
VU Research Portal

Fault-Tolerant Termination Detection with Safra’s Algorithm

Karlos, Georgios; Fokkink, Wan; Fuchs, Per

published in
Networked Systems
2021

DOI (link to publisher)
10.1007/978-3-030-91014-3_5

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Karlos, G., Fokkink, W., & Fuchs, P. (2021). Fault-Tolerant Termination Detection with Safra’s Algorithm. In K.
Echihabi, & R. Meyer (Eds.), Networked Systems: 9th International Conference, NETYS 2021, Virtual Event,
May 19–21, 2021, Proceedings (pp. 71-87). (Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 12754 LNCS). Springer Science and
Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-91014-3_5

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 05. Nov. 2022

https://doi.org/10.1007/978-3-030-91014-3_5
https://research.vu.nl/en/publications/450d3dab-85a3-415b-b23a-989ad88cb0fd
https://doi.org/10.1007/978-3-030-91014-3_5

Fault-Tolerant Termination Detection
with Safra’s Algorithm

Georgios Karlos1(B), Wan Fokkink1, and Per Fuchs2

1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
{g.karlos,w.j.fokkink}@vu.nl

2 Technische Universität München, München, Germany
per.fuchs@cs.tum.edu

Abstract. Safra’s distributed termination detection algorithm employs
a logical token ring structure within a distributed network; only passive
nodes forward the token, and a counter in the token keeps track of the
number of sent minus the number of received messages. We adapt this
classic algorithm to make it fault-tolerant. The counter is split into coun-
ters per node, to discard counts from crashed nodes. If a node crashes, the
token ring is restored locally and a backup token is sent. Nodes inform
each other of detected crashes via the token. Our algorithm imposes no
additional message overhead, tolerates any number of crashes as well as
simultaneous crashes, and copes with crashes in a decentralized fashion.
Experiments with an implementation of our algorithm were performed
on top of two fault-tolerant distributed algorithms.

1 Introduction

Termination detection is a fundamental problem in distributed systems which
was introduced independently in [9] and [12]. Termination can be announced
when all nodes in the network have become passive and no messages are in
transit. Distributed termination detection is applied in e.g. workpools, routing,
diffusing computations, self-stabilization, and checking stable system properties
such as deadlock and garbage in memory. Many (mostly failure-sensitive) termi-
nation detection algorithms have been proposed in the literature, see [17,18].

In Safra’s algorithm [7,10] a token repeatedly visits all nodes in the network
via a predetermined logical ring structure; a node passes on the token when it
is passive. Each node keeps track of the number of outgoing minus incoming
messages, and these counts are accumulated in the token. Nodes that receive a
message are colored black, as the count in the token may be unreliable, if the
message overtook the token in the ring. The black color is transferred to the
token at its next visit. If the token returns to the initiator without a black color
and with counter 0, the initiator can announce termination.

Safra’s algorithm imposes only little message overhead when nodes remain
active over a long period of time, unlike termination detection algorithms for
which every message needs to be acknowledged (e.g. [9]). Additionally, it does
not require idle messages to be sent out when nodes become passive and does not
c© Springer Nature Switzerland AG 2021
K. Echihabi and R. Meyer (Eds.): NETYS 2021, LNCS 12754, pp. 71–87, 2021.
https://doi.org/10.1007/978-3-030-91014-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91014-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-91014-3_5

72 G. Karlos et al.

run into underflow issues, as opposed to weight-throwing schemes ([19,22]). In
[6] an optimized version of Safra’s algorithm was proposed, that does not always
color receiving nodes black and detects termination within a single round trip
of the token after actual termination has occurred.

We propose a fault-tolerant algorithm based on an improved version of Safra’s
algorithm [6]. A node crash is handled locally by its predecessor in the ring; a new
token is issued, as the old token may have been lost in the crash. A numbering
scheme in the token makes sure only a single token is being passed on; if the
old token was not lost in the crash, the new token will be dismissed. Only the
message exchange between alive nodes is counted. For this purpose the counter
at the nodes and in the token is split into N counters, with N the number of
nodes in the network. Nodes have a failure detector and inform each other of
crashes through the token, so that they uniformly count the message exchange
with the same set of nodes. A node reporting a new crash makes sure the token
completes another round trip, to avoid inconsistent message counts in the token.

Next to the aforementioned strong points of Safra’s algorithm, our fault-
tolerant variant has some additional advantages compared to existing fault-
tolerant termination detection algorithms, which will be discussed in Sect. 2.
(Following [11,21], we call the distributed algorithm for which termination is
checked basic and the termination detection algorithm the control algorithm.)
First, the basic algorithm can be decentralized, meaning there can be multiple
initiator nodes. Second, if the initiator of our termination detection algorithm
crashes before sending out the first token, this role is automatically taken over by
its predecessor. Thus our algorithm can cope with any number of node crashes,
and it is robust against simultaneous node crashes. Third, only one additional
message is required for each crash, and no relatively expensive schemes like leader
election or taking a global snapshot are employed. The price to pay is that, in
the absence of stable storage, the bit complexity of a message is Θ(N), compared
to Θ(1) for the failure-sensitive version of Safra’s algorithm. Considering current
network technologies, with Gbits/second throughput and microseconds latency,
this token size incurs a tolerable overhead in network load, especially since the
token is only forwarded by idle nodes.

We tested our algorithm in a multi-threaded emulation environment and
performed experiments on two fault-tolerant distributed algorithms from the
literature. Compared with the failure-sensitive version of Safra’s algorithm, our
algorithm exhibits a satisfactory performance, in the sense that it imposes no
additional message overhead. Of course it does impose some overhead, by adding
extra concurrency at each node and additional synchronization. However, even
with a large number of failures, profiling of our experiments shows that the
execution time of the basic algorithm remains the dominant factor for the overall
performance. The two basic distributed algorithms employed in our experiments
are quite different in nature, which suggests this conclusion holds more generally,
admittedly only up to the network sizes we analyzed.

Developing our algorithm was a delicate matter. Still, owing to a correctness
proof (omitted here) in combination with many test runs with an implementa-
tion, we can confidently claim that our algorithm correctly detects termination.

Fault-Tolerant Termination Detection with Safra’s Algorithm 73

2 Related Work

We discuss some existing fault-tolerant termination detection algorithms, mainly
from a functional point of view. Only [16] reports on performance results based on
an actual implementation. Generally a complete network topology and a perfect
failure detector are required, as such assumptions are essential for developing a
fault-tolerant termination detection algorithm, see [20].

Lai and Wu [15] presented a fault-tolerant variant of the Dijkstra-Scholten
algorithm [9] for centralized basic algorithms, meaning there is a single initiator
node. Active nodes are in the tree, rooted in the initiator, which announces
termination when the tree has disappeared. In the event of a crash, all alive nodes
communicate with the designated root node, causing a sequential bottleneck.

Lifflander et al. [16] proposed a series of algorithms based on [9] that avoid the
bottleneck of [15]. These algorithms are resistant to single-node failures but are
only probabilistically tolerant to multi-node failures and incur additional control
messages even in crash-free executions. In case of a crash the tree is reconstructed
locally. If two nodes fail concurrently, the algorithms may not be able to recover.
The algorithm then detects that this is the case. Failure of the root node cannot
be handled. Performance results are reported based on an experimental setup,
consisting of three mock-up parallel algorithm implementations. Results show
acceptable processing time overhead. Message overhead results are not reported.

Tseng [22] developed a fault-tolerant variant of weight-throwing [19] for cen-
tralized basic algorithms. Nodes donate part of their weight to the basic messages
they send. The receiver claims that weight on receipt. A node that becomes
passive returns its weight to the leader, who announces termination when it
is passive and reclaimed its original weight. The number of control messages
increases linearly with the number of basic messages. The algorithm is vulnera-
ble to underflow of weight values and control messages require space to represent
floats at high precision. A global snapshot is taken when a new crashed node is
detected. When the leader crashes, an election scheme is employed.

In Venkatesan’s algorithm [23] a leader node is in charge of announcing ter-
mination. If the leader crashes, an election is held. The local stacks at the nodes
must be continuously replicated by the leader and its backup Upon learning of
a crashed node, the leader simulates the state of every node in the system to
determine whether it has terminated.

Hursey and Graham [14] developed a termination detection scheme for their
fault-tolerant ring-based MPI application. Their algorithm relies on a leader
election scheme and fault-tolerant primitives provided by MPI.

Mittal et al. [20] introduced a general framework for transforming any failure-
sensitive termination detection algorithm into a fault-tolerant variant that can
cope with any number of node crashes. The basic idea is to restart termination
detection after each node crash. When applied to existing failure-sensitive algo-
rithms, the resulting fault-tolerant algorithms have a significant overhead in
control messages, even when no nodes become passive or crash.

74 G. Karlos et al.

3 System Model

We assume a fully asynchronous message-passing system with no shared memory
or global clock. Messages may arrive in any order and delays are unbounded but
finite. The N nodes are logically organized in a ring and are assigned unique,
totally-ordered IDs. Failures are permanent; once a node crashes, it halts and
never recovers. Like most fault-tolerant distributed algorithms in the literature,
we require that the underlying physical network provides reliable bidirectional
communication channels between each pair of nodes.

Nodes are either active or passive. An active node can send/receive basic
messages, perform internal events, or become passive when it terminates locally.
A passive node cannot send basic messages or perform internal events and only
becomes active upon receipt of a basic message. Termination may be announced
while basic messages from crashed nodes are in transit. It is therefore required
that passive nodes never become active by the receipt of a basic message sent by a
node they know has crashed. An execution of the basic algorithm has terminated
if all alive nodes are passive and for all basic messages in transit, the destination
node either has crashed or knows that the sender has crashed. The termination
detection problem consists of two parts: Liveness: if the system has terminated,
this is eventually detected by an alive node; and Safety: when termination is
detected, the system terminated at some point in the past.

A perfect failure detector [4] is required to solve termination detection in the
presence of failures [13,20]. Such a failure detector, which never falsely suspects
that a node crashed, and eventually detects each node crash, can be built if there
is a known upper bound on network latency.

4 Safra’s Algorithm

Safra’s (failure-sensitive) termination detection algorithm [7,10] generalizes the
Dijkstra-Feijen-van Gasteren algorithm [8] from synchronous to asynchronous
message passing networks. We give a detailed description of Safra’s algorithm,
including improvements from [6]. This will serve as a basis for the description of
our fault-tolerant version later on.

Safra’s algorithm is centralized, with node 0 as initiator. The basic algorithm
however is allowed to be decentralized and does not need to be ring-based. A
token t circulates the ring, starting at the initiator of the control algorithm when
it becomes passive for the first time, and being forwarded by the other nodes once
they are passive. The field count t in t represents the number of basic messages
in transit during the round trip of t. Each node i records in count i the number
of basic messages it sent minus the number of basic messages it received, since
the last time it forwarded the token. Each time t is received by a node i, count i
is added to count t, and count i is reset to zero. Upon return of t to the initiator,
after it has become passive, termination is detected if count t is zero.

The token can during its round trip underestimate the number of basic mes-
sages in transit, if the receipt of a message is accounted for in the token before

Fault-Tolerant Termination Detection with Safra’s Algorithm 75

the send of this message. To recognize this, colors black and white are used.
Initially all nodes are white, and when the initiator sends out a fresh token, the
token is white. When a node i receives a basic message m, it may be that the
send of m was not yet recorded in count t. Therefore upon receipt of m, i marks
itself black. When t visits a black node, t becomes black and the node white;
from then on t remains black for the rest of the round trip. When the initiator
has received back t, has become passive, and has added the value of count 0 to
count t, it decides whether termination can be detected. If t is black or count t
is not zero, the initiator sends out a fresh white token again. Otherwise, it can
safely announce that the execution of the basic algorithm has terminated.

Two enhancements of Safra’s algorithm to reduce detection delay were given
in [6]. One inefficiency is that a basic message always blackens its receiver. Actu-
ally an inconsistent snapshot can only exist when the receipt of a message is
recorded before its send. This can happen when a basic message overtakes the
token, meaning that it is sent after the sender was visited by the token, but
reaches the receiver before it is visited by the token. A second inefficiency of the
original algorithm is that termination is only detected at the initiator. Another
enhancement allows detection to occur at any node. When multiple nodes can
detect termination, there is a second situation in which an inconsistent snapshot
can occur. When both the sender and the receiver of a message are ahead of
the token, but the receiver will be visited by the token before the sender, it is
possible for the receiver to detect termination before the sender is visited. (This
case is omitted in [6], which may result in erroneous detection.)

To deal with the aforementioned scenarios, a sequence number seq i is intro-
duced at every node i, starting at zero. When a node forwards the token, it
increases its sequence number by one, so that nodes in the visited region have a
higher sequence number from those in the unvisited region. A node piggybacks
its sequence number seqm to every basic message m it sends. Using the sequence
number, an offending message can be detected if it has a higher sequence number
than the receiver, or they both have the same sequence number but the sender
has a higher ID than the receiver. Since multiple nodes can detect termination,
an offending message should not only blacken the receiver but also all subsequent
nodes in the ring up to (but not including) the sender. At all these nodes, the
token represents an inconsistent snapshot. So none should detect termination.

The field black t in the token is now a node ID, expressing that all nodes
the token visits from now up to (but not including) black t are black. When the
token is sent by the initiator for the first time, black t = N − 1, so that all nodes
from 1 up to N − 1 are initially considered black. Hence termination can only
be detected after the token has visited all nodes at least once. Likewise, black i

at a node i represents that all nodes that the token visits from i up to black i

are black. Initially black i = i at all nodes i, meaning that i considers all nodes
white. If a node i receives a basic message m of which the send may not have been
accounted for in the token, then black i is set to the furthest node from i among
black i and the sender of m. The function furthest i(j, k) computes whether node
j or k is furthest away from i in the ring. It is defined by:

76 G. Karlos et al.

k if i ≤ j ≤ k or k < i ≤ j or j ≤ k < i; and j otherwise.

If the token reaches a node i, it must wait until i is passive. Then i adds
the value of count i to the value of count t. If i is white, meaning that black t =
black i = i, it can determine termination in the same way the initiator does in
Safra’s algorithm: check whether the value of count t is zero. If i is black or detects
no termination, it forwards the token to its successor. Before doing so, it sets
black t to furthest i(black t, black i) if this value is not i, or else to (i + 1) mod N .
The latter means the successor of i in the ring will consider the token white.
Finally, i sets count i to zero and black i to i and increases seq i by one.

Algorithms 1–4 present the pseudocode of the four procedures available at
each node i for the improved version of Safra’s algorithm: initialization, sending/
receiving a basic message m to/from a node j (SBM/RBM) , and receiving a
token (RT). Subscript i of a procedure name represents the node where the
procedure is performed. Action send(m, j) denotes that message m is sent to node
j, and the Boolean field passive i is true only when node i is passive. Procedures
are executed without interruption, except that while waiting to become passive,
in line 1 of RT, a node is allowed to perform SBM and RBM calls.

Algorithm 1: Initialization i

1 count i ← 0; black i ← i; seq i ← 0;
2 if i = 0 then
3 wait(passive 0);
4 count t ← count 0; black t ← N − 1; send(t, 1); count 0 ← 0; seq 0 ← 1;

Algorithm 2: SendBasicMessage i (m, j)
1 seqm ← seq i; send(m, j); count i ← count i + 1;

Algorithm 3: ReceiveBasicMessage i (m, j)
1 if seqm = seq i + 1 ∨ (j > i ∧ seqm = seq i) then
2 black i ← furthest i(black i, j);
3 count i ← count i − 1;

Algorithm 4: ReceiveToken i

1 wait(passive i);
2 count t ← count t + count i; black i ← furthest i(black i, black t);
3 if count t = 0 ∧ black i = i then
4 Announce;
5 black t ← furthest i(black i, (i + 1) mod N);
6 send(t, (i + 1) mod N);
7 count i ← 0; black i ← i; seq i ← seq i + 1;

Fault-Tolerant Termination Detection with Safra’s Algorithm 77

5 Fault-Tolerant Version

From now on we assume nodes may spontaneously and permanently crash. It
is customary to assume for fault-tolerant distributed algorithms that there is a
bidirectional channel between each pair of distinct nodes (see e.g. [21]), because
else a node failure may result in disconnected subnetworks. Actually, it suffices
if at any time a channel can be established between any two alive nodes.

Mittal et al. [20] showed that a perfect failure detector is required to solve
termination detection in the presence of failures. In a fully asynchronous setting,
such a detector cannot be built. A practical compromise is to assume an upper
bound on the network latency. Each node sends out heartbeat messages at reg-
ular time intervals. When a node i has not received a heartbeat from another
node j within some time interval, then i permanently considers j as crashed.

Each node i stores the identities of crashed nodes in one of the sets Crashed i

and Report i. The latter contains the identities that i has not yet reported to
the other alive nodes by means of the token; this will be explained below.

Since counts of messages to and from crashed nodes need to be discarded, the
token contains N counters, one per node; moreover, each node needs to count
its message exchange with each other node separately and from the start of the
execution run (instead of since the last token visit). So we split the field count i
for each node i into a sequence [count 0i , . . . , count

N−1
i]. For each node j, the field

count ji stores the number of basic messages i has sent to j minus the number of
basic messages i has received from j. (The fields count ii are redundant as they
always carry the value zero.) If (the failure detector of) i detects that a node
j has crashed, then i permanently disregards the value of count ji . Likewise, to
separately keep track of the counters at the different nodes in the token, the
field count t is split into a sequence [count 0t , . . . , count

N−1
t]. If these counters

were lumped together into a single counter count t, and say a node i sent a basic
message to a node j which then crashed, there might be no way of telling whether
or not j received this message and updated count ij and count t.

If a node i learns from its failure detector that some other node j crashed, it
must share this information with the other alive nodes via the token. Else there
would be the risk that although i from now on disregards count ji , some other
alive node k may still take into account count jk, which could lead to a premature
termination detection at k. For this purpose the token contains a set Crashed t.
When i forwards the token with j ∈ Crashed t, it adds j to Crashed i, to avoid
that it announces the same crashed node multiple times.

Each node i keeps track of its successor next i in the ring; initially (i+1) mod
N . Each time i detects next i has crashed, the value of this field is changed
into i’s nearest alive successor. We must ensure that the token is not lost; this
could happen if the token was traveling to or being handled by next i at the
moment it crashed. Therefore, after having determined its new successor next i′,
i forwards the token once again, to next i′. For this purpose i stores the last token
it forwarded. These local variables are updated as soon another token (with a
higher sequence number) arrives.

In case next i forwarded the token before crashing, next i′ will receive the same
token twice. Therefore the token has a sequence number seq t, which is increased

78 G. Karlos et al.

by one at each consecutive round trip of the token. In the first round seq t = 1.
Each node i keeps track of the highest sequence number it has passed on so far
in seq i (initially seq i = 0), and ignores incoming tokens with seq t ≤ seq i. The
last node in the ring, initially N − 1, increases the sequence number every time
it forwards the token. If it crashes, this task is taken over by its predecessor. A
node i can determine whether it is the last node by checking if next i < i.

As in the failure-sensitive variant of Safra’s algorithm, black t and black i

express which nodes are considered black, and when the token is sent by the
initiator for the first time, black t = N −1 to guarantee it visits all nodes at least
once. If a node receives an offending basic message, it colors all nodes in the ring
between itself and the sender black. If the failure detector of a node i reports a
crashed node and, at the next token visit, i does not detect termination, then i
colors all other nodes black, as they must all be visited by the token.

The pseudocode of the procedures at each node is given in Algorithms 5–
10. Again, the procedures should be executed without interruption, except that
while waiting to become passive, in line 2 of procedure ReceiveToken, a node may
perform SendBasicMessage, ReceiveBasicMessage and FailureDetector calls.

In the initialization phase, nodes provide their local variables with initial
values; node 0 holds the token. At sending/receiving a basic message to/from
a noncrashed process, the sender/receiver updates the corresponding counter.
Basic messages received from a crashed node in Report i may still be accounted
for by i in the control algorithm, to allow for termination detection at the next
token visit to i. If the receipt of a message is accounted for in the token before
its send, the receiver colors the nodes up to the sender black.

Algorithm 5: Initialization i

1 for j = 0 to N − 1 do
2 count ji ← 0; count jt ← 0;
3 black i ← i; seq i ← 0; next i ← (i + 1) mod N ;
4 Crashed i ← ∅; Crashed t ← ∅; Report i ← ∅;
5 if i = 0 then
6 black t ← N − 1; seq t ← 1; ReceiveToken 0;
7 else
8 black t ← i;

Algorithm 6: SendBasicMessage i (m, j)

1 if j /∈ Crashed i ∪ Report i ∪ Crashed t then
2 seqm ← seq i; send(m, j); count ji ← count ji + 1;

Algorithm 7: ReceiveBasicMessage i (m, j)

1 if j /∈ Crashed i then
2 if seqm = seq i + 1 ∨ (j > i ∧ seqm = seq i) then
3 black i ← furthest i(black i, j);
4 count ji ← count ji − 1;

Fault-Tolerant Termination Detection with Safra’s Algorithm 79

Algorithm 8: ReceiveToken i

1 if seq t = seq i + 1 then
2 wait (passive i); black i ← furthest i(black i, black t);
3 Crashed t ← Crashed t \ Crashed i;
4 Crashed i ← Crashed i ∪ Crashed t;
5 Report i ← Report i \ Crashed t;
6 if black i = i ∨ Report i = ∅ then
7 count it ← 0;
8 for all j ∈ {0, . . . , N−1} \ Crashed i do
9 count it ← count it + count ji ;

10 if black i = i then
11 sum i ← 0;
12 for all j ∈ {0, . . . , N−1} \ Crashed i do
13 sum i ← sum i + count jt ;
14 if sum i = 0 then
15 Announce;
16 if next i ∈ Crashed t then
17 NewSuccessor i;
18 if next i < i then
19 seq t ← seq t + 1;
20 if Report i 	= ∅ then
21 Crashed t ← Crashed t ∪ Report i; black t ← i;
22 Crashed i ← Crashed i ∪ Report i; Report i ← ∅;
23 else
24 black t ← furthest i(black i,next i);
25 send(t,next i); black i ← i; seq i ← seq i + 1;

Procedure ReceiveToken i (RTi) is executed when a token arrives at node i.
It only proceeds if i did not receive an instance of this token before (line 1).
It then waits until it becomes passive, because in the meantime the values of
count ji , black i and Report i may still change.

Once passive, black i is set to the furthest of black i and black t (line 2). Then,
the set Crashed t is relieved of the nodes that i reported through the token
before (line 3). The remaining nodes in Crashed t are copied to Crashed i,
because they will be reported when i forwards t (line 4). Report i is relieved
of nodes in Crashed t (line 5). The values count ji for nodes j /∈ Crashed i are
accumulated in count it (lines 7–9); but only if i is white or Report i is empty
(line 6), because then it may be employed in termination detection at i (in lines
10–15) or at other nodes, respectively. If i is white (line 10), the values count jt
for nodes j /∈ Crashed i are accumulated in sum i (lines 11–13); if this sum is
0, i announces termination (lines 14–15). If no termination is detected, i checks
whether its successor is in Crashed t; if so, NewSuccessor i is called to select
another successor (lines 16–17). Next, i checks whether it is the last node in the
ring, and if so increases the sequence number of t by 1 (lines 18–19). If Report i

is nonempty (line 20), then it is added to Crashed t, so that t will report these
crashed nodes to all alive nodes; black t is set to i, to ensure that the token visits

80 G. Karlos et al.

all nodes up to i again before termination can be detected, as all alive nodes
must first achieve a consistent view on the set of crashed nodes (line 21). Next
all nodes in Report i are moved to Crashed i (line 22). If Report i is empty,
then black t is set to furthest i(black i,next i) (lines 23–24). Finally, i forwards t
to next i, colors itself white, and increases seq i by one (line 25).

FailureDetector i (FDi) is invoked if i’s failure detector reports that a node
j crashed (crashed(j) in line 1). If i was not yet aware of this crash (line 2),
then j is added to Report i (line 3), so that this crash will be reported to
other nodes via the token. If j is the successor of i in the ring, NewSuccessor i is
invoked to compute a new successor of i (lines 4–5). A backup token (possibly
updated compared to the original token) is sent to the new successor (line 11),
if i received the token at least once (first disjunct in line 6); the second disjunct
in line 6 ensures a backup token is sent when the initiator crashes before ever
becoming passive. Report i is added to Crashed t (line 7); nodes in Report i

are not transposed to Crashed i yet, because the backup token may be discarded
in favor of the original token. By black t ← i (in line 8) it is guaranteed that the
backup token visits all nodes up to i again before termination can be detected,
as all alive nodes must take into account the crash of j. If no alive node has an
identity greater than i, then seq t is increased by one (lines 9–10).

Algorithm 9: FailureDetector i

1 crashed(j);
2 if j /∈ Crashed i ∪ Report i then
3 Report i ← Report i ∪ {j};
4 if j = next i then
5 NewSuccessor i;
6 if seq i > 0 ∨ next i < i then
7 Crashed t ← Crashed t ∪ Report i;
8 black t ← i;
9 if next i < i then

10 seq t ← seq i + 1;
11 send(t,next i);

Algorithm 10: NewSuccessor i

1 next i ← (next i + 1) mod N ;
2 while next i ∈ Crashed i ∪ Report i do
3 next i ← (next i + 1) mod N ;
4 if next i = i then
5 wait(passive i);
6 Announce;
7 if black i 	= i then
8 black i ← furthest i(black i,next i);

NewSuccessor i (NSi) computes i’s new successor after next i crashed. First,
next i is changed into (next i + 1) mod N (line 1). Then, it is repeatedly checked

Fault-Tolerant Termination Detection with Safra’s Algorithm 81

whether the new value of next i is a crashed node (line 2), and if so its value is
increased by one, modulo N (line 3). After the value of next i has stabilized, i
checks whether it is the only remaining alive node in the network (line 4), and if
so, waits until it has become passive to announce termination (lines 5–6). Else,
if black i 	= i, then black i is set to furthest i(black i,next i) (lines 7–8).

Fig. 1. Example run on a faulty network of three nodes

Example 1. We consider one possible run of our fault-tolerant algorithm on a
ring of three nodes in Fig. 1. Initially all nodes are active, all counters carry the
value 0, and black i = i and seq i = 0 for i = 0, 1, 2. Node 0 sends basic messages
m and m′ to node 1, node 1 sends basic message m′′ to node 2, and node 2
sends basic message m′′′ to node 1 (all with their node ID and sequence number
0 attached); count 10 is set to 2, and count 21 and count 12 are set to 1. Nodes 0
and 2 now become passive. Node 0 sends the token to node 1 (with count 0t = 2,
count 1t = count 2t = 0, black t = 2, seq t = 1 and Crashed t = ∅), and crashes.
This leads to Fig. 1a where the cross at node 0 represents that it has crashed,

82 G. Karlos et al.

the sequences of count values at alive nodes are placed between square brackets,
and empty Crashed and Report sets at nodes have been omitted.

In Fig. 1b, node 2 detects node 0 crashed and sets Report 2 to {0}; from now
on node 2 ignores count 02. Since next 2 = 0, node 2 makes node 1 its new successor.
Since 1 < 2, node 2 sends a backup token to node 1 (with count 1t = count 2t = 0,
black t = 2, seq t = 1 and Crashed t = {0}). Node 1 receives m from node 0
and sets count 01 to −1; since the sender of m is 0 < 1 and seqm = 0 = seq 1,
black 1 remains unchanged; moreover, node 1 receives m′′′ from node 2 and sets
count 21 to 0; since the sender of m′′′ is 2 > 1 and seqm′′′ = 0 = seq 1, black 1 is
set to 2. Then, in Fig. 1c, node 1 receives the backup token from node 2 and
sets Crashed 1 to {0}. It becomes passive, passes on the token to node 2 with
count 1t set to count 21 = 0, and sets both black 1 and seq 1 to 1. Node 1 does not
detect termination since black t = 2. Next, node 1 receives the original token
from node 0, which is dismissed. Node 2 receives the token and sets Crashed 2

to {0} and Report 2 to ∅. It does not detect termination because it sets count 2t
to count 12 = 1, and count 1t + count 2t = 0 + 1 > 0. It passes on the token to node
1 with black t = 1 and seq t = 2, and sets black 2 to 2 and seq 2 to 1.

When the token arrives, node 1 sets Crashed t to ∅, computes count 1t = 1,
passes on the token to node 2 with black t = 2, and sets black 1 to 1 and seq 1 to 2.
In the meantime node 2 receives m′′ from node 1 and sets count 12 to 0; since the
sender of m′′ is 1 < 2 and seqm′′ = 0 < seq 2, black 2 remains unchanged. Node
2 becomes passive again. When the token arrives, node 2 computes count 1t +
count 2t = 0 + 0 = 0. Since also black t = 2, it announces termination. Finally
node 1 ignores message m′ from node 0, because 0 ∈ Crashed 1.

6 Implementation and Experimental Results

We applied a Java implementation of SafraFT to a fault-tolerant version of
the Chandy-Misra routing algorithm [5] (CM) and the Afek-Kutten-Yung self-
stabilizing spanning tree algorithm [1] (AKY)1. They form a good test bench
because detecting termination is of importance for both algorithms while their
messaging behaviors are distinct. Their implementations are on top of the Ibis
distributed programming platform [2]. Experiments were conducted on the DAS-
4 supercomputer [3]. Multiple network nodes were run on each DAS-4 compute
node to achieve decently sized networks, up to 2000 network nodes. When more
network nodes are placed on a single compute node, profiling shows this starts to
influence the outcome of experiments. For this reason the experiments with the
CM and AKY algorithms were limited to 2000 network nodes. Before each run
a certain percentage of nodes, up to 90%, was randomly selected to crash after
performing a certain number of events. As an aside, the experiment unveiled a
delicate implementation issue. Updates of token variables in the ReceiveToken
procedure must be atomic because otherwise incorrect behavior may occur if a
node receives a backup token while handling the token.

1 https://github.com/PerFuchs/safra-termination-detection-fault-tolerant.

https://github.com/PerFuchs/safra-termination-detection-fault-tolerant

Fault-Tolerant Termination Detection with Safra’s Algorithm 83

Moreover, we abstractly emulated activity of a basic algorithm and network
behavior under randomized execution scenarios2. The emulation experiments
were performed on a single compute node of DAS-4. We used networks of 16,
48 and 144 nodes and two probability distributions (uniform and Gaussian)
for the randomized choices. We emulated a decentralized basic algorithm, with
half of the nodes initially active. For each version, network size and probability
distribution we performed a test with no nodes crashing and, for SafraFT only,
a test for each 20% interval ([1, 20], [21, 40], etc.) of crashing nodes. We repeated
each test 1000 times, for a total of 42,000 runs (two probability distributions,
three network sizes, and six intervals for SafraFT; one interval [0, 0] for SafraFS).

Emulation results in Fig. 2 (Emu, left) confirm that SafraFT imposes no
additional control message overhead, in the absence of crashes, compared to
SafraFS. Both variants tend to require the same number of token steps to detect
termination after it has occurred (Tpost), incurring on average half a round of
extra token steps (Rpost). They also require the same number of token steps
before termination (Tpre). This is to be expected since in the absence of crashes,
the operation of SafraFT is almost identical to that of SafraFS. These results
are stable across the two probability distributions used in the emulator.

Performance results of emulations have to be taken with a grain of salt.
In practice workloads do not always follow a smooth probability distribution,
thread-scheduling policies as well as the hardware platform may to introduce
biases, and basic algorithms may exhibit behavior to deal with actual node
crashes. Still these synthetic results give some indication of the performance
overhead SafraFT may impose, and importantly the large number of emulations
helped to further increase confidence in the correctness of this algorithm.

Fig. 2. Top: Tokens sent on crash-free networks. Uniform, Gaussian distributions
denoted by u, g. Bottom: Detection delay, in token rounds after termination.

The CM/AKY results in Fig. 2 (Real, right) also show that SafraFT incurs no
extra control message overhead on crash-free runs. Compared to the emulation
results, there is a small increase in Rpost. For emulation, Tpre is considerably
larger than for CM/AKY. This difference can be attributed to the generally
2 https://github.com/gkarlos/FTSEmu.

https://github.com/gkarlos/FTSEmu

84 G. Karlos et al.

higher workload of the emulated basic algorithm compared to CM/AKY. For
instance, the initiator of the CM algorithm does not take part in the computation
after the initial broadcast, and thus is mostly passive. Moreover, in CM, nodes
send estimate messages to their neighbors but not to their parent. This leaves
more nodes passive compared to the randomized activities of the emulator.

Fig. 3. Tokens sent by SafraFT on faulty networks in the emulator. Uniform, Gaussian
distributions denoted by u, g.

Figure 3 shows the effect of crashes on emulation runs of SafraFT. The total
number of token steps (T) and Tpost decrease roughly in a linear fashion as
failures increase, because when nodes crash, fewer nodes remain to forward the
token, and our emulations of basic algorithms do not react to crashes.

Fig. 4. Tokens sent by SafraFT with 1–5 and 90% crashed nodes in the emulator and
CM/AKY experiments. Uniform, Gaussian distributions denoted by u, g.

Such a decrease is not to be expected for real-world distributed algorithms.
A node crash may cause active nodes to activate other nodes, or the workload of
the crashed node may be reassigned to other alive nodes, extending the trip of the
token. A significant increase of Tpre is indeed observed for CM/AKY in Fig. 4 if
many nodes (90%) crash, compared to if 1–5 nodes crash. By contrast, crashes
have little effect on emulated basic algorithms, for reasons discussed before. Tpre

remains roughly the same for small networks and actually shows a decrease on the
largest one, due to the fact that the overall activity produced by the emulator on
16 and 48 nodes is relatively small compared to that of 144 nodes.

Fault-Tolerant Termination Detection with Safra’s Algorithm 85

Table 1 shows the sum of processing times (pt), detection overhead (ov), and
time to detect termination after it happened (tt), for SafraFS and SafraFT, when
applied to CM and AKY. For N ≤ 1000, pt-FS and pt-FT grow roughly linear
to N . An analysis of processing times shows that the main factor in the higher
time consumption of SafraFT, compared to SafraFS, is the growth in token size
when N increases. The outlier N = 2000, for SafraFS but especially SafraFT,
turned out to be caused by our experimental setup. Each physical compute node
may simultaneously host up to 100 network nodes, depending on N . Each of
these instances uses multiple threads. Altogether there are at least four times as
many threads as cores on each machine. This leads to threads being preempted
by the operating system, which happens more often for threads that try to send
large messages (and in SafraFT, the token size grows linearly with N).

Table 1. CM/AKY results of SafraFS/FT on crash-free networks. Times in s.

N Crash-Free CM Crash-Free AKY

pt-FS/FT ov-FS/FT tt-FS/FT pt-FS/FT ov-FS/FT tt-FS/FT

50 0.02/0.03 4.8/7.4% 0.01/0.01 0.04/0.05 4.1/ 5.7% 0.01/0.01

250 0.12/0.24 3.7/7.1% 0.03/0.10 0.15/0.26 6.1/10.5% 0.02/0.08

500 0.26/0.64 2.4/5.7% 0.06/0.34 0.30/0.52 6.4/11.1% 0.05/0.18

1000 0.59/1.15 2.2/4.3% 0.12/0.54 0.68/1.46 4.9/10.6% 0.11/0.70

2000 1.43/2.66 1.2/2.2% 0.23/1.05 1.63/6.03 3.4/12.7% 0.30/3.85

A relatively large part of the overall processing time is spent on detecting
termination because CM and AKY complete their tasks relatively quickly. For
basic algorithms that take a long time to complete, the time taken for termina-
tion detection can be expected to be negligible. The processing time overhead of
termination detection (between 2.2% and 12.7% in all runs for SafraFT) would
reduce significantly for long-running jobs, owing to the fact that Safra’s algo-
rithm tends to impose only little control message overhead, unlike termination
detection algorithms in which every basic message is acknowledged (e.g. [9]).
Remarkably, for CM the overhead of SafraFT decreases when N grows, while
for AKY it increases. The reason is that the number of times nodes become
passive grows significantly slower, in terms of N , for CM than for AKY.

Table 2. CM/AKY results of SafraFT on faulty networks. Times in s.

N Faulty CM Faulty AKY

pt-1-5 pt-90 tt-1-5 tt-90 pt-1-5 pt-90 tt-1-5 tt-90

50 0.06 0.11 0.02 0.01 0.07 0.11 0.01 0.002

250 0.29 0.52 0.10 0.04 0.29 0.60 0.07 0.01

500 0.71 1.18 0.30 0.08 0.65 1.48 0.19 0.03

1000 1.59 2.43 0.70 0.11 1.91 4.40 0.42 0.10

2000 5.11 6.88 2.22 0.31 4.25 9.93 1.70 0.17

86 G. Karlos et al.

Table 2 shows the sum of the processing times at all nodes and the time to
detect termination after it happened for SafraFT, applied to CM and AKY,
when 1 to 5 nodes (1–5) and when 90% of the nodes (90%) crash. When more
nodes crash, the processing time increases, due to backup tokens, while the time
to detect termination decreases, because there are fewer alive nodes.

7 Conclusion

We presented a fault-tolerant algorithm for distributed termination detection
based on an improved version of Safra’s algorithm. In our fault-tolerant variant
message counters are maintained per node, so that counts to and from crashed
nodes can be discarded. If a node crashes, the ring structure is restored locally
and a backup token is sent. Strong points are: little message overhead when nodes
remain active for a long time; robust against any number of and simultaneous
node crashes; only one additional message per crash; the basic algorithm can
be decentralized; no leader election scheme; no underflow issues. Compared to
other algorithms, our algorithm generates far fewer, but larger control messages.
For overall performance, fewer messages tend to be better, since more messages
mean more processing at each node, as well as at the network stack.

Experiments indicate our algorithm imposes no significant extra overhead in
control messages compared to its failure-sensitive counterpart. Despite the O(N)
bit complexity of the token, the available throughput and low latency of current
network technologies, as well as the low message complexity of our algorithm,
may render our approach feasible for large networks. This needs to be validated
in experiments with real-life distributed networks under realistic and diverse
workloads on many machines.

Testing the behavior of fault-tolerant distributed algorithms on very large
networks turned out to be challenging. Emulating basic algorithms by means
of unrestricted randomization results in executions that refuse to terminate on
large networks and do not faithfully mimic all aspects of real-life distributed
algorithms. Moreover, in experiments on top of two actual algorithms, allocating
multiple network nodes on a single compute node influences the results. These
challenges may partly explain why [16] is the only related paper we are aware of
to report experimental results, for networks of up to 2048 nodes.

Next to performing realistic experiments for larger networks, future work is
to develop a version of our fault-tolerant algorithm in the presence of stable
storage. In that case the memory overhead of splitting the counter in the token
can be avoided, at the cost of storing message counts in stable storage.

Acknowledgement. Ceriel Jacobs provided valuable feedback on the design and
implementation of our algorithm.

References

1. Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its applications
to self-stabilization. Theoret. Comput. Sci. 186(1–2), 199–229 (1997)

Fault-Tolerant Termination Detection with Safra’s Algorithm 87

2. Bal, H.E., et al.: Real-world distributed computer with Ibis. IEEE Comput. 43(8),
54–62 (2010)

3. Bal, H.E., et al.: A medium-scale distributed system for computer science research:
infrastructure for the long term. IEEE Comput. 49(5), 54–63 (2016)

4. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

5. Chandy, K.M., Misra, J.: Distributed computation on graphs: shortest path algo-
rithms. Commun. ACM 25(11), 833–837 (1982)

6. Demirbas, M., Arora, A.: An optimal termination detection algorithm for rings,
Technical report, The Ohio State University (2000)

7. Dijkstra, E.W.: Shmuel Safra’s version of termination detection. EWD Manuscript
998, The University of Texas at Austin (1987)

8. Dijkstra, E.W., Feijen, W.H.J., van Gasteren, A.J.M.: Derivation of a termination
detection algorithm for distributed computations. Inf. Process. Lett. 16, 217–219
(1983)

9. Dijkstra, E.W., Scholten, C.S.: Termination detection for diffusing computations.
Inf. Process. Lett. 11(1), 1–4 (1980)

10. Feijen, W.H.J., van Gasteren, A.J.M.: Shmuel Safra’s termination detection algo-
rithm. In: Feijen, W.H.J., van Gasteren, A.J.M. (eds.) On a Method of Multipro-
gramming. Monographs in Computer Science, pp. 313–332. Springer, Heidelberg
(1999). https://doi.org/10.1007/978-1-4757-3126-2 29

11. Fokkink, W.J.: Distributed Algorithms: An Intuitive Approach, 2nd edn. MIT
Press, Cambridge (2018)

12. Francez, N.: Distributed termination. ACM Trans. Program. Lang. Syst. 2, 42–55
(1980)

13. Helary, J.-M., Hurfin, M., Mostefaoui, A., Raynal, M., Tronel, F.: Computing global
functions in asynchronous distributed systems with perfect failure detectors. IEEE
Trans. Parallel Distrib. Syst. 11(9), 897–907 (2000)

14. Hursey, J., Graham, R.L.: Building a fault tolerant MPI application: a ring com-
munication example. In: Proceedings of IPDPS Workshop on High Performance
Computing, pp. 1549–1556. IEEE (2011)

15. Lai, T.-H., Wu, L.-F.: An (N-1)-resilient algorithm for distributed termination
detection. IEEE Trans. Parallel Distrib. Syst. 6(1), 63–78 (1995)

16. Lifflander, J., Miller, P., Kale, L.: Adoption protocols for fanout-optimal fault-
tolerant termination detection. In: Proceedings of PPoPP, pp. 13–22. ACM (2013)

17. Matocha, J., Camp, T.: A taxonomy of distributed termination detection algo-
rithms. J. Syst. Softw. 43(3), 207–221 (1998)

18. Mattern, F.: Algorithms for distributed termination detection. Distrib. Comput.
2(3), 161–175 (1987). https://doi.org/10.1007/BF01782776

19. Mattern, F.: Global quiescence detection based on credit distribution and recovery.
Inf. Process. Lett. 30(4), 195–200 (1989)

20. Mittal, N., Freiling, F., Venkatesan, S., Penso, L.: On termination detection in
crash-prone distributed systems with failure detectors. J. Parallel Distrib. Comput.
68(6), 855–875 (2008)

21. Tel, G.: Introduction to Distributed Algorithms, 2nd edn. Cambridge University
Press, Cambridge (2000)

22. Tseng, T.C.: Detecting termination by weight-throwing in a faulty distributed
system. J. Parallel Distrib. Comput. 25(1), 7–15 (1995)

23. Venkatesan, S.: Reliable protocols for distributed termination detection. IEEE
Trans. Reliab. 38(1), 103–110 (1989)

https://doi.org/10.1007/978-1-4757-3126-2_29
https://doi.org/10.1007/BF01782776

	Fault-Tolerant Termination Detection with Safra's Algorithm
	1 Introduction
	2 Related Work
	3 System Model
	4 Safra's Algorithm
	5 Fault-Tolerant Version
	6 Implementation and Experimental Results
	7 Conclusion
	References

