2
3 + 4a2a6 − a2

4.

Note that for the first two terms on the right hand side we have

v(a2
1a6) = 2v(a1) + v(a6) ≥ n+ 5

and

v(a1a3a4) = v(a1) + v(a3) + v(a4) ≥ 1 +

⌈
n+ 3

2

⌉
+

⌈
n+ 4

2

⌉
= n+ 5.

Now in case n is odd the term a2a
2
3 + 4a2a6 is precisely a2π

n+3 times the deter-
minant of the polynomial considered in this step. Since we ended at this step,
this polynomial has distinct roots and we find that

v(a2a
2
3 + 4a2a6) = v(a2π

n+3) = n+ 4.

Furthermore we have that

v(a2
4) = 2 v(a4) ≥ 2

⌈
n+ 4

2

⌉
= n+ 5,

Joey Matthias van Langen

28 Chapter 1: Computing Conductors of Frey Curves

hence we must have v(b8) = n+ 4 in this case.
In the case that n is even we similarly find that 4a2a6 − a2

4 is −πn+4 times
the determinant of the polynomial considered in this step. Since this polynomial
has distinct roots as we ended in this step, we find that

v(4a2a6 − a2
4) = v(πn+4) = n+ 4.

In this case we also have

v(a2a
2
3) = v(a2) + 2 v(a3) ≥ 1 + 2

⌈
n+ 3

2

⌉
= n+ 5,

hence v(b8) = n+ 4 also when n is even.

Proposition 1.5.2. If the subalgorithm ends at Substep n > 4 v(2) we have that

v(c4) = 2 v(b2)

v(c6) = 3 v(b2)

v(∆) = 2 v(b2) + v(b8).

Proof. We will use the model of E used in Substep n ≥ 4v(2) + 1 of the subal-
gorithm. First of all we note that

2 v(b4)− n = 2 v(2 a4 + a1a3)− n
≥ min{2 v(2) + 2 v(a4)− n, 2 v(a1) + 2 v(a3)− n}
≥ min{2 v(2) + 4, 2 v(a1) + 3} = v(b2) + 3

and

v(b6)− n = v(a2
3 + 4 a6)− n

≥ min{2 v(a3)− n, 2 v(2) + v(a6)− n}
≥ min{3, 2 v(2) + 3} = 3.

Now we compute that

2 v(24 b4) = 6 v(2) + 2 v(3) + n+ (2 v(b4)− n)

≥ 10 v(2) + 2 v(3) + v(b2) + 4

> 4 v(b2) = 2 v(b22),

hence v(24 b4) > v(b22). Therefore c4 = b22 − 24 b4 has valuation v(b22) = 2 v(b2)
as claimed.

Automating the modular method for Q-curves to solve Diophantine equations

Section 1.5: A finite step 7 subalgorithm. 29

Next we note that

2 v(36 b2b4) = 4 v(2) + 4 v(3) + 2 v(b2) + n+ (2 v(b4)− n)

≥ 8 v(2) + 4 v(3) + 3 v(b2) + 4

> 6 v(b2) = 2 v(b32),

hence v(36 b2b4) > v(b32) and

v(216 b6) = 3 v(2) + 3 v(3) + n+ (v(b6)− n)

≥ 7 v(2) + 3 v(3) + 4

> 3v(b2) = v(b32).

Therefore we find that

c6 = −b32 + 36 b2b4 − 216 b6

has valuation v(b32) = 3v(b2) as claimed.
For the last part we note that

2 v(8 b34) = 6 v(2) + 3n+ 3(2 v(b4)− n)

≥ 10 v(2) + 3 v(b2) + 2n+ 10

> 4 v(b2) + 2 v(b8) = 2 v(b22b8),

hence v(8 b34) > v(b22b8),

v(27b26) = 3 v(3) + 2n+ 2(v(b6)− n)

≥ 4 v(2) + 3 v(3) + n+ 7

> 2 v(b2) + v(b8) = v(b22 + b8),

and

2 v(9 b2b4b6) = 4 v(3) + 2 v(b2) + 3n+ (2 v(b4)− n) + 2(v(b6)− n)

≥ 4 v(2) + 4 v(3) + 3 v(b2) + 2n+ 10

> 4 v(b2) + 2v(b8) = 2 v(b22b8),

hence v(9 b2b4b6) > v(b22b8). All these imply that

∆ = −b22b8 − 8 b34 − 27 b26 + 9 b2b4b6

has valuation v(b22b8) = 2 v(b2) + v(b8) as claimed.

Joey Matthias van Langen

30 Chapter 1: Computing Conductors of Frey Curves

Remark 1.5.3. Note that the expression for v(c4) is true for all n and the ex-
pression for v(c6) is already true for all n > 3v(2). Furthermore v(c4), v(c6)
and v(∆) are independent of the transformations done in the subalgorithm.

Corollary 1.5.4. If the subalgorithm ends at Substep n > 4v(2), then

n = v(b8)− 4 = v(∆)− 2v(b2)− 4 = v(∆)− v(c4)− 4,

hence part of the local data is

Emin = E, Type I∗v(∆)−v(c4)−4, m = v(∆)− v(c4) + 1, f = v(c4)

It is clear from Corollary 1.5.4 that the conductor exponent, Kodaira symbol,
minimal model, and number of irreducible components can already be computed
with at most 4 v(2) steps of the step 7 subalgorithm. In particular the subalgo-
rithm is unnecessary if one only wants to compute this data for primes of odd
characteristic, as is already mentioned in [Sil94].

Example 1.5.5. Conductor.rst We look again at the curve from Exam-
ple 1.2.1. If AB is divisible by 8 and A−B ≡ 1 (mod 4), then Tate’s algorithm
would end up in the subalgorithm of step 7. We will show that the number of
steps required in this subalgorithm will depend on the power of 2 dividing AB.

To start of we will assume that 8 | AB and A−B ≡ 1 modulo 4, as this will
guarantee we end up in step 7 of Tate’s algorithm. We also replace the curve
by its (0, 1, 0)-transform

E : y2 + 2xy = x3 + (−A+B − 1)x2 + (−AB)x,

such that all the transformations in Tate’s algorithm will be trivial.
It is easy to see that with these assumptions we have

ord2 a1, ord2 a2 = 1,

ord2 a3, ord2 a4 ≥ 3, and

ord2 a6 ≥ 4.

Using this information when performing Tate’s algorithm as in Section 1.1,
we see that we get to the If statement in step 6 of Tate’s algorithm by only
performing trivial transformations. Now look at the polynomial

P (T) = T 3 +
a2

2
T 2 +

a4

4
T +

a6

8
modulo 2.

Automating the modular method for Q-curves to solve Diophantine equations

https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Conductor.rst#example-155

Section 1.6: SageMath implementation 31

The If statement in step 6 is equivalent to this polynomial not having a dou-
ble root, and the If statement in step 7 is equivalent to this polynomial not
having a triple root. In this case we have P (T) = T 3 + T 2, so 0 is a double
root. Therefore we would end up in the subalgorithm of Step 7, and the initial
transformation of the subalgorithm is trivial.

Since our model has a3 = a6 = 0 we have b6 = 0. Therefore the algorithm
will not terminate in an odd substep of the subalgorithm, and every transfor-
mation in such a substep is trivial. Since a2

4 − 4a2a6 = A2B2 we stop in the
subalgorithm in substep n = 2k if and only if ord2(AB) < k + 3. Again we get
a trivial transformation if we continue in substep n, justifying that we used the
same model everywhere.

We see that the subalgorithm ends in substep n = 2 ord2(AB)− 4. Fur-
thermore we have ord2 ∆ = ord2

(
(16) ·B2 ·A2 · (A+B)2

)
= 2 ord2(AB) + 4,

so the corresponding local data would be

Type I∗2 ord2(AB)−4, m = 2 ord2(AB) + 1, and f = 4.

In case n > 4, i.e. when 32 | AB, we could also compute this data using Corol-
lary 1.5.4 by noting that ord2(c4) = ord2

(
(16) · (A2 +AB +B2)

)
= 4.

In this example we see that by using Corollary 1.5.4 we can determine part
of the local data by performing at most 4 steps of the subalgorithm. Note that
the Kodaira symbol and number of geometrically irreducible components m
still depends on ord2(∆), which is unbounded when we only assume 8 | AB.
Computing this data for all A and B would therefore be impossible in finite
time. We can however compute the conductor exponent for all A and B in this
way.

Section 1.6

SageMath implementation

The author has implemented the theory and algorithms above as part of the
modular_method package [vL21a] for SageMath [Sag20]. In this section we will
give an overview of the different objects and functions that the modular_method
package provides with regards to the theory discussed in this chapter. This
includes some custom classes to work with p-adic numbers in Section 1.6.1,
an implementation of p-adic trees in Section 1.6.2, an implementation of the
algorithm from Section 1.3.2 in Section 1.6.3, and an implementation of Tate’s
algorithm as described in Section 1.2 in Section 1.6.5. Section 1.6.4 introduces a
user-friendly way to provide restrictions on parameters – which might arise from

Joey Matthias van Langen

32 Chapter 1: Computing Conductors of Frey Curves

a Diophantine equation – to the algorithm in Section 1.6.5. In Section 1.6.6 we
present objects that represent Frey curves. These provide an interface to all the
other code, which we illustrate with some examples.

Subsection 1.6.1

p-adics

As discussed in Section 1.3 we will work exclusively inside number fields, as
all p-adic computation we need can be performed already in those fields. This
allows us to avoid choosing a precision.

To determine which p-adic field we are interested in, i.e. the p-adics we use,
the file modular_method.padics.pAdic_base provides the class pAdicBase.
An instance of this class describes the p-adics by a prime p of a number field K.
It provides useful shorthands to access particular information about the p-adics,
such as a uniformizer, the valuation, and primes below p in subfields of K.

Note that throughout the code, if a function requests an argument called
pAdics, it means an instance of pAdicBase. You can easily create a new instance
thereof by providing a number field and a prime as a maximal ideal of the ring
of integers. If the number field is the rationals one might also provide a prime
number instead.

Note that pAdicBase is not loaded into the modular_method namespace by
default, as it is often only used indirectly.

Subsection 1.6.2

p-adic trees

The p-adic trees as discussed in Section 1.4 are implemented in the module
modular_method.padics.pAdic_tree. They are constructed from the classes
pAdicNode and pAdicNodeCollection. These respectively represent a node in
the tree and a collection of children of a node.

An instance of pAdicNode contains

� the p-adics of the entire tree,

� the width n > 0 of the tree,

� a list of n elements of Fp representing the label of the incoming arrow,

� an instance of pAdicNodeCollection representing the children of this
node, and

Automating the modular method for Q-curves to solve Diophantine equations

Section 1.6: SageMath implementation 33

� the direct parent of this node if it has one.

Any node that does not have a parent is considered to be a root of a p-adic tree.
In that case the element of Fnp has no meaning. Using the reference to its parent
a node can recursively compute its level k in the tree. It can also recursively
compute the representative of

(
OK/pk

)n
that represents the path from the root

to that node.

A standard instance of pAdicNodeCollection contains a reference to the
parent node, and a dictionary containing labels of arrows as keys and the cor-
responding children as values. The subclass pAdicNodeCollection_inverted

does not necessarily keep track of all nodes that belong to it explicitly. Rather it
keeps track of a list of labels for which there is no corresponding node and only
creates a node of a specific label when it is requested. All nodes not yet created
by an instance pAdicNodeCollection_inverted are assumed to be roots of a
full subtree.

When using this implementation one should note that all references to parent
nodes are weak references. This means that Python’s garbage collection will
remove a pAdicNode instance if nothing besides its children and corresponding
pAdicNodeCollection refer to it. This is necessary as otherwise a tree will
persist indefinitely after creation. When working explicitly with nodes in a p-
adic tree, one should always keep a reference to the root to prevent the tree
from breaking.

Note that the trees represented by a pAdicNode root are mutable, which
allows the algorithm in Section 1.3.2 to work with them with the least amount of
copying possible. An immutable version is available for the user’s convenience in
the form of the class pAdicTree. An instance of the class pAdicTree represents
possible p-adic values of n variables, where the values are those in an internal p-
adic tree. Most top level functions will return an instance of pAdicTree rather
than a root of a p-adic tree.

When creating an instance of pAdicTree one has to provide names for the
variables to be used and the p-adics to be used. The latter can also be provided
as a number field and a finite prime thereof. By default the corresponding p-
adic tree is always full. Alternatively one could provide a root of a tree with
the appropriate width, which will then serve as the collection of possible values
for the variables.

The class pAdicTree has methods that allow you to work with it as if it was a
set. Furthermore it has methods to change the variables by adding, removing or
reordering them. Note that none of the non-hidden methods modify the actual
tree stored, but rather modify a copy and return it as another pAdicTree object.

Joey Matthias van Langen

34 Chapter 1: Computing Conductors of Frey Curves

This makes the object less error-prone but slower for computation.

Subsection 1.6.3

p-adic solver

The module modular_method.padics.pAdic_solver provides a function called
find_pAdic_roots. This is an implementation of the algorithm in Section 1.3.2
using the p-adic trees from Section 1.6.2. It solves Problem 1.3.1 when provided
with the polynomial f , the q-adics given by L and q, and the precision r. The q-
adics may be given as a pAdicBase object or as L and q separately. The result
will be the root of a p-adic tree containing the solutions of Problem 1.3.1, and
the root of a p-adic tree with the non-solutions.

The function find_pAdic_roots also has some additional options. First of
all one can provide a p-adic tree containing the values to which the computation
should be limited. This is the only way to ensure that the p-adics of the used
tree are different from those defined by L and q. Note that the given p-adic tree
will be modified if it is given by the root pAdicNode. One can also provide a
precision_cap which is the maximal level of the p-adic tree on which compu-
tations may be performed. Note that setting this precision_cap too low might
make it so find_pAdic_roots can not compute the roots modulo qr accurately.
In that case a warning is printed and r is lowered to the value for which the
solutions can still be computed. By default the precision_cap is set at 20.

Another feature of find_pAdic_roots is the option give_list. When en-
abled, the function will return a list of trees and an integer s. The values in
the first tree will be solutions of f modulo qs that are no longer solutions mod-
ulo qs+1, whereas the second tree will be solutions of f modulo qs+1 that are no
longer solutions modulo qs+2, and so on. Note that the last tree will be those
that are solutions modulo qr, but these might still be solutions modulo higher
powers. This is used to solve a check of type 4, as described in Section 1.2.

Subsection 1.6.4

Conditions

The parameters of Frey curves usually satisfy additional constraints, so it is
useful to have objects that represent such restrictions. Such restrictions are
called conditions in the framework [vL21a]. Various conditions are defined in
the module modular_method.diophantine_equations.conditions as classes.
Here are the most common ones and what an instance of them represents.

Automating the modular method for Q-curves to solve Diophantine equations

Section 1.6: SageMath implementation 35

� PolynomialCondition represents the fact that parameters satisfy some
polynomial equation. It can be created by giving a polynomial in the
parameters that should equal 0.

� CongruenceCondition represents the fact that a certain polynomial in
the parameters is congruent to zero modulo some integer or ideal. It can
be created by giving the polynomial and this modulus.

� ExistsCondition represents the fact that there exist additional parame-
ters such that the parameters and the additional parameters satisfy some
polynomial equation. This can be thought of as a condition of the form

∃x1, . . . , xm : f(x1, . . . , xm, y1, . . . , yn) = 0.

It can be created with the polynomial f and a specification of which
parameters are additional.

� PowerCondition represents the fact that a certain polynomial in the vari-
ables is known to be at least a certain power, i.e. a condition of the form

∃y ∃n ≥ n0 : f(x1, . . . , xm) = yn.

It can be created with the polynomial f and the value of n0.

� CoprimeCondition represents the fact that the parameters are coprime
in some way. It can be created from a list of parameters and a positive
integer n. It represents that any combination of n parameters from that
list have no common prime factors.

� OrderCondition represents that a certain polynomial in the variables has
a maximal valuation for each prime, i.e. it represents a condition of the
form

∀p : ordp f(x1, . . . , xm) ≤ n.

It can be created from the polynomial f and the integer n.

� TreeCondition represents that the values of the parameters should be
part of some p-adic tree. It can be constructed from a pAdicTree object.

Conditions can also be combined to form new conditions. For example using
two conditions C1 and C2 one can make the condition that both of them hold
C1 & C2, and the condition that either of them holds C1 | C2. One can also
negate a condition C by writing ~C. One can recursively combine these conditions

Joey Matthias van Langen

36 Chapter 1: Computing Conductors of Frey Curves

to make more complicated ones, but note that their printed representation might
get a bit convoluted. One can always check what the left and right part of the
top level combination were using the attributes _left and _right.

Each condition also has a method pAdic_tree that computes a p-adic tree
for given p-adics. This p-adic tree contains all the values of the parameters
for which the condition holds. The p-adics should be provided as a pAdicBase

object. Alternatively one could provide a pAdicTree object as the argument
pAdic_tree, in which case the result will be a new pAdicTree of those values
in the given one that satisfy the condition.

Using the argument complement one can request the method pAdic_tree

to also return the tree of values that do not satisfy the condition. Note that
the trees returned always err on the side of caution, meaning they contain all
possible values for which the condition could hold (or not hold). This means
that the two trees returned might overlap. For example when asking the p-adic
tree and complement of a CongruenceCondition for which p does not divide
the modulus both trees will be full.

Some conditions might accept additional arguments for pAdic_tree, such
as precision_cap for the maximal level at which to do computations in p-
adic trees, and precision for the precision of computations in p-adic fields.
These additional arguments are used by conditions that use find_pAdic_roots

to compute the corresponding p-adic tree. Note the remark about setting
precision_cap too low in Section 1.6.3. If no warning is given, but precision
was provided, it is only guaranteed the returned p-adic tree is correct up to
the given precision. If a condition is built from several conditions it will pass
these arguments on to those conditions as well. If a condition does not accept
these arguments they are ignored.

Each condition also has the methods always and never, which return true
when it can be asserted that a condition either always holds or never holds at
all respectively.

The module modular_method.diophantine_equations.conditions also
contains the class ConditionalValue, which represents data of which the spe-
cific value might depend on certain conditions on parameters. It can be con-
structed by a list of pairs where each pair consists of a value and the condi-
tion that asserts this value is attained. Similarly a ConditonalValue can also
be indexed or iterated as if it is such a list, but it comes with its own vi-
sual representation. Many functions in the modular_method package produce
ConditionalValue objects as output or accept them as input.

When arithmetic is performed on ConditionalValue objects an instance
of ConditionalExpression is created. These objects store the expressions

Automating the modular method for Q-curves to solve Diophantine equations

Section 1.6: SageMath implementation 37

without evaluating them. These come with a visual representation that dis-
play all ConditionalValue objects in the expression simultaneously. When
necesary one can attempt to evaluate a ConditionalExpression to a single
ConditionalValue with the method value. This method simply determines
each possible value for the ConditionalValue objects in the expression and
performs the appropriate arithmetic on those. Note that this might not work as
the ConditionalExpression could contain parts that do not allow arithmetic
normally such as strings.

To apply a function to each case in a ConditionalValue one can use the
function apply_to_conditional_value. Another utility function provided is
the function conditional_product which can be used to combine multiple
ConditionalValue objects into one. You would use the latter for example
if you have two ConditionalValue objects with integer values and want to
combine them into one with possible tuples of these integers.

Subsection 1.6.5

Tate’s algorithm

The module modular_method.elliptic_curves.tates_algorithm provides
an implementation of Tate’s algorithm based on the material covered in this
chapter. The main function in this module – called tates_algorithm – will
compute the data from Tate’s algorithm for a given elliptic curve with coef-
ficients in some polynomial ring over a number field and a given localization
of that number field. The localization should be given by a corresponding
pAdicBase object or a given finite prime of the number field.

The function performs Tate’s algorithm as described in Section 1.1 by keep-
ing track of cases in a queue. Each case contains a p-adic tree of values for
the parameters, and tracks up to what point Tate’s algorithm has been per-
formed for that case. Until the queue is empty the function takes a case from
the queue, performs a single step of Tate’s algorithm on it, and then puts any
resulting cases back into the queue. Here a step is any part of Tate’s algorithm
that contains exactly one check as described in Section 1.2, which in particular
separates the transformations. Each of these checks might result in multiple
cases as the outcome might depend on a further distinction between values. A
case is removed from the queue when all the data that Tate’s algorithm com-
putes has been computed for that case.

Note that each step in Tate’s algorithm makes use of the find_pAdic_roots
function discussed before. It also makes use of the give_list functionality of
that function to determine the valuation of various invariants when needed, such

Joey Matthias van Langen

38 Chapter 1: Computing Conductors of Frey Curves

as to determine the precise type for Step 2. Note that a general precision_cap
can be provided for these functions when calling tates_algorithm.

When the queue is empty the function collects all finished cases and con-
structs a FreyCurveLocalData object combining the local data computed. If
the data is the same for all cases then one FreyCurveLocalData object is re-
turned. Otherwise the return value is a ConditionalValue containing the dif-
ferent FreyCurveLocalData obtained and the conditions on the parameters for
which they are attained.

To limit the values of the parameters from the start one can provide a p-adic
tree as the argument initial_values. Here p may be a prime in a subfield of
the field over which the elliptic curve is defined. This is the only way to make
tates_algorithm work with parameters in a smaller field. Note that when
the p-adic tree is provided as a root pAdicNode, then this tree will be modified
during the computation.

Besides computing all local data, one may also limit what local data is
computed by providing the argument only_calculate. This should be a list
containing keywords of the data one actually wants to compute. Rather than
constructing a FreyCurveLocalData object at the end the function will in that
case construct a list containing the requested local data for each case. Fur-
thermore the implementation will skip steps that are not required for the data
requested. For example it uses the results from Section 1.5 to limit the Step 7
subalgorithm to finitely many steps when only the minimal model or the con-
ductor is requested.

Note that one cannot determine a priori if tates_algorithm will terminate
on a provided input in general, as was remarked in Section 1.2. It is therefore
strongly advised to rerun the algorithm with the optional verbose argument,
when the algorithm does not seem to terminate. This will print which step is
being computed, so one can better analyse what might be the issue.

As a sanity check, the function tates_algorithm has been tested various
times against a random sample of 10 000 curves from the Cremona database, by
considering them as curves with zero parameters.

Subsection 1.6.6

Frey curves

A user interface to the functionality discussed in previous sections is provided by
the class FreyCurve in modular_forms.elliptic_curves.frey_curves. An
object of this class can be used to represent a Frey curve of which one can
find a more precise description in Section 3.1. For the code a FreyCurve is an

Automating the modular method for Q-curves to solve Diophantine equations

Section 1.6: SageMath implementation 39

elliptic curve of which the coefficients are polynomials over a number field L in a
finite number of parameters. The parameters are assumed to have undetermined
values in the ring of integers of a subfield K ⊆ L that are subject to a given
condition. The class provides functionality to compute with a FreyCurve as if
it were an elliptic curve defined over L.

To construct a FreyCurve one has to either provide an elliptic curve of which
the coefficients are polynomials over L, or the data that would make such a curve
when passed to SageMath’s EllipticCurve. Furthermore one can provide a
ring of which the field of fractions will be the field K as parameter_ring, and
a condition which the parameters should satisfy as condition.

Besides the standard functionality inherited from normal SageMath elliptic
curves, the FreyCurve class provides methods to compute local data at primes
of L. For example there are methods to compute the conductor_exponent,
the minimal_model and the reduction_type at such a prime, as well as all
local_data. Note that all these operations are backed by the implementation
of Tate’s algorithm described before, but are cached for easy reuse. Furthermore
one can call these methods with a different condition than the one stored in the
FreyCurve for more specific results.

Another local computation that can be performed for a FreyCurve E is
computing the traces of Frobenius elements under the l-adic and mod l Ga-
lois representations associated with the curve. For a prime q of L the method
trace_of_frobenius computes an integer aq. Let σ ∈ GL be a Frobenius ele-
ment of q and ρE,l be the l-adic or mod l Galois representation of E for l a prime
number not divisible by q. If ρE,l is unramified, then Tr ρE,l(σ) = aq inside Ql
or Fl. Furthermore one can also compute the integer that would correspond
to ρl(σ

n) for any n ∈ Z>0 with trace_of_frobenius by setting the argument
power to n. Note that this method does not require l and makes no assertions
about the existence of l that satisfy the mentioned properties. It does require
the curve to not have additive reduction at the given prime q.

Besides local computations one can also attempt to compute the entire con-
ductor of a FreyCurve using the method conductor. This method requires
that there are only finitely many primes for which the curve may have ad-
ditive reduction. By default it determines these primes using the method
primes_of_possible_additive_reduction which simply computes all the
primes that could divide both c4 and the discriminant. In case there is only
one parameter these are determined by the resultant. In case of two parameters
in which c4 and the discriminant are homogeneous, the resultant is also used,
but a warning is printed that the parameters should be coprime. In any other
case only the primes dividing all the coefficients of c4 and the discriminant are

Joey Matthias van Langen

40 Chapter 1: Computing Conductors of Frey Curves

considered, and a warning is printed that it is assumed c4 and the discriminant
are coprime outside these primes.

For each additive prime – either provided by the argument additive_primes
or computed – the method conductor will compute the conductor exponent ex-
plicitly. These are then combined into a ConditionalExpression of which the
left side is just the product of the additive primes to their respective conductor
exponent. The right side of this expressions is a string, which states that the
remainder is the radical of some polynomial outside the additive primes. This
polynomial is the discriminant of the elliptic curve, potentially scaled by a con-
stant factor. When c4 and the discriminant are coprime outside the additive
primes, this is indeed what the remainder of the conductor should be.

Another method provided by a FreyCurve is newform_candidates. This
method can be used to compute newforms associated to the Frey curve for the
modular method. We discuss the details of this method in Chapter 3.

Example 1.6.1. Conductor.rst We will show some explicit code examples
for the curve from Example 1.2.1, but in this example we will also assume A
and B are coprime. First of all we construct the corresponding FreyCurve

object.

sage: from modular_method import *

sage: R.<A, B> = QQ[]

sage: con = CoprimeCondition([A, B])

sage: E = FreyCurve([0, B - A, 0, -A*B, 0], condition=con); E

Frey curve defined by y^2 = x^3 + (-A+B)*x^2 + (-A*B)*x over \

Rational Field with parameters (A, B)

Now we can compute the conductor over Q with one method.

sage: N = E.conductor(); N

Warning: Assuming that A and B are coprime.

2^n0*Rad_P((16) * B^2 * A^2 * (A + B)^2)

where

n0 = 5 if (’A’, ’B’) is 1 of 6 possibilities mod 4

4 if (’A’, ’B’) is 1 of 3 possibilities mod 4

3 if (’A’, ’B’) is 1 of 36 possibilities mod 16

0 if (’A’, ’B’) is 1 of 24 possibilities mod 32

1 if (’A’, ’B’) is 1 of 24 possibilities mod 32

The warning comes from the necessary assumption that c4 and ∆ are coprime
outside some finite set of primes. In this case the finite set was chosen as {2}
by the default method.

Automating the modular method for Q-curves to solve Diophantine equations

https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Conductor.rst#example-161

Section 1.6: SageMath implementation 41

sage: E.primes_of_possible_additive_reduction()

[2]

Note that the Rad_P part is not explicitly computed. It just displays the fac-
torisation of the discriminant ∆. It indicates that the remaining part of the
conductor is just the product of all primes dividing ∆ that are not in {2}.

We can also change the set {2} to compute more conductor exponents ex-
plicitly.

sage: E.conductor(additive_primes=[2, 3, 5, 7])

2^n0*3^n1*5^n2*7^n3*Rad_P((16) * B^2 * A^2 * (A + B)^2)

where

n0 = 5 if (’A’, ’B’) is 1 of 6 possibilities mod 4

4 if (’A’, ’B’) is 1 of 3 possibilities mod 4

3 if (’A’, ’B’) is 1 of 36 possibilities mod 16

0 if (’A’, ’B’) is 1 of 24 possibilities mod 32

1 if (’A’, ’B’) is 1 of 24 possibilities mod 32

n1 = 0 if (’A’, ’B’) == (1, 1), (2, 2) mod 3

1 if (’A’, ’B’) is 1 of 6 possibilities mod 3

n2 = 0 if (’A’, ’B’) is 1 of 12 possibilities mod 5

1 if (’A’, ’B’) is 1 of 12 possibilities mod 5

n3 = 0 if (’A’, ’B’) is 1 of 30 possibilities mod 7

1 if (’A’, ’B’) is 1 of 18 possibilities mod 7

We can also impose additional conditions. For example we could compute the
conductor exponent at 2 as in Example 1.5.5.

sage: con2 = (CongruenceCondition(A*B, 8) &

....: CongruenceCondition(A - B - 1, 4))

sage: E.conductor_exponent(2, condition=con2)

4

Note that E is also the Frey curve associated with Fermat’s Last Theorem in
case we take A, B and A+B to be l-th powers with l ≥ 3. We also compute
the conductor imposing these additional conditions.

sage: conFLT = (con &

....: PowerCondition(A, 3) &

....: PowerCondition(B, 3) &

....: PowerCondition(A + B, 3))

sage: E.conductor(condition=conFLT)

Joey Matthias van Langen

42 Chapter 1: Computing Conductors of Frey Curves

2^n0*Rad_P((16) * B^2 * A^2 * (A + B)^2)

where

n0 = 3 if (’A’, ’B’) is 1 of 12 possibilities mod 16

4 if (’A’, ’B’) is 1 of 6 possibilities mod 8

0 if (’A’, ’B’) is 1 of 24 possibilities mod 32

1 if (’A’, ’B’) is 1 of 24 possibilities mod 32

The results of these functions can be conditional values or conditional expres-
sions. We illustrate how one can inspect such values with the conductor com-
puted earlier

sage: N.left()

2^n0

where

n0 = 5 if (’A’, ’B’) is 1 of 6 possibilities mod 4

4 if (’A’, ’B’) is 1 of 3 possibilities mod 4

3 if (’A’, ’B’) is 1 of 36 possibilities mod 16

0 if (’A’, ’B’) is 1 of 24 possibilities mod 32

1 if (’A’, ’B’) is 1 of 24 possibilities mod 32

sage: N.left().right()

5 if (’A’, ’B’) is 1 of 6 possibilities mod 4

4 if (’A’, ’B’) is 1 of 3 possibilities mod 4

3 if (’A’, ’B’) is 1 of 36 possibilities mod 16

0 if (’A’, ’B’) is 1 of 24 possibilities mod 32

1 if (’A’, ’B’) is 1 of 24 possibilities mod 32

sage: N.left().right()[1]

(4, The condition that (’A’, ’B’) == (0, 3), (1, 0), (3, 1) \

mod 4)

For more examples see the examples listed in Table 3.1

Section 1.7

Comparison to other methods

Among papers where Frey curves are used there are different approaches to
computing the conductor of these Frey curves. Some papers such as [Dar93]
and [DM97] simply claim they applied Tate’s algorithm, indicating they proba-
bly did the computation by hand. A small mistake in [DM97] – as pointed out

in the framework [vL21a] example Darmon-Merel-1997.rst – shows this can

Automating the modular method for Q-curves to solve Diophantine equations

https://github.com/jmvlangen/modular-method-package/blob/master/examples/literature/Darmon-Merel-1997.rst

Section 1.7: Comparison to other methods 43

be error prone. Other papers use more automated approaches to compute the
conductor. We shall compare these other approaches to the framework [vL21a]
based on the theory in this Chapter.

Subsection 1.7.1

Papadopoulos’ tables

In [Pap93] Papadopoulus presented tables that can be used to determine the
result of Tate’s algorithm for an elliptic curve E based on the valuation of c4, c6
and ∆. One could use these tables to ‘read off’ the conductor of a Frey curve,
presenting an alternative approach to the algorithm presented in this chapter.
There are some caveats to this approach as we will discuss here.

First of all it should be noted that the tables in [Pap93] are not conclusive
based on the valuation of c4, c6 and ∆ alone. For some cases additional criteria
are introduced to distinguish between results. These are often not as easy
to determine as the valuation of c4, c6 and ∆. For example for a prime of
characteristic 2 one has to distinguish between a case that ends in Step 6 and
one that ends in Step 7 of Tate’s algorithm. To do this [Pap93] presents the
following check.

1. Check if there is an r such that v(b8 + 3rb6 + 3r2b4 + r3b2 + 3r4) ≥ 5. If
there is none we end in Step 6.

2. Find a t such that v(a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1) ≥ 3.

3. Determine v(a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1) precisely. If it is 3 we
end in Step 6, otherwise in Step 7.

Such conditions can be difficult to check by hand for a Frey curve. They
arise from the transformations needed in Tate’s algorithm. Since the frame-
work [vL21a] takes care of these transformations during Tate’s algorithm, it
does not have to check such existence statements. Furthermore the supplemen-
tary conditions necessary for the subcases of Step 7 are indicated in the table,
but not actually provided in the mentioned section. They could though be
inferred from the later sections, such as Proposition 1 in Section III.

Another disadvantage of Papadopoulos’ tables is that it can only compute
the conductor for a minimal model of an elliptic curve. If the elliptic curve is not
minimal it does conclude so, but can not present a minimal model. In contrast
Tate’s algorithm will transform the curve into a minimal model to compute the
conductor. This is especially relevant for Frey curves, as the minimal model

Joey Matthias van Langen

44 Chapter 1: Computing Conductors of Frey Curves

might depend on the value of the parameters. The framework [vL21a] automat-
ically creates the minimal model for each prime and can also give the minimal
models if needed.

It should also be noted that the tables in [Pap93] contain at least one error,
as pointed out in [Dah08, Appendix A].

Overall ‘reading off’ Papadopoulos’s tables can be quite tedious, especially
in the case v(2) > 1 where the table has many different cases. One could try
to automate this ‘lookup’ process, but this would require a program that com-
putes v(c4), v(c6), v(∆) and all the necessary additional conditions. Besides the
fact that these calculations might not be finite, as v(c4), v(c6) and v(∆) are not
necessarily all bounded, this seems like more computational work than doing
Tate’s algorithm itself. Therefore the implementation presented in this chapter
seems to be a more efficient automated approach.

It should be noted that there are cases in which the tables in [Pap93] are
indeed a good approach. For example in [Kra98] it is used to determine the
conductor of a Frey curve as the valuation of c4, c6 and the discriminant could
be determined from the related Diophantine equation. In general this ‘lookup’
method can be used as a check on a conductor computed by other means.

Subsection 1.7.2

Chen’s approach

In [Che10], [Che12], [BC12], and [BCDY14] another method of automating
Tate’s algorithm is presented. As this method was first introduced by Imin
Chen in [Che10] and he worked on all these papers, we will call this Chen’s
approach. Chen’s approach works roughly as follows.

� Determine a high enough power n of a prime p such that the conductor
exponent at p only depends on the Weierstrass coefficients modulo pn.

� Compute the conductor of the elliptic curves in a set of representatives for
the parameters modulo pn.

In most papers using Chen’s approach the first step is a lemma stating two
curves have the same reduction type if their coefficients are congruent modulo a
sufficiently high power. Examples of such lemmas include Lemma 5 in [BC12],
Lemma 30 and 31 in [Che10], and Lemma 9 in [Che12]. In these lemmas it
is assumed that the reduction type of one of the two curves is already known.
The proof is going through Tate’s algorithm for both curves simultaneously, and

Automating the modular method for Q-curves to solve Diophantine equations

Section 1.7: Comparison to other methods 45

noting that the decisions in each step are the same for the second curve with
congruent coefficients.

In [BCDY14] the most general version of this kind of lemma is claimed in
Lemma 2.1. It is stated there that for two elliptic curves

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

E′ : Y 2 + a′1XY + a′3Y = X3 + a′2X
2 + a′4X + a′6

if there is a k > 0 such that v(ai − a′i) ≥ ik for all i and the discriminants of E
and E′ satisfy

max {v (∆E) , v (∆E′)} ≤ 12k,

then their reduction type is the same or both have a reduction type I∗m for
some m > 2. However the result as stated is false as the two curves

E : Y 2 = X3 +X2 + 1

E′ : Y 2 + 2XY = X3 +X2 + 1

do not have the same reduction type at 2 but satisfy the other criteria. In fact
performing Tate’s algorithm on two curves simultaneously will yield a result
where v(ai − a′i) ≥ ik is replaced by v(ai − a′i) ≥ nk for some n independent
of i. Here n will most likely be 6.

This first step is the main disadvantage of Chen’s approach compared to the
framework [vL21a]. The second step requires Tate’s algorithm to be performed
roughly (#p)

mn
times, where m is the number of parameters, so the lemma for

the first step has to be chosen such that this computation is still feasible. To
do this, one effectively has to know what the outcome of Tate’s algorithm will
be for your Frey curve beforehand, with the final computation serving only as
a proof of correctness. Although results like Lemma 2.1 in [BCDY14] would
give bounds if one knows an upper bound on the discriminant, these bounds
might not be feasible in practice. Therefore Chen’s approach is not truly an
automated approach like the framework [vL21a] is. When the first step can be
provided, as in [Che10], [Che12], [BC12], and [BCDY14], Chen’s approach is
quite a good solution as it requires no new implementation of Tate’s algorithm.

To see how Chen’s approach compares to the framework [vL21a] in terms of
efficiency, we timed some computations on the Frey curves in [Che10], [Che12],
[BC12], and [BCDY14]. The results are collected in Table 1.1. We see that
in most cases Tate’s algorithm as implemented in the framework [vL21a] is
considerably faster than Chen’s approach. Note that both algorithms need

Joey Matthias van Langen

46 Chapter 1: Computing Conductors of Frey Curves

to perform each step of Tate’s algorithm with representatives of the parame-
ters modulo some sufficiently high power of the chosen prime. However the
framework [vL21a] adapts what power is sufficiently high for each step whereas
Chen’s approach chooses an upper bound on this power beforehand. Therefore
the framework [vL21a] actually does less computational work for most steps as
compared to Chen’s approach.

The notable exception to this is the case for the curve Eβ from [BC12] at a
prime p2 above 2. Here there is a case in which the curve is not minimal and
we have to do step 6 a second time. In this step one has to compute whether
a certain polynomial P (T) in the coefficients of the curve has a double root
modulo p2. The framework [vL21a] does this by checking the valuation of the
discriminant of P which requires computing with the parameters modulo p19

2 .
However looking at the polynomial P (T) modulo p2 one can see that it is already
uniquely determined by the value of the parameters modulo a much smaller
power of p2. This is precisely what happens in the bound chosen by Chen’s
approach, hence that method is faster in this particular case.

Note that in fact in most of the steps of Tate’s algorithm we are computing
the valuation of the discriminant of some polynomial. Therefore it might be
possible to compute with the parameters modulo a smaller power of the chosen
prime by looking whether the corresponding polynomial has a double root in-
stead. Note however that this is a check of type 2 rather than one of type 1, as
described in Section 1.2, meaning we do not have an efficient algorithm besides
trying all the options. For most use cases the check of type 1 still seems to be
the fastest option.

It should be remarked that in most use cases time only plays a role in
the sense that the computation is still feasible. One often only computes the
conductor of a Frey curve once, so it is just important that this computation
does not take weeks. However when experimenting with curves a faster time
could be very desirable, e.g. when comparing conductors of many different Frey
curves associated with a Diophantine equation.

Computation times

Table 1.1 contains the computation times of conductor exponents using both
Chen’s approach and the framework [vL21a]. All Frey curves for which these
are done are taken from the articles [Che10], [Che12], [BC12], and [BCDY14]
and denoted like they are in the corresponding article. The primes are taken in
the appropriate field and by pp we denote a prime above p.

The time of the original Magma [BCP97] code can be found in the column

Automating the modular method for Q-curves to solve Diophantine equations

Section 1.7: Comparison to other methods 47

named “Magma”. For the curves in [BCDY14] no code was explicitly linked to
in the article. The time in the column “Magma” for these curves corresponds
to Magma code found in ChenMethod.m , which resembles the Magma code for
the other curves. The time of a simple implementation of Chen’s approach in
SageMath [Sag20] can be found in the column “SageMath”. The time of the
framework [vL21a] is listed in the column “framework”.

All computations have been performed on an AMD Ryzen 7 3700x processor
(3.6 GHz) using Magma [BCP97] version 2.25-7 and SageMath [Sag20] version
9.1. The SageMath code to time the SageMath and framework examples can be
found in ChenMethod.sage . The original code can be found on Imin Chen’s

website.

Joey Matthias van Langen

https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/ChenMethod.m
https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/ChenMethod.sage
https://iminchen.org/?page_id=42
https://iminchen.org/?page_id=42

48 Chapter 1: Computing Conductors of Frey Curves

Chen’s approach
article curve prime Magma SageMath framework

[Che10] Esβ p2 70 ms 642 ms 450 ms

p3 1.84 s 57.3 s 716 ms
p5 240 ms 216 ms 113 ms

[Che10] Etβ p2 80 ms 623 ms 448 ms

p3 1.2 s 57 s 727 ms
p5 110 ms 213 ms 107 ms

[Che12] Eβ p2 410 ms 431 ms 1.41 s
p3 950 ms 7.2 s 147 ms

[BC12] Eβ p2 230 ms 4.09 s 6 min 6s
p3 750 ms 7.45 s 148ms

[BC12] E′ 2 30 ms 108 ms 15.3 ms
3 630 ms 2.19 s 33.4 ms

[BCDY14] E1 2 380 ms 862 ms 22.5 ms
case c odd 3 2 min 4s 2 min 33s 11.3 ms

[BCDY14] E2 p2 30 ms 238 ms 28 ms
case c odd

[BCDY14] E1 2 330 ms 832 ms 13.3 ms
case c even 390 ms 839 ms 20.5 ms

3 1 min 49 s 2min 32s 10.8 ms
2 min 24 s 2min 32s 40.9 ms

[BCDY14] E2 p2 30 ms 434 ms 40.9 ms
case c even 30 ms 386 ms 38 ms

[BCDY14] E3 p2 30 ms 397 ms 38.4 ms
case c even 40 ms 396 ms 37.7 ms

Table 1.1: Computation times of the conductor exponent using Chen’s approach
and the framework [vL21a].

Automating the modular method for Q-curves to solve Diophantine equations

Chapter 2

Q-curve computations

A particular type of elliptic curves that can be used for the modular method is
formed by Q-curves. In [Rib04] Ribet proved that Q-curves without complex
multiplication are modular, based on the now proven Serre conjectures. In
particular there are classical modular forms associated with non-CM Q-curves,
which can be computed through various computer algebra packages. The Q-
curves with complex multiplication were already known to be modular before,
see e.g. [Shi71].

In this chapter we will discuss the basic theory of Q-curves without complex
multiplication. Most of this theory is obtained directly from the article [Que00]
by Quer and the original article [Rib04] by Ribet. We will however focus on the
computational aspect, where we describe the process which in the end computes
the newforms associated with a (Frey) Q-curve. All this computational work
has been implemented in the framework [vL21a]. Throughout this chapter we
mention the relevant methods, functions, and classes in the framework [vL21a]
when new theory is introduced. Most of the examples in this chapter also contain
explicit code examples that show how to perform the relevant computations in
practice.

Besides new algorithmic results, this chapter also introduces some new theo-
retical results. This includes Proposition 2.5.3, Proposition 2.5.5, and the results
from Section 2.10. Proposition 2.11.1 can also be considered new, although it
is mostly an extension of Proposition 3.2 in [Ell04].

After a general introduction to Q-curves in Section 2.1 the first few sections
focus on associating an abelian variety of GL2-type to a Q-curve. Section 2.2
introduces the relevant algebra of the restriction of scalars of a Q-curve and
relates an associated abelian variety of GL2-type to a splitting map. Section 2.3
then discusses how a splitting map could be computed from a splitting character.
Section 2.4 shows what local constraints define a splitting character of a Q-curve.
Section 2.5 discusses the final adjustments necessary to turn the corresponding
map into a splitting map. Section 2.6 then discusses the different splitting

Joey Matthias van Langen

50 Chapter 2: Q-curve computations

maps associated to a Q-curve and which splitting maps may relate to the same
abelian variety of GL2-type. Finally Section 2.7 presents some results about the
different fields that play a role in this theory.

The last sections of this chapter are about the Galois representations and
newforms associated with Q-curves. Section 2.8 introduces the Galois repre-
sentations associated with the abelian varieties of GL2-type associated with
a Q-curve. Section 2.9 uses these Galois representations to find the level of new-
forms associated with a Q-curve. Section 2.10 shows how to compute the traces
of these Galois representations at Frobenius elements. Finally Section 2.11 gives
a result that can be used to show these Galois representations are irreducible
for some families of Q-curves.

Section 2.1

Generic properties of Q-curves

We will start with the definition of a Q-curve.

Definition 2.1.1. A Q-curve is an elliptic curve E defined over Q such that
each Galois conjugate of E is isogenous to E.

Remark 2.1.2. Throughout this chapter, whenever we talk about a Q-curve E
we assume it comes with a choice of isogenies φσ : σE → E for σ ∈ GQ. Unless
explicitly stated the choice of isogenies does not matter.

To work with a Q-curve on a computer we need to store both a defining
Weierstrass equation and a choice of corresponding isogenies φσ. Since the
Weierstrass coefficients of a Q-curve are algebraic, we can always find a Galois
number field K over which the curve is defined. In this case we can choose our
isogenies φσ so they only depend on σ ∈ GKQ , so only a finite amount of them
have to be stored. Note that they may still be defined over a larger field than K.
What follows is a result summarising the necessary data of an isogeny.

Proposition 2.1.3. Let E1, E2 be elliptic curves over a field K with respec-
tive Weierstrass equations f1(x, y) = 0 and f2(x, y) = 0. Let φ : E1 → E2 be an
isogeny over K.

� We have φ(x, y) = (F (x), G(x)y +H(x)) outside points in the kernel of φ
for some F (x), G(x), H(x) ∈ K(x).

� The degree of φ is equal to the degree of the numerator of F .

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.1: Generic properties of Q-curves 51

� There exists a λ ∈ K such that φ∗ω2 = λω1, where ωi = dx
∂fi
∂y (x,y)

is the

invariant differential of Ei.

� The associated λ ∈ K satisfies

λ
∂f2

∂y
(F (x), G(x)y +H(x)) = F ′(x)

∂f1

∂y
(x, y). (2.1)

Proof. Note that for both elliptic curves we have a morphism x : Ei → P1 given
by the x-coordinate. This is in fact the quotient map when we associate a
point P with its additive inverse −P . We know that φ(−P) = −φ(P) as φ is
an isogeny, so φ factors as

E1 E2

P1 P1

φ

x x

F

overK. Note that the only point mapping to the point at infinity in P1 under x is
the point at infinity of E2, so outside x-coordinates of points mapping to O ∈ E2

under φ, the morphism F is a rational map. Since the map x has degree 2, we
see that the function field of E2 is of the form K(x)[y]/(f2(x, y)) where f2(x, y)
is a quadratic polynomial in y. Therefore rational functions on E2 are always
of the form G(x)y +H(x) for some G(x), H(x) ∈ K(x). These facts combined
prove that φ is indeed of the given form outside points mapping to O ∈ E2.

Note that by the multiplicativity of degrees we find that

2 deg(φ) = deg(x) deg(φ) = deg(F) deg(x) = 2 deg(F).

The degree of F is easily determined by determining the number of points that
map to 0 ∈ P1 counting multiplicity. This is equal to the degree of the numerator
of F (x) as ∞ is mapped to ∞.

We know that φ∗ω2 = λω1 for some λ ∈ K(E1) as ΩE1
is 1-dimensional

over K(E1). Now note that

div λ = div(φ∗ω2)− divω1 = φ∗ div(ω2)− 0 = 0,

hence λ ∈ K.
Now let xi, yi be coordinates for Ei, then the invariant differential of Ei is

ωi =
dxi

∂fi
∂yi

(xi, yi)
.

Joey Matthias van Langen

52 Chapter 2: Q-curve computations

It follows that

λ
∂f2

∂y2
(F (x1), G(x1)y1 +H(x1))ω1 = φ∗

(
∂f2

∂y2
(x2, y2)ω2

)
= φ∗(dx2)

= dF (x1) = F ′(x1)dx1

= F ′(x1)
∂f1

∂y1
(x1, y1)ω1,

proving the last formula.

Note that Equation (2.1) implies that in characteristic 6= 2 the rational
map F (x) and the invariant λ are sufficient to fix the entire isogeny. Therefore
there are three different ways in the framework [vL21a] to define an isogeny φσ
for a Q-curve.

1. As a SageMath isogeny object.

2. As a triple of rational maps (F (x), G(x), H(x)) as presented in the first
point of Proposition 2.1.3.

3. As a tuple (F (x), λ) where F (x) is the same rational map as in the previous
way and λ is the constant mentioned in the third point of Proposition 2.1.3.

In the framework [vL21a] Q-curves are represented by the class Qcurve pro-
vided in modular_method.elliptic_curves.Qcurves. To make an instance
of Qcurve one has to provide either an elliptic curve or the same data that
would make an elliptic curve with the constructor EllipticCurve. This curve
should be defined over a number field K which will be replaced by a Galois
closure if it is not Galois over Q. A choice of isogenies should be provided as
the argument isogenies. This should be a dictionary with σ ∈ GKQ as keys
and isogenies E → σE as values. The isogenies should be given as described by
one of the choices of data above. Note that an entry for each generator of GKQ
suffices as the framework [vL21a] can infer an isogeny for στ from the one for σ
and the one for τ . Furthermore it will always take the isogeny for the 1 ∈ GKQ
to be the identity. Internally all the isogenies are stored as the maps F (x)
and G(x)y +H(x) as presented in Proposition 2.1.3.

Rather than providing isogenies explicitly, one can also provide possible
degrees of isogenies through the argument guessed_degrees. If the frame-
work [vL21a] has insufficient isogeny data from isogenies to construct all isoge-
nies it will look among this list. For each positive integer d in guessed_degrees

it will then construct all isogenies of degree d with domain E. If the image of

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.1: Generic properties of Q-curves 53

such an isogeny is isomorphic to a Galois conjugate of E, it is combined with the
corresponding isomorphism and added to the list of isogenies. This is the easiest
way to provide isogenies, but offers the least control over the actual isogenies
used.

Note that in the framework [vL21a] the isogenies E → σE are stored whereas
in the theory in this chapter we will always consider isogenies φσ : σE → E.
We shall see in Section 2.10 why it is useful to store this information instead.
Whenever we want to compute data from the isogenies φσ we shall make a
remark of how to do so from the isogenies E → σE instead.

The module modular_method.elliptic_curves.frey_curves offers the
class FreyQcurve representing a Q-curve that is also a Frey curve. This class
works similar to the class FreyCurve explained in Section 1.6.6, except that
it also keeps track of the Q-curve structure. One should therefore also supply
isogeny data to its constructor similar as with the constructor of Qcurve. One
other difference is the newforms produced by the method newform_candidates

as they will reflect the Q-curve modularity instead. This will be further ex-
plained in Section 3.1.

Example 2.1.4. Qcurve1.rst Qcurve1Frey.rst Look at the elliptic curve

E : Y 2 = X3 + 12X2 + 18
(

1 +
√

3
)
X.

Using the 2-isogeny described in Example 4.5 of [Sil09, III.4] we see that E
is 2-isogenous to

E′ : Y 2 = X3 − 24X2 + 72
(

1−
√

3
)
X.

Note that E′ is isomorphic to the Galois conjugate of E over K = Q(
√
−2,
√

3),
hence E is a Q-curve. We can put this Q-curve in the framework [vL21a] by
only specifying the degree of the isogeny.

sage: _.<sqrt3> = QuadraticField(3)

sage: E = Qcurve([0, 12, 0, 18*(1 + sqrt3), 0],

....: guessed_degrees=[2]); E

Q-curve defined by y^2 = x^3 + 12*x^2 + (18*sqrt3+18)*x over \

Number Field in sqrt3 with defining polynomial x^2 - 3 with \

sqrt3 = 1.732050807568878?

The curve E is part of the larger family of Q-curves

E : Y 2 = X3 + 12 aX2 + 18
(
a2 + b

√
3
)
X,

Joey Matthias van Langen

https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Qcurve1.rst#example-214
https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Qcurve1Frey.rst#example-214

54 Chapter 2: Q-curve computations

parameterised by coprime a, b ∈ Z. Since the discriminant of this curve is equal
to 29 · 36(a2 − b

√
3)(a2 + b

√
3)2, this is actually a Frey curve for the Diophantine

equation

(a2 − b
√

3)(a2 + b
√

3) = a4 − 3b2 = cl with c, l ∈ Z and l > 0 prime.

As with the case a = b = 1 there is a 2-isogeny, so we can enter this Frey Q-curve
in the framework [vL21a] as follows.

sage: R.<a, b> = QQ[]

sage: _.<sqrt3> = QuadraticField(3)

sage: con = CoprimeCondition([a, b])

sage: E = FreyQcurve([0, 12*a, 0, 18*(a^2 + b*sqrt3), 0],

....: condition=con, guessed_degrees=[2]); E

Frey Q-curve defined by y^2 = x^3 + 12*a*x^2 + \

(18*a^2+(18*sqrt3)*b)*x over Number Field in sqrt3 with \

defining polynomial x^2 - 3 with sqrt3 = 1.732050807568878? \

with parameters (a, b)

Throughout this chapter there are multiple examples where these curves
return. Unless explicitly stated it does not matter whether the curve E refers
to the explicit curve at the start or the Frey curve introduced later, as the
theory is all the same. Similarly in the framework [vL21a] all code examples
work on both the Qcurve E and the FreyQcurve E with the same output, unless
otherwise stated.

Note that since the isogeny class of a Q-curve E is defined over Q, so is its
reduction behaviour.

Proposition 2.1.5. Let φ : E → E′ be an isogeny defined over K with E and E′

elliptic curves. If E has good (respectively split multiplicative, non-split multi-
plicative, or additive) reduction at a finite prime p of K, then E′ also has good
(respectively split multiplicative, non-split multiplicative, or additive) reduction
at p.

Proof. This can be derived from the fact that an isogeny (on a Néron model)
must map a singular point to a singular point and tangent lines to tangent lines.
It can also be obtained from Table 1 in [DD15].

Corollary 2.1.6. Let E be a Q-curve defined over a Galois number field K
for which the isogenies φσ are also defined over K. If E has good (respectively

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.2: The algebra associated to a Q-curve 55

split multiplicative, non-split multiplicative, or additive) reduction at a prime p
of K above a prime number p, then E has good (respectively split multiplicative,
non-split multiplicative, or additive) reduction at all primes above p.

Definition 2.1.7. For a Q-curve E defined over K for which all isogenies φσ
are also defined over K, we will say that E is completely defined over K.

For a Q-curve E completely defined over a Galois number field K we will
say it has good (respectively split multiplicative, non-split multiplicative, or
additive) reduction at a prime number p (with respect to K) if it has this type
of reduction at any (hence all) primes of K above p.

Most important to us is that Q-curves are modular. The way this modularity
works depends on whether the curve has complex multiplication. We focus here
on Q-curves without complex multiplication for which modularity follows in
two steps. For modularity of Q-curves with complex multiplication we refer the
reader to [Shi71].

Definition 2.1.8. An abelian variety A over Q is called of GL2-type if the
algebra End0

QA := Q⊗Z EndQA contains a number field of degree dimA.

Theorem 2.1.9 (Theorem 6.1 in [Rib04]). Every Q-curve without complex mul-
tiplication is the quotient over Q of a Q-simple abelian variety of GL2-type.

Theorem 2.1.10 (Theorem 4.4 in [Rib04] using the proven Serre conjectures).
Every Q-simple abelian variety A of GL2-type is isogenous to the abelian variety
associated to a classical newform f ∈ S2(Γ1(N)) for some level N , i.e. A is
isogenous to a quotient of J1(N).

In this chapter we will work out these theorems in more detail such that we
can compute the corresponding data algorithmically. In particular we discuss
how to compute particular properties of the abelian variety mentioned in Theo-
rem 2.1.9, and we explicitly determine the level and character of the associated
newform in Theorem 2.1.10.

Throughout this chapter E will always denote a Q-curve without complex
multiplication unless explicitly stated otherwise.

Section 2.2

The algebra associated to a Q-curve

We will start by determining how we could construct the abelian variety of GL2-
type mentioned in Theorem 2.1.9.

Joey Matthias van Langen

56 Chapter 2: Q-curve computations

Suppose that E is the quotient over some number field K of a Q-simple
abelian variety A. In that case we know that A must be isogenous to a sub-
variety of the restriction of scalars B = ResKQ E. It is well known that in that
case there must be some abelian subvariety A′ of B such that B is isogenous
to A×A′. If there are no non-trivial isogenies between A and A′ – which
happens exactly when A is not isogenous to a Q-simple factor of A′ – we see
that End0

QB
∼= End0

QA× End0
QA
′ and we have a surjective Q-algebra homo-

morphism β : End0
QB → End0

QA.
Conversely given any Q-algebra R and a surjective Q-algebra homomor-

phism β : End0
QB → R, we know that End0

QB
∼= kerβ ×R as End0

QB is semi-

simple. Therefore there is a π ∈ End0
QB corresponding to (0, 1) ∈ kerβ ×R,

so in particular π2 = π and πEnd0
QB
∼= R. Note that the projection π de-

fines an abelian subvariety A of B with End0
QA
∼= R up to isogeny, by tak-

ing A = (nπ)(B) for n ∈ Q∗ such that nπ ∈ EndQB. Furthermore as A is a
subvariety of B over Q it will have E as a quotient over K.

Note that we have the following result

Theorem 2.2.1 (part of Theorem 2.1 in [Rib04]). Let A be an abelian variety
of GL2-type over Q, then the following are equivalent.

1. A/Q is simple.

2. End0
QA is a number field of degree dimA.

Therefore to construct the abelian variety from Theorem 2.1.9 it suffices to
find a Q-algebra homomorphism β : End0

QB → L with L a number field. For our
purposes we want to compute this map explicitly, so we will study the structure
of End0

QB in detail.

Take B = ResKQ E for some Galois number field K over which E is completely
defined. By the properties of the restriction of scalars we have that

EndQB = homK(BK , E) = homK

 ∏
σ∈GKQ

σE,E

=
⊕
σ∈GKQ

homK(σE,E)

Note that Q⊗Z homK(σE,E) can be seen as a module over End0
K E = Q with

basis {φσ}. This shows that End0
QB is a Q-algebra generated by the φσ. For

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.2: The algebra associated to a Q-curve 57

any σ, τ ∈ GKQ the product of φσ and φτ is given by φσ
σφτ as an element

of homK(στE,E). Furthermore we have

φσ
σφτ = cE(σ, τ)φστ ,

for some cE(σ, τ) ∈ (End0
K E)∗ = Q∗.

This discussion shows that all the information about End0
QB is encoded in

the map cE :
(
GKQ
)2 → Q∗, which is defined by

cE(σ, τ) = φσ
σφτφ

−1
στ ∈ End0

K E = Q, (2.2)

where φ−1
στ = 1

deg φστ
φ̂στ . A simple calculation shows that the map cE is a 2-

cocycle and its cohomology class ξE = [cE] ∈ H2
(
GKQ ,Q∗

)
in fact does not de-

pend on the choice of isogenies φσ. Note that we can define cE over G2
Q and

that its cohomology class ξE is in this case also invariant under replacing the
curve E by an isogenous curve over Q. Another simple computation shows
that any two Q-algebras generated by GKQ with multiplication given by distinct

choices of cocycles in ξE are isomorphic, hence End0
QB is also independent of

these changes.
To compute cE explicitly we may choose any Galois field K over which E

is completely defined and compute cE on (GKQ)2 using an explicit choice of
isogenies. An easier way to do this computation is to use for every isogeny φσ
the constant λσ ∈ Q∗ presented in Proposition 2.1.3 such that

φ∗σ(ω) = λσ
σω,

where ω is the invariant differential of E. Note that the constant associated to
a composition of isogenies is just the product of the individual constants and
that the constant of the multiplication by n map is just n. Therefore we find
that

cE(σ, τ) = λσ
σλτλ

−1
στ for all σ, τ ∈ GQ.

The last part of Proposition 2.1.3 shows it is easy to compute the λσ from the
other isogeny data.

Remark 2.2.2. The isogenies E → σE stored by the framework [vL21a] can be
seen as the dual of the isogenies φσ. A quick computation then shows that
the λσ associated to these dual isogenies also satisfy the same equation with cE .
Therefore we can compute cE from the stored isogenies by computing these
scalars for each isogeny first.

Joey Matthias van Langen

58 Chapter 2: Q-curve computations

In the framework [vL21a] one can easily compute cE using the method c of a
Qcurve object. This method accepts two arguments which should both be Galois
homomorphisms σ, τ from the Galois group of a complete definition field or its
Galois closure if it is not Galois over Q. It then returns the rational number that
is cE(σ, τ). As mentioned these are computed from the scalars λσ associated
with the isogenies. The method isogeny_scalar provides these scalars for a
given Galois homomorphism. As remarked these are the scalars of the isogenies
stored, which are the dual of the isogenies φσ we talk about here.

Using the description of the algebra End0
QB in terms of cE we can describe

a Q-algebra homomorphism End0
QB → L for some number field L simply by

defining a map β : GKQ → L∗ that satisfies

β(σ)β(τ) = cE(σ, τ)β(στ) for all σ, τ ∈ GKQ (2.3)

and extending linearly. Such a map is called a splitting map for cE . We define
a splitting map for a general 2-cocycle c : (GKQ)2 → Q∗ similarly. We will also
talk about splitting maps for cohomology classes, in which case we mean a split-
ting map for any representative 2-cocycle of that cohomology class. Note that as
with cE we might as well forget aboutK and let β be a continuous mapGQ → Q∗

instead. In that case the field Lβ := Q(β(σ) : σ ∈ GQ) is called the splitting
image field of such a splitting map, and we say β is defined over a Galois num-
ber field K if it factors over GKQ . As mentioned before such maps β induce
abelian varieties of GL2-type A with endomorphism algebra EndA⊗Q ∼= Lβ
and dimension [Lβ : Q]. These are precisely the varieties as mentioned in The-
orem 2.1.9, hence we would like to compute candidates for these splitting maps
explicitly.

Example 2.2.3. Qcurve1.rst Qcurve1Frey.rst We continue with Exam-

ple 2.1.4. The curve E is completely defined over the field K = Q(
√
−2,
√

3).
To denote elements of the Galois group of K/Q we will write σ2 and σ3 for the
generators of GKQ(

√
−2)

and GKQ(
√

3)
respectively. Using the framework [vL21a]

we now compute the scalars corresponding to the isogenies.

sage: K = E.complete_definition_field()

sage: sqrtm2, sqrt3 = sqrt(K(-2)), sqrt(K(3))

sage: G = K.galois_group()

sage: s2 = next(s for s in G if s != G(1) and

....: s(sqrtm2) == sqrtm2)

sage: s3 = next(s for s in G if s != G(1) and s(sqrt3) == sqrt3)

Automating the modular method for Q-curves to solve Diophantine equations

https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Qcurve1.rst#example-223
https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Qcurve1Frey.rst#example-223

Section 2.2: The algebra associated to a Q-curve 59

sage: (E.isogeny_scalar(G(1)) == 1 and

....: E.isogeny_scalar(s2) == sqrtm2 and

....: E.isogeny_scalar(s3) == 1 and

....: E.isogeny_scalar(s2*s3) == sqrtm2)

True

Note that these are the scalars of the dual isogenies to φσ. To obtain the scalars
discussed here we divide the degree of these isogenies by the scalar and get

λσ =

{
1 if σ ∈ GQ(

√
3)

−
√
−2 if σ 6∈ GQ(

√
3).

From this we can compute the map cE on GKQ . We show the input for the
framework [vL21a] here, but present the output as a formatted table instead.

sage: matrix([[E.c(s, t)

....: for t in [G(1), s2, s3, s2*s3]]

....: for s in [G(1), s2, s3, s2*s3]])

c(σ, τ) 1 σ2 σ3 σ2σ3

1 1 1 1 1
σ2 1 −2 1 −2
σ3 1 −1 1 −1

σ2σ3 1 2 1 2

This table shows that the endomorphism algebra End0
QB of B = ResKQ E is

the Q-algebra generated by φσ2
and φσ3

with relations φ2
σ2

= −2
φ2
σ3

= 1
φσ2

φσ3
= −φσ3

φσ2

This is a quaternion algebra and in fact even isomorphic to the matrix alge-
bra M2(Q) under the correspondence

φσ2
↔
[

0 −2
1 0

]
φσ3
↔
[

1 0
0 −1

]
.

Note that any Q-algebra homomorphism from M2(Q) to a commutative algebra
must be trivial, meaning that no splitting map for c defined over K can exist.
One can also see this by noting that the table for c is not symmetric. We will
see later how we can still find a splitting map for c by extending the field K.

Joey Matthias van Langen

60 Chapter 2: Q-curve computations

Section 2.3

Computing a splitting map

We first note a special property about the map cE . Taking degrees in equa-
tion (2.2) we find that

deg φσ deg φτ/ deg φστ = deg cE(σ, τ) = (cE (σ, τ))
2

(2.4)

Therefore c2E is the coboundary of the map d : GQ → Q∗ given by d(σ) = deg φσ.
This map is called the degree map of E. In the framework [vL21a] one can
request the values of the degree map with the method degree_map of the class
Qcurve.

Note that Equation (2.4) tells us that the degree map when considered as

a map d : GQ → Q∗/ (Q∗)2
is a homomorphism. It is easily verified that this

homomorphism does not change if we change the φσ or replace E with an
isogenous curve. Furthermore if we look at the long exact sequence induced by
the short exact sequence

1 (Q∗)2 Q∗ Q∗/ (Q∗)2
1,

Equation (2.4) tells us that the class [d] ∈ H1
(
GQ,Q∗/ (Q∗)2

)
maps to the

class [c2E] ∈ H2
(
GQ, (Q∗)2

)
. Noting that the short exact sequence

1 {±1} Q∗ (Q∗)2
1,·2

induces a long exact sequence containing

H2(GQ, {±1}) H2 (GQ,Q∗) H2
(
GQ, (Q∗)2

)
,·2

we see that the degree map determines ξE up to elements of H2(GQ, {±1}). In
fact by writing cE = cE,±|cE | we see that the part not completely fixed by the

image of the degree map in H2
(
GQ, (Q∗)2

)
is ξE,± = [cE,±] ∈ H2(GQ, {±1}).

We can use the degree map also for computing a splitting map for cE . Since
any splitting map β : GQ → Q∗ for cE should satisfy Equation (2.3), we find
that

β(σ)2β(τ)2β(στ)−2 = cE(σ, τ)2 = d(σ)d(τ)d(στ)−1.

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.3: Computing a splitting map 61

Therefore the map

ε : GQ → Q∗, σ 7→ β(σ)2

d(σ)
,

is a homomorphism, i.e. a character. This is called the splitting character cor-
responding to β. We will compute splitting maps by first computing characters
that could be splitting characters.

Example 2.3.1. Qcurve2.rst Look at the elliptic curve

E : Y 2 = X3 + 12
√

2X2 + 36(1 +
√

2)X.

Using the isogeny from Example 4.5 in [Sil09, III.4] we see it is 2-isogenous to

E′ : Y 2 = X3 − 24
√

2X2 + 144(1−
√

2)X,

which is isomorphic to the Galois conjugate of E over K = Q(
√

2). We thus see
that E is a Q-curve completely defined over K with degree map

d(σ) =

{
1 if σ ∈ GK
2 otherwise.

Using Equation (2.4) this shows us that

c(σ, τ)2 1 σ2

1 1 1
σ2 1 4

where σ2 is a generator of GKQ . Using the framework [vL21a] we obtain the same
degree map and can compute the actual cE , which we present as a formatted
table like in Example 2.2.3.

sage: K.<sqrt2> = QuadraticField(2)

sage: E = Qcurve([0, 12*sqrt2, 0, 36*(1 + sqrt2), 0],

....: guessed_degrees=[2])

sage: G = K.galois_group()

sage: [E.degree_map(s) for s in G]

[1, 2]

sage: matrix([[E.c(s, t) for t in G] for s in G])

c(σ, τ) 1 σ2

1 1 1
σ2 1 −2

Joey Matthias van Langen

https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Qcurve2.rst

62 Chapter 2: Q-curve computations

From this table we can easily see that

β(σ) =

{
1 if σ ∈ GK√
−2 otherwise.

is a splitting map for c defined over K. The corresponding splitting character
is the quadratic character of K.

Section 2.4

Local conditions of splitting characters

Note that a splitting character can be considered as an element of H1(GQ,Q
∗
)

with the trivial action of GQ on Q. The short exact sequence

1 {±1} Q∗ Q∗ 1·2

induces a map H1(GQ,Q
∗
)→ H2 (GQ, {±1}) which maps ε to a cohomology

class [θε] ∈ H2(GQ, {±1}). Here θε is the coboundary of a map ε′ : GQ → Q∗

with (ε′)
2

= ε.

Since c2E = ∂d we can write |cE | = ∂
√
d where

√
d is given by σ 7→

√
d(σ)

(d(σ) is positive by definition) for the positive square root. If β is a splitting
map for cE , then by choosing ε′ = β√

d
we see that the corresponding splitting

character ε has [θε] = [cE,±] ∈ H2(GQ, {±1}). Conversely any character ε sat-

isfying [θε] = [cE,±] ∈ H2(GQ, {±1} gives rise to a map β : GQ → Q∗ of which

the coboundary has class ξE , where β = ε′
√
d for some ε′ with (ε′)2 = ε and

coboundary cE,±.

Our goal is to find all characters ε satisfying [θε] = [cE,±] ∈ H2(GQ, {±1}).
Note that we know that ε satisfies this equation if and only if it satisfies this
equation locally. This follows from the correspondence of H2(GQ, {±1}) with
the two-torsion Br2(Q) of the Brauer group and the local-global principle for
Brauer groups. Furthermore we have

H2
(
GQp , {±1}

) ∼= Br2 (Qp) ∼= {±1},

where again Br2 denotes the two-torsion of the Brauer group. Therefore we can
identify the restriction [θε]p of [θε] to GQp with +1 or −1.

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.4: Local conditions of splitting characters 63

We can interpret the character ε as a Dirichlet character ε : (Z/NZ)
∗ → Q̄.

This allows us to write this character as

ε =
∏
p|N

εp,

where εp is a Dirichlet character of conductor a power of the prime number p.
Setting each εp to be trivial if p - N we can write this as a product over all
primes.

There is a useful relation between the local [θε]p and εp.

Proposition 2.4.1. Let ε : GQ → Q̄ be a Galois character. For any prime
number p we have that

[θε]p = εp(−1).

Proof. This result is stated near the top of page 302 in [Que00]. We here present
a short outline of a proof.

By noting that [θε] =
∏
p[θεp] it suffices to prove

[θεp]q =

{
εp(−1) if p = q

1 otherwise

for any two prime numbers p and q.

The short exact sequence

1 {±1} Q∗ Q∗ 1·2

gives a diagram of long exact sequences in cohomology by considering the Galois

groups G
Q(ζ∞p)

Q , G
Qq(ζ∞p)

Qq , GQq and GQ acting on them. Here ζ∞p denotes adding

all pn-th roots of unity for n ∈ Z>0. Chasing the element εp ∈ H1
(
G

Q(ζ∞p)

Q ,Q∗
)

around this diagram to [θεp]q ∈ H2(GQq , {±1}) through the right cohomology
groups gives the desired result.

In case p 6= q the chase goes through the cohomology groups of Gunram
Qq , the

Galois group of the maximal unramified extension of Qq. Since H1(GQq ,Q
∗
)

is isomorphic to the group of all roots of unity in Q, squaring here forms an
isomorphism. Therefore εp becomes trivial when chasing through this long exact
sequence.

Joey Matthias van Langen

64 Chapter 2: Q-curve computations

In case p = q part of the long exact sequence of G
Qq(ζ∞q)

Qq is isomorphic to

1 homc(Z∗p,Q
∗
) homc(Z∗p,Q

∗
) {±1} 1,·2 ε 7→ε(−1)

so chasing through this gives the desired result. Here homc denotes continuous
homomorphisms. Showing that the maps in this exact sequence are correct can

be shown by comparing cardinalities of hom
(

(Z/pnZ)
∗
,Q∗

)
.

Proposition 2.4.1 shows us that any character with local components εp
satisfying ξE,±,p = εp(−1) could be a splitting character. What remains is to
compute ξE,±,p as an element of H2(GQp , {±1}) ∼= {±1} from cE,± which is not
so easy. Luckily Quer provides an easier way of computing ξE,±,p in [Que00].

Let Kd be the fixed field of the kernel of the degree map d : GQ → Q∗/(Q∗)2.
The field Kd is called the degree field of E. Note that as Q∗/(Q∗)2 consists
only of 2-torsion, the degree field must be Galois with a Galois group that
consists only of 2-torsion. Therefore Kd = Q(

√
a1, . . . ,

√
am) for some inte-

gers a1, . . . , am. Now pick elements σi ∈ GQ such that σi√aj = (−1)δij
√
aj for

all i, j ∈ {1, . . . ,m} and set di = d(σi). If m is minimal the sets {a1, . . . , am}
and {d1, . . . , dm} are called a dual basis for d.

Theorem 2.4.2 (Theorem 3.1 in [Que00]). Let {a1, . . . , am} and {d1, . . . , dm}
be a dual basis for d, then

ξE,± =

m∏
i=1

(ai, di),

as an element of H2(GQ, {±1}) = Br2(Q), where (ai, di) is the quaternion alge-
bra over Q generated by 1, xi, yi, zi with relations

x2
i = ai, y2

i = di, xiyi = zi = −yixi.

Corollary 2.4.3. Let {a1, . . . , am} and {d1, . . . , dm} be a dual basis for d, then

ξE,±,p =

m∏
i=1

(ai, di)p,

as an element of H2(GQp , {±1}) = Br2(Qp) = {±1}, where (ai, di)p denotes the
Hilbert symbol.

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.4: Local conditions of splitting characters 65

Using Corollary 2.4.3 one can now compute a splitting character ε as

ε =
∏

p prime
ξE,±,p=−1

εp,

where εp is a generator of hom((Z/pZ)∗,Q∗) if p 6= 2 or hom((Z/4Z)∗,Q∗)
if p = 2. Note that this product is finite and we only have to compute ξE,±,p
for finitely many primes p, as a Hilbert symbol (a, b)p is 1 for any prime p - 2ab.
From this splitting character we find a splitting map

β : σ 7→
√
ε(σ)

√
d(σ),

for ξE by making a choice of square roots.
All of these computations are implemented in the code [vL21a] as part of

the Qcurve class. The method dual_basis gives a dual basis for the curve as
two lists of integers. The method xi_pm gives the representation of ξE,± as a
list of tuples. Each tuple (a, d) corresponds to the similarly marked quaternion
algebra over Q and ξE,± is the product of these. Using the method xi_pm_local

one can compute ξE,±,p ∈ {±1} for a prime number p. This is all used by
the methods splitting_character and splitting_map to compute a possible
splitting character and the corresponding splitting map. Note that the first is
by default a Dirichlet character, but can also be given as a Galois character if
the argument galois is set to True.

Example 2.4.4. Qcurve1.rst Qcurve1Frey.rst We return to the curve E

of Example 2.1.4. Note that its degree map is given by

d(σ) =

{
1 if σ ∈ GQ(

√
3)

2 otherwise,

hence {3}, {2} is a dual basis for the degree map. By Theorem 2.4.2 we then
find that ξE,± = (3, 2), so locally we have

ξE,±,p = (3, 2)p =

{
−1 if p = 2, 3
1 otherwise.

By Proposition 2.4.1 we see that the pro p-part of the splitting character should
satisfy

εp(−1) =

{
−1 if p = 2, 3
1 otherwise,

Joey Matthias van Langen

https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Qcurve1.rst#example-244
https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Qcurve1Frey.rst#example-244

66 Chapter 2: Q-curve computations

hence we can choose our splitting character as the unique character of conduc-
tor 4 times the unique character of conductor 3. This gives the unique character
of conductor 12 that is the quadratic character of Q(

√
3). A corresponding split-

ting map for ξE is therefore given by

β(σ) =

{
±1 if σ ∈ GQ(

√
3)

±
√
−2 otherwise.

The signs here can be chosen freely for each σ ∈ GQ as long as β remains con-
tinuous. These results are confirmed by the framework [vL21a].

sage: [E.degree_map(s) for s in [G(1), s2, s3, s2*s3]]

[1, 2, 1, 2]

sage: E.dual_basis()

([3], [2])

sage: E.xi_pm()

[(3, 2)]

sage: E.xi_pm_local(2), E.xi_pm_local(3), E.xi_pm_local(5)

(-1, -1, 1)

sage: eps = E.splitting_character()

sage: eps == next(eps for eps in DirichletGroup(12)

....: if eps.conductor() == 12)

True

sage: beta = E.splitting_map()

sage: [beta(s)^2 for s in [G(1), s2, s3, s2*s3]]

[1, -2, 1, -2]

Note that as mentioned in Example 2.2.3 the map β can not be a splitting
map for cE over K = Q(

√
−2,
√

3). The only thing we know thus far is that
the coboundary of β – when considered as a map on GQ with trivial action
– represents the class ξE ∈ H2(GQ,Q∗). We shall see in the next section that
there is an extension of K and a choice of signs for β for which β in fact is a
splitting map for cE .

Section 2.5

Correcting the splitting map

The theory in Quer [Que00] and described above gives us a way to construct a
splitting map for a given ξ ∈ H2 (GQ,Q∗), but this might not necessarily be a

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.5: Correcting the splitting map 67

splitting map for the 2-cocycle cE coming from the Q-curve E. Let us denote
by cβ the cocycle for which β is a splitting map. In the framework [vL21a] cβ
can be obtained with the method c_splitting_map of the class Qcurve that
works similar to the method c.

Note that both c2β and c2E are the coboundary of the degree map d. There-

fore cβc
−1
E must be a 2-cocycle with values in {±1}. If cβc

−1
E is the cobound-

ary of some continuous function α : GQ → {±1} then we know that cα−1β = cE
so α−1β is a splitting map for cE . We already know that the class of cβc

−1
E is

trivial in H2(GQ,Q∗). Since the short exact sequence

1 {±1} Q∗ (Q∗)2
1·2

is split, we have that H2 (GQ,Q∗) = H2 (GQ, {±1})⊕H2
(
GQ, (Q∗)2

)
. There-

fore the class of cβc
−1
E is also trivial in H2(GQ, {±1}) and we could find such a

map α.
Note that a continuous α : GQ → {±1} with coboundary cβc

−1
E must factor

overGKQ for some Galois number fieldK. ExtendingK such that E is completely

defined over K and β is defined over K we see that [cβc
−1
E] = 0 ∈ H2(GKQ , {±1}).

Assuming such a field K is known it thus suffices to find a map α : GKQ → {±1}
with coboundary cβc

−1
E to correct the splitting map β. This can be easily done

with linear algebra over F2 using the values of α(σ) for σ ∈ GKQ as variables and

the values of cβc
−1
E (σ, τ) for σ, τ ∈ GKQ as relations.

What remains is to find a Galois number field K such that [cβc
−1
E] = 0

inside H2(GKQ , {±1}) without a priori knowing the map α. A corollary of a
well-known result tells us what the smallest such field K would be.

Proposition 2.5.1. Let G be a finite group and A be an abelian group with an
action of G. Let S(G,A) be the collection of exact sequences

1→ A
ι−→ G̃

π−→ G→ 1

with x · ι(a) = ι(π(x)a) · x for all x ∈ G̃ and a ∈ A. When we have a commuta-
tive diagram

1 A G̃ G 1

1 A G̃′ G 1

Id ∼ Id

Joey Matthias van Langen

68 Chapter 2: Q-curve computations

with the rows elements of S(G,A) and G̃→ G̃′ an isomorphism, we say these
exact sequences are equivalent and denote the corresponding equivalence relation
by ∼. There is a bijection between H2(G,A) and S(G,A)/∼.

Furthermore let m : Ĝ→ G be a homorphism of finite groups that induces
a map m∗ : H2(G,A)→ H2(Ĝ, A) and let ξ ∈ H2(G,A), then m∗ξ = 0 if and
only if we have a commutative diagram

1 A G̃ G 1

Ĝ

m

where the top row is an exact sequence corresponding to ξ.

Proof. The first part is a classical result. A detailed explanation can for example
be found in [AM04, Chapter I]. We will use that in the exact sequence we may
take G̃ to be the group with elements G×A and group law given by

(x, a) ∗ (y, b) = (xy, a+ xb+ c(x, y)),

where c is a 2-cocycle representing the corresponding element in H2(G,A). We
will denote this group by Goc A. Note that this is unrelated to the direct
product.

For the second part we may now assume the commutative diagram looks like

1 A Goc A G 1

Ĝ,

ι π

F
m

with ξ = [c] ∈ H2(G,A), ι(a) = (1, a− c(1, 1)) for all a ∈ A, and π(x, a) = x for
all (x, a) ∈ Goc A.

First suppose that m∗ξ = 0, then there must be an α : Ĝ→ A such that for
any x, y ∈ Ĝ

c(x, y) = α(x) +
m(x)

α(y)− α(xy)

It is easy to check that F : Ĝ→ Goc A given by F (x) = (m(x),−α(x)) is a
homomorphism that makes the diagram commute. Conversely given a diagram
with a homomorphism F , let α : Goc A→ A be given by α ((x, a)) = −a. For

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.5: Correcting the splitting map 69

any (x, a), (y, b) ∈ Goc A we have

α ((x, a)) +
x
α ((y, b))− α ((x, a) ∗ (y, b))

= −a− xb− α ((xy, a+ xb+ c(x, y))

= −a− xb+ a+ xb+ c(x, y)

= c(x, y)

so α ◦ F : Ĝ→ A is a map with coboundary m∗c. This completes the proof.

Corollary 2.5.2. Let K be a Galois number field and let ξ ∈ H2
(
GKQ , {±1}

)
.

If there exists a Galois number field L/K such that ξ = 1 ∈ H2
(
GLQ, {±1}

)
, then

a smallest such field L is of the form K(
√
γ) for some γ ∈ K.

If K(
√
γ) 6= K, then the equivalence class of the exact sequence

1 G
K(
√
γ)

K = {±1} G
K(
√
γ)

Q GKQ 1 (2.5)

corresponds to ξ ∈ H2
(
GKQ , {±1}

)
as in Proposition 2.5.1. Conversely if γ ∈ K∗

is a non-square with K(
√
γ)/Q Galois such that the equivalence class of the

exact sequence in (2.5) corresponds to the class ξ ∈ H2(GKQ , {±1}), then we

have ξ = 1 ∈ H2(G
K(
√
γ)

Q , {±1}).

Proof. To start let M/K be any Galois number field for which we have ξ = 1 in-
side H2

(
GMQ , {±1}

)
. By Proposition 2.5.1 we know that we have a commutative

diagram

1 {±1} G̃ GKQ 1

GMQ

ι π

F m

where in this case we also know that m is surjective. Let N be the kernel of the
map F and let L be the fixed field of N . Since the kernel of F is contained in
the kernel of m, the field L is a Galois number field that extends K.

We may now replace M with L in the commutative diagram in which case F
becomes injective and m is still surjective. Inspecting cardinalities we note that
we have only two cases: F is an isomorphism or m is an isomorphism. Both
cases clearly indicate that L = K(

√
γ) for some γ ∈ K. The case K(

√
γ) 6= K

corresponds to the case where F is an isomorphism, so that the exact sequence
corresponds to ξ follows immediately.

Joey Matthias van Langen

70 Chapter 2: Q-curve computations

The converse result directly follows from the second part of Proposition 2.5.1

by taking G = GKQ , A = {±1} and G̃ = Ĝ = G
K(
√
γ)

Q .

Note that for our case we can take K in Corollary 2.5.2 to be a field over
which E is completely defined and β is also defined. The class of cβc

−1
E will

then become trivial in a quadratic extension of that K. What is still missing
is a way to compute this quadratic extension for which the following result will
provide an answer.

Proposition 2.5.3. Let K be a Galois number field and c :
(
GKQ
)2 → {±1} be

a 2-cocycle. The following are equivalent.

� There exists a non-square γ ∈ K∗ with K(
√
γ)/Q Galois such that the

equivalence class of the exact sequence

1→ G
K(
√
γ)

K = {±1} → G
K(
√
γ)

Q → GKQ → 1

corresponds to [c] ∈ H2
(
GKQ , {±1}

)
as in Proposition 2.5.1.

� There exists an α : GKQ → K∗ with

c(σ, τ) = α(σ)
σ
α(τ) (α(στ))

−1
,

for all σ, τ ∈ GKQ .

Furthermore corresponding α and γ are related by

σγ = γ α(σ)2 for all σ ∈ GKQ .

Proof. First of all suppose we have a non-square γ ∈ K∗ with K(
√
γ)/Q Galois

and the equivalence class of

1 {±1} G
K(
√
γ)

Q GKQ 1ι π

corresponding to [c] ∈ H2(GKQ , {±1}). Since K(
√
γ) is Galois over Q we know

that K(
√
σγ) = K(

√
γ) for all σ ∈ GKQ . This implies a map α : GKQ → K∗ exists

such that
σγ = γ α(σ)2 for all σ ∈ GKQ .

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.5: Correcting the splitting map 71

Now let s : GKQ → G
K(
√
γ)

Q be given by s(σ)√γ = α(σ)
√
γ and s(σ)x = σx for

all x ∈ K. Since π ◦ s = IdGKQ there exists a 2-cocycle cs :
(
GKQ
)2 → {±1} de-

fined by ι ◦ cs(σ, τ) = s(σ)s(τ)s(στ)−1. Furthermore we have for all σ, τ ∈ GKQ

α(σ)
σ
α(τ) (α(στ))

−1
=

s(σ)√γ
√
γ

s(σ)s(τ)√γ
s(σ)√γ

√
γ

s(στ)√γ

=
s(σ)s(τ)√γ
s(στ)√γ

= cs(σ, τ).

Let GKQ ocs {±1} be the group introduced in the proof of Proposition 2.5.1. A
simple computation shows that the map

GKQ ocs G
K(
√
γ)

K → G
K(
√
γ)

Q , (σ, τ) 7→ τs(σ)

is an isomorphism giving a commutative diagram

1 {±1} GKQ ocs {±1} GKQ 1

1 {±1} G
K(
√
γ)

Q GKQ 1.

Id ∼ Id

Therefore the cocycles c and cs are associated by a coboundary, so changing α
by a map GKQ → {±1} with coboundary cc−1

s gives us the sought map α.

For the converse start with a map α : GKQ → K∗ satisfying

c(σ, τ) = α(σ)
σ
α(τ) (α(στ))

−1
for all σ, τ ∈ GKQ .

Since c takes values in {±1} we find that [α2] ∈ H1
(
GKQ ,K

∗) by squaring the
above equation. By Hilbert 90 we thus know that there is some γ ∈ K∗ such
that

σγ = γ α(σ)2 for all σ ∈ GKQ .

In particular this implies that K(
√
σγ) = K(

√
γ) for all σ ∈ GKQ , hence K(

√
γ)

is a Galois number field that extends K. We may assume γ is non-square as we
can replace it with aγ for a ∈ Q∗ \ (K∗)2 otherwise. Therefore we have a short
exact sequence

1 G
K(
√
γ)

K ≡ {±1} G
K(
√
γ)

Q GKQ 1.

Joey Matthias van Langen

72 Chapter 2: Q-curve computations

The cocycle associated with such an exact sequence in the proof of Proposi-

tion 2.5.1 can be obtained by choosing a section s : GKQ → G
K(
√
γ)

Q and com-

puting its coboundary. Choosing s(σ), σ ∈ GKQ such that s(σ)√γ = α(σ)
√
γ

and s(σ)x = σx for all x ∈ K, the same computations from before show that
this coboundary is the coboundary of α which is c.

Another way to view the previously mentioned data is to look at the diagram

H1
(
GKQ ,K

∗) = 1

H0
(
GKQ ,K

∗/ (K∗)
2
)

H1
(
GKQ , (K

∗)
2
)

H1
(
GKQ ,K

∗) = 1

H2
(
GKQ , {±1}

)
in which the row is from the long exact sequence associated to the short exact
sequence

1→ (K∗)
2 → K∗ → K∗/ (K∗)

2 → 1

and in which the column comes from the long exact sequence associated to the
short exact sequence

1→ {±1} → K∗ → (K∗)
2 → 1.

The fact that H1
(
GKQ ,K

∗) = 1 is Hilbert 90.

The cohomology classes [γ] ∈ H0
(
GKQ ,K

∗/ (K∗)
2
)

, [α2] ∈ H1
(
GKQ , (K

∗)
2
)

and [c] ∈ H2
(
GKQ , {±1}

)
of any γ, α and c associated as in Proposition 2.5.3,

map to one another in the diagram above. This even shows that for the case
that [c] is trivial we have an associated α, namely any α with trivial cohomol-

ogy class [α2] ∈ H1(GKQ , (K
∗)

2
) will suffice after changing it with a sufficient

coboundary with values in {±1}. Seeing there is also a γ related to this is
Hilbert 90 again, since [α2] ∈ H1

(
GKQ ,K

∗).
Proposition 2.5.3 and Corollary 2.5.2 prove together that the bottom vertical

map in the diagram surjects onto the kernel of H2(GKQ , {±1})→ H2(GQ, {±1}).
We thus have an exact sequence

1→ Q∗∩(K∗)
2 → Q∗ →

(
K∗/ (K∗)

2
)GKQ

→ H2
(
GKQ , {±1}

)
→ H2 (GQ, {±1})

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.5: Correcting the splitting map 73

which arises from the row in the diagram before. Note that
(
K∗/ (K∗)

2
)GKQ

is

represented by all those γ ∈ K∗ such that σγγ−1 ∈ (K∗)
2

for all σ ∈ GKQ . This

implies that the kernel of H2(GKQ , {±1})→ H2(GQ, {±1}) corresponds 1 to 1

to all such γ considered modulo Q∗ (K∗)
2
. Note that such a γ also defines a

function α : GKQ → K∗ by σ 7→
√
σγγ−1 of which the coboundary sits in the

corresponding class of H2
(
GKQ , {±1}

)
. Furthermore any specific c in this class

can be obtained by a choice of signs for the square roots.

Example 2.5.4. Qcurve1.rst Qcurve1Frey.rst We once again return to

the curve E from Example 2.1.4. Note that in Example 2.4.4 we found multiple
maps β : GQ → Q∗ for ξE ∈ H2(GQ,Q∗), of which we now choose one. Using
the framework [vL21a] we compute the values of the cocycle cβc

−1
E over the

field K = Q(
√
−2,
√

3), again replacing the output with a nicely formatted table
as in Example 2.2.3.

sage: matrix([[E.c_splitting_map(s, t) / E.c(s, t)

....: for t in [G(1), s2, s3, s2*s3]]

....: for s in [G(1), s2, s3, s2*s3]])

cβc
−1
E 1 σ2 σ3 σ2σ3

1 1 1 1 1
σ2 1 1 1 1
σ3 1 −1 1 −1

σ2σ3 1 −1 1 −1

Note that as the table is not symmetric there is no map α : GKQ → {±1} which
has this as a coboundary, corresponding to the fact that β can not be corrected
in a way to form a splitting map for cE over K.

We will try to find a map α : GKQ → K∗ with coboundary cβc
−1
E as in Propo-

sition 2.5.3. Seeing the shape of the table for cβc
−1
E a decent guess would be

something of the form

α(σ) =

{
1 if σ ∈ GQ(

√
3)

a otherwise.

This has the correct coboundary if σ2a = a−1 and σ3a = −a. Note that the
second condition implies a must be of the form

√
−2(x+ y

√
3) for some x, y ∈ Q

and then the first condition implies that 1 = σ2aa = 6y2 − 2x2. The latter has

Joey Matthias van Langen

https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Qcurve1.rst#example-254
https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Qcurve1Frey.rst#example-254

74 Chapter 2: Q-curve computations

a solution x = y = − 1
2 meaning that

α(σ) =

{
1 if σ ∈ GQ(

√
3)

1+
√

3√
−2

otherwise

is a map α : GK → K∗ with coboundary cβc
−1
E .

Now note that the element

γ =
∑
σ∈GKQ

α(σ)−2 = 1 + 1 + (−2 +
√

3) + (−2 +
√

3) = −2 + 2
√

3 ∈ K

has coboundary α2 according to Hilbert 90, hence by Proposition 2.5.3 we have

that [cβc
−1
E] ∈ H2(G

K(
√
γ)

Q , {±1}) is trivial. In fact as shown by the discussion
above this example the same remains true when we change γ by a non-zero
rational

We now take γ = 1−
√

3 and show how to change our map β such that it
becomes a splitting map for cE over Kγ = K(

√
γ). First we compute the table

for cβc
−1
E over Kγ using the framework [vL21a]. Again we format the table

rather than giving the direct output.

sage: gamma = 1 - sqrt3

sage: R.<x> = K[]

sage: Kgamma.<sqrtgamma> = K.extension(x^2 - gamma)

sage: sqrtm6 = Kgamma(sqrtm2*sqrt3)

sage: Kgamma.<a> = Kgamma.absolute_field()

sage: sqrtgamma, sqrtm6 = Kgamma(sqrtgamma), Kgamma(sqrtm6)

sage: Ggamma = Kgamma.galois_group()

sage: sgamma = next(s for s in Ggamma

....: if s != Ggamma(1) and

....: s(sqrtgamma) == sqrtgamma)

sage: s6 = next(s for s in Ggamma

....: if s(sqrt(Kgamma(-2))) != sqrt(Kgamma(-2)) and

....: s(sqrtm6) == sqrtm6)

sage: Gls = [Ggamma(1), s6, s6^2, s6^3,

....: sgamma, s6*sgamma, s6^2*sgamma, s6^3*sgamma]

sage: all(s in Gls for s in Ggamma)

True

sage: matrix([[E.c_splitting_map(s, t) / E.c(s, t)

....: for t in Gls] for s in Gls])

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.5: Correcting the splitting map 75

cβc
−1
E 1 σ6 σ2

6 σ3
6 σγ σ6σγ σ2

6σγ σ3
6σγ

1 1 1 1 1 1 1 1 1
σ6 1 −1 1 −1 1 −1 1 −1
σ2

6 1 1 1 1 1 1 1 1
σ3

6 1 −1 1 −1 1 −1 1 −1
σγ 1 −1 1 −1 1 −1 1 −1

σ6σγ 1 1 1 1 1 1 1 1
σ2

6σγ 1 −1 1 −1 1 −1 1 −1
σ3

6σγ 1 1 1 1 1 1 1 1

Here σ6 and σγ are the generators of G
Kγ
Q(
√
−6)

and G
Kγ
Q(
√
γ) respectively.

With some trial and error it is easy to find a map α : G
Kγ
Q → {±1} with

coboundary cβc
−1
E . For example one can choose

α(σ) =

{
1 if σ = 1, σ6, σγ , σ6σγ
−1 otherwise

as we can confirm with the framework [vL21a].

sage: alpha = {s : 1 if s in [G(1), s6, sgamma, s6*sgamma]

....: else -1 for s in Gls}

sage: all(E.c_splitting_map(s, t) / E.c(s, t) ==

....: alpha[s] * alpha[t] / alpha[s*t]

....: for s in Gls for t in Gls)

True

Therefore we find that by changing the map β to

β(σ) =

1 if σ = 1, σγ
−1 if σ = σ2

6 , σ
2
6σγ√

−2 if σ = σ6, σ6σγ
−
√
−2 if σ = σ3

6 , σ
3
6σγ

we obtain a splitting map for cE over Kγ . We check this is correct with the
framework [vL21a].

sage: beta = {s : E.splitting_map()(s) * alpha[s]

....: for s in Gls}

sage: all(E.c(s, t) == beta[s] * beta[t] / beta[s*t]

....: for s in Gls for t in Gls)

True

Joey Matthias van Langen

76 Chapter 2: Q-curve computations

To ease calculation of the map α : GKQ → K∗ it would be nice to assume that
the image of α is in a finitely generated subgroup of K∗. In [Che10], [Che12],
[BC12] and [DU09] various examples of Frey Q-curves appear for which the
subgroup O∗K already suffices. For a set S of primes of K, let

O∗K,S = {a ∈ K∗ : ordp a ≥ 0 ∀ p 6∈ S},

the group of S-units. We shall prove here that in general a subgroup O∗K,S ⊆ K∗
for S finite will suffice.

Proposition 2.5.5. Let K be a Galois number field and let c :
(
GKQ
)2 → {±1}

be a 2-cocycle. Let C be the class group of K modulo ideals of the form
∏

p|p p
for p a prime number. Let S0 be a collection of representatives for the two-
torsion of C, and S be the collection of prime ideals that divide an ideal in S0

or their Galois conjugates.
If [c] is in the kernel of H2(GKQ , {±1})→ H2(GQ, {±1}), then there exists a

function α : GKQ → O∗K,S satisfying

c(σ, τ) = α(σ)
σ
α(τ) (α(στ))

−1
,

for all σ, τ ∈ GKQ .

Proof. As shown by Corollary 2.5.2, Proposition 2.5.3, and the discussion that
followed, we know that there is some γ ∈ K∗ such that σγγ−1 ∈ (K∗)

2
for

all σ ∈ GKQ corresponding to [c] ∈ H2
(
GKQ , {±1}

)
. Furthermore we know that

this γ is unique up to elements from Q∗ (K∗)
2
, and that we can construct

a function α : GKQ → K∗, σ → ±
√
σγγ−1, which has coboundary c for an ap-

propiate choice of signs. It thus suffices to prove that there is a choice of γ such

that σγγ−1 ∈ O∗K,S , as
(
O∗K,S

)2
= O∗K,S ∩ (K∗)

2
.

Start with any choice of γ. For any finite prime p of K and σ ∈ GKQ we know

that σ
−1

γγ−1 ∈ (K∗)
2
, hence

ordσp γ = ordp
σ−1

γ ≡ ordp γ (mod 2).

This implies for a prime number p that all ordp γ for p | p are congruent mod-
ulo 2.

Now for each prime number p choose an ap ∈ Z that is congruent to ordp γ
modulo 2 for each p | p. Choose the ap such that only finitely many are non-zero
and construct the fractional ideal

I =
∏
p

∏
p|p

p
ordp γ−ap

2 .

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.5: Correcting the splitting map 77

Here p will always denote a prime number and a product over p will always
denote the product over all prime numbers.

It is clear that I2 = (γ)
∏
p

(∏
p|p p

)−ap
, hence the class of I belongs to the

2-torsion of C. Note that changing I by a principal ideal (β) is the same as
changing γ with γβ2. Furthermore changing I by an element of the form

∏
p|p p

for a prime number p is the same as changing the corresponding ap. Therefore
without loss of generality we may assume that I ∈ S0.

It is now clear that for any finite prime p | p of K and σ ∈ GKQ

ordp

(
σγ

γ

)
= ordp

σγ − ordp γ

= ordσ−1
p
γ − ordp γ

=
(

ordσ−1
p
γ − ap

)
− (ordp γ − ap)

= ordσ−1
p
I2 − ordp I

2

= 2 (ordp
σI − ordp I) .

It is now clear this can only be non-zero if p ∈ S, hence cleary σγγ−1 ∈ O∗K,S
for all σ ∈ GKQ .

Remark 2.5.6. Note that O∗K,S is an abelian group and that each σ ∈ GKQ is
a group homomorphism on O∗K,S , hence given the values of c and regarding

the values of α as unknown, the coboundary relation of c and α give us n2

equations in n unknowns where n = [K : Q]. Choosing a minimal generating
set of O∗K,S as a Z-module with k generators this translates to kn2 equations
in kn unknowns of which some are defined over Z whilst others are defined
over Z/NZ for some N ∈ Z>0.

Now using the splitting map β for ξE constructed before, we can explic-
itly compute an α : GKQ → K∗ with coboundary cβc

−1
E using Proposition 2.5.5

and linear algebra. Applying Hilbert 90 we can then compute a γ ∈ K∗ with
coboundary α2. According to Proposition 2.5.3 this γ defines the field K(

√
γ)

over which we have [cE] = [cβ] ∈ H2(G
K(
√
γ)

Q , {±1}). We can then compute the

map G
K(
√
γ)

Q → {±1} with which we have to change β in order to have cE = cβ ,
hence making β a splitting map for cE .

The framework [vL21a] can compute the set S in Proposition 2.5.5 with the
method _decomposable_twist_set of the class Qcurve. The associated field
will be the one returned by decomposition_field which is a field over which

Joey Matthias van Langen

78 Chapter 2: Q-curve computations

the curve, its given isogenies, and a computed splitting map for ξE are defined.
Furthermore the method _decomposable_twist can be used to compute the
associated γ in the manner described above. The reason these functions are
named like this will become apparent in Section 2.7.

For a given field K there might be many sets S for which there is a
map α : GKQ → O∗K,S as in Proposition 2.5.5. Preferably we would find the
smallest S such that the proposition is still true. It is however not always pos-
sible to make S smaller than the one given in Proposition 2.5.5 as shown by the
example below.

Example 2.5.7. Qcurve3.rst Let E be the Q-curve given by

E : y2 = x3 + 12x2 + 18
(

1 +
√

17
)
x.

The framework [vL21a] will check for us that it is indeed a Q-curve with an
isogeny of degree 2.

sage: _.<sqrt17> = QuadraticField(17)

sage: E = Qcurve([0, 12, 0, 18*(1 + sqrt17), 0],

....: guessed_degrees=[2])

The framework [vL21a] implicitly computes a splitting map β for ξE when we
compute cEc

−1
β over the complete definition field K = Q(

√
−2,
√

17). As in
Example 2.2.3 we present a formatted table here, rather than the direct output
of the framework [vL21a].

sage: K = E.complete_definition_field()

sage: sqrtm2, sqrt17 = sqrt(K(-2)), sqrt(K(17))

sage: K.is_isomorphic(QQ[sqrtm2, sqrt17])

True

sage: G = K.galois_group()

sage: s2 = next(s for s in G if s != G(1) and

....: s(sqrtm2) == sqrtm2)

sage: s17 = next(s for s in G if s != G(1) and

....: s(sqrt17) == sqrt17)

sage: matrix([[E.c(s, t) / E.c_splitting_map(s, t)

....: for t in [G(1), s2, s17, s2*s17]]

....: for s in [G(1), s2, s17, s2*s17]])

Automating the modular method for Q-curves to solve Diophantine equations

https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Qcurve3.rst

Section 2.5: Correcting the splitting map 79

cEc
−1
β 1 σ2 σ17 σ2σ17

1 1 1 1 1
σ2 1 −1 1 −1
σ17 1 −1 1 −1
σ2σ17 1 1 1 1

Here σ2 and σ17 are the generators of GKQ(
√
−2)

and GKQ(
√

17)
respectively.

Suppose we have an α : GKQ → O∗K which has this cocycle as coboundary.
We compute generators of O∗K using SageMath [Sag20].

sage: u0, u1 = K.unit_group().gens_values()

sage: u0 == -1 and u1^(-1) == 4 + sqrt17

True

Since O∗K is generated by −1 and 4 +
√

17 there are functions x, y : GKQ → Z
such that

α(σ) = (−1)x(σ)
(

4 +
√

17
)y(σ)

.

Since ∂α = cEc
−1
β we now find that

x(1) + y(σ2) ≡ 1 (mod 2)

x(1) + y(σ2σ17) ≡ 0 (mod 2)

y(1) = 0

2 y(σ17) = y(1)

y(σ2) + y(σ17) = y(σ2σ17)

from computing ∂α(σ2, σ2), ∂α(σ2σ17, σ2σ17), ∂α(σ17, σ17), and ∂α(σ17, σ2).
This is clearly an inconsistent system, hence no such α can exist.

We compute the set S for K as in Proposition 2.5.5 by using the frame-
work [vL21a], and note it consists of the primes above 2.

sage: S = E._decomposable_twist_set()

sage: S.reverse()

sage: S == K.primes_above(2)

True

We compute the element γ ∈ K∗ corresponding to cEc
−1
β and show that we have

a corresponding map

α : GKQ → O∗K,S , σ 7→

{
1 if

σ√
17 =

√
17

7
√

17−29
2
√
−2

if
σ√

17 = −
√

17.

Joey Matthias van Langen

80 Chapter 2: Q-curve computations

as in Proposition 2.5.3.

sage: gamma = E._decomposable_twist()

sage: alpha = {s : sqrt(s(gamma) / gamma) for s in G}

sage: (alpha[G(1)] == 1 and

....: alpha[s2] == (7*sqrt17 - 29) / (2*sqrtm2) and

....: alpha[s17] == 1 and

....: alpha[s2*s17] == (7 * sqrt17 - 29) / (2*sqrtm2))

True

sage: all(P in S for P, _ in K.ideal(alpha[s2]).factor())

True

sage: all(E.c(s, t) / E.c_splitting_map(s, t) ==

....: alpha[s] * s(alpha[t]) / alpha[s*t]

....: for s in G for t in G)

True

We thus see that S is minimal in this case.

Section 2.6

Different splitting maps

The previous section allows us to explicitly compute a splitting map for cE . We
would like to compute all possible splitting maps for cE and determine which
ones would give the same abelian variety of GL2-type.

First of all suppose that β, β′ : GQ → Q∗ are both splitting maps for cE .
Since both have coboundary cE with respect to the trivial action we must have
that χ = β′/β is a homomorphism. Therefore if we have a single splitting map β
for cE we know each splitting map for cE . In particular given a Galois number
field K over which E is completely defined and over which β is defined, all
splitting characters GKQ → Q∗ can be found by multiplying with a character
of K. For a given field K we will call these χ twist characters. Note that
the corresponding splitting characters differ by the square of the corresponding
twist character.

In the framework [vL21a] the class Qcurve allows one to compute twist char-
acters for the field K returned by decomposition_field, a field over which the
curve, its isogenies, and a computed splitting map for ξE are defined. The
number of twist characters is given by the method number_of_splitting_maps

and each of them can be obtained by calling twist_character with the cor-
responding index. Note that as with splitting characters these characters are

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.6: Different splitting maps 81

by default given as Dirichlet characters, but can be given as Galois characters
if the argument galois is set to True. One can obtain the splitting map or
splitting character obtained by twisting with a twist character by calling the
method splitting_map or splitting_character with the same index as the
twist character. It is also possible to obtain a list of these characters or maps
by passing a list of indices as the index or by passing the string "all".

Next suppose that two splitting maps β, β′ = χβ : GKQ → Q∗ over a field K

over which E is completely defined define the same subvariety of B = ResKQ .
This happens precisely when the induced linear maps on the endomorphism
ring End0

QB have the same kernel. Note that End0
QB can be seen as the Q-

vector space with basis GKQ which implies these kernels are the same if and only
if ∑

σ∈GKQ

aσβ(σ) = 0 ⇐⇒
∑
σ∈GKQ

aσβ
′(σ) = 0,

for all aσ ∈ Q. This implies that β′ must be a Galois conjugate of β, i.e.
that χ = σββ−1 for some σ ∈ GQ. The latter is easy to check given a split-
ting map β for cE and the possible twist characters over K.

In the framework [vL21a] the methods twist_character, splitting_map,
and splitting_character can be limited to only returning a list of one map or
character per Galois conjugacy class of splitting maps, by passing "conjugacy"

as an index. To obtain the number of conjugacy classes one can call the
method number_of_splitting_maps and set the argument count_conjugates
to False.

Example 2.6.1. Qcurve1.rst Qcurve1Frey.rst We again return to the

curve E from Example 2.1.4. From Example 2.5.4 we have a splitting map β
for cE over the field Kγ . Note that Kγ has four different characters which
are the trivial character and the characters of the subfields Q(

√
−2), Q(

√
3)

and Q(
√
−6). This implies there are also four different splitting maps for cE

over Kγ which can also be obtained from the four different choices for the

map α : G
Kγ
Q → {±1}. The framework [vL21a] confirms this.

sage: iota = E.definition_field().embeddings(Kgamma)[0]

sage: Egamma = E.change_ring(iota)

sage: Egamma.number_of_splitting_maps()

4

sage: chis = Egamma.twist_character(’all’, galois=True)

sage: kernels = [Ggamma.subgroup(s for s in Ggamma

Joey Matthias van Langen

https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Qcurve1.rst#example-261
https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Qcurve1Frey.rst#example-261

82 Chapter 2: Q-curve computations

....: if chi(s) == 1)

....: for chi in chis]

sage: fields = [kernel.fixed_field()[0] for kernel in kernels]

sage: [(field.degree(),

....: field.discriminant().squarefree_part())

....: for field in fields]

[(1, 1), (2, -2), (2, 3), (2, -6)]

Note that each of the splitting maps for cE over Kγ only has a single Galois
conjugate, namely by flipping the sign of

√
−2. This tells us that the four

splitting maps for cE come as two pairs of conjugate splitting maps. This is
confirmed by the framework [vL21a], where we format the splitting maps in a
table.

sage: Egamma.number_of_splitting_maps(count_conjugates=False)

2

sage: beta1, beta2 = Egamma.splitting_map(’conjugacy’)

σ 1 σ6 σ2
6 σ3

6 σγ σ6σγ σ2
6σγ σ3

6σγ
β1(σ) 1 −

√
−2 −1

√
−2 1 −

√
−2 −1

√
−2

β2(σ) 1
√
−2 −1 −

√
−2 −1 −

√
−2 1

√
−2

We can thus find two distinct abelian varieties of GL2-type by looking at the

restriction of scalars Res
Kγ
Q E.

Section 2.7

Fields of Q-curves

Throughout the previous sections we have seen that many different fields play
a role for Q-curves. This section contains some additional results about these
fields. In particular we will see what the minimal possibilities for certain defi-
nition fields are. Taking these fields as small as possible will make the compu-
tations much easier.

First of all we will look at Galois number fields K over which E can be de-
fined. Note that by definition of the degree map such a field K must contain the
fixed field Kd of the kernel of the degree map as a map d : GQ → Q∗/(Q∗)2. As
the degree map in this form is independent of the isogeny class of E over Q, the
field Kd is a lower bound for Galois number fields over which curves isogenous
to E are defined. In fact it is also a minimum.

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.7: Fields of Q-curves 83

Theorem 2.7.1 (Theorem 8.2 in [Rib04]). Let E be a Q-curve, then E is
isogenous to some Q-curve defined over a number field K if and only if ξE is in
the kernel of the restriction map

Res : H2(GQ,Q∗)→ H2(GK ,Q∗)

Corollary 2.7.2. Any Q-curve E is isogenous over Q to some Q-curve defined
over the degree field Kd.

Proof. We follow the arguments given on page 290 of [Que00]. Let E be
a Q-curve with two cocycle cE and degree map d : GQ → Q∗. Associate con-

stants λσ ∈ Q∗ with each isogeny φσ such that

cE(σ, τ) = λσ
σλτλ

−1
στ for all σ, τ ∈ GQ.

This implies that

λ2
σ
σλ2

τλ
−2
στ = cE(σ, τ)2 = d(σ)d(τ)d(στ)−1 for all σ, τ ∈ GQ,

hence the map σ 7→ λ2
σd(σ)−1 is a 1-cocycle. By Hilbert 90 we then find

some γ ∈ Q∗ such that

λ2
σ = d(σ) σγγ−1 for all σ ∈ GQ.

Taking square roots we find that
√
d : σ 7→

√
d(σ) and λ : σ 7→ λσ have the same

cohomology class in H1(GQ,Q
∗
/Q∗).

Now note that the short exact sequence

1→ Q∗ → Q∗ → Q∗/Q∗ → 1,

induces a long exact sequence containing a map H1(GQ,Q
∗
/Q∗)→ H2(GQ,Q∗)

that maps [λ] = [
√
d] to [cE] = ξE . Since d : GQ → Q∗/(Q∗)2 factors over GKdQ

so does
√
d : GQ → Q∗/Q∗. Thus we know that

√
d(σ) ∈ Q∗ for all σ ∈ GKd .

Since ξE is the class of the coboundary of
√
d, this implies the restriction of ξE

to H2(GKd ,Q∗) is trivial. Now applying Theorem 2.7.1 gives the desired result.

In the framework [vL21a] the field K over which a Qcurve object is defined
can be obtained by the method definition_field. This field is not necessarily
the minimal field over which the coefficients are defined, but rather the Galois
closure of the number field over which the coefficients were given upon creation.

Joey Matthias van Langen

84 Chapter 2: Q-curve computations

The fixed field Kd can be obtained by the method degree_field and will be
given as a subfield of the field K. Note that no method to find an isogenous
curve that is defined over Kd has currently been implemented, but the proof of
Theorem 8.2 in [Rib04] is constructive.

Next we look at Galois number fields K over which curves isogenous to a Q-
curve can be completely defined. Note that if a Q-curve is completely defined
over a Galois number field, then we can define its 2-cocycle cE as the inflation
of one defined on GKQ . The converse is also true for the isogeny class.

Proposition 2.7.3 (Proposition 2.3 in [Que00]). Let E be a Q-curve defined
over a Galois number field K. If there exists an element ξK ∈ H2(GKQ ,Q∗) such
that ξE is just the inflation of ξK , then there exists a curve E′ isomorphic to E
such that E is completely defined over K.

Corollary 2.7.4. Let E be a Q-curve and let {d1, . . . , dn} ⊂ Q∗ be a basis of the
image of the degree map in Q∗/(±(Q∗)2), then there is a Q-curve E′ isogenous
to E completely defined over Kd(

√
d1, . . . ,

√
dn).

Proof. Since {d1, . . . , dn} generate the image of the degree map in Q∗/(±(Q∗)2)
we can write

d(σ) = (−1)x0(σ)

(
n∏
i=1

d
xi(σ)
i

)
y(σ)2 for all σ ∈ GQ,

with xi : GQ → Z and y : GQ → Q∗. Note that as d : GQ → Q∗/(Q∗)2 is a ho-
momorphism all the xi are homomorphisms as maps GQ → Z/2Z. In particular
this makes σ 7→ (−1)x0(σ) a homomorphism, so d has the same coboundary
as d′ : GQ → Q∗ given by

d′(σ) =

(
n∏
i=1

d
xi(σ)
i

)
y(σ)2 for all σ ∈ GQ,

Now we apply the same arguments as in the proof of Corollary 2.7.2 to d′.
So we note that [λ] = [

√
d′] ∈ H1(GQ,Q

∗
/Q∗) and that the coboundary of

√
d′

is a representative of ξE . Note that

(∂d′)(σ, τ) =
√
d′(σ)

σ√
d′(τ)

√
d′(στ)

−1
for all σ, τ ∈ GQ

Since the xi are homomorphisms GKdQ → Z/2Z the value of d′(σ) only depends

on the restriction of σ to Kd. Furthermore the action of σ on
√
d′(τ) only

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.7: Fields of Q-curves 85

depends on the restriction of σ to Q(
√
d′(τ)). Therefore ξE can be defined from

a 2-cocycle defined over Kd(
√
d′(τ) : τ ∈ GQ) = Kd(

√
d1, . . . ,

√
dn). Applying

Proposition 2.7.3 now gives the desired result.

Note that the field given in Corollary 2.7.4 is not necessarily minimal. In
fact there is a refinement of Proposition 2.7.4.

Theorem 2.7.5 (Theorem 3.2 from [Que00]). Given a Q-curve E there exists
an isogenous curve completely defined over a Galois number field K if and only
if

1. Kd is a subfield of K; and

2. ξE,± arises from an element in H2(GKQ , {±1}).

In the framework [vL21a] one can obtain a field over which a Qcurve is
completely defined by the method complete_definition_field. Note that
this field is simply the composite field of the definition_field and the fields
over which each stored isogeny is defined. Furthermore the code takes a Galois
closure thereof as this field is used as a basis for the function c. Note that for
correct conversions the class Qcurve also keeps track of an inclusion from the
definition_field to the complete_definition_field.

Next we look at Galois number fields over which our splitting maps for cE can
be defined. We start with the associated splitting character ε : GQ → Q∗. Since
they are continuous homomorphisms we can take the fixed fieldKε of their kernel
and know that this is the smallest number field for which ε factors over GKεQ . In
fact we can realize this field as a subfield of the cyclotomic field Q(ζN) where N
is the conductor of ε.

Let β be a splitting map for cE with splitting character ε. Note that we
have

β(σ) ∈ Q∗ ⇐⇒ β(σ)2 = ε(σ)d(σ) ∈ (Q∗)2 ⇐⇒ ε(σ) = 1 and d(σ) ∈ (Q∗)2,

for all σ ∈ GQ, hence the fixed field of the homomorphism β : GQ → Q∗/Q∗
must be Kβ = KdKε. In particular by changing β if necessary we may assume

that β : GQ → Q∗ is defined over Kβ .
The class Qcurve provides the methods splitting_character_field and

splitting_field to compute the fields Kε and Kβ respectively with the frame-
work [vL21a]. Note that these methods can be indexed similar to the methods
splitting_character, splitting_map and twist_character. Note that the
fields returned by splitting_character_field are the fields over which the

Joey Matthias van Langen

86 Chapter 2: Q-curve computations

Galois characters returned by splitting_character are defined. In particular
all of these fields are Galois. Note that a splitting_field is the composite
field of the corresponding splitting_character_field and the degree_field,
and that the class Qcurve keeps track of the corresponding inclusions.

The class Qcurve also has a method decomposition_field. This field is the
composite field of the complete_definition_field and the splitting_field

of the default splitting character (index 0). This is a field K over which the
curve is completely defined and the default splitting map for ξE is defined. We
will see in Section 2.9 that ResKQ E decomposes as a product of abelian varieties
of GL2-type if K is abelian, hence the name. As with the other fields the class
Qcurve keeps track of the inclusions from the complete_definition_field and
the splitting_field.

One more note to make about the implementation is that in the tower of
fields degree_field, definition_field, complete_definition_field, and
decomposition_field two fields are actually the same if the extension has
degree 1. This makes objects of Qcurve easier to use, for example by redefining
the curve over decomposition_field so that all of these fields actually become
the same field.

One last remark about these fields of definition is that an isogenous curve
completely defined over that field can often be realized as a twist.

Proposition 2.7.6. Let E be a Q-curve defined over a field K and let γ ∈ K∗.
The curve Eγ of E twisted by γ has isogenies σEγ → Eγ with corresponding
constants λ′σ satisfying

(λ′σ)2 = λ2
σ
σγγ−1.

Corollary 2.7.7. Let E be a Q-curve defined over K and let d1, . . . , dn be a
basis of the image of the degree map in Q∗/(±(Q∗)2), then there is a γ ∈ K∗
such that Eγ is completely defined over K(

√
d1, . . . ,

√
dn).

Proof. Following the proof of Corollary 2.7.4 we find a γ ∈ Q∗ such that

λ2
σ = d′(σ) σγγ−1 for all σ ∈ GQ.

Now without loss of generality we may assume that all isogenies φσ : σE → E
for σ ∈ GK are trivial, hence σγ = γ for all such σ. This implies that γ ∈ K∗,
and hence by Proposition 2.7.6 the curve Eγ−1 has isogenies with corresponding

constants
√
d′(σ). These are defined over K(

√
d1, . . . ,

√
dn), hence Eγ−1 is

completely defined over that field.

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.7: Fields of Q-curves 87

Corollary 2.7.8. Let E be a Q-curve completely defined over a field K over
which a splitting map β for ξE is defined, then there exists a γ ∈ K∗ such
that cEγ = cβ.

Proof. Let γ ∈ K∗ be the element corresponding to cβc
−1
E of which existence was

shown in Corollary 2.5.2 and which can be computed using Proposition 2.5.5.
The latter also tells us there is a map α : GKQ → K∗ such that cβc

−1
E = ∂α

and α2 = ∂γ. Using Proposition 2.7.6 we now find that

cEγ = cE∂α = cEcβc
−1
E = cβ .

The framework [vL21a] can immediately compute the twists in the previous
corollaries from a given Qcurve. The twisted curve from Corollary 2.7.7 can
be obtained with the method complete_definition_twist where the field K
is taken to be the definition_field. The twisted curve from Corollary 2.7.8
can be obtained with the method decomposable_twist where the field K is
taken to be the decomposition_field. One can also obtain the respective
twist parameters γ using the hidden methods _complete_definition_twist

and _decomposable_twist respectively.
One can also manually perform twists using a twisting parameter γ by using

the method twist. Note that the method twist will always return a Qcurve as
do the methods above. Furthermore the returned Qcurve will have its definition
field and complete definition field minimal for a particular Weierstrass model,
so not up to isogeny or isomorphism.

Example 2.7.9. Qcurve1.rst Qcurve1Frey.rst We return to the curve E

from Example 2.1.4. Using the degree map as determined in Example 2.4.4 the
framework [vL21a] shows us that Kd = Q(

√
3).

sage: E.degree_field()

Number Field in sqrt3 with defining polynomial x^2 - 3 with \

sqrt3 = 1.732050807568878?

We see that E is defined over this field, hence trivially proving Corollary 2.7.2
for E.

Note that we determined in Example 2.2.3 that E is completely defined
overK = Q(

√
−2,
√

3) = Kd(
√
−2). This confirms Corollary 2.7.4 for E as {−2}

spans the image of the degree map modulo ± (Q∗)2
(see also Example 2.4.4).

Note that the splitting character β found in Example 2.4.4 has coboundary cβ
that has the same cohomology class as ξE . Therefore ξE,± arises from a coho-

mology class in H2(GKdQ , {±1}), namely the class of the sign of cβ . Therefore by

Joey Matthias van Langen

https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Qcurve1.rst#example-279
https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Qcurve1Frey.rst#example-279

88 Chapter 2: Q-curve computations

Theorem 2.7.5 we find that E must be isogenous to a curve completely defined
over Kd.

In fact we can find this isogenous curve completely defined over Kd as a twist
of E. From Example 2.5.4 we have a γ ∈ Kd which satisfies Proposition 2.5.3
for c = cβc

−1
E . Therefore Proposition 2.7.6 tells us that the twisted curve Eγ

must have isogenies such that cEγ = cβ . In particular this means that these iso-
genies are defined over Kd as cβ is, so Eγ is completely defined over Kd. It is also
immediately clear that β is a splitting map for cEγ that is also defined over Kd,
giving us an example of Corollary 2.7.8. Similarly the framework [vL21a] will
give such a curve as the decomposable_twist.

sage: E.decomposable_twist() # E is a Qcurve

Q-curve defined by y^2 = x^3 + (-6*lu0-12)*x^2 + (-18*lu0-36)*x \

over Number Field in lu0 with defining polynomial x^2 - 12 \

with lu0 = -1/5*lu^3 + 7/5*lu

Note that the method is the same for a Frey Q-curve but the output is a little
different.

sage: E.decomposable_twist() # E is a FreyQcurve

Frey Q-curve defined by y^2 = x^3 + ((-6*lu0-12)*a)*x^2 + \

((18*lu0+72)*a^2+(36*lu0+108)*b)*x over Number Field in lu0 \

with defining polynomial x^2 - 12 with \

lu0 = -1/5*lu^3 + 7/5*lu with parameters (a, b)

The last field we should talk about is the image field Lβ of a splitting

map β. Since β factors over G
Kβ
Q we know that Lβ = Q(β(σ) : σ ∈ GKβQ), but

Quer [Que00] also gives a more direct formula.

Proposition 2.7.10 (Proposition 4.1 from [Que00]). Let E be a Q-curve with
splitting map β for cE. If {a1, . . . , am} and {d1, . . . , dm} is a dual basis of the
degree map d of E and the corresponding character ε has order n then

Lβ =

{
Q(ζ2n,

√
d1, . . . ,

√
dn) if Kε ∩Kd = Q

Q(ζ2n
√
d1, . . . ,

√
dn) if Kε ∩Kd = Q(

√
a1).

Note that by choosing the dual basis correctly one is always in one of the two
cases mentioned.

The class Qcurve in the framework [vL21a] provides the field Lβ for a split-
ting map for ξE with splitting_image_field. This method is indexed in the
same way as splitting_map. Note that the associated splitting_map is a
function with codomain the corresponding splitting_image_field.

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.8: Associated Galois representations 89

Example 2.7.11. Qcurve4.rst Look at the curve

E : Y 2 = X3 − 60
(
15 + 10

√
2 + 5

√
5 + 2

√
10
)
X

+ 80
(
210 + 135

√
2 + 70

√
5 + 49

√
10
)

defined over K = Q(
√

2,
√

5). Using the framework [vL21a] we find that this is
a Q-curve as E is isogenous to its Galois conjugates by isogenies of degree 2, 3
and 6. We can also compute that the degree map is

d(σ) =

1 if σ ∈ GK
2 if σ ∈ GQ(

√
2) and σ 6∈ GK

3 if σ ∈ GQ(
√

5) and σ 6∈ GK
6 if σ ∈ GQ(

√
10) and σ 6∈ GK .

We ask the framework [vL21a] to compute a splitting character ε for E which
gives us a character of conductor 15 and order 4. The corresponding field is

Kε = Q
(
ζ15 + ζ−1

15

)
= Q

√15− 3
√

5

2

 .

This implies that the minimal field over which the corresponding splitting map β
for ξE is defined is

Kβ = K

√15− 3
√

5

2

 = Q
(√

2,

√
15− 3

√
5

)
.

Note that Kd ∩Kβ = Q(
√

5) so by choosing the dual basis {5, 2} and {2, 3} for
the degree map we can apply Proposition 2.7.10 to find that the image field of
such a splitting map β for ξE must be

Lβ = Q(ζ8
√

2,
√

3) = Q(
√
−1,
√

3).

Section 2.8

Associated Galois representations

Thus far we have looked into explicitly computing splitting maps for Q-curves,
which give Q-simple abelian varieties A of GL2-type as in Theorem 2.1.9. Now

Joey Matthias van Langen

https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Qcurve4.rst

90 Chapter 2: Q-curve computations

we want to make the modularity of these abelian varieties A more explicit than
in Theorem 2.1.10 by computing the character and level of the newform f . For
this we first want an explicit description of Galois representations associated
with A.

For a regular elliptic curve E defined over a number field K one can define
Galois representations by looking at the action of GK on E(K). Since this action
commutes with isogenies defined over K it restricts to the torsion points E[m].
For a prime number l this action therefore induces 2-dimensional representations
on E[l] and the Tate module Tl(E) = lim←−E[ln]. We will denote these by

ρE,l : GK → Aut(Tl(E)) ∼= GL2(Zl), and

ρE,l : GK → Aut(E[l]) ∼= GL2(Fl).

Sometimes (made clear by the context) we will also use ρE,l as a representation

ρE,l : GK → Aut(Vl(E)) ∼= GL2(Ql),

where Vl(E) = Q⊗Z Tl(E). The representations ρE,l and ρE,l are called the l-
adic and mod l representation of E respectively. Note that ρE,l is the reduction
mod l of ρE,l : GK → Aut(Tl(E)).

For a Q-simple abelian variety A of GL2-type we can do a similar con-
struction, i.e. we take the representations induced by the action of GQ on A[l]
and Tl(A) = lim←−A[ln] for a prime number l. Note that in this case we have more

isogenies defined over Q that commute with the action of GQ, as L = End0
QA

is a number field of degree dimA by Theorem 2.2.1. This implies we can
see Vl(A) = Q⊗Z Tl(A) as a module over L⊗Q Ql =

∏
λ|l Lλ, where the product

is over primes of L. This gives us 2-dimensional λ-adic Galois representations

ρA,λ : GQ → Aut(Vl(A)) ∼= GL2(L⊗Q Ql)→ GL2(Lλ),

for each prime λ of L above a prime number l. If EndQA = OL we can inter-
pret Tl(A) and A[l] as OL ⊗Z Zl =

∏
λ|lOL,λ and OL ⊗Z Fl =

∏
λ|l Fλ modules

respectively to obtain representations

ρA,λ : GQ → Aut(Tl(A)) ∼= GL2(OL ⊗Z Zl)→ GL2(OL,λ),

and 2-dimensional mod λ representations

ρA,λ : GQ → Aut(A[l]) ∼= GL2(OL ⊗Z Fl)→ GL2(Fλ),

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.8: Associated Galois representations 91

for each prime λ of L above a prime number l. Here ρA,λ is the reduction
of ρA,λ modulo λ. If EndQA 6= OL we can still see ρA,λ as a representa-
tion GQ → GL2(OL,λ) by either replacing A with an isogenous abelian variety A′

with EndQA
′ = OL or choosing an appropriate basis. Given such a choice we

define the mod λ representation ρA,λ : GQ → GL2(Fλ) as its reduction mod-
ulo λ. To make these mod λ representations unique we will always replace ρA,λ
by its semi-simplification.

Now let E be a Q-curve completely defined over a Galois number field K.
Suppose there is a splitting map β : GKQ → Q∗ for E, which by Section 2.2
defines a Q-simple abelian variety A of GL2-type that has E as a quotient.
We can associate Galois representations to the pair (E, β) by taking the corre-
sponding Galois representations of A. In particular we shall write ρβ,λ = ρA,λ
and ρβ,λ = ρA,λ, which are called the λ-adic and mod λ Galois representations
associated with β respectively. Note that isogenous A have isomorphic Galois
representations, hence these Galois representations are well-defined up to iso-
morphism.

To see how these Galois representations relate to E and β, note that A
is a subvariety of B = ResKQ E. For each isogeny φσ : σE → E there is an

isogeny Φσ ∈ EndQ(B) and a corresponding element β(σ) ∈ Lβ = End0
QA. In

case β(σ) ∈ End(A) we obtain a commutative diagram (on Q-points)

E σE E

B B B

A A A,

σ φσ

σ

π

Φσ

σπ π

σ β(σ)

(2.6)

with the inclusion A ↪→ B and canonical map π : B → E. Note that the maps σ
are not morphisms, and that the top part of the diagram must be defined over K
whereas the bottom part may also be taken over Q. Furthermore the top row
together with the maps π and A ↪→ B fix the entire diagram.

Note that in the diagram (2.6) we may replace the abelian varieties with
their m-torsion points for any m > 0, hence we may also replace them with
Tate modules Tl or Vl for some prime number l. This shows us the Galois
representations ρβ,l and ρβ,l are fixed by β, and the action of φσ ◦ σ on E, as
expressed by the following proposition.

Joey Matthias van Langen

92 Chapter 2: Q-curve computations

Proposition 2.8.1. Given the setting above and a finite prime λ | l of Lβ we
have that

ρβ,λ : GQ → L∗β ⊗Aut(Vl(E)) ∼= GL2(Lβ ⊗Q Ql)→ GL2(Lβ,λ)

σ 7→ β(σ)−1 ⊗ (φσ ◦ σ).

Proof. Note that we obtain a diagram like (2.6) if we replace φσ, Φσ, and β(σ)
by nφσ, nΦσ and nβ(σ) for any n ∈ Z>0 such that nβ(σ) ∈ End(A). Since
multiplication by n is an isomorphism on the Tate modules Vl(E), Vl(B), Vl(A)
we obtain a commutative diagram as in (2.6) by replacing each variety with
their Tate module. The result now follows directly from the fact such a diagram
commutes.

Using this description we can see that these Galois representations behave
nicely under changing E by an isogeny.

Proposition 2.8.2. Let ψ : E → E′ be an isogeny of Q-curves, let β : GQ → Q∗

be a splitting map for cE, and let λ be a finite prime of Lβ, then there exists a

splitting map β′ : GQ → Q∗ for cE′ with image field Lβ such that

ρβ,λ ∼= ρβ′,λ : GQ → GL2(Lβ,λ).

Proof. Let φ′σ :
σ
E′ → E′ denote the isogenies associated to E′. For all σ ∈ GQ

we have two isogenies ψ ◦ φσ, φ′σ ◦
σψ ∈ homQ (σE,E′). Since End0

Q(E′) = Q
these spaces are 1-dimensional Q-vector spaces, hence there exist aσ ∈ Q∗ such
that

φ′σ ◦
σψ = aσ ψ ◦ φσ ∈ homQ (σE,E′)⊗Z Q.

A quick computation shows that

cE′(σ, τ) = φ′σ
σ
φ′τ (φ′στ)

−1

= φ′σ
σψ (σψ)

−1 σ
φ′τ

στψ (φ′στ
στψ)

−1

= aσaτa
−1
στ ψφσ

σφτ (φστ)
−1
ψ−1

= aσaτa
−1
στ cE(σ, τ),

for all σ, τ ∈ GQ where inverses are taken in the corresponding homomorphism
ring tensored with Q. Therefore β′ : σ 7→ aσβ(σ) is a splitting map for cE′ with
the same image field Lβ .

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.8: Associated Galois representations 93

Note that the induced map ψ : Vl(E)→ Vl(E
′) is an isomorphism with in-

verse ψ−1 = ψ̂
degψ . Therefore we have for each σ ∈ GQ that

ρβ′,λ(σ) = β′(σ)−1 φ′σ σ ψ ψ
−1

= β(σ)−1 a−1
σ φ′σ

σψ σ ψ−1

= β(σ)−1 ψ φσ σ ψ
−1

= ψ ρβ,λ ψ
−1,

which completes the proof.

In particular the above result shows that we may assume without loss of
generality that φσ = Id for all σ ∈ GK in which case we have

ρβ,λ|GK = ρE,l : GK → GL2(Ql) ⊆ GL2(Lβ,λ),

and similarly for ρβ,λ. This allows us to prove an important result.

Theorem 2.8.3. Let K be a Galois number field over which E is completely
defined, for which we have a splitting map β : GKQ → Q∗ for cE, and for which
we have φσ = Id for all σ ∈ GK . Let p be a prime number that does not ramify
in K.

� If E has good reduction at p (recalling Definition 2.1.7), then ρβ,λ and ρβ,λ
are finite at p for every prime λ. In particular ρβ,λ and ρβ,λ are unramified
at such p for every prime λ - p.

� If E has multiplicative reduction at p (recalling Definition 2.1.7), then ρβ,λ
is finite at p for every prime λ | l where l is a prime number dividing
the order of a prime p | p of K in the minimal discriminant of E. In
particular ρβ,λ is unramified at such p for every prime λ - p with this
property.

Proof. Note that the assumptions imply that the ramification subgroup Ip ⊆ GQ
is a subset of the ramification group Ip ⊂ GK for any prime p | p of K, and
that ρβ,λ|GK = ρE,l for any prime λ | l. To prove the statements it therefore
suffices to prove that ρE,l or ρE,l is finite at a prime p | p if the mentioned
conditions are satisfied. This is a standard result known about Galois represen-
tations of elliptic curves. See for example [DS05, Theorem 9.4.1] and [Dah08,
page 26-27] for results with K = Q that can easily be extended to general num-
ber fields K.

Joey Matthias van Langen

94 Chapter 2: Q-curve computations

Note that there is one other way of defining Galois representations associ-
ated to the Q-curve E as was done in for example [Ell04]. We can derive these
representations from the representations ρβ,λ and ρβ,λ by taking the projec-
tivization of these representations. Note that these do no longer depend on the
specific splitting map β for cE , but rather only on the action of φσ ◦ σ on PVl(E)
or PE[l] respectively. Here PV denotes the space of all lines through the origin
in the 2-dimensional vector space V , which is itself a projective line.

Definition 2.8.4. For a Q-curve E and a prime number l we define the pro-
jective representations

PρE,l : GQ → Aut(PVl(E)) ∼= PGL2(Ql)
σ 7→ φσ ◦ σ

and

PρE,l : GQ → Aut(PE[l]) ∼= PPGL2(Fl)
σ 7→ φσ ◦ σ.

Note that PρE,l : GQ → PGL2(Ql) and PρE,l : GQ → PGL2(Fl) are the pro-
jectivizations of ρβ,λ : GQ → GL2(Ql) and ρβ,λ : GQ → GL2(Fl) respectively for
any splitting map β for cE and λ | l, up to isomorphism and noting that we
might have to take semisimplifications for the mod l representations. By Propo-
sition 2.8.2 the isomorphism classes of PρE,l and PρE,l therefore only depend
on the class of E modulo isogenies of a degree not divisible by l. Further-
more we may assume without loss of generality that E is defined over a field K
with φσ = Id for all σ ∈ GK , hence we see that PρE,l|GK and PρE,l|GK are the
projectivizations of the usual Galois representations ρE,l : GK → Aut(Vl(E))
and ρE,l : GK → Aut(E[l]) associated with E as a regular elliptic curve over K.

By Theorem 2.1.10 we know that the abelian variety A associated to (E, β)
is isogenous to a variety Af associated to a newform f ∈ S2(Γ1(N)). By defini-
tion (see e.g. [DS05, page 401]) the λ-adic Galois representation ρf,λ associated
with f is the representation ρAf ,λ. This implies that ρβ,λ ∼= ρf,λ for each prime λ
of Lβ . Since many of the properties of ρf,λ depend directly on f , and ρβ,λ de-
pends only on β, E, and the isogenies φσ, we can now do most computations
without explicitly computing A. In particular the character and the level of
the newform f can be derived from the determinant and the conductor of ρβ,λ
respectively.

Proposition 2.8.5. Let E be a Q-curve and β be a splitting map for cE, then

ρβ,λ : GQ → GL2(Lλ)

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.8: Associated Galois representations 95

has determinant given by
det ρβ,λ = ε−1χl,

where χl is the l-adic cyclotomic character and ε is the splitting character cor-
responding to β.

Proof. Note that for an arbitrary σ ∈ GQ we have

det ρβ,λ(σ) = β(σ)−2 det(φσ ◦ σ),

by Proposition 2.8.1. To compute det(φσ ◦ σ) we can use the Weil pairing e
on Vl(E). Let {v1, v2} be a basis for Vl(E) and let(

a b
c d

)
be the matrix for φσ ◦ σ with respect to this basis. By the properties of the
Weil pairing we find that

e(v1, v2)det(φσ◦σ) = e(v1, v2)ad−bc

= e(av1 + bv2, cv1 + dv2)

= e ((φσ ◦ σ) v1, (φσ ◦ σ) v2)

= e
(
φ̂σφσ

σv1,
σv2

)
= e (σv1,

σv2)
deg φσ

= (
σ
e(v1, v2))

deg φσ

= e(v1, v2)χl(σ) deg φσ .

Since e is nondegenerate this implies that

det(φσ ◦ σ) = χl(σ)d(σ).

Noting that ε = β2d−1 we see that the determinant of ρE,λ is as claimed.

Corollary 2.8.6. Let E be a Q-curve, let β be a splitting map for cE, and let f
be a newform associated to (E, β) by Theorem 2.1.10, then f has character ε−1,
where ε is the splitting character associated to β.

Proof. This is immediate as by Theorem 9.5.4 in [DS05] the determinant of
the λ-adic Galois representation associated to f for λ | l is the character of f
times the l-adic cyclotomic character.

Joey Matthias van Langen

96 Chapter 2: Q-curve computations

Section 2.9

Computing the newform levels

For a Q-curve E with a corresponding splitting map β for cE the level of an
associated newform f will somehow be related to the conductor of ρβ,λ for some
prime λ | l. Outside powers of l this conductor is by definition equal to the
conductor of the associated abelian variety A. For this we have the following
result.

Proposition 2.9.1. Let f ∈ S2(Γ1(N)) be a newform, then the associated Q-
simple abelian variety Af of GL2-type has conductor N [Kf :Q].

Proof. This follows directly from the ingredients given in [Car89], although the
result is not explicitly stated there.

What thus remains to compute the level of the associated newform is to
compute the conductor of the abelian variety A associated to a splitting map β
for cE . In case A is the restriction of scalars of E this is easy due to the following
result.

Proposition 2.9.2 (Proposition 1 of [Mil72]). Let E be an elliptic curve over
the number field K. Let N be the ideal norm of K, let ∆K be the discriminant
of K, and let NE be the conductor of E over K, then ResKQ E has conductor

∆2
K N (NE) .

In the framework [vL21a] one can compute this conductor for a Qcurve us-
ing the method conductor_restriction_of_scalars. Note that this method
always assumes K to be the field returned by decomposition_field. For a
FreyQcurve the method works a little different as in that case conductor ex-
ponents can only be explicitly computed for finitely many primes. By pro-
viding a list of finite primes of the decomposition_field as the argument
additive_primes one can limit for which primes the conductor exponent is ex-
plicitly computed. The result will in that case be an expression with on the left
side the product of all prime numbers – those below the given primes and those
dividing the discriminant of K – to the appropriate power, and on the right side
a string that tells how to calculate the remaining part of the conductor. Sim-
ilar to the implementation of conductor of a FreyCurve the code will assume
the finite primes of K not in additive_primes do not divide both c4 and the
discriminant of the curve, so this string will denote the norm of the radical of

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.9: Computing the newform levels 97

the discriminant. Note that not specifying the argument additive_primes will
make it default to the result of primes_of_possible_additive_reduction.

Example 2.9.3. Qcurve1.rst Qcurve1Frey.rst We return to the curve E

from Example 2.1.4. Example 2.7.9 showed that if we twist E by γ = 1−
√

3 as
found in Example 2.5.4 we get a curve Eγ completely defined over Kd = Q(

√
3).

Furthermore this Q-curve Eγ also has a splitting map β for cEγ as shown in
Example 2.7.9.

From the definition of β as given in Example 2.4.4 it is not hard to see
that Lβ = Q(

√
−2) meaning that the associated Q-simple abelian variety A

has dimension 2 which is equal to the dimension of ResKdQ Eγ . This implies

that ResKdQ Eγ must be isogenous to A meaning they have the same conductor.
Note that A is again isogenous to the abelian variety of the newform f associated
to (Eγ , β), hence by Proposition 2.9.1 and Proposition 2.9.2 we find that

N2 = ∆2
Kd
N (NEγ),

where N is the level of f , ∆Kd is the discriminant of Kd, N is the ideal norm
of Kd and NEγ is the conductor of Eγ over Kd.

We can use the framework [vL21a] to compute the right hand side of this
equation, but note that the output is different depending on whether E is a Q-
curve or a Frey Q-curve. First we do the Q-curve case.

sage: Egamma = E.twist(gamma)

sage: RHS = Egamma.conductor_restriction_of_scalars(); RHS

sage: RHS.factor()

2^18 * 3^2

Next we do the Frey Q-curve case.

sage: Egamma = E.twist(gamma)

sage: RHS = Egamma.conductor_restriction_of_scalars(); RHS

2^(n0+4)*3^(n1+2)*Norm(Rad_P(((-22394880*lu0 + 77635584)) * \

(a^2 + (-1/2*lu0)*b) * (a^2 + (1/2*lu0)*b)^2))

where

n0 = 12 if (’a’, ’b’) == (1, 0) mod 2

14 if (’a’, ’b’) == (1, 1) mod 2

8 if (’a’, ’b’) == (0, 3), (2, 3) mod 4

0 if (’a’, ’b’) is 1 of 4 possibilities mod 8

4 if (’a’, ’b’) is 1 of 4 possibilities mod 8

Joey Matthias van Langen

https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Qcurve1.rst#example-293
https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Qcurve1Frey.rst#example-293

98 Chapter 2: Q-curve computations

n1 = 0 if (’a’, ’b’) is 1 of 6 possibilities mod 3

2 if (’a’, ’b’) == (0, 1), (0, 2) mod 3

By Corollary 2.8.6 the corresponding character is the inverse of the splitting
character given in Example 2.4.4, i.e. the unique character ε of conductor 12. In
the case E is the Q-curve from Example 2.1.4 we thus find that f ∈ S2(1536, ε).

In general the restriction of scalars may be much larger than the abelian
variety A associated to β. However if we choose the field K in a special way we
get a nice result as stated in [Que00].

Proposition 2.9.4. Let E be a Q-curve with splitting map β for cE. If K is an
abelian number field over which E is completely defined, over which β is defined,
and over which we have cE = cβ, then ResKQ E is isogenous over Q to a product
of Q-simple abelian varieties of GL2-type not two of which are Q-isogenous.

Proof. Let B = ResKQ E and look at the algebra End0
QB. As mentioned in

Section 2.2 it can be seen as a Q-algebra generated by the φσ for σ ∈ GKQ with
multiplication given by

φσφτ = cE(σ, τ)φστ = β(σ)β(τ)β(στ)−1φστ .

Since GKQ is abelian the formula above shows that End0
QB is commutative. Now

by Proposition 5.1 in [Que00] the result follows.

Remark 2.9.5. In fact the algebra End0
QB being commutative is actually equiv-

alent to ResKQ E being Q-isogenous to a product of Q-simple mutually non-

Q-isogenous abelian varieties of GL2-type, as both are equivalent to End0
QB

being a product of number fields. Quer shows in Proposition 5.2 in [Que00]
that End0

QB being commutative is again equivalent to K being abelian and cE

having trivial class in H2(GKQ ,Q
∗
) for the trivial action of GKQ on Q∗. The

latter is equivalent to saying a splitting map β for cE defined over K exists
such that cE = cβ over K. Therefore the statement in the proposition is best
possible and we will call such a field K a decomposition field.

Remark 2.9.6. Note that most of the minimal fields as discussed in Section 2.7
are abelian. In particular the minimal field of complete definition and the mini-
mal splitting field are both abelian. Combining these we find an abelian field K
over which our Q-curve E is completely defined and the splitting map β for cE
is defined, or at least there is an isogenous Q-curve for which this is the case.
Note that the extension K(

√
γ) given by Corollary 2.5.2 over which we also

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.9: Computing the newform levels 99

have cE = cβ might not be abelian, but Corollary 2.7.8 guarantees that Eγ does
have cEγ = cβ and is also completely defined over the abelian field K. Therefore
a decomposition field always exists, at least for an isogenous Q-curve.

Remark 2.9.7. The field K returned by the method decomposition_field for
a Qcurve object in the framework [vL21a] is not necessarily a decomposition
field as defined above. The only properties that it might not satisfy are K being
abelian or having cE = cβ . The latter can be easily remedied by replacing the
curve with the decomposable_twist, but the former may only be resolved by
making sure the definition field and complete definition field are abelian. In
practice the definition_field is nearly always equal to the degree_field

preventing this problem. Whenever the field K is not a decomposition field
the Qcurve class will print warnings when using methods that need it to be a
decomposition field.

From now on we will assume that K is a decomposition field for the Q-
curve E with corresponding splitting map β for cE . Note that, as discussed
at the start of Section 2.2, each Q-simple factor of ResKQ E corresponds to a
splitting map for cE . Furthermore by the discussion in Section 2.6 each of these
splitting maps is some twist character χ : GKQ → Q∗ times β. In particular the
corresponding λ-adic Galois representations are twists of ρβ,λ meaning that the
corresponding newforms are twists of the newform corresponding to β. We can
also compute exactly which twists by computing all characters GKQ → Q∗ and
choosing only one per Galois conjugacy class of splitting maps for cE .

There are now two different ways of computing the conductor of ResKQ E,
i.e. by Proposition 2.9.2 or by using the decomposition of Proposition 2.9.4.
Combined with the discussion above this gives the equation

∆2
KN (NE) =

∏
i

N
[Li:Q]

χ−1
i f

, (2.7)

where the χi are a selection of relevant twist characters, the field Li is the
image field of the splitting map χiβ such that [Li : Q] is the dimension of the
corresponding abelian variety, the number Nχ−1

i f is the level of f twisted by χ−1
i ,

the ideal NE is the conductor of E over K, the function N is the ideal norm
of K, and ∆K is the discriminant of K.

We can use Equation (2.7) to compute the newform levels if we combine it
with a result about how the level of a newform changes after twisting.

Theorem 2.9.8. Let F ∈ Sk (N, ε) be a newform and let χ be a Dirichlet
character with conductor qβ for some prime number q and β ≥ 1. Let the q-
part εq of ε have conductor qα and let the conductor of εqχ be qγ . Furthermore,

Joey Matthias van Langen

100 Chapter 2: Q-curve computations

let N = qδM with q -M and set δ′ = max{δ, β + 1, β + γ}. For the newform χF
that is F twisted by χ we have that

1. χF ∈ Sk
(
qδ
′
M, εχ2

)
.

2. χF is not of level qδ
′
Mq′

−1
for any prime q′ |M .

3. χF is not of level qδ
′−1M if one of the following holds

(a) δ > max(β + 1, β + γ); or

(b) δ < max(β + 1, β + γ) and γ ≥ 2; or

(c) α = β = γ = δ = 1.

Proof. See Appendix A

Remark 2.9.9. This theorem is an analogue of Theorem 3.1 in [AL78]. Note
that the proof is slightly different as the proof of the theorem in [AL78] had a
flaw that was already noted in [SW93]. The proof in Appendix A is therefore
based on the proof of Theorem 5.7 in [SW93] but then applied to classical
modular forms rather than Hilbert modular forms. Furthermore we have chosen
a different formulation of the result which reflects the stronger result that the
proof actually achieves.

Note that Theorem 2.9.8 in particular shows we can study how the level of a
newform changes for each prime exponent individually by looking only at the p-
part of the corresponding characters. So to find the level of the newforms we
study the p-part of Equation (2.7) for each prime number p dividing ∆2

K N (NE)
separately. Note that for all the relevant twists we can compute the quanti-
ties α, β and γ in Theorem 2.9.8 explicitly using the corresponding characters.
Next we could try to find all the δ for which Theorem 2.9.8 and Equation (2.7)
are satisfied to give candidates for the p-part of the level of f . In practice this
is sufficient to find the level as often a high power of p in ∆2

K N (NE) forces one
of the newforms to be in the case 3.a) of Theorem 2.9.8.

The framework [vL21a] implements the theory of this section in the method
newform_levels of the class Qcurve. Whenever the decomposition_field K
of such a Qcurve E is actually a decomposition field this method computes
the possible levels of the newforms f1, . . . , fn where ResKQ E is isogenous to the
product

∏n
j=1Afj . Here fj corresponds to the j-th splitting map returned by

splitting_map(’conjugacy’). To compute these levels the method uses the
conductor given by conductor_restriction_of_scalars and applies Theo-
rem 2.9.8 for each prime dividing that conductor as described above. The result

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.9: Computing the newform levels 101

is a list of n-tuples, where the j-th entry in each tuple is the level of fj in that
possible combination of levels.

For a FreyQcurve the method newform_levels computes a similar list, but
it only consists of the possible p-parts of the levels of f1, . . . , fn for a finite set
of prime numbers p. This finite set is specified indirectly by the argument
bad_primes which consists of primes of the decomposition_field. These
primes are the ones for which the conductor_exponent method of the un-
derlying FreyCurve is used to determine the relevant part of the conductor,
so it needs to include all primes above a prime number p for the p-part of
the levels to be correct. By default bad_primes is equal to the default value
of additive_primes for conductor_restriction_of_scalars. Although this
makes it impossible to compute the entire level of corresponding newforms, this
method can still be used to compute the level lowered newforms corresponding
to a FreyQcurve, as will be discussed in Section 3.1.

For an instance of Qcurve an actual newform associated to the curve can
be computed with the method newform. Its result is both a newform f and
an n-tuple of Dirichlet characters χ1, . . . χn such that fi is the twist of f by χi.
Note that f is always one of the fi, so one of the χi is trivial. For an instance
of FreyQcurve the method newform_candidates computes for each tuple of
possible levels returned by newform_levels the newforms of the lowest level in
that tuple.

Example 2.9.10. Qcurve5.rst Look at the curve

E : Y 2 = X3 + 4 γ X2 + 18 γ2

(
1 +

√
2√
5

)
X,

where γ =
(

1 +
√

2
)√5 +

√
5 +
√

5

2

 .

Note that the field K = Q
(√

2,
√

5, γ
)

is the totally real subfield of Q(ζ40) and
hence abelian. We can use the framework [vL21a] to verify E is a Q-curve with
isogenies of degree 2 and show that K is a decomposition field.

sage: L.<zeta40> = CyclotomicField(40)

sage: K.<t> = L.subfield(zeta40 + zeta40^(-1))[0]

sage: sqrt2, sqrt5 = sqrt(K(2)), sqrt(K(5))

sage: c = sqrt((5 + sqrt5) / 2)

sage: gamma = (1 + sqrt2)*(sqrt5 + c)

Joey Matthias van Langen

https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Qcurve5.rst#example-2910

102 Chapter 2: Q-curve computations

sage: E = Qcurve([0, 4*gamma, 0, 2*gamma^2*(1 + sqrt2/sqrt5), 0],

....: guessed_degress=[2])

sage: E.decomposition_field() == K

True

sage: E.does_decompose()

True

By Proposition 2.9.4 we find that ResKQ E is isogenous to a product of Q-simple
abelian varieties of GL2-type. Each such a factor corresponds to a splitting map
for cE . We compute the twist characters to obtain these splitting maps from
the default splitting map β as well as their image fields.

sage: E.twist_character(’conjugacy’)

(Dirichlet character modulo 1 of conductor 1,

Dirichlet character modulo 20 of conductor 20 mapping \

11 |--> -1, 17 |--> zeta4)

sage: E.splitting_image_field(’conjugacy’)

(Cyclotomic Field of order 8 and degree 4,

Cyclotomic Field of order 8 and degree 4)

We thus see that ResKQ E must be isogenous to Aβ ×Aχ20β , where χ20 is a
Dirichlet character of conductor 20 and order 4, and Aβ , Aχ20β are both Q-
simple abelian varieties of GL2-type with endomorphism algebra Lβ = Q(ζ8).

By Theorem 2.1.10 both Aβ and Aχ20β are isogenous to abelian varieties
associated with newforms f and g respectively. In particular we thus have
that ρf,λ ∼= ρβ,λ and

ρg,λ ∼= ρχ20β,λ = χ−1
20 ρβ,λ = χ−1

20 ρf,λ = ρχ−1
20 f,λ

for all primes λ of Lβ , hence g is the twist of f by χ−1
20 . If we let Nf and Ng

be the levels of f and g respectively then by comparing conductors of Af ×Ag
and ResKQ E we find that

N4
fN

4
g = ∆2

KN (NE), (2.8)

where the constants on the right hand side are as in Proposition 2.9.2.
Using the framework [vL21a] we can compute the right hand side directly.

sage: RHS = E.conductor_restriction_of_scalars()

sage: RHS.factor()

2^72 * 3^8 * 5^12

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.10: Traces of Frobenius 103

This indicates Nf and Ng are only divisible by the primes 2, 3 and 5. Since g
is a twist of f by a character of conductor 20 we see from Theorem 2.9.8
that ord3Nf = ord3Ng. Using the framework [vL21a] we can see that the split-
ting characters for β and χ20β are χ20 and its inverse respectively.

sage: E.splitting_character(’conjugacy’)

(Dirichlet character modulo 20 of conductor 20 mapping \

11 |--> -1, 17 |--> zeta4,

Dirichlet character modulo 20 of conductor 20 mapping \

11 |--> -1, 17 |--> -zeta4)

Therefore f has character χ−1
20 and g has character χ20 by Corollary 2.8.6. So

for q = 5 the values of α, β and γ in Theorem 2.9.8 are all 1, independent of
whether we choose F = f or F = g. This implies that neither ord5Nf or ord5Ng
could be 3 as then by part 3.a) of the theorem the other should be as well
contradicting Equation (2.8). This implies one of ord5Nf and ord5Ng should
be 1 meaning the other should be 2 as confirmed both by Equation (2.8) and
part 3.c) of Theorem 2.9.8.

For q = 2 we have α = β = 2 and γ = 0 in Theorem 2.9.8 for both F = f
and F = g. Note however that ord2Nf + ord2Ng = 18 by Equation (2.8), so
we have a choice of F with δ ≥ 9. This implies we are in case 3.a) meaning we
must have ord2Nf = ord2Ng = 9. We thus find that

{Nf , Ng} =
{

29 · 3 · 5, 29 · 3 · 52
}

= {7680, 38400} ,

which is confirmed by the framework [vL21a].

sage: E.newform_levels()

[(7680, 38400), (38400, 7680)]

Section 2.10

Traces of Frobenius

One important thing we want to compute for the Galois representations ρβ,λ
and ρβ,λ are the traces of these Galois representations evaluated at Frobenius
elements. For explicit Q-curves these allow the framework [vL21a] to compute
the exact newform associated to a splitting map β for cE . This is done by finding
the newform f for which ρf,λ and ρβ,λ have the same traces of Frobenius for
all primes λ of Lβ . Note that for this only finitely many traces have to be
computed as for two newforms f and g of the same level and weight there are

Joey Matthias van Langen

104 Chapter 2: Q-curve computations

bounds on the smallest integer p such that ρf,λ and ρg,λ have different traces
at a Frobenius element for p, for example the Sturm bound. For Frey Q-curves
we need these traces to eliminate newforms in the modular method, as will be
discussed in Chapter 3.

By Theorem 2.8.3 we know about two cases in which the trace of Frobenius is
independent of the chosen Frobenius element in GQ as the corresponding Galois
representations are unramified. In this section we prove two results that each
include one of these cases. Note that as these results are not precisely the cases
of Theorem 2.8.3 the chosen Frobenius element could matter, as we will see in
Example 2.10.4. We will start with the case of good reduction.

Theorem 2.10.1. Let E be a Q-curve with decomposition field K and let β be
a splitting map for cE. Let p be a prime number at which E has good reduction,
let σ ∈ GQ be a Frobenius element for p, and let Ẽ be the good reduction of E

at a prime above p for which the dual isogeny φ̂σ of φσ reduces to a separable
isogeny ψ. For every prime λ - p the matrix ρβ,λ(σ) has characteristic equation

x2 − β(σ)−1aσ(E)x+ ε(σ)−1p

where ε is the splitting character corresponding to β and

aσ(E) = degψ + p−#{P ∈ Ẽ(Fp) : ψP = Frobp P},

with Frobp the Frobenius element of GFp .

In particular we have

det ρβ,λ(σ) = ε(σ)−1 p

Tr ρβ,λ(σ) = β(σ)−1 aσ(E).

Proof. The part about the determinant directly follows from Proposition 2.8.5
by evaluating the characters at σ.

For the trace part note that by Proposition 2.8.1

Tr ρβ,λ(σ) = β(σ)−1 Tr(φσ ◦ σ),

hence it suffices to prove that Tr(φσ ◦ σ) = aσ(E). For this note that the prime
number l below λ must be distinct from p. This implies that the ln-torsion of E
maps injectively to the ln torsion of Ẽ. To study the action of φσ ◦ σ on Tl(E)
we may also study the action of ψ̂ ◦ Frobp on Tl(Ẽ), where Frobp ∈ GFp is the

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.10: Traces of Frobenius 105

Frobenius element and ψ̂ is the dual of ψ. Note that Frobp is an isogeny on Ẽ
hence we can apply Proposition 8.6 from [Sil09, III.8] to find that

Tr(ψ̂ ◦ Frobp) = 1 + deg(ψ̂ ◦ Frobp)− deg(1− ψ̂ ◦ Frobp)

= 1 + (ψ̂ ◦ Frobp)(F̂robp ◦ ψ)− (1− ψ̂ ◦ Frobp)(1− (F̂robp ◦ ψ))

= ψ̂ ◦ Frobp +F̂robp ◦ ψ
= ψ̂ ◦ ψ + F̂robp ◦ Frobp−(ψ̂ − F̂robp)(ψ − Frobp)

= degψ + deg Frobp−deg(ψ − Frobp)

= degψ + p−#{P ∈ Ẽ(Fp) : ψP = Frobp P}.

The last step is valid since ψ is separable and Frobp is not, hence ψ − Frobp is
also separable. Its degree is thus equal to the number of points in its kernel,
which is exactly the given set.

To make the theorem above usable we need a way to calculate

#{P ∈ Ẽ(Fp) : ψP = Frobp P},

for a prime number p and isogeny ψ. We also need a way to determine if the
reduction of an isogeny to Ẽ will be separable. For the latter we can use a
corollary of Proposition 2.1.3.

Proposition 2.10.2. Let φ : E1 → E2 be an isogeny of elliptic curves over any
field, and let F (x) and λ be the invariants associated to φ given in Proposi-
tion 2.1.3. The following are equivalent

1. φ is inseparable,

2. λ = 0,

3. F ′(x) = 0.

Proof. By Proposition 4.2.c in [Sil09, II.4] we know that φ is inseparable if and
only if λ = 0. Noting that both ∂f1

∂y (x, y) and ∂f2
∂y (F (x), G(x)y +H(x)) must be

non-zero for E1 and E2 to be elliptic curves, we can deduce from Equation (2.1)
that λ = 0 if and only if F ′(x) = 0 as claimed.

Now we determine a way to calculate #{P ∈ Ẽ(Fp) : ψP = Frobp P}.

Joey Matthias van Langen

106 Chapter 2: Q-curve computations

Proposition 2.10.3. Let E be an elliptic curve over a finite field k of charac-
teristic p. Let Frobp be the Frobenius homomorphism of k and let (p)E be the
image of E under Frobp. Suppose φ : E → (p)E is a separable isogeny, then we
have

#{P ∈ E(Fp) : φP = Frobp P}

=

1 + 2 deg Rad(f1, f2)− deg Rad(f1, R) if p 6= 2

1 + deg Rad(f1, f3) + deg Rad(f1, f3, f4)

−deg Rad(f1, f3, f4, g) if p = 2

where Rad(g1, . . . , gn) denotes the product of all distinct irreducible factors that
divide each of the polynomials g1 through gn and

� f1 is the numerator of F (x)− xp,

� R = 4x3 + b2x
2 + 2b4x+ b6,

� f2 is the numerator of λR
p+1
2 − F ′(x)R,

� g = a1x+ a3,

� h = x3 + a2x
2 + a4x+ a6,

� f3 is the numerator of gGh+ gGH +G2h+ g2H + h2 +H2, and

� f4 is the numerator of g −G.

Here a1, a2, a3, a4, a6, b2, b4, b6 are the invariants associated to the Weierstrass
equation of E and F (x), G(x), H(x), λ are the invariants associated to φ by
Proposition 2.1.3.

Proof. Denote
S = {P ∈ E(Fp) : φP = Frobp P}.

Obviously we have that the point at infinity O ∈ E(Fp) is in S as

φO = O = FrobpO.

For arbitrary x, y ∈ Fp we have that (x, y) ∈ S if and only if x and y satisfy f(x, y) = 0
F (x) = xp

G(x)y +H(x) = yp.
(2.9)

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.10: Traces of Frobenius 107

Note that λ 6= 0 by Proposition 2.10.2, so by Proposition 2.1.3 it follows that
for p 6= 2 the term G(x)y +H(x) is completely determined by

λ (2 (G(x)y +H(x)) + ap1F (x) + ap3) = F ′(x)(2y + a1x+ a3).

Therefore (x, y) satisfy the conditions in (2.9) if and only if they satisfy
f(x, y) = 0
F (x) = xp

F ′(x)(2y + a1x+ a3) = λ (2yp + ap1x
p + ap3)

= λ (2y + a1x+ a3)
p
.

(2.10)

Note that 2y + a1x+ a3 = 0 forms a solution to the last equation, so we get
equivalent conditions if we multiply the last equation by 2y + a1x+ a3. Since p
is odd and

(2y + a1x+ a3)2 = 4f(x, y) +R(x) (2.11)

the conditions in (2.10) are equivalent to
f(x, y) = 0
F (x) = xp

F ′(x)R(x) = λR(x)
p+1
2 .

(2.12)

Note that Equation (2.11) tells us that for each x ∈ Fp the equation f(x, y) = 0
has one solution y ∈ Fp if R(x) = 0 and two otherwise. Therefore the number of
points (x, y) satisfying the conditions in (2.12) is equal to twice the number of x

satisfying F (x) = xp and F ′(x)R(x) = λR(x)
p+1
2 minus the number of x ∈ Fp

that also satisfy R(x) = 0. This verifies the formula in the case p 6= 2.
If p = 2 we return to the conditions in (2.9). The first and third condi-

tion both consist of quadratic polynomials in y. The resultant of these two
polynomials is

gGH + gGH +G2h+ g2H + h2 +H2,

hence the only x ∈ Fp for which there is at least one y ∈ Fp such that (x, y) ∈ S
should satisfy {

F (x) = xp

gGH + gGH +G2h+ g2H + h2 +H2 = 0.
(2.13)

Note that

f(x, y)− (y2 −G(x)y −H(x)) = (g(x) +G(x))y − (h(x)−H(x)),

Joey Matthias van Langen

108 Chapter 2: Q-curve computations

hence if g(x) +G(x) = 0 the number of solutions y for a given x is determined
by the number of solutions to f(x, y) = 0. The latter always has two solutions
unless g(x) = 0. In total the number of (x, y) ∈ S is thus equal to the number
of x that satisfy (2.13), plus the number of x that also satisfy g(x) +G(x) = 0
minus the number of x that also satisfy g(x) = 0. this justifies the formula in
the case p = 2.

Example 2.10.4. Qcurve1.rst We return again to the curve E of Exam-
ple 2.1.4, but replace E by its twist Eγ obtained by using the γ found in Exam-
ple 2.5.4. As stated in Example 2.7.9 we then know that E is completely defined
over Kd = Q(

√
3) and has splitting map β for cE given in Example 2.4.4. We will

here consider only the case where E is a Q-curve as the Frey Q-curve case is quite
subtle. The Frey Q-curve case has been fully worked out in Qcurve1Frey.rst .

Using SageMath [Sag20] we can compute that the conductor of E is only
divisible by primes above 2. In fact SageMath can also tell us that E has a
global minimal model

E : y2 = x3 − 2
(

1 +
√

3
)
x2 −

(
1 +
√

3
)
x = xf(x),

which has its invariants c4 and ∆ coprime outside the prime above 2. We shall
take this as our model for E.

Note that the framework [vL21a] stores the dual isogenies φ̂σ : E → σE for
each σ ∈ GKdQ = 〈σ3〉. Retrieving these from the framework [vL21a] we get

(λ, F (x)) =

{
(1, x) if σ = 1(

−1−
√

3, 2−
√

3
2

f(x)
x

)
if σ = σ3,

using notation as in Proposition 2.1.3. By Proposition 2.10.2 we know these
isogenies are separable and as (2 +

√
3)(2−

√
3) = 1 this remains true when

taking the reduction modulo a prime above an odd prime number p. Therefore
we can apply Theorem 2.10.1 to compute traces of ρβ,λ at Frobenius elements
of p for any odd prime number p and any prime λ - p.

Now let σ ∈ GQ be a Frobenius element of an odd prime number p. If σ ∈ GKd
then p must split or ramify in Kd, so any prime p | p in Kd has Fp = Fp. Fur-
thermore φσ is the identity hence we find that

aσ(E) = 1+p−#{P ∈ Ẽ(Fp) : P = Frobp P} = 1+p−#Ẽ(Fp) = 1+p−#Ẽ(Fp).

We have by definition of β that β(σ) = 1, so aσ(E) is also the trace of ρβ,λ(σ).
This is what we expect as ρβ,λ|GKd = ρE,l and the formula for aσ(E) is precisely
that of the trace of ρE,l at a Frobenius element of a prime p | p.

Automating the modular method for Q-curves to solve Diophantine equations

https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Qcurve1.rst#example-2104
https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Qcurve1Frey.rst#example-2104

Section 2.10: Traces of Frobenius 109

p behaviour in Q(
√

3) Tr ρβ,λ(σ)

3 ramified
−2

2
√
−2

if σ ∈ GQ(
√

3)

if σ 6∈ GQ(
√

3)

5 inert
√
−2

7 inert −3
√
−2

11 split −4
13 split −2
17 inert 2

√
−2

19 inert 0
23 split 8
29 inert 5

√
−2

Table 2.1: Traces of Frobenius for Example 2.10.4. Note that at p = 3 there are
multiple possible traces depending on the choice of Frobenius element σ.

Now suppose σ 6∈ GKd which implies p must ramify or be inert in Kd. In
this case we must have

aσ(E) = 2 + p−#{P ∈ Ẽ(Fp) : ψ(P) = Frobp P},

where ψ is the reduction of φ̂σ3
modulo the unique prime p | p of Kd. We can

compute this number by applying Proposition 2.10.3 for which we need the
polynomials

f1 =
2−
√

3

2
f(x)− xp+1

f2 = −2f(x)
(

2p
(

1 +
√

3
)
x
p+3
2 f(x)

p−1
2 +

(
2−
√

3
)(

x2 + 1 +
√

3
))

R = 4xf(x).

Note that x and f(x) have no common factors in Fp as the reduction Ẽ of E at p
is good, hence f1 and R must be coprime. The formula from Proposition 2.10.3
therefore tells us that

aσ(E) = 1 + p− 2 deg Rad(f ′1, f
′
2),

with

f ′1 = 2xp+1 − (2−
√

3)f(x), and

f ′2 = 2p(1 +
√

3)x
p+3
2 f(x)

p−1
2 + (2−

√
3)(x2 + 1 +

√
3).

Joey Matthias van Langen

110 Chapter 2: Q-curve computations

Since β(σ) =
√
−2 this implies that we have

Tr ρβ,λ(σ) =
√
−2

(
deg Rad(f ′1, f

′
2)− p+ 1

2

)
,

for any λ - p.
We computed some of these traces explicitly in Table 2.1. Note that 3 ap-

pears twice as it ramifies and therefore has two distinct choices for a Frobenius
element σ. For the other primes the trace of a Frobenius element is indepen-
dent of the chosen Frobenius element as ρβ,λ is unramified by Theorem 2.8.3.
Furthermore the results here are only true for λ - p.

For the case of multiplicative reduction we will need some results about
isogenies between Tate curves first.

Proposition 2.10.5. Let K be a finite extension of Qp for some prime num-
ber p and let q, q′ ∈ K∗ be elements of positive valuation. For any non-zero
isogeny φ : Eq → Eq′ between Tate curves there exist integers m and n such
that mn = deg φ, q|m| = (q′)|n|, and λφ = m where λφ is the constant associ-
ated to φ in Propostion 2.1.3. Furthermore for any finite extension L/K the
diagram

L∗ L∗

L∗/qZ L∗/(q′)Z

Eq(L) Eq′(L)

[m]

∼ ∼

φ

commutes.

Proof. Note that if this proposition is true for any two isogenies φ : Eq → Eq′

and ψ : Eq′ → Eq′′ , then it is also true for ψ ◦ φ, hence it suffices to prove this
proposition for cyclic isogenies φ.

Suppose φ is cyclic of degree n > 0, then its kernel is generated by an n-
torsion point P ∈ Eq(K). The corresponding element in K

∗
/qZ is the class of

an α ∈ K∗ that is either an n-th root of unity or an n-th root of q. In the first
case note that the map x 7→ xn on K∗ induces an isogeny K

∗
/qZ → K

∗
/qnZ

with the same kernel as φ. In the second case, let q̂ be the corresponding n-th
root of q, then the identity map on K

∗
induces an isogeny K

∗
/qZ → K

∗
/q̂Z with

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.10: Traces of Frobenius 111

the same kernel as φ. It follows that φ must be one of these isogenies combined
with a degree 1 isogeny. (Corollary 4.11 in [Sil09, III.4])

Note that by Lemma 5.1 in [Sil94, V.5] each isomorphism class over Qp con-

tains at most one Tate curve Eq̃ with q̃ ∈ Qp
∗

of positive valuation. Therefore
the aforementioned degree 1 isogeny is in fact an automorphism. Note however,
that since q has positive valuation the j-invariant of Eq has negative valua-
tion and hence by Theorem 10.1 in [Sil09, III.10] the automorphism group is
only [±1]. This shows that the isogeny φ must be of the form mentioned.

As φ is of the form mentioned we can compute λφ using the invariant differ-
entials on K∗/qZ and K∗/(q′)Z corresponding to those used in Proposition 2.1.3.
These are both du

u for u a parameter on K∗. Using the map on K∗ that induces φ
on K∗/qZ we see that

φ∗
(
du

u

)
=
dum

um
=
mum−1du

um
= m

du

u
,

so λφ = m.

Corollary 2.10.6. Let φ : Eq → Eq′ be an isogeny as in Proposition 2.10.5
with corresponding m,n ∈ Z. Suppose q′ = σq for some σ ∈ GQp , then m = n.
In particular we have q′ = ζq for ζ some n-th root of unity (not necessarily
primitive) and deg φ is a square. Furthermore there is an isogeny χ : Eq → Eqn

of degree |n| such that [n]χ = σχφ.

Proof. Since the valuations of σq and q are the same, the relation q|m| = (q′)|n|

implies that |m| = |n|. Since mn = deg φ > 0 the signs of m and n must agree,
hence m = n. Now note that for any finite Galois extension L/K we have the
commutative diagram

L∗ L∗ L∗ L∗

L∗/qZ L∗/qnZ L∗/(q′)Z L∗/(q)nZ

Eq(L) Eq|n|(L) Eq′(L) Eq|n|(L)

[n] [1] [n]

∼ ∼ ∼ ∼

χ

[n]

σχ

φ

indicating that we indeed have an isogeny χ such that [n]χ = σχφ.

Joey Matthias van Langen

112 Chapter 2: Q-curve computations

We can now prove a result similar to that of Theorem 2.10.1 for the multi-
plicative reduction case.

Theorem 2.10.7. Let E be a Q-curve with decomposition field K and let β be
a splitting map for cE. Let σ ∈ GQ be a Frobenius element of a prime number p.
If E has multiplicative reduction at p, then for any prime λ - p the matrix ρβ,λ(σ)
has characteristic equation

x2 − β(σ)−1aσ(E)(1 + p)x+ ε(σ)−1p,

where ε is the splitting character corresponding to β and

aσ(E) = λσ

σ√
−c4
c6

(√
−c4
c6

)−1

.

Here c4 and c6 are the corresponding invariants of E and λσ ∈ K
∗

is the con-
stant associated to φσ as in Proposition 2.1.3. In particular we have that

Tr ρβ,λ(σ) = β(σ)−1aσ(E)(1 + p)

det ρβ,λ(σ) = ε(σ)−1p.

Proof. Note that as in Theorem 2.10.1 the determinant part of this proposition
directly follows from Proposition 2.8.5. It thus remains to prove the result
about Tr ρβ,λ(σ).

Note that we have

Tr ρβ,λ(σ) = β(σ)−1 Tr(φσ ◦ σ),

where the last trace is considered on Tl(E). To compute this trace we use the
commutative diagram

E σE E

Eq Eσq Eq

Eq|n| Eq|n| Eq|n| ,

σ

ψ

φσ

σψ ψ

σ

χ σχ χ

σ [n]

where Eq is the Tate curve isomorphic to E over Qp, ψ is the corresponding
ismorphism and n and χ are the corresponding elements from Corollary 2.10.6.

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.10: Traces of Frobenius 113

We can easily determine the eigenvalues of σ on Tl(Eq|n|) as the isomor-

phisms Eq|n|(L)→ L∗/qnZ for finite Galois extensions L/Qp(q) respect the Ga-

lois action. Since
σ
(qn) = (σq)

n
= qn we find that on the basis {q|n|/m, ζm}

of m-torsion in K
∗
/qnZ the element σ acts as[

1 ∗
0 p

]
,

when p - m, hence the trace of σ on Tl(Eq|n|) is 1 + p. Note that [n] ◦ σ there-
fore has trace n(1 + p). Since deg(χψ) = |n| > 0 the map χψ is an isomor-
phism Vl(E)→ Vl(Eq|n|), meaning that the trace of φσ ◦ σ on Tl(E) must also
be n(1 + p).

It thus remains to prove that aσ(E) = n. We use the constants associated
to isogenies in Proposition 2.1.3 and the fact that [n] σχ σψ = χψφσ to see that

n σλχ
σλψ = λχλψλσ.

By Proposition 2.10.5 we find that λχ ∈ Q∗, so in fact we get

n = λσ
λψ
σλψ

.

The isomorphism ψ must be of the form (x, y) 7→ (u2x+ r, u3y + u2sx+ t)
for some u, r, s, t ∈ Qp. From calculations as found in [Sil09, section III.1] we
know that

u4c4(E) = c4(Eq)

u6c6(E) = c6(Eq),

hence

u2 =
c4(E)c6(Eq)

c4(Eq)c6(E)
,

as the c4 and c6-invariants are non-zero for curves with multiplicative reduc-

tion. The proof of Theorem 5.3 in [Sil94, V.5] tells us that − c4(Eq)
c6(Eq)

= t2 for

some t ∈ Q∗p, hence

(ut)
2

= −c4(E)

c6(E)
.

Joey Matthias van Langen

114 Chapter 2: Q-curve computations

From this we conclude that

n = λσu
−1 σu

= λσ

σ
(ut)

ut

= λσ

σ√
− c4(E)
c6(E)√

− c4(E)
c6(E)

= aσ(E).

Example 2.10.8. Qcurve5.rst We return to the elliptic curve E from Ex-

ample 2.9.10 that had the totally real subfield K of Q(ζ40) as a decomposition
field. Using SageMath [Sag20] we can easily determine that E has multiplicative
reduction at 3 so we can apply Theorem 2.10.7 to a Frobenius element σ ∈ GQ
of 3.

First of all we compute γ = − c4c6 using SageMath [Sag20], which happens to
not be a square in K. Therefore we need to do the computation of aσ(E) in
the Galois closure L of K(

√
γ). Using SageMath [Sag20] we compute that 3

does not ramify in L meaning we can use the Artin map to determine the
restriction σ3 ∈ GLQ of σ to L. By checking that σ3 is the same for all primes of L
above 3 we see that the choice of σ in fact does not matter. Therefore Tr ρβ,λ(σ)
only depends on σ3 ∈ GLQ when λ - 3. When we do the actual computation

described in Theorem 2.10.7 we find that aσ(E) = 2 and Tr ρβ,λ(σ) = ζ3
8 where

we computed the splitting map β for cE using the framework [vL21a] as in
Example 2.9.10.

Remark 2.10.9. Theorem 2.10.1 and Theorem 2.10.7 consider the λ-adic Galois
representations ρβ,λ of a splitting map β for cE . Since the mod λ Galois rep-
resentations ρβ,λ are the reduction of these representation modulo λ, possibly
with an additional semisimplification, the trace and determinant of ρβ,λ are
just the reduction of the trace and determinant of ρβ,λ modulo λ. This implies
that Theorem 2.10.1 and Theorem 2.10.7 can be used in all the cases where
Theorem 2.8.3 shows these representations are unramified to compute traces of
Frobenius, which in such a case only depend on the prime p not divisible by λ.

All of this theory has been implemented in the framework [vL21a] as the
method trace_of_frobenius of the class Qcurve. For a given prime number p
that does not ramify in the decomposition_field it computes the trace of

Automating the modular method for Q-curves to solve Diophantine equations

https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Qcurve5.rst#example-2108

Section 2.10: Traces of Frobenius 115

Frobenius as given in Theorem 2.10.1 if the Qcurve has good reduction at the
prime p or as given in Theorem 2.10.7 if the Qcurve has multiplicative reduction
at the prime p. Note that in both cases the result will be an element of Lβ which
when mapped to the appropriate local or finite field is the trace of a Frobenius
element at p. One can specify for which splitting map β the trace of Frobenius is
computed by passing an index to the argument splitting_map. Theses indices
are the same as those used in the method splitting_map.

As with the similarly named method of the class FreyCurve this method
does not check the conditions to apply Theorems 2.10.1 and 2.10.7, but rather
assumes they are true. In particular this means one does not have to specify
a prime λ and the result is an algebraic integer that is the correct trace when
mapped to any appropriate local or finite field.

For a FreyQcurve E the method trace_of_frobenius does not actually
compute the value of aσ(E) in Theorem 2.10.7 as computing − c4c6 explicitly
would depend on the specific values of the parameters. Instead it will create two
cases marked by conditions for both aσ(E) =

√
deg φσ and aσ(E) = −

√
deg φσ.

Note that these cases have no capabilities of actually computing for which values
of the parameters they hold and will always give full p-adic trees.

Example 2.10.10. Qcurve1Frey.rst We return to the Frey Q-curve E from

Example 2.1.4, and use the twist Eγ introduced in Example 2.7.9 to compute
some traces of Frobenius. Using the framework [vL21a] it is straightforward to
compute the traces of Frobenius at 7 for different splitting maps.

sage: Egamma.trace_of_frobenius(7)

0 if (’a’, ’b’) is 1 of 12 possibilities mod 7

-3*zeta4a0 if (’a’, ’b’) is 1 of 6 possibilities mod 7

zeta4a0 if (’a’, ’b’) is 1 of 6 possibilities mod 7

-2*zeta4a0 if (’a’, ’b’) is 1 of 6 possibilities mod 7

2*zeta4a0 if (’a’, ’b’) is 1 of 6 possibilities mod 7

-zeta4a0 if (’a’, ’b’) is 1 of 6 possibilities mod 7

3*zeta4a0 if (’a’, ’b’) is 1 of 6 possibilities mod 7

sage: Egamma.trace_of_frobenius(7, splitting_map=1)

0 if (’a’, ’b’) is 1 of 12 possibilities mod 7

3*zeta4a0 if (’a’, ’b’) is 1 of 6 possibilities mod 7

-zeta4a0 if (’a’, ’b’) is 1 of 6 possibilities mod 7

2*zeta4a0 if (’a’, ’b’) is 1 of 6 possibilities mod 7

-2*zeta4a0 if (’a’, ’b’) is 1 of 6 possibilities mod 7

zeta4a0 if (’a’, ’b’) is 1 of 6 possibilities mod 7

-3*zeta4a0 if (’a’, ’b’) is 1 of 6 possibilities mod 7

Joey Matthias van Langen

https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Qcurve1Frey.rst#example-21010

116 Chapter 2: Q-curve computations

When we compute the traces at 11, where Eγ can have multiplicative reduction,
we get two cases that are indistinguishable.

sage: Egamma.trace_of_frobenius(11)

6 if (’a’, ’b’) is 1 of 5 possibilities mod 11

-6 if (’a’, ’b’) is 1 of 5 possibilities mod 11

0 if (’a’, ’b’) is 1 of 30 possibilities mod 11

-4 if (’a’, ’b’) is 1 of 20 possibilities mod 11

-2 if (’a’, ’b’) is 1 of 10 possibilities mod 11

2 if (’a’, ’b’) is 1 of 10 possibilities mod 11

4 if (’a’, ’b’) is 1 of 20 possibilities mod 11

12 if (’a’, ’b’) is 1 of 10 possibilities mod 11 and \

a11E == +1 or (’a’, ’b’) is 1 of 10 possibilities mod 11 \

and a11E == +1

-12 if (’a’, ’b’) is 1 of 10 possibilities mod 11 and \

a11E == -1 or (’a’, ’b’) is 1 of 10 possibilities mod 11 \

and a11E == -1

Section 2.11

Some irreducibility results

We will finish this chapter by listing some results that show irreducibility of
the representations ρβ,λ when the Q-curve E has degree field Q(

√
a) for some

square-free a ∈ Z \ {0, 1}. Explicitly we will devote this section to proving the
following result.

Theorem 2.11.1. Let E be a Q-curve with dual basis {a} and {2} for the degree
map with a square-free, and let l > 2 be a prime number. For any splitting map β
for cE and prime λ | l of Lβ if any of the following hold

1. ρβ,λ is reducible,

2. ρβ,λ is absolutely reducible,

3. PρE,l is reducible, or

4. PρE,l is absolutely reducible,

then we have that either

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.11: Some irreducibility results 117

� l = 3 and

j(E) = 26y−2 (4x− 7 y)
−6

·
((

512x8 − 6 016x7y + 78 176x6y2 + 987 032x5y3

+ 30 371 282x4y4 + 97 063 160x3y5

+ 226 082 780x2y6 + 227 965 064xy7

+ 291 927 773 y8
)

+ 2
√
a (x− 22 y) (x+ 5 y)

2

·
(
256x4 − 64x3y + 65 616x2y2

+ 80 372xy3 + 187 783 y4
))
,

for some x, y ∈ Q with x2 + 2 y2 = a;

� l = 5 and

j(E) = 26y−2 (4x− 3 y)
−10

·
((

131 072x12 − 1 015 808x11y + 15 802 368x10y2

+ 303 943 680x9y3 + 8 502 563 840x8y4

+ 41 661 192 832x7y5 + 122 507 172 512x6y6

+ 219 682 233 088x5y7 + 344 561 617 040x4y8

+ 329 235 309 720x3y9 + 342 028 231 098x2y10

+ 150 869 431 408xy11 + 111 226 255 277 y12
)

+ 2
√
a (2x+ 11 y)

2 (
4x3 − 84x2y − 37xy2 − 122 y3

)
·
(
4 096x6 + 7 168x5y + 1 058 560x4y2 + 2 349 440x3y3

+ 4 841 440x2y4 + 2 594 668xy5 + 3 767 779 y6
))
,

for some x, y ∈ Q with x2 + y2 = a;

� l = 7 and j(E) = −3375, −10 529±16 471
√
−7

8 , 56 437 681±1 875 341
√
−7

32 768 ;

Joey Matthias van Langen

118 Chapter 2: Q-curve computations

� l = 13 and j(E) = 3 448 440 000± 956 448 000
√

13; or

� l = 11 or l > 13, and E has potential good reduction at all primes of char-
acteristic > 3.

We start by showing that the conditions (1) through (4) are in fact equiva-
lent. The fact that (4) is equivalent to (2) easily follows from the fact that

PρE,l : GQ → PGL2(Fl)

is the projectivization of

ρβ,λ : GQ → GL2(Fl).

For the remaining equivalences we note that Theorem 3.2 of [Rib04] tells us
that ρβ,λ and hence also PρE,l are odd. Since l is odd this implies that (1)
and (2) are equivalent as well as (3) and (4). Since all the conditions are
equivalent we will from now on assume all of them.

For the next part we will only assume that the dual basis for the degree map
is {a} and {d} with a and d square-free and l - d. First of all note that Propo-
sition 2.8.2 and Corollary 2.7.2 allow us to assume without loss of generality
that E is defined over K := Q(

√
a) itself and that

φσ =

{
Id if σ ∈ GK
φ otherwise,

where φ : τE → E is an isogeny of degree d with τ a generator of GKQ . This
implies that ρβ,λ|GK is isomorphic to the usual representation

ρE,l : GK → Aut(E[l]) ∼= GL2(Fl),

hence the latter must be reducible by our assumptions. It follows that E should
have an l-isogeny of which the kernel is defined over K, i.e it must correspond
to a K-point P on X0(dl). Since E is also d-isogenous to its Galois conjugate
we have

τP = wdP, (2.14)

where wd arises from the Fricke involution on X0(d). Therefore E in fact cor-
responds to a Q-point on the variety Cd,l := X0(dl)/wd.

Our goal is now to find the Q-points on Cd,l that can arise from quadratic
points on X0(dl). We can only do this explicitly for finitely many l and d, so

Automating the modular method for Q-curves to solve Diophantine equations

Section 2.11: Some irreducibility results 119

we need the asymptotic result from [Ell04]. In the proof of Proposition 3.2
in [Ell04] a twisted curve X0(dl)K – of which the Q-points precisely correspond
to K-points of X0(dl) satisfying Equation (2.14) – is used to prove the result
for l = 11 and l > 13 for any d with l - d.

We will stick to the case d = 2 and do some explicit computations to derive
the result for the other prime numbers l. We will start with l = 13 in which
case X0(2l) is a hyperelliptic curve of genus 2. We use Magma [BCP97] to
compute the quotient C2,l, which turns out to be an elliptic curve with only
three rational points. Note that the map X0(2l)→ C2,l has degree 2 and we
can easily demonstrate six points over Q(

√
13) lying above these three points.

These must therefore be all points of X0(2l) lying above these three points. By
computing the j-invariants of these points using Magma [BCP97] and discarding
those with j-invariant infinity, we find the result as in Theorem 2.11.1 for the
case l = 13.

Next we look at l = 7 in which case X0(2l) is an elliptic curve. Using
Magma [BCP97] we compute the quotient C2,l which is also an elliptic curve
with only six Q-rational points. A quick check shows that the 12 points of X0(2l)
defined over Q(

√
−7) are precisely the points lying above these six points with

regards to the degree two map X0(2l)→ C2,l. Computing the j-invariants of
these points and disregarding infinity gives us the result as in Theorem 2.11.1
for l = 7.

Now look at l = 5 in which case X0(2l) is a rational curve, so C2,l is as well.
By fixing the orbits of w2 : X0(2l)→ X0(2l) that will map to [0 : 1] and [1 : 0] we
can describe the quotient map φ : X0(2l)→ C2,l. Choosing the orbits of [0 : 1]
and [1 : 0] as these orbits respectively, we can compute with Magma [BCP97]
that

φ : P1 → P1, [x : y]→ [x(x+ 5 y) : y(x+ 4 y)].

It now remains to find the K-points of P1 that map to Q-points under φ. It
is obvious that the points [1 : 0], [−4, 1] ∈ P1(K) map to [1 : 0] under φ and
as deg φ = 2 they are the only points that do so. All the other points of P1(K)
are of the form [x : 1] for some x ∈ K \ {−4} with

φ([x : 1]) = [x(x+ 5) : x+ 4] = [x(x+ 5)(x+ 4) : NK
Q (x+ 4)]

with x the Galois conjugate of x in K and NK
Q : K → Q the norm of K.

Using the above we see that all points of P1(K) mapping to P1(Q) are of the
form [1 : 0] or [x : 1] with x ∈ K and x(x+ 5)(x+ 4) ∈ Q. Write x = x1 + x2

√
a

Joey Matthias van Langen

120 Chapter 2: Q-curve computations

with x1, x2 ∈ Q, then we find that the second condition is equivalent to

(x2
1 + 8x1 + 20)x2 = ax3

2, i.e.

x2 = 0 or a =

(
x1 + 4

x2

)2

+

(
2

x2

)2

.

This implies that all the points of P1(K) mapping to P1(Q) under φ are either Q-
points or of the form [2(x+

√
a)− 4y : y] where x, y ∈ Q and x2 + y2 = a.

Note that E has degree field Kd = Q(
√
a) and therefore can not be isomor-

phic to a curve over a smaller field, hence it must correspond to a point of the
last form. Using Magma [BCP97] we can compute the j-invariant of such a
point which matches the j-invariant stated in Theorem 2.11.1 for the case l = 5.

The remaining case l = 3 is similar to l = 5 as also X0(6) is a rational curve.
In this case we find through computations in Magma [BCP97] that

φ : P1 → P1, [x : y]→ [x(x+ 9 y) : y(x+ 8 y)].

So besides [1 : 0] and [−8 : 1] that map to [1 : 0] any K-rational point [x : 1]
maps to

φ([x : 1]) = [x(x+ 9) : x+ 8] = [x(x+ 9)(x+ 8) : NK
Q (x+ 8)],

where again x is the Galois conjugate of x and NK
Q : K → Q is the norm of K.

Writing x = x1 + x2
√
a with x1, x2 ∈ Q we see that [x : 1] ∈ P1(K) maps to

a Q-rational point if and only if

(x2
1 + 16x1 + 72)x2 = ax3

2, i.e.

x2 = 0 or a =

(
x1 + 8

x2

)2

+ 2

(
2

x2

)2

.

Therefore the K-points that map to Q-points under φ are either in P1(Q) or of
the form [2(x+

√
a)− 8y : y] for some x, y ∈ Q with x2 + 2 y2 = a. The curve E

must correspond to a point of the latter form, hence we can compute the j-
invariant of such a point in Magma [BCP97] to find the result as stated in
Theorem 2.11.1 for l = 3.

Automating the modular method for Q-curves to solve Diophantine equations

Chapter 3

Automating the modular
method

In this chapter we will discuss how to automate a basic version of the modular
method and how this has been implemented in the framework [vL21a]. This
relies in part on the theory discussed in Chapter 1 and Chapter 2.

Section 3.1 provides a step-by-step description of the modular method for
Frey Q-curves, with some remarks about how this can be extended to more
general Frey curves. It then discusses how the material of Chapter 1 and
Chapter 2 come together to automate the first part of the modular method for
Frey Q-curves, with the latter part of the automation being discussed later in
this chapter. It also outlines how this automation has been implemented in the
framework [vL21a].

The final sections discuss the still remaining parts of the automation. Sec-
tion 3.2 describes how the framework [vL21a] deals with modular forms that
are needed for the version of the modular method discussed here. Section 3.3
discusses available functions in the framework [vL21a] to automate the new-
form elimination step of the modular method. This includes elimination by
comparison of traces of Frobenius in Section 3.3.1 for multiple exponents l si-
multaneously, the Kraus method in Section 3.3.2 for a fixed exponent l, and
some additional convenience functions in Section 3.3.3.

To demonstrate the power of the framework [vL21a] and as a sanity check
thereof, the author has worked out various examples based on the literature.
Table 3.1 gives an overview of the various examples that are distributed with
the framework [vL21a]. All examples are worked out as a reStructuredText file
containing explanatory text, as well as command line input and output that
can be verified with SageMath’s [Sag20] automated doctest system. Examples
of new Diophantine problems for which the framework [vL21a] has been used
can be found in the next two chapters.

Joey Matthias van Langen

122 Chapter 3: Automating the modular method

Article Equation Full example

[DM97]

al + bl = 2cl

al + bl = c2

al + bl = c3

Darmon-Merel-1997.rst

[Kra98] a3 + b3 = cl Kraus-1998.rst

[Ell04] a4 + b2 = cl Ellenberg-2002.rst

[BMS08] c1a
l − 2rc2b

l = 1 Bugeaud-Mignotte-Siksek-2008.rst

[DU09] a4 + db2 = cl Dieulefait-Urroz-2009.rst

[BC12] a2 + b6 = cl Bennett-Chen-2012.rst

[BCDY14] a3 + b3l = c2 Bennett-Chen-Dahmen-Yazdani-2014.rst

[DF14]
a5 + b5 = 2cl

a5 + b5 = 3cl
Dieulefait-Freitas-2014.rst

[vL21b] (a− b)4 + a4 + (a+ b)4 = cl Langen-2021.rst

Table 3.1: Worked out examples for the framework [vL21a] from the literature

Section 3.1

The modular method

In this section we will describe the modular method for Frey Q-curves. In par-
ticular we describe how the framework [vL21a] can be used to automatically
apply this method to a Diophantine equation, but we will also discuss automa-
tion in a more general context. We start with a description of this version of
the modular method.

Problem Given a family of Diophantine equations parameterised by some
prime exponent l, prove the non-existence of putative solutions.

Step 0 Find a Frey Q-curve associated to the family of Diophantine equations.
A Frey curve is an elliptic curve E over some number field K of which the
Weierstrass coefficients depend on a putative solution of the Diophantine
equation for some l. Furthermore a Frey curve E must have a finite set S
of primes of K, independent of the putative solution, such that

Automating the modular method for Q-curves to solve Diophantine equations

https://github.com/jmvlangen/modular-method-package/blob/master/examples/literature/Darmon-Merel-1997.rst
https://github.com/jmvlangen/modular-method-package/blob/master/examples/literature/Kraus-1998.rst
https://github.com/jmvlangen/modular-method-package/blob/master/examples/literature/Ellenberg-2002.rst
https://github.com/jmvlangen/modular-method-package/blob/master/examples/literature/Bugeaud-Mignotte-Siksek-2008.rst
https://github.com/jmvlangen/modular-method-package/blob/master/examples/literature/Dieulefait-Urroz-2009.rst
https://github.com/jmvlangen/modular-method-package/blob/master/examples/literature/Bennett-Chen-2012.rst
https://github.com/jmvlangen/modular-method-package/blob/master/examples/literature/Bennett-Chen-Dahmen-Yazdani-2014.rst
https://github.com/jmvlangen/modular-method-package/blob/master/examples/literature/Dieulefait-Freitas-2014.rst
https://github.com/jmvlangen/modular-method-package/blob/master/examples/literature/Langen-2021.rst

Section 3.1: The modular method 123

� at every prime p 6∈ S the given Weierstrass equation for E is minimal
and E has good or multiplicative reduction at p, and

� the discriminant is an l-th power outside S, i.e. l | ordp ∆ for every
prime p of K not in S.

We will also assume that E has no complex multiplication. Theory for
curves with complex multiplication can be found in [Shi71], but is irrele-
vant to the problems considered in this dissertation.

Step 1 Show there is a newform g ∈ S2(Γ1(N)) associated with the curve E for
some N ∈ Z>0 using Theorem 2.1.9 and Theorem 2.1.10. From the theory
in Chapter 2 we know that we can obtain this newform from a splitting
map β : GQ → Q∗ for cE and that we have ρβ,λ ∼= ρg,λ : GQ → GL2(Lβ,λ)
for all primes λ of the splitting image field Lβ .

Step 2 Show that the mod λ Galois representation ρg,λ : GQ → GL2(Fλ) is
irreducible for a prime λ | l, e.g. using the result from Section 2.11. Fur-
thermore show that ρg,λ is finite at all primes p not divisible by primes
in S, e.g. using Theorem 2.8.3.

Step 3 Use level lowering results, e.g. Theorem 4.1 in [Dia97] and Theorem 2.1
in [Rib94], and the results from Step 2 to show that there exists a new-
form f ∈ S2(Γ1(Ñ)) with

Ñ =
∏
p|N

∃p∈S:p|p

pordpN

and
ρβ,λ ∼= ρg,λ ∼= ρf,λ′ : GQ → GL2(Fl),

for some primes λ, λ′ | l in the appropriate fields. Note that f and g will
have the same character.

Step 4 For the newform f compute its level Ñ , e.g. using results from Sec-
tion 2.9, and its character ε, e.g. using Corollary 2.8.6. Next compute all
the newforms in the space S2(Ñ , ε). Note that this is all a finite compu-
tation as S is finite.

Step 5 For each newform f̃ ∈ S2(Ñ , ε) found in Step 4, compare its mod λ̃ | l
Galois representation ρf̃ ,λ̃ to the mod λ representation ρβ,λ. In particular
one compares the traces of these Galois representations at a Frobenius

Joey Matthias van Langen

124 Chapter 3: Automating the modular method

element σ. If the difference Tr ρβ,λ(σ)− Tr ρf̃ ,λ̃(σ) is non-zero then the
Galois representations can not be isomorphic. In this case we will say σ
eliminates the prime l for the newform f̃ . If we can eliminate the prime l
for all newforms f̃ , then the newform f from Step 3 can not exist for this l.
This implies that no putative solution as in Step 0 can exist for such l.

Remark 3.1.1. Let p 6= l be a prime number not divisible by the primes in S. By
Theorem 2.10.1 and Theorem 2.10.7 we know that the trace of ρβ,λ at a Frobe-
nius element can be given as an algebraic integer independent of the prime λ. If
we furthermore assume that p does not ramify in a field over which β is defined
and E is completely defined, we may denote these algebraic integers by ap(β),
as by Theorem 2.8.3 the Galois representation is unramified. By Theorem 9.5.4
in [DS05] a similar result is true for the Galois representations ρf̃ ,λ̃. The al-

gebraic integer ap(f̃) that reduces to the trace of Frobenius at p modulo λ̃ is

the p-th coefficient of the Fourier expansion of f̃ . Instead of doing the compu-
tation in Step 5 for each prime l separately, one could deduce which l can not
be eliminated by σ by considering the primes dividing ap(f̃)− ap(β).

Note that the algebraic integer ap(β) might still depend on the putative solu-
tion. However one can always determine a finite set Ap(β) of the possible values
of ap(β), as ap(β) only depends on the putative solution modulo a finite power
of p. One can therefore find all the primes l that can definitely be eliminated
by σ as those not dividing the norm of

p
∏

a∈Ap(β)

(
a− ap

(
f̃
))

.

Of course this only eliminates primes l when ap(f̃) 6∈ Ap(β).

Remark 3.1.2. One can also use other properties of Galois representations to
eliminate newforms in Step 5. For example one might use the image of inertia,
the image of the entire Galois representation, or one of the representations being
reducible to show that ρβ,λ and ρf̃ ,λ̃ are not isomorphic. When a newform f̃
has complex multiplication, but E does not, such strategies might be needed to
eliminate f̃ . The theory for these elimination strategies goes beyond the scope
of this chapter. Some examples based on articles that prove such results will
eliminate CM newforms without further proof.

Remark 3.1.3. Actual solutions to the family of Diophantine equations could
form an obstruction to the modular method. For such solutions a newform f in
Step 4 does exist and Step 5 can therefore not eliminate all l. When some actual

Automating the modular method for Q-curves to solve Diophantine equations

Section 3.1: The modular method 125

solutions are known it is sometimes possible to ensure they do not cause ob-
structions for the modular method. For example it might be possible to choose a
Weierstrass equation for the Frey curve for which a known solution corresponds
to a singular curve. In other cases a known solution might correspond to an
elliptic curve with a special property, such as complex multiplication, which
a general putative solution does not have. In such a case additional elimina-
tion tactics, like those discussed in Remark 3.1.2, could potentially eliminate
the newform corresponding to the known solution. Furthermore the modular
method could be combined with other methods, but this goes beyond the scope
of this dissertation.

Remark 3.1.4. In case E is defined over Q one may replace modularity of Q-
curves in Step 1 with modularity of elliptic curves over Q. In this case one
would interchange ρβ,λ and ρβ,λ with ρE,l and ρE,l, and f and g would be

newforms in S2(Γ0(Ñ)) and S2(Γ0(N)) respectively. Furthermore N will just
be the conductor of E.

Similarly one could replace the Frey Q-curve with a general Frey curve E
over a number field K, if each of the following is true.

� Modularity of elliptic curves over K is known and we replace the newform
in Step 1 with an appropriate modular form associated to such elliptic
curves. For example in [FLHS15] and [DNS20] it is shown that for K a real
quadratic or totally real cubic field every elliptic curve E/K is modular
and the corresponding modular forms are Hilbert modular forms of parallel
weight 2. For K quadratic imaginary modularity is conjecturally known,
but not all elliptic curves are modular. In that case the corresponding
modular forms are Bianchi modular forms.

� Irreducibility results as in Step 2 are known for the representations corre-
sponding to these elliptic curves.

� Level lowering results as in Step 3 are known for the corresponding mod-
ular forms. This is for example the case for Hilbert modular forms as can
be found in [FS15].

� Computation of the newforms in Step 4 is possible for the corresponding
modular forms. Furthermore one should be able to compute with their
Galois representations to perform the elimination in Step 5. For Hilbert
and Bianchi modular forms there exists an implementation for this in
Magma [BCP97].

Joey Matthias van Langen

126 Chapter 3: Automating the modular method

Let us look at what parts of this procedure can be automated. For Step 0
there are some recipes to make Frey curves for certain families of Diophantine
equations, but in general this relies on user input. Our automation therefore
starts with the user input of one or several Frey curves. A user will input
these curves in the framework [vL21a] as a FreyCurve or FreyQcurve. Note
Remark 3.1.4 for the FreyCurve case. See Section 1.6.6 and Section 2.1 for
more information about constructing these objects.

Steps 1 through 3 are entirely theoretical and can therefore not really be
automated. Most of the necessary theory for these steps has already been dis-
cussed in Chapter 2. It should be noted that irreducibility as discussed in 2.11
does not cover all possible Q-curves. Furthermore using Theorem 2.8.3 in Step 2
only works when primes that ramify in a field over which β is defined and E
is completely defined are part of S. Level lowering has not been discussed in
Chapter 2, but can be found in [Dia97]. For other Frey curves as in Remark 3.1.4
these results need to be shown separately. The framework [vL21a] assumes these
steps are provided by the user and our automation starts at Step 4.

For Step 4 the level Ñ of the newform f can be computed using the theory
of Section 2.9. The theory in that section requires E to have a decomposi-
tion field, so we might have to replace E by an isogenous curve using Corol-
lary 2.7.2, Corollary 2.7.4, and Corollary 2.7.8. Note that in practice E is
often already defined over the degree field Kd and this isogenous curve can
be obtained as a twist Eγ which is easily computed with the theory in Chap-
ter 2. In the framework [vL21a] one can obtain this twist by calling the method
decomposable_twist. The corresponding newform levels can then be computed
with the method newform_levels, which will require the set S as the argument
bad_primes.

Note that the computation of the newform levels relies on the computa-
tion of the conductor of the curve E. To automate this the theory of Chap-
ter 1 can be used. The framework [vL21a] does this implicitly in the method
newform_levels by computing the conductor over the decomposition_field.
For Frey curves E as in Remark 3.1.4 the level required in Step 4 is the con-
ductor of E, so the theory in Chapter 1 can also be used to automate the level
computation for those curves.

Note that the character ε in Step 4 follows from Corollary 2.8.6. It is the
inverse of the splitting character for which Section 2.4 provides a way to compute
it. In the framework [vL21a] the character ε can be obtained by taking the
inverse of the character returned by splitting_character. Note that for Frey
curves as in Remark 3.1.4 the character ε is always trivial and thus requires no
computation.

Automating the modular method for Q-curves to solve Diophantine equations

Section 3.2: Wrapped newforms 127

What remains to automate in Step 4 is the computation of the newforms
in S2(Ñ , ε). For this there already exist implementations in Magma [BCP97] and
SageMath [Sag20], which the framework [vL21a] uses. As noted in Remark 3.1.4
such implementations also exist in Magma [BCP97] for Hilbert modular forms
and Bianchi modular forms. The framework [vL21a] uses these to compute
newform spaces associated to Frey curves over totally real fields and imaginary
quadratic fields respectively. Section 3.2 discusses how the framework [vL21a]
uses these various implementations.

The framework [vL21a] can do all the computations necessary for Step 4 at
once using the method newform_candidates of the FreyCurve and FreyQcurve

classes. This method returns the newforms computed at the end of Step 4
that can be used for Step 5. The set S can be provided to this method us-
ing the argument bad_primes. By default it is taken to be those primes in
primes_of_possible_additive_reduction, and also the primes that ramify
in the decomposition_field for a FreyQcurve.

What remains to automate is Step 5. The implementations of a newform f
in Magma [BCP97] and SageMath [Sag20] provide all the necessary data to com-
pute the algebraic integers ap(f) discussed in Remark 3.1.1. In Section 3.2 we
describe wrapper classes in the framework [vL21a] that compute these with the
method trace_of_frobenius. On the elliptic curve side the framework [vL21a]
provides a trace_of_frobenius method for FreyQcurve objects based on the
theory in Section 2.10. This method computes the possible algebraic inte-
gers ap(β) discussed in Remark 3.1.1, so they can be used to construct the
set Ap(β). This allows for elimination as described in Remark 3.1.1. The frame-
work [vL21a] provides methods to do this elimination automatically, which are
outlined in Section 3.3.

Section 3.2

Wrapped newforms

As discussed in the previous section, the modular method – as discussed here
– requires the computation of newforms with which we can do further compu-
tations as well. To this end SageMath [Sag20] provides a way to compute with
classical modular forms, and Magma [BCP97] provides ways to compute with
classical modular forms, Hilbert modular forms, and Bianchi modular forms.
The module modular_method.modular_forms.newform_wrapper in the frame-
work [vL21a] provides a uniform way to work with these implementations.

The main thing this module provides is a WrappedNewform class for each

Joey Matthias van Langen

128 Chapter 3: Automating the modular method

possible kind of newform and their respective implementation. These classes
provide similarly named methods to retrieve data from these newforms. For ex-
ample you can use the method level or character to get the level or character
of a newform respectively. There is also the method base_field which gives
the field on which the modular forms are based, e.g. Q for a classical mod-
ular form, the corresponding imaginary quadratic field for a Bianchi modular
form, or the corresponding totally real field for a Hilbert modular form. The
base_field K is also the base field of Galois representations of these newforms,
i.e. these Galois representations have domain GK . Note that currently these
WrappedNewform classes only support newforms of (parallel) weight 2 as these
are the ones that show up for the Frey curves considered in this dissertation.

Most important for the modular method is that each WrappedNewform class
has the method trace_of_frobenius. For a newform f and a finite prime p of
the base_field that does not divide the level, this method computes an al-
gebraic integer ap(f) in the coefficient_field. For any Frobenius element σ
of p we have that Tr ρf,λ(σ) = ap(f), if λ is a prime of the coefficient_field

such that λ and p have distinct characteristic and the λ-adic Galois representa-
tion ρf,λ is unramified at p. The same is true if we replace ρf,λ by the mod λ
Galois representation ρf,λ, although we then have to take ap(f) (mod λ).

For classical modular forms the corresponding wrapper can be used to ob-
tain information about the q-expansion of a newform. For example there is the
method coefficient to get individual coefficients and the method q_expansion

to get the q-expansion up to a certain point. Note that each coefficient is an
element of the coefficient_field. Furthermore wrappers around classical
modular forms provide the method determinant_of_frobenius that can be
used to compute the the determinant of a Galois representation at a Frobe-
nius element, similar to trace_of_frobenius. For classical modular forms
one can also use the optional argument power for trace_of_frobenius and
determinant_of_frobenius. When power > 1 these methods will compute
the trace or determinant of the specified power of a Frobenius element instead.
Using the argument power for other modular forms will result in an error as it
requires determinant_of_frobenius to be implemented.

The module also provides functions for saving and loading newforms to and
from files with the methods save_newforms and load_newforms. When saving
newforms one should specify which coefficients (or which traces of frobenius
in case of non-classical modular forms) should be stored using the argument
coefficients. A loaded newform will be a special WrappedNewform backed by
the data loaded from the file. It can therefore not do any computation that
requires data that was not saved in the first place.

Automating the modular method for Q-curves to solve Diophantine equations

Section 3.3: Elimination methods 129

Note that each of the methods discussed in this section will return Sage-
Math objects even when the actual implementation is part of Magma [BCP97].
This allows work done with these newforms to be independent from the im-
plementation used. The module provides a function get_newforms that can
be called to obtain newforms for a given level, character and base field for ev-
ery possible implementation. The actual algorithm to obtain the newforms can
be specified with the argument algorithm. One can choose between "sage",
"magma", or "file", indicating respectively a SageMath [Sag20] implementa-
tion, a Magma [BCP97] implementation, or loading from a file with the function
load_newforms. When algorithm="sage" the function only works for base
field Q and returns classical modular forms. When algorithm="magma" the
newforms returned are classical modular forms for a base field K = Q, Hilbert
modular forms for a totally real base field K, and Bianchi modular forms for
an imaginary quadratic base field K. Any other value for K will result in an
error when algorithm="magma". When algorithm="file" the function will
load newforms from the file specified by path and return any newforms among
them of the requested base field, level, and character.

The method newform_candidates of a FreyCurve or FreyQcurve uses the
function get_newforms to get the newforms of the corresponding level and char-
acter. For a FreyQcurve the base field is always Q, whereas for a FreyCurve

the base field is the same as the field over which the curve is defined. To choose
the algorithm to use, the newform_candidates method also has an argument
algorithm that is passed along to get_newforms. Note that the limitations
on the algorithm are therefore the same as for get_newforms. In particular
one can not obtain newforms for a FreyCurve defined over a number field K
of degree n > 2 that is not totally real, unless they are given by a file readable
with load_newforms.

Section 3.3

Elimination methods

In the module modular_method.modular_forms.elimination of the frame-
work [vL21a] there are various functions to perform the elimination process
described in Step 5 of Section 3.1. Each of these functions accepts a similar
input and output, designed so a user can chain eliminations one after the other.
The common input includes

1. a Frey curve or tuple of Frey curves which share the same parameters, and

Joey Matthias van Langen

130 Chapter 3: Automating the modular method

2. a list of newforms or – in case of multiple Frey curves – a list of tuples of
newforms. These tuples give the possible combinations of newforms where
the i-th newform in each tuple corresponds to a possible newform for the
i-th curve.

The common output is a list of tuples similar to input 2. Each tuple has an
additional last entry that is an integer divisible only by those prime numbers l
that have not been eliminated for that combination of newforms yet. Note
that if the integer at the end of this tuple would be ±1, then the tuple is
removed from the list altogether. This output can be used again as input 2 of
another elimination function, in which case the integer at the end of each tuple
is modified rather than adding an additional entry.

The list of newforms passed as an argument may be a ConditionalValue (as
discussed in Section 1.6.4) consisting of multiple similar such lists. In that case
the elimination will be performed on each case separately taking into account
the corresponding condition whenever this is relevant. Similarly the output may
also be a ConditionalValue of the same kind. Note that the number of cases
in the output may differ from the number of cases in the input.

Subsection 3.3.1

Elimination by trace

The elimination discussed in Step 5 of Section 3.1 is by comparing traces of
Frobenius elements. The framework [vL21a] implements this in the function
eliminate_by_trace. Besides the standard input this method requires a prime
number p. The Frobenius element at which the traces of the Galois representa-
tions are compared will be one of p or one of a prime above p.

The computation this function does resembles the one described in Re-
mark 3.1.1, but differs slightly to work with multiple Frey curves E1, . . . , Er at
once. First the function calls the function trace_of_frobenius for each Frey
curve to obtain ConditionalValue objects which provide the possible algebraic
integers api(Ei) that map to the trace of Frobenius in the appropriate field.
Here pi | p is a prime in the definition field of Ei, or pi = p if Ei is a FreyQcurve.
In the latter case we also have api(Ei) = ap(βi) with βi the splitting_map

of Ei. By inspecting the corresponding conditions – which depend on the com-
mon parameters of all the curves – the function eliminate_by_trace finds all
the tuples (ap1

(E1), . . . apr (Er)) that might occur. We denote here by Ap the set
of all these tuples. If desired a condition can be passed to eliminate_by_trace

with the argument condition to put further restrictions on the traces.

Automating the modular method for Q-curves to solve Diophantine equations

Section 3.3: Elimination methods 131

Next the function computes for each tuple of newforms (f1, . . . , fr) in in-
put 2 a tuple of corresponding traces (aq1

(f1), . . . , aqr (fr)) using the method
trace_of_frobenius of each WrappedNewform. Here each qi is a prime in the
base_field of fi such that pi and qi are divisible by a common prime in an
appropriate field extension. For each i ∈ {1, . . . , r} the function computes the
composite field Li of the fields in which api(Ei) and aqi(Ei) have values. The
function then computes

B := p lcm
(

gcd
(
NLi

Q (ai − aqi(fi)) : i ∈ {1, . . . , r}
)

: (a1, . . . , ar) ∈ A
)
,

where NLi
Q : Li → Q is the norm of Li/Q. This integer is then added to the

end of the tuple, as it is only divisible by those l that could not be eliminated
for (f1, . . . , fr). If the tuple already had an integer B′ as a last entry, it is
replaced by gcd(B,B′) instead. If the last entry is different from ±1 the tuple
is added to the output.

Note that the computation of Li and following computations in Li might
not be desired, as a large degree of Li could make this computationally expen-
sive. Therefore eliminate_by_trace has an optional argument use_minpoly

to choose for a simpler computation. When set to True the function will
compute the minimal polynomials maqi

(fi)(x) ∈ Q[x] for each tuple of new-

forms (f1, . . . , fn) and replace NLi
Q (ai − aqi(fi)) by N

L′i
Q
(
maqi (fi)

(ai)
)

in the
formula for B. Here L′i is the field in which the api

(Ei) are defined. Even

though the latter contains NLi
Q (ai − aqi(fi)) as a factor it loses some informa-

tion as it can not make a distinction between fi and its Galois conjugates.
If one wants to perform this elimination tactic multiple times in a row, one

can use the function eliminate_by_traces. This function accepts a list of
primes as input and performs the method eliminate_by_trace for each one of
them.

Both eliminate_by_trace and eliminate_by_traces have an optional ar-
gument B. This argument is used to limit what primes can be eliminated, in the
sense that no prime number l - B will be eliminated when the method is per-
formed. This can be used for elimination where a stricter condition applies to
the parameters whenever l divides B. This is used implicitly by the elimination
method kraus_method discussed later on.

Remark 3.3.1. If B is non-zero the output might contain tuples of which the
last entry is 0, even though elimination for l dividing B could occur. This is a
limitation of the framework [vL21a] as it does not have a way to represent a
finite number of l being eliminated whilst infinitely many remain. It is therefore

Joey Matthias van Langen

132 Chapter 3: Automating the modular method

recommended to only use elimination strategies with B non-zero on newform
lists in which the tuples have a non-zero additional last entry. Such a list could
be obtained from the output of another elimination function or by modifying
the tuples manually.

Example 3.3.2. Elimination1.rst To illustrate the methods discussed here
we use one of the examples from the article [BMS08] by Bugeaud, Mignotte,
and Siksek. We will focus on their example of the Thue equation

5ual − 2rbl = 1 (3.1)

with a, b, u, r, l ∈ Z, ab 6= 0, 0 < u < l, r > 0 and l ≥ 7 prime.
We first look at the case r = 3 and b odd. Here the article uses the Frey

curves

F 1
ψ : Y 2 = X3 + (2ψ + 1)X2 + (ψ2 + ψ)X,

G2
ψ : Y 2 = X3 +X2 − ψ

4
X,

where ψ = 2rbl. We enter these curves in the framework [vL21a] with ψ as a
parameter.

sage: from modular_method import *

sage: R.<psi> = QQ[]

sage: con1 = (CongruenceCondition(psi - 8, 16) &

sage: CongruenceCondition(psi + 1, 5))

sage: F1 = FreyCurve([0, 2*psi + 1, 0, psi^2 + psi, 0],

....: condition=con1)

sage: G2 = FreyCurve([0, 1, 0, -psi/4, 0],

....: condition=con1)

The levels of the newforms after level lowering can be found from the conduc-
tor of the corresponding curve, which can easily be computed with the frame-
work [vL21a] using the theory from Chapter 1. We use here that the set S of
bad primes consists of 2 and 5.

sage: S = [2, 5]

sage: F1.conductor(additive_primes=S)

40*Rad_P((16) * psi^2 * (psi + 1)^2)

sage: G2.conductor(additive_primes=S)

160*Rad_P((psi + 1) * psi^2)

Automating the modular method for Q-curves to solve Diophantine equations

https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Elimination1.rst

Section 3.3: Elimination methods 133

This agrees with the levels given in the article. We compute the newforms
directly as pairs (f, g) of a newform f corresponding to F 1

ψ and a newform g

corresponding to G2
ψ.

sage: nfs = [(f, g) for f in F1.newform_candidates(bad_primes=S)

....: for g in G2.newform_candidates(bad_primes=S)]; nfs

[(q + q^5 + O(q^6), q - 2*q^3 - q^5 + O(q^6)),

(q + q^5 + O(q^6), q + 2*q^3 - q^5 + O(q^6)),

(q + q^5 + O(q^6), q - a2*q^3 + q^5 + O(q^6))]

Next we do the elimination starting with a Frobenius element at 3.

sage: nfs = eliminate_by_trace((F1, G2), nfs, 3); nfs

[(q + q^5 + O(q^6), q - 2*q^3 - q^5 + O(q^6), 0),

(q + q^5 + O(q^6), q + 2*q^3 - q^5 + O(q^6), 12),

(q + q^5 + O(q^6), q - a2*q^3 + q^5 + O(q^6), 12)]

We see that a Frobenius element at 3 does not eliminate any primes for the
first pair of newforms. Therefore we also do elimination at 7 as suggested in
the article. Note that we use the output of the previous elimination as an input
here.

sage: nfs = eliminate_by_trace((F1, G2), nfs, 7); nfs

[(q + q^5 + O(q^6), q - 2*q^3 - q^5 + O(q^6), 56),

(q + q^5 + O(q^6), q + 2*q^3 - q^5 + O(q^6), 12),

(q + q^5 + O(q^6), q - a2*q^3 + q^5 + O(q^6), 4)]

We see for each pair of newforms that the final integer in the tuple is not divisible
by a prime l ≥ 7. Therefore the Thue equation (3.1) has no solutions when r = 3
and b is odd.

As a second example we also try to solve the Thue equation (3.1) when r = 2
and b ≡ 1 modulo 4, which is also discussed in the article [BMS08]. The Frey
curves here remain the same but the levels change. We will use the levels from
the article directly.

sage: nfs = [(f, g) for f in get_newforms(40)

....: for g in get_newforms(20)]; nfs

[(q + q^5 + O(q^6), q - 2*q^3 - q^5 + O(q^6))]

We do the elimination at all the primes mentioned in the article at once.

Joey Matthias van Langen

134 Chapter 3: Automating the modular method

sage: nfs = eliminate_by_traces((F1, G2), nfs,

....: primes=[3, 7, 11, 13]); nfs

[(q + q^5 + O(q^6), q - 2*q^3 - q^5 + O(q^6), 0)]

We see that no primes can be eliminated for the only pair of newforms. The
article notes that this is because of a non-trivial solution in this case.

Subsection 3.3.2

Kraus method

In his article [Kra98] Kraus introduced a refinement of comparing traces when
limiting to a single prime exponent l. His method suggests to do elimination with
Frobenius elements σ at a prime p such that l | #F∗p. This restriction makes it so

the l-th powers appearing in a Diophantine equation only have
#F∗p
l + 1 possible

values, so a Frey curve E for such a Diophantine equation will most likely have
a smaller set Ap as in Section 3.3.1. A smaller set Ap might make it possible to
eliminate l with Frobenius elements of p in cases where the elimination strategy
described in the previous section did not do this.

In the framework [vL21a] the function kraus_method provides the Kraus
method as an elimination strategy. Besides the standard input it requires the
prime number l and one or multiple polynomials in the parameters that are
known to be l-th powers. Each polynomial may be defined over a different
number field K.

For a prime number p the function kraus_method will compute the primes p
of each K such that l | #F∗p. The corresponding polynomial should have co-
efficients ci with ordp ci ≥ 0 but the code does not check for this. For each p
found in this way it will compute the values of the parameters modulo p for
which the corresponding polynomial is indeed an l-th power modulo p. The
function then calls eliminate_by_trace to do the actual elimination at p, with
a condition expressing all these restrictions and the argument B set to l. Note
that Remark 3.3.1 about B being non-zero therefore applies here.

The primes p on which kraus_method does the above procedure can be
provided with the argument primes. By default it will be all the prime numbers
smaller than 200. Note that any primes p for which no candidate p exists will
be automatically skipped.

Example 3.3.3. Elimination2.rst We will use the original example of
Kraus in [Kra98] to illustrate the function kraus_method. We start with the

Automating the modular method for Q-curves to solve Diophantine equations

https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Elimination2.rst

Section 3.3: Elimination methods 135

Diophantine equation

a3 + b3 = cl with a, b, c ∈ Z, gcd(a, b) = 1 and l ≥ 5 prime.

We make some additional assumptions on a putative solution (a, b, c) of this
Diophantine equation to end up in the case where the article actually performs
the Kraus method.

sage: from modular_method import *

sage: R.<a, b> = QQ[]

sage: cl = a^3 + b^3

sage: coprime = CoprimeCondition([a, b])

sage: condition = (coprime &

....: CongruenceCondition(a - 2, 4) &

....: CongruenceCondition(b - 1, 4) &

....: CongruenceCondition(cl, 3) &

....: PowerCondition(cl, 5))

We introduce the Frey curve introduced in the article and immediately compute
the corresponding newforms.

sage: Eab = FreyCurve([0, 0, 0, 3*a*b, b^3 - a^3],

....: condition=condition)

sage: nfs = Eab.newform_candidates(); nfs

Warning: Assuming that a and b are coprime.

Warning: The bad primes chosen by default only take into \

account primes of additive reduction.

[q + 2*q^5 + O(q^6)]

To perform the Kraus method we need polynomials in the parameters that
are known to be l-th powers. A natural candidate to choose is a3 + b3, but
we get more information by factoring first. The article factors over Q to get
a3 + b3 = (a+ b)(a2 − ab+ b2). We will factor further over K = Q(ζ3) to ob-
tain a3 + b3 = (a+ b)(a+ ζ3b)(a+ ζ2

3b). Since gcd(a, b) = 1 any ideal dividing
two of these factors a+ ζi3b and a+ ζj3b must divide (ζj−i3 − 1) | (1− ζ3). Since
the norm of 1− ζ3 is 3, the factors a+ ζi3b can only have the unique prime p3

of K above 3 in common. The assumption 3 | cl shows one must have a factor p3,
hence all of them do. Furthermore as a+ b is an integer we have p2

3 | a+ b,
so ordp3

(a+ ζ3b) = ordp3
(a+ ζ2

3b) = ordp3
(1− ζ3) = 1. This tells us that

3(a+ b) = (−1)i0cl0
a+ ζ3b = ζi16 (1− ζ3)cl1
a+ ζ2

3b = ζi26 (1− ζ3)cl2

with c0 ∈ Z, and c1, c2 ∈ Z[ζ3],

Joey Matthias van Langen

136 Chapter 3: Automating the modular method

where we use that K has class number 1. As l - 6 we can without loss of
generality take i0 = i1 = i2 = 0 and obtain three l-th powers.

sage: K.<zeta3> = CyclotomicField(3)

sage: poly0 = 3*(a + b)

sage: poly1 = (a + zeta3*b) / (1 - zeta3)

sage: poly2 = (a + zeta3^2*b) / (1 - zeta3)

We apply the Kraus method to l = 5. Note that the article considers only l ≥ 17,
but checking all proofs shows most arguments still apply for l = 5. Only the
original proof that the mod l Galois representation of Eab is irreducible does
not work, but an alternative proof can be found in [Dah08, Section 3.3.2]. The
following arguments can be done for any l, but we stick with l = 5 as the com-
putations are faster.

We first show that Remark 3.3.1 applies here.

sage: kraus_method(Eab, nfs, 5, (poly0, poly1, poly2),

....: primes=prime_range(7, 50), condition=coprime)

[(q + 2*q^5 + O(q^6), 0)]

To solve this problem we simply change nfs to have tuples of newforms with 5
as a last entry. This makes it so the framework [vL21a] treats each tuple as if 5
is the only prime which could not be eliminated yet, so it will disappear when 5
is also eliminated. With this change we perform the elimination again.

sage: nfs5 = [(nf, 5) for nf in nfs]

sage: kraus_method(Eab, nfs5, 5, (poly0, poly1, poly2),

....: primes=prime_range(7, 50), condition=coprime)

[]

We thus see that l = 5 can be eliminated with the Kraus method.

Subsection 3.3.3

Convenience methods

The functions described here do not eliminate primes by comparing Galois rep-
resentations, but rather provide convenient ways to modify lists of newforms.
We will show examples of how these are used in the example at the end of this
section.

The first of these functions is eliminate_cm_forms. All this method does
is remove every tuple of newforms from the input in which there is a newform

Automating the modular method for Q-curves to solve Diophantine equations

Section 3.3: Elimination methods 137

that has complex multiplication. This can be used when it is known that no
newforms with complex multiplication can correspond to certain Frey curves.

The second of these functions is eliminate_primes. When provided with
an argument N this method eliminates all prime numbers l | N for every tuple
of newforms in the input. This can be used when one wants to exclude these
primes from the output, or if some other theory allows the exclusion of these
primes. Note that Remark 3.3.1 also applies to non-zero N given to this function.

When working with multiple Frey curves, one might first want to do elim-
ination on each curve separately and then do a multi-Frey approach. To this
end the function combine_newforms exists in the framework [vL21a]. It can be
used to combine the lists of newforms for distinct Frey curves into a single input
for all these curves together.

Example 3.3.4. Elimination3.rst We perform the elimination for the ar-
ticle [BC12] by Bennett and Chen using the framework [vL21a]. In this article
the authors consider the Diophantine equation

a2 + b6 = cl,

for a, b, c ∈ Z with gcd(a, b) = 1 and l ≥ 3 a prime exponent. We first do the
initial setup.

sage: from modular_method import *

sage: R.<a, b> = QQ[]

sage: cl = a^2 + b^6

sage: coprime = CoprimeCondition([a, b])

sage: condition = coprime & PowerCondition(cl, 3)

Next we create the Frey Q-curve introduced in the article.

sage: K.<i> = QuadraticField(-1)

sage: a_invariants = [0, 0, 0, -3*(5*b^3 + 4*a*i)*b,

....: 2*(11*b^6 + 14*i*b^3*a - 2*a^2)]

sage: E = FreyQcurve(a_invariants, condition=condition,

....: guessed_degrees=[3])

The article remarks that a decomposable twist of E can be obtained by twisting

with γ = −3+
√
−3

2 . We use that the decomposition_field of E already has a
square root of −3 and perform this twist.

sage: Kdec = E.decomposition_field()

Joey Matthias van Langen

https://github.com/jmvlangen/modular-method-package/blob/master/examples/thesis/Elimination3.rst

138 Chapter 3: Automating the modular method

sage: gamma = (-3 + sqrt(Kdec(-3))) / 2

sage: E = E.twist(gamma)

sage: E.does_decompose()

True

Next we compute the newform candidates using that the bad primes are those
above 2 and 3, as shown in the article.

sage: Kdef = E.definition_field()

sage: nfs = E.newform_candidates(bad_primes=Kdef.primes_above(6))

Section 4 in the article is dedicated to proving CM forms can be eliminated, so
we eliminate them from the list obtained.

sage: nfs = eliminate_cm_form(E, nfs)

For the remaining cases the article introduces a second Frey curve. We introduce
this curve and compute the newforms associated with it.

sage: E2 = FreyCurve([0, 0, 0, 3*b^2, 2*a], condition=condition)

sage: nfs2 = E2.newform_candidates(bad_primes=[2, 3])

We do the elimination on this curve separately and then on both curves com-
bined.

sage: nfs2 = eliminate_by_traces(E2, nfs2, primes=[5, 7],

....: condition=coprime)

sage: nfs_comb = combine_newforms(nfs, nfs2)

sage: nfs_comb = eliminate_by_traces((E, E2), nfs_comb,

....: primes=[5, 7],

....: condition=coprime)

What has not been eliminated are small prime exponents n, which are treated
separately in the article. To show nothing else remains we now eliminate the
primes 2, 3, 5, 7 and show the final list of remaining newforms is empty.

sage: nfs_comb = eliminate_primes((E, E2), nfs_comb, 2*3*5*7)

sage: nfs_comb

[]

Automating the modular method for Q-curves to solve Diophantine equations

Chapter 4

On the sum of fourth
powers in arithmetic
progression

This chapter is based on the article [vL21b] with the same title as this chapter,
which was written by the author of this dissertation. Most of the text here is
identical to that of the article except for the section about Q-curves. This part
has been rewritten to use the results in the previous chapters. Similarly some
parts of the paper have been slightly reworded to reflect results presented in
previous chapters.

Section 4.1

Introduction

In this chapter we will study an equation of the form

(x− y)k + xk + (x+ y)k = zn, x, y, z ∈ Z, k, n ∈ Z>1, (4.1)

i.e. the sum of three k-th powers in arithmetic progression being a perfect
power. Such equations have been intensively studied in the case y = 1, i.e. con-
secutive k-th powers. The earliest results in that case were already formulated
by Euler in the case k = n = 3. Zhang [Zha14] gave a complete solution for
consecutive integers for k = 2, 3, 4 and this was extended by Bennett, Patel and
Siksek [BPS16] for k = 5, 6. In both cases the modular method was used with
Frey curves defined over the rationals.

Also the more general case of Equation (4.1) has been studied before. For the
case k = 2 and gcd(x, z) = 1 Koutsianas and Patel [KP18] used prime divisors
of Lehmer sequences to determine all solutions when 1 ≤ y ≤ 5000. Koutsianas

Joey Matthias van Langen

140 Chapter 4: On the sum of fourth powers in arithmetic progression

[Kou19] further studied this case when y is a prime power pm for specific prime
numbers p. The case k = 3 was partially solved by Argáez-Garćıa and Patel
[AP19] giving all solutions in case 1 ≤ y ≤ 106 using different techniques in-
cluding the modular method for some Frey curves over the rationals. In [KP18]
and [AP19] the bounds on y are merely for computational purposes, whilst the
techniques would generalize to larger bounds.

Variants of Equation (4.1) with more terms on the left-hand side have also
been studied. Recent results include those by Patel and Siksek [PS17] and
Patel [Pat18].

In this chapter we look at Equation (4.1) for the case k = 4. Zhang [Zha17]
proved a partial result in this case. By considering y as a parameter and using
the modular method with Frey curves over Q, he managed to prove the non-
existence of solutions for certain families of values for y. Although his approach
could be pushed to include more families of values for y it appears this method
can not be generalized to treat all values of y simultaneously.

We will give a complete solution for the case k = 4 (where gcd(x, y) = 1
as always). Essential in the proof is the construction of two Frey Q-curves
defined over Q(

√
30). Using the modular method on these curves overcomes the

limitations in [Zha17], allowing us to prove the following main result.

Theorem 4.1.1. The sum of three coprime fourth powers in arithmetic pro-
gression is not a perfect power, i.e. the equation

(x− y)4 + x4 + (x+ y)4 = zl (4.2)

has no solutions x, y, z ∈ Z with gcd(x, y) = 1 for integers l > 1.

Note that any solution to Equation (4.2) gives rise to a solution for l a prime
number. For our proof it thus suffices to prove Theorem 4.1.1 for l prime as we
shall do throughout this paper.

As mentioned, the construction of two Frey curves over the field Q(
√

30)
will be essential in the proof. The construction of these curves can be found in
Section 4.4.

Since Q(
√

30) is a real quadratic field the most direct approach to apply
the modular method is to use Hilbert modularity of curves defined over real
quadratic fields. We will perform the initial steps to this approach in Section 4.5.
However we will also argue that the computation of the corresponding spaces
of Hilbert modular forms is out of reach for the current computational power,
making this approach unfeasible.

Instead we will use that the curves in this paper are by construction also Q-
curves for which a separate modularity result is known [Rib04]. A Q-curve

Automating the modular method for Q-curves to solve Diophantine equations

Section 4.1: Introduction 141

approach to solving Diophantine equations has already been used in articles
such as the ones by Ellenberg [Ell04], Dieulefait and Freitas [DF14], Dieulefait
and Urroz [DU09], Chen [Che10, Che12], Bennett and Chen [BC12], and Ben-
nett, Chen, Dahmen and Yazdani [BCDY14]. We will discuss this approach in
Section 4.6.

As in the mentioned articles we will follow [Que00] for general results
about Q-curves. The main differences lie in that the restrictions of scalars
of our curves are not abelian varieties of GL2-type themselves, but will decom-
pose as a product of such varieties. This also happens in [DF14] and [Che10].
In the first this issue is dealt with by studying the relation between the corre-
sponding Galois representations. We will rather study the relation between the
corresponding newforms as was done in [Che10] and will be more specific about
computing the character that defines this relation.

Another difference is in the way we compute the elliptic curve of which one
should take the restriction of scalars. Most mentioned articles simply refer to
[Que01] to prove the existence of a twist of the original curve that will suffice
and perform a small search to find this twist. In [BC12] a more direct approach
is given in case one can find a map α : GQ → O∗K with a certain coboundary. We
use Corollary 2.7.8 to show the existence of such a twist and use Proposition 2.5.5
to compute it.

Furthermore the approach we took should generalize to other Frey Q-curves
and is mostly algorithmic. Therefore the author has written code [vL21a] for
SageMath [Sag20] that automates the generic parts of this approach. This code
includes SageMath code to work with Frey curves, Q-curves and Frey Q-curves
as well as the associated newforms. A reasonable effort has been made to make
the code work for general such curves and provide sufficient documentation.
Furthermore the example Langen-2021.rst in [vL21a] provides a structured

overview of all the computations done for this paper interjected with explanatory
notes. This document describes all intermediate steps needed for the calcula-
tions in this paper such that one can easily reproduce the results. Furthermore
the computations in this file can be verified automatically using SageMath’s
automated doctest system. Some computations in this file also make use of
MAGMA [BCP97]. The code [vL21a] also provides support for working with
MAGMA when computing newforms to decrease computation time.

Since the modular method approach in this setting only works for prime
numbers l > 5, Section 4.3 is dedicated to proving the cases for small l. The
case l = 2 follows immediately from a local obstruction, whereas the cases l = 3
and l = 5 require the computation of some points on hyperelliptic curves to

Joey Matthias van Langen

https://github.com/jmvlangen/modular-method-package/blob/master/examples/literature/Langen-2021.rst

142 Chapter 4: On the sum of fourth powers in arithmetic progression

prove the non-existence of solutions.
Section 4.2 introduces some preliminary results about Equation (4.2) and

introduces some notation that will be used throughout this chapter.

Section 4.2

Preliminaries

In this section we will prove some general results about integer solutions to
Equation (4.2) with gcd(x, y) = 1. Throughout this chapter (a, b, c) will denote
an arbitrary such solution. Note that we have

cl = (a− b)4 + a4 + (a+ b)4 = 3 a4 + 12 a2b2 + 2 b4, (4.3)

which leads to the following result.

Proposition 4.2.1. The integer c is not divisible by 2, 3 or 5, hence a is odd
and b is not divisible by 3.

Proof. This follows immediately by considering Equation (4.3) modulo 4, 9
and 5.

Let f(x, y) be the left-hand side of Equation (4.2). The most general fac-
torization of f is obtained by factoring over the splitting field L of f(x, 1).
Since f(x, 1) is irreducible, the polynomial f(x, y) factors as a product of a
constant and Galois conjugates of

h(x, y) = x+ vy, (4.4)

where v is a root of f(x, 1). To be precise we have

f(x, y) = 3 (x+ vy) (x− vy) (x+
√

(−v2 − 4) y) (x−
√

(−v2 − 4) y). (4.5)

We can say a lot about the factor h(a, b) and its Galois conjugates.

Lemma 4.2.2. The distinct Galois conjugates of h(a, b) are coprime outside
primes above 3. Furthermore, the valuation of h(a, b) at all primes above 2
and 5 is zero and its valuation at the unique prime p3 in L above 3 is −1.

Proof. Since any field that contains h(a, b) and its Galois conjugates contains L
we can safely do all computations in L. Note that a and b are integers and
that v is only not integral at the unique prime p3 above 3, so the only prime at

Automating the modular method for Q-curves to solve Diophantine equations

Section 4.2: Preliminaries 143

which h(a, b) and its Galois conjugates are not integral is p3. For two distinct
Galois conjugates

σ
(h(a, b)) and

τ
(h(a, b)) their difference is equal to (σv − τv) b.

Any prime dividing both can not divide b as it then also divides a contradict-
ing their coprimality. Therefore the only common primes are in the differ-
ences σv − τv. Using SageMath [Sag20] we can determine that the only primes
dividing these differences are those above 2, 3 and 5, hence we arrive at the first
conclusion.

For the second statement, we note that a and b are integral and v only has
negative valuation at p3 with ordp3(v) = −1. This implies that the valuation
of h(a, b) and its conjugates is at least 0 at all primes above 2 and 5 and at
least −1 at p3. Applying this information to Equation (4.5) and using that c
has valuation 0 at all these primes by Proposition 4.2.1, the second result im-
mediately follows.

Lemma 4.2.2 and Equation (4.5) tell us that

(h(a, b)) = p−1
3 I l

for some integral ideal I of L. We will need this general result to solve the
case l = 5.

For the other cases, we can limit ourselves to the subfield K = Q(
√

30) of L.
In this case we have two factors

g1(x, y) := x2 +

(
2 +

1

3

√
30

)
y2 (4.6)

g2(x, y) := x2 +

(
2− 1

3

√
30

)
y2, (4.7)

and the factorization is

zl = f(x, y) = 3 g1(x, y) g2(x, y). (4.8)

Note that g1 and g2 are both the product of two Galois conjugates of h and
since these are all distinct we can conclude that g1(a, b) and g2(a, b) are coprime
outside primes above 3. Also the result about valuations carries over, so both
have valuation 0 at primes above 2 and 5 and since the unique prime q3 of K
above 3 factors as p2

3 in L they have valuation −1 at q3. Furthermore we find
that

(g1(a, b)) = q−1
3 I l1

(g2(a, b)) = q−1
3 I l2,

Joey Matthias van Langen

144 Chapter 4: On the sum of fourth powers in arithmetic progression

with I1 and I2 coprime integral ideals of K.

Throughout this chapter K and L will be the same as in this section, as
will g1, g2 and h.

Section 4.3

Cases for Small l

In this section we will solve Equation (4.2) for small prime exponents l as the
modular method used in the next sections only works for l > 5. All small cases
have a slightly different approach.

Subsection 4.3.1

Case l = 2

In case l = 2 Equation (4.2) has a local obstruction at 3. This can be seen by
considering Equation (4.3) modulo 9, or by considering the equation modulo 3
and using that 3 - c from Proposition 4.2.1. This proves the non-existence of
solutions in this case. A similar obstruction can be found modulo 5.

Subsection 4.3.2

Case l = 3

Suppose that (a, b, c) is a solution to Equation (4.2) for l = 3 and assume
that gcd(a, b) = 1. From Section 4.2 we know that

(g1(a, b)) = q−1
3 I3

1 = q−4
3 (q3I1)

3

as fractional ideals in K. Since K has class number 2 and q−4
3 =

(
1
9

)
we find

that q3I1 must be a principal ideal. Hence we conclude that

g1(a, b) =
1

9
uγ3,

for u ∈ O∗K and γ ∈ q3. Note that O∗K is generated by u0 = (−1)3 and an
element u1 of infinite order, hence we can take u = uj1 for j = 0, 1, 2. Since the
set {3, 6 +

√
30} is an integral basis of of q3 we can parametrize γ with integral

Automating the modular method for Q-curves to solve Diophantine equations

Section 4.3: Cases for Small l 145

parameters s and t to get that

γ = 3s+
(

6 +
√

30
)
t = 3g1(

√
s,
√
t)

a2 = F3,j(s, t)

b2 = G3,j(s, t)

c = 3 s2 + 12 st+ 2t2 (4.9)

for F3,j(s, t) and G3(s, t) some homogeneous polynomials over Q of degree 3.
Note that t = 0 corresponds to solutions in which c would be divisible by 3.

So by Proposition 4.2.1 we find that t 6= 0. By multiplying the middle two
equations in (4.9) and dividing by t6 we find hyperelliptic curves Cj in the
variables X = s

t and Y = ab
t3 . Explicitly these curves are given by

C0 : Y 2 = 27X5 + 108X4 + 84X3 − 288X2 − 564X − 368

C1 : Y 2 = −1 242X6 − 1 269X5 − 432X4 + 84X3 + 72X2 + 12X

C2 : Y 2 = −599 940X6 − 627 237X5 − 273 132X4 − 63 276X3

−8 208X2 − 564X − 16.

As t 6= 0 every solution (a, b, c) corresponds to a point on such a curve. Using
MAGMA [BCP97] we see that the curve C2 has no solution in Q3, hence none
in Q. Also using MAGMA we can compute that the Jacobian of C0 has only two-
torsion points as rational points. Note that such points correspond to factors of
the defining polynomial, i.e. of F3,0(s, t)G3,0(s, t). Since the only linear factor
in F3,0G3,0 is t, the only rational point on C0 corresponds to the case t = 0
which we already excluded from corresponding to a solution.

The curve C1 has no local obstruction. Furthermore the rank of its Jacobian
is bounded above by 1 and its L-function suggests the rank is 1. However no
point of infinite order on the Jacobian can be found within a small bound. We
shall therefore apply a different approach.

For the case j = 1 the equations in (4.9) become explicitly

a2 = −3 s
(
23 s2 + 12 st+ 2 t2

)
b2 = 18 s3 + 9 s2t− 2 t3

c = 3 s2 + 12 st+ 2 t2.

Note that in the first equation 23 s2 + 12 st+ 2 t2 is congruent to c modulo 20.
By Proposition 4.2.1 this implies 23 s2 + 12 st+ 2 t2 is not divisible by 2 or 5.
Note that s and t must be coprime since a and b are coprime, so therefore s

Joey Matthias van Langen

146 Chapter 4: On the sum of fourth powers in arithmetic progression

and 23 s2 + 12 st+ 2 t2 must be coprime outside 2. Note that 2 does not di-
vide 23 s2 + 12 st+ 2 t2, so the two must be coprime and we find that

a = 3 a1 a2

s = (−1)e1 3e2 a2
1

23 s2 + 12 st+ 2 t2 = (−1)1−e1 31−e2 a2
2,

with e1, e2 ∈ {0, 1}. Now note that

23 s2 + 12 st+ 2 t2 = 2 (βs+ t)
(
βs+ t

)
= 2N

Q(
√
−10)

Q (βs+ t) ,

where β = 3 +
√

10/2, β is its Galois conjugate and N
Q(
√
−10)

Q is the norm of

the field Q(
√
−10). Since Q(

√
−10) is an imaginary field its norm is positive,

hence e1 = 1. Furthermore the unique prime above 3 in Q(
√
−10) has norm 9,

so e2 = 1. We thus have that

2 (βs+ t)
(
βs+ t

)
= a2

2.

Note that the factors βs+ t and βs+ t are coprime outside primes dividing the
difference β − β =

√
−10. Since a2 is an integer not divisible by 2 and 5 which

ramify in Q(
√
−10) these factors must have valuation −1 at the unique prime p2

above 2 and valuation 0 at the unique prime above 5. This implies that

(βs+ t) = p−1
2 I2

for some ideal I of OQ(
√
−10). Since the class number of Q(

√
−10) is 2 this

would imply that p2 is principal, which is not the case. Therefore no solution
can correspond to the case j = 1 and thereby no solution to Equation (4.2)
with gcd(x, y) = 1 exists for l = 3.

Remark 4.3.1. Geometrically Eqs. (4.9) define a curve with a degree 4 map
to P1. The hyperelliptic curves we constructed in these sections are quotients
of these curves through which this degree 4 map factors as two degree 2 maps.
The only other geometric quotients with this same property are defined by
taking the equation for a2 and setting t = 1 or taking the equation for b2 and
setting t = 1. The quotient we considered is the only quotient for which rational
points correspond to rational solutions of the corresponding equations, making
this the natural choice. The same will be true for the Eqs. (4.10) in the next
section.

Automating the modular method for Q-curves to solve Diophantine equations

Section 4.3: Cases for Small l 147

Subsection 4.3.3

Case l = 5

Now suppose we have a solution (a, b, c) to Equation (4.2) such that l = 5
and gcd(a, b) = 1. Recall from Section 4.2 that

(h(a, b)) = p−1
3 I5 = p4

3

(
p−1

3 I
)5

as fractional ideals in L. Since p4
3 = (3) and 5 does not divide the order of the

class group of L we find that p−1
3 I must be a principal ideal, hence

h(a, b) = 3u γ5

for some unit u ∈ O∗L and γ ∈ L. Furthermore the valuation of γ is only negative
at p3 where it is −1, hence γ ∈ 1

3OL. Note that in these arguments we may also
replace L with Q(v). The field Q(v) is a number field of degree 4 and henceOQ(v)

can be parameterized by four integer coefficients. Using this description we ob-
tain for each choice of u a parameterization of a and b together with two equa-
tions in the four indeterminates. Since O∗Q(v) is generated by u0 = (−1)5 and an

element u1 of infinite order it is sufficient to consider u = ui1 for i ∈ {0, . . . , 4}.
Considering the equations obtained for each of these i modulo 5, we see that only
two of them can parameterize coprime a and b, leaving only the cases i = 0, 4.

Without loss of generality we may assume that g1 is the product of h with σh,
where σ is the automorphism on Q(v) mapping v to −v. This implies that we
have

g1(a, b) = 9 (u σu) (γ σγ)
5
.

Since Q(v2) = Q(
√

30) = K we find that u′ := u σu ∈ O∗K and γ′ := γ σγ ∈ K.
Note that again γ′ is only not integral at q3 and furthermore ordq3(γ) = −1, so
we have that γ′ ∈ q−1

3 =
(

1
3

)
q3. From the case l = 3 we know that q3 has an

integral basis formed by 3 times the coefficients of g1, hence q−1
3 has an integral

basis formed by the coefficients of g1. In particular it has an integral basis of

the form
{

1,
√

30
3

}
which gives us a parameterization of the form

γ′ = s+

√
30

3
t

a2 = F5,u′(s, t)

b2 = G5,u′(s, t),

c = 3 s2 − 10 t2 (4.10)

Joey Matthias van Langen

148 Chapter 4: On the sum of fourth powers in arithmetic progression

for each choice of unit u′. Here F5,u′ and G5,u′ are homogeneous polynomials
over Q of degree 5.

The only remaining cases are u′ = 1 σ1 = 1 and u′ = u4
1
σ
u4

1 = u8
1. As in the

case l = 3 we can see that t 6= 0 and hence we can construct hyperelliptic curves
by multiplying the equations for a2 and b2 and dividing the result by t10. These
give us the hyperelliptic curves

C1 : Y 2 = 405X9 − 4 050X8 + 16 200X7 − 54 000X6 + 113 400X5

−198 000X4 + 180 000X3 − 120 000X2 + 50 000X − 20 000

Cu8
1

: Y 2 = −3 083 903 014 930 297 409 520X10

−56 304 108 214 517 165 808 555X9

−462 585 452 239 544 611 432 050X8

−2 252 164 328 580 686 632 342 200X7

−7 195 773 701 504 027 288 934 000X6

−15 765 150 300 064 806 426 395 400X5

−23 985 912 338 346 757 629 798 000X4

−25 024 048 095 340 962 581 580 000X3

−17 132 794 527 390 541 164 120 000X2

−6 951 124 470 928 045 161 550 000X

−1 269 095 890 917 817 864 020 000

in the variables X = s
t and Y = ab

t5 . Studying the Jacobians of these curves in
MAGMA [BCP97] we find that both Jacobians only contain two-torsion points.
Since the polynomials F5,1G5,1 and F5,u8

1
G5,u8

1
only contain one linear factor

we conclude as in the case l = 3 that both curves only have one rational point.
These points are a point at infinity for C1 corresponding to t = 0, and the
point (− 42

23 , 0) on C2. Note that these rational points correspond to values for s
and t for which either 2 | c or 3 | c which is impossible by Proposition 4.2.1. This
proves that no solution (a, b, c) to Equation (4.2) with gcd(a, b) = 1 and l = 5
can exist.

Remark 4.3.2. It is necessary to first look at the factorization in Q(v), since
some of the hyperelliptic curves that come from units we have not considered
over K have Jacobians with a rank bound that is not zero. Furthermore these
curves also don’t have a local obstruction.

Automating the modular method for Q-curves to solve Diophantine equations

Section 4.4: The Frey Curves 149

Section 4.4

The Frey Curves

In this section we construct Frey curves for our problem. As described in Step 1
of the modular method as mentioned in Section 3.1 these would be elliptic curves
that depend on the solution (a, b, c). Furthermore we have a set S outside
which the curve only has good or multiplicative reduction and the minimal
discriminant is essentially an l-th power.

For our cases we construct such curves using the following fact. Given two
non-zero elements B1 and B2 of a number field k of which their sum is a square,
i.e. B1 +B2 = A2, we can look at the elliptic curve

E : y2 = x3 + 2Ax2 +B1x

defined over k, for which this model has discriminant ∆ = 64B2
1B2. Further-

more this curve can only have additive reduction at primes above 2 and primes
that divide both B1 and B2. This is easily verified by looking at the invari-
ant c4 = 16 (B1 + 4B2), which is coprime to ∆ outside such primes.

Note that this recipe will give us a Frey curve if B1 and B2 are coprime l-th
powers outside the fixed set S. In fact this is the same Frey curve considered
for the generalized Fermat equation with signature (l, l, 2).

Now over the field K = Q(
√

30) we know that we have two factors g1(a, b)
and g2(a, b) which are coprime l-th powers outside the set of primes above 2, 3
and 5. Furthermore we have that

(
1

2
− 1

10

√
30

)
g1(a, b) +

(
1

2
+

1

10

√
30

)
g2(a, b) = a2

1

20

√
30 g1(a, b)− 1

20

√
30 g2(a, b) = b2,

hence we can apply the construction given above substituting for B1 and B2

the right multiples of g1(a, b) and g2(a, b). We will construct the Frey curves we

Joey Matthias van Langen

150 Chapter 4: On the sum of fourth powers in arithmetic progression

will use from the four resulting Frey curves

E′1 : y2 = x3 + 2 ax2 +

(
1

2
− 1

10

√
30

)
g1(a, b)x,

E′′1 : y2 = x3 + 2 ax2 +

(
1

2
+

1

10

√
30

)
g2(a, b)x,

E′2 : y2 = x3 + 2 bx2 +
1

20

√
30 g1(a, b)x, and

E′′2 : y2 = x3 + 2 bx2 − 1

20

√
30 g2(a, b)x.

Note that E′′1 and E′′2 are Galois conjugates of E′1 and E′2 respectively, so it
suffices to consider only one of each pair. We pick E′′1 and E′2 and twist these
curves by 30 and 20 respectively to obtain two Frey curves with an integral
model

E1 : y2 = x3 + 60 ax2 + 30
((

15 + 3
√

30
)
a2 +

√
30 b2

)
x, and

E2 : y2 = x3 + 40 bx2 + 20
(√

30 a2 +
(

10 + 2
√

30
)
b2
)
x.

These models have respective discriminants

∆1 = −29 · 36 · 54
(

5 +
√

30
)
· g1(a, b) · g2(a, b)2 and

∆2 = −213 · 3 · 54
√

30 · g1(a, b)2 · g2(a, b),

c4-invariants

c4,1 = −25 · 32 · 5 ·
(

5 +
√

30
)
·
((

43− 8
√

30
)
a2 +

(
6−
√

30
)
b2
)

and

c4,2 = −26 · 3−1 · 5 ·
√

30 ·
(

9a2 +
(

18− 5
√

30
)
b2
)
,

and j-invariants

j1(a, b) =
(

11 + 2
√

30
)
· 26 ·

((
43− 8

√
30
)
a2 +

(
6−
√

30
)
b2
)3

g1(a, b) · g2(a, b)2
and

j2(a, b) = 26 · 3−3 ·
(
9a2 +

(
18− 5

√
30
)
b2
)3

g1(a, b)2 · g2(a, b)
.

The j-invariants of these elliptic curves are not integral. We will prove this
here as we will need this later on. In particular this implies that these curves
do not have complex multiplication.

Automating the modular method for Q-curves to solve Diophantine equations

Section 4.5: A Hilbert Modular Approach 151

Lemma 4.4.1. The j-invariants j1(a, b) and j2(a, b) are not integral. Further-
more there exists a prime of characteristic > 5 such that j1(a, b) and j2(a, b) are
not integral at that prime.

Proof. Note that since gcd(a, b) = 1 the left-hand side of Equation (4.2) is the
sum of at least two non-zero fourth powers, hence c > 1. By Proposition 4.2.1
there must be a prime number p > 5 dividing c. This implies that either g1(a, b)
or g2(a, b) is divisible by a prime above p. It thus suffices to prove that the
numerators of j1(a, b) and j2(a, b) are not divisible by the same prime.

Note that the factors(
43− 8

√
30
)
a2 +

(
6−
√

30
)
b2,

and

9 a2 +
(

18− 5
√

30
)
b2,

in the numerators of j1(a, b) and j2(a, b) are coprime with g1(a, b) and g2(a, b)
outside primes of characteristic 2, 3 and 5. This can be easily seen by computing
the resultants of those polynomials with g1 and g2.

Corollary 4.4.2. The curves E1 and E2 do not have complex multiplication.

Proof. This follows directly from [Sil94, II, Theorem 6.1] as the j-invariants are
not integral.

Section 4.5

A Hilbert Modular Approach

A natural way of using the Frey curves would be to use the modularity of elliptic
curves over real quadratic fields to prove that there are Hilbert modular forms
which have the same mod l Galois representation as E1 or E2. The level of
these newforms will only depend on certain congruence classes of the chosen
solution and hence all possible candidates can be explicitly computed. It turns
out that the dimension of the corresponding spaces is too high to perform these
computations in a reasonable time. Nevertheless we here describe the start of
this approach.

We first need to compute the conductor of E1 and E2 as the level of the
Hilbert modular forms associated to them depends on it.

Joey Matthias van Langen

152 Chapter 4: On the sum of fourth powers in arithmetic progression

Proposition 4.5.1. The conductor of E1 is

N1 =

{
p12

2 p2
3 p

2
5 Rad30

(
g1(a, b)g2(a, b)2

)
if 2 | b

p10
2 p2

3 p
2
5 Rad30

(
g1(a, b)g2(a, b)2

)
if 2 - b,

and the conductor of E2 is

N2 = p14
2 p2

5 Rad30

(
g1(a, b)2g2(a, b)

)
,

where p2, p3 and p5 are the unique primes above 2, 3 and 5 respectively and
where Rad30(N) is the product of all primes that divide N and do not divide 30.

Proof. This is a computation performed by the implementation [vL21a] of the
algorithm discussed in Chapter 1.

It has been proven by Freitas, Le Hung and Siksek [FLHS15] that elliptic
curves over real quadratic fields are modular. In particular the curves E1 and E2

are modular. According to [FLHS15] this means there are Hilbert cuspidal
eigenforms f1 and f2 over K = Q(

√
30) of parallel weight 2 with rational Hecke

eigenvalues such that for all prime numbers p we have

ρEi,p
∼= ρfi,p : GK → GL2(Qp), i ∈ {1, 2}.

Here ρEi,p is the p-adic Galois representation of Ei induced by the Galois action
on the Tate module Tp(E) and ρfi,p is the p-adic Galois representation associated
to fi by Carayol, Blasius, Rogawski, Wiles and Taylor.

Note that the conductor of ρEi,p is precisely the conductor of Ei and the
conductor of ρfi,p is precisely the level of fi. Therefore we know from Proposi-
tion 4.5.1 that f1 and f2 have respective levels N1 and N2.

The levels N1 and N2 are not explicit as they depend on the chosen solu-
tion (a, b, c). However if we take p = l and look at the mod l Galois representa-
tions ρEi,l : GK → End(E[l]) ∼= GL2(Fl), rather than the p-adic representation,
we find that these representations are irreducible. Furthermore they are finite
at all primes not dividing 30. This allows us to lower the level to a level only
divisible by those primes dividing 30. We prove that the representation is finite
here, as irreducibility will later be proven using Theorem 2.11.1 and the fact
that these curves are also Q-curves.

Proposition 4.5.2. The mod l Galois representations

ρEi,l : GK → End(E[l]) ∼= GL2(Fl)

are finite outside all primes dividing 30. In particular they are unramified out-
side all primes dividing 30 l.

Automating the modular method for Q-curves to solve Diophantine equations

Section 4.5: A Hilbert Modular Approach 153

Proof. Note that for each finite prime p of K that does not divide 30 the or-
der of p in N1 or N2 is at most one. In case it is zero the curve has good
reduction at p, hence the mod l Galois representation is finite at p. We are left
with the case the order is one, in which case p must divide g1(a, b) or g2(a, b).
Since g1(a, b) and g2(a, b) are l-th powers outside primes dividing 30, this im-
plies that the order of p in the corresponding discriminant ∆i is a multiple of l.
Since the corresponding curve Ei has multiplicative reduction at p the mod l
Galois representation is finite at p. This is a standard result that can be easily
proved using the Tate curve if p - l.

Using the level lowering result found in [FS15, Theorem 7] for l > 5 we
now find that there must be Hilbert cuspidal eigenforms f ′1 and f ′2 over K of
parallel weight 2 such that ρEi,l

∼= ρf ′i ,λ for i ∈ {1, 2}, where λ | l is a prime in
the coefficient field of f ′i . Here the levels of these newforms are respectively

Ñ1 =

{
p12

2 p2
3 p

2
5 if 2 | b

p10
2 p2

3 p
2
5 if 2 - b

Ñ2 = p14
2 p2

5.

The strategy would now be to compute all cuspidal Hecke eigenforms over K
of parallel weight 2 and levels Ñ1 and Ñ2 and prove that none of them can have
a mod λ | l representation isomorphic to the mod l representation of the corre-
sponding Ei. This would prove a contradiction, hence the implicit assumption
that a primitive solution (a, b, c) to Equation (4.2) exists would be false as we
want.

Remark 4.5.3. Besides working with the curves E1 and E2 one might also want
to work with curves that are isomorphic over Q. In case we do not want to
change the field K over which the curves are defined, these isomorphic curves
would be twists of our original curves. Note that twisting by an element γ ∈ K∗
can only change the conductor of the curve at a prime p if the corresponding
field extension K(

√
γ) is ramified at p. The values γ ∈ K∗ for which K(

√
γ)

is unramified at a fixed prime p form a subgroup Hp ⊆ K∗ of which the quo-

tient K∗/Hp is finite. Limiting ourselves to the primes dividing Ñ1 and Ñ2

we thus only have a finite computation to see if these levels can be made any
smaller.

Joey Matthias van Langen

154 Chapter 4: On the sum of fourth powers in arithmetic progression

It turns out that by twisting we can get the lowest level

Ñ1 =

p12

2 p2
3 p

2
5 if 2 | b

p4
2 p

2
3 p

2
5 if 2 - b and a ≡ 1 (mod 4)

p2
3 p

2
5 if 2 - b and a ≡ 3 (mod 4),

in case we twist E1 with 6 +
√

30. If we twist the curve E1 by −6−
√

30 we get
the same level, but with the latter two conditions interchanged.

Using Magma we quickly find that the dimension of some of the sought
spaces of newforms would be way too large to compute in. For example using
the levels of the untwisted curves the dimension of the smallest space is 206 720,
which is way beyond the largest computational examples done in the literature.
We can only do better in case 2 - b where the twisted curve in the remark gives
us a space of dimension 542 for the newforms of level p2

3 p
2
5. A lower level for

the case 2 | b is lacking though, making this insufficient to prove Theorem 4.1.1
completely.

Section 4.6

Q-curves

In this section we use the modularity of Q-curves to prove the non-existence of
solutions. This technique has been applied to other Diophantine equations in
works such as [DF14], [DU09], [BC12], [Che10], [Che12], [BCDY14], and [Ell04].
The approach here is similar to the one in the mentioned articles, leaning heavily
on the work by Quer [Que00]. It differs in some crucial points, where we will
give an algorithmic approach that works in a general context.

Look back at our original curve

E : y2 = x3 + 2Ax2 +B1x,

where A2 = B1 +B2. Note that by construction this curve has a 2-torsion point
and hence an obvious 2-isogeny defined over Q. From [Sil09, III, example 4.5]
we deduce that the image of this 2-isogeny is

Ẽ : y2 = x3 − 4Ax2 +
(
4A2 − 4B1

)
x = x3 − 4Ax2 + 4B2x,

which is a twist by −2 of the complementary curve

E′ : y2 = x3 + 2Ax2 +B2x.

Automating the modular method for Q-curves to solve Diophantine equations

Section 4.6: Q-curves 155

In particular such a curve is thus 2-isogenous over a field extension contain-
ing
√
−2 to the curve in which the roles of B1 and B2 are swapped.

Note that for the Frey curves E1 and E2 we constructed, the chosen B1

and B2 were Galois conjugates of one another, whilst A was rational. This
implies that the curves E1 and E2 are 2-isogenous to their Galois conjugates
over K(

√
−2). This means that E1 and E2 are Q-curves and we can apply the

theory discussed in Section 2 to these curves.

Remark 4.6.1. Note that in Section 2 we use the standing assumption that
all Q-curves are without complex multiplication. This forms no problem as by
Corollary 4.4.2 the curves E1 and E2 do not have complex multiplication.

Subsection 4.6.1

Basic invariants

We explicitly compute many of the quantities associated to Q-curves for the
curves E1 and E2 using the implementation [vL21a] of the material in Section 2.

Proposition 4.6.2. For both E1 and E2 we have the same data listed below.

� The degree map d : GQ → Q∗ given by

d(σ) =

{
1 if σ ∈ GK
2 if σ 6∈ GK .

� The 2-cocycle c : G2
Q → Q∗ given by

c(σ, τ) =

1 if σ ∈ GK(

√
−2) or τ ∈ GK

−1 if τ 6∈ GK ,
σ√−2 = −

√
−2 and

σ√
30 =

√
30,

−2 if τ 6∈ GK ,
σ√−2 =

√
−2 and

σ√
30 = −

√
30,

2 if τ 6∈ GK ,
σ√−2 = −

√
−2 and

σ√
30 = −

√
30,

� The degree field Kd = K = Q(
√

30) over which the curves are defined.

� The field K(
√
−2) = Kd(

√
−2) over which the curves are completely de-

fined.

� A dual basis {(30, 2)}.

Joey Matthias van Langen

156 Chapter 4: On the sum of fourth powers in arithmetic progression

� A splitting character ε : GQ → Q∗, that as a Dirichlet character is one
of the characters of conductor 15 and order 4, with corresponding fixed
field Kε = Q(ζ15 + ζ−1

15) of degree 4.

� A splitting field Kβ = K(ζ15 + ζ−1
15) = Q(

√
6, ζ15 + ζ−1

15) of degree 8.

� A decomposition field Kdec = Q(
√
−2,
√
−3, ζ15 + ζ−1

15) of degree 16.

Proof. All this data can be computed from the isogenies φσ : σEi → Ei, which
we can take to be the identity if σ ∈ GK and the 2-isogeny over K(

√
−2) de-

scribed before otherwise. Note that the latter can be explicitly described using
the formula in [Sil09, III, example 4.5] and the map scaling with

√
−2. In

fact we can let the implementation [vL21a] guess these isogenies by giving the
information that it should contain isogenies of degree 2.

Remark 4.6.3. Note that the field K(
√
−2) is a minimal field over which a curve

isogenous to E1 or E2 can be completely defined. This is easily verified through
Corollary 3.3 in [Que00], as it excludes the case that an isogenous curve can be
defined over the field Kd = K which is the only possible smaller field. For this
one checks that

(30, 2) 6= 1 and (30, 2) 6= (−1, 30),

inside Br2(Q), which can be verified by checking the corresponding Hilbert
symbols at 5.

Subsection 4.6.2

A decomposable twist

We now apply the theory from Section 2.5 to E1 and E2. In particular we use
Proposition 2.5.3 to find a γ ∈ K∗dec such that [cβ] = [cEi] over Kdec(

√
γ). By

Corollary 2.7.8 we know that twisting Ei by this γ gives a Q-curve Ei,γ for
which cβ = cEi,γ over Kdec. Since Kdec has class number 1 Proposition 2.5.5

implies we can search for an α : GKdec

Q → O∗Kdec
. The code [vL21a] does this to

find suitable twists of E1 and E2. As remarked above Example 2.5.4 we can
change γ by a square or a rational number, which we do to find one for which
the twist parameter has a smaller minimal polynomial. In fact we find that
for γ ∈ Kdec any root of the polynomial

x8 − 40x7 − 550x6 − 1840x5 − 285x4 + 3600x3 − 1950x2 + 200x+ 25,

the twists E1,γ and E2,γ of E1 and E2 by γ decompose as intended. Note that
this polynomial is not irreducible over K, but still any choice of root will suffice.

Automating the modular method for Q-curves to solve Diophantine equations

Section 4.6: Q-curves 157

Note that by twisting the curves, the corresponding isogenies that define
the Q-curve structure should change accordingly. The way this change works
is explicitly stated in Proposition 2.7.6. The code [vL21a] computes these new
isogenies automatically. As these new isogenies are defined over Q(γ) = Kβ , the
twisted curves E1,γ and E2,γ are completely defined over Kβ . Since the splitting
maps for ξEi are splitting maps for cEi,γ , this means Kβ is a decomposition field
for E1,γ and E2,γ .

Applying Proposition 2.9.4 with the facts above we get the following propo-
sition.

Proposition 4.6.4. For each i ∈ {1, 2} the abelian variety Res
Kβ
Q Ei,γ is Q-

isogenous to a product of Q-simple, mutually non Q-isogenous abelian varieties
of GL2-type.

Using the theory from Section 2.6 we can determine all Galois orbits of
splitting maps for cEi,γ over Kβ for E1,γ and E2,γ allowing us to prove the
following

Theorem 4.6.5. Let i ∈ {1, 2}. We have that

Res
Kβ
Q Ei,γ is Q-isogenous to Ai,1 ×Ai,2,

where

� each Ai,j is a Q-simple abelian variety of GL2-type over Q of dimension
4 with EndAi,j ⊗Q ∼= Lβ = Q(ζ8), and

� the varieties Ai,1 and Ai,2 are not isogenous over Q.

Proof. The code [vL21a] easily allows us to compute one splitting map for cEi,γ
over Kβ per Galois orbit, telling us there is only two. Furthermore we can
use the implementation of Proposition 2.7.10 to compute that the image fields
of both of these splitting maps are Lβ = Q(ζ8). Since Ai,1 and Ai,2 are Q-
simple abelian varieties of GL2-type this also determines their dimension as by
Theorem 2.2.1.

Subsection 4.6.3

Modularity of Q-curves

We now apply the theory from Sections 2.8 and 2.9 to our curves E1 and E2 to
obtain the levels and character of associated newforms.

Joey Matthias van Langen

158 Chapter 4: On the sum of fourth powers in arithmetic progression

Theorem 4.6.6. For each i ∈ {1, 2} there exists a factor Ai,j such that Ai,j
is Q-isogenous to the abelian variety Af of a newform

f ∈ S2

(
Γ1

(
29 · 32 · 5 Rad30 c

)
, ε
)

if i = 1, b even,

f ∈ S2

(
Γ1

(
28 · 32 · 5 Rad30 c

)
, ε
)

if i = 1, b odd,

f ∈ S2

(
Γ1

(
210 · 3 · 5 Rad30 c

)
, ε
)

if i = 2.

Here Rad30 c is the product of all primes p | c with p - 30 and ε is one of the two
Dirichlet characters of conductor 15 and order 4 for which the choice does not
matter.

Proof. As discussed in the text above Proposition 2.8.5 each factor Ai,j is isoge-
nous to some abelian variety Af of some newform f . The character of these
newforms is by Corollary 2.8.6 equal to the inverse of a corresponding splitting
character. The code [vL21a] computes such a splitting character for each Ai,j ,
which are all one of the two characters mentioned. Since the mentioned charac-
ters are Galois conjugates of each other, and since Galois conjugates of splitting
maps correspond to the same factor Ai,j the choice indeed does not matter.

For the levels of these newforms we first compute the conductors of the
curves Ei,γ over Kβ . As explained in the proof of Proposition 4.5.1 the frame-
work [vL21a] can calculate these conductors to be

Ni =

(
26 · 3 Rad30 c

)
if i = 1 and 2 | b(

25 · 3 Rad30 c
)

if i = 1 and 2 - b(
27 Rad30 c

)
if i = 2,

where Ni is the conductor of Ei,γ . From this we can compute using Proposi-
tion 2.9.2 that

Ni =

272 · 316 · 512 (Rad30 c)

8
if i = 1 and 2 | b

264 · 316 · 512 (Rad30 c)
8

if i = 1 and 2 - b
280 · 38 · 512 (Rad30 c)

8
if i = 2,

where Ni is the conductor of Res
Kβ
Q Ei,γ .

For each i the newforms fi,1 and fi,2 corresponding to Ai,1 and Ai,2 are twists
of one another by the character χ = ε8ε5 and its inverse. Here ε8 is the character
of conductor 8 with ε8(−1) = −1 and ε5 is a character with conductor 5 and
order 4. We can thus apply Theorem 2.9.8 by first twisting with ε8 and then

Automating the modular method for Q-curves to solve Diophantine equations

Section 4.6: Q-curves 159

with ε5 or ε−1
5 . We immediately see that the levels should be the same for all

primes p 6= 2, 5.
Note that for the order of 2 in the levels Ni,1 and Ni,2 of fi,1 and fi,2

respectively we know that

4 ord2Ni,1 + 4 ord2Ni,2 ≥ 64,

by Equation (2.7), hence the order of 2 in one of the two is at least 8. Since
all splitting characters and twist characters can be defined modulo 120 the β
and γ in Theorem 2.9.8 can never exceed ord2 120 = 3. This implies that we are
in case 3(a) and the order of 2 in both levels must be the same.

Now for the order of 5 we have

4 ord5Ni,1 + 4 ord5Ni,2 = 12.

Since the characters of the corresponding newforms have a conductor divisible
by 5 at least one factor 5 has to appear in both levels. This implies that one
of the levels has a single factor 5 and the other has a factor 52. By picking the
first we get the result as stated in this theorem.

Subsection 4.6.4

Level lowering

The levels appearing in Theorem 4.6.6 still depend on the solution (a, b, c) of
Equation (4.2). To get rid of the additional primes we will need to look at the
mod l Galois representations and use some level lowering results.

To apply level lowering results we first need to know that the mod l Galois
representations of E1 and E2 are absolutely irreducible and unramified at the
primes that should be eliminated from the level.

Theorem 4.6.7. The mod λ Galois representation

ρAi,j ,λ : GQ → GL2(Fλ)

is absolutely irreducible for any i, j ∈ {1, 2} and prime λ of Lβ of characateris-
tic l > 5. Furthermore we have that the mod l Galois representation

ρEi,l : GK → EndEi[l] ∼= GL2(Fl)

is irreducible for any i = 1, 2 and l > 5.

Joey Matthias van Langen

160 Chapter 4: On the sum of fourth powers in arithmetic progression

Proof. First note that the Galois representation ρAi,j ,λ is isomorphic to the
representation associated with the splitting map for cEi corresponding to Ai,j .
Therefore we can apply Theorem 2.11.1 to prove this result. Note that the proof
of Theorem 2.11.1 in fact uses that the Galois representation ρEi,l is reducible
as an intermediate step. Therefore if we can show that neither

� l = 7 and j(Ei) = −3375, −10 529±16 471
√
−7

8 , 56 437 681±1 875 341
√
−7

32 768 ;

� l = 13 and j(Ei) = 3 448 440 000± 956 448 000
√

13; or

� l = 11 or l > 13, and Ei has potential good reduction at all primes of
characteristic > 3.

then we have proven that both ρAi,j ,λ is absolutely irreducible and that ρEi,l is
irreducible.

Note that the cases with l = 7 and l = 13 are impossible as we have seen
that the minimal field over which the isogeny class of Ei can be defined is K,
so j(Ei) ∈ K \Q. The remaining case would imply that the j-invariant is in-
tegral at all primes of characteristic p > 3 ([Sil09, VII.5.5]) which contradicts
Lemma 4.4.1.

Proposition 4.6.8. Let f be a newform as in Theorem 4.6.6 and l > 5 be a
prime number, then for each prime λ | l in the coefficient field of f the mod λ
Galois representation ρf,λ : GQ → GL2(Fλ) is finite outside primes dividing 30.
In particular it is unramified outside primes dividing 30 l.

Proof. Note that ρf,λ is isomorphic to a Galois representation from a splitting
map for cEi , so by what was mentioned above Theorem 2.8.3 we know that

ρf,λ|GKβ ∼ ρEi,l|GKβ .

Since the discriminant of Kβ is only divisible by the prime numbers 2, 3 and 5,
we find that the ramification subgroup Ip of a prime number p - 30 is contained
in GKβ . Note that ρf,λ being finite at p - 30 only depends on ρf,λ|Ip ∼ ρEi,l|Ip ,
for which this was already proven in Proposition 4.5.2.

We can now use level lowering results proven by Diamond in [Dia97] based
on work by Ribet [Rib90] to lower the level to something independent of the
chosen solution (a, b, c).

Automating the modular method for Q-curves to solve Diophantine equations

Section 4.6: Q-curves 161

Theorem 4.6.9. For each elliptic curve Ei,γ and prime number l > 5 there
exists a factor Ai,j as in Proposition 4.6.6 such that for each prime ideal λ | l of
the field EndAi,j ⊗Q = Q(ζ8) we have ρAi,j ,λ ∼ ρg,λ′ for some prime ideal λ′ | l
in the appropriate field and a newform g satisfying

g ∈ S2 (Γ1 (23040) , ε) if i = 1, b even,

g ∈ S2 (Γ1 (11520) , ε) if i = 1, b odd,

g ∈ S2 (Γ1 (15360) , ε) if i = 2.

Here ε is one of the two Dirichlet characters of conductor 15 and order 4. The
choice does not matter.

Proof. We start by picking some f as in Theorem 4.6.6. Let Ai,j be the cor-
responding factor. We already have that that ρAi,j ,λ ∼ ρf,λ for an arbitrary
prime λ | l. We will show that we can find a newform of the level as in this
theorem which still has an isomorphic Galois representation.

Note that ρf,λ is irreducible by Theorem 4.6.7 and odd as it is the Galois
representation of a newform.

We apply Theorem 4.1 in [Dia97], which tells us we can find a newform g
of weight 2 with an isomorphic Galois representation ρg,λ. The level of g is the
level of f divided by all prime numbers p that appear only once in the level,
do not divide l or the conductor of the character of f , and at which the Galois
representation is unramified. The levels and the explicit character in Propo-
sition 4.6.6 and the result from Proposition 4.6.8 tell us that all those prime
numbers p not dividing 30l satisfy these conditions and can thus be removed
from the level.

Lastly we use Theorem 2.1 in [Rib94] which shows that the same result
holds for a newform g of weight 2 and a level in which all powers of l are also
removed. The weight remains 2 as the Galois representation is finite at l by
Proposition 4.6.8 and the fact that l > 5. The resulting level is the one given in
this theorem.

Remark 4.6.10. Note that the newforms in Theorem 4.6.9 are in fact those
that have the Serre level and weight of the corresponding irreducible represen-
tation ρAi,j ,λ. The result of this theorem would therefore also directly follow
from the Serre conjectures.

Joey Matthias van Langen

162 Chapter 4: On the sum of fourth powers in arithmetic progression

Subsection 4.6.5

Newform elimination

The strategy to complete the proof of Theorem 4.1.1 is to show that the con-
clusion of Theorem 4.6.9 will give a contradiction, implying that the implicit
assumption of a solution (a, b, c) to Equation (4.2) existing with gcd(a, b) = 1
and l > 5 must be false. We derive this contradiction by comparing traces of
Frobenius of ρEi,γ ,l : GKβ → GL2(Fl) and ρg,λ′ : GQ → GL2(Fλ) for g in one of
the given spaces. Note that since both representations are defined over different
Galois groups, we need a small result.

Lemma 4.6.11. We have that ρg,λ′ (Frobp) ∼ ρg,λ′
(

Frobdp

)
for any prime p

of Kβ of characteristic p - 30 l and a residue field of degree d. Here ∼ denotes
the two are conjugates.

Proof. Let p be an arbitrary prime of Kβ of characteristic p - 30l. Note that
a Frobenius element Frobp ∈ GKdec,p

maps to the homomorphism x 7→ x#Fp

inside GFp , just as does Frobdp for a Frobenius element Frobp ∈ GQp . This means
their difference lies in the ramification subgroup of GQp . Since ρg,λ′ is unramified

at p by Proposition 4.6.8 we find that ρg,λ′ (Frobp) ∼ ρg,λ′
(

Frobdp

)
.

Remark 4.6.12. The results from Section 2.10 were written later than the ar-
ticle [vL21b] this chapter is based on. Using the results from Section 2.10 one
could avoid Lemma 4.6.11 by working with the Galois representation of a split-
ting map for cEi,γ instead.

Now the rest of the proof becomes a computation.
First we compute the newforms in the spaces mentioned in Proposition 4.6.9.

These computations take quite some time, especially the computation for the
newforms of level 15360, which took approximately 5 days of computation time
in MAGMA [BCP97] using a desktop computer (Intel core i5-6600 CPU, 3.3
GHz). For comparison computing the space of newforms of level 11520 took just
under 8 minutes on the same machine and the space of newforms of level 23040
took just over an hour. For this reason all newforms were pre-computed and
then stored by saving the Fourier coefficients for all primes smaller than 500,
as this data is sufficient to compute the sought traces of Frobenius for those
primes.

Remark 4.6.13. The computations described before were done on Magma ver-
sion 2.24. Magma version 2.25 introduced a significant speedup in the compu-

Automating the modular method for Q-curves to solve Diophantine equations

Section 4.6: Q-curves 163

tation of newforms. The mentioned spaces of newforms can now be computed
in under 7 hours on a machine with similar specifications.

The table below gives some general data about each space of newforms. It
lists from left to right the level of the newforms, the dimension of the corre-
sponding newspace, the number of Galois conjugacy classes of newforms, the
possible sizes of the Galois conjugacy classes, and the total number of newforms
among all conjugacy classes. Note that the last is always twice the dimension
mentioned before, since the Galois conjugacy class of the character consists of
two characters.

Table 4.1: Data of the computed newforms
level dim. # conj. classes size of conj. classes # newforms

11520 192 30 4, 8, 16, 24, 32, 48 384
23040 384 20 8, 40, 48 768
15360 752 14 16, 64, 80, 96, 128, 176, 192 1504

We apply the procedure discussed in Remark 3.1.1 for all primes p of Kβ

of characteristic p with 5 < p < 30. Note that on the elliptic curve side we are
using the Galois representation ρEi,γ ,l instead. A standard result shows us that

ap(Ei,γ) =

#Fp + 1−#Ei,γ(Fp)

#Fp + 1

−#Fp − 1,

where the cases correspond to Ei,γ having good, split multiplicative and non-
split multiplicative reduction at p respectively. The possible ap(Ei,γ) can be
computed with the framework [vL21a] using the method trace_of_frobenius.
Note that as we use the Galois representation ρEi,γ rather than a Galois repre-
sentation of a specific splitting map, we have to use a FreyCurve rather than a
FreyQcurve for Ei,γ . This gives us the set Ap(Ei,γ).

To compute the values ap(g) for each newform g found before, we need
to compute Tr ρg,λ′(Frobp), where λ′ | l is the prime ideal corresponding to a
fixed λ | l in Proposition 4.6.9. By Lemma 4.6.11 these traces are the same
as Tr ρg,λ′(Frobdp), where p is the characteristic of p and d = [Fp : Fp]. This
trace can be computed from Tr ρg,λ′(Frobp) and det ρg,λ′(Frobp) by the fact
that for a 2-by-2 matrix A the value of TrAd can be expressed as a polynomial

Joey Matthias van Langen

164 Chapter 4: On the sum of fourth powers in arithmetic progression

in TrA and detA. Since p does not divide the level we have

Tr ρg,λ′(Frobp) = ap(g) (mod λ′)

det ρg,λ′(Frobp) = ε(p)p (mod λ′),

where ap(g) is the p-th coefficient in the Fourier expansion of g and ε is the
character of g. Note that the right hand side for both these values is the re-
duction of an algebraic integer that is independent of λ′. Using these algebraic
integers in the formula for TrAd we get the algebraic integer ap(g) from Re-
mark 3.1.1. As mentioned in Section 3.2 these integers can automatically be
computed in the framework [vL21a] by passing d as the argument power to
trace_of_frobenius.

We use the method eliminate_by_traces explained in Section 3.3.1 on
the curves E1,γ and E2,γ with their respective newforms. If we pass these
curves as FreyCurves the framework [vL21a] will automatically use the correct
powers mentioned in the previous paragraph. Performing this elimination on all
primes p - 30 of characteristic p < 30 leaves us with 14 newforms of level 11520,
12 newforms of level 23040 and 7 newforms of level 15360, for which not all
primes l > 5 could be eliminated.

The last step is to use both Frey curves simultaneously. This is known
as a multi-Frey approach and was also used in [DF14], [BC12] and [Che12].
Instead of computing the sets Ap(E1,γ) and Ap(E2,γ) independently we now
compute one set Ap ⊂ Z2 as discussed in Section 3.3.1. When performing this
elimination on all primes p - 30 of characteristic p < 50 we see all primes l > 5
can be eliminated. If a solution (a, b, c) with gcd(a, b) = 1 to Equation (4.2)
would exist for l > 5, then this would contradict Theorem 4.6.9. Therefore no
such solution to Equation (4.2) can exist, proving Theorem 4.1.1 for l > 5 prime.

Remark 4.6.14. Most prime exponents l > 5 can already be eliminated by only
looking at the curve E2,γ at more primes than considered here and using more
restrictions on a and b. However it seems impossible to eliminate the case l = 7
in this way, hence the use of the multi-Frey curve approach.

Automating the modular method for Q-curves to solve Diophantine equations

Chapter 5

Explicitly determining
perfect powers in several
elliptic divisibility
sequences

This chapter is joint work with Sander Dahmen. A modified version of it will be
submitted for publication. The main contributions of the author of this disser-
tation include Subsection 5.2.1, Section 5.3, Section 5.4, and the computations
done with the framework [vL21a] for the examples in Section 5.5. All code files

mentioned in this chapter can be found in the EDS example directory.

Section 5.1

Introduction

Given a non-singular Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (5.1)

with integral coefficients and a non-torsion point P ∈ E(Q), one can use the
group law on E to write

x(mP) =
Am
B2
m

(5.2)

for any positive integer m, with Bm > 0 and gcd(Am, Bm) = 1. The sequence
(Bm)m∈Z>0

is known as an elliptic divisibility sequence. In particular, as is well
known, for all natural numbers n,m it satisfies

n|m⇒ Bn|Bm. (5.3)

Joey Matthias van Langen

https://github.com/jmvlangen/modular-method-package/blob/master/examples/EDS

166 Chapter 5: Determining perfect powers in elliptic divisibility sequences

Some finiteness results have been achieved for perfect powers in elliptic divisi-
bility sequences; see e.g. [ERS07] and [Rey12]. In particular, if E is a Mordell
curve (so with j-invariant j(E) = 0) and B1 > 1, then there are finitely many
perfect powers in (Bm); see [Rey12, Theorem 1.2]. The method of proof includes
a (regular) modular approach using elliptic curves over Q.

Similarly, if E has j-invariant 1728 and B1 > 1, then Dahmen and Reynolds
study (in a preprint) again the finiteness of perfect powers in the corresponding
sequence. In this case, a Frey Q-curve is associated to the problem. Its field of
definition is sometimes Q, but ‘generically’ it is a quadratic number field. We
do not strictly depend on their results, but our Frey Q-curve construction is
similar.

In the remainder of this chapter we focus on the j = 1728 case. The aim
is to show that for many choices of E,P we can explicitly find a finite set S of
primes such for all primes l not in S the associated elliptic divisibility sequence
contains no l-th powers. We will work out several examples illustrating the
power of the method. Our main Diophantine results are given in Section 5.5,
namely Theorem 5.5.2, Theorem 5.5.6, as well as the results mentioned in Sub-
section 5.5.3. Most notably are cases (ii), (iii), and (viii) in Table 5.3 as no
alternative approaches for these seem to be available in the literature. In prin-
ciple, we believe that many more examples could be computed along similar
lines of our approach.

In order to compute the levels of newforms associated with a Frey Q-curve E,
one needs to compute a particular twist of the curve. Given an abelian num-
ber field K over which E is completely defined and for which a splitting map
factors over GKQ , this twist can be computed from a map α : GKQ → K∗ whose

coboundary is a 2-cocycle
(
GKQ
)2 → {±1} associated with the Frey Q-curve.

In the literature a map α : GKQ → O∗K often suffices, but we shall show that
this is not the case in the example corresponding to Theorem 5.5.6. We will
demonstrate that we can instead take α : GKQ → O∗K,S , where O∗K,S is the ring
of S-units for a non-empty finite set S.

Section 5.2

Associating a Q-curve

Let D be a nonzero integer not divisible by a fourth power of a prime and
consider the Weierstrass equation

ED : y2 = x3 +Dx. (5.4)

Automating the modular method for Q-curves to solve Diophantine equations

Section 5.2: Associating a Q-curve 167

Note that T = (0, 0) ∈ ED(Q) is a 2-torsion point. For any point P ∈ ED(Q)
with P 6= O, T take P̂ = T − P ∈ ED(Q) \ {O, T}. Since P + P̂ + T = O, all
of these points are on the line y = yP

xP
x. Substituting this in the equation of ED

and comparing coefficients of x2 tells us that

xP + xP̂ + 0 =

(
yP
xP

)2

=
x3
P +DxP
x2
P

= xP +
D

xP
,

hence xPxP̂ = D. If we write in lowest terms we get

P =

(
A

B2
,
C

B3

)
and P̂ =

(
Â

B̂2
,
Ĉ

B̂3

)
,

with A,B,C, Â, B̂, Ĉ ∈ Z, gcd(AC,B) = gcd(ÂĈ, B̂) = 1 and B, B̂ > 0. This
implies that AÂ = DB2B̂2. Since gcd(A,B) = gcd(Â, B̂) = 1 there are a, â ∈ Z
such that A = aB̂2 and Â = âB2. Note that D = aâ, hence one can compute a
and thus â = D

a easily from the fact that gcd(A,D) = |a| gcd(B̂2, â) = |a|, noting
that the sign of a must be the same as the sign of A. Now substituting the
coordinates of P into the equation of ED and multiplying by B6 tells us that

C2 = a3B̂6 + a2âB4B̂2.

Therefore C = aB̂w for some w ∈ Z and dividing the equation above by a2B̂2

gives
w2 = aB̂4 + âB4. (5.5)

Note that in this equation B and B̂ are coprime as gcd(B, B̂) | gcd(B,A) = 1.
Furthermore, substituting the coordinates of P̂ into the equation for ED gives
rise to the same diophantine equation as Ĉ = B̂3 yP

xP
xP̂ = âBw. For future

reference, we note that actually B, B̂, and w are pairwise coprime since also
gcd(w,B)| gcd(C,B) = 1 and gcd(w, B̂)| gcd(Ĉ, B̂) = 1.

The condition that B is an l-th power with l > 1 now leads to a so-called gen-
eralized Fermat equation of signature (2, 4, 4l), hence also of signature (2, 4, l).
To the Fermat equation y2 − dx4 = ezl (for given nonzero integers d, e), we
associate (basically as in [DU09]) the Frey Q-curve

Ed,x,y : Y 2 = X3 + 4
√
dxX2 + 2(dx2 +

√
dy)X. (5.6)

We associate to (5.5) the Q-curve above with d = a, x = B̂ =: z, and y = w,
and for later reference a ‘twisting parameter’ γ (some algebraic integer), i.e.

Eγa,z,w : Y 2 = X3 + 4
√
azγX2 + 2

(
az2 +

√
aw
)
γ2X. (5.7)

Joey Matthias van Langen

168 Chapter 5: Determining perfect powers in elliptic divisibility sequences

This model has c4-invariant

cγ4,a,z,w = −25
√
a
(
3w − 5

√
az2
)
γ2

discriminant

∆γ
a,z,w = −29

√
a

3 (
w −
√
az2
) (
w +
√
az2
)2
γ6,

and j-invariant

ja,z,w = 26 (3w − 5
√
az2)3

(w +
√
az2)2(w −

√
az2)

.

Proposition 5.2.1. The invariants cγ4,a,z,w and ∆γ
a,z,w are coprime outside all

primes dividing 2γa.

Proof. Suppose a finite prime p divides cγ4,a,z,w and ∆γ
a,z,w but not 2γa, then p

should divide z = B̂ and w, which are coprime.

Corollary 5.2.2. At all finite primes not dividing 2γa the model Eγa,z,w is
minimal and has semi-stable (i.e. non-additive) reduction.

Proposition 5.2.3. Suppose B is divisible by a prime number p, with p3 | B
if p = 2, then ja,z,w is not integral at primes above p. In particular Eγa,z,w has
potentially multiplicative reduction at such primes.

Proof. Suppose that p | B then we know that p - A = az2 and p - C = azw.
Since âB4 = (w +

√
az2)(w −

√
az2) primes above p divide the denominator,

but not the numerator of ja,z,w if p 6= 2.
When p = 2, let p be a prime above 2 and suppose ordp ja,z,w ≥ 0. Writing

this out gives

6 ordp 2 + 3 ordp(3w − 5
√
az2) ≥ 2 ordp(w +

√
az2) + ord p(w −

√
az2). (5.8)

If ordp(w −
√
az2) > ordp 2 then ordp(3w − 5

√
az2) = ordp(w +

√
az2) = ordp 2

and hence ordp(w −
√
az2) = ordp 2 (ord2 â+ 4 ord2B − 1). Substituting this in

equation (5.8) gives us

9 ≥ ord2 â+ 4 ord2B + 1,

contradicting 8 | B. We thus have ordp(w −
√
az2) = ordp 2 and therefore we

have that ordp(w +
√
az2) = ordp 2 (ord2 â+ 4 ord2B − 1) > 3 ordp 2. We thus

find that

3 ordp(3w − 5
√
az2) ≥ ordp 2 (2 ord2 â+ 8 ord2B − 1) > 9 ordp 2.

Automating the modular method for Q-curves to solve Diophantine equations

Section 5.2: Associating a Q-curve 169

This contradicts that 3(w +
√
az2)− (3w − 5

√
az2) = 8w has valuation 3 ordp 2,

completing the proof.

Corollary 5.2.4. If B is divisible by a prime number p, with p3 | B if p = 2,
then Ea,z,w does not have complex multiplication.

Proof. Follows directly from [Sil94, II, Theorem 6.1]

Whenever the point P is not clear from the context, we will add an index P
to the variables mentioned above, e.g. aP , AP , etc. If ED has positive rank
and P ∈ ED(Q) is a non-torsion point we will denote the variables associated
to Pm := mP by an index m ∈ Z \ {0}, e.g. am := aPm , Am := APm , etc.

Subsection 5.2.1

a only depends on class modulo [2]ED(Q)

We will now show that the value of a for a point only depends on its class modulo
the image of the multiplication by 2 map. This will in particular show that the
Frey Q-curve associated with Pm (m ∈ Z \ {0}, P ∈ ED(Q) non-torsion) only
depends on the parity of m. Therefore, the construction (5.7) yields at most 2
distinct Frey Q-curves up to twisting by γ (in the unknowns z and w) associated
to an elliptic divisibility sequence.

Note that the short exact sequence

1 ED[2] ED(Q) ED(Q) 1,
[2]

induces a long exact sequence in Galois cohomology containing a map

α : ED(Q) = H0
(
GQ, ED(Q)

)
→ H1 (GQ, ED[2]) .

The kernel of this map is precisely the image of [2] : ED(Q)→ ED(Q), hence
this map will be useful for proving things about points modulo this image. To
work with the codomain of this map, we note that ED[2] = {O, T, T+1, T−1},
where

Tδ = (δ
√
−D, 0),

for a fixed choice of
√
−D.

For a fixed [f] ∈ H1(GQ, ED[2]) we can choose functions fδ : GQ → Z/2Z
such that

f(σ) = f+1(σ)T+1 + f−1(σ)T−1 for all σ ∈ GQ.

Joey Matthias van Langen

170 Chapter 5: Determining perfect powers in elliptic divisibility sequences

Since f is a cocycle we find that f(σ) + σf(τ) = f(στ) for all σ, τ ∈ GQ, hence{
f+1(σ) + f+1(τ) = f+1(στ) and f−1(σ) + f−1(τ) = f−1(στ) if σ ∈ GQ(

√
−D)

f+1(σ) + f−1(τ) = f+1(στ) and f−1(σ) + f+1(τ) = f−1(στ) otherwise.

This implies fδ|GQ(
√
−D)
∈ hom(GQ(

√
−D),Z/2Z) ∼= Q

(√
−D

)∗
/
(
Q
(√
−D

)∗)2

,

hence we can construct maps αδ : ED(Q)→ Q
(√
−D

)∗
/
(
Q
(√
−D

)∗)2

, by

combining the map α with [f] 7→ fδ|GQ(
√
−D). Note that the latter is well-

defined as the relevant coboundaries are
∂O = ∂T = (σ 7→ O)

∂T+1 = ∂T−1 =

(
σ 7→

{
O if σ ∈ GQ(

√
−D)

T otherwise

)
.

In case −D is a square it is clear that the maps αδ encode all information of
the map α. In the case that there exists a σ ∈ GQ \GQ(

√
−D) this remains true

and in fact one of the maps αδ becomes redundant. This can be seen as for
any τ ∈ GQ(

√
−D) we have

f−1(τ) = f−1(τσ−1)− f−1(σ−1) = f+1(στσ−1)− f+1(σ)− f−1(σ−1)
= f+1(στσ−1)− f+1(1) = f+1(στσ−1).

Furthermore the value of f+1 at any element of GQ \GQ(
√
−D) can be derived

from f+1(σ). Since there exists a non-trivial coboundary in this case the exact
value of f+1(σ) does not matter for the cohomology class [f].

By making the maps αδ : ED(Q)→ Q
(√
−D

)∗
/
(
Q
(√
−D

)∗)2

explicit we

obtain the following result.

Proposition 5.2.5. There exist homomorphisms

αδ : ED(Q)→ Q
(√
−D

)∗
/
(
Q
(√
−D

)∗)2

for δ ∈ {±1} such that the map

(α+1, α−1) : ED(Q)→
(
Q
(√
−D

)∗
/
(
Q
(√
−D

)∗)2
)2

has kernel {[2]P : P ∈ ED(Q)}. Explicitly these homomorphisms are given by

αδ(P) =

{
[x+ δ

√
−D] if P = (x, y)

[1] if P = O.

Automating the modular method for Q-curves to solve Diophantine equations

Section 5.2: Associating a Q-curve 171

Proof. The existence of these maps has already been proven using the map α.
To make them explicit, note that α maps a point P ∈ ED(Q) to the class
of f : σ 7→ σQ−Q for any Q ∈ ED(Q) such that [2]Q = P .

Let K = Q(
√
−D) and pick δ ∈ {±1} and a point P = (x, y) ∈ ED(Q) arbi-

trary. Note that αδ(P) = [γ] for some γ ∈ K∗ such that{
α(σ) ∈ {O, T−δ} if σ ∈ GK(

√
γ)

α(σ) ∈ {T, Tδ} if σ ∈ GK \GK(
√
γ).

All that remains to check is that in fact γ = x+ δ
√
−D satisfies this condition.

Let Q = (xQ, yQ) ∈ ED(Q) be a point such that [2]Q = P . The tangent line
to ED at Q is given by

Y =
3x2

Q +D

2yQ
(X − xQ) + yQ.

By substituting this in the equation for E we get a cubic polynomial in X of
which the roots are x and xQ twice. Looking at the coefficient of X2 this tells
us that

2xQ + x =

(
3x2

Q +D

2yQ

)2

=
9x4

Q + 6Dx2
Q +D2

4x3
Q + 4DxQ

,

hence xQ is a root of the polynomial

f(X) = X4 − 4xX3 − 2DX2 − 4xDX +D2.

Note that all four roots of this polynomial correspond to the x-coordinates
of the four possible points Q, i.e. the x-coordinates of Q,Q+ T,Q+ T+1,
and Q+ T−1.

Now over the field K(
√
γ) the polynomial f(X) splits as

f(X) = (X2 − ωX − δ
√
−Dω −D)(X2 − ωX − δ

√
−Dω −D)

where ω = 2x+ 2 y√
γ and ω = 2x− y√

γ . Assuming without loss of generality

that xQ is a root of the first factor, the other root of the first factor is ω − xQ,
which we claim to be the x-coordinate of Q+ T−δ. This would imply that{ σQ−Q ∈ {O, T−δ} if σ ∈ GK(

√
γ)

σQ−Q ∈ {T, Tδ} if σ ∈ GK \GK(
√
γ),

as only σ 6∈ GK(
√
γ) switch the factors of f(X).

Joey Matthias van Langen

172 Chapter 5: Determining perfect powers in elliptic divisibility sequences

It thus remains to prove the claim that ω − xQ is the x-coordinate ofQ+ T−δ.
Note that the line through Q and T−δ is given by

Y =
yQ

xQ + δ
√
−D

(X + δ
√
−D).

Doing the same substitution trick, we find that the x-coordinate of Q+ T−δ is

β =
(

yQ
xQ+δ

√
−D

)2

− xQ + δ
√
−D

=
xQ(xQ−δ

√
−D)

xQ+δ
√
−D − (xQ − δ

√
−D)

=
−δ
√
−D(xQ−δ

√
−D)

xQ+δ
√
−D .

To see that this is the same as ω − xQ, note that

(β + xQ − 2x)2 =
(

x2
Q−D

xQ−δ
√
−D − 2x

)2

=
x4
Q−2Dx2

Q+D2

(xQ−δ
√
−D)2

− 4x
x2
Q−D

xQ−δ
√
−D + 4x2

=
4 xx3

Q+4 xDxQ

(xQ−δ
√
−D)2

− 4x
x2
Q−D

xQ−δ
√
−D + 4x2

= 4x
x2
Q+δ
√
−DxQ−x2

Q+D

xQ−
√
−D + 4x2

= 4x2 − δ
√
−Dx =

(
y√
γ

)2

.

So for the right choice of
√
γ we have β + xQ = ω.

Now we return to our premise. Suppose we have two points P,Q ∈ ED(Q)
which have the same class modulo [2]ED(Q), but aP 6= aQ. Note first of all that

[aP] = [AP] = [xP] = [y2
pxP] = [xP+D] =

{
[α+1(P)][α−1(P)] if −D is a square
[N(α+1(P))] otherwise,

and similarly for [aQ]. Therefore [aP] = [aQ] ∈ Q∗/(Q∗)2 implying that we must
have |aP | 6= |aQ|. Without loss of generality we may then assume that there is
a prime number p such that

0 ≤ ordpAP < min{ordpAQ, ordpD}.

The fact that P and Q have the same class modulo [2]ED(Q) implies
that α+1(P) = α+1(Q). Note that α+1(P) is the class of xP +

√
−D which is the

Automating the modular method for Q-curves to solve Diophantine equations

Section 5.3: Level lowering results 173

same class as AP +B2
P

√
−D and similarly α+1(Q) is the class of AQ +B2

Q

√
−D.

The classes being the same implies that(
AP +B2

P

√
−D

)(
AQ +B2

Q

√
−D

)
=
(
b+ c

√
−D

)2

,

for some b, c ∈ Q. Since the left hand side is actually in the ring of integers
of Q(

√
−D) we can in fact say that b, c ∈ 1

2Z with b 6∈ Z ⇐⇒ c 6∈ Z. Writing
out the equation in the case that −D is not a square in Z gives us

APB
2
Q +AQB

2
P = 2 bc and

APAQ −DB2
PB

2
Q = b2 −Dc2.

Since the left hand side of the first equation is an integer, we find that b, c ∈ Z.
Furthermore as ordpAQ > ordpAP ≥ 0 we have ordpBQ = 0 and the first equa-
tion tells us that

ordpAP = ordp 2 + ordp b+ ordp c.

This implies ordp b ≥ 1
2 ordpD > 0 as otherwise b2 would be the only term in the

second equation with the smallest order of p. Note that [aP] = [aQ] ∈ Q∗/(Q∗)2

implies that min{ordpAQ, ordpD} − ordpAP is a multiple of 2, so

1

2
ordpD ≤ ordp 2 + ordp b+ ordp c = ordpAP ≤ ordpD − 2,

which would imply that ordpD ≥ 4 contradicting one of our initial assump-
tions. Therefore indeed the value of aP only depends on the class of P mod-
ulo [2]ED(Q) in case −D is not a square.

In the case that −D is a square min{ordpAQ, ordpD} − ordpAP is still a
multiple of 2. Therefore we have ordpAQ ≥ ordpD = 2 and ordpAP = 0. This
implies that ordp(AP +B2

P

√
−D) = 0 and ordp(AQ +B2

Q

√
−D) = 1, but this

contradicts the fact that their product should be a square. Therefore the result
also holds when −D is a square.

Section 5.3

Level lowering results

Since Eγa,z,w(Q) is a Q-curve, it follows from Theorem 2.1.9 and Theorem 2.1.10
that Eγa,z,w is the quotient of the abelian variety Af associated with some new-
form f ∈ S2(N, ε). If a is a square and γ ∈ Q∗, then we may assume f is rational

Joey Matthias van Langen

174 Chapter 5: Determining perfect powers in elliptic divisibility sequences

with trivial character and level equal to the conductor of Eγa,z,w, as Eγa,z,w is
defined over Q. In that case we will have that

ρE,l ∼= ρf,l : GQ → GL2(Ql)

for all prime numbers l. Otherwise the level and character can be determined
by the theory in Section 2.8 and Section 2.9 when γ is chosen according to
Corollary 2.7.8. Furthermore we then have that

ρβ,λ ∼= ρf,l : GQ → GL2(Lβ),

for a splitting map β for cEγa,z,w and any prime λ of Lβ .
In this section we will show that if B is an l-th power and λ | l is a prime of

the coefficient field of the newform f , then we can apply level lowering results to
the mod λ representation ρf,λ. First of all we will need that ρf,λ is absolutely
irreducible. We can derive this from a corollary of Theorem 2.11.1 when a is
not a square.

Proposition 5.3.1. Let P ∈ ED(Q) \ {O, T} be a point such that BP 6= ±1
is an l-th power with l an odd prime number and aP not a square. Let f be
a newform corresponding to an abelian variety of GL2-type that arises from a
splitting map for EγaP ,zP ,wP . For any prime λ | l in the coefficient field of f , the
Galois representation ρf,λ : GQ → GL2(Fl) is irreducible if either

� l = 3 and a is not the norm of an element in Q(
√
−2);

� l = 5 and a is not the norm of an element in Q(
√
−1);

� l = 7 or l = 13; or

� l = 11 or l > 13, and BP is divisible by a prime number p > 3.

Proof. Since l ≥ 3 and BP 6= ±1 there must be a prime p | B satisfying the
condition of Proposition 5.2.3. By Corollary 5.2.4 the curve EγaP ,zP ,wP there-
fore does not have complex multiplication allowing the application of Theo-
rem 2.11.1. The cases for l = 3 and l = 5 immediately follow. Since jaP ,zP ,wP
is not integral, the case l = 13 is also clear. For the case l = 7 we still need to
check two j-invariants, but by solving for which points P we have that jaP ,zP ,wP
is one of the non-integral j-invariants listed we find that BP is not a 7-th power.
For the cases l = 11 and l > 13 the fact that a prime p | BP exists with p > 3
tells us we have potential multiplicative reduction at that prime.

Automating the modular method for Q-curves to solve Diophantine equations

Section 5.4: The case a = 1 175

Now we show that, given irreducibility, we can apply level lowering results
to the Galois representation ρf,λ.

Proposition 5.3.2. Let P ∈ ED(Q) \ {O, T} be a point such that BP 6= ±1
is an l-th power with l an odd prime number. Suppose that E = EγaP ,zP ,wP is
defined over a number field K and that f ∈ S2(N,χ) is a newform such that

ρf,λ|GK ∼= ρE,l : GK → Aut(E[l]) ∼= GL2(Fl),

for some prime λ | l in the coefficient field of f . Let S be the set of prime num-
bers that ramify in K, divide 2D, or divide the norm of γ. If ρf,λ is irreducible,

then there exists a newform g ∈ S2(Ñ , χ) and a prime λ′ | l in the coefficient
field of g such that

ρg,λ′ ∼= ρf,λ : GQ → GL2(Fl),

and Ñ =
∏
p∈S p

ordpN .

Proof. For any prime number p not in S we know that p does not ramify
in K, hence the ramification subgroup Ip ⊆ GQ is a subgroup of GK . This
implies that ρf,λ|Ip ∼= ρE,l|Ip. Note that E has good or multiplicative reduc-
tion at each prime p above p by Corollary 5.2.2 and is also a minimal model
at those primes. Furthermore the assumption that BP is an l-th power shows
that l | ordp ∆γ

aP ,zP ,wP as p - 2D and p also does not divide the norm of γ. It
is well known that this implies that ρE,l|Ip is trivial when p 6= l and finite flat
if p = l.

The above results show that all primes p 6∈ S do not show up in the Serre
level of ρf,λ. In case l 6∈ S these results also show that the Serre weight is 2. As
the character of ρf,λ is just the character of f , the result therefore follows from
the proven Serre conjectures [KW09a, KW09b] in most cases. If not, the level
lowering results required for the proof of Serre’s conjectures can still be applied
here to obtain the newform g.

Section 5.4

The case a = 1

The case a = 1 is special as shown by the following result.

Proposition 5.4.1. For any P ∈ [2]ED(Q) \ {O} we have aP = 1.

Joey Matthias van Langen

176 Chapter 5: Determining perfect powers in elliptic divisibility sequences

Proof. We use the homomorphisms αδ : ED(Q)→ Q(
√
−D)∗/(Q(

√
−D)∗)2 from

Proposition 5.2.5. For any P ∈ [2]ED(Q) and δ ∈ {±1} we know that αδ(P) = [1].
Furthermore we have seen that

Q∗/(Q∗)2 3 [aP] =

{
[α+1(P)][α−1(P)] if −D is a square

[N(α+1(P)] otherwise,

so aP is a square. We know that α+1(P) = [AP +B2
P

√
−D], so AP +B2

P

√
−D

is a square in OQ(
√
−D). We can write AP +B2

P

√
−D = (b+ c

√
−D)2

with b, c ∈ 1
2Z if −D is not a square to find that{

AP = b2 −Dc2
B2
P = 2bc.

Since b+ c
√
−D ∈ OQ(

√
−D) we may assume that b, c ∈ Z from the second equa-

tion. Now any prime dividing aP divides both AP and D, hence therefore also b
and thus BP . Since gcd(AP , BP) = 1 this shows us that aP = 1 in this case.

If −D is a square we know that AP +B2
P

√
−D = b2 for some b ∈ Z. Note

that for any prime p | aP we have p - BP and therefore

ordpAP ≥ ordp aP ≥ 2 >
1

2
ordpD = ordp(B

2
P

√
−D)

by our assumptions on D. This implies that

2 ordp b = ordp(AP +B2
P

√
−D) =

1

2
ordpD > 0,

which contradicts the previous equation. Therefore aP = 1 also in this case.

This result shows that for any elliptic divisibility sequence generated by P
the curve Eγ1,z,w is the Frey curve corresponding to the points P2m,m ∈ Z. Note
that the curve Eγ1,z,w is an elliptic curve defined over Q when γ ∈ Q∗ and does
not depend on D. We shall prove some general results about this curve here.

First we will try to find the twist γ ∈ Q∗ such that the conductor of Eγ1,z,w is
as small as possible. For this we may assume that γ is a squarefree integer. Note
that if an odd prime p divides γ then cγ4,1,z,w and ∆γ

1,z,w are both divisible by p,

but the model is still minimal as either p4 - cγ4,1,z,w or p6 - ∆γ
1,z,w. So for an odd

prime p the conductor exponent at p would be at least 2 if p | γ, whereas it would
be 0 or 1 otherwise by Corollary 5.2.2. We therefore want γ ∈ {1,−1, 2,−2}.

Automating the modular method for Q-curves to solve Diophantine equations

Section 5.4: The case a = 1 177

Table 5.1 gives the possible conductor exponents at 2 for the curves Eγ1,z,w
with γ ∈ {1,−1, 2,−2}. To compute these conductor exponents we used that
the curve Eγ1,z,w is 2-isogenous over Q to the curve

Ẽγ1,z,w : Y 2 = X3 − 8 zγX2 + 8
(
z2 − w

)
γ2X.

Since isogenous curves have isomorphic l-adic Galois representations, their con-
ductors are by definition the same. In the framework [vL21a] we can use this
to perform the conductor computation on both curves simultaneously, and use
the result from the one that finishes first for each pair z, w. The code to do this
can be found in a1conductors.rst .

Remark 5.4.2. Note that the only assumption used to generate Table 5.1 is
that 2 does not divide both z and w. When z and w correspond to a point
on ED we have that

(w + z2)(w − z2) = w2 − z4 = DB4,

so we obtain further limitation based on the order of 2 in D and B. In par-
ticular if we assume B is an l-th power with l > 1 the cases with conductor
exponents 2, 3, and 5 do not occur.

We will assume that whenever we use Eγ1,z,w from now on, γ is chosen such
that the conductor exponent at 2 is as small as possible. Note that to do this γ
might depend on the value of z and w modulo 28.

We will also show here that the Galois representations associated to the
case a = 1 are irreducible.

Theorem 5.4.3. For all prime numbers l > 5 and γ ∈ Q∗ the mod l Galois
representation ρEγ1,z,w,l : GQ → Aut(Eγ1,z,w[l]) ∼= GL2(Fl) is irreducible.

Proof. Note that E1,z,w has a rational 2-torsion point. If ρ
Eγ1,z,w
l would be re-

ducible, then E would correspond to a non-cuspidal Q-rational point on X0(2l).
The well known deep fact that X0(2l) does not have such points for l > 7 (see
e.g. [Dah08, Theorem 22-(ii)] for precise references) immediately proves the
result for l > 7. For l = 7 we see if the j-invariants of points on X0(2l) can
match j1,z,w. Note that we have

j1,z,w = 26 (3 t− 5)3

(t− 1)(t+ 1)2
,

after rewriting with t = w
z2 .

Joey Matthias van Langen

https://github.com/jmvlangen/modular-method-package/blob/master/examples/EDS/a1conductors.rst

178 Chapter 5: Determining perfect powers in elliptic divisibility sequences

γ = 1 γ = −1 γ = 2 γ = −2
8 8 8 8 if ord2(w2 − z4) = 0
7 7 7 7 if ord2(w2 − z4) = 3
4 3 6 6 if w + z2 ≡ 8 (mod 32) and z ≡ 1 (mod 4)
3 4 6 6 if w + z2 ≡ 8 (mod 32) and z ≡ 3 (mod 4)
2 4 6 6 if w + z2 ≡ 24 (mod 32) and z ≡ 1 (mod 4)
4 2 6 6 if w + z2 ≡ 24 (mod 32) and z ≡ 3 (mod 4)
6 6 4 2 if w − z2 ≡ 8 (mod 32) and z ≡ 1 (mod 4)
6 6 2 4 if w − z2 ≡ 8 (mod 32) and z ≡ 3 (mod 4)
6 6 3 4 if w − z2 ≡ 24 (mod 32) and z ≡ 1 (mod 4)
6 6 4 3 if w − z2 ≡ 24 (mod 32) and z ≡ 3 (mod 4)
5 5 6 6 if ord2(w + z2) = 4
6 6 5 5 if ord2(w − z2) = 4
3 4 6 6 if ord2(w + z2) = 5, 6 and z ≡ 1 (mod 4)
4 3 6 6 if ord2(w + z2) = 5, 6 and z ≡ 3 (mod 4)
6 6 4 3 if ord2(w − z2) = 5, 6 and z ≡ 1 (mod 4)
6 6 3 4 if ord2(w − z2) = 5, 6 and z ≡ 3 (mod 4)
0 4 6 6 if ord2(w + z2) = 7 and z ≡ 1 (mod 4)
4 0 6 6 if ord2(w + z2) = 7 and z ≡ 3 (mod 4)
6 6 4 0 if ord2(w − z2) = 7 and z ≡ 1 (mod 4)
6 6 0 4 if ord2(w − z2) = 7 and z ≡ 3 (mod 4)
1 4 6 6 if ord2(w + z2) ≥ 8 and z ≡ 1 (mod 4)
4 1 6 6 if ord2(w + z2) ≥ 8 and z ≡ 3 (mod 4)
6 6 4 1 if ord2(w − z2) ≥ 8 and z ≡ 1 (mod 4)
6 6 1 4 if ord2(w − z2) ≥ 8 and z ≡ 3 (mod 4)

Table 5.1: The conductor exponent of Eγ1,z,w at 2 for various values of γ.

A computation in Magma [BCP97] (see irreducibility a1.m near the

end) tells us that X0(14) is an elliptic curve with six Q-rational points with j-
invariants∞,−3375, 16 581 375. If we equate these to j1,z,w we find t = ±1,± 65

63 .
Since the denominator of t is a square the only option is t = ±1, which would
give z = ±1 and w = ±1, meaning B = 0. This does not correspond to a
point P ∈ ED(Q) \ {O, T}.

We can extend Theorem 5.4.3 to l = 3, 5 for specific D as follows. First

assume that the mod l Galois representation ρ
Eγ1,z,w
l : GQ → Aut(Eγ1,z,w[l]) is

reducible, then Eγ1,z,w corresponds to a Q-point on X0(l). Note that X0(l) is

Automating the modular method for Q-curves to solve Diophantine equations

https://github.com/jmvlangen/modular-method-package/blob/master/examples/EDS/irreducibility_a1.m

Section 5.4: The case a = 1 179

a rational curve for l = 3, 5 so we can parameterize it with a single parame-
ter s. We let jl : X0(l)→ X(1) be the j-invariant in which case we get that the
curve Eγ1,z,w should correspond to a point on the curve

Cl : j1,z,w(t) = jl(s)

Computing this curve explicitly in Magma [BCP97] we see that it also is a
rational curve, hence it has a parameterization. Parameterizing with respect to
points [x : y] on P1 we get that

w

z2
= t =

wl(x, y)

zl(x, y)
.

Since any point of P1 can be written with coprime integer coordinates, we thus
know there are coprime a, b ∈ Z and some c ∈ Q∗ such that{

cw = wl(a, b),
cz2 = zl(a, b).

By rescaling we may assume wl and zl have integer coefficient in which case the
denominator of c must be one as w and z2 are coprime. Therefore we may also
assume c ∈ Z \ {0}.

From these equations it follows that

c2DB4 = (cw)2 − (cz2)2 = wl(a, b)
2 − zl(a, b)2.

Computing the right hand side in Magma we actually see that

c2DB4 = 28c1(a, b)lc2(a, b)lc3(a, b)c4(a, b), (5.9)

with c1, c2, c3, c4 all linear factors. By choosing a different parameterization
of P1 we may assume that

c1(a, b) = a,
c2(a, b) = b,
c3(a, b) = a− b.

Making this parameterization explicit in Magma we find that

c4(a, b) =

{
a+ 8 b if l = 3
a+ 4 b if l = 5.

Joey Matthias van Langen

180 Chapter 5: Determining perfect powers in elliptic divisibility sequences

Since a and b were coprime we can easily see that the ci are pairwise coprime
outside primes dividing 2 l. Therefore equation (5.9) implies that all the ci(a, b)
must be fourth powers up to factors consisting of divisors of 2 lc2D, i.e. we can
write

ci(a, b) = aib
4
i with ai, bi ∈ Z.

Note that as c must divide the resultant of zl and wl there is only a finite list of
possible (a1, a2, a3, a4). We can compute this list explicitly for a given D using
Magma. For each choice of the ai the linear relations between the ci give us
four generalized Fermat equations of signature (4, 4, 4) that should be satisfied.
Reaching a contradiction now follows by eliminating one such equation for each
choice of ai.

To eliminate Fermat equations we first check if they have local solutions
over Q2, Q3, or Q5. If all four corresponding to a choice of the ai do, we look
at the quotient

P2 ⊇
{
AX4 +BY 4 + CZ4 = 0

}
→
{
Y 2Z = X3 + BC

A2 XZ
2
}
⊆ P2

[x : y : z] 7→ [By2z : Bx2y : −Az3]

and the other genus 1 quotients obtained by interchanging X, Y and Z. If
one of these elliptic curves has rank 0 we can determine the solutions of the
corresponding Fermat equation that map to its torsion points. This in turn
gives us the possible values of a and b and hence the values of z, w for which the
mod l representation may still be reducible. If we can do this for all remaining
choices of ai we thus get an explicit list of points on ED(Q) such that if Eγ1,z,w
does not correspond to one of these points, then its mod l Galois representation
is irreducible.

We did the above computation for some D that will be used in the examples
below (see irreducibility a1.m). The points for which we could not show

that the mod l Galois representation is irreducible in this way, are listed in

D l = 3 l = 5
−2 O O
3 O O, (1,±2),

(
121
9 ,± 1 342

27

)
−17 O O
125 O,

(
121
4 , 1 419

8

)
O

Table 5.2: Points on ED(Q) such that the mod l Galois representation of Eγ1,z,w
is irreducible if it does not correspond to that point.

Automating the modular method for Q-curves to solve Diophantine equations

https://github.com/jmvlangen/modular-method-package/blob/master/examples/EDS/irreducibility_a1.m

Section 5.5: Explicit examples 181

Table 5.2. The code written to do so can easily be reused to compute this for
further values of D.

Section 5.5

Explicit examples

In this section we will make some choices of integers D and points P1 ∈ ED(Q)
for which we can prove the non-existence of l-th powers among the Bm with
an explicit lower bound on the prime number l. We will use the requirements
mentioned in the previous sections implicitly unless it is not clear they can be
used.

Subsection 5.5.1

Example for D = 125

Take D = 125, then ED(Q) has rank 1 and T = (0, 0) is the only non-trivial
torsion point. Using SageMath we can compute that ED(Q) is generated by
the points P =

(
121
4 , 1419

8

)
and T . We have aP = 1, so all non-zero multiples

of P correspond to the Frey curve Eγ1,z,w, where we choose γ as in the previous
section.

The level of the newforms that remain after level lowering is the product
of the 2-part and 5-part of the conductor of Eγ1,z,w. The 2-part can be read
of from Table 5.1, where we note that Remark 5.4.2 applies and 2 | BmP for
all m ∈ Z \ {0} by (5.3). We can compute that the conductor exponent at 5 is
always 1, so the levels of the newforms after level lowering must be{

5 if w2 − z4 ≡ 28 (mod 29)
10 if w2 − z4 ≡ 0 (mod 29).

Note that there are no newforms of level 5 or level 10, hence none of the BmP
with m ∈ Z \ {0} can be l-th powers for l an odd prime number.

There is another Frey curve associated with D = 125 as for any m ∈ Z \ {0}
we have amP+T = 125. We will find the correct twist of the corresponding
Frey Q-curve Eγ125,z,w by studying E125,z,w first. Note that E125,z,w is com-

pletely defined over Q(
√

2,
√

5), but a splitting character is given by a character
of conductor 20 and order 4. Therefore a complete definition field over which also
a splitting map for ξEγ125,z,w is defined is K = Q(ζ40 + ζ−1

40), the totally real sub-

field of the cyclotomic field Q(ζ40). We compute cE125,z,w and cβ on GKQ . We can

Joey Matthias van Langen

182 Chapter 5: Determining perfect powers in elliptic divisibility sequences

use the isomorphism (Z/40Z)
∗ ∼= G

Q(ζ40)
Q to identify GKQ with (Z/40Z)

∗
/{±1},

which we will use to denote elements of GKQ by representatives from (Z/40Z)
∗
.

cE125,z,w ±1 ±3 ±7 ±9 ±11 ±13 ±17 ±19
±1 1 1 1 1 1 1 1 1
±3 1 −2 −2 1 1 −2 −2 1
±7 1 2 2 1 1 2 2 1
±9 1 1 1 1 1 1 1 1
±11 1 −1 −1 1 1 −1 −1 1
±13 1 −2 −2 1 1 −2 −2 1
±17 1 2 2 1 1 2 2 1
±19 1 −1 −1 1 1 −1 −1 1

cβ ±1 ±3 ±7 ±9 ±11 ±13 ±17 ±19
±1 1 1 1 1 1 1 1 1
±3 1 −2 2 1 1 2 −2 1
±7 1 2 2 −1 −1 2 2 1
±9 1 1 −1 −1 −1 −1 1 1
±11 1 1 −1 −1 −1 −1 1 1
±13 1 2 2 −1 −1 2 2 1
±17 1 −2 2 1 1 2 −2 1
±19 1 1 1 1 1 1 1 1

A simple computation shows us that the map α : GKQ → O∗K given by the

table below has coboundary cE125,z,w
c−1
β .

σ ±1, ±19 ±3, ±17 ±7, ±13 ±9, ±11

α(σ) 1 ζ17
40 + ζ−17

40 (ζ40 + ζ−1
40)−1 (ζ3

40 + ζ−3
40)(ζ9

40 + ζ−9
40)

It is easy to verify that γ = (ζ1
40 + ζ−1

40)(ζ2
40 + ζ−2

40)(ζ3
40 + ζ−3

40) satisfies the equa-
tion σγ = α(σ)2γ for all σ ∈ GKQ , hence γ is the sought twist. Note that γ and

thereby the twist Eγ125,z,w are defined over the field K0 = Q(ζ2
40 + ζ−2

40) which
is the totally real subfield of Q(ζ20). Some further checking shows that Eγ125,z,w

is actually completely defined over this field, and the splitting map for cEγ125,z,w
factors over GK0

Q as well.
We compute that the conductor of Eγ125,z,w is equal to

(64) Rad10 ∆γ
125,z,w.

Automating the modular method for Q-curves to solve Diophantine equations

Section 5.5: Explicit examples 183

By computing all the splitting maps β : GK0

Q → Q∗ for cEγ125,z,w we find that

the restriction of scalars ResK0

Q Eγ125,z,w must be isogenous to a product of two
abelian varieties of GL2-type. The levels of the associated newforms should be

{1280 Rad10(w2 − 125z4), 6400 Rad10(w2 − 125z4)},

where we can not a priori determine which level corresponds to which factor.
After level lowering we thus obtain newforms of levels 1280 and 6400 which
must be twists of one another. The characters of these newforms should be a
character of conductor 20 and order 4.

The irreducibility of the mod l representations needed to perform level low-
ering is obtained from Corollary 5.3.1. For the cases l = 3, 7, 13 this is clear.
For the cases l = 11, l > 13 we note that the only points Q ∈ ED(Q) \ {O, T}
with BQ not divisible by a prime number p > 3 are ±P . For the case l = 5 we
do not get irreducibility as 125 is the norm of 11 + 2

√
−1.

Remark 5.5.1. One could try to use the j-invariant j5(x, y) presented in Theo-
rem 2.11.1 to prove irreducibility of the mod l representation when l = 5. For
this one would parameterize the x, y ∈ Q with x2 + y2 = 125 and find the solu-
tions to j125,z,w = j5(x, y). One will however find that there are infinitely many
solutions to this equation.

When we compute the newforms of level 1280 and their twists of level 6400
we end up with 144 newforms. After comparing traces of Frobenius for the
primes p < 50 with p 6= 2, 5 we find that all but 24 newforms can be a priori
eliminated for all primes l > 17. All of the remaining newforms have coefficient
field Q(

√
−1) and most likely correspond to (pseudo) solutions (z, w). At the

very least there will be a newform corresponding to the curve Eγ125,0,1 which
corresponds to the point T , so we can not eliminate all newforms without further
assumptions.

If we look at the points mP + T with m an odd integer, we note they are all
the odd multiples of P + T =

(
500
121 ,−

32 250
1 331

)
. By (5.3) we have that 11 | BmP+T

for all odd m. If we use this information when computing the traces of Frobenius
at 11 we can actually eliminate all newforms for l > 3 and l 6= 11.

Combining these results we have thus proven the following result. All the
computations to obtain this result can be found in D125.rst .

Theorem 5.5.2. The sequence Bm,m ∈ Z>0 contains no l-th powers with l a
prime number when

� P1 =
(

121
4 ,± 1419

8

)
∈ E125(Q) and l > 2; or

� P1 =
(

500
121 ,±

32 250
1 331

)
∈ E125(Q) and l > 5 with l 6= 11.

Joey Matthias van Langen

https://github.com/jmvlangen/modular-method-package/blob/master/examples/EDS/D125.rst

184 Chapter 5: Determining perfect powers in elliptic divisibility sequences

Subsection 5.5.2

Example for D = −17
Take D = −17, then ED(Q) has rank 2 with T = (0, 0) as the only non-trivial
torsion point. With SageMath [Sag20] we can compute that there is a choice of
generators P = (−4, 2)

Q = (−1, 4)
T = (0, 0) ,

for which aP = aQ = −1.
We first study the curve E1,z,w, which corresponds to the points mP + nQ

with m,n ∈ Z and m+ n even. We use the twist Eγ1,z,w from Section 5.4 to get
the lowest conductor. The level of the newforms after level lowering will consist
of the 2-part and 17-part of this conductor. The 2-part can be read of from
Table 5.1, where we apply Remark 5.4.2. Since the conductor exponent at 17 is
always 1, we find that the level after level lowering is 28 · 17 if ord2(w2 − z4) = 0

17 if ord2(w2 − z4) = 8
2 · 17 if ord2(w2 − z4) > 8.

We compute the newforms of these levels and compare traces of Frobenius for
all prime numbers p < 50 that do not divide 2 · 17. This eliminates 25 of the 33
newforms of level 28 · 17 for all primes l > 5, but none of level 17 or 2 · 17. The
non-eliminated newforms are all rational and the corresponding elliptic curves
are geometrically isomorphic to the elliptic curves Eγ1,z,w corresponding to the
points P −Q and Q− P , and the pseudo solutions

(z, w) = (±12,±145), (±15,±353), (±23,±495).

Therefore they can not be eliminated without additional information.
Now look at the non-zero multiples Pm of the point

P1 = 2P + 2Q =

(
3 568 321

451 584
,

5 750 178 337

303 464 448

)
.

Note that B1 is divisible by the primes 2, 3, and 7, so by (5.3) all Bm with m ∈ Z
non-zero are. The fact that 2 | Bm immediately rules out all newforms of
level 28 · 17. Comparing traces of Frobenius at 3 and 7 again using the re-
striction 3, 7 | Bm we can now eliminates all newforms for l > 3.

Automating the modular method for Q-curves to solve Diophantine equations

Section 5.5: Explicit examples 185

Next we study the Frey Q-curve Eγ−17,z,w (see equation (5.7)) correspond-
ing to points mP + nQ+ T with m+ n even that have an l-th power in their
denominator.

We start with γ = 1 and find the correct twist later. The curve E−17,z,w

is completely defined over K = Q(
√
−17,

√
2). We compute that the trivial

character could be a splitting character for E−17,z,w, hence the square root of
the degree map is a splitting map β for ξE−17,z,w

. We compute that cE−17,z,w

and cβ are given by

cE−17,z,w 1 σ2 σ17 σ2σ17

1 1 1 1 1
σ2 1 2 1 2
σ17 1 −1 1 −1
σ2σ17 1 −2 1 −2

and

cβ 1 σ2 σ17 σ2σ17

1 1 1 1 1
σ2 1 2 1 2
σ17 1 1 1 1
σ2σ17 1 2 1 2

,

where σ2 and σ17 are generators of GKQ(
√

2)
and GKQ(

√
−17)

respectively. Note

that the difference cE−17,z,w
c−1
β can not be the coboundary of a map to Q∗ as

it is non-symmetric, hence a change of splitting map does not suffice. Instead
we will have to find a twist γ for which we need a map α : GKQ → K∗ with

coboundary cE−17,z,wc
−1
β .

Using SageMath [Sag20] we can determine that O∗K = 〈−1,
√

2− 1〉, so if α
would be a map with codomain O∗K , we can write

α(σ) = (−1)x(σ)(
√

2− 1)y(σ)

for some x, y : GKQ → Z. Now we find that

1 = cE−17,z,wc
−1
β (σ2, σ17) = α(σ2)

σ2α(σ17)α(σ2σ17)−1

= (−1)x(σ2)+x(σ17)−x(σ2σ17) (
√

2− 1)y(σ2)−y(σ2σ17) σ2
(
√

2− 1)y(σ17)

and
−1 = cE−17,z,wc

−1
β (σ2, σ17) = α(σ17)

σ17α(σ2)α(σ2σ17)−1

= (−1)x(σ2)+x(σ17)−x(σ2σ17) (
√

2− 1)y(σ17)−y(σ2σ17) σ17
(
√

2− 1)y(σ2).

Since
σ2

(
√

2− 1) =
√

2− 1 and (
√

2− 1)
σ17

(
√

2− 1) = −1 this gives us the lin-
ear system

x(σ2) +x(σ17) −x(σ2σ17) ≡ 0 (mod 2)
y(σ2) +y(σ17) −y(σ2σ17) = 0

x(σ2) +x(σ17) −x(σ2σ17) +y(σ2) ≡ 1 (mod 2)
−y(σ2) +y(σ17) −y(σ2σ17) = 0,

Joey Matthias van Langen

186 Chapter 5: Determining perfect powers in elliptic divisibility sequences

which is clearly inconsistent. Therefore there can be no map α : GKQ → O∗K with

coboundary cE−17,z,wc
−1
β .

Now look at the map α : GKQ → K∗ given by

α(σ) =

1 if σ = 1
−1 if σ = σ2

1−3
√

2√
−17

otherwise.

A quick computation shows that the coboundary of this map is cE−17,z,w
c−1
β ,

and that γ = 1 + 3
√

2 satisfies σγ = α(σ)2γ for all σ ∈ GKQ .

Remark 5.5.3. Note that the set S given by Proposition 2.5.5 consists of all
the primes above 7 and 17. Therefore the map α confirms the statement as its
image is contained in OK,S . It also shows that in some cases we can choose S
smaller than in Proposition 2.5.5 as in this case also S consisting of only the
primes above 17 would suffice. Furthermore this example shows that also for
Frey Q-curves a non-empty S can be necessary.

Remark 5.5.4. Note that

1−
√
−17 = (1 + 3

√
2)

(
1√
2

+
3√
−17

− 1√
2
√
−17

)2

,

so we could also take γ = 1−
√
−17. The advantage of this is that Eγ−17,z,w

remains defined over Q(
√
−17) and in fact it is even completely defined over that

field. The problem is that 1−
√
−17 is divisible by a prime above 3 in Q(

√
−17).

By Proposition 5.3.2 a 3 will appear in the level after level lowering, which
most likely increases the dimension and thus computation time of the space of
newforms.

The curve Eγ−17,z,w remains completely defined over K. The conductor
of Eγ−17,z,w over K is{

p16
2 (17)

(
Rad2·17(w2 + 17 z4)

)
if 2 | w

p6
2 (17)

(
Rad2·17(w2 + 17 z4)

)
if 2 - w.

Here p2 is the unique prime of K above 2. The field generated by the values of β
is Q(

√
2). Since this is quadratic we know that ResKQ Eγ−17,z,w is a product of

two Q-simple abelian variety of GL2-type. The levels of the associated newforms
can be computed to be{

(28 · 172 · Rad2·17(w2 + 17 z4), 28 · 172 · Rad2·17(w2 + 17 z4)) if 2 | w
(25 · 172 · Rad2·17(w2 + 17 z4), 26 · 172 · Rad2·17(w2 + 17 z4)) if 2 - w.

Automating the modular method for Q-curves to solve Diophantine equations

Section 5.5: Explicit examples 187

So after level lowering the lowest possible levels are 28 · 172 if 2 | w and 25 · 172

if 2 - w. Note that the character of these newforms is trivial as the splitting
character for all splitting maps is trivial.

Note that we can apply level lowering when the corresponding mod l Galois
representation is irreducible. This is the case for l = 3, 5, 7, 13 by Corollary 5.3.1.
For l = 11 or l > 13 we need that the corresponding point P ∈ ED(Q) \ {O, T}
has BP divisible by a prime number p > 3. The points for which this is not the
case can be computed to be{

±P,±Q,±2P,±2Q,±P + T,±Q+ T,±2Q+ T,±(P +Q),
±(P −Q),±(2P − 2Q),±(P −Q) + T,±(P − 2Q) + T

}
.

The only perfect powers among the B of these points are B±2P = B±2Q = 22

and B±2Q+T = 32. We may thus assume that for odd prime numbers l we have
irreducibility.

Computing the newforms of these levels takes a few hours with Magma.
Using the framework we find that by comparing traces at the primes

{3, 5, 7, 11, 13, 19, 29, 31, 37, 41, 43, 47, 59, 67, 73, 97, 113},

we can eliminate all but 10 newforms for all primes l > 31.

Remark 5.5.5. We have performed the elimination for all prime numbers below
200 besides 2 and 17, but the list given here includes the primes at which
elimination actually happened.

The 10 newforms that remain all seem to have complex multiplication and
coefficient field Q(

√
2). They most likely correspond to values of (z, w) cor-

responding to (pseudo) solutions of the problem. For examples the point T
corresponds to the curve Eγ−17,0,1 which in turn corresponds to one of the new-

forms of level 25 · 172.
To avoid these (pseudo-)solutions we look at non-zero multiples Pm of the

point P1 = P +Q+ T . Since B1 = 7 (5.3) tells us all Bm are divisible by 7. Us-
ing this additional information when comparing traces of Frobenius at 7 allows
us to eliminate all newforms for l > 17. This leads to the following asymptotic
result. The code for all computations to obtain this result can be found in
Dm17.rst .

Theorem 5.5.6. The sequence Bm, m ∈ Z>0 contains no l-th powers with l a
prime number when P1 = P +Q+ T =

(
− 153

49 ,±
1632
343

)
∈ E−17(Q) and l > 17.

Remark 5.5.7. Besides the methods described here, we also tried to eliminate
the newforms for l = 13 and l = 17 by performing Kraus’ method. This did not
allow us to eliminate all newforms for these primes.

Joey Matthias van Langen

https://github.com/jmvlangen/modular-method-package/blob/master/examples/EDS/Dm17.rst

188 Chapter 5: Determining perfect powers in elliptic divisibility sequences

Subsection 5.5.3

Further examples

Using the framework one can easily compute further asymptotic results as in
Theorem 5.5.2 and Theorem 5.5.6. We will not write this out in detail as the
approach is very similar. Table 5.3 contains the results of the computations that
were performed. The code for these computations can be found in D125.rst ,

Dm17.rst , D3.rst , and Dm2.rst .

case D P1 ∈ ED(Q) l

(i) 125
(

121
4 ,± 1 419

8

)
l > 2

(ii) 125
(

500
121 ,±

32 250
1 331

)
l > 5

(iii) −17
(
− 153

49 ,±
1 632
343

)
l > 17

(iv) 3
(

1
4 ,±

7
8

)
= 2(3,±6) l > 2

(v) 3
(

27
121 ,±

1 098
1 331

)
= 3(3,∓6) l > 17

(vi) −2
(

9
4 ,±

21
8

)
= 2(−1,∓1) l > 2

(vii) −2
(
− 1

169 ,±
239
2197

)
= 3(−1,±1) l > 2

(viii) −2
(

4 651 250
1 803 649 ,±

8 388 283 850
2 422 300 607

)
= 5(−1,∓1) + (0, 0) l > 5, l 6= 79

(ix) −2
(
− 8

9 ,±
28
27

)
= 2(−1,∓1) + (0, 0) l > 3

Table 5.3: Elliptic divisibility sequences with no l-th powers

Subsection 5.5.4

Small exponent values

While our main focus in this article is bounding prime exponents, a natural next
step would be to determine all perfect powers in the elliptic divisibility sequences
we consider. It follows immediately from [ERS07, Theorem 1.1] (dealing with
any nonsingular Weierstrass equation over Z) that for every integer l > 1, our
main equation

Bm = vl, m, v ∈ Z>0 (5.10)

has only finitely many solutions. In particular, it suffices to restrict to prime
exponents l. We note that this finiteness result is not effective, as it appeals
to Faltings’ finiteness theorem for rational points on curves of genus greater
than one, amongst other things. Using the fact that our elliptic curves ED

Automating the modular method for Q-curves to solve Diophantine equations

https://github.com/jmvlangen/modular-method-package/blob/master/examples/EDS/D125.rst
https://github.com/jmvlangen/modular-method-package/blob/master/examples/EDS/Dm17.rst
https://github.com/jmvlangen/modular-method-package/blob/master/examples/EDS/D3.rst
https://github.com/jmvlangen/modular-method-package/blob/master/examples/EDS/Dm2.rst

Section 5.5: Explicit examples 189

are of a rather special form (5.4), we will now discuss an independent, rather
direct, reduction of solving (5.10) for a fixed integer l > 1 to finding Q-rational
points on finitely many hyperelliptic curves over Q of genus 2l − 1 > 1 (or
hyperelliptic quotients thereof of smaller genus). In general this approach would
lead again, by Faltings’ theorem, to an ineffective finiteness result for fixed
exponents in (5.10). But in favourable cases it could fall within the scope
of effective methods for determining rational points on (hyperelliptic) curves,
though we shall not investigate this much in this chapter.

Fix some integer l > 1. For the construction, we start by recalling that (5.5),
with B̂ =: z and B = Bm = vl, leads to a generalized Fermat equation of
signature (2, 4, 4l), namely

w2 = az4 + âv4l, (5.11)

to be solved in pairwise coprime (positive) integers w, z, v. We remark that
the sum of the reciprocals of the exponents satisfy 1/2 + 1/4 + 1/(4l) < 1, so
by [DG95, Theorem 2] there are only finitely many solutions, where once again
the proof reduces the finiteness to Faltings’ theorem. Now instead of consider-
ing (5.11) of signature (2, 4, l), which leads to our Frey Q-curve construction,
we will consider it of signature (2, 2, 4l), i.e., setting u := z2, we get

w2 = au2 + âv4l (5.12)

to be solved in pairwise coprime (positive) integers w, u, v. Since 1/2 + 1/2 +
1/(4l) > 1, it is a spherical generalized Fermat equation, which yields that the
solutions are given by finitely many parametrizations. More precisely, there
exist finitely many, say r, triples of separable binary forms Fi, Gi, Hi ∈ Z[r, s]
(i = 1, 2, . . . , r) of degrees 4l, 4l, 2 respectively, satisfying F 2

i = aG2
i + âH4l

i ,
and such that for any pairwise coprime integer solution (w, u, v) to (5.12) there
exists an index i and coprime integers r, s such that (Fi(r, s), Gi(r, s), Hi(r, s)) =
(w, u, v). This means that a pairwise coprime solution (w, z, v) to the original
equation (5.11) satisfies z2 = Gi(r, s) for some index i. Each of these equations
defines a hyperelliptic curve

Ci : z2 = Gi(r, s) (5.13)

over Q in weighted projective space (of weights 1, 1, 2l for r, s, z respectively) of
genus 2l−1 (since the Gi are separable). The Ci have some interesting quotients
that might be helpful in determining the rational points Ci(Q).

Example 5.5.8. We look at the elliptic divisibility sequence from Subsec-
tion 5.5.1, where D = 125 and we choose P = (121/4,±1419/8). We note

Joey Matthias van Langen

190 Chapter 5: Determining perfect powers in elliptic divisibility sequences

that we have a = 1, and hence â = 125, in (5.11) for solutions to (5.10). We can
perform an elementary descent over Z to obtain sufficiently many hyperelliptic
curves Ci as in (5.13) by rewriting (5.11) as (w + z2)(w − z2) = 53v4l. Recall
that we have 2|Bm. Hence 2|v, which leads to gcd(w+z2, w−z2) = 2. Without
loss of generality we can and will assume w > 0, which now leads to

w + z2 = 2c2c5α
4l, w − z2 = 2c′2c

′
5β

4l

for some α, β ∈ Z and {c2, c′2} = {1, 24l−2}, {c5, c′5} = {1, 53}. Subtracting
the second equation from the first and dividing by 2 yields equations for our
hyperelliptic curves:

Ci : z2 = c2c5α
4l − c′2c′5β4l (5.14)

for i = 1, 2, 3, 4, say by choosing (c2, c5) = (1, 1), (1, 53), (24l−2, 1), (24l−2, 53)
respectively (which then also fixes the corresponding (c′2, c

′
5)).

As indicated by Theorem 5.5.2, the only (prime) exponent left to deal with
is l = 2, so let us fix this value for the rest of this example. The hyperelliptic
curves Ci are of genus 3 and one easily obtains that C2(Q) = ∅ by checking
locally that C2(Q2) = ∅. On all of the other 3 curves one can easily spot some
Q-rational point. All curves have genus 2 quotients, of which the jacobians all
turn out to have rank 2, so that Chabauty-Coleman does not immediately apply
to find all rational points. The equations invite some further descent, but we
will not pursue determining Ci(Q) for i = 1, 3, 4 further here.

As a final note, equations for the l = 2 case can also be obtained by con-
sidering (5.11) of signature (2, 4, 2), whose solutions can again be parametrized.
This leads to finitely many binary quartic forms Ei ∈ Z[s, t] such that solutions
to the original equation are given by v4 = Ei(s, t), which define projective plane
quartic curves.

Subsection 5.5.5

Alternative approaches for some examples

Consider any elliptic curve E/Q (in Weierstrass form with integral coefficients)
and non-torsion point P = (x, y) ∈ E(Q) with the denominator of x divisible
by p ∈ {2, 3}. Reynolds associates in [Rey12] a Frey elliptic curve over Q
(depending on p) to our Diophantine problem of interest (5.10). Together with
Silverman’s famous result on the existence of primitive divisors [Sil88] it is then
shown that there exists an effective bound l0 such that for all primes l ≥ l0
there are no solutions to (5.10); see Theorem 1.2 in loc. cit. (where again it is
also noted that consequently (Bm) contains only finitely many perfect powers).

Automating the modular method for Q-curves to solve Diophantine equations

Section 5.5: Explicit examples 191

The cases (i), (iv), (vi), and (ix) from Table 5.3 fall in this category. The
Frey curve mentioned above is actually associated to the elliptic divisibility
subsequence for pP . As such, for cases (v) and (vii) from Table 5.3 there is also
an alternative approach using Frey curves over Q. This leaves cases (ii), (iii),
and (viii) for which there does not seem to be alternative approaches available
in the literature.

In the case that a is a positive non-square, the Frey curve Ea,z,w = E1
a,z,w

is defined over a totally real field Q(
√
a). As an alternative to the Q-curve

approach we could therefore use modularity of elliptic curves over totally real
quadratic fields ([FLHS15]) and perform the modular method with the associ-
ated Hilbert modular forms. Furthermore one could try to combine the Q-curve
approach with this approach as a multi-Frey method.

We have tried to apply this Hilbert modular approach to some examples. In
the case a = D = 3 this did not lead to any additional information. For larger D
the levels of the Hilbert modular forms became too large to feasibly compute
the corresponding newforms.

Joey Matthias van Langen

Chapter 6

Discussion

Throughout this dissertation we discussed how the modular method for
Frey Q-curves can be automated and how this automation has been imple-
mented in the framework [vL21a]. We have also seen how this automation has
successfully been used to prove some new Diophantine results in Chapter 4 and
Chapter 5. Especially in Chapter 5 we saw how the framework [vL21a] can
easily be applied to more examples of elliptic divisibility sequences. This shows
the true potential of the framework [vL21a]: Given a Frey Q-curve for a Dio-
phantine equation, compute the conclusions that can be obtained from applying
the modular method automatically.

Although the framework [vL21a] has been carefully put together, the coding
of the various parts could still be prone to human error. Therefore the frame-
work [vL21a] has repeatedly been tested using the various examples from the
literature (see Table 3.1). Furthermore the implementation of Tate’s algorithm
from Chapter 1 has been checked by using random samples of 10 000 elliptic
curves from the Cremona database as an input, as well as various elliptic curves
over number fields. Also many functions and classes in the framework [vL21a]
come with doctests that ensure these work as intended.

Future improvements to ensure the framework [vL21a] works as intended
could include using Python3’s typing module to type check functions. An-
other approach would be to verify the algorithms themselves, rather than their
implementation, using a formal theorem prover such as Lean [dMKA+15] or
Coq [Coq20]. Note that to fully verify the correctness of the algorithms pre-
sented here would also require formal proofs of various arithmetic geometry re-
sults. A partial result might be feasible, especially considering the rapid growth
in Lean’s “mathlib” library [mC20], to which the author of this dissertation also
made a small contribution.

As already mentioned in Section 1.7.2 there might be various optimizations
for Tate’s algorithm as implemented in the framework [vL21a]. As mentioned
there a rewriting of the algorithm as presented in Section 1.1 to use checks

Automating the modular method for Q-curves to solve Diophantine equations

193

of type 2 rather than type 1 (see Section 1.2) could lower the precision and
thus computation time required, but would require a careful rethinking of the
current approach. A more feasible speedup would be to implement p-adic trees
(see Section 1.4) in a lower level language, which could also reduce its memory
footprint.

In this dissertation we focused on Frey Q-curves, but the framework [vL21a]
is also capable of working with Frey curves over totally real fields and imaginary
quadratic fields. As mentioned in Section 3.2 the method newform_candidates

of such a Frey curve E/K actually computes the corresponding Hilbert or
Bianchi modular forms, but one should note the correspondence is only con-
jectural if the field K is not totally real or of degree > 3. Nevertheless one can
compute with the corresponding newforms and compare traces of Frobenius to
find the result the modular method could (conjecturally) prove. This can also
be applied to Frey Q-curves that are defined over real quadratic fields such as
discussed in Section 4.5 and Section 5.5.5, possibly even using a multi-Frey ap-
proach with both classical and Hilbert modular forms. The spaces of Hilbert
modular forms in the examples in Chapter 4 and Chapter 5 were too big to do
this, but this would be an interesting approach for new examples.

Besides utilising the additional functionality of the framework [vL21a] for
new Diophantine problems, the functionality of the framework could also be
further expanded. For example besides comparing traces of Frobenius one could
include other methods for eliminating newforms, like image of inertia arguments
or special properties related to complex multiplication. This could potentially
take care of eliminating the newforms corresponding to (pseudo-)solutions in
Section 5.5, as they seem to correspond to CM curves.

Ideally the framework [vL21a] would also be further automated. Theo-
rem 2.11.1 and other irreducibility results could be implemented such that the
framework [vL21a] automatically detects whether such results apply and prints
which cases should be proved by hand otherwise. Another automation step
would be to include various recipes for the construction of Frey curves from
Diophantine equations, such that the user input does not have to include a Frey
curve necessarily. A perfect framework would allow a user to input a Diophan-
tine equation and automatically obtain the results the modular method could
prove about it.

Joey Matthias van Langen

Summary

This dissertation discusses the modular method for Frey Q-curves and applies
this method to a few new Diophantine problems. In particular it focuses on
how certain steps in the modular method can be automated, such that the
entire process can easily be applied to a Diophantine equation. This includes
both the theory to automate this process as well as an actual implementation
as a Python package for SageMath [Sag20].

An important step in applying the modular method is the computation of
the conductor of a Frey curve. A careful look at Tate’s algorithm shows that the
algorithm can also be applied to Frey curves, but in that case each step of the
algorithm might have two distinct results based on the value of the parameters.
By applying Hensel lifting and keeping track of the cases – in what we call p-
adic trees – Chapter 1 demonstrates that Tate’s algorithm can be automated
for Frey curves to compute the conductor exponent at a prime.

The modularity of Q-curves relates a classical newform to a Q-curve through
an abelian variety of GL2-type. Chapter 2 discusses the theory behind this
and explains how to compute the level and character of these newforms from
this theory and the conductor computation from Chapter 1. This requires the
computation of splitting maps, splitting characters, and the degree map, as well
as a potential twist of the original curve, which can all be computed one from
the other with some input data about isogenies of the Q-curve. The chapter
also establishes Galois representations associated with Q-curves and shows how
to compute the traces of Frobenius elements under these representations.

By applying this theory and level lowering results one can compute new-
forms associated with Frey Q-curves of which the level does not depend on
the particular value of the parameters anymore. Chapter 3 outlines this proce-
dure and shows a few tactics to then eliminate newforms based on comparing
their Galois representation with the corresponding Galois representation of the
Frey Q-curve.

Chapter 4 shows that the Diophantine equation (x− y)4 + x4 + (x+ y)4 = zn

has no integer solutions (x, y, z, n) with gcd(x, y) = 1 and n > 1. It is shown
that a particular Hilbert modular approach seems unfeasible for this equation,

Automating the modular method for Q-curves to solve Diophantine equations

195

but that the automated Q-curve approach works on the same Frey curves to
show no solutions exist when n > 5 is prime. The cases where n = 2, 3, 5 are
shown separately.

Chapter 5 considers perfect powers in elliptic divisibility sequences generated
by Q-points on an elliptic curve of j-invariant 1728. The automated approach
is applied to various such examples to prove the non-existence of l-th powers
with l > l0 a prime number, and l0 dependent on the sequence.

Joey Matthias van Langen

Acknowledgements

I would like to thank my supervisor, Sander Dahmen, for giving me the oppor-
tunity to do this PhD trajectory. I would also like to thank him for our weekly
meetings in which he gave guidance and help during my PhD years. Thanks to
him and my promotor, Rob de Jeu, for being the first to read my thesis and
provide useful feedback.

I would like to thank some other people that were around during my PhD
years at the VU. Thanks to Thomas for his sphere facts. Thanks to Patrick for
being around on Friday nights although he finished his PhD already. Thanks to
Ray for also being annoyed with the linear algebra book. Thanks to Eddie for
being Eddie. Thanks to Chris for being a wizard. Thanks to Elena for being
a great office mate in my first year. Thanks to Jan-David for teaching me how
to play Go. Thanks to Gosse for being a Go opponent at my level. Thanks
to Bente for allying with Russia. Thanks to Wouter for checking whether all
my cupboards soft-closed. Thanks to Casper for sharing a huge office with me.
Thanks to Pepijn for his sarcastic world view. Thanks to Niek for reminding
us that climate change is an important issue. Thanks to Michael & Michael
for reintroducing Magic at the VU. Thanks to Fabio for replacing me in the
PhD council. Thanks to Ronen for inspiring me to create a PhD Dungeons &
Dragons group. Also thanks to all the others for which I do not have a personal
line, but whose company I enjoyed during lunch, cookie breaks, or Friday night
drinks.

I would also like to thank my family and friends for the support they have
given me throughout my PhD. I did not always find it easy to stay motivated,
especially during the pandemic, but I am glad they provided listening ears and
welcome distractions. Most of all I want to thank my Father in heaven, who
always believed in me.

Automating the modular method for Q-curves to solve Diophantine equations

Appendix A

Proof of Theorem 2.9.8

In this appendix we will give the proof of Theorem 2.9.8. This will include some
preliminary results. First we need the family of matrices

SλM =

[
M λ
0 M

]
for λ,M ∈ Z and M > 0.

Each matrix SλM satisfies a useful property.

Lemma A.1. For any matrix

[
a b
c d

]
∈M2(Z) and M,λ, µ ∈ Z with M > 0 we

have that

SλM

[
a b
c d

]
=

[
a+ µ c

M b+ 1
M

(
λd− µa− λµ c

M

)
c d− µ c

M

]
SµM .

All matrices in this equation have integer coefficients if and only if

1. M | c, and

2. µ
(
a+ λ c

M

)
≡ dλ (mod M).

Furthermore for particular matrices we show equivalent conditions for which
the conditions in Lemma A.1 are satisfied.

Lemma A.2. Let M be a positive integer and

[
a b
c d

]
∈ Γ0(M). For any λ ∈ Z

the following statements are equivalent

1. There exists a µ ∈ Z such that

µ
(
a+ λ

c

M

)
≡ dλ (mod M). (A.1)

2. There exists a µ ∈ Z, unique modulo M , satisfying Equation (A.1).

Joey Matthias van Langen

198 Appendix A: Proof of Theorem 2.9.8

3. We have gcd
(
a+ λ c

M ,M
)

= 1.

Proof. Note that any equation of the form αx ≡ β (mod M) has a solution x ∈ Z
if and only if gcd(α,M) | β. The solution is unique modulo M if and only
if gcd(α,M) = 1. Almost all equivalences are therefore clear and we only have
to prove that δ = 1 if δ = gcd

(
a+ λ c

M ,M
)
| dλ.

Note that ad = 1− bc ≡ 1 (mod M), hence a and d are units modulo M .
Since δ |M by definition and assuming that δ | dλ we find that δ | λ. We know
that δ | a+ λ c

M by definition, hence by the previous argument we have δ | a,
but a is coprime with M . Therefore we can conclude that δ = 1 and finish the
proof.

Next we introduce S = S1
1 and some operators on cuspforms. For this

let F ∈ Sk(N, ε).

� For any 2-by-2 matrix

A =

[
a b
c d

]
with integer entries we define the modular form F |A by

F |A(τ) = (detA)k/2 (cτ + d)−k F (Aτ).

Note that this operation satisfies F |AB = F |A|B for any A,B ∈M2(Z).

� For any Dirichlet character χ of conductor M define

F |Rχ =
∑

µ (mod M)

χ(µ)F |SµM .

This is well-defined as for any µ ≡ µ′ (mod M) we have that χ(µ) = χ(µ′)

and SµM = SkSµ
′

M for some k ∈ Z, where we have F |S = F as S ∈ Γ1(N).

The operator Rχ is special as

F |Rχ = g(χ) χF,

where g(χ) is the Gauss sum of the complex conjugate χ of χ, and χF is the
twist of F by χ, as was noted on page 227 of [AL78]. This implies that to
determine the level, character and degree of the newform χF we may as well
look at the cuspform F |Rχ .

We now have the ingredients to prove Theorem 2.9.8. First we prove part (1)
in a more general context.

Automating the modular method for Q-curves to solve Diophantine equations

199

Proposition A.3. Let F ∈ Sk (Γ1 (N) , ε) and let χ be a Dirichlet character
with conductor M =

∏
peii , with pi distinct primes. If εχ has conductor M ′,

then the twist χF of F by χ is a cusp form of level Ñ = lcm(N,
∏
pei+1
i ,M ′M)

with character εχ2 and weight k.

Proof. Pick an arbitrary matrix A =

[
a b
c d

]
∈ Γ0(Ñ). Note that a is a unit

modulo M as ad ≡ ad− bc = 1 (mod Ñ), and that c/M is divisible by ev-
ery prime dividing M . We thus find that gcd

(
a+ λ c

M ,M
)

= gcd(a,M) = 1 for
each λ ∈ Z and thus each λ ∈ Z satisfies the equivalent conditions of Lemma A.2.
Therefore for any λ (mod M) there is a unique µ (mod M) such that we
have µ

(
a+ λ c

M

)
≡ dλ (mod M). By Lemma A.1 we have a matrix Bλ ∈M2(Z)

such that SλMA = BλS
µ
M for each such a pair λ and µ. Note furthermore that

the map sending λ to a corresponding µ is a bijection, since for any µ the
corresponding λ is the solution to λ

(
d− µ c

M

)
≡ aµ (mod M), which by an

analoguous argument as that of Lemma A.2 is unique.
We thus find that

F |Rχ |A =
∑

λ (mod M)

χ(λ)F |SλmA

= χ(d)
∑

λ (mod M)

χ(dλ)F |BλSµm

= χ(d)
∑

λ (mod M)

χ
(
µ
(
a+ λ

c

M

))
ε
(
d− µ c

M

)
F |Sµm

= χ(d)
∑

λ (mod M)

χ
(
d− µ c

M

)
ε
(
d− µ c

M

)
χ(µ)F |Sµm

= χ(d)
∑

µ (mod M)

(χε)
(
d− µ c

M

)
χ(µ)F |Sµm

= (εχ2)(d)
∑

µ (mod M)

χ(µ)F |Sµm = (εχ2)(d)F |Rχ ,

where we also used that(
a+ λ

c

M

)(
d− µ c

M

)
= ad+

c

M

(
λd− µ

(
a+ λ

c

M

))
≡ 1 (mod M).

Proof of Theorem 2.9.8. Part 1) is just Proposition A.3 in this context.

Joey Matthias van Langen

200 Appendix A: Proof of Theorem 2.9.8

For part 2), let q′|M be any prime divisor and suppose that F |Rχ is of

level qδ
′
Mq′

−1
. Applying part 1) again shows that F |Rχ |Rχ is of level qδ

′
Mq′

−1
.

Note that this form differs from F by a constant, hence F must be of a level
that divides both qδ

′
Mq′

−1
and N , but that would divide Nq′

−1
. Since F is a

newform this is a contradiction.
For part 3) first suppose that F |Rχ is of level qδ

′−1M . By part 1) this implies

that F |Rχ |Rχ is of level qδ
′′
M , where

δ′′ = max{δ′ − 1, β + 1, β + γ} = max{δ − 1,max{β + 1, β + γ}}.

Note that this must be divisible by the level of F , hence δ ≤ δ′′ implying
that δ ≤ max{β + 1, β + γ}. This proves that the level of F |Rχ is not qδ

′−1M
if δ > max{β + 1, β + γ}.

For the rest of the proof we may assume that γ ≥ 1. Again we assume
that F |Rχ is of level qδ

′−1M and do some calculation, wherein we will use the
matrices

Av =

[
1 0

vqδ
′−1M 1

]
Bv,µ =

[
1− µvqδ′−β−1M q−β

(
λ− µ− λµvqδ′−β−1M

)
vqδ

′−1M 1 + λvqδ
′−β−1M

]
,

where Bv,µ is the matrix in Lemma A.1 such that SλqβAv = Bv,µS
µ
qβ

. We get
that

qF |Rχ =
∑

v (mod q)

F |RχAv

=
∑

v (mod q)

∑
λ (mod qβ)

χ(λ)F |Sλ
qβ
Av

=
∑
v,λ

q | 1+λvqδ
′−β−1M

χ(λ)F |Sλ
qβ
Av +

∑
v,λ

q - 1+λvqδ
′−β−1M

χ(λ)F |Sλ
qβ
Av

Note that the matrixAv in the second sum satisfies the conditions of Lemma A.2,
hence we can apply Lemma A.1 and rewrite this sum as∑

v,λ

q - 1+λvqδ
′−β−1M

χ(λ)F |Sλ
qβ
Av =

∑
v,µ

q - 1−µvqδ
′−β−1M

χ(µ)χ(1− µvqδ
′−β−1M)F |Bv,µSµ

qβ

=
∑

µ (mod qβ)

χ(µ)
∑

v (mod q)

(εχ)(1− µvqδ
′−β−1M)F |Sµ

qβ
.

Automating the modular method for Q-curves to solve Diophantine equations

201

Here we have returned to the sum over all µ and all v, since for any combina-
tion of µ and v with q | 1− µvqδ′−β−1M we have that χ(1− µvqδ′−β−1M) = 0.
Since δ ≤ max{β + 1, β + γ} we know that δ′ = max{β + 1, β + γ}. As γ ≥ 1
this implies that∑

v (mod q)

(εχ)(1− µvqδ
′−β−1M) =

∑
v (mod q)

(εqχ)(1− µvqγ−1M).

Note that in the latter sum the values at which εqχ is computed are those in the

kernel of the map (Z/qγZ)
∗ →

(
Z/qγ−1Z

)∗
. Note that as εqχ has conductor qγ

it must map this kernel to a non-trivial subgroup, hence the sum sums (possibly
multiple times) over a non-trivial subgroup of roots of unity. Such sums are zero,
giving us the result we want in this case.

What thus remains is the sum∑
v,λ

q | 1+λvqδ
′−β−1M

χ(λ)F |Sλ
qβ
Av ,

which we claim to be zero in both the remaining cases, leading to the necessary
contradiction to prove 3b) and 3c). If we are in case b this is obvious, since we
then have δ′ > β + 1, hence 1 + λvqδ

′−β−1M ≡ 1 (mod q).
What remains is case 3c), in which case α = β = γ = δ = 1 and hence δ′ = 2.

In this case we know that if q | 1 + λvqδ
′−β−1M = 1 + λvM then

SλqβAv =

[
1 + λvM λ
vN q

] [
q 0
0 1

]
.

The left matrix on the right hand side is of the special form mentioned in
Proposition 1.1 in [AL78], hence we can rewrite the sum as∑

v,λ
q | 1+λvM

χ(λ)F |Sλ
qβ
Av =

∑
v,λ

q | 1+λvM

χ(λ)εq(λ)εM

(
1 + λvM

q

)
F |W

=

 ∑
v,λ

q | 1+λvM

χεq(λ)

 εM (q)F |W ,

where

W = Wq

[
q 0
0 1

]
.

Joey Matthias van Langen

202 Appendix A: Proof of Theorem 2.9.8

for Wq = WQ the matrix as in Proposition 1.1 of [AL78] and where we use that

q
1 + λM

q
= 1 + λM ≡ 1 (mod M),

so 1+λM
q ≡ q−1 modulo M . Note that the remaining sum sums over all λ mod-

ulo q exactly once, and since χεq has conductor qγ with γ = 1 the result is zero
as needed. This completes the proof.

Automating the modular method for Q-curves to solve Diophantine equations

Bibliography

[AL78] A. O. L. Atkin and Wen Ch’ing Winnie Li. Twists of newforms
and pseudo-eigenvalues of W -operators. Inventiones Mathemati-
cae, 48(3):221–243, 1978.

[AM04] Alejandro Adem and R. James Milgram. Cohomology of Finite
Groups. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[AP19] Alejandro Argáez-Garćıa and Vandita Patel. On perfect powers
that are sums of cubes of a three term arithmetic progression. Jour-
nal of Combinatorics and Number Theory, 10(3):147–160, 2019.

[BC12] Michael A. Bennett and Imin Chen. Multi-Frey Q-curves and the
Diophantine equation a2 + b6 = cn. Algebra & Number Theory,
6(4):707–730, 2012.

[BCDY14] Michael A. Bennett, Imin Chen, Sander R. Dahmen, and Soroosh
Yazdani. On the equation a3 + b3n = c2. Acta Arithmetica,
163(4):327–343, 2014.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma
algebra system. I. The user language. Journal of Symbolic Compu-
tation, 24(3-4):235–265, 1997. Computational algebra and number
theory (London, 1993).

[BMS08] Yann Bugeaud, Maurice Mignotte, and Samir Siksek. A multi-
Frey approach to some multi-parameter families of diophantine
equations. Canadian Journal of Mathematics, 60(3):491–519, 2008.

[BPS16] Michael A. Bennett, Vandita Patel, and Samir Siksek. Superel-
liptic equations arising from sums of consecutive powers. Acta
Arithmetica, 172(4):377–393, 2016.

[Car89] Henri Carayol. Sur les représentations galoisiennes modulo `
attachées aux formes modulaires. Duke Mathematical Journal,
59(3):785 – 801, 1989.

Joey Matthias van Langen

204 Bibliography

[Che10] Imin Chen. On the equation a2 + b2p = c5. Acta Arithmetica,
143(4):345–375, 2010.

[Che12] Imin Chen. On the equations a2 − 2b6 = cp and a2 − 2 = cp. LMS
Journal of Computation and Mathematics, 15:158–171, 2012.

[Coq20] The Coq Development Team. The Coq Proof Assistant, ver-
sion 8.11.0. https://doi.org/10.5281/zenodo.3744225, Jan-
uary 2020.

[Dah08] Sander R. Dahmen. Classical and modular methods applied to Dio-
phantine equations. PhD thesis, Universiteit Utrecht, 2008.

[Dar93] Henri Darmon. The equations xn + yn = z2 and xn + yn = z3.
International Mathematics Research Notices, 1993(10):263–274, 05
1993.

[DD15] Tim Dokchitser and Vladimir Dokchitser. Local invariants of isoge-
nous elliptic curves. Transactions of the American Mathematical
Society, 367(6):4339–4358, 2015.

[DF14] Luis Dieulefait and Nuno Freitas. The Fermat-type equations
x5 + y5 = 2zp or 3zp solved through Q-curves. Mathematics of
Computation, 83(286):917–933, 2014.

[DG95] Henri Darmon and Andrew Granville. On the equations zm =
F (x, y) and Axp +Byq = Czr. The Bulletin of the London Math-
ematical Society, 27(6):513–543, 1995.

[Dia97] Fred Diamond. The refined conjecture of Serre. In Elliptic Curves,
Modular Forms & Fermat’s Last Theorem (Hong Kong), pages
172–186. International Press, second edition, 1997.

[DM97] Henri Darmon and Löıc Merel. Winding quotients and some vari-
ants of Fermat’s last theorem. Journal für die Reine und Ange-
wandte Mathematik, 490:81–100, 1997.

[dMKA+15] Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad,
Floris van Doorn, and Jakob von Raumer. The Lean theorem
prover (system description). In Amy P. Felty and Aart Mid-
deldorp, editors, Automated Deduction - CADE-25 - 25th Inter-
national Conference on Automated Deduction, Berlin, Germany,

Automating the modular method for Q-curves to solve Diophantine equations

https://doi.org/10.5281/zenodo.3744225

205

August 1-7, 2015, Proceedings, volume 9195 of Lecture Notes
in Computer Science, pages 378–388. Springer, 2015. https:

//leanprover.github.io/.

[DNS20] Maarten Derickx, Filip Najman, and Samir Siksek. Elliptic curves
over totally real cubic fields are modular. Algebra & Number The-
ory, 14(7):1791–1800, 2020.

[DS05] Fred Diamond and Jerry Shurman. A First Course in Modular
Forms, volume 228 of Graduate Texts in Mathematics. Springer
New York, New York, NY, 2005.

[DU09] Luis Dieulefait and Jorge Jiménez Urroz. Solving Fermat-type
equations via modular Q-curves over polyquadratic fields. Journal
für die Reine und Angewandte Mathematik, 633:183–195, 2009.

[Ell04] Jordan S. Ellenberg. Galois representations attached to Q-curves
and the generalized Fermat equation A4 + B2 = Cp. American
Journal of Mathematics, 126(4):763–787, 2004.

[ERS07] Graham Everest, Jonathan Reynolds, and Shaun Stevens. On the
denominators of rational points on elliptic curves. Bulletin of the
London Mathematical Society, 39(5):762–770, 2007.

[FLHS15] Nuno Freitas, Bao V. Le Hung, and Samir Siksek. Elliptic curves
over real quadratic fields are modular. Inventiones Mathematicae,
201(1):159–206, 2015.

[FS15] Nuno Freitas and Samir Siksek. The asymptotic Fermat’s Last
Theorem for five-sixths of real quadratic fields. Compositio Math-
ematica, 151(8):1395–1415, 2015.

[Kou19] Angelos Koutsianas. On the solutions of the Diophantine equation
(x− d)2 + x2 + (x+ d)2 = yn for d a prime power. arXiv e-prints,
May 2019.

[KP18] Angelos Koutsianas and Vandita Patel. Perfect powers that are
sums of squares in a three term arithmetic progression. Interna-
tional Journal of Number Theory, 14(10):2729–2735, 2018.

[Kra98] Alain Kraus. Sur l’équation a3 + b3 = cp. Experimental Mathe-
matics, 7(1):1–13, 1998.

Joey Matthias van Langen

https://leanprover.github.io/
https://leanprover.github.io/

206 Bibliography

[KW09a] Chandrashekhar Khare and Jean-Pierre Wintenberger. Serre’s
modularity conjecture (I). Inventiones Mathematicae, 178(3):485–
504, 2009.

[KW09b] Chandrashekhar Khare and Jean-Pierre Wintenberger. Serre’s
modularity conjecture (II). Inventiones Mathematicae, 178(3):505–
586, 2009.

[mC20] The mathlib Community. The Lean mathematical library. In
Proceedings of the 9th ACM SIGPLAN International Conference
on Certified Programs and Proofs, CPP 2020, page 367–381, New
York, NY, USA, 2020. Association for Computing Machinery.

[Mil72] J. S. Milne. On the arithmetic of abelian varieties. Inventiones
Mathematicae, 17:177–190, 1972.

[Pap93] I. Papadopoulos. Néron classification of elliptic curves where the
residual characteristics equal 2 or 3. Journal of Number Theory,
44(2):119 – 152, 1993.

[Pat18] Vandita Patel. Perfect powers that are sums of consecutive squares.
Mathematical Reports of the Academy of Science. The Royal Soci-
ety of Canada, 40(2):33–38, 2018.

[PS17] Vandita Patel and Samir Siksek. On powers that are sums of
consecutive like powers. Research in Number Theory, 3:Art. 2, 7,
2017.

[Que00] Jordi Quer. Q-curves and abelian varieties of GL2-type. Proceed-
ings of the London Mathematical Society. Third Series, 81(2):285–
317, 2000.

[Que01] Jordi Quer. Embedding problems over abelian groups and an ap-
plication to elliptic curves. Journal of Algebra, 237(1):186–202,
2001.

[Rey12] Jonathan Reynolds. Perfect powers in elliptic divisibility se-
quences. Journal of Number Theory, 132(5):998–1015, 2012.

[Rib90] Kenneth A. Ribet. On modular representations of Gal(Q/Q) aris-
ing from modular forms. Inventiones Mathematicae, 100(1):431–
476, 1990.

Automating the modular method for Q-curves to solve Diophantine equations

207

[Rib94] Kenneth A. Ribet. Report on mod l representations of Gal(Q/Q).
In Motives (Seattle, WA, 1991), volume 55.2 of Proceedings of Sym-
posia in Pure Mathematics, pages 639–676. American Mathemati-
cal Society, Providence, RI, 1994.

[Rib04] Kenneth A. Ribet. Abelian varieties over Q and modular forms.
In Modular Curves and Abelian Varieties, volume 224 of Progress
in Mathematics. Birkhäuser, Basel, 2004.

[Sag20] The Sage Developers. SageMath, the Sage Mathematics Software
System (Version 9.1), 2020. http://www.sagemath.org.

[Shi71] Goro Shimura. On elliptic curves with complex multiplication as
factors of the jacobians of modular function fields. Nagoya Math-
ematical Journal, 43:199–208, 1971.

[Sil88] Joseph H. Silverman. Wieferich’s criterion and the abc-conjecture.
Journal of Number Theory, 30(2):226–237, 1988.

[Sil94] Joseph H. Silverman. Advanced Topics in the Arithmetic of Elliptic
Curves, volume 151 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 1994.

[Sil09] Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume
106 of Graduate Texts in Mathematics. Springer, Dordrecht, second
edition, 2009.

[SW93] Thomas R. Shemanske and Lynne H. Walling. Twists of Hilbert
modular forms. Transactions of the American Mathematical Soci-
ety, 338(1):375–403, 1993.

[vL21a] Joey M. van Langen. Modular Method SageMath Package. https:
//github.com/jmvlangen/modular-method-package, 2021.

[vL21b] Joey M. van Langen. On the sum of fourth powers in arithmetic
progression. International Journal of Number Theory, 17(01):191–
221, 2021.

[Wei82] André Weil. Adeles and algebraic groups, volume 23 of Progress in
Mathematics. Birkhäuser, Boston, Mass., 1982. With appendices
by M. Demazure and Takashi Ono.

Joey Matthias van Langen

https://github.com/jmvlangen/modular-method-package
https://github.com/jmvlangen/modular-method-package

208 Bibliography

[Zha14] Zhongfeng Zhang. On the Diophantine equation (x−1)k+xk+(x+
1)k = yn. Publicationes Mathematicae Debrecen, 85(1-2):93–100,
2014.

[Zha17] Zhongfeng Zhang. On the Diophantine equation (x−d)4+x4+(x+
d)4 = yn. International Journal of Number Theory, 13(9):2229–
2243, 2017.

Automating the modular method for Q-curves to solve Diophantine equations

Cover art: Remco Wetzels

	Table of contents
	Introduction
	Notation & Conventions
	Computing Conductors of Frey Curves
	A quick overview of Tate's algorithm
	Tate's algorithm for curves with parameters
	Roots modulo a prime power
	Hensel lifting
	The algorithm

	p-adic trees
	A finite step 7 subalgorithm.
	SageMath implementation
	p-adics
	p-adic trees
	p-adic solver
	Conditions
	Tate's algorithm
	Frey curves

	Comparison to other methods
	Papadopoulos' tables
	Chen's approach

	Q-curve computations
	Generic properties of Q-curves
	The algebra associated to a Q-curve
	Computing a splitting map
	Local conditions of splitting characters
	Correcting the splitting map
	Different splitting maps
	Fields of Q-curves
	Associated Galois representations
	Computing the newform levels
	Traces of Frobenius
	Some irreducibility results

	Automating the modular method
	The modular method
	Wrapped newforms
	Elimination methods
	Elimination by trace
	Kraus method
	Convenience methods

	On the sum of fourth powers in arithmetic progression
	Introduction
	Preliminaries
	Cases for Small l
	Case l = 2
	Case l = 3
	Case l = 5

	The Frey Curves
	A Hilbert Modular Approach
	 Q-curves
	Basic invariants
	A decomposable twist
	Modularity of Q-curves
	Level lowering
	Newform elimination

	Explicitly determining perfect powers in several elliptic divisibility sequences
	Introduction
	Associating a Q-curve
	a only depends on class modulo [2] ED(Q)

	Level lowering results
	The case a = 1
	Explicit examples
	Example for D = 125
	Example for D = -17
	Further examples
	Small exponent values
	Alternative approaches for some examples

	Discussion
	Summary
	Acknowledgements
	Proof of Theorem 2.9.8
	Bibliography

