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Introduction

▶ The many aspects that are governed by networks make it critical to
understand:

▶ how networks impact behaviour (and vice versa),
▶ which network structures are likely to emerge, and
▶ how they affect welfare in the society.

Networks
R&D collaborations,
technology spillovers

Behavior
R&D expenditures,
production choices

▶ We make three interrelated contributions to address these questions:
(i) theory, (ii) econometrics and (iii) policy.
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Contribution: Theory

▶ We provide an analytic characterization of both,

▶ equilibrium networks and
▶ endogenous production choices,

by making the network in Ballester at al. (ECMA, 2006) endogenous.
▶ Equilibrium networks are particular nested structures,1 while the firms’

output levels and degrees follow a Pareto distribution, consistent with
the data.

▶ Our efficiency analysis further reveals that equilibrium networks tend
to be under-connected (with R&D policy implications).

1A network exhibits nestedness if the neighborhood of a node is contained in the
neighborhoods of the nodes with higher degrees. See e.g. König et al. (TE, 2014).
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Contribution: Econometrics

▶ We provide an estimation framework that can handle the endogeneity
of both, the network structure and (either continuous or discrete) effort
choices.2

▶ The analytic characterization allows us to design an estimation
algorithm that can handle large network datasets.

▶ We estimate the model using a unique dataset on R&D collaborations
matched to firm’s balance sheets and patents.

2This generalizes previous works such as Mele (ECMA, 2017), where only the formation of
the network was considered.
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Contribution: Policy

▶ We provide the first (R&D) policy analysis with an endogenous network
structure.

▶ Our analysis identifies which collaborations should be subsidized.
▶ We find that subsidizing an R&D collaboration can yield a welfare gain

almost five times larger than the cost of the subsidy.
▶ Our framework could be used to assist governmental funding agencies

that typically do not take into account the dynamic R&D network
structure.3

3E.g. EUREKA’s total subsidies for cooperative R&D accumulated to more than €37 billion
in 2015.
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Related Literature

Authors Journala Year Network Action/Behavior

D’Aspremont & AER 1988 exogenousb endogneousJacquemin
Goyal & RAND 2001 exogenousc endogenousMoraga-Gonzalez
Ballester et al. ECMA 2006 exogenous endogneous
Bramoullé et al. AER 2014 exogenous endogenous
Belhaj et al. GEB 2014 exogenous endogenous
Bimpikis et al. MS 2016 exogenous endogneous
König et al. REStat 2019 exogenous endogneous

Goyal & Joshi GEB 2003 endogenous none
Westbrock RAND 2010 endogenous none
Mele ECMA 2017 endogenous none
Chandrasekhar & WP 2016 endogenous noneJackson
König et al. TE 2014 endogenous no competition/ no linking cost

random link decay
Hiller GEB 2017 endogenous no competition/ no characterization
Belhaj et al. TE 2017 endogenous no competition/ no characterization
Snijders AAS 2001 endogenous no competition/ no characterization
Badev ECMA 2021 endogenous binary choice/ no competition /

no characterization
a Note: ECMA...Econometrica, AER...American Economic Review, TE...Theoretical Economics,
GEB...Games and Economic Behavior, RAND...RAND Journal of Economics, AAS...Annals of Applied
Statistics, MS...Management Science, WP...Working Paper.
b An endogenous network is considered restricted to 2 firms.
c An endogenous network is considered restricted to 4 firms.
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The Model

▶ The inverse demand for firm i producing quantity qi is

pi = a − qi − b
∑
j ̸=i

qj. (1)

▶ A firm i can reduce marginal costs ci by investing ei into R&D, or by
benefiting from the R&D investment ej of its collaboration partner j:

ci = c̄i − αei − β

n∑
j=1

aijej, (2)

where aij = 1 if firms i and j set up a collaboration (0 otherwise) and
aii = 0.
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Profits

▶ Firm i’s profit πi is then given by

πi = (pi − ci)qi − γe2i − ζdi, (3)

where γe2i is the cost of R&D, γ > 0, and ζ ≥ 0 is a fixed cost of
collaboration.

▶ Inserting marginal cost from Eq. (2) and inverse demand from Eq. (1)
into Eq. (3) gives

πi = (a − c̄i)qi − q2i − bqi
∑
j ̸=i

qj + αqiei + βqi

n∑
j=1

aijej − γe2i . (4)

▶ The FOC with respect to R&D effort ei yields ei = λqi,4 with λ = α
2γ .

4Cf. Cohen & Klepper (EJ, 1996).
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Potential

▶ Denoting by η = a − c̄i, ν = 1 + λ(λγ − α) and ρ = λβ, Eq. (4)
becomes5

πi = ηiqi − νq2i︸ ︷︷ ︸
own concavity

−bqi

n∑
j ̸=i

qj︸ ︷︷ ︸
global substitutability

+ ρqi

n∑
j=1

aijqj︸ ︷︷ ︸
local complementarity

−ζdi. (5)

▶ Proposition: The profit function of Eq. (5) admits a potential
function Φ: Rn

+ × Gn → R given by

Φ(q,G) =

n∑
i=1

(ηiqi − νq2i )−
b
2

n∑
i=1

∑
j ̸=i

qiqj +
ρ

2

n∑
i=1

n∑
j=1

aijqiqj − ζm

(6)

where m is the number of links in G.

5Cf. Ballester et al. (ECMA, 2006).
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Cournot Best Response Dynamics

▶ We consider a Markov chain, where opportunities for change
(links/output) arrive as a Poisson process.6

▶ We follow the best response dynamics analyzed in Cournot (1838):7

▶ Firms maximize profits by taking the output levels and
collaborations of the other firms as given (myopic).8

▶ As R&D projects and collaborations are fraught with uncertainty,9 we
also introduce noise in this decision process.

6Similar to Calvo models of pricing (Calvo, JME, 1983).
7See Cournot (1838) and Daughety (2005).
8Cf. Jackson & Watts (JET, 2002).
9Cf. Kelly et al. (RDM, 2002) and Czarnitzki et al. (JIO, 2015).
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▶ The evolution is characterized by a sequence (ωt)t∈R+ , ωt ∈ Ω,
consisting of

▶ a vector of firms’ output levels qt ∈ Qn and
▶ a network of collaborations Gt ∈ Gn.

▶ Then, in a short time interval [t, t +∆t), t ∈ R+, one (and only one) of
the following events happens:

▶ output adjustment,
▶ link formation or
▶ link removal.
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Output Adjustment

▶ At rate χ > 0 a firm i receives an output adjustment opportunity.
▶ The profit of firm i from choosing an output level q ∈ Q is then given

by πi(q,q−i,G) + εit.
▶ When εit is i.i. type-I extreme value distributed with parameter ϑ,

then10

P (ωt+∆t = (q,q−it,Gt)|ωt = (qt,Gt)) =

χ
eϑπi(q,q−it,Gt)∫

Q eϑπi(q′,q−it,Gt)dq′
∆t + o(∆t), (7)

▶ When ϑ → ∞ the noise vanishes and the firm chooses the profit
maximizing output level.

10That is a multinomial logistic function with choice set Q and parameter ϑ (cf. Anderson et
al., GEB, 2001, and McFadden, 1976).
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Link Formation

▶ With rate λ > 0 a pair of firms ij which is not already connected
receives an opportunity to form a link.

▶ The formation of a link depends on the marginal profits plus a
logistically distributed error term εij,t.

▶ The link ij is created only if both firms find this profitable:11

P (ωt+∆t = (qt,Gt + ij)|ωt−1 = (q,Gt))

= λ P ({πi(qt,Gt + ij) + εij,t > πi(qt,Gt)}
∩{πj(qt,Gt + ij) + εij,t > πj(qt,Gt)})∆t + o(∆t)

= λ
eϑΦ(qt,Gt+ij)

eϑΦ(qt,Gt+ij) + eϑΦ(qt,Gt)
∆t + o(∆t).

11We have used the fact that
πi(qt, Gt + ij) − πi(qt, Gt) = πj(qt, Gt + ij) − πj(qt, Gt) = Φ(qt, Gt + ij) − Φ(qt, Gt).
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Link Removal

▶ With rate ξ > 0 a pair of connected firms ij receives an opportunity to
terminate their collaboration.

▶ The marginal profits from removing the link ij are perturbed by a
logistically distributed error term εij,t.

▶ The link ij is removed if at least one firm finds this profitable:12

P (ωt+∆t = (qt,Gt − ij)|ωt = (q,Gt))

= ξ P ({πi(qt,Gt − ij) + εij,t > πi(qt,Gt)}
∪{πj(qt,Gt − ij) + εij,t > πj(qt,Gt)})∆t + o(∆t)

= ξ
eϑΦ(qt,Gt−ij)

eϑΦ(qt,Gt−ij) + eϑΦ(qt,Gt)
∆t + o(∆t).

12We have used the fact that
πi(qt, Gt − ij) − πi(qt, Gt) = πj(qt, Gt − ij) − πj(qt, Gt) = Φ(qt, Gt − ij) − Φ(qt, Gt).
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Stationary States and Gibbs Measure

▶ Proposition: The ergodic Markov chain (ωt)t∈R+ has a unique
stationary distribution µϑ : Qn × Gn → [0, 1] given by the Gibbs
measure13

µϑ(q,G) =
eϑ(Φ(q,G)−m ln( ξ

λ ))∑
G′∈Gn

∫
Qn dq′eϑ(Φ(q′,G′)−m′ ln( ξ

λ ))
. (8)

▶ In the limit of vanishing noise ϑ → ∞, the stochastically stable states14
are given by

lim
ϑ→∞

µϑ(q,G)

{
> 0, if Φ(q,G) ≥ Φ(q′,G′), ∀q′ ∈ Qn, G′ ∈ Gn,

= 0, otherwise,
(9)

and we denote by µ∗ = limϑ→∞ µϑ.

13Cf. Bisin et al. (JET, 2006).
14Cf. Kandori et al. (ECMA, 1993).
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Homogeneous Firms

▶ Proposition: Consider homogeneous firms (c̄i = c̄j = c̄ for all i, j ∈ N )
such that ηi = η, let η∗ ≡ η/(n − 1) and ν∗ ≡ ν/(n − 1). Then
q̄ = 1

n
∑n

i=1 qi
a.s.−−→ q∗, where q∗ is the root of

(b + 2ν∗)q − η∗ =
ρ

2

(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

)))
q, (10)

with at least one solution if b + 2ν∗ > ρ, and for ϑ → ∞ (stochastically
stable state)

q∗ =


η∗

b+2ν∗−ρ
, if ζ < ρ(η∗)2

(b+2ν∗)2 ,{
η∗

b+2ν∗−ρ
, η∗

b+2ν∗

}
, if ρ(η∗)2

(b+2ν∗)2 < ζ < ρ(η∗)2

(b+2ν∗−ρ)2 ,

η∗

b+2ν∗ , if ρ(η∗)2

(b+2ν∗−ρ)2 < ζ.

(11)
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Equilibrium Output & Hysteresis
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Figure: (Left panel) The right hand side of Eq. (10) for different values of the
linking cost ζ, and (right panel) the corresponding values of q solving Eq. (10).
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Figure: A phase diagram illustrating the regions with a unique and with multiple
equilibria according to Eq. (10).
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▶ Proposition: The firms’ output levels become independent Gaussian
random variables, qi

d−→ N (q∗, σ2), with mean q∗ and variance σ2.
▶ The degree di of firm i follows a (mixed) Poisson distribution

Pϑ(k) = Eµϑ

(
e−d̄(q1)d̄(q1)k

k!

)
(1 + o(1)) , (12)

where the expected degree is given by

Eµϑ

(
d̄
)
=

n − 1
2

(
1 + tanh

(
ϑ

2

(
ρ(q∗)2 − ζ

)))
. (13)

▶ In the limit ϑ → ∞ the stochastically stable network is either empty or
complete.
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Figure: (Left panel) The stationary output distribution P(q) with the dashed lines
indicating a normal distribution N (q∗, σ2). (Right panel) The stationary degree
distribution P(k) with the dashed lines indicating the solution of Eq. (12).
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Heterogeneous Firms

▶ Proposition: For heterogeneous firms the stationary distribution of
Eq. (8) can be written as µϑ(q,G) = µϑ(G|q)µϑ(q).

▶ The marginal distribution µϑ(q) of the firms’ output levels is
multivariate Gaussian:15

µϑ(q) =
(

2π
ϑ

)− n
2
|−∆Hϑ(q∗)|

1
2 ×

exp

{
−1

2ϑ(q − q∗)⊤(−∆Hϑ(q∗))(q − q∗)

}
+ o

(
∥q − q∗∥2

)
,

with mean q∗ ∈ Qn solving the following system of equations

q∗i = ηi +
n∑

j ̸=i

(
ρ

2

(
1 + tanh

(
ϑ

2
(
ρq∗i q∗j − ζ

)))
− b
)

q∗j .

gaussian

15We have introduced the effective Hamiltonian, H (q), implicitly defined by∑
G∈Gn eϑΦ(q,G) = eϑH (q).
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Nested Split Graphs

▶ Proposition: For ϑ → ∞ the stochastically stable network G ∈ Gn is
a nested split graph16 where i and j are connected iff ρqiqj > ζ.

▶ The output profile, q ∈ Qn, solves

qi =
ηi

2ν +
1

2ν

n∑
j ̸=i

qj

(
ρ1{ρqiqj>ζ} − b

)
, µ∗-a.s. (14)

▶ Corollary: If firms i and j are such that ηi > ηj then i has a higher
output than j, qi > qj and a larger number of collaborations, di > dj,
µ∗-a.s..

16Cf. Mahadev & Peled (1995) and König et al. (TE, 2014).
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Figure: The (stepwise) adjacency matrix A = (aij)1≤i,j,n, characteristic of a
nested split graph, with elements aij = 1 iff qiqj >

ζ
ρ

, where the vector q is the
solution to Eq. (14). The panels from the left to the right correspond to increasing
linking costs ζ ∈ {0.0075, 0.01, 0.02}.
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Pareto Output Distribution

▶ Proposition: Assume that (ηi)
n
i=1 are Pareto distributed with density

f(η) = (γ − 1)η−γ for η ≥ 1.
▶ Then the stochastically stable output distribution is given by

µ∗(q) = (γ − 1)n| det(M)|
n∏

i=1
(Mq)−γ

i ,

where M ≡ In + bB − ρA, B is a matrix of ones with zero diagonal and
A has elements aij = 1 iff qiqj >

ζ
ρ
.

▶ In particular, for q = cu, with c > 0, and u being a vector of ones, we
get a Pareto distribution

µ∗(cu) ∼
n∏

i=1
O
(
c−γ)

as c → ∞.
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Pareto Degree Distribution
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Figure: The Pareto distribution P(η) of η (left panel), the resulting stationary
output distribution P(q) (middle panel) and the degree distribution P(d) (right
panel). Dashed lines indicate a power-law fit.
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Efficiency

▶ Social welfare, W, is given by the sum of consumer surplus, U, and
firms’ profits, Π.

▶ Consumer surplus is given by

U(q) = 1
2

n∑
i=1

q2i +
b
2

n∑
i=1

n∑
j̸=i

qiqj.

▶ Producer surplus is given by aggregate profits

Π(q,G) =

n∑
i=1

πi(q,G).

▶ The efficient state (q∗,G∗) maximizes welfare W(q,G), that is,
W(q∗,G∗) ≥ W(q,G) for all G ∈ Gn and q ∈ Qn.
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Stability vs. Efficiency

▶ Proposition: The efficient network G∗ ∈ Gn is a nested split graph,17
and q∗ solves

q∗i =
ηi

2ν − 1 +
1

2ν − 1

n∑
j̸=i

q∗j
(
ρ1{ρq∗i q∗j >ζ} − b

)
. (15)

▶ Further, the stochastically stable equilibrium output / R&D and the
collaboration intensity are too low compared to the social optimum
(µ∗-a.s.).

▶ Hence, equilibrium networks tend to be under-connected.18

17Cf. Belhaj et al. (TE, 2016).
18Cf. Buechel & Hellmann (RED, 2012).
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Empirical Implications

▶ We merged the MERIT-CATI with the Thomson SDC alliance
databases.19

▶ We use annual data about balance sheets and income statements from
Standard & Poor’s Compustat and Bureau Van Deijk’s Orbis
databases.

▶ We also obtained the firms’ patents (PATSTAT), and computed the
potential technology spillovers between collaborating firms using
various patent proximity indices.

data

19These databases contain information about strategic technology agreements, including any
alliance that involves some arrangements for mutual transfer of technology or joint research,
such as joint research pacts, joint development agreements, cross licensing, R&D contracts,
joint ventures and research corporations. Cf. Schilling (SMJ, 2009) and Hagedoorn (RP, 2002).
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Figure: The number of firms in each country.
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Figure: The locations and collaborations of the firms in the combined CATI-SDC
database.
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Figure: (Left panel) The competition matrix B across all 2-digit SIC sectors.
(Right panel) The competition matrix B across all 3-digit SIC sectors within the
SIC-28 sector (comprising 29.22% of all firms).
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Firm Heterogeneity

▶ Accounting for heterogeneous marginal costs, substitution, and
heterogeneous technology spillovers, profits are

πi(q,G) = ηiqi −
1
2q2i − b

n∑
j̸=i

bijqjqi + ρ

n∑
j=1

fijaijqjqi −
n∑

j=1
aijζij.

▶ The weights (fij)1≤i,j≤n capture heterogeneous technology spillovers
across firms either using Jaffe’s or the Mahalanobis patent similarity
index (Bloom et al., 2013).

▶ The corresponding potential function Φ: Rn
+ × Gn → R is given by

Φ(q,G) =

n∑
i=1

(
ηiqi −

1
2q2i
)
− b

2

n∑
i=1

n∑
j̸=i

bijqiqj

+
ρ

2

n∑
i=1

n∑
j ̸=i

fijaijqiqj −
1
2

n∑
i=1

n∑
j ̸=i

aijζij (16)
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Linking Costs and Homophily

▶ Linking costs are specified by the pairwise symmetric function

ζij = γ⊤cij + zi + zj.

▶ The r-dimensional vector of dyadic-specific variables, cij, represents
measures of similarity (homophily) between firms i and j regarding
sector, location, technology, etc. (Lychagin et al., 2010).

▶ We also include individual latent variables zi and zj in ζij to capture
unobserved degree/collaboration heterogeneity (Graham, 2017).
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Estimation

▶ The stationary distribution µϑ(G,q) of Equation (8) contains an
intractable normalizing constant in the denominator.

▶ Furthermore, existing simulation-based estimation approaches are also
not feasible for the network size we consider.

▶ However, we can overcome these issues by considering the
composite-likelihood (Lindsay, 1988; Varin, 2011)

µϑ(G|q)µϑ(q|G), (17)

where µϑ(G|q) and µϑ(q|G) represent conditional probabilities of
network and output.
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Composite Likelihood

▶ The probability of observing a network G ∈ Gn, conditional on an
output distribution q ∈ Qn, is

µϑ(G|q) = µϑ(q,G)

µϑ(q) =
n∏

i<j

eϑaij(ρfijqiqj−ζij)

1 + eϑ(ρfijqiqj−ζij)
. (18)

▶ The conditional probability µϑ(q|G) of the output profile q given the
network G is

µϑ(q|G) =

(
2π
ϑ

)− n
2
|M(G)|

1
2 e−

ϑ
2 (q−M(G)−1Xδ)⊤M(G)(q−M(G)−1Xδ),

(19)
where M(G) ≡ In + bB − ρ(A ◦ F).

▶ Since the composite-likelihood in Equation (17) does not involve the
intractable normalizing constant it is computationally simple to
evaluate.
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Estimation Results

Table: Estimation results for the homogeneous technology spillovers case.

Model (1) Model (2)
W/o Unobs. Heterogeneity With Unobs. Heterogeneity

Profits
R&D Spillover (ρ) 0.0174*** (0.0005) 0.0099*** (0.0007)
Substitutability (b) 3.77e-5*** (1.35e-5) 3.45e-5*** (1.35e-5)
Productivity (δ) 0.8475*** (0.0021) 0.8531*** (0.0022)
Unobs. Heterogeneity (κ) – 0.0103*** (0.0044)
Sector FE Yes Yes
Linking Cost
Constant (γ0) 6.8432*** (0.1795) 8.4542*** (0.2742)
Same Sector (γ1) -1.1935*** (0.0546) -1.4786*** (0.0834)
Same Country (γ2) -0.3791*** (0.0484) -0.6484*** (0.0766)
Diff-in-Prod. (γ3) -0.0901*** (0.0110) 0.0020 (0.0137)
Noise/Uncertainty
Noise in Decisions (ϑ) 1.7364*** (0.0481) 1.4205*** (0.0432)
Unobs. Heterogeneity (σ2

z ) – 1.0196*** (0.1293)

Sample Size (n) 1,738

Notes: The asterisks ∗∗∗(∗∗,∗) indicate that a parameter’s 99% (95%, 90%) highest posterior
density range does not cover zero.

fit
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Heterogeneous Spillovers

Table: Estimation results for the heterogeneous technology spillovers case à la
Jaffe.

Model (1) Model (2)
W/o Unobs. Heterogeneity With Unobs. Heterogeneity

Profits
R&D Spillover (ρ) 0.0401*** (0.0020) 0.0250*** (0.0021)
Substitutability (b) 5.77e-5** (1.82e-5) 3.68e-5*** (1.38e-5)
Productivity (δ) 0.8605*** (0.0022) 0.8595*** (0.0023)
Unobs. Heterogeneity (κ) – 0.0753*** (0.0061)
Sector FE Yes Yes
Linking Cost
Constant (γ0) 6.6103*** (0.2285) 8.3960*** (0.2701)
Same Sector (γ1) -0.9785*** (0.0778) -1.2986*** (0.0910)
Same Country (γ2) -0.5072*** (0.0601) -0.6931*** (0.0844)
Diff-in-Prod. (γ3) -0.1254*** (0.0147) 0.0151 (0.0139)
Noise/Uncertainty
Noise in Decisions (ϑ) 1.3748*** (0.0450) 1.3220*** (0.0393)
Unobs. Heterogeneity (σ2

z ) – 1.4864*** (0.1515)

Sample Size (n) 1,738

Notes: The asterisks ∗∗∗(∗∗,∗) indicate that a parameter’s 99% (95%, 90%) highest posterior
density range does not cover zero.

mahalanobis
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R&D Collaboration Subsidies

▶ We analyze a counterfactual policy that selects a specific firm-pair,
(i, j), and compensates their collaboration costs through a subsidy, i.e.,
setting ζij = 0.

▶ The pair of firms for which the subsidy results in the largest gain in
welfare is defined as

(i, j)∗ = argmax
(i,j)∈E

{∑
G∈Gn

∫
Qn

[W(q,G|ζij = 0)− W(q,G)]µϑ(q,G)dq
}

▶ The probability measure µϑ(q,G) is given by Eq. (8),
▶ W(q,G|ζijij = 0) denotes the welfare function with firms i and j

receiving a subsidy such that they do not incur a pair-specific
collaboration cost (by setting ζij = 0 permanently).
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R&D Subsidies Ranking

Table: R&D subsidy analysis for firms in the drugs development sector (SIC code 283).

Firm i Firm j Relat.a Relat.a Marketb Marketb Deg. Deg. Long Runc Short Runc R&D Sub.d Ranke
Prod. i Prod. j Share i (%) Share j (%) di dj ∆WE ∆WF Multiplier

Novartis Pfizer 1.592 1.653 2.069 2.768 19 16 11.387 2.387 4.778 1
Merck & Co. Pfizer 1.579 1.653 1.300 2.768 16 16 11.185 2.195 5.096 2
Johnson & Johnson Pfizer 1.617 1.653 3.055 2.768 11 16 10.650 2.352 4.534 3
Amgen Pfizer 1.526 1.653 0.819 2.768 14 16 10.538 2.281 4.610 4
Merck & Co. Novartis 1.579 1.592 1.300 2.069 16 19 10.460 3.066 4.139 5
GlaxoSmithKline Novartis 1.509 1.592 0.724 2.069 14 19 10.222 2.180 4.697 6
GlaxoSmithKline Pfizer 1.509 1.653 0.724 2.768 14 16 10.035 3.602 4.025 7
Novartis Johnson & Johnson 1.592 1.617 2.069 3.055 19 11 9.998 5.168 3.731 8
Merck & Co. Johnson & Johnson 1.579 1.617 1.300 3.055 16 11 9.908 3.547 3.977 9
Amgen Novartis 1.526 1.592 0.819 2.069 14 19 9.838 5.242 3.758 10
Amgen Merck & Co. 1.526 1.579 0.819 1.300 14 16 9.718 3.656 3.999 11
Amgen Johnson & Johnson 1.526 1.617 0.819 3.055 14 11 9.575 5.313 3.708 12
GlaxoSmithKline Merck & Co. 1.509 1.579 0.724 1.300 14 16 9.574 5.645 3.631 13
Bristol-Myers Squibb Pfizer 1.564 1.653 1.029 2.768 7 16 9.440 5.668 3.504 14
GlaxoSmithKline Johnson & Johnson 1.509 1.617 0.724 3.055 14 11 9.266 6.426 3.322 15
GlaxoSmithKline Amgen 1.509 1.527 0.724 0.819 14 14 9.226 6.340 3.380 16
Bristol-Myers Squibb Merck & Co. 1.564 1.579 1.029 1.300 7 16 9.100 6.660 3.207 17
Bristol-Myers Squibb Johnson & Johnson 1.564 1.617 1.029 3.055 7 11 9.086 7.188 3.039 18
Abbott Laboratories Pfizer 1.532 1.653 1.291 2.768 3 16 8.877 6.559 3.132 19
Abbott Laboratories Merck & Co. 1.532 1.579 1.291 1.300 3 16 8.750 7.219 2.938 20
a Relative productivity shows the firm’s productivity relative to the average productivity of all firms in the sample.
b Market share (%) is the market share measured in the primary 3-digit sector in which the firm is operating.
c The expected welfare gain due to subsidizing the R&D collaboration costs between firms i and j is computed as ∆W = E

µϑ [W(q, G|ζij = 0) − W(q, G)]. Expected
welfare without setting the linking cost to zero is E

µϑ [W(q, G)] = 33616.35 in the long run and 33628.80 in the short run. In the short run the network is assumed
to be fixed, while in the long run the network endogenously responds to the R&D collaboration subsidy.

d The R&D subsidy multiplier is defined as the ratio of the expected (long run) welfare gain to the cost of the subsidy.
e The rank is based on the long run welfare gain.
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Conclusion

▶ We analyze the coevolution of networks and behavior, provide a
complete equilibrium characterization and reproduce the observed
patterns in real world networks.

▶ The model can be conveniently estimated even for large networks.
▶ The model is amenable to policy analysis (e.g. firm exit, M&As and

R&D collaboration subsidies).
▶ Due to the generality of our payoff function the model can be applied

to peer effects in education, crime, terrorist networks, risk sharing,
financial contagion, scientific co-authorship, etc.

▶ Our methodology can also be applied to study discrete choice models
and network games with local substitutes.
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Additional Results
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Multivariate Gaussian

▶ The variance is given by the inverse of −∆Hϑ(q∗), where

(∆Hϑ(q))ii = −1 +
ϑρ2

4

n∑
j ̸=i

q2j

(
1 − tanh

(
ϑ

2 (ρqiqj − ζ)

)2
)
,

while for j ̸= i we have that

(∆Hϑ(q))ij = −b +
ρ

2

(
1 + tanh

(
ϑ

2 (ρqiqj − ζ)

))
×
(

1 +
ϑρ

2 qiqj

(
1 − tanh

(
ϑ

2 (ρqiqj − ζ)

)))
,

▶ The conditional distribution µϑ(G|q) is given by

µϑ(G|q) =
n∏

i=1

n∏
j=i+1

eϑaij(ρqiqj−ζ)

1 + eϑ(ρqiqj−ζ)
, (20)

back
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Extension: Heterogeneous collaboration
costs

▶ Firms with higher productivity incur lower collaboration costs,

ζij =
ζ

sisj
,

where si > 0 denotes the productivity of firm i.
▶ A similar equilibrium characterization using a Gibbs measure is

possible.
▶ In the special case of si being Pareto distributed, one can show that

the degree distribution also follows a Pareto distribution, confirming
previous empirical studies of R&D networks.20

▶ For a power-law productivity distribution, we can generate two-vertex
and three-vertex degree correlations.

20E.g. Powell et al. (AJS, 2005).
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Extension: Heterogeneous spillovers

▶ Firms can only benefit from collaborations if they have at least one
technology in common.

▶ Technologies are randomly distributed across firms.
▶ Then we obtain a generalized random intersection graph,21 with

▶ a power-law degree distribution,
▶ a decaying clustering degree distribution and
▶ positive degree correlations / assortativity.

back

21Cf. Deijfen & Kets (PEIS, 2009).
45/48



Data

Table: Descriptive statistics.

R&D effort Productivity R&D collaborations

Num. of firms mean min max mean min max mean min max

1738 9.1467 0 15.2467 10.5977 0.6427 17.0613 0.7273 0 24

Notes: R&D effort is measured by log R&D expenditure (in thousand U.S. dollars). The reference year
is 2006. Firm’s productivity is measured by its log-R&D capital stock (lagged by one year). To compute
the R&D capital stocks we use a perpetual inventory method based on the firms’ R&D expenditures with
a 15% depreciation rate following Hall (2000) and Bloom (2013).

back
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Model Fit
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Heterogeneous Spillovers

Table: Estimation results for the heterogeneous technology spillovers case à la
Mahalanobis.

Model (1) Model (2)
W/o Unobs. Heterogeneity With Unobs. Heterogeneity

Profits
R&D Spillover (ρ) 0.0192*** (0.0009) 0.0125*** (0.0010)
Substitutability (b) 4.08e-5** (1.43e-5) 7.05e-5*** (1.38e-5)
Productivity (δ) 0.8602*** (0.0024) 0.8631*** (0.0024)
Unobs. Heterogeneity (κ) – 0.1050*** (0.0154)
Sector FE Yes Yes
Linking Cost
Constant (γ0) 6.6876*** (0.2288) 8.1432*** (0.3396)
Same Sector (γ1) -1.0025*** (0.0806) -1.2806*** (0.1041)
Same Country (γ2) -0.5309*** (0.0616) -0.6861*** (0.0803)
Diff-in-Prod. (γ3) -0.1272*** (0.0143) 0.0141 (0.0142)
Noise/Uncertainty
Noise in Decisions (ϑ) 1.3604*** (0.0441) 1.3565*** (0.0472)
Unobs. Heterogeneity (σ2

z ) – 1.3507*** (0.1665)

Sample Size (n) 1,738

Notes: The asterisks ∗∗∗(∗∗,∗) indicate that a parameter’s 99% (95%, 90%) highest posterior
density range does not cover zero.

back

48/48


