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From Individual Decisions to Collective
Decisions Changing the World

Jan Treur(B)

Social AI Group, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
j.treur@vu.nl

Abstract. Decision making plays an important role in many situations. This
applies both to individual decision making and collective decision making,
although the scope of the consequences of a decision may be quite different for
both cases. In the collective case a worldwide scale can be reached whereas in an
individual situation often the scale is limited to personal life. Nevertheless, also
collective decisions usually have a basis in decisions of individuals within a pop-
ulation. In this paper it is discussed how in certain cases individual decisions can
indeed lead to collective decisions with a worldwide scope of consequences. Two
mechanisms for this are considered in particular: influencer-driven social con-
tagion within social networks and plasticity-driven evolution within biological
populations.

Keywords: Collective decision · Contagion · Influencer · Evolution ·
Behavioural plasticity

1 Introduction

Decision making takes place both at an individual level and at a collective level. In
principle, the scope of the consequences of a decision may be quite different for both
cases. In a collective case a decision may affect people on a worldwide scale while in
an individual situation often the scale is more limited to personal life. However, also
to achieve collective decisions usually a basis of decisions of individuals is needed.
The question is how big this basis has to be. In a democratic setting it is sometimes
(mistakenly) believed that a majority is needed for collective decisions. In reality, due to
certainmechanisms often amuch smaller number of individual decisions already suffices
to achieve in an emergent manner a collective decision with far-reaching consequences.
In this paper two of such mechanisms are analysed in particular. One of them is the
social mechanism of influencer-driven social contagion within social networks [5, 8] and
the other one the biological mechanism of plasticity-driven evolution within biological
populations [4, 6, 9, 11]. In both cases, through the mentioned mechanisms, decisions
of a very few individuals already can grow out to emerging collective decisions with
worldscale consequences.

In the paper, after a brief introduction of themodeling approach used (in Sect. 2), first
(in Sect. 3) the social mechanism will be addressed, and next (in Sect. 4) the biological
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mechanism. In both cases it will be shown how due to these mechanisms that act as a
kind of decision amplifier, decisions of a percentage of individuals as low as 5% of a
population or even lower can already achieve a collective decision.

2 Adaptive Temporal-Causal Network Modeling

In the literature,mental, physical or biological processes often are described by pathways
through causal networks, also called causal pathways. This causal perspective suggests
that for modeling of such processes, causal network modeling approaches may be suit-
able. For the topic addressed here, a particular causal modeling approach is required
that is able to model temporal dynamics and adaptivity of such causal pathways. The
modeling approach based on reified adaptive temporal-causal networks, as presented in
[10], fulfills such requirements and is used here. First a brief introduction to this adaptive
causal modeling approach. A temporal-causal network is characterised by the following
types of characteristics:

• connectivity characteristics: the connections from nodes (also called states) X to Y
and their weights ωX,Y ; here states X have varying values X(t) over time t

• aggregation characteristics: for each state Y, by a combination function cY (..) some
form of aggregation is applied to the single causal impacts ωXi,Y Xi(t) from each of
its incoming connections from states X1, …, Xk

• timing characteristics: each state Y has a speed factor ηY indicating how fast it
changes upon causal impact

The standard difference equations used for simulation and mathematical analysis
incorporate these three types of network characteristics ωX,Y , cY (..), ηY : for any state Y
it holds

Y (t + �t) = Y (t) + ηY [cY (ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)) − Y (t)]�t (1)

where X1, …, Xk are the states from which Y gets incoming connections; this can also
be expressed by an equivalent differential equation. These concepts enable to design
and analyse causal networks with their dynamics by declarative mathematically defined
relations. For example, for analysis of equilibria (i.e., when no change occurs: dY/dt =
0), assuming a nonzero speed factor, based on (1), the criterion is

cY (ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)) = Y (t) (2)

See [10], Ch 2 for more information on modeling and analysis based on temporal-causal
networks.

This far adaptive causal networks, in which the network characteristics ωX,Y , cY (..),
ηY may change over time, are not covered yet. However, recently it was found out that
extending the approach by the notion of network reificationmakes this networkmodeling
perspective becomes well-suitable to design adaptive networks as well, still by declar-
ative mathematically defined relations. Reification [2] generally means making abstract
things concrete; well-known examples are representing relations between objects by
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objects themselves, and representing logical statements by numbers. Network reifica-
tion works by adding the (this time adaptive) network characteristicsωX,Y , cY (..), ηY in a
reified form to the network as nodesWX,Y ,Ci,Y ,HY at a second level, called adaptation
level or reification level, while the original network forms the base level. This introduces
in the network modeling area ideas similar to metalevel architectures and metaprogram-
ming as found in different other forms in a long standing tradition in AI: e.g., [1]. By
this construction, an extended, reified network is obtained, which can be verified as
being again a temporal-causal network [10], Ch 10. As for any temporal-causal network
model, the dynamics of such a reified network is described in a declarative mathemat-
ical manner by the states and their connections, including those at the reification level
and causal interlevel connections for the impact from one level to the other. But now
these dynamics cover adaptivity of the base network. The construction can iteratively be
applied to obtain multiple reification levels (first-, second, third-, … order adaptation
levels) to model multiple orders of adaptation of a network.

A Matlab-translated form of a variant of difference equation (1) is part of the core
of the Computational Reified Network Engine, where also (based on the role matrices
that are made available in Matlab) an adequate administrative process of dynamically
determining the right values of its variables for each state is taken care for. For more
details on this approach to adaptive temporal-causal modeling and its applications, see
[10].

3 A Social Mechanism for Decision Amplification

Social networks are used to model how different persons are connected to each other; in
this case each node represents the state (for an opinion, belief, or emotion, for example)
of one person, and the connections represent how strong they influence each other. Social
contagion [5] is a form of dynamics within a social network where the activation level
of each state is influenced by the states from which it has incoming connections. Not
every node has the same influence in such a network, as it depends on the numbers and
strengths of the connections. Nodes with amajor influence are usually called influencers.
Social networks and social contagion are generic concepts and mechanisms that can be
applied to a wide variety of contexts, varying, for example, from sheep following an
influencer sheep Boris for a place to go, to people following an influencer person for an
opinion to go for (see Fig. 1), or even to how we transmit virus infections like for the
Corona Covid-19 virus.

Being an influencer depends on a number of factors. Being a charming and funny
person helps a lot. Knowing to accompany your interaction with positive emotions can
make (e.g., in a retweeting context) the strength of propagation up to 60% higher [7].
And once someone is an influencer, the effect indeed can be decisive, especially when
one is independent and not influenced by others. For example, in [8] the rise in veganism
has been analysed, where it turned out that leaving out the biggest influencer would lead
to a completely different pattern for the population: without the influencer the percentage
of veganism-minded persons would stay 70% lower; see Fig. 2.



202 J. Treur

In the graphs shown in Figs. 3 and 4 it is analysed further how influencers affect the
total pattern. The specified example network used is the fully connected network shown
in Box 2.2 in [10], Ch 2. The combination function used is the scaled sum function:

ssumλ(V1, . . . , Vk) = V1 + . . . + Vk

λ
(3)

Here λ is a scaling factor. For this parameter, for each state Y a normalised value was
used, which is the sum of the weights of the incoming connections for Y.

To Brexit
or not to Brexit

To Brexit
or not to Brexit

To Brexit
or not to Brexit

Influencer

Boris

Fig. 1. The British To B or Not To B of this time

This makes the incoming aggregated impact on Y the weighted average of the values
of the states from which the incoming connections are coming. If values would be used
that are lower than the normalised values, than the patterns would go to 0 in an artificial
manner, if higher values would be used they would go to 1 in an artificial manner. As
shown in (1) above, the arguments V1 to Vk in (3), but also in (4), (5) and (6) below are
used for the single impacts from each of the causal connections fromXi to Y; these single
impacts are calculated as the productωXi,Y (t)Xi(t) of the connection weightωXi,Y (t) and
state value Xi(t) at that time t.
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Fig. 2. The simulated rise of veganism-mindedness with influencer (left, approximating the real-
world curve) or without the influencer (right). Here as a form of scaling the 1 at the vertical axis
stands for the actual number of veganism-minded persons at the end time; these graphs were
adopted from [8]

In Fig. 3 the difference is shown between a situation that everybody is influenced by
the others and a situation where one (an influencer) is not influenced and has an arbitrary
independent pattern, what then is followed by everybody. Here the ultimate level of the
independent person is decisive for everyone. If that level would be 1, everybody would
go there, or when 0 everybody to 0.
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Fig. 3. Simulations for the example Social Network (a) Left graph: no influencer, everybody is
influenced and ends up in some formof joint average value (b) Right graph: one person is influencer
and is not influenced him/herself but instead makes an arbitrary independent pattern (the strongly
fluctuating line in green), whereby everybody else is following.

In Fig. 4 it is shown what happens when there are two independent influencers (both
not influenced by anyone, also not by each other). The left graph show that two opposite
opinions of the two influencer make that everybody becomes divided. However, the
two other graphs show that when the two influencers have similar opinions, everybody
groups between them, wherever on the scale that is. The patterns found in Fig. 3 and 4
can be explained by the theorem below. First a definition.
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Definition (Properties of Connectivity and Aggregation)

a) State Y is reachable from state X if there is a directed path from X to Y with nonzero
connection weights and speed factors. The network is strongly connected if this
holds for every X and Y.

b) A combination function cY (..) is called normalised if for all Y it holds

cY (ωX1,Y , . . . ,ωXk ,Y ) = 1

where X1,.., Xk are the states from which state Y gets incoming connections
c) A combination function cY (..) is called monotonically increasing if

Ui ≤ Vi for all i ⇒ cY (U1, . . . , Uk) ≤ cY (V1, . . . , Vk)

d) A combination function cY (..) is called strictly monotonically increasing if

Ui ≤ Vi for all i, andUj < Vj for at least one j ⇒ cY (U1, . . . , Uk ) < cY (V1, . . . , Vk )

e) A combination function cY (..) is scalar-free if cY (αV1, …, αVk) = α cY (V1, …, Vk)
for all α > 0

Theorem
Suppose the network has normalised, scalar-free and strictly monotonic combination
functions, then the following hold:

a) If the network is strongly connected, then in an equilibrium state all states have the
same value.

b) Suppose the network has one ormore independent states and the subnetworkwithout
these independent states is strongly connected. If in an equilibrium state all inde-
pendent states have equilibrium values V with V1 ≤ V ≤ V2, then all states have
equilibrium values V with V1 ≤ V ≤ V2. In particular, when all independent states
have the same equilibrium value V, then all states have this same equilibrium value
V.

This theorem is Theorem 3 from [10], Ch 11, p. 266. The connectivity and com-
bination functions used in Figs. 3 and 4 fulfil the conditions of the above Theorem 1.
Here a) explains that in the left graph of Fig. 3 all curves go to one value as in this
case the network is strongly connected, and b) for one independent state explains that in
the right graph of Fig. 3 all curves follow the independent curve. Moreover, b) for two
independent states explain the three graphs in Fig. 4 where all curves end up between
the two constant ones.
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Fig. 4. How two independent influencer states affect all equilibrium values for the opinions of
different persons. Left graph: the two constant lines for X8 and X4 at 0.05 and 0.8. Middle graph:
the two constant lines for X7 and X10 at 0.85 and 0.9. Right graph: the two constant lines for X8
and X1 at 0.05 and 0.1

4 A Biological Mechanism for Decision Amplification

From a biological perspective, an important factor in evolution for a population is a
process of exploration of different options within a certain environmental context. Such
an exploration can take place as a biologicalmechanism, for example, based onmutations
and/or genetic reshuffling due to sexual reproduction. However, another important form
of exploration on a much shorter time scale is based on individuals having during their
lifetime some form of variation and plasticity in the decisions about their response to an
environment, for example, a certain freedom to decide for the type of food to go for.

Plasticity Led Evolution
The plasticity led evolution theory assumes a main role of such plasticity for the direc-
tion of evolutionary processes; e.g., [4, 6, 9, 11]: plasticity can lead evolution so that
genes may become followers rather than leaders in evolution. Two types of plasticity
distinguished are contextual plasticity and developmental plasticity. The former type
concerns a form of instantaneous response in relation to present stimuli from the envi-
ronmental context. The latter type concerns adaptation of an individual organism to the
environmental context taking into account stimuli over time. This may involve learning
by changes in the causal pathways and connectivity in the brain or, in a wider develop-
mental plasticity context, other changes in the organism’s physical makeup that make
the organism better suited for the environmental demands. Both types of plasticity are
covered here.

Within the spectrum of plasticity, behavioral plasticity involves among others the
ability to decide between different behavioral options; this will also be covered here as
will be discussed further below, focusing on the (mental) decision making process in
which prediction of effects of decision options and valuation of these predicted effects
play an important role. An important assumption made here is that in a population of
reasonable size in a contextually rich enough environment, different behavioral options
do actually occur: it is assumed that for each option there are at least some individuals
that decide for them.
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In this section, the role of behavioral plasticity for evolution will be analysed compu-
tationally by using the adaptive temporal-causal modeling approach described in [10],
covering different forms and orders of adaptation. This approach enables to model from
a perspective of causality all kinds of adaptive processes in the real world in an inte-
grative manner, including adaptive mental processes and adaptive biological processes.
In particular, it is applied to the adaptive mental processes of decision making involved
in behavioral plasticity, and the adaptive biological processes involved in optimising
the biological effectiveness of the performance of such chosen behaviors for the given
environmental context.

Historically, it has been debated from time to time whether and in how far what
individual organisms decide to do during their lifetime has effect on the evolution of
their species (plasticity-led evolution; e.g., [4]). For example, in [6] the idea is illustrated
by the following simple scenario:

‘Consider a finch population that finds itself on an islandwith larger seeds than pre-
viously encountered. Behavioral flexibility results in consumption of these seeds,
but among the consumers, natural selection favours the larger individuals who can
more easily crack large seeds. The net result is evolution of large size’ [6], p. 1434

This scenario can be refined a bit more, by assuming that also smaller seeds are
available, but they have a lower quality, and some individuals will decide to go for
these smaller seeds and others will decide to go for the larger seeds. Based on the
subpopulation of the individuals that decide for the larger seeds, for the population
evolutionary development can takeplace in that direction.This evolutionary development
would not take place if all individualswould decide for the bad smaller seeds. In this sense
the decision of some of the individuals to go for the larger seeds drives the evolution.

In recent years, it has become more plausible that such effects indeed can be found,
especially in cases of strongly changing environmental conditions (as we actually also
experience nowadays). Plasticity can concern, for example, physiological processes,
such as improving running performance over a lifetime in order to escape from new,
faster enemies. But plasticity can also concern a choice for some behavior. Behavioral
plasticity in particular, makes that potentially multiple options for behavior are available
to an individual, and that within a given environmental context by each individual one
of these options is decided for (a mental process) and then performed (a physiological
process). So, within behavioral plasticity two subcategories can be distinguished:mental
behavioral plasticity (plasticity formaking decisions in the given environmental context)
and physiological behavioral plasticity (plasticity for performing the decided behavior
in the given environmental context).

These forms of plasticity can take place instantaneously (contextual behavioral plas-
ticity), based on current stimuli, or over a longer time duration (developmental behavioral
plasticity), after learning based on stimuli over a longer time period. Due to variation, in
general within a population different individuals will make different decisions by (con-
textual and/or developmental) mental behavioral plasticity. Moreover, a given decision
entails performing that particular behavior accordingly, so that also physiological opti-
misation of it may occur by (contextual and/or developmental) physiological behavioral
plasticity. The latter type of optimisation will only take place when that behaviour is
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actually decided for, so it has a dependence on the mental behavioural plasticity. When a
behaviour is not decided for, no optimisationwill take place and instead degradationmay
take place. But when the behaviour is decided for and subsequently by physiological
behavioral plasticity, optimisation of that behaviour takes place within a lifetime, at the
population level also genetic optimisation can start to take place, making the whole an
evolutionary process.

The Designed Adaptive Network Model
The specific adaptive temporal-causal model used here is shown in conceptual graphical
form in Fig. 5. For an explanation of the states, see Table 1. For easier understanding,
the reified network model shown in the bottom part of Fig. 5 is accompanied by a more
global overview of the different addressed processes as boxes in the upper part of Fig. 5.
The model addresses a scenario similar to the one for a finch population quoted above,
but in a more refined form involving both contextual and developmental plasticity and
both mental behavioral plasticity and physiological behavioural plasticity.

The threemain processes at the base level and their causal pathways are the following.
They are distinguished as being individual-contributed (plasticity-based optimisation)
or population-contributed (genetic optimisation) pathways. Note that for developmen-
tal plasticity and genetic optimisation both the base level and the adaptation level are
involved, the latter of which is described after the base level.

Individual-Contributed Decision Making
The causal pathways for individual-contributed decision making for the two considered
options address both contextual and developmental mental behavioural plasticity. At
the base level they are modeled by the states srsci , psai

, and srsei and their connections
(indicated by the left box in base level of the upper part of Fig. 5). The context represen-
tation srsci (which is based on the actual environmental context wsci ) induces (partial)
activation of psai

. Valuation of the options takes place by predicting the expected effect
ei of choice ai by generating activation of srsei , and using that to evaluate and modulate
psai

. So, the decision made (high activation level of psai
) depends on the individual’s

connection from srsci to psai
, but also on the connections of the predictive valuation loop

via srsei .

Individual-Contributed Behavioral Performance
The causal pathways for individual-contributed behavioral performance (once a choice
was made) address both contextual and developmental physiological behavioural plas-
ticity. At the base level they aremodeled by the states psai

, andwsei and their connections
(indicated by the middle box in base level of the upper part of Fig. 5). This describes
how the individual is able to perform the chosen behavioral option: a high level of wsei

is good performance, a low level bad performance; this depends on the individual’s con-
nection from psai

to wsei , together with the given influence of the environmental context
wsci on wsei .

Population-Contributed Behavioral Performance
The causal pathways forpopulation-contributed behavioral performance address genetic
optimisation. At the base level they are also modeled by the states psai

and wsei in the
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Adaptation or reification level

Optimising
individual-contributed
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Optimising
individual-contributed
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Optimising
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decision making

Individual-contributed
behavioural performance

Population-contributed 
behavioural performance
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psa1
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wse1

wse2

srse2

srse1

wsc2 srsc2

Wpsa1,wse1

Wpsa2,wse2

level
reification

level
base 

Wpsa1,srse1

Wpsa2,srse2

Wsrse1,psa1

Wsrse2,psa2

W'psa1,wse1

W'psa2,wse2

Fig. 5. The connectivity of the adaptive temporal-causal network model. Black arrows: intralevel
connections for the base level processes. Blue arrows: upward interlevel connections informing
the adaptation processes as a form of monitoring of the base level processes. Red arrows: down-
ward interlevel connections effectuating the adaptations at the base level. The two arrows from
psai to wsei describe two contributions: one models individual-contributed causal pathways to
behavioural performance and the other one population-contributed causal pathways to behavioural
performance.

base network and their connections (indicated by the right box in base level of the upper
part of Fig. 5). Note that there are two different connections from psai

to wsei which
distinguish the individual-contributed causal pathways from the population-contributed
causal pathways for the effect of a chosen behavior. In this way the two different causal
pathways are distinguished, and aggregated by the combination function of wsei .

How the Different Causal Pathways Become Adaptive
The different processes at the base level become adaptive by adding appropriate reifica-
tion states at the adaptation level and connecting them in the right way to the states at the
base level. In this way developmental plasticity and genetic optimisation are addressed.

The causal pathways for individual-contributed decision making become adaptive by
(optimising) learning of the individual during its lifetime (developmental mental behav-
ioral plasticity). As more often used for mental processes, this is modeled by applying
hebbian learning [3], this time to the connections involved in the loops for evalua-
tion based on effect prediction. At the adaptation level the connection weight reification
statesWpsai

,srsei andWsrsei ,psai
take care of this, thereby applying to them the hebbian
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Table 1. The states and their explanation

      state 
nr          name explanation

X1 wsc1 World state for environmental context c1

X2 wsc2 World state for environmental context c2

X3 srsc1 Sensory representation state for environmental context c1

X4 srsc2 Sensory representation state for environmental context c2

X5 psa1 Preparation state for option a1

X6 psa2 Preparation state for option a2

X7 srse1 Sensory representation state for (predicted) effect e1 of option a1

X8 srse2 Sensory representation state for (predicted) effect e2 of option a2

X9 wse1 World state for (actual) effect e1 of option a1

X10 wse2 World state for (actual) effect e2 of option a2

X11 Wpsa1,wse1
State for the weight of the individual-contributed connection from psa1 to wse1

X12 Wpsa2,wse2
State for the weight of the individual-contributed connection from psa2 to wse2

X13 Wpsa1,srse1
State for the weight of the individual-contributed connection from psa1 to srse1

X14 Wpsa2,srse2
State for the weight of the individual-contributed connection from psa2 to srse2

X15 Wsrse1,psa1
State for the weight of the individual-contributed connection from srse1 to psa1

X16 Wsrse2,psa2
State for the weight of the individual-contributed connection from srse2 to psa2

X17 W'psa1,wse1
State for the weight of the population-contributed connection from psa1 to wse1

X18 W'psa2,wse2
State for the weight of the population-contributed connection from psa2 to wse2

learning combination function hebbμ(.) defined below. The causal pathways for individ-
ual-contributed behavioral performance also become adaptive by (optimising) learning
of the individual during its lifetime (developmental physiological behavioral plasticity).
Also this was modeled by applying hebbian learning to the respective connections from
psai

to wsei . This strengthens the connections in proportion to the activation levels of psai

and wsei . At the adaptation level, the connection weight reification states Wpsai
,wsei

take care for this, thereby applying the hebbian learning combination function hebbμ(..)
defined below.

The causal pathways for population-contributed behavioral performance become
adaptive by genetic optimisation over generations. As this is assumed to be related to the
choice to practice some behavior, this is modeled by applying state-connection modula-
tion to the respective connections from psai

to wsei . This strengthens the connections in
proportion to the activation level of psai

, representing the choice. At the adaptation level
the connection weight reification statesW′psai

,wsei take care for this, thereby applying
the combination function scmα(.) defined below.

The Combination Functions Used
For combination functions, within the modeling environment a library is available with
35 functions. For example, the logistic sum combination function alogisticσ,τ(..) is
available (with parameters σ for steepness and τ for threshold) defined by

alogisticσ,τ(V1, . . . , Vk) =
[

1

1 + e−σ(V1+...+Vk−τ)
− 1

1 + eστ

](
1 + e−στ

)
(4)

This is used for the base states in the presented model. In particular useful for reification
levels is the combination function hebbμ(..) for Hebbian learning [3] (where μ is a
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persistence factor), used by the individual-contributed optimisation statesX11 toX16, and
scmα(..) (here α is a modulation factor) used by the population-contributed behavioral
optimisation states X17 and X18. They are defined by:

hebbμ(V1, V2, W ) = V1V2(1 − W ) + μW (5)

where V1 is used for X(t), V2 for Y(t) and W for WX,Y (t)

scmα(W , V ) = W + αVW (1−W ) (6)

where V is used for X(t) in this case and W for W′
X,Y (t)

Simulation Results
In Fig. 6 simulation results are shown. In this scenario, within environmental context
c2 it is decided to make a choice for a2, whereas the previous choice within context c1
was a1. The switch of environmental context (at time 150) goes together with contextual
plasticity for an instant switch from a1 to a2.
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Fig. 6. The decision for behavioural option a2 in the environmental context c2

Note that the specific values used for the network characteristics can be found at
URL https://www.researchgate.net/publication/340095095. In Fig. 6 it is shown how
different generations are incorporated by repetitively resetting all effects learnt during
lifetime (in this case shown at time 600 and at time 1200). Next, developmental plasticity
during lifetime to optimise both the decision making and the behavioral performance
for this choice takes place. Then, on the long term it leads to genetic optimisation over
generations. Themain observations for this scenario shown in Fig. 6 are shown inTable 2.

A similar simulation was made for the other choice a1. It was found that for both
choices a1 and a2 a form of adaptation to the new environmental context takes place, but
they are of different quality: after time point 1600, for choice a2 the individual health
level became higher than 0.8 and for choice a1 it stayed lower than 0.5. This can be
quantified by at least 60% difference in health after time point 1600.

https://www.researchgate.net/publication/340095095


From Individual Decisions to Collective Decisions Changing the World 211

Table 2. Main observations for the scenario in Fig. 6

Time periods  Main patterns for states and causal connections 

0-100  
Environmental 
context c1

context representation X3 (light grey line) for c1 up to level 0.9 
X5  (blue line) for choice for a1 up to level 0.98 
effect X9 (dark grey line) of performance for a1 up to level 0.75 
plasticity-determined causal pathway for decision making for a1 via psa1 and srse1

(grey line for X13 and X15) up to 0.95 
plasticity-determined causal pathway for performance for a1 via connection from 

psa1 to wse1 (dark blue line for X11) up to 0.94
genetics-determined causal pathway for performance for a1 via connection X17 from 

psa1 to wse1 (light blue line) gradually up to above 0.65 

100-150  
Switch to 
environmental 
context c2

context representation X3 (light grey line) for c1 drops to 0 
X5  (blue line) for choice for a1 drops to 0 
effect X9 (dark grey line) of performance for a1 drops to 0 
not much change in connections 

150-200  
Contextual plasticity: 
instant individual 
response  

context representation X4 (orange line) for c2 up to level 0.9 
X6  (pink line) for choice for a2 up to level 0.5  
effect X10 (red line) of performance for a2 up to level 0.15 
not much change in connections 

150-500 
Developmental 
plasticity: 
inidividual-
contributed 
adaptation during 
lifetime 

X6  (pink line) for choice for a2 up to level 0.92  
effect X10 (red line) of performance for a2 up to 0.53 
plasticity-determined causal pathway for decision making for a2 via psa2 and srse2

(light brown and yellow line for X14 and X16) up to around 0.75 
plasticity-determined causal pathway for performance for a2 via connection X12

(green line) up to 0.79 
genetics-determined causal pathway for performance for a2 via connection X18

(purple line) stays below 0.3
plasticity-determined causal pathways for decision making and performance for a1

(X11, X13, and X15) all degrade to levels below 0.45

150-1600 
Genetic optimisation: 
population-
contributed 
adaptation  

X6  (pink line) for choice for a2 reaches level 0.98 (pink line) 
effect X10 (red line) of performance for a2 up to 0.82 
genetics-determined causal pathway for performance for a2 (purple line for X18)

gradually rises to above 0.76 
genetics-determined causal pathway for performance for a1 (light blue line  for X17)

degrades to below 0.2

As formulated above, within the population in actual situations there both are indi-
viduals that make choice a1 and individuals that make choice a2. As the individuals
going for choice a2 fit better to environmental context c2 and therefore gain a better
health, by natural selection over time their numbers can be expected to outperform the
numbers of the other individuals that go for a1. For example, the 60% better health can
be translated into getting 60% more offspring per time unit. This has been modeled by
assuming an overall example population consisting of two subpopulations: Subpopula-
tion 1 formed by individuals going for choice a1, and Subpopulation 2 with individuals
going for choice a2. Figure 7 shows the outcome for the relative sizes S1 and S2 of these
two subpopulations over time, as modeled by the following discrete difference equations
where the step from t to t + 1 indicates a periodic production of offspring, which in actual
time may depend on the considered species:
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S1(t + 1) = S1(t) + γ1S1(t)

S1(t) + γ1S1(t) + S2(t) + γ2S2(t)
S2(t + 1) = S2(t) + γ2S2(t)

S1(t) + γ1S1(t) + S2(t) + γ2S2(t)
(7)

Here, the factor for offspring per period for Subpopulation 1 was set on γ1 = 0.5 and
for Subpopulation 2 60% higher, so γ2 = 0.8. Initial sizes of Subpopulations 1 and 2
were set at 95% (0.95 for S1) and 5% (0.05 for S2). The outcome shown in Fig. 7 indeed
shows the turn evolution takes based on part of the individuals’ choice for a2. If these
individuals would not have been capable of deciding for that choice a2, evolution would
have taken the turn to optimisation of performance in relation to choice for a1, which
in this case is clearly suboptimal compared to the optimisation of performance for the
other choice for a2.
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Fig. 7. Development of the two subpopulations over generations

5 Discussion

Decisionmaking covers both individual decisionmaking and collective decisionmaking,
but the scope of the consequences of a decision may be quite different for both cases.
Collective decisions usually have a basis in decisions of individuals within a population.
In this paper it was discussed how in certain cases individual decisions can lead to
collective decisions with a worldwide scope of consequences. Two mechanisms for this
were considered in particular: influencer-driven social contagion within social networks
(e.g., [5, 8]) and plasticity-driven evolution within biological populations (e.g., [4, 6, 9,
11]). In both cases it was shown how in an emergent manner decisions by a very low
number of individuals can generate a collective decision for the whole population.

In the first case it was shown that by social contagion one or two influencers can
make a major part of the individuals go for similar decisions, as, for example, illustrated
for political issues such as the Brexit issue. In the second case it was also shown that if
only a very low percentage of individuals makes some decision, after some generations
this can lead to practically the whole population making the same decision.
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