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a b s t r a c t

We establish strong consistency and asymptotic normality of the maximum likelihood
estimator for stochastic time-varying parameter models driven by the score of the
predictive conditional likelihood function. For this purpose, we formulate primitive
conditions for global identification, invertibility, strong consistency, and asymptotic
normality both under correct specification and misspecification of the model. A detailed
illustration is provided for a conditional volatility model with disturbances from the
Student’s t distribution.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

We study the asymptotic properties of the maximum likelihood estimator for score-driven time series models as
ntroduced by Creal et al. (2011, 2013) and Harvey (2013). We specify the score-driven model as

yt = g(ft , ut ), ut ∼ pu(ut; λ), ft+1 = ω + α st + βft ,
st = St · ∇t , ∇t = ∂ log py(yt |ft; λ)/∂ ft ,

(1.1)

here yt denotes the observed data, g(·, ·) is a link function that is strictly increasing in its second argument, ft is a
tochastic time-varying parameter that indexes the predictive conditional density py of the data yt , ut is an independent
nd identically distributed (i.i.d.) innovation with density pu, λ is the static parameter vector that indexes pu, ω, α and β
re fixed unknown parameters, st is the scaled score function using scaling function St := S(ft; λ), and ∇t is the score (i.e.
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the derivative of the log) of the predictive conditional density py(yt |ft; λ) with respect to ft . The conditional (on ft ) density
y is implied by the innovation density pu and the link function g . We gather the static parameters in a parameter vector
⊤

= (ω, α, β, λ⊤), where ⊤ denotes the transpose of a vector or matrix. We estimate θ by the method of maximum
ikelihood (ML).

The class of score-driven time series models encompasses many well-known time-varying parameter models from
he literature. Additionally, it has given rise to a new strand of literature on successful empirical models in economics
nd finance. Traditional models contained in the score-driven class include the generalized autoregressive conditional
eteroskedasticity (GARCH) model of Engle (1982) and Bollerslev (1986), the autoregressive conditional duration (ACD)
odel of Engle and Russell (1998), the multiplicative error model (MEM) of Engle (2002), and many more. Among the wide

ange of new successful empirical models, we have the dynamic models for location and scale of fat-tailed data (Harvey
nd Luati, 2014), mixed measurement dynamic factor structures (Creal et al., 2014), dynamic models for multivariate
ount data (Koopman et al., 2018; Babii et al., 2019), dynamic spatial processes (Blasques et al., 2016; Catania and Billé,
017), dynamic tail indices (Massacci, 2016), and dynamic copulas, both with short-memory dynamics (Creal et al., 2011;
ucas et al., 2014, 2017), long-memory dynamics (Janus et al., 2014), factor structures (Oh and Patton, 2018), and with
ealized measures as inputs (De Lira Salvatierra and Patton, 2015; Opschoor et al., 2018).

Despite this range of new empirical models with score-driven dynamics, few general theoretical results are available
or the asymptotic properties of maximum likelihood estimators in such models. The main complication lies in the
onlinearity of the updating equation (1.1) in score-driven models. In this paper, we aim to fill this gap by deriving
ew asymptotic results for the maximum likelihood estimator that are applicable to a wide class of score-driven models.
A distinguishing feature of score-driven time series models is the use of the scaled score st in the transition equation for

t+1 in (1.1). This makes the model observation-driven in the classification of Cox (1981). Therefore, maximum likelihood
stimation of static parameters can be achieved via a prediction error decomposition. In particular, we can express the
ikelihood function in closed-form, which significantly reduces the computational burden. Blasques et al. (2015) show that
core-driven models have unique optimality properties in terms of approximating the unknown sequence of conditional
ensities py(yt |ft; λ), even when the model is misspecified. Relatedly, Koopman et al. (2016) show that score-driven time-
arying parameter models produce similar forecasting precision as parameter-driven state–space models, even if the latter
onstitute the true DGP.
Our asymptotic results for the maximum likelihood estimator have a number of distinctive features compared to earlier

heoretical contributions on observation-driven and in particular score-driven time series models. First, the asymptotic
roperties that we derive for the maximum likelihood estimator (MLE) are global. For example, we provide a global
dentification result for score-driven models in terms of low-level conditions. This new result differs from the existing
iterature that typically relies on high-level assumptions and only ensures local identification by imposing invertibility
onditions on the information matrix at the true parameter value; see, for example, Straumann and Mikosch (2006),
eitz and Saikkonen (2011) and Harvey (2013). Second, we formulate primitive low-level conditions in terms of the basic
tructure of the model. For instance, we obtain the required moments of the likelihood function directly from assumptions
oncerning the properties of the basic building blocks of the model in (1.1), such as the shape of the density function
y. The use of primitive conditions is typically helpful for empirical researchers who want to establish the asymptotic
roperties of the MLE for their own model. We are able to obtain low-level conditions by adapting Theorem 3.1 in Bougerol
1993). The adapted theorem delivers the strict stationarity and ergodicity of stochastic sequences and also produces
ounded moments for the filter. Third, we follow Straumann and Mikosch (2006) in making use of Theorem 3.1 in Bougerol
1993) and the ergodic theorem in Rao (1962) for strictly stationary and ergodic sequences on separable Banach spaces.
ased on these results, we establish the invertibility of the score filter and we obtain asymptotic results under weaker
ifferentiability conditions than the existing literature on MLE for score-driven models. Finally, we explore consistency and
symptotic normality results for both well-specified and misspecified models. These results also extend the literature for
core-driven models, which thus far focusses only on the correctly specified case. By allowing for model misspecification,
e ‘align’ the asymptotic estimation theory for score-driven models with the existing information-theoretic optimality
esults of Blasques et al. (2015).

The theory developed here allows us to establish results for a much wider range of score-driven models than studied
n current literature, such as models with fat-tailed log-likelihoods and uniformly bounded third order derivatives; see,
or example, Harvey (2013), Harvey and Luati (2014), Caivano and Harvey (2014), and Ryoko (2016). In particular, we
mphasize that by establishing the invertibility of the score-driven filter, our asymptotic results stand in sharp contrast
o existing results on score-driven models that do not ensure invertibility; see also Andres and Harvey (2012) and Harvey
nd Lange (2015a,b). The importance of filter invertibility for consistency of the MLE has been underlined in Straumann
nd Mikosch (2006), Wintenberger (2013), and Blasques et al. (2018a), among others. Without invertibility, the existing
symptotic results on score-driven models must implicitly assume that the initial value of the true stochastic time-varying
arameter, f1, is random and known exactly, while the remaining sequence {ft}t≥2 is unobserved. This seems highly
nrealistic and unsatisfactory.
The lack of theoretical results for the MLE in score-driven models also stands in sharp contrast to the large number

f results available for GARCH models. We do not attempt to review that literature here; for good overviews, see for
nstance Straumann (2005) or Francq and Zakoïan (2010). The main cause for the limited theoretical progress for score-
riven models lies in their complex nonlinear dynamic structure compared to common GARCH models. This results in
326
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new theoretical challenges and puzzles. The analysis of score-driven models also provides a different perspective from
the standard literature: the characteristics of the likelihood function (based on the conditional density py) in a score-driven
odel hinge directly together with the dynamic properties of the stochastic time-varying parameter (via the use of the
core ∂ log py/∂ ft in the transition equation (1.1) for ft ). This provides a close link between the two that departs from
most of the literature, where the properties of the likelihood function and those of the time-varying parameter can be
dealt with separately.

The notation in the remainder of this paper is at times involved. Therefore, we illustrate all steps by a sufficiently
tractable leading example, namely the Student’s t conditional volatility model introduced in Creal et al. (2011, 2013). By
illustrating all details using this example, we keep the exposition focused. The application of the theory is, however, not
limited to this particular case. Additional illustrations include various nonlinear and non-Gaussian models that have been
referred to in the discussion above. In particular, we work out a second example in detail in Section 5.

The remainder of the paper is organized as follows. In Section 2 the general modeling framework is presented. In
Section 3 we obtain stationarity, ergodicity, invertibility, and bounded moments of filtered score-driven sequences using
primitive conditions. In Section 4 we prove our results on global identification, consistency, and asymptotic normality of
the MLE. Section 5 provides a detailed application of the results to a fat-tailed score-driven time-varying location model.
Concluding remarks can be found in Section 6. The proofs of the main theorems are collected in Appendix A. More technical
material is relegated to the Technical Appendix.

2. The general framework

We develop our asymptotic framework for the score-driven time-varying parameter model in (1.1) in terms of its two
main building blocks: the innovation density pu and the link function g . The conditional data density py is implied by pu
and g as follows

py
(
yt
⏐⏐ ft ; λ

)
= pu

(
ḡ(ft , yt ) ; λ

)
· ḡ ′(ft , yt ), (2.1)

where all variables are introduced below (1.1), and where

ḡt := ḡ(ft , yt ) := g−1(ft , yt ), ḡ ′

t := ḡ ′(ft , yt ) := ∂ ḡ(ft , y)/∂y|y=yt ,

are the inverse of g(ft , ut ) with respect to its second argument, ut , and the Jacobian of the transformation, respectively. We
assume yt ∈ Y ⊆ R and g : F×U → Y , where Y , U , and F are the convex domains of yt , ut , and ft , respectively. For ease of
exposition, we set the dimension of the parameter vector λ to one. All results can be generalized to the high-dimensional
case straightforwardly, because none of the arguments used in the proofs rely on λ being a scalar.

We denote the initialized stochastic time-varying parameter, also called the filtered parameter, by f̂t (θ, f̂1), as it depends
on the static parameter vector θ = (ω, α, β, λ) ∈ Θ ⊆ R4 and the non-random initialization f̂1 ∈ F for t = 1. For
notational simplicity, we suppress the dependence of f̂t (θ, f̂1) on its arguments whenever possible and write f̂t instead.
The stationary limit of f̂t , which does not depend on the initialization f̂1, is denoted by ft := ft (θ), where again the argument
θ is usually suppressed.

In case θ0 is the true static parameter, then ft (θ0) is the true stochastic time-varying parameter driving the model. We
assume that the true time-varying parameter originates in the infinite past, and hence, has no initialization. A similar
approach is found in settings in which the process can be unfolded backwards in time and is shown to converge to a
stationary sequence that extends to the infinite past. Typical examples include linear autoregressive models, threshold
autoregressive models, GARCH models and autoregressive models with random coefficients. The work of Bougerol (1993)
and Straumann and Mikosch (2006) rely on the same assumption.

We adopt a leading example throughout the expositions below to explain the notation and to illustrate how our results
can be applied in a concrete setting.

Main example. Consider the Student’s t based time-varying scale model. This model was originally proposed by Creal et al.
(2011, 2013) and Harvey (2013) in the context of modeling daily financial returns, and encompasses the celebrated GARCH
model of Engle (1982) and Bollerslev (1986). The model is given by

yt = f 1/2t · ut , (2.2)

where ut is an innovation; the model is a special case of (1.1) with g(ft , ut ) = f 1/2t · ut , which is strictly increasing in ut if
ft > 0, and with Student’s t density pu. We also obtain ḡt = g−1(ft , yt ) = yt/f

1/2
t and ḡ ′

t = f −1/2
t . To ensure positivity of the

scale ft for all t , we impose β ≥ α ≥ 0, ω > 0, and f̂1 > 0, where f̂1 is the initial condition for ft at time t = 1. It follows that

py(yt |ft; λ) =

Γ

(
(λ + 1)/2

)
Γ (λ/2)

√
π λ ft

(
1 + λ−1y2t /ft

)−(λ+1)/2
.

here λ is the degrees of freedom parameter. The time-varying parameter ft should not be interpreted as a variance, because
e do not impose E[u2

t ] = 1. Instead, ft can be viewed as a scaling parameter and we can refer to the model as a conditional
scaling model. Creal et al. (2011, 2013), discuss a case where ft can be interpreted as a variance because a scaled Student’s t
istribution is used for the innovation u .
t
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The characteristic feature of score-driven models is their use of the scaled score function as the driving mechanism in
ransition equation (1.1). Given the decomposition (2.1), we obtain

∇t (ft , yt; λ) =

[
∂ p̄t
∂ f

+
∂ log ḡ ′

t

∂ f

]⏐⏐⏐⏐
f=ft

, (2.3)

ith p̄t := p̄(ft , yt; λ) = log pu(ḡ(ft , yt ); λ) and ḡ ′
t = ∂ ḡ(ft , y)/∂y|y=yt . The scaling function S : F × Λ → F in (1.1) should

be positive. Often, it is taken as a power of the conditional inverse Fisher information to account for the curvature of the
score at time t; see Creal et al. (2013) for more details.

Main example (continued). Given the Student’s t density py, we obtain updating function

f̂t+1 = ω + α

(
wt y2t − f̂t

)
+ β f̂t ,

wt = (1 + λ−1)/(1 + λ−1 y2t /f̂t ),
(2.4)

for nonrandom initial value f̂1, where we used a scaling function S(f̂t; λ) = 2f̂ 2t proportional to the inverse conditional Fisher
information. The score-driven scale dynamics in (2.4) have the interesting feature that they downweight large realizations yt
via the weights wt in (2.4). It gives the score-driven model the desirable robustness feature that is lacking in the GARCH model
with Student’s t distributed innovations; see Creal et al. (2011) and Harvey and Luati (2014) for more details.

For the limiting case λ → ∞, yt becomes conditionally normally distributed, and we recover a slightly reparameterized
version of the standard GARCH model of Engle (1982) and Bollerslev (1986), f̂t+1 = ω + αy2t + (β − α)f̂t . For finite λ, however,
the recursion in (2.4) is highly nonlinear in both yt and f̂t .

Section 4 establishes the asymptotic properties of the maximum likelihood estimator (MLE) for the static parameter
vector θ. We define the MLE θ̂T (f̂1) for fixed initial condition f̂1 as

θ̂T (f̂1) ∈ argmax
θ∈Θ

ℓT (θ, f̂1),

with the average log-likelihood function ℓT given in closed form as

ℓT (θ, f̂1) =
1
T

T∑
t=1

(
log pu(ḡ(f̂t , yt ); λ) + log

∂ ḡ(f̂t , yt )
∂y

)
=

1
T

T∑
t=1

(
p̄t + log ḡ ′

t

)
. (2.5)

The availability of a closed-form expression for the likelihood function is one of the computational advantages of
observation-driven time-varying parameter models. It has for instance led to the widespread application of GARCH models
in applied empirical work. As is clear from Eq. (2.5), score-driven models benefit from the same computational advantages.

3. Stochastic properties of score-driven filters

Before we develop the asymptotic properties of the MLE, we first establish the stationarity, ergodicity, and invertibility
properties and the existence of moments of the stochastic time-varying parameter process {ft}. We do so using primitive
conditions. The likelihood function (2.5) is formulated in terms of the data and in terms of the filtered time-varying
parameter f̂t as defined by the recursion in (1.1). In order for the likelihood function to be well-behaved and for an
appropriate law of large numbers (LLN) and central limit theorem (CLT) to apply, the filtered sequence {f̂t} as well as
the sequences of its first and second order derivatives need to be sufficiently well-behaved for a given data sequence
{yt}. Naturally, the filtered {f̂t} sequence for given data {yt} needs to be carefully distinguished from its model-implied
counterpart, which takes the innovations {ut} rather than the data {yt} as given. We will therefore denote this later
sequence by {f ut }. In this section we investigate the properties of both the filtered and model-implied sequences. The
results below are used in Section 4 to establish the asymptotic properties of the MLE for θ.

We first introduce some additional notation. For a scalar random variable x, define ∥x∥n := (E|x|n)1/n for n > 0. If the
random variable x(θ) depends on a parameter θ ∈ Θ , define ∥x(·)∥Θ

n := (E supθ∈Θ |x(θ)|n)1/n. We say that the sequence {xt}
converges exponentially fast almost surely (e.a.s.) to the sequence {x′

t} if ct ∥xt − x′
t∥

a.s.
→ 0 for some c > 1; see Straumann

and Mikosch (2006).
Propositions 3.1 and 3.2 are written specifically for the score-driven recursion in (1.1). The propositions can, however,

be extended to more general forms which can be found in Technical Appendix B. First, we consider the score-driven model
defined in terms of the innovations u rather than in terms of the observations y . This enables us to establish explicit
t t
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results for the score-driven model as a potential data generating process and to derive properties for the MLE under the
assumption of a correctly specified model. Define su,t := s(f̂ ut , g(f̂ ut , ut ); λ) where s(ft , yt; λ) = S(ft; λ) · ∇t (ft , yt; λ) and let
f̂ ut }t∈N be generated by

f̂ ut+1 = ω + α su,t + β f̂ ut , (3.1)

or t > 1 and an initial non-random value f̂ u1 ∈ R.

ain example (continued). The recursion in (2.4) is defined in terms of yt and f̂t . If we define the recursion in terms of ut
nd f̂ ut instead as required by Eq. (3.1), we obtain

f̂ ut+1 = ω +

(
β + α

(
(1 + λ−1)u2

t

1 + λ−1u2
t

− 1
))

· f̂ ut , (3.2)

such that su,t = ((1 + λ−1)u2
t /(1 + λ−1u2

t ) − 1) · f̂ ut . So whereas the recursion in (2.2) is highly nonlinear in f̂t given yt , the
recursion in (3.2) is linear in f̂ ut for given ut . The data generating process (3.2) allows large values of ut to have a small impact
on the stochastic time-varying parameter, relative to a GARCH model with Student’s t innovations. The robustness feature of
(3.2) is well suited for a model with heavy-tailed innovations.

We next formulate a result for the stationarity and existence of moments of {f ut }t∈Z, the limit process of {f̂ ut }t∈N as
iven by (3.1). This generalizes the results of Blasques et al. (2018b) which establish only stationarity, but not bounded
oments, and the results of Blasques et al. (2014) which hold only for the special case of dynamic correlation models.
e assume that the scaled score su is continuously differentiable in f ut and continuous in ut and λ. Define

ρk
t (θ) := sup

f u∗∈F

⏐⏐ β + α ∂su,t/∂ f u|f u=f u∗
⏐⏐k. (3.3)

e then have the following proposition.

roposition 3.1. For every θ ∈ Θ ⊆ R4 let {ut}t∈Z be an i.i.d. sequence and assume ∃f̂ u1 ∈ F such that

(i) E log+
|su(f̂ u1 , u1; λ)| < ∞;

(ii) E log ρ1
1 (θ) < 0.

hen {f̂ ut }t∈N converges exponentially fast almost surely (e.a.s.) to the unique stationary and ergodic (SE) sequence {f ut }t∈Z for
very θ ∈ Θ as t → ∞.
If furthermore for every θ ∈ Θ there exists some nf u > 0 such that

(iii) ∥su(f̂ u1 , u1; λ)∥nf u < ∞;
(iv) Eρ

nf u
1 (θ) < 1;

hen E|f ut |
nf u < ∞.

Proposition 3.1 not only establishes stationarity and ergodicity (SE) of f ut , but also establishes the existence of
nconditional moments. Furthermore, conditions (i) and (ii) in Proposition 3.1 also provide an almost sure representation
f f ut in terms of {ut}

t−1
t=−∞. We refer to the Technical Appendix for further details. Proposition Proposition 3.1 also holds

f the supremum in (3.3) is defined over a larger convex set F∗
⊇ F . The same holds for Proposition Proposition 3.2 later

n. This can for instance be used if the original space F is non-convex.

ain example (continued). In our main example, the recursion (3.1) is always linear in f̂ ut ; see Eq. (3.2). Conditions (i) and
iii) are satisfied for 0 < λ < ∞ because (1 + λ−1)u2

t /(1 + λ−1u2
t ) is uniformly bounded in ut by the constant λ + 1 < ∞.

onditions (ii) and (iv) are satisfied if the factor in front of f̂ ut in (3.2) has a log-moment or an nf u moment, respectively. For
xample, for nf u = 1 condition (iv) collapses to 0 < β < 1.

Proposition 3.1 will prove convenient in case the model is correctly specified as it describes the properties of the
core-driven model as a data generating process as well as the properties of the score filter at the true parameter θ0 ∈ Θ .
e namely have that f ut (θ0) = ft (θ0).
Irrespective of whether we have a correct or an incorrect specification of the model, to derive the MLE properties we

ust always analyze the stochastic behavior of the filtered time-varying parameter over different θ ∈ Θ . Proposition 3.2
resented below is key in establishing the invertibility, moment bounds and e.a.s. convergence uniformly over the
arameter space Θ of the score-driven filtered sequence {f̂t}, formulated in terms of the data {yt} rather than in terms
f the innovations {ut} as in Eq. (3.1). We assume that s is differentiable in ft and continuous in yt and λ. To state our
ubsequent proposition concisely, we define the supremum

ρ̄t (θ) = sup
∗

⏐⏐ β + α ∂s(f , yt; λ)/∂ f |f=f ∗
⏐⏐. (3.4)
f ∈F
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Proposition 3.2. Let Θ ⊂ R4 be compact, and let {yt}t∈Z be an SE sequence. Assume ∃ f̂1 ∈ F such that

(i) E log+ supλ∈Λ |s(f̂1, yt; λ)| < ∞;
(ii) E log supθ∈Θ ρ̄1(θ) < 0.

hen the sequence {f̂t}t∈N converges e.a.s. to a unique limit SE sequence {ft}t∈Z as t → ∞, uniformly on Θ .
If furthermore ∃ nf > 0 such that

(iii) ∥s(f̂1, yt; ·)∥Λ
nf < ∞;

(iv) sup(f ∗,y,θ)∈F×Y×Θ

⏐⏐⏐ β + α
∂s(f ∗,y;λ)

∂ f

⏐⏐⏐ < 1;

then ∥ft∥Θ
nf < ∞.

The conditions of Proposition 3.2 are easily satisfied by many models including score-driven volatility models and
time-varying location models, both with different innovation distributions. Specific examples are the one in our main
example, the logistic time-varying mean models and the log volatility models with Student’s t distributed innovations.

ain example (continued). Consider the time-varying scale model in Eq. (2.2) with 0 < λ ≤ λ ≤ λ̄ < ∞. From the uniform
oundedness of the score in yt for given f̂1, we obtain that conditions (i) and (iii) of Proposition 3.2 are trivially satisfied.
urthermore, we have

ṡy,t (f ∗
; λ) =

∂s(f , yt; λ)
∂ f

⏐⏐⏐⏐
f=f ∗

=
(1 + λ−1)y4t /(λf

∗2)(
1 + λ−1y2t /f ∗

)2 − 1. (3.5)

or fixed λ and yt , ṡy,t (f ∗
; λ) is decreasing in f ∗. It attains the value λ as f ∗

→ 0 and the value −1 as f ∗
→ ∞ . Given the

arameter restriction β ≥ α ≥ 0, it follows that β + αṡy,t (f ∗
; λ) ≥ 0 for every f ∗

∈ F , implying that its absolute value attains
its maximum as f ∗

→ 0. Thus, supθ∈Θ ρ̄1(θ) ≤ sup(f ∗,y,θ)∈F×Y×Θ |β + α
∂s(f ∗,y;λ)

∂ f | ≤ supθ∈Θ β + λα and conditions (ii) and
iv) simplify to

sup
θ∈Θ

β + λα < 1. (3.6)

f this condition is met, then nf can be set arbitrarily high.

Propositions 3.1 and 3.2 are similar to the results found in Meitz and Saikkonen (2011). In particular, these results are
ased on Bougerol (1993, Theorem 3.1) and Straumann and Mikosch (2006, Theorem 2.8). The main differences relate
nly to the specific contexts under consideration.
Conditions (iii) and (iv) in Proposition 3.2 imply conditions (i) and (ii), respectively. We emphasize that under

onditions (i) and (ii) our score filter is invertible since we are able to write ft as a measurable function of all past
bservations. Most importantly, the invertibility property ensures that the effect of the initialization f̂1 vanishes as t → ∞,
nd that the filter converges to a unique limit process independently of f̂1; see, for example, Granger and Andersen (1978),
traumann and Mikosch (2006), Wintenberger (2013) and Blasques et al. (2018a). Establishing invertibility is usually one
f the main challenges for nonlinear time series models with stochastic time-varying parameters.
In Section 4 we show that the stochastic recurrence approach followed in Propositions 3.1 and 3.2 allows us to obtain

onsistency and asymptotic normality under weaker differentiability conditions than those typically imposed in the score-
riven literature; see also Section 2.3 of Straumann and Mikosch (2006). In particular, instead of relying on the usual
ointwise convergence plus the stochastic equicontinuity of Andrews (1992) and Pötscher and Prucha (1994), we can
btain uniform convergence through the application of the ergodic theorem of Rao (1962) for sequences in separable
anach spaces. This constitutes a crucial simplification as working with the third order derivatives of the likelihood of a
eneral score-driven model is typically quite cumbersome. We emphasize that alternative uniform convergence results
or proving consistency and asymptotic normality have been used before by, amongst others, Straumann and Mikosch
2006), Hafner and Preminger (2009) and Meitz and Saikkonen (2011).

In the remainder of this section we extend the results of Proposition 3.2 to the derivative processes ∂ ft/∂θ and
2ft/∂θ∂θ⊤. We use stationarity, ergodicity, invertibility and bounded moments of the derivative processes for proving
he asymptotic normality of the MLE. To simplify notation, we let f (i)t ∈ F (i) denote a vector containing all the ith order
erivatives of ft with respect to θ, where f̂

(0:i)
1 ∈ F (0:i) contains the fixed initial condition for ft and its derivatives up to

rder i. Similarly, f (0:i)t ∈ F (0:i)
= F × · · · × F (i) denotes a vector containing ft as well as its derivatives with respect to θ

p to order i.
We introduce more elaborate notation to clarify whether we are working with a perturbed sequence or not. The

erturbed sequence {
ˆ̂f (i)t }t∈N , where ˆ̂f (i)t :=

ˆ̂f (i)t (θ, f̂
(0:i)
1 ), is initialized at f̂

(0:i)
1 and depends on the non-stationary initialized

equences {f̂t}t∈N and {
ˆ̂f (1:i−1)
t }t∈N , which are only stationary in the limit. The unperturbed initialized sequence {f̂ (i)t }t∈N

ith f̂ (i)t = f̂ (i)t (θ, f̂
(i)
1 ) instead depends on the limit SE filter {f (0:i−1)

t }t∈Z , and is initialized at some f̂
(i)
1 . Under certain

onditions, the sequence {
ˆ̂f (i)} converges to the SE unperturbed limit sequence {f (i)} , where f (i) := f (i)(θ), which
t t∈N t t∈Z t t
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depends on the limit SE filter {f (0:i−1)
t }t∈Z . Furthermore, in order to work with primitive conditions we use the notion of

moment preserving maps, which we define as follows.

Definition 3.3 (Moment Preserving Maps). A function h : Rq
× Θ → R is said to be n/n-moment preserving, denoted

as h(·; θ) ∈ MΘ1,Θ2 (n, n), if and only if E supθ∈Θ1
|xi,t (θ)|ni < ∞ for n = (n1, . . . , nq) and i = 1, . . . , q implies

E supθ∈Θ2
|h(xt (θ); θ)|n < ∞. If Θ1 or Θ2 consists of a singleton, we replace Θ1 or Θ2 in the notation by its single element,

e.g., Mθ1,Θ2 if Θ1 = {θ1}.

Moment preservation is a natural requirement in proofs of the asymptotic properties of the MLE, because the likelihood
and its derivatives are nonlinear functions of the original data yt , the time varying parameter ft , and partial derivatives of
the score, such as ∂s(ft , y; λ)/∂λ and ∂2s(ft , y; λ)/∂ ft∂λ. Bounding moments of the former can thus be accomplished by
bounding moments of the latter plus invoking a moment preservation property. Moment preservation is accomplished,
for instance, for polynomial functions h(x; θ) =

∑J
j=0 θjxj ∀ (x, θ) ∈ X × Θ , θ = (θ0, . . . , θJ ) ∈ Θ ⊆ RJ . It is

then trivial to establish h ∈ Mθ,θ(n,m) with m = n/J ∀ θ ∈ Θ . If Θ is compact, then also h ∈ MΘ,Θ (n,m) with
m = n/J . Similarly, every k-times continuously differentiable function h(·; θ) ∈ Ck(X ) ∀ θ ∈ Θ , with bounded kth
derivative supx∈X |h(k)(x; θ)| ≤ h̄k(θ) < ∞ ∀ θ ∈ Θ , satisfies h ∈ Mθ,θ(n,m) with m = n/k ∀ θ ∈ Θ . If furthermore
supθ∈Θ h̄k(θ) ≤

¯̄h < ∞, then h ∈ MΘ,Θ (n,m) with m = n/k. The Technical Appendix provides further details and
examples of moment preserving maps. We note that MΘ ′,Θ ′ (n, n) ⊆ MΘ,Θ (n, n∗) for all n∗

≤ n, and all Θ ⊆ Θ ′.
Using this notation, we let s ∈ MΘ,Θ (n, ns) where n = (nf , ny), and hence ns denotes the number of bounded moments

of the scaled score supθ∈Θ s(ft , y; λ), when ft and yt have nf and ny moments, respectively, uniformly in θ. Furthermore,
as a convention, we let nλ

s and nf λ
s denote the number of bounded moments for the partial derivatives ∂s(ft , y; λ)/∂λ and

∂2s(ft , y; λ)/∂ ft∂λ, respectively, when their arguments have nf and ny moments. Also, for the moments of all functions,
the argument ft is always understood to be the stationarity limit filter which has nf > 0 moments under appropriate
onditions stated in Proposition 3.2. We shall make extensive use of analogous definitions for other functions and their
orresponding partial derivatives. Finally, n̄ denotes moments of functions after taking the supremum over ft . For example,

¯
f λ
s denotes the number of moments of the random variable supf |∂2s(f , y; λ)/∂ f ∂λ|, uniformly in θ ∈ Θ , or in moment
reserving notation

sup
f

⏐⏐⏐∂2s(f , y; ·)
∂ f ∂λ

⏐⏐⏐ ∈ MΘ,Θ (n, n̄f λ
s ),

with n = (nf , ny). We apply the same notational principle to other functions and derivatives.

Proposition 3.4. Let the conditions of Proposition 3.2 hold with some nf > 0 and suppose that s ∈ C(2,0,2)(F × Y × Λ).
Let min{ns, nλ

s , n̄
f
s , n̄

λf
s , n̄ff

s } > 0. Then {
ˆ̂f (1)t }t∈N converges e.a.s. to a unique SE sequence {f (1)t }t∈Z, uniformly in Θ , and

furthermore, we have ∥f (1)t ∥
Θ
nfθ

< ∞ for any nfθ satisfying

nfθ ≤ min
{
nf , ns , nλ

s

}
.

If additionally min{nλλ
s , n̄λλf

s , n̄λff
s , n̄fff

s } > 0, then the second derivative {
ˆ̂f (2)t }t∈N converges e.a.s. to a unique SE sequence

{f (2)t }t∈Z, uniformly in Θ . Furthermore, we have ∥f (2)t ∥
Θ
nfθθ

< ∞ for any nfθθ satisfying

nfθθ ≤ min
{
nfθ , nλλ

s ,
nf
snfθ

nf
s + nfθ

,
nff
s nfθ

2nff
s + nfθ

,
nf λ
s nfθ

nf λ
s + nfθ

}
.

The expressions for nfθ and nfθθ may appear complex at first sight. However, they arise naturally from expressions for
he derivative of ft with respect to θ. We next analyze the moment conditions of Proposition 3.4 in the practical setting
f our main example.

ain example (continued). For our main example, we obtain from Proposition 3.2 that the limit filtered process ft has nf
oments for nf arbitrarily high, uniformly in θ, as long as contraction condition (3.6) is satisfied. So as long as supθ∈Θ β+λα <
and β ≥ α ≥ 0, we can set nf arbitrarily high.
The two remaining conditions required in Proposition 3.4 are min{ns, nλ

s , n̄
f
s , n̄

λf
s , n̄ff

s } > 0 and min{nλλ
s , n̄λλf

s , n̄λff
s , n̄fff

s } > 0.
e note that in our main example st is uniformly bounded in yt for fixed ft . We therefore easily obtain ns = nf . The remaining
erivatives are straightforward to check as well and can be found in the Technical Appendix. We obtain ns, nλ

s = nf , and
¯
f
s , n̄

λf
s , n̄ff

s → ∞. As a result, min{ns, nλ
s , n̄

f
s , n̄

λf
s , n̄ff

s } = nf > 0. Similarly, min{nλλ
s , n̄λλf

s , n̄λff
s , n̄fff

s } = nf > 0, because
λλ
s = nf and n̄λλf

s , n̄λff
s , n̄fff

s → ∞.
Using these results, we obtain nfθ ≤ min{nf , ns, nλ

s } = nf unconditional moments for the first derivative process, and
fθθ ≤ min{nfθ , nf , nfθ ,

1
2nfθ , nfθ } =

1
2nfθ ≤

1
2nf for the second derivative process. Here we used the fact that for instance

nf
s ≥ n̄f

s → ∞.
Since nf can be set arbitrarily high, we can establish moments up to a large order for both derivative processes of the

score-driven scale model.
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We emphasize that the moment conditions stated in Proposition 3.4 are primitive in the sense that they relate directly
o the basic building blocks of the score filter: the score function and its derivatives. For the practitioner who wishes
o verify moment conditions for any given score model, Technical Appendix G provides a detailed compendium of the
oment preserving properties of different classes of functions to simplify the verification of the primitive moment
onditions in Proposition 3.4. These include examples of robust volatility filtering and robust trend-extraction models,
ut also standard regression models with time-varying regression coefficients.

. Identification, consistency, asymptotic normality

Next we formulate conditions under which the MLE is strongly consistent and asymptotically normal. The low-level
onditions that we formulate relate directly to the propositions from Section 3. We obtain asymptotic results for the MLE
hat hold for possibly misspecified models. These results take the properties of observed data as given. In addition, we
lso obtain asymptotic properties for the MLE that hold for correctly specified models. The latter results require additional
onditions designed to ensure that the score model also behaves well as a data generating process. For correctly specified
odels, we are also able to prove a new global identification result building on low-level conditions rather than on

ypical high-level assumptions. We defer a short discussion on the usefulness of asymptotic results under strong forms
f misspecification until directly after Theorem 4.6.
We start with two rather standard assumptions.

ssumption 4.1. (Θ,B(Θ)) is a measurable space and Θ is compact.

Assumption 4.2. ḡ ∈ C(4,1)(F × Y), ḡ ′
∈ C(4,0)(F × Y), p̄ ∈ C(4,2)(Ũ × Λ), and S ∈ C(3,2)(F × Λ), where Ũ := ḡ(Y,F).1

The conditions in Assumption 4.2 are necessary for asymptotic normality of the MLE. Notice that less restrictive
assumptions would suffice for existence and consistency of the MLE. For example, for existence continuity in ft and
easurability in yt would be sufficient.
Let Ξ be the event space of the underlying complete probability space. The next theorem establishes the existence of

he MLE.

heorem 4.3 (Existence). Let Assumptions 4.1 and 4.2 hold. Then there exists a.s. a measurable map θ̂T : Ξ → Θ satisfying
θ̂T ∈ argmaxθ∈Θ ℓT (θ, f̂1), for all T ∈ N and every initialization f̂1 ∈ F , where ℓT is the average log-likelihood function defined
in (2.5).

Using our notation for moment-preserving maps, let log ḡ ′
∈ MΘ,Θ (n, nlog ḡ ′ ) and p̄ ∈ MΘ,Θ (n, np̄) as defined below

(2.1) and (2.3), respectively, where n := (nf , ny). Similarly, we have denoted ∇t as the unscaled score ∂ log py(yt |ft; λ)/∂ ft
and we let supf |∇t | ∈ MΘ,Θ (n, n̄∇ ) where n̄∇ denotes the moments of supf |∇t |.

To establish consistency, we use the following two assumptions.

Assumption 4.4. ∃ Θ∗
⊆ R4 and nf > 0 such that, for every f̂1 ∈ F ,

(i) ∥s(f̂1, yt; ·)∥Θ∗

nf < ∞;
(ii) sup(f ∗,y,θ)∈F×Y×Θ∗ |β + α ∂s(f ∗, y; λ)/∂ f | < 1.

Assumption 4.5. nℓ = min{nlog ḡ ′ , np̄} ≥ 1 and n̄∇ > 0.

Assumption 4.4 ensures the convergence of the sequence {f̂t} to an SE limit with nf moments on the parameter space
Θ∗. As mentioned before, these conditions are similar to those imposed by Straumann and Mikosch (2006) for consistency
of the QMLE of non-linear GARCH models and for example (Meitz and Saikkonen, 2011), who use a somewhat more
restrictive analogue of (i) for consistency of the QMLE of non-linear AR-GARCH models. Assumption 4.5 ensures one
bounded moment for the log-likelihood function and a uniform logarithmic moment for its derivative with respect to f .
Both assumptions are stated in terms of the core structure of the score-driven model: the density of the innovations p̄, the
link function log ḡ ′, the unscaled score ∇t , and the scaled score st . The number of bounded moments of p̄, log ḡ ′, ∇t and st
can be easily determined as we have set out in Technical Appendix G. We illustrate the verification of these assumptions
using our main example.

Main example (continued). From the derivations around Eq. (3.6), we have learned that the conditions of Assumption 4.4
can be easily satisfied for an appropriate compact parameter space Θ∗. Namely, some compact set Θ∗

⊆ {θ ∈ R4
: β ≥ α ≥

0 , ω > 0 , λ > 0 , β + λα < 1} meets the requirements. For Assumption 4.5, we notice that ḡ ′(ft , yt ) = f −1/2
t , and hence

1 The notation used here is ambiguous about the existence of cross-derivatives. Therefore, we impose that if a function h ∈ C(p,q) , then all
ross-derivatives h(i,j) with 0 ≤ i ≤ p, 0 ≤ j ≤ q and i + j ≤ max{p, q} exist and are continuous.
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nlog ḡ ′ → ∞ given that nf > 0 and ft ≥ ω > 0 under the parameter constraint β ≥ α ≥ 0 and the initialization f̂1 ≥ ω > 0.
sing the expression

p̄t = log
Γ ( λ+1

2 )

Γ ( λ
2 )

√
λπ

−
1
2 (λ + 1) log

(
1 +

y2t
λ ft

)
,

it follows immediately that np̄ can be set arbitrarily large as long as ny > 0. The condition nℓ ≥ 1 in Assumption 4.5 thus only
requires the existence of some arbitrarily small moment ny > 0 of the data yt . Finally, since the unscaled score is given by

∇(ft , yt; λ) =
(1 + λ−1)y2t

2f 2t (1 + y2t /(λft ))
−

1
2ft

,

t is uniformly bounded in both ft ≥ ω and yt ∈ R, and hence, n̄∇ > 0 is trivially satisfied.

Theorem 4.6 establishes the strong consistency of the MLE θ̂T . The limit log-likelihood ℓ∞(·) that occurs in this theorem
s defined as ℓ∞(θ) = Eℓ̃t (θ) ∀ θ ∈ Θ , with ℓ̃t denoting the contribution of the tth observation to the likelihood funct-
ion ℓT .

Theorem 4.6 (Consistency Under Possible Model Misspecification). Let {yt}t∈Z be an SE sequence. Furthermore, let E|yt |ny < ∞

for some ny > 0 for which also Assumptions 4.1, 4.2, 4.4, and 4.5 hold. Finally, let θ0 ∈ Θ be the unique maximizer of the
limit log-likelihood ℓ∞(·) on the parameter space Θ ⊆ Θ∗ with Θ∗ as introduced in Assumption 4.4. Then the MLE satisfies
θ̂T

a.s.
→ θ0 as T → ∞ for any filter initialization f̂1 ∈ F .

We emphasize that the proofs and results of Theorem 4.6 establish global rather than local consistency. In particular,
the assumptions ensure the appropriate limiting behavior of the average log-likelihood over the entire parameter space
Θ , rather than in a (possibly arbitrarily small) parameter space around the true parameter value only. This stands in
sharp contrast with most of the existing literature on score models, which only delivers local asymptotic results in a
neighborhood of θ0.

Theorem 4.6 also differs from results in the existing score literature in that it establishes the strong consistency of
the MLE in a possibly misspecified model setting. In particular, consistency of the MLE is obtained with respect to a
pseudo-true parameter θ0 ∈ Θ that is assumed to be the unique maximizer of the limit log-likelihood ℓ∞(θ). This pseudo-
true parameter minimizes the Kullback–Leibler divergence between the probability measure of {yt}t∈Z and the measure
implied by the model. Take for example an i.i.d. sequence {yt}t∈Z where each yt is a Student’s t distributed random
variables with mean 0, scale σ 2 and 2 < ν < ∞ degrees of freedom. A score-driven Gaussian scale model, which is
equivalent to a Gaussian GARCH model, would then clearly be misspecified. Nevertheless, if Theorem 4.6 applies, the
estimated parameters will converge to their pseudo-true values: α0 = β0 = 0 and ω0 = σ 2

· ν/(ν − 2) . Notice that is the
familiar effect of the pseudo-true ω0 being equal to the variance of yt rather than to the scale of a Student’s t distribution.
Theorem 4.6 continues to hold in more generic situations where no closed form mapping can be given for the pseudo-true
parameters in terms of the true parameter vector of the well-specified model.

Despite the misspecification of the model, conducting inference on a pseudo-true parameter is interesting in itself.
In particular, inference on pseudo-true parameters allows us to ask questions about the best approximation to the
data generating process (DGP). The value of this type of inference is well established in the work of Halbert White
since White (1980) which focuses on the interpretation of linear misspecified approximations to nonlinear DGPs; see
also White (1982), Byron and Bera (1983), Gourieroux et al. (1984), the textbook by White (1994) for an extensive and
detailed analysis of econometric inference under misspecification, and Gourieroux et al. (2019) for a recent addition to
this literature. Note also that this literature differs from the local-robustness literature, or the QMLE literature, which deals
with small forms of model misspecification which still allows us to conduct inference on true parameters; see e.g. Newey
and Steigerwald (1997) for an early discussion of the limitations of QMLE or Buja et al. (2019) for a more recent example
of such efforts which links to the recent statistical and machine learning literature.

In case of misspecification, it is generally difficult to ensure the uniqueness of θ0, so this assumption might fail. See
or example Chapter 4 of Pötscher and Prucha (1997) for a discussion of this point. Luckily, uniqueness is not crucial
or consistency, raising issues only if one wishes to conduct inference using standard asymptotic normality results. In
ase the limit criterion is maximized by a set of points Θ0, then set consistency can be ensured without any additional
ssumptions. We state this result in the corollary below.

orollary 4.7 (Set Consistency Under Possible Model Misspecification). Let {yt}t∈Z be an SE sequence. Furthermore, let E|yt |ny <

for some ny ≥ 0 for which also Assumptions 4.1, 4.2, 4.4, and 4.5 hold. Finally, let Θ0 be the set of maximizers of the limit
og-likelihood ℓ∞(·) on the parameter space Θ ⊆ Θ∗ with Θ∗ as introduced in Assumption 4.4. Then the MLE θ̂T satisfies
nfθ0∈Θ0 |θ̂T − θ0|

a.s.
→ 0 as T → ∞ for any filter initialization f̂1 ∈ F .

This corollary ensures set consistency of the estimator towards Θ0, and hence it ensures again that we minimize the KL
ivergence with respect to the true data generating process, in the limit, as T diverges to infinity. This result follows from
emma 4.2 in Pötscher and Prucha (1997), which requires the uniform convergence of the criterion to a limit criterion
333



F. Blasques, J. van Brummelen, S.J. Koopman et al. Journal of Econometrics 227 (2022) 325–346

{

i
s
s
p

o
f

n
p

i

A
Θ

s
s
p
i
a
f
(
I
o

M
A
d
p
a

A

F

f

h
t

with so-called ‘‘regular level sets’’. Luckily, the regularity of the level sets, see Pötscher and Prucha (1997, Definition 4.1),
follows trivially from the compactness of Θ and the continuity of the limit criterion. All these conditions hold under the
maintained assumptions, as shown in the proof of Theorem 4.6.

The results in Theorem 4.6 and Corollary 4.7 naturally require regularity conditions on the observed data {yt}Tt=1 ⊂

yt}t∈Z that is generated by an unknown data generating process. Such conditions in this general setting can only be
mposed by means of direct assumption. However, under an axiom of correct specification, we can restrict the parameter
pace in such a way that we can show that the desired assumptions hold. More specifically, we can show that yt is
tationary and has ny moments, and θ0 is the unique maximizer of the limit log-likelihood function. In this case, the
roperties of the observed data {yt}Tt=1 no longer need to be assumed. Instead, they can be derived from the properties

of the score-driven model under appropriate restrictions on the parameter space. By establishing ‘global identification’
we ensure that the limit likelihood has a unique maximum over the entire parameter space rather than only in a small
neighborhood of the true parameter. The latter is typically used in most of the existing literature and achieved by studying
the local properties of the information matrix at the true parameter.

To formulate our global identification result, we introduce a slightly more precise notation concerning the domains
and images of the key mappings defining the score-driven model. Define the set Yg ⊆ R as the image of Fg and U under
g , i.e., Yg := {g(f , u), (f , u) ∈ Fg × U}, where Fg denotes the domain (for ft ) of g . Let U denote the common support
f pu( · ; λ) ∀ λ ∈ Λ, and let Fs and Ys denote subsets of R over which the map s is defined. Furthermore, statements
or almost every (f.a.e.) element in a set hold with respect to Lebesgue measure. Finally, we let g ∈ MΘ,Θ (n, ng ) with
n = (nf u , nu), so that ng denotes the number of bounded moments of g(ft , ut ) when ut has nu moments and ft has
f u bounded moments. In practice, the resulting ng bounded moments can be derived from the moment preservation
roperties laid out in the Technical Appendix.
The following two assumptions allow us to derive the appropriate properties for {yt}t∈Z and to ensure global

dentification of the true parameter.

ssumption 4.8. ∃ Θ∗ ⊆ R4 and nu ≥ 0 such that for U , Yg , Fg and let Λ∗ denote the orthogonal projection of a set
∗ ⊆ R4 onto the subspace R holding the static parameter λ.

(i) U contains an open set for every λ ∈ Λ∗;
(ii) supλ∈Λ∗

E|ut |
nu < ∞ and ng ≥ ny > 0;

(iii) g(f , ·) ∈ C1(U) is invertible and ḡ(f , ·) = g−1(f , ·) ∈ C1(Yg ) a.e. f ∈ Fg ;
(iv) py(y|f ; λ) = py(y|f ′

; λ′) holds f.a.e. y ∈ Yg iff f = f ′ and λ = λ′.

Note there is a difference between Θ∗ from Assumption 4.4, and Θ∗ in Assumption 4.8. The former restricts the
tatistical model’s parameter space to establish invertibility and moments, while the latter restricts the DGP’s parameter
pace to establish stationarity, ergodicity and moments. Conditions (i) and (iii) of Assumption 4.8 ensure that on the
arameter space Θ∗ the innovations ut have non-degenerate support and g(f , ·) is continuously differentiable and
nvertible with continuously differentiable derivative. Hence the conditional distribution py of yt given ft is non-degenerate
nd uniquely defined by the distribution of ut . Bounded moments for yt up to order ny follow from moments of ut and
u
t via condition (ii); see the main example below for an illustration of how to operate this condition. Finally, condition
iv) states that the static model defined by the observation equation yt = g(f , ut ) and the density pu( · ; λ) is identified.
t requires the conditional density of yt given ft = f to be unique for every pair (f , λ). This requirement is very intuitive:
ne would not extend a static model to a dynamic one if the former is not already identified.

ain example (continued). For the Student’s t scale model, the domain of ut is always R, which satisfies part (i) of
ssumption 4.8. Parts (iii) and (iv) follow directly from the specification of the model g(f , u) = f 1/2u and the Student’s t
ensity. Finally, as g(f , u) = f 1/2u, we can use a standard Hölder inequality to obtain ng = 2nf u · nu/(nu + 2nf u ), such that
art (ii) is satisfied for nf u > 0, 0 < nu < infΛ∗

λ . Note that nf u follows from Proposition 3.1, part (iii), and can be set
rbitrarily high for θ ∈ Θ∗, as will be explained in the discussion after Assumption 4.9.

ssumption 4.9. ∃ Θ∗ ⊆ R4 and nf u > 0, such that for every θ ∈ Θ∗ and every f̂ u1 ∈ Fs

(i) ∥su(f̂ u1 , u1; λ)∥nf u < ∞;
(ii) Eρ

nf u
t (θ) < 1;

urthermore, α ̸= 0 ∀ θ ∈ Θ∗. Finally, for every (f , θ) ∈ Fs × Θ∗,

∂s(f , y, λ)/∂y ̸= 0, (4.1)

or almost every y ∈ Yg .

Conditions (i) and (ii) in Assumption 4.9 ensure that on the parameter space Θ∗ the true sequence {ft (θ0)} is SE and
as nf u moments by the application of Proposition 3.1. Together with condition (iii) in Assumption 4.8 we then obtain
hat the data {y } itself is SE and has n moments. The inequality stated in (4.1) in Assumption 4.9 and the assumption
t t∈Z y
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that α ̸= 0 together ensure that the data {yt} entering the update Eq. (1.1) render the filtered sequence {ft} stochastic and
on-degenerate. Also, together with Assumption 4.8 part (i), which ensures there is enough variation in the observed data,
hese two assumptions imply identification of the time-varying parameter ft (θ). In other papers on non-linear observation-
riven models, such as Straumann and Mikosch (2006) and Meitz and Saikkonen (2011), the identification restriction is
ormulated in a more general way and in each of their examples, they determine model-specific identification restrictions.
hese restrictions often include that the innovation distribution is not concentrated at two points. In the current context,
uch a condition is not necessary, because by Assumption 4.8(i) the support of the innovations is an open set.
Next we show that our leading example satisfies the conditions for our global identification result.

Main example (continued). The score su is the product of f ut and a term that is uniformly bounded in ut . Hence, (i) in
Assumption 4.9 is satisfied for arbitrary nf u > 0. Furthermore, by the linearity of su in f ut , condition (ii) of Assumption 4.9
collapses to

E
⏐⏐⏐⏐β − α + α

(1 + λ−1)u2
t

1 + u2
t /λ

⏐⏐⏐⏐nf u < 1.

In particular, for nf u = 1, we obtain the requirement |β| < 1, which together with the parameter restrictions to ensure positivity
of ft result in 1 > β ≥ α > 0. Notice that we also require α ̸= 0 now. Larger regions can be obtained for smaller values of nf u .
otice that nf u can be set arbitrarily high for θ ∈ Θ∗, so when β + λα < 1. In other words, Assumptions 4.8 and 4.9 impose
o further restrictions on the parameter space, apart from the condition that α ̸= 0, so for Θ∗ we can simply take a compact
ubset Θ∗ ⊆ Θ∗

\ {θ ∈ R4
: α = 0}.

heorem 4.10 (Global Identification for Correctly Specified Models). Let Assumptions 4.1, 4.2, 4.4, 4.5, 4.8, and 4.9 hold and
et the observed data be a subset of the realized path of a stochastic process {yt}t∈Z generated by a score-driven model under
0 ∈ Θ . Then Q∞(θ0) ≡ Eθ0ℓt (θ0) > Eθ0ℓt (θ) ≡ Q∞(θ) ∀ θ ∈ Θ : θ ̸= θ0.

The axiom of correct specification thus leads to the global identification result in Theorem 4.10. We can use this to
stablish consistency of the MLE to the true (rather than pseudo-true) parameter value if the model is correctly specified.
his is summarized in the following corollary.

orollary 4.11 (Consistency for Correctly Specified Models). Let Assumptions 4.1, 4.2, 4.4, 4.5, 4.8, and 4.9 hold and {yt}t∈Z =

yt (θ0)}t∈Z with θ0 ∈ Θ , where Θ ⊆ Θ∗
∩ Θ∗ with Θ∗ and Θ∗ defined in Assumptions 4.4, 4.8 and 4.9. Then the MLE θ̂T

atisfies θ̂T
a.s.
→ θ0 as T → ∞ for every f̂1 ∈ F .

The consistency region Θ∗
∩Θ∗ under correct specification is a subset of the consistency region Θ∗ for the misspecified

etting. In Theorem 4.6, we namely assume that the data is SE and that the true parameter is identified, while in
orollary 4.11 we do not make these assumptions directly. On the parameter space Θ∗, the filtered sequence {f̂t} converges
niformly to an SE limit with a certain number of moments, but this is no longer enough for consistency without the direct
ssumption of SE data and identification of the true parameter. The parameter space also has to be (further) restricted
o Θ∗ to ensure that the score-driven data generating process is identified and generates SE data with the appropriate
umber of moments.
To establish asymptotic normality of the MLE, we impose an assumption that delivers 2 + δ moments for some small

ositive δ for the first derivative of the log-likelihood function, and 1 moment for the second derivative. We make use
nce again of our notation for moment preserving maps. In particular, quantities like nλ

p̄ denote the number of bounded
oments of the derivative of p̄ with respect to λ and quantities like n̄λf

p̄ denote the number of bounded moments of the
upremum over ft of the cross derivative with respect to f and λ. We also let nfθ and nfθθ be defined as in Proposition 3.4.

ssumption 4.12. ∃ Θ∗
∗

⊆ R4 such that n⋆ > 0, nℓ′′ ≥ 1 and nℓ′ ≥ 2 + δ for δ > 0, with

n⋆
= min

{
n̄∇ , n̄f

∇
, nλ

∇
, n̄ff

∇
, n̄λf

∇
, n̄λf

p̄ , n̄λλf
p̄ , ns , nλ

s , (4.2)

n̄f
s , n̄λf

s , n̄ff
s , nλλ

s , n̄λλf
s , n̄λff

s , n̄fff
s

}
,

nℓ′ = min
{
nλ
p̄ ,

n∇nfθ

n∇ + nfθ

}
, (4.3)

nℓ′′ = min
{
nλλ
p̄ ,

n∇nfθθ

n∇ + nfθθ
,

nλ
∇
nfθ

nλ
∇

+ nfθ
,

nf
∇
nfθ

2nf
∇

+ nfθ

}
. (4.4)

We introduce the new set Θ∗
∗
, because the parameter restrictions imposed by the parameter space Θ∗ are not always

trong enough to ensure the existence of all the moments in Proposition 3.2. So for asymptotic normality, we need to
urther restrict the parameter space because we need these additional moment conditions to hold.

Similar to the moment conditions in Proposition 3.2, the moment conditions in Assumption 4.12 relate directly to
ow-level (primitive) elements of the model. The expressions in (4.2), (4.3) and (4.4) follow directly from the formulas for
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the derivatives of the log-likelihood with respect to θ. Having nℓ′ ≥ 2+δ for an appropriate δ facilitates the application of
central limit theorem to the score. Similarly, nℓ′′ ≥ 1 allows us to use a uniform law of large numbers for the Hessian.
inally, the condition n⋆ > 0 is designed to ensure that the moment conditions of Proposition 3.4 are satisfied and the
.a.s. convergence of the filter f̂t to its stationary limit is appropriately reflected in the convergence of both the score and
he Hessian.

In any case, if one favors simplicity at the cost of some generality, then the expressions for nℓ′ and nℓ′′ can be easily
implified to a single moment condition as stated in the following remark.

emark 4.13. Let n denote the lowest of the primitive derivative moment numbers nλ
p̄ , n∇ , etc. Then n ≥ 4+2δ for δ > 0

mplies nℓ′ ≥ 2 + δ and nℓ′′ ≥ 1.

It can be easier, however, to check the moment conditions formulated in Assumption 4.12 directly rather than the
implified conditions in Remark 4.13. We can illustrate this point using our main example.

ain example (continued). For the Student’s t scale model, a number of derivative functions need to be computed. These
an be found in the Technical Appendix. Many of these are uniformly bounded functions. In particular, we have n̄∇ , n̄f

∇
, n̄λ

∇
, n̄λf

∇
,

¯
ff
∇
, n̄λf

p̄ , nλλ
p̄ , n̄λλf

p̄ → ∞. Also recall that we argued that all moments necessary for Proposition 3.4 exist. Furthermore, nλ
p̄ ≤ ny/δ

or some (small) δ > 0. Therefore, if some finite moment of yt exists, we can set nλ
p̄ arbitrarily large. As a result, n⋆ > 0,

ℓ′ ≤ min{ny/δ
′, nfθ } for arbitrary δ′ > 0, and nℓ′′ ≤ min{nfθθ , nfθ ,

1
2nfθ }. We have derived earlier that nfθθ ≤ nfθ/2, such that

ℓ′ ≥ 2+δ for δ ≥ 0, and nℓ′′ ≥ 1 imply that we need nfθ ≥ 2+δ. If the contraction condition is met over the entire parameter
pace, then as also shown earlier we can set nfθ arbitrarily high and thus satisfy Assumption 4.12. This condition is met on the
arameter space Θ∗, so we need no additional restriction and we can set Θ∗

∗
= Θ∗.

In well-specified models, the asymptotic normality of the MLE is obtained by applying a central limit theorem (CLT)
or SE martingale difference sequences to the ML score, that is the derivative of the log-likelihood function ℓT (θ, f̂1) with
espect to θ and evaluated at the MLE. As noted in White (1994), in the presence of dynamic misspecification, the ML score
enerally fails to be a martingale difference sequence even at the pseudo-true parameter. As a result, stricter conditions
re required to obtain a central limit theorem that allows for some temporal dependence in the ML score.
Below we use the property of near epoch dependence (NED) to obtain a CLT for the ML score. In particular, we use the

niform filter contraction in Assumption 4.4 to ensure that the filter is NED whenever the data is NED. Furthermore, in
ssumption 4.14 below, we impose sufficient conditions for the ML score to be Lipschitz continuous on the data as well as
n the filter and its derivative. This assumption is designed to guarantee that the ML score inherits the NED property from
he data and the filter. The conditions of Assumption 4.14 can be weakened in many ways; see, for example, Davidson
1994) and Pötscher and Prucha (1997) for a discussion of alternative conditions. Here the Lipschitz continuity condition
llows us to keep the asymptotic normality results clear and simple.

ssumption 4.14. ∂ p̄t/∂ f and ∂ log ḡ ′
t/∂ f are uniformly bounded random variables and ∂ p̄t/∂ f , ∂ log ḡ ′

t/∂ f and ∂ p̄t/∂λ

re a.s. Lipschitz continuous in (yt , ft ).

ain example (continued). Using the Student’s t scale model, we have already seen that ft ≥ ω > 0 for all t. The relevant
erivative of p̄t equals f −1

t times a uniformly bounded function of y2t /ft , which obviously results in a uniformly bounded function.
lso ∂ log ḡ ′

t/∂ f = 0.5f −1
t is trivially uniformly bounded. Furthermore, ∂ p̄t/∂ f , ∂ log ḡ ′

t/∂ f and ∂ p̄t/∂λ are Lipschitz continuous
in (yt , ft ) , because their first derivatives with respect to yt and ft are bounded. Hence Assumption 4.14 holds for the leading
xample.

The following theorem states the main result for asymptotic normality of the MLE under misspecification, with int(Θ)
enoting the interior of Θ .

Theorem 4.15 (Asymptotic Normality Under Possible Model Misspecification). Let {yt}t∈Z be SE and NED of size −1 on a
trongly mixing sequence of size −2(δ + 2)/δ for some δ > 0. Furthermore, let E|yt |ny < ∞ for some ny ≥ 0 for which
also Assumptions 4.1, 4.2, 4.4, 4.5, 4.12 and 4.14 are satisfied, where Assumption 4.12 is satisfied for the same δ > 0 as
above. Finally, let θ0 ∈ int(Θ) be the unique maximizer of ℓ∞(θ) on Θ , where Θ ⊆ Θ∗

∩ Θ∗
∗
with Θ∗ and Θ∗

∗
as defined in

Assumptions 4.4 and 4.12 and let Eℓ̃′′
t (θ0) be non-singular. Then, for every f̂1 ∈ F , the MLE θ̂T (f̂1) satisfies

√
T (θ̂T − θ0)

d
→ N

(
0, I−1JI−1) as T → ∞,

where I := −Eℓ̃′′
t (θ0) is the Fisher information matrix, ℓ̃t (θ0) denotes the log-likelihood contribution of the tth observation

evaluated at θ0, and

J (θ0) := lim
T→∞

T−1E
( T∑

t=1

ℓ̃′

t (θ0)
)( T∑

t=1

ℓ̃′

t (θ0)⊤
)
.
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When the model is correctly specified, the ML score can be shown to be a martingale difference sequence at the true
arameter value. Hence we no longer need the assumption that the data is NED. Also, we can drop Assumption 4.14, which
as used to ensure that the ML score was NED. In general we are presented with a trade-off between the assumption
f correct specification combined with weaker additional assumptions, versus the stricter NED conditions without the
ssumption of correct specification. Apart from this trade-off, the proof of asymptotic normality is the same in both cases.
he following theorem states the asymptotic normality result for the MLE in the context of a correctly specified model.

heorem 4.16 (Asymptotic Normality Under Correct Specification). Let Assumptions 4.1, 4.2, 4.4, 4.5, 4.8, 4.9, and 4.12 hold
nd assume {yt}t∈Z is a random sequence generated by a score-driven model under some θ0 ∈ int(Θ) where Θ ⊆ Θ∗

∩Θ∗∩Θ∗
∗

ith Θ∗, Θ∗ and Θ∗
∗
defined in Assumptions 4.4, 4.8, 4.9, and 4.12 and let Eℓ̃′′

t (θ0) be regular in the sense of Rothenberg (1971).
hen, for every f̂1 ∈ F , the MLE θ̂T (f̂1) satisfies

√
T (θ̂T − θ0)

d
→ N

(
0, I−1) as T → ∞,

where I is the Fisher information matrix as defined in Theorem 4.15.

Theorem 4.16 does not have a separate ny-moment condition like Theorems 4.6 and 4.15. This stems from the fact that
under correct specification the moment conditions for yt are implied by the moment conditions on the data generating
process, such as the moment conditions on ut and g(ft , yt ). In Assumptions Assumptions 4.8 and 4.9. Note that in
Theorem 4.15, the matrix J (θ0) is assumed to exist and be finite and in Theorem 4.16, Assumption 4.12 is also allowed
o hold for δ = 0 instead of δ > 0.

ain example (continued). To verify the conditions of Theorem 4.16 for the main example, we have already shown that
ssumption 4.12 requires nf > 2 and that an arbitrarily small moment ny > 0 of yt exists. Using the derivations below
roposition 3.2, we showed that the condition nf > 2 is met if the contraction condition (3.6) is satisfied. Furthermore, we
lready showed in the exposition after Assumption 4.8 that the condition ny > 0 is met if infΛ λ = λ > 0 such that an
rbitrarily small moment exists for ut and if nf u > 0, which holds under Assumption 4.9.

. Empirical illustration

The theorems and corollaries derived in the previous section establish the existence, strong consistency, global
dentification, and asymptotic normality of the MLE for a general class of score-driven models under correct and incorrect
odel specifications. In this section, we make use of a practical example to provide some further intuition for the main
ssumptions and results next to the leading example dealt with throughout the main text.

he Student’s t location model
Consider the score-driven Student’s t location model proposed by Harvey and Luati (2014). The observation equation

f the model is given by

yt = ft + ut , ft+1 = ω + α wt (yt − ft) + βft , wt = (1 + ν−1e−2κ (yt − ft )2)−1, (5.1)

here we use a scaling function S(ft; λ) = (1+ν−1)−1e2κ proportional to the inverse conditional Fisher information. So in
he notation of (1.1), we have g(ft , ut ) = ft + ut , which is strictly increasing in ut , and we impose that ut has a Student’s
-density pu with degrees of freedom parameter ν > 0 and scale parameter exp(κ). So λ = (ν, κ) is two-dimensional.
s argued before, all results continue to hold for multivariate λ. Clearly, the inverse link function and its derivative with
espect to yt are given by ḡt = g−1(ft , yt ) = yt − ft and ḡ ′

t = 1.

onsistency
If the model is well specified, then we can show consistency of the MLE on a compact Θ by demonstrating that the

ssumptions of Corollary 4.11 hold. It is straightforward to see that Assumptions 4.1 and 4.2 hold for this model. Next,
e note that Assumption 4.4 holds on some Θ∗

⊆ R5 and for some nf > 0, which ensures the uniform invertibility of the
ilter. In particular, condition (i) holds for all compact sets Θ∗ and every nf > 0, because s(f̂1, yt; ·) is uniformly bounded
n yt for any given f̂1. For condition (ii), it can be shown that for any λ and yt , the derivative

∂s(f ∗, yt; λ)
∂ f

=
ν−1e−2κ (yt − f ∗)2 − 1(
1 + ν−1e−2κ (yt − f ∗)2

)2 ,

is bounded between −1 and 1/8 (these values are attained at yt − f ∗
= 0 and yt − f ∗

= ± exp(κ)
√
3ν respectively). It

ollows that

sup
⏐⏐⏐⏐β + α

∂s(f ∗, y; λ)
⏐⏐⏐⏐ ≤ sup max

{
|β − α| ,

⏐⏐⏐⏐β +
1
α

⏐⏐⏐⏐} .

(f ∗,y,θ)∈F×Y×Θ∗ ∂ f θ∈Θ∗ 8
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Therefore, condition (ii) of Assumption 4.4 holds for any compact set Θ∗
⊆ R5 for which max{|β −α|, |β +

1
8α|} < 1 and

> 0 for every θ ∈ Θ∗. The region of the (α, β)-plane where the filter is invertible is represented by the hatched area in
ig. 1. So, Assumption 4.4 holds for any compact Θ∗ with all pairs (α, β) in the interior of this area (and ν > 0), and the
ilter is invertible uniformly over Θ∗.

For Assumption 4.5, recall that ḡ ′
t = 1, so we only need to show that np̄ ≥ 1 and n̄∇ > 0. For the former, consider the

xpression

p̄t = log
Γ ( ν+1

2 )
Γ ( ν

2 )
√

νπeκ
−

1
2 (ν + 1) log

(
1 + ν−1e−2κ (yt − ft )2

)
.

t follows directly that np̄ can be set arbitrarily high if E|yt − ft |n < ∞ for some n > 0 . By the Cr -inequality in Loève (1977,
p.157), we have that E|yt − ft |n ≤ cE|yt |n + cE|ft |n for some c > 0, so np̄ > 1 only requires nf > 0 and ny > 0 , where
he former condition holds by Assumption 4.4 and the latter is either assumed directly (in Theorem 4.6) or indirectly (in
orollary 4.11). Also, for n̄∇ > 0, we can use that the unscaled score is given by

∇(ft , yt; ν) = (1 + ν−1)
e−2κ (yt − ft )

1 + ν−1e−2κ (yt − ft )2
,

which is uniformly bounded in (ft , yt ) ∈ R2. This implies that n̄∇ > 0 is trivially satisfied.
If the model is well specified, the MLE is consistent for the true parameter θ0 as long as it generates appropriately

ehaved data as a DGP; see Technical Appendix E for relevant details on the verification of the DGP Assumptions 4.8
nd 4.9. In contrast, if the model is misspecified, then the MLE is set-consistent with respect to the set of pseudo-true
arameters, as long as observed data is stationary, by Corollary 4.7. If there exists a unique pseudo-true parameter θ0,
hen the MLE is consistent for θ0 by Theorem 4.6.

symptotic normality
Asymptotic normality can be obtained by verifying Assumption 4.12 (or the simpler condition in Remark 4.13) as well

s Assumption 4.14. Assumption 4.12 requires the existence of certain moments. All quantities under consideration are
niformly bounded in both ft ∈ R and yt ∈ R as long as ν > ν > 0, except for ∂ p̄t/∂ν. This derivative namely consists of

uniformly bounded terms and the term log(1+ν−1e−2κ (yt−ft )2) , which is not uniformly bounded. However, we know that
this term has bounded moments of any order as long as ny > 0 and nf > 0 , which holds by previous assumptions. Hence,
Assumption 4.12 holds under the current parameter restrictions because n⋆, nℓ′′ and nℓ′ can all be set arbitrarily high.
herefore, we can choose Θ∗

∗
= Θ∗, because the moment conditions in Assumption 4.12 do not impose any additional

estrictions on the parameter space. Finally, Assumption 4.14 holds, because it can be seen straightforwardly that ∂ p̄t/∂ f
s uniformly bounded, ∂ p̄t/∂ f and ∂ p̄t/∂λ are a.s. Lipschitz continuous in (yt , ft ) and ∂ log ḡ ′

t/∂ f = 0 .
Under correct specification, and the maintained assumptions, we have by Theorem 4.16 that the MLE θ̂T is consistent for

he true parameter θ0 and asymptotically normal with an asymptotic variance given by the inverse information matrix,
n case Eℓ̃′′

t (θ0) is regular in the sense of Rothenberg (1971). If the model is misspecified, then by Theorem 4.15 the MLE
s consistent for a pseudo-true parameter θ0 and asymptotically normal with an asymptotic variance given by a sandwich
ormula, whenever the assumptions of Theorem 4.6 hold, the unique maximizer θ0 of ℓ∞(θ) on Θ lies in the interior of
, and Eℓ̃′′

t (θ0) is non-singular.

pplication to EPUI data
To demonstrate how the model above could be used in practice, we apply it to the daily Economic Policy Uncertainty

ndex (EPUI) of the United States.2 The EPUI has been shown to successfully proxy changes in policy-related economic
ncertainty, see Baker et al. (2015). Fig. 2 plots the data. We use the T = 2191 daily observations from 2014 until 2019.
The figure shows that the EPUI is noisy and occasionally displays large outliers, such as the June 2016 spike, which is

robably due to the Brexit referendum outcome. After spikes like this, the EPUI usually quickly returns to its mean value.
herefore, the Student’s t location model could be a suitable model for this data, as it downweighs large observations in
he construction of the filtered location. This is most clearly seen when looking at the news impact curves (NIC) in the
ight panel of Fig. 2.

The maximum likelihood estimates are given in Table 1. Notice that the estimated degrees of freedom parameter ν̂T
as a low value of around 4, which implies a fat-tailed innovation distribution and more importantly shows that the
stimated model has a filter which is robust to large outliers. The filtered locations {f̂t}Tt=1 are plotted in the left panel of
ig. 2. The robustness of the filter is clearly visible in this graph. Incidental spikes hardly move the filter.
The parameter estimates all lie within Θ∗

∩ Θ∗ ∩ Θ∗
∗
from Fig. 1. It follows from Corollary 4.11 and Theorem 4.16

hat the MLE is consistent and asymptotically normal with covariance matrix I−1 under the assumption that the model
is correctly specified. The standard errors shown in Table 1 are based on the assumption of correct specification,

2 Baker, Scott R., Bloom, Nick and Davis, Stephen J., Economic Policy Uncertainty Index for United States [USEPUINDXD], retrieved from FRED,
Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/USEPUINDXD. We standardize the data by subtracting the sample mean over the
pre-sample period 1985–2008, and dividing by 100.
338
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Fig. 1. The stationarity region (the gray shaded area) and the invertibility region (the hatched area) of α and β for the score-driven Student’s t
location model. These areas contain the pairs (α, β) for which |β| < 1 and max{|β − α|, |β +

1
8α|} < 1 , respectively.

Fig. 2. Normalized daily EPUI data from 2014 to 2019 (left panel) and News Impact Curve (NIC) of a linear and estimated filter (right panel). The
left panel also holds the filtered f̂t using the estimated Student’s t score-driven filter.

Table 1
MLE estimates for the EPUI data from Fig. 2 and the score-driven Student’s t location model (5.1). Standard
errors in parentheses.
ω α β ν κ

Full model

−0.010 0.387 0.934 4.019 −1.198
(0.003) (0.043) (0.016) (0.336) (0.025)

Restricted model

−0.163 0.576 4.140 −1.126
(0.018) (0.039) (0.479) (0.034)

As a simple illustration of hypothesis testing, we consider testing the null hypothesis that ω = 0. Under the assumption
of correct specification, the unconditional mean of the true time-varying parameter ft is ω/(1 − β). Therefore, testing

0 : ω = 0 amounts to testing whether the unconditional expectations of both the time-varying location parameter
t and the observations yt are equal to zero. The t-statistic of ω̂T equals −3.130 and shows that the null-hypothesis is
ejected at a 1% significance level indicating that the expected value of the EPUI from 2014 up until 2019 is significantly
ifferent from its pre-sample (1985–2008) average, as we use the demeaned data in our analysis.
As a second illustration, we consider estimating a restricted version of our score-driven location model by imposing

= 0. The results are provided in the lower panel of Table 1. The restriction β = 0 causes the filtered location to be less
lexible compared to the unrestricted setting. Let us assume that the model is incorrectly specified. From Corollary 4.7
e know that the MLE is set-consistent to the set of pseudo-true parameters within the compact Θ ⊆ Θ∗

∩ Θ∗
∗
, as long

s we assume that the data comes from an SE sequence which has a small bounded moment. The set of pseudo-true
arameters is the collection of parameter values that minimize the limit Kullback–Leibler divergence with respect to the
rue distribution of the data.
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If we additionally assume that the pseudo-true parameter θ0 is unique and lies in the interior of the parameter space
Θ , that {yt}t∈Z is NED of size −1 on a strongly mixing process of size −2(δ + 2)/δ for some δ > 0 and that −Eℓ̃′′

t (θ0) is
nvertible, the MLE is asymptotically normal by Theorem 4.15. The corresponding standard errors can be found in Table 1
gain. By Theorem 4.15 we have that the true asymptotic covariance matrix is given by I−1JI−1, which we estimate by
ts sample counterpart Î−1

T ĴT Î−1
T .

Using the estimated parameters and their standard errors, we can now test the null-hypothesis H0 : α = 0. The
-statistic of 0.576/0.039 ≈ 14.77 clearly shows that the null hypothesis can be rejected at any sensible significance
evel. This means that there is statistical evidence that the ‘best approximating model’ in terms of KL divergence for these
ata has a time-varying conditional mean. In other words, we reject the null hypothesis that the conditional mean of the
PUI data is constant over time.
The test examples considered in this section are acknowledgedly simple, but already show that the theory developed in

his paper can be used for interesting test formulations relating to the best approximating model in a KL sense, even if this
odel is misspecified. Further tests would include (i) tests for leverage effects and asymmetry parameters in score-driven
olatility models with asymmetric Gaussian or asymmetric Student’s t densities for the innovations (Lucas et al., 2014,
017; Harvey and Sucarrat, 2014); (ii) testing for mixture parameters in score models with mixture distributions (Catania,
021); and (iii) testing for parameter significance of explanatory variables in spatial regression models with time-varying
arameters (Blasques et al., 2016; Catania and Billé, 2017).
We finally note that when misspecification affects only some elements of the model, then one could still potentially

btain consistency to a true parameter using QMLE results. Some of these results also directly apply to the setting of
core-driven models, such as the GARCH and the linear location model. However, the study of such small forms of
isspecification is not the focus of the current paper.

. Conclusions

We have developed an asymptotic distribution theory for the class of score-driven time-varying parameter models.
espite a wide range of newly developed models using the score-driven approach, a theoretical basis has been missing.
e have aimed in this study to make a substantial step forward. In particular, we have developed a global asymptotic

heory for the maximum likelihood estimator for score-driven time series models as introduced by Creal et al. (2011,
013) and Harvey (2013). Our theorems are global in nature and are based on primitive, low-level conditions stated in
erms of functions that make up the core of the score-driven model. We also state conditions under which the score-driven
odel is invertible. In contrast to the existing literature on score-driven models, we do not need to rely on the empirically
ntenable assumption that the starting value f̂1 is both random and observed. For the case of correctly specified models, we
ave been able to establish a global identification result that holds under weak conditions. We believe that the presented
esults establish a proper foundation for the use of the score function in observation-driven models and for maximum
ikelihood estimation and hypothesis testing.

ppendix A. Proofs of main results

roof of Proposition 3.1. We regard this proof as a special case of Proposition TA.1 in Appendix B of the Technical
ppendix, by setting

φ(xt (θ, x̄), vt , θ) = ω + αsu(f̂ ut , ut; λ) + β f̂ ut ,

vt = ut , and xt (θ, x̄) = f̂ ut (θ, f̂
u
1 ). Here su is assumed to be su ∈ C(1,0,0)(F × U × Λ) for convex F , such that φ ∈

C(1,0,0)(X ×V ×Θ) with a convex X . Recall that {ut}t∈Z is an i.i.d. sequence by definition of the model. Conditions (i) and
(iii) in Proposition TA.1 in Appendix B now directly follow from conditions (i) and (iii) of Proposition 3.1 (see the proof of
roposition 3.2 for a more thorough explanation). Condition (iv) in Proposition TA.1 directly follows from condition (iv)
n Proposition 3.1 by observing that from the mean value theorem we have

Erk1(θ) = E sup
(x,x′)∈X×X :x̸=x′

|φ(x, vt , θ) − φ(x′, vt , θ)|k

|x − x′|k
≤

E sup
x∗∈X

⏐⏐⏐∂φ(x∗, vt , θ)
∂x

⏐⏐⏐k = E sup
f u∗∈F

⏐⏐⏐β + α
∂su(f u∗, ut , θ)

∂ f u

⏐⏐⏐k = Eρk
1(θ) ∀ k > 0.

he same argumentation can be used to show that condition (ii) of Proposition TA.1 follows from condition (ii) of
Proposition 3.1. ■

Proof of Proposition 3.2. The results for the sequence {f̂t} are obtained by application of Proposition TA.3 in Appendix
B with v = y and x (θ, x̄) = f̂ (θ, f̂ ) and φ(x , v , θ) = ω + αs(f̂ , y ; λ) + β f̂ .
t t t t 1 t t t t t
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Step 1, SE for ft : Condition (i) of Proposition TA.3 holds, because

E log+ sup
θ∈Θ

|φ(x̄, vt , θ) − x̄| = E log+ sup
θ∈Θ

|ω + αs(f̂1, yt; λ) + β f̂1 − f̂1|

≤ E log+ sup
θ∈Θ

[
|ω| + |α| · |s(f̂1, yt; λ)| + |β − 1| · |f̂1|

]
≤ log+ sup

ω∈Ω

|ω| + log+ sup
α∈A

|α| + E log+ sup
λ∈Λ

|s(f̂1, yt; λ)|

+ sup
β∈B

log+
|(β − 1)| + log+

|f̂1| < ∞

ith log+ supω∈Ω |ω| < ∞, log+ supα∈A |α| < ∞ and supβ∈B log+
|(β −1)| < ∞ by compactness of Θ , and log+

|f̂1| < ∞

or any f̂1 ∈ F ⊆ R, and E log+ supλ∈Λ |s(f̂1, yt; λ)| < ∞ by condition (i) in Proposition 3.2.
Condition (ii) in Proposition TA.3 holds, because

E log sup
θ∈Θ

r11 (θ) =

E log sup
θ∈Θ

sup
(f ,f ′)∈F×F :f ̸=f ′

|ω − ω + α(s(f , yt; λ) − s(f ′, yt; λ)) + β(f − f ′)|
|f − f ′|

= E log sup
θ∈Θ

sup
(f ,f ′)∈F×F :f ̸=f ′

|α(s(f , yt; λ) − s(f ′, yt; λ)) + β(f − f ′)|
|f − f ′|

= E log sup
θ∈Θ

sup
(f ,f ′)∈F×F :f ̸=f ′

|αṡy,t (f ∗
; λ)(f − f ′) + β(f − f ′)|

|f − f ′|

≤ E log sup
θ∈Θ

sup
f ∗∈F

⏐⏐⏐αṡy,t (f ∗
; λ) + β

⏐⏐⏐ = E log sup
θ∈Θ

ρ̄1(θ) < 0,

here the second equality holds by the mean value theorem and where the last inequality follows directly from condition
ii) in Proposition 3.2.

Step 2, moment bounds for ft : By a similar argument as in Step 1, we can show that condition (iv) in Proposition TA.3
ollows from condition (iv) in Proposition 3.2. Condition (iii) in Proposition TA.3 for n = nf can be shown by noting that
φ(x̄, vt , ·)∥Θ

nf < ∞ is implied by (∥φ(x̄, vt , ·)∥Θ
nf )

nf < ∞ . The result now follows since by the Cr -inequality in Loève (1977,
.157), there exists a 0 < c < ∞ such that

(∥ φ(x̄, vt , ·) ∥
Θ
nf )

nf = E sup
θ∈Θ

|ω + αs(f̂1, yt; λ) + β f̂1|nf

≤ c · sup
θ∈Θ

|ω + β f̂1|nf + c · |α|
nf E sup

θ∈Θ

|s(f̂1, yt; λ)|nf < ∞,

where the last inequality follows from condition (iii) in Proposition 3.2. ■

Proof of Proposition 3.4. Step 1, SE for derivatives of ft : The desired result follows by noting that the vector derivative
processes {

ˆ̂f (i)t }t∈N for i = 1, 2 and initialized at f̂
(0:i)
1 satisfy the conditions of Theorem 2.10 in Straumann and Mikosch

(2006) for perturbed stochastic recurrence equations, under the supremum norm ∥ · ∥
Θ

= supθ∈Θ | · | . In particular, they
consider a recurrence of the from xt+1 = φt (xt ) where {φt} converges to an SE sequence {φ̃t} that satisfies the conditions of
Bougerol’s theorem E log+ supθ∈Θ |φ̃t (0)| < ∞, E log supθ∈Θ supx |φ̃′

t (x)| < ∞. In particular, one must have a logarithmic
oment E log+ supθ∈Θ |x̃t | for the solution {x̃t} of the unperturbed SE system, and the perturbed recurrence must satisfy

sup
θ∈Θ

|φt (x̄) − φ̃t (x̄)|
e.a.s.
→ 0 , for some x̄ ∈ R and sup

θ∈Θ

sup
x

|φ′

t (x) − φ̃′

t (x)|
e.a.s.
→ 0 as t → ∞.

Here we state the convergence of φt at some point x̄ rather than at the origin φt (0) as in Straumann and Mikosch (2006)
since our recursion (depending on the application) may not be well defined at x̄ = 0. As explained before, the perturbed
sequence {

ˆ̂f (i)t }t∈N depends on the non-stationary sequences {f̂t}t∈N and {
ˆ̂f (1:i−1)
t }t∈N , which are only stationary in the limit.

he unperturbed initialized recurrence {f̂ (i)t }t∈N is equal in all respects, except that it instead depends on the limit SE filter
f ((0:i−1))
t }t∈Z . The unperturbed limit process is denoted by {f (i)t }t∈Z .
In Appendix D.2 we show that the dynamic equations generating each element of the partial derivative processes take

he form
ˆ̂f (i)t+1 = A(i)

t (θ, f̂
(0:i−1)
1 ) +

ˆ̂f (i)t Bt (θ, f̂1), (A.1)

ith Bt (θ, f̂1) = β + α ∂s(f̂t (θ, f̂1), yt; λ)/∂ f not depending on the order of the derivative i. The expressions for A(i)
t (θ, f̂1)

re presented in Appendix D.2 and only depend on derivatives up to order ˆ̂f (i−1)
t . Note that A(i)

t and Bt are written
xplicitly as a function of f̂

(0:i−1)
and f̂ respectively, since they depend on the non-stationary filtered sequences {f̂ } and
1 1 t
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{
ˆ̂f (1:i−1)
t } initialized at f̂1 and f̂

(0:i−1)
1 respectively. In contrast, we let A(i)

t (θ) and Bt (θ) denote the stationary counterparts
f A(i)

t (θ, f̂
(0:i−1)
1 ) and Bt (θ, f̂1), respectively, that depend on the limit stationary filter ft (θ). The recurrence convergence

supθ∈Θ |φt (x̄) − φ̃t (x̄)|
e.a.s.
→ 0 in Straumann and Mikosch (2006) corresponds here to having supθ∈Θ |A(i)

t (θ, f̂
(0:i−1)
1 ) −

(i)
t (θ)|

e.a.s.
→ 0 and supθ∈Θ |Bt (θ, f̂1) − Bt (θ)|

e.a.s.
→ 0. Both conditions are easily verified. We start by looking at the first

erivative. Indeed, the expressions in Appendix D.2 show that A(1)
t (θ, f̂

(0:i−1)
1 ) satisfies

sup
θ∈Θ

|A(1)
j,t (θ, f̂1) − A(1)

j,t (θ)| ≤ sup
f

sup
θ∈Θ

|∂A(1)
j,t (θ)/∂ f | · sup

θ∈Θ

|f̂t − ft |

or each j and hence we obtain supθ∈Θ |A(1)
j,t (θ, f̂1) − A(1)

j,t (θ)|
e.a.s.
→ 0 by Lemma 2.1 in Straumann and Mikosch (2006) since

upf supθ∈Θ |∂A(1)
j,t (θ)/∂ f | is SE with a logarithmic moment since min{n̄f

s , n̄
λf
s } > 0 and because supθ∈Θ |f̂t − ft |

e.a.s.
→ 0 by

roposition 3.2. Similarly, we obtain

sup
θ∈Θ

|Bt (θ, f̂1) − Bt (θ)| ≤ sup
f

sup
θ∈Θ

|∂Bt (θ)/∂ f | · sup
θ∈Θ

|f̂t − ft |
e.a.s.
→ 0 as t → ∞,

ince n̄ff
s > 0 implies that supf supθ∈Θ |∂Bt (θ)/∂ f | is SE with a logarithmic moment, and supθ∈Θ |f̂t − ft | vanishes e.a.s. The

onvergence of the Lipschitz coefficients supθ∈Θ supx |φ′
t (x) − φ̃′

t (x)| = |Bt (θ, f̂1) − Bt (θ)|
e.a.s.
→ 0 follows immediately.

For the second derivative process, the same argument using Lemma 2.1 in Straumann and Mikosch (2006) applies
equentially. As the argument is slightly more subtle, we prove it in Lemma TA.17 of the Technical Appendix.
Finally, we note that the unperturbed recursions satisfy the conditions of Bougerol’s theorem, which is implied by

he verification of conditions (iii)–(iv) of Proposition TA.3 for the unperturbed system in the next step of the proof. The
ogarithmic moment of the SE limit process that we need also follows directly from the verification of these conditions,
ecause it implies the existence of a moment of some positive order under the current conditions. In the notation
f Straumann and Mikosch (2006), this means that the limit recursion φ̃t is SE and that its solution {x̃t}t∈Z has a logarithmic
oment uniformly over the parameter space. Thus, after we proved that these conditions hold, the e.a.s. convergence of

he initialized perturbed sequence to an SE limit sequence uniformly over the parameter space follows from Theorem
.10 in Straumann and Mikosch (2006).
Step 2, moment bounds for derivatives of ft : To establish the existence of moments for the derivative processes, we need

o verify that conditions (iii)–(iv) of Proposition TA.3 hold. For the limit derivative processes, we can apply Proposition
A.3 directly to the unperturbed system.
Inspection of the formula for A(1)

j,t (θ) reveals that A(1)
j,t (θ) has nfθ = min{nf , ns , nλ

s } bounded moments and A(2)
j,t (θ) has

fθθ moments as defined in Proposition 3.4, which follows from Hölder’s inequality. Inspection of the expression for Bt (θ)
nd condition (iv) of Proposition 3.2 reveals that Bt (θ) has nf moments.
Thus, under the conditions of Proposition 3.4, condition (iii) in Proposition TA.3 holds with nfθ moments for the first

erivative process and nfθθ moments for the second derivative process, since for any n > 0, by the Cr -inequality in Loève
1977, p.157), there exists a 0 < c < ∞ such that,

E sup
θ∈Θ

|φ(x̄, vt , θ)|n = E sup
θ∈Θ

|A(i)
j,t (θ) + f̄ (i)j Bt (θ)|n

≤ c · E sup
θ∈Θ

|A(i)
j,t (θ)|

n
+ c · |f̄ (i)j |

nE sup
θ∈Θ

|Bt (θ)|n < ∞,

or each j and where for example A(i)
j,t (θ) denotes the jth element of the vector or matrix A(i)

t (θ). Condition (iv) in Proposition
A.3 holds for i = 1, 2, since for any pair (f (i)j , f (i)′j ) ∈ F × F : f (i)j ̸= f (i)′j :

sup
θ∈Θ

⏐⏐⏐φ(f (i)j , vt , θ) − φ(f (i)′j , vt , θ)
⏐⏐⏐⏐⏐⏐f (i)j − f (i)′j

⏐⏐⏐ = sup
θ∈Θ

⏐⏐⏐Bt (θ)(f
(i)
j − f (i)′j )

⏐⏐⏐⏐⏐⏐f (i)j − f (i)′j

⏐⏐⏐
= sup

θ∈Θ

⏐⏐⏐⏐β + α
s(ft , yt; λ)

∂ f

⏐⏐⏐⏐
≤ sup

(f ∗,y,θ)∈F×Y×Θ

⏐⏐⏐⏐ β + α
∂s(f ∗, y; λ)

∂ f

⏐⏐⏐⏐ < 1 ,

or every j and where vt = (f (0:i−1)
t , yt ). The first equality holds because we are working with the unperturbed sequence

nd the final inequality holds because of condition (iv) of Proposition 3.2. We thus obtain, by Proposition TA.3, nfθ (nfθθ )
oments for the first (second) derivative limit process. ■

roof of Theorem 4.3. The result follows immediately from the differentiability of p̄, ḡ , ḡ ′, the compactness of Θ , and
the Weierstrass theorem. For a detailed proof, see Technical Appendix B. ■
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Proof of Theorem 4.6. Following the classical consistency argument found in for instance White (1994, Theorem 3.4) or
allant and White (1988, Theorem 3.3), we obtain θ̂T (f̂1)

a.s.
→ θ0 from the uniform convergence of the criterion function

nd the identifiable uniqueness of the maximizer θ0 ∈ Θ ,

sup
θ:∥θ−θ0∥>ϵ

ℓ∞(θ) < ℓ∞(θ0) ∀ ϵ > 0.

Step 1, uniform convergence: Let ℓT (θ) denote the likelihood ℓT (θ, f̂1) with f̂t replaced by ft . Also define ℓ∞(θ) =

ℓ̃t (θ) ∀ θ ∈ Θ , with ℓ̃t denoting the contribution of the tth observation to the likelihood function ℓT . We have

sup
θ∈Θ

|ℓT (θ, f̂1) − ℓ∞(θ)| ≤

sup
θ∈Θ

|ℓT (θ, f̂1) − ℓT (θ)| + sup
θ∈Θ

|ℓT (θ) − ℓ∞(θ)|. (A.2)

he first term vanishes by application of Lemma 2.1 in Straumann and Mikosch (2006) since f̂t converges e.a.s. to ft and
upθ∈Θ supf |∇ℓT (θ)| has a logarithmic moment because n̄∇ > 0. The second term vanishes by Rao (1962); see Lemmas
A.5 and TA.6 form Technical Appendix B, respectively.
Step 2, uniqueness: Identifiable uniqueness of θ0 ∈ Θ follows from, for example, White (1994), by the assumed

niqueness, the compactness of Θ , and the continuity of the limit Eℓ̃t (θ) in θ ∈ Θ , which is implied by the continuity of
T in θ ∈ Θ ∀ T ∈ N and the uniform convergence of the objective function proved earlier. ■

roof of Theorem 4.10. We index the true {ft} and the observed random sequence {yt} by the parameter θ0, e.g. {yt (θ0)},
ince under correct specification the observed data is a subset of the realized path of a stochastic process {yt}t∈Z generated
y a score-driven model under θ0 ∈ Θ . As conditions (i) and (ii) of Proposition 3.1 hold immediately by Assumption 4.9
nd condition (v) follows immediately from the i.i.d. exogenous nature of the sequence {ut}, it follows by Proposition 3.1
hat the true sequence {ft (θ0)} is SE and has at least nf moments for any θ ∈ Θ . The SE nature and nf moments of {ft (θ0)}
ogether with part (iii) of Assumption 4.8 imply, in turn, that {yt (θ0)} is SE with ny = ng moments.

Step 1 (formulation and existence of the limit criterion Q∞(θ)): As shown in the proof of Theorem 4.6, the limit criterion
unction Q∞(θ) is well-defined for every θ ∈ Θ by

Q∞(θ) = Eℓ̃t (θ) = E log pyt |yt−1,yt−2,...

(
yt (θ0)

⏐⏐⏐yt−1(θ0), yt−2(θ0), . . . ; θ
)
.

s a normalization, we subtract the constant Q∞(θ0) from Q∞(θ) and focus on showing that

Q∞(θ) − Q∞(θ0) < 0 ∀ (θ0, θ) ∈ Θ × Θ : θ ̸= θ0.

o do this, we use Lemma TA.7 from Technical Appendix B and rewrite

Q∞(θ)−Q∞(θ0) =∫∫ [∫
py(y|f , λ0) log

py(y|f̃ ; λ)
py(y|f ; λ0)

dy
]
pft ,f̃t (f , f̃ ; θ0, θ) df df̃ , (A.3)

for all (θ0, θ) ∈ Θ × Θ : θ ̸= θ0, where pft ,f̃t (f , f̃ ; θ0, θ) is the bivariate pdf for the pair (ft (θ0), f̃t (θ)). We note that the pdf
pft ,f̃t (f , f̃ ; θ0, θ) depends on both θ0 and θ, as for instance the recursion defining f̃t (θ) depends on both θ and on yt (θ0),
which in turn depends on θ0. Next, we use Gibb’s inequality to show that this quantity is negative for θ ̸= θ0.

Step 2 (use of Gibb’s inequality): Gibb’s inequality ensures that, for any given (f , f̃ , λ0, λ) ∈ F × F̃ × Λ × Λ, the inner
integral in (A.3) satisfies∫

py(y|f , λ0) log
py(y|f̃ ; λ)
py(y|f ; λ0)

dy ≤ 0,

ith equality holding if and only if py(y|f̃ ; λ) = py(y|f ; λ0) almost everywhere in Y with respect to py(y|f , λ0). By Lemma
A.8 from Technical Appendix B there exists a set YF F̃ ⊆ Y × F × F̃ with positive probability mass and with orthogonal
rojections Y F̃ ⊆ Y × F , F F̃ ⊆ F × F̃ , etc., for which (i)–(ii) hold if λ ̸= λ0, and for which (i)–(iii) hold if λ = λ0, where

(i) py(y|f , λ0) > 0 ∀ (y, f ) ∈ YF ;
(ii) if (f̃ , λ) ̸= (f , λ0), then py(y|f̃ ; λ) ̸= py(y|f ; λ0) ∀ (y, f , f̃ ) ∈ YF F̃ ;
(iii) if λ = λ0 and (ω, α, β) ̸= (ω0, α0, β0), then f ̸= f̃ for every (f , f̃ ) ∈ F F̃ .

ence, if λ ̸= λ0, the strict Gibb’s inequality follows directly from (i) and (ii) and the inner integral and the fact that YF F̃
as positive probability mass. If λ = λ0, property (iii) ensures f ̸= f̃ on a subset F F̃ with positive probability mass, and
ence the strict inequality again follows via (ii) and (i). ■
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Proof of Corollary 4.11. The desired result is obtained by showing (i) that under the maintained assumptions, {yt}t∈Z ≡

yt (θ0)}t∈Z is an SE sequence satisfying E|yt (θ0)|ny < ∞; (ii) that θ0 ∈ Θ is the unique maximizer of ℓ∞(θ, f̂1) on Θ; and
hen (iii) appealing to Theorem 4.6. The fact that {yt (θ0)}t∈Z is an SE sequence is obtained by applying Proposition 3.1 under
ssumptions 4.8 and 4.9 to ensure that {f̂t (θ0)}t∈N converges e.a.s. to an SE limit {ft (θ0)}t∈Z satisfying E|ft (θ0)|nf u < ∞.
his implies by continuity of g on F × U (implied by ḡ ∈ C(2,0)(F̄ × Y) in Assumption 4.2) that {yt (θ0)}t∈Z is SE.
urthermore, Assumption 4.8 implies that E|yt (θ0)|ny < ∞ for ny = ng . Finally, the uniqueness of θ0 is obtained by
pplying Theorem 4.10 under Assumptions 4.8 and 4.9. ■

roof of Theorem 4.15. Following the classical proof of asymptotic normality found e.g. in White (1994, Theorem 6.2),
e obtain the desired result from:
i) the strong consistency of θ̂T

a.s.
→ θ0 ∈ int(Θ);

ii) the a.s. twice continuous differentiability of ℓT (θ, f̂1) in θ ∈ Θ;
iii) the asymptotic normality of the score

√
Tℓ′

T

(
θ0, f̂

(0:1)
1 )

d
→ N(0,J (θ0)

)
, J (θ0) = lim

T→∞

T−1E
( T∑

t=1

ℓ̃′

t (θ0)
)( T∑

t=1

ℓ̃′

t (θ0)⊤
)
; (A.4)

(iv) the uniform convergence of the likelihood’s second derivative,

sup
θ∈Θ

ℓ′′

T (θ, f̂
(0:2)
1 ) − ℓ′′

∞
(θ)
 a.s.

→ 0; (A.5)

(v) the non-singularity of the limit ℓ′′
∞
(θ0) = Eℓ̃′′

t (θ0) = I(θ0), which holds by assumption.
Step 1 (consistency and differentiability): Consistency to an internal point of Θ follows immediately by Theorem 4.6

and the additional assumption that θ0 ∈ int(Θ). The differentiability of the likelihood function follows directly by
Assumption 4.2 and the expressions for the likelihood in Technical Appendix D.

Step 2, CLT: The asymptotic normality of the score ℓ′

T

(
θ0, f̂

(0:1)
1

)
in (A.4) follows by applying a CLT to ℓ′

T

(
θ0
)
,

√
Tℓ′

T

(
θ0)

d
→ N(0,J (θ0)

)
, J (θ0) = lim

T→∞

T−1E
( T∑

t=1

ℓ̃′

t (θ0)
)( T∑

t=1

ℓ̃′

t (θ0)⊤
)

< ∞, (A.6)

and by showing that the effect of initial conditions vanishes, i.e.,
√
T∥ℓ′

T

(
θ0, f̂

(0:1)
1

)
− ℓ′

T

(
θ0
)
∥

a.s.
→ 0 as T → ∞. (A.7)

and by appealing to Theorem 18.10[iv] in van der Vaart (2000). We note that the CLT for SE martingale difference sequences
(mds) in Billingsley (1961) cannot be used to obtain (A.6) as we allow for model misspecification, and hence the mds
property need not hold. Instead, we obtain (A.6) by applying the CLT for NED sequences in Pötscher and Prucha (1997) (see
also Davidson, 1992, 1993). Lemma TA.11 in Technical Appendix F ensures that the score ℓ′

T (θ0) is a sample average of
a sequence that is SE and NED of size −1 on a strongly mixing sequence. In addition, the existence of J (θ0) is assumed
nd the existence of 2 + δ bounded moments of ℓ′ follows from Lemma TA.9, and the assumption that nℓ′ ≥ 2 + δ in

Assumption 4.12. Finally, the a.s. convergence in (A.7) follows directly by Lemma TA.12 in Technical Appendix F.
Step 3, uniform convergence of ℓ′′: The proof of the uniform convergence in (iv) is similar to that of Theorem 4.6. We

have

sup
θ∈Θ

∥ℓ′′

T (θ, f̂
(0:2)
1 ) − ℓ′′

∞
(θ)∥ ≤ sup

θ∈Θ

∥ℓ′′

T (θ, f̂
(0:2)
1 ) − ℓ′′

T (θ)∥ + sup
θ∈Θ

∥ℓ′′

T (θ) − ℓ′′

∞
(θ)∥. (A.8)

The first term on the right-hand side of (A.8) vanishes a.s. which can be shown by considering the separate terms in the
expression of ℓ′′

T ; see Lemma TA.13 in Technical Appendix F.
For the second term in (A.8) we use the same approach as Lemma TA.6, meaning that we apply the ergodic theorem for

separable Banach spaces of Rao (1962) to {ℓ̃t (·)}. So the term converges if {ℓ′′

T }t∈Z is and SE and E supθ∈Θ ∥ℓ̃′′
t (θ)∥ < ∞. The

ormer is implied by continuity of ℓ′′ on the SE sequence {(yt , f
(0:2)
t (·))}t∈Z and Proposition 4.3 in Krengel (1985), where

(yt , f
(0:2)
t (·))}t∈Z is SE by Proposition 3.2 under the maintained assumptions. The moment bound E supθ∈Θ ∥ℓ̃′′

t (θ)∥ < ∞

ollows from nℓ′′ ≥ 1 in Assumption 4.12 and Lemma TA.10 in Technical Appendix F. ■

roof of Theorem 4.16. The desired result is obtained by applying Corollary 4.11 to guarantee that under the maintained
ssumptions {yt}t∈Z ≡ {yt (θ0)}t∈Z is an SE sequence satisfying E|yt (θ0)|ny < ∞ for ny ≥ 0, and that θ0 ∈ Θ is the unique
aximizer of ℓ∞(θ, f̂1) on Θ . Then the statement follows along the same lines as the proof of Theorem 4.15. Note that

he non-singularity of the limit ℓ′′
∞
(θ0) = Eℓ̃′′

t (θ0) = I(θ0) is implied by Theorem 1 in Rothenberg (1971), because the
odel is correctly specified, θ0 is the unique maximizer of ℓ∞(θ) in Θ and the assumption that Eℓ̃′′

t (θ0) is regular in the
ense of Rothenberg (1971). ■

ppendix B. Technical appendix with supportive material, mathematical details, proofs and derivations

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2021.06.003.
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