
Faculty of Engineering Science and Technology
Department of Computer Science and Computational Engineering

Automatic Generation of Custom Image Recognition Models

Magnus Fredheim Hanssen
Master thesis in Applied Computer Science, Narvik, May 2022

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2022 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“Always code as if the guy who ends up maintaining your code will be a
violent psychopath who knows where you live.”

–John Woods

“Without requirements or design, programming is the art of adding bugs to an
empty text file.”
–Louis Srygley

Abstract
In this thesis, we examine the viability of training a convolutional neural
network using synthetic data. The cnn is used for image recognition in an
rms. We create a program that can render 3D models from STL files as
images with varied backgrounds. The process of creating and training an
image recognition model is also automated. Lastly, the model is used for image
recognition.

The report compares different methods and hyperparameters used in training a
model. Transfer learning is found to be suited for synthetic datasets. Using the
pre-trained feature extraction layers of the VGG-16 model, we train an image
recognition model with better than 90% accuracy in the laboratory. We then
demonstrate the use of this model for object detection, and suggest avenues
for further development.

Acknowledgements
I would like to thankmy supervisor Prof. Bernt Arild Bremdal, and co-supervisors
Shayan Dadman and Halldor Arnarson for good advice and feedback over the
course of my thesis work. Special thanks goes to Halldor for proposing the task,
which proved to be both interesting and challenging.

I would also like to thank my classmates Tanja Henriksen, Casper Levoll-Steen
and Markus Tobiassen for years of steadfast companionship, as we faced the
challenges of higher education together.

Lastly, I thank my family for their love, support and regular reminders to
get back to work. Without them, this paper might only have been five pages
long.

Contents
Abstract iii

Acknowledgements v

List of Figures ix

List of Tables xi

List of Abbreviations xiii

1 Introduction 1
1.1 Background . 1
1.2 Objective . 2
1.3 Theory . 3

1.3.1 Computer vision . 3
1.3.2 Machine learning 4
1.3.3 Artificial neural networks 4
1.3.4 Convolution and feature extraction 6

1.4 The State of the Art . 7
1.5 Strategy . 9

1.5.1 Creating and training an image recognition model . . 9
1.5.2 Automatic generation of datasets 9
1.5.3 Implementing object detection 10
1.5.4 Testing and experiments 11

2 Tools and Methods 13
2.1 Tools and Tool Selection . 13
2.2 Programming language . 14

2.2.1 Deep learning software 15
2.2.2 Image rendering and manipulation 16

2.3 Methods . 16
2.3.1 Creating and training an image recognition model . . 17
2.3.2 Automatic generation of datasets 19
2.3.3 Object detection . 21

vii

viii contents

2.3.4 Testing and experiments 23

3 Results and Discussion 25
3.1 Results . 25

3.1.1 Image recognition 25
3.1.2 Object detection . 28

3.2 Discussion . 30
3.2.1 Analysis . 32
3.2.2 Goal achievement 33

4 Further Development and Conclusion 35
4.1 Further development . 35
4.2 Conclusion . 37

Bibliography 39

A Task Description 43

B Installation and Use of Program 49
B.1 Installation . 49

B.1.1 Creating a virtual environment 49
B.1.2 Installing requirements 50

B.2 User Guide . 50

List of Figures
1.1 A simple diagram of an artificial neuron. 5
1.2 A neural network with one hidden layer. 6
1.3 A convolution layer showing a region of the input mapped to

a single neuron. 6
1.4 Example of YOLO predictions from Bandyopadhyay’s article

on the subject[11]. 7

2.1 The VGG-16 architecture, illustration from GeeksforGeeks[28]. 17
2.2 Illustration of feature extraction segment of model trained

from scratch. 18
2.3 Lift turn before and after Gaussian filter pre-processing. . . . 19
2.4 “distance_sensor.stl” rendered from different angles. 19
2.5 Most of the background photographs used for the project. . . 20
2.6 The rendered models combined with backgrounds. 20
2.7 A window sliding over an image, adapted from blog-post by

Dr. Roesebrock[32]. 21
2.8 “Visual representation of an image pyramid with 5 levels” by

Cmglee shared under CC BY-SA 3.0. 22
2.9 NMS illustration from LearnOpenCV[33]. 23

3.1 Graphs showing training of winning candidate model. 28
3.2 Model with comparable accuracy but higher loss. 29
3.3 Training of model with loss of 7.9 and accuracy of 0.32 in tests. 29
3.4 Object detection with original, inaccurate model. 29
3.5 Object detection using the winning candidate. 31

ix

List of Tables
2.1 A brief comparison between relevant programming languages. 14

3.1 Complete test results in order of increasing loss. 27
3.2 Detection over a series of images. 30
3.3 Average loss and accuracy by model and pre-processing. . . 30

xi

List of Abbreviations
API application programming interface

CAD Computer-Aided Design

CNN Convolutional Neural Network

CNNs Convolutional Neural Networks

DIE Department of Industrial Engineering

IDE Integrated Development Environment

JDK Java Runtime Environment

JVM Java Virtual Machine

NMS Non Maximum Suppression

PIL Python Imaging Library

RMS Reconfigurable Manufacturing System

ROIs regions of interest

VTK Visualization Toolkit

xiii

1
Introduction
This chapter describes the background for the fundamental project of the thesis,
as well as the objectives of the project. It describes the scientific query at the
core of the thesis, and gives a brief introduction to some of the central fields
and disciplines for of the projects. Later sections explain existing technology,
and go on to describe an investigation into the state of the art in the field. It is
on the basis of these factors that we formed a strategy for the completion of
the project, which is described in section 1.5.

1.1 Background

In the machine laboratory in Narvik at Department of Industrial Engineering
(die), Halldor Arnarson is working on a Reconfigurable Manufacturing Sys-
tem (rms). This system consists of a number of wheeled platforms carrying
conveyor belts, 3D printers, robot arms and other parts used in manufacturing.
The goal of rms is for the manufacturing system to be responsive to changes
in the market and the demands of customers, by enabling rapid and seamless
scaling and convertibility.

As can be seen in his video of the system[1], Halldor’s system uses a mobile
robot to move the platforms that make up the rms. His goal in doing this is
to have the reconfiguration of the system be completely automatic. A stated
goal is to be able to change which product is manufactured without physically

1

2 chapter 1 introduction

interacting with the system. Such a degree of automation would enable the
user to start production of different products from a remote location, and it
could also enable scheduled reconfiguration whenever a production run is
complete. This is desirable in that it can reduce downtime and required human
labor.

One of themajor challenges the system faces is that theMiR100, themobile robot
moving platforms around when re-configuring the manufacturing system, is
not very precise in its placement. Platforms will not be placed with consistent
relative positions, so any process crossing between platforms will have to
account for this imprecise positioning. A proposed solution for this problem is
the use of computer vision.

Halldor wishes to use robot arms with depth cameras for picking and placing
different components along the assembly line. Adding this capability to therms
would greatly decrease the amount of human intervention required at certain
steps of the manufacturing process. More specifically, Halldor wishes for the
robot arms to be able to recognize and pick up 3D printed parts with the use of
machine learning and image recognition. Such parts will commonly be unique
to a product however, and might not appear in any databases of images useful
for training an image recognition model. Manually photographing printed parts
in different configurations would be extremely tedious work, and it would take
a long time to manually produce representative samples of every different
part.

When 3D printing a part, a 3Dmodel is used as the basis for creating instructions
for the printer. Using Computer-Aided Design (cad) and the resulting 3D
models for cad machines like lathes, plasma cutters and routers has been the
industry standard for decades[2]. The ability to use 3D models from STL files
for training image recognition could then allow manufacturers to use robots
for picking and placing parts using computer vision.

1.2 Objective

As stated in section 1.1, we want to automate the rms. To achieve this end,
we wish to use an image recognition system in conjunction with robot arms
to automatically locate and pick up 3D-printed parts. The task given was
then to create a system capable of automatically generating a custom image
recognition model from a 3D model, for the purpose of using said model to
locate the corresponding physical 3D printed part in the world. This objective
was stated in the task description as follows:

1.3 theory 3

1. Create an image recognition system based on state-of-the-art machine
learning models that can be used for the purpose described above (see
appendix A for full text)

2. Create a basis for training and testing by means of synthetic images using
3D models generated by the CAD system used to design and produce the
parts to be recognized and classified.

The points enumerated above describe the concrete goals for the project. The
scientific goal of the project is then to examine the viability and practicality
of the system described. To this end, using the image recognition model for
object detection is also a goal of the project.

1.3 Theory

The project for this thesis has as an objective to generate an image recognition
system using state-of-the-art machine learning. This will require use of com-
puter vision, and so this section will provide a brief introduction to the theory
behind computer vision, machine learning, specific machine learning concepts
used for the project.

1.3.1 Computer vision

Computer vision as a field can be said to have two related goals; to find a
computational model for the human visual system, and to create a system able
to perform some or all of the tasks the human visual system is naturally capable
of, according to T. S. Huang[3]. Those two goals seem to approach the problem
from different directions, one seeking to emulate existing systems, while the
other seeks to reach parity in achievement. For the purposes of this project,
“computer vision” will refer to the latter approach, as the project revolves around
the creation of a computer program to take on a task previously done by a
human. Computer vision is commonly achieved by use of machine learning
and Convolutional Neural Networks (cnns). Those concepts are explained
later in this section.

There are a number of different problem areas within this approach to computer
learning. One such area, text-parsing, can be considered a largely solved
problem, as demonstrated by the productGoogle Lens[4]. Google Lens is capable
of detecting and parsing both print and handwriting. Another problem area
for computer vision is the mapping of 3D spaces, of particular interest for
developing technology like self-driving cars[5]. For this use, a system must be

4 chapter 1 introduction

capable of rapid and accurate detection of obstacles and boundaries on the path
ahead, as mistakes can prove fatal when moving vehicles are involved.

1.3.2 Machine learning

Seventy years ago, in 1952, Arthur Samuel at IBM developed a program that
could play checkers[6, p. 22]. This program had the ability to learn from
past games, and to classify a potential move as good or bad, given the current
situation of the board. Samuel went on to coin the term “machine learning”, and
defined it as the “field of study that gives computers the ability to learn without
being explicitly programmed.” This approach proved quite revolutionary, as
Samuel had thus proven that a computer could find solutions to problems
beyond the ability of humans to explicitly program for. In 1996, the game of
checkers on an 8 × 8 board was weakly solved by Jonathan Scaeffer[7], but
he roughly estimates the solution space to consist of 1017 different positions,
and so a strong solution is considered prohibitively expensive. This contrast
between the ability to solve a game and the ability to consistently outperform
humans illustrates one of the benefits of machine learning.

As described in M. I. Jordan and T. M. Mitchell’s 2015 review[8], machine
learning as a discipline focuses on two related questions; how to construct a
computer system capable of improving itself through experience, and which
laws govern all forms of learning, be it for computers, human beings, organi-
zations and so on. In this definition, we can see a clear parallel to the field
of computer vision as described in section 1.3.1. Jordan and Mitchell goes on
to state that machine learning has emerged as the technology of choice for
developing computer vision, speech recognition, natural language processing
and other applications. This makes intuitive sense, as the human brain, and
the human capacity for learning, is quite adept at understanding visual in-
put and the spoken word. Natural language is of course defined by naturally
evolving through use by humans. When a task is believed to require a certain
“human touch”, a sophisticated machine learning model can often be a good
substitute.

1.3.3 Artificial neural networks

An artificial neural network is a network of nodes modelled after neurons.
Teuvo Kohonen, in his 1988 paper in the first issue of the Neural Networks
journal[9], defined artificial neural networks as follows:

“Artificial neural networks” are massively parallel interconnected
networks of simple (usually adaptive) elements and their hierarchi-

1.3 theory 5

Figure 1.1: A simple diagram of an artificial neuron.

cal organizations which are intended to interact with the objects
of the real world in the same way as biological nervous systems do.

The article goes on to state that there are on the order of 1011 neurons in
the human body. The number of interconnections between those neurons is
thought to be on the order of 1015. On a basic level, thoughts are formed by
signals travelling along paths between neurons, which activate and propagate
signals at different thresholds, and due to feedback loops and nonlinearities,
the neurons and the paths between them can change and allow learning.

Figure 1.1 shows a simple diagram of the layout of an artificial neuron. Such
a neuron has several connected inputs, each one afforded a weight. In the
commonly used McCulloch-Pitts model, as described in Machine Learning[6,
p. 104], these weighted inputs are compared against a threshold, and an
output is produced according to an activation function. A common activation
function is the sigmoid function, which is continuous and smooth, and will
squash inputs from any interval into the open interval (0, 1). This can often
be desirable, as it ensures that a single input of anomalous magnitude will
not necessarily propagate through every downstream neuron. Another popular
activation function is the rectified linear unit, 𝑓 (𝑥) = max(0, 𝑥), which ensures
simple gradient calculations.

In fig. 1.2 can be seen a simple illustration of a neural network, with a total
of 16 neurons forming a total of 60 connections. The layer in the middle is
called a hidden layer, as it is not connected directly to the input nor the output.
When training such a neural network, incremental changes are made to the
weights of the different inputs in order to minimize loss. Neural networks can

6 chapter 1 introduction

Figure 1.2: A neural network with one hidden layer.

Figure 1.3: A convolution layer showing a region of the input mapped to a single
neuron.

be trained using different optimization algorithms and different functions for
calculating loss. The specific choices made for this project are discussed in
Chapter 2.

1.3.4 Convolution and feature extraction

Section 1.3.3 briefly describes artificial neural networks, but in order to under-
stand the use of deep learning in computer vision applications, convolutional
neural networks must also be understood. The purpose of convolution is to
give the network the ability to recognize important features. As explained by
Jogin et al.[10], convolutional layers are useful in creating feature maps for
different sets of data, and are better suited for this task than fully connected
layers.

Figure 1.3 shows an illustration of a neuron being connected to a limited region

1.4 the state of the art 7

Figure 1.4: Example of YOLO predictions from Bandyopadhyay’s article on the
subject[11].

of an input image. Utilizing different kernels for different convolutional layers,
running different filters over the input, allows different kinds of features to be
discovered. In the feature extraction part of a neural network, convolutional
layers are commonly alternated with max pooling layers, decreasing the di-
mensions of the input by only keeping the highest value for each pool. This
helps abstract the input to prevent overfitting, and it also decreases the number
of inputs for easier computation.

1.4 The State of the Art

A common problem in computer vision is to translate 2-dimensional images
to 3-dimensional models, enabling a computer to calculate distances between
objects, detect obstacles, follow roadways and so on. On his company website,
Jérémy Cohen of Think Autonomous shows different ways in which computer
vision is used to understand the space around self-driving cars[5]. Cohen shows
how3D information is extracted after first detecting an object in 2D photography.
For such purposes, algorithms like YOLO[11] are considered state of the art,
and can perform object detection in real time. YOLO is an abbreviation for You
Only Look Once, and the algorithm proposes an end-to-end neural network
that predicts bounding boxes and class labels in a single pass, hence the name.
This contrasts with more traditional methods, where the classifier is typically
separate from the model or system used to propose regions of interest.

An alternative to locating objects of interest in an image, and then extrapo-

8 chapter 1 introduction

lating 3D geometries, would be to train a more traditional image recognition
model based on synthesized datasets. This is the approach proposed in the
project description. Investigating the topic suggests that machine learning us-
ing datasets synthesized from 3D models is quite rare outside certain, specific
use cases. Jacob Sullivan describes the process of training the YOLOv3 model
on 3D models of LEGO bricks[12], and tells of how he was inspired by Daniel
West, who did much the same for his LEGO sorting machine. Indeed, a part of
the course material taught by Prof. Bremdal in the course DTE-3606 demon-
strated a simple image recognition model trained on such images of LEGO
bricks.

A few researchers have experimented with synthetic datasets for other appli-
cations. In their paper, Sarkar et al.[13] showed an approach to generating
images for training an image recognition model based on the AlexNet architec-
ture. The training data was generated using the Visualization Toolkit (vtk)
with a light affixed to the camera, and the camera orbiting the 3D model. The
experiment shows that accurately texturing the 3D models used, as well as
including textured backgrounds, both contribute to better recognition. They
also found that cluttered background could give a number of false positives,
and speculate that more chaotic backgrounds could yield a more robust image
recognition model.

Another approach to the problem of generating training data is described
by Heisele et al.[14]. In their experiments, they generated training data by
rendering 3D models in Blender through the use of Python. The images were
rendered in grayscale, without background or texturing. The image recognition
model was then tested and evaluated on photographs taken of 3D prints of the
models. This contrasts with the approach used by Sarkar et al., as they instead
used scans of pre-existing objects, but falls closer to the nature of the problem
examined in this thesis. It is worth noting that Heisele et al.[14] remarked
on the difficulty of generating realistic training data. They also show that for
pose-invariant object recognition, much larger datasets than are commonly
used in image recognition are required for accurate predictions.

A similar task to the fundamental project of the thesis was previously attempted
by Kumar et al.[15]. In this paper, Kumar et al. showmethods for edge detection
and the generation of bounding boxes, which are then used for the purposes
of traditional image recognition. This approach does not use 3D models for
generating training data, however. Upon reviewing the state of the art, it
seems that using image recognition models trained with synthetic data to aid
automation in robotics and flexible manufacture is a novel approach.

1.5 strategy 9

1.5 Strategy

The objective for the thesis project is to examine the viability of a program
that generates training data, trains a model, and then uses the model to find
parts in an image, as described in section 1.2. This goal can be achieved by
implementing a system in accordance with the specifications, and then testing
the performance of the system in order to evaluate its suitability. This section
of the thesis details the three main steps to creating such a program. This
section also briefly describes the strategy for experimental work.

1.5.1 Creating and training an image recognition model

One of the goals of the project is to create an image recognition model using
convolutional neural networks and deep learning. This model is to be cre-
ated and trained using the program developed over the course of the project.
Requirements for this program are enumerated below:

1. The program must be capable of creating and compiling a model using a
deep, convolutional neural network for image recognition

2. The program must be capable of training such a model using appropriate
datasets

3. The program must be capable of saving and restoring models so trained

4. The program must be capable of evaluating and testing models using
provided images

The plan for the completion of this step of the project was to investigate
different architectures for suitability for the use case, and then to create a
program as described above to be able to compile and train a model based on
said architecture.

1.5.2 Automatic generation of datasets

An important step towards reaching the project goals is the creation of a
program that can generate suitable images of an arbitrary number of 3Dmodels
with a minimum of input from the user required. A number of requirements
for this program have been formulated as follows:

1. The program must be capable of loading 3D models from STL files

10 chapter 1 introduction

2. The program must be capable of calculating any number of viewpoints
for generated images

3. The program must be capable of generating images of the loaded models
from all calculated viewpoints

4. The program must be capable of creating suitable backgrounds for the
models from photographs of relevant surfaces in the lab

5. The program must be capable of inserting such backgrounds into the
images of the models

6. The program must automate the preceding steps for a selection of STL
files

The goal of this step is to provide a dataset of sufficient quality to train an image
recognition model capable of pose-invariant classification. As found by Sarkar
et al.[13], sufficiently varied backgrounds are important to the robustness of a
model.

1.5.3 Implementing object detection

As is the goal of the project, the final program must be capable of locating
different object in an image. An image recognition model is by itself incapable
of doing so, and will only return the confidence for a given image belonging
to any given class. The final step of the project would be to create a program
that brought together the components from previous steps, with the following
requirements:

1. The program must be capable of taking an image with a connected
camera

2. The program must be capable of detecting objects in an image

3. The program must be capable of classifying objects in an image

4. The program must be capable of returning the location and confidence
for an object of a given class

1.5 strategy 11

1.5.4 Testing and experiments

A number of tests would have to be made to ascertain whether the project goal
was met, and to achieve the scientific objective of the thesis. Some tweaks to the
model, and the hyperparameters used, will be made, as well as changes to the
pre-processing of training data. For those changes, training and validation loss
and accuracywill be recorded and compared, and the results from an evaluation
using real photography will be recorded. For the image detection system, the
results will be displayed as bounding boxes, and be visually compared and
analyzed.

2
Tools and Methods
This chapter describes the tools and methods used for the project. The first
section concerns the different software tools and libraries used over the course
of the project, and the rationale for selecting them. The second section describes
how the program was made, with more concrete implementation details, and
the decisions surrounding those. It also describes the process of testing and
experimenting with the program.

2.1 Tools and Tool Selection

Prior to starting programming for any project, one or more programming
languages must be selected. For this project, the programming language Python
version 3.9 was used. While creating the object detection program, a number
of different software libraries were used. The program uses TensorFlow[16]
through Keras[17] for creating an image recognition model. Python Pillow[18]
and vtkplotlib[19] were used for rendering synthetic training images, and later
on OpenCV[20] with utility functions from the python library imutilswere used
for object detection.

13

14 chapter 2 tools and methods

Table 2.1: A brief comparison between relevant programming languages.

Availability Execution Keras TensorFlow PyTorch
C++ Open Compiled No Yes Yes
Java Open Just-in-time No Yes No
MATLAB Proprietary Interpreted No Yes No
Python Open Interpreted Yes Yes Yes

2.2 Programming language

When selecting which programming language to use for a project, several fac-
tors must be considered. For a project with a limited time frame, like this thesis,
having to learn new programming languages would be a detriment. Secondly,
the programming language chosen must have the capabilities required for the
project. A different concern is the method of execution for a program written in
the language, and whether such a program would require proprietary software
to run.

Table 2.1 compares four programming languages that could feasibly be used
for the project. C++ is a powerful, general purpose programming language.
TensorFlow 2 is built on a C++ back-end, and both TensorFlow and PyTorch[21],
the primary deep learning software candidates as described in section 2.2.1,
can be used with C++. C++ follows the standard described in ISO 14882:2020,
and there are a number of free and open source compilers for it. This language
was a strong candidate for the project.

Java is a programming language that uses the Java Runtime Environment
on the host PC[22]. This environment consists of the Java Virtual Machine
(jvm), core classes and supporting libraries. Programming in Java requires a
Java Runtime Environment (jdk), but there are several open source or free
versions. For programs contained in a single file, the jvm is capable of compiling
human-readable code into byte code instructions as the program is running.
This is called Just In Time compiling, and it allows the jvm to execute a
program line by line as if an interpreter. This can allow for easier development,
while retaining some of the advantages of compiled programs. As will become
apparent, however, Java does not offer any significant advantages not found
in C++ or Python.

MATLAB is largely included for the sake of completeness, and because it is
a common choice of programming language for a number of engineering
problems. The programming language is pretty specialized, and while there
are a number of tool kits available for different applications[23], the risks of
locking the project into an ecosystem of proprietary software seemed quite

2.2 programming language 15

severe.

The final candidate language was Python, an open source, high level and gen-
eral purpose programming language. Like C++, Python can use TensorFlow
and PyTorch, but Python can also use TensorFlow with Keras. Python follows a
different philosophy to C++; whereas C++ was developed oriented towards
embedded systems with a focus on performance and efficiency, Python has
different design principles as related in “The Zen of Python”[24]. The program-
ming language is designed to be simple, sparse, readable and obvious. The
ability to execute a program line by line was also considered a positive, as the
ability to effectively debug and tweak the program was considered more impor-
tant than achieving the highest possible degree of efficiency. The pip package
installer also makes installing packages for Python easy and quick.

For those reasons, Python was chosen as the sole programming language for
the project, as all project requirements should be within the capabilities of a
Python program. Python version 3.9 was selected because at the time, it was
the latest version of Python supported by Keras, and it was suspected that other
packages might not be updated for 3.10 and later versions. The specific version
used was Python 3.9.4, as that was the version installed on the computer used
for development, but the specific release number should not have an effect on
the execution of the program

2.2.1 Deep learning software

When selecting which software to use for the deep learning portion of the
project, there were only really two options that seemed to merit closer consid-
eration; TensorFlow 2 and PyTorch. A description of the TensorFlow interface
and implementation can be found in the 2015 paper “TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems” [25]. TensorFlow is commonly
used with Keras, an api built on top of TensorFlow 2, meant to make interacting
with the TensorFlow platform easier and with fewer user actions. TensorFlow
is used by a number of companies, like Google, Twitter, PayPal, GE Healthcare
and Intel[16]. It is a popular platform for many applications.

PyTorch is a library for deep learning and neural networks that has seen
increased use and activity in later years. As can be seen on the PyTorch
GitHub page[26], the frequency of commits to the project increased massively
around 2016. A sentiment frequently heard is that PyTorch is a very good,
up-and-coming platform that nonetheless lacks some of TensorFlow’s matured
functionality. Unlike TensorFlow, PyTorch was built to be deeply integrated
into Python. Some design principles seem to echo the previously mentioned
Zen of Python, with a focus on intuitive and easy use.

16 chapter 2 tools and methods

Whereas TensorFlow requires a model to be built and compiled before training
can start, PyTorch enables the user to make changes to the model graph
arbitrarily. This could potentially be useful for rapid experiments using different
models. TensorFlow is more mature than PyTorch, andmore guides and articles
about deep learning and neural networks using TensorFlow are available. It
is difficult to say definitively which platform is better than the other. In the
end, the choice of TensorFlow with Keras was made due to its ubiquity and
my previous experience with the platform. Defaulting to a known and tested
platform seemed the better choice, in this case.

2.2.2 Image rendering and manipulation

The initial plan for rendering the 3D models was to use vtk, an open source
toolkit for displaying and manipulating scientific data[27]. In addition to
displaying scientific data, vtk is capable of rendering 3D models and saving the
image to a file. Blender was considered for rendering images, but was rejected
as it is considered less lightweight and practical than a Python package of more
limited scope. When browsing example code and guides to learn about vtk,
however, it was decided to use the vtkplotlib library, as it is built on top of
vtk to wrap the “ugliness” into friendly and clean functions[19]. This library
seemed easier to use, and more in line with the Zen of Python. Following this
philosophy usually helps with playing into the strengths of Python.

Python Pillow is a fork of the Python Imaging Library (pil), which was pre-
viously discontinued. It is considered one of the standard Python libraries for
manipulating images, and was chosen for its ability to apply an alpha mask
while inserting one image on top of another and resize the resulting image.
OpenCV was later used for the object detection program, as it is perhaps the
most commonly used Python library for extracting images from a web camera,
and was otherwise convenient for creating image pyramids, sliding windows
and displaying the results of the object detection. The imutils package pro-
vides some convenient functions to use for computer vision alongside OpenCV,
and provided a function for non-maxima suppression. The tools described in
this paragraph were not decided on during the preliminary project, but were
instead investigated and used as the need arose.

2.3 Methods

This section relates how the functionality described in section 1.5 was im-
plemented. The development of the program is divided into three different
phases, each of which are described in their subsection. The section also de-

2.3 methods 17

Figure 2.1: The VGG-16 architecture, illustration from GeeksforGeeks[28].

scribes the process of testing the resulting program, and the experiments that
were run.

2.3.1 Creating and training an image recognition model

As told in section 2.1, TensorFlow with Keras was used for image recognition.
Two different approaches to building a model were used. In general terms, an
image recognition model will consist of a deep, artificial neural network with
many layers in sequence, and there will be two main parts of the network.
Those two parts are the feature extractor and the classifier. It is possible to
train an image recognition model on a series of images, and then use only the
feature extractor portion of the model. The resulting feature extractor will then
detect a series of features generally useful for image classification. It is possible
to attach a trained feature extractor to an untrained classifier, and then only
train the classifier on new data. This is called transfer learning, and it can be
especially useful when training data differs from testing data[29].

Figure 2.1 shows an illustration of the VGG-16 model proposed by Simonyan and
Zisserman[30], a very popular model for transfer learning. As the figure shows,
this model has an input layer capable of accepting 224× 224 RGB images, and
can classify 1000 classes. The model consists of a total of 14 convolution layers
with 4 max-pooling layers interspersed, connected to 3 dense layers and an
output layer. For this project, the pre-trained VGG-16 model was downloaded
without the “head”, the four last layers responsible for classification, and the
weights were frozen. On top of this model, a global max-pooling layer, a dense
layer using ReLU, a dropout layer and an output layer using softmax as the
activation function for the output layer.

18 chapter 2 tools and methods

Figure 2.2: Illustration of feature extraction segment of model trained from scratch.

Another approach to creating an image recognition model was also tested. A
model was trained completely from scratch, without using transfer learning.
The feature extraction layers used for this model are illustrated in Figure 2.2,
with four convolution layers, and max pooling reducing the dimensions of each
subsequent layer. The number of filters in each convolution layer is increased
as the dimensions of the input decreases, to avoid creating too many neurons.
As the head of the classifier, four dense layers with dropout in between were
used, with a fifth dense layer for the output. For all of the layers except the
output layer, the ReLU activation function was used. The output layer used the
softmax activation function. This model was adapted from an example shown
in one of Prof. Bremdal’s lectures[31].

Several models were trained using both of the models above as starting points.
They were trained using the images generated by the process described in
section 2.3.2, with varied pre-processing techniques and hyperparameters used,
as described further in section 2.3.4. The program created for this part of the
project allows the user to easily create new models with changed parameters,
and it allows the user to save and load those models at a later date.

Using the Keras ImageDataGenerator to split datasets into training and evalu-
ation sets, it is also possible to apply pre-processing to images in real time as
they are streamed from a directory in batches. Such pre-processing can also be
built into the image recognition model as a pre-processing layer, but for this
use case, keeping the pre-processing separate has some benefits. Theoretically,
the pre-processing can be completed asynchronously and on otherwise idle
cores for better training speeds on CPUs, but this is not immediately relevant
nor even noticeable. More relevant for this experiment is that it allows for easy
changes to the pre-processing steps without making changes to the model
structure.

2.3 methods 19

Figure 2.3: Lift turn before and after Gaussian filter pre-processing.

Figure 2.4: “distance_sensor.stl” rendered from different angles.

An example of such a pre-processing step is shown in fig. 2.3. A Gaussian low
pass filter was tried to reduce the impact of rendering artifacts and overly
sharp transitions between model and background not found in photos from
the laboratory. A concern when training the image recognition model was the
possibility of overfitting the model to the point where it would only recognize
synthetic images. To this end, several pre-processing techniqueswere attempted
as described in section 2.3.4.

2.3.2 Automatic generation of datasets

In order to generate sufficiently varied points of view for the rendering of
the 3D model, the Fibonacci sphere method was used. This method creates
an arbitrary number of equidistant points on a sphere. Using vtkplotlib, a
configurable number of images of all provided 3D models are rendered and
saved to a folder. Some of the results of this process can be seen in fig. 2.4.

To introduce some entropy to the dataset, and hopefully getmore robustmodels

20 chapter 2 tools and methods

Figure 2.5: Most of the background photographs used for the project.

Figure 2.6: The rendered models combined with backgrounds.

2.3 methods 21

Figure 2.7: A window sliding over an image, adapted from blog-post by Dr.
Roesebrock[32].

less prone to overfitting, Python Pillow is used to automatically insert segments
of photographs of the different tables and conveyor belts in the laboratory. As
indicated by Sarkar et al.[13], the incidental clutter in the background is prone
to cause error for image recognition models trainedwith synthetic datasets, and
introducing as much variation as possible in the training is important. Most of
the background photos used in this process are shown on fig. 2.5. Each original
image is put on top of a number of different, random segments of background
and saved as 224×224 images. By default, this yields 200 different viewpoints
each repeated across 5 random backgrounds, for a total of 1000 images per
class. The result of this process is shown in fig. 2.6.

2.3.3 Object detection

In section 1.4, the YOLO model was described. This model stands out from its
competitors with its deviation from what has been considered common practice
in object detection; You Only Look Once means that the model proposes regions
of interest (rois) and classifies them in a single pass. Other object detectors
will commonly use a small and fast neural network to propose rois, and
then send those to the full image recognition model to label. It is also entirely
possible to drop the region proposal step of the process and exhaustively search
the image using the image recognition model. It is the latter approach that has
been implemented for this project.

Typically, objects will appear at different sizes in photographs, as the distance
to the camera decides apparent size. With a camera mounted to a robot
arm, the distance is considered variable. This means the object detector must

22 chapter 2 tools and methods

Figure 2.8: “Visual representation of an image pyramid with 5 levels” by Cmglee
shared under CC BY-SA 3.0.

be capable of detecting the objects at different sizes. The parts will also be
spread around the image, hence the need for object detection. To this end, two
techniques will be used in conjunction to generate possible rois for the image
recognition model to classify; the sliding window approach combined with
an image pyramid. This process is further detailed in a guide by Dr. Adrian
Rosebrock[32], which was followed in part over the course of developing the
image detection program.

The sliding window technique consists of creating a series of cropped selections
corresponding to the contents of a window sliding over an image, along the
width and height of the image. Such selections can be seen in fig. 2.7. When
using sliding windows, a stride must be selected to determine how far the
window will move for each step. Large strides will result in fewer rois, and
thus faster computation, but this will decrease the precision of the object
detector.

An image pyramid consists of a series of images sub-sampled from an origi-
nal image. An example of this technique using a down-scaling factor of 2 is
illustrated in Figure 2.8. Running sliding windows of constant size over several
sub-sampled images allows image recognition for a series of different scales,
without having to change the size or scale of the output of the sliding window.
Like with the stride of the sliding windows, a small down-scaling factor will lead
to greater granularity at the cost of more computation. This effect compounds,
with exponentially higher memory and computation costs if both the step size
and scale factors are decreased. Default settings of a step size of 32 pixels and
a down-scaling factor of 1.4 were used for the object detection program.

With a number of rois classified and labeled, the result would have a number
of partially overlapping bounding boxes for each object detected. This would

2.3 methods 23

Figure 2.9: NMS illustration from LearnOpenCV[33].

effectively count each part several times, and would make the object detection
unusable for its intended purpose. To counteract this, Non Maximum Suppres-
sion (nms) is applied to the bounding boxes. This algorithm only keeps the
bounding box with the highest confidence among a set of overlapping boxes.
The result of the process is illustrated in fig. 2.9.

2.3.4 Testing and experiments

In order to evaluate the ability of the program to automatically train image
recognition models, a series of models were trained and evaluated. For this
experiment, the model trained from scratch was primarily used, as it generally
proved faster to train than the model based on the VGG-16 feature extractor.
Models were trained using four different learning rates, 0.001, 0.0005, 0.0002
and 0.0001. For each of those learning rates, five different modes of image
augmentation were applied to the dataset; no augmentation, stretching and
shifting the images, applying a Gaussian filter, varying the brightness of the
image and applying all of the previous steps. This process was then repeated
for datasets containing 1000, 2000 and 10000 images per class. Four different
learning rates for five differentmodes of augmentation for three sizes of training
data totals 60 models. A validation split of 0.3 was used. After the 60 models
were trained, a model was trained for no and all augments, on a dataset of
10000 images per class, with a learning rate of 0.00001.

For each of the resulting models, the accuracy, validation accuracy, loss and
validation loss for each epoch was stored, along with the time expenditure.
To save time and avoid overfitting, the training stopped early, and the model
and got restored to the weights with lowest validation loss, if five epochs
passed without any decrease in validation loss. The models were also tested
on segments of photographs from the lab, and the accuracy and loss from the
testing was recorded. As repeating this process for the model based on VGG-16
was deemed prohibitively expensive in terms of time and computation, select

24 chapter 2 tools and methods

VGG-16 based models were trained to compare and contrast to scratch-trained
models that seemed promising. No and all augments were tried for learning
rates of 0.0005 and 0.0001, on datasets of 1000 and 2000 images per class. As
before, the relevant metrics were recorded.

The models so trained were evaluated on a set of 31 photographs spread across
the three different classes.

In addition to the quantitative testing of the classifier portion of the program, a
more qualitative approach was taken to testing the object detection system. Im-
ages from the laboratory and elsewhere were tested, and the results of using the
program were noted. Incidents of true and false positives, as well as instances
of no detection, were also counted and are displayed in table 3.2.

3
Results and Discussion
This chapter concerns the results of the testing described in section 2.3.4. Sec-
tion 3.1 lists measurements extracted over the course of the research. Section 3.2
analyses the results, considers implications and considers the goal achievement
for the project.

3.1 Results

This section describes the results from the quantitative research regarding
the training, validation and testing of different image recognition models. It
also relates the experienced had when using the program for object detection.
The first subsection shows the scores from a systematic regiment of testing
different models, and the training of a selection of interesting models. The
second subsection describes the use of the object detection program, and the
observed difference when using different image recognition models of object
detection.

3.1.1 Image recognition

As described in section 2.3.4, a total of 70 image recognition models were
trained on synthetic training data, and tested on images from the lab. Table 3.1
shows the results of this testing. As can be seen, the model based on the VGG-16

25

26 chapter 3 results and discussion

feature extractor, with a learning rate of 0.0005 and 1000 images per class,
using all image augmentation techniques, had the best accuracy in testing. It
is worth noting that all VGG-16 based models performed better than models
built and trained from scratch.

Type Learning Rate Images/class Augments Loss Accuracy
vgg-16 0.0005 1000 all-augments 0.263783 0.903226
vgg-16 0.0005 1000 default 0.281574 0.83871
vgg-16 0.0001 1000 default 0.285783 0.870968
vgg-16 0.0001 1000 all-augments 0.303629 0.903226
vgg-16 0.0001 2000 all-augments 0.405479 0.806452
vgg-16 0.0005 2000 all-augments 0.511962 0.806452
vgg-16 0.0001 2000 default 0.587432 0.741935
vgg-16 0.0005 2000 default 0.748707 0.677419
og 0.001 1000 all-augments 1.096939 0.322581
og 0.0005 1000 all-augments 1.097786 0.419355
og 0.0005 2000 all-augments 1.097922 0.322581
og 0.0005 2000 shift-zoom 1.097968 0.322581
og 0.001 2000 shift-zoom 1.098037 0.419355
og 0.001 10000 shift-zoom 1.098283 0.419355
og 0.001 2000 default 1.098318 0.419355
og 0.0005 10000 all-augments 1.098366 0.419355
og 0.001 2000 gaussian 1.098374 0.322581
og 0.001 10000 gaussian 1.098385 0.322581
og 0.0005 10000 default 1.098691 0.258065
og 0.001 2000 all-augments 1.098705 0.258065
og 0.001 10000 all-augments 1.098774 0.258065
og 0.001 10000 brightness 1.098858 0.322581
og 0.0005 2000 gaussian 1.099041 0.322581
og 0.0005 10000 shift-zoom 1.099182 0.322581
og 0.001 1000 gaussian 1.099213 0.258065
og 0.0005 1000 shift-zoom 1.099259 0.322581
og 0.001 10000 default 1.099328 0.258065
og 0.001 1000 shift-zoom 1.09988 0.258065
og 0.001 1000 brightness 1.100113 0.258065
og 0.0002 1000 shift-zoom 1.152173 0.548387
og 0.0001 2000 all-augments 1.489207 0.612903
og 0.0001 2000 shift-zoom 1.498179 0.483871
og 0.0001 10000 shift-zoom 1.622983 0.580645
og 0.0005 1000 brightness 1.636843 0.354839
og 0.0002 1000 all-augments 1.646527 0.516129
og 0.0001 10000 brightness 1.663313 0.419355

3.1 results 27

og 0.0002 2000 all-augments 1.774786 0.322581
og 0.0001 1000 shift-zoom 1.802011 0.451613
og 0.0002 10000 all-augments 2.082379 0.612903
og 0.0005 10000 brightness 2.115772 0.322581
og 0.0001 1000 all-augments 2.155455 0.483871
og 0.0002 2000 shift-zoom 2.202826 0.322581
og 0.0001 10000 all-augments 2.218802 0.548387
og 0.0002 1000 brightness 2.240292 0.387097
og 0.0002 10000 shift-zoom 2.699522 0.516129
og 0.0001 10000 default 2.919375 0.419355
og 0.0005 1000 default 3.05364 0.258065
og 0.0005 1000 gaussian 3.5083 0.419355
og 0.0001 1000 brightness 3.532643 0.290323
og 0.00001 10000 all-augments 3.561959 0.612903
og 0.0002 1000 default 3.751132 0.354839
og 0.0002 2000 default 4.041717 0.290323
og 0.001 1000 default 4.070347 0.258065
og 0.0001 1000 default 4.104784 0.225806
og 0.0002 1000 gaussian 4.118333 0.419355
og 0.0002 10000 brightness 4.805454 0.322581
og 0.0001 1000 gaussian 4.882947 0.354839
og 0.0001 2000 default 5.578257 0.290323
og 0.0002 2000 gaussian 6.06869 0.290323
og 0.0002 2000 brightness 6.085357 0.225806
og 0.0005 2000 default 6.284452 0.258065
og 0.0001 2000 gaussian 6.618521 0.225806
og 0.0002 10000 default 7.06943 0.387097
og 0.0001 2000 brightness 7.287948 0.096774
og 0.00001 10000 default 7.913941 0.322581
og 0.0005 2000 brightness 8.612436 0.258065
og 0.0001 10000 gaussian 8.847723 0.451613
og 0.0002 10000 gaussian 9.466131 0.483871
og 0.0005 10000 gaussian 9.545554 0.387097
og 0.001 2000 brightness 12.307479 0.290323

Table 3.1: Complete test results in order of increasing loss.

Figure 3.1 shows the training of the best candidate model produced. Compare
to fig. 3.2, a model with comparable accuracy and loss. The first model was
trained over 21 epochs for a total of 4098 seconds, while the same image pre-
processing and dataset with a lower learning rate resulted in a model trained

28 chapter 3 results and discussion

Figure 3.1: Graphs showing training of winning candidate model.

over 13 epochs for a total of 2245 seconds.

Figure 3.3 shows the training of a model from scratch, with a dataset of
10,000 images per class, a learning rate of 0.00001 and no pre-processing.
The validation loss and accuracy arrived upon in training is similar to those
shown in fig. 3.1 and fig. 3.2. When testing this model on real photographs, the
accuracy was 0.32 and the loss was 7.9.

For the 8 VGG-16 based models trained, the average time to complete training
was 59.5 minutes. When using 1000 images per class, the average training
time was 57 minutes, while for 2000 images per class, the training time was
62 minutes on average. For the models trained from scratch, those trained
with 1000 images per class took an average of 6.3 minutes, and those trained
on 2000 images took 13.9 minutes to train on average. The average time to
complete training overall was 10.1 minutes.

3.1.2 Object detection

When using the object detector, an image is rendered into a series of regions
to be classified over the course of 0.5 to 0.6 seconds on the computer used

3.1 results 29

Figure 3.2: Model with comparable accuracy but higher loss.

Figure 3.3: Training of model with loss of 7.9 and accuracy of 0.32 in tests.

for testing. The rois are then classified. Using an image recognition model
built from scratch, classifying 2343 such regions usually takes 5 to 7 seconds.
Using a VGG-16 based model for object detection, classifying those rois takes
around 138 to 140 seconds. The VGG-16 based model takes 20 times longer to
classify the rois.

Figure 3.4 shows the use of the object detection program with an image
recognition model built and trained from scratch with only Gaussian filtering.

Figure 3.4: Object detection with original, inaccurate model.

30 chapter 3 results and discussion

Table 3.2: Detection over a series of images.

True positive False positive No detection
Distance sensor 0 37 2

Lift turn 6 12 0
Suction holder 6 14 0

In testing, this model had an accuracy of around0.5. As can be seen in the image,
the object detection program was capable of finding a distance sensor holder,
but also falsely labeled the distance sensor holder as a suction holder. Image
recognition models trained from scratch failed to detect lift turns, yielding
neither false nor true positives.

Figure 3.5 shows the usage of the winning candidate from the previous ex-
periment for object detection. The images show false positives for all classes,
even with a detection threshold at a confidence of 95%. Using this model to
run object detection on a series of images, true positives, false positives and
instances of no detection were counted for the different classes. The results
are shown in table 3.2.

3.2 Discussion

In this section, the results shown in section 3.1 are considered and analysed.
The degree of goal achievement for the project is also discussed.

Table 3.3: Average loss and accuracy by model and pre-processing.

3.2 discussion 31

Figure 3.5: Object detection using the winning candidate.

32 chapter 3 results and discussion

3.2.1 Analysis

In Table 3.3 can be seen the average loss and accuracy of the models tested,
by architecture and image augmentation steps. By looking at this average, we
discover that varying the brightness and introducing Gaussian filtering will not
necessarily improve the loss or accuracy for a model. It can be inferred that
shifting and stretching the training images is important for training of a model
from scratch. Looking at the VGG-16 based models, however, we can notice
that this effect is lessened here. From table 3.1 we can see that for VGG-16
based models, including the image augmentation when training the model
will generally improve loss and accuracy. Unlike with the untrained model,
this factor does not seem more important than the size of the dataset and the
learning rate. This could suggest that the VGG-16 feature extractor is more
capable of extracting features recognizable in photographs.

If we compare the training of the best image recognition model, as seen in
fig. 3.1, with that of a select model from near the bottom of the list, as shown
in fig. 3.3, a problem with the image recognition models trained from scratch
becomes apparent. When evaluating the models on automatically generated
data, those two models are similar in evaluation loss and accuracy. Without real
example images, it is effectively impossible to discover which image recognition
model is best suited for purpose. The models with feature extraction layers
trained on synthetic datasets seem incapable of making accurate predictions,
no matter how promising the training seemed. From this, a possible hypothesis
is that using transfer learning is a necessary step to recognizing parts from ren-
dered images. It is also possible that better rendering techniques can sidestep
the need for transfer learning.

Another consideration for the practicality of an image recognition model is
the time spent training the model, and the speed at which a model can make
predictions. Training a VGG-16 based model took between 5 and 10 times as
long as training the model made from scratch. This is not a big problem if the
user has a general idea of which learning rate and size of dataset will provide
sufficient, but a systematic search can be very computationally expensive when
using transfer learning. As described in section 3.1.2, making a prediction for
a single took upwards of 60 milliseconds when using a VGG-16 based model,
compared to 3 milliseconds for the simpler model. Improving the speed could
be a software engineering problem, a matter of more efficient operations and
careful handling of memory. It is also possible the program is hitting a hard
limit of the architecture of the image recognition model. Section 4.1 suggests
ways to ameliorate the issue if it is indeed the case of the latter.

From section 3.1.2, and as seen in fig. 3.4 and fig. 3.5, we can see that even
with an image recognition model providing better than 90% accuracy, the

3.2 discussion 33

object detection yields a number of false positives, and struggles with detecting
the depth sensor holder. False positives could be a result of the output layer
of the image recognition model using the softmax activation function. Using
this activation function, the confidence for all the different classes will always
sum up to 1, in a given prediction. This is useful for classification, where the
model must distinguish between objects of different classes, but it can lead to
an inability to correctly identify a negative match. Possible solutions to this
problem are mentioned in section 4.1.

3.2.2 Goal achievement

When considering the degree of achievement reached over the course of this
project, the requirements laid out in section 1.5 must be considered. The sub-
sections enumerate the requirements for three separate parts of the project.
Section 1.5.1 concerns the training of an image recognition model, and sec-
tion 1.5.2 concerns the generation of training data for said image recognition
model. These two components of the project directly correspond to the objec-
tive of the MSc as described in section 1.2. The subsections 1.5.3 and 1.5.4 then
concern the implementation of object detection and the testing of the program
to examine the viability and practicality of the system.

The requirements described in section 1.5.1 have been fulfilled. The installation
and usage of the program is described in appendix B, and this program can
create, compile and train an image recognition model using two different
network structures with variable hyper-parameters and pre-processing steps.
The models so trained are deep, convolutional neural networks. Models with
varied weights and structures can be saved and restored easily, and the program
enables evaluation and testing of the image recognition model. As described
in section 3.1.1 and reflected on in section 3.2.1, an image recognition model
with an accuracy of over 90% has been trained, which indicates the viability
of training models on synthetic data.

The program has a class called “ImageGenerator” used for generating synthetic
training data. Provided a folder of STL files and a series of background images,
this class can load STL files and render them on top of varied and random back-
grounds, from any number of angles. This process is described in appendix B.2.
While there are possible changes and improvements to this process described
in section 4.1, the outcomes achieved means the goal of creating a basis for
training and testing using synthetic images has been fulfilled. With this, both
of the objectives described in section 1.2 have been fulfilled.

This thesis examines the viability of using the methods described above to
achieve object detection. To this end, a rudimentary object detection system

34 chapter 3 results and discussion

based on the trained image recognition model was implemented. Section 3.1.2
shows that the object detection achieved by the end of the project was not
sufficiently precise to steer a robot arm by, and the object detection was too
slow to be entirely practical for this purpose. It is nevertheless my belief, based
on the achievements over the course of the project, that the methodology for
generating datasets and training image recognition models has been proven
as viable and practical.

The work in this thesis represents a step towards further automation of auto-
matic picking of 3D printed and machined objects. It forms a base for studies
into this novel application of several tried and tested technologies. Based on
the results achieved, object detection quick and precise enough to pick up parts
should be possible with further refinements to the process. A number of such re-
finements and ideas for further development are proposed in section 4.1.

4
Further Development and
Conclusion

4.1 Further development

Over the course of the project, a number of ideas for further work sprung to
mind; features outside the original scope of the project, different approaches
to parts of the project and ways portions of the project could be improved upon.
With the benefit of hindsight, some of the decisions made early in the project
can also be considered in that light. Some of the areas of further development
could even form the basis of future Master’s theses.

Upon experiencing the significant delay between a web camera taking an
image and the object detection program yielding a result, different possible
approaches to bringing the process closer to real-time were considered in turn.
One possible approach to expediting the object detection process could be
to discard the current machine learning solution entirely, instead utilizing a
network made end-to-end for simultaneously detecting and classifying objects
in an image. An example of such a solution is YOLO[11]. Such a change would
also require re-engineering the synthetic image generator, and instead of small
images with the object of interest in the center, a whole scene with scattered
parts would have to be synthesized, paired with suitable labels and bounding
boxes. A future attempt at fulfilling the goals of the fundamental project could
try such an approach, and in part base the project on the code and discoveries

35

36 chapter 4 further development and conclusion

made in this project.

With the current approach taken to object detection, the activation function
used in the output layer of the image classifier can be prone to false positives.
Without re-engineering the entirety of the project as described in the para-
graph above, adding a specialized and fast neural network for region proposal
could drastically reduce the incidence of false positives. Depending on the
exact capabilities of the region proposal network, the object detection could
also become much faster using such an approach. Future work exploring this
possibility could more easily expand on the methods described in this thesis,
as it would require the integration of a new, specialized component instead of
a complete re-engineering of the project.

Using standard methods and formats for taking pictures and storing them,
each pixel of an image has three associated values; red, green and blue. Those
three values correspond with the third dimension of the input layer used by
the neural networks. The cameras used during this process have the capability
of providing depth information as well. Future work could concern an attempt
to utilize depth data for object detection. With rendering of 3D models, syn-
thesizing depth data should be possible. A region proposal system could also
be implemented on the assumption that all protrusions from an otherwise flat
background are possible rois.

As became apparent while sifting through metrics on different combinations of
parameters for training image recognition models, deciding on which model
to use for object detection could be a challenge by itself. A possible future
improvement to the program would be an algorithm capable of automatically
searching out the best model candidates based on training metrics and auto-
mated testing. Automating this would go a long way towards the eventual full
automation of the system.

The lack of positive identification of a lift turn in real-world test images illus-
trated a problem for the object detection system using the model trained from
scratch. This is a common problem associated with pose-invariant classification.
A coin laying on the ground is rarely seen from any other facing than head
(or tail) on. The lift turn faced the same problem. When laid on a table, the
appearance of the part matched only a small percentage of the views spread
evenly in a sphere around the 3D model. Future work on the automatic gen-
eration of training data could experiment with using rudimentary physics to
develop a more accurate model of how the different parts will appear. Physics
based rendering with subsurface scattering and other methods of approaching
photo-realism could also yield interesting results.

4.2 conclusion 37

4.2 Conclusion

This thesis has examined the viability of training an image recognition model
solely on synthetic training data generated by rendering 3Dmodels on different
backgrounds. It also examined the viability and practicality of using such a
model for object detection in order to pick printed parts off an assembly
line.

A program was created that can generate training images from STL files and
photographs of different backgrounds. The program can also train and store
a number of image recognition models using those training images, and the
program can retrieve and use a saved image recognition model for object
detection.

A total of 72 image recognition models were trained using two different net-
work structures and a series of different parameters. Those models were then
evaluated on 31 images of the different parts, taken from the lab. The best
image recognition model was used for object detection, and the practicality of
the program was considered.

This thesis suggests a successful methodology for automatic generation of
training data, and for the creation of custom image recognition models based
on this. In doing so, it confirms the viability of the use of synthetic training
data for computer vision for automation in robotic manufacture, and provides
a basis for future work in the field. It also suggests a method of using such a
model for object detection, and possible refinements and improvements that
can be attempted in future work.

Bibliography
[1] H. Arnarson, “Reconfigurable Manufacturing System.” https://youtu.be/

idA-TmYP45c, 2021. Accessed: 2022-04-30.

[2] L. Huang, “CNC History: The Origination and evolution of CNCMachining
0.” https://www.rapiddirect.com/blog/cnc-history/, 2021. Accessed:
2022-05-14.

[3] T. S. Huang, “Computer Vision: Evolution And Promise,” 1996 CERN School
of Computing, no. 19, pp. 21–25, 1996.

[4] Google, “Google Lens.” https://lens.google/, 2022. Accessed: 2022-01-
27.

[5] J. Cohen, “Computer Vision Applications in Self-Driving Cars.”
https://www.thinkautonomous.ai/blog/?p=computer-vision-
applications-in-self-driving-cars, 2019. Accessed: 2022-04-30.

[6] Z.-H. Zhou, Machine Learning. Springer, Singapore, 2021.

[7] J. Schaeffer and R. Lake, “Solving the game of checkers,” Games of no
chance, vol. 29, pp. 119–133, 1996.

[8] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives,
and prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.

[9] T. Kohonen, “An introduction to neural computing,” Neural Networks,
vol. 1, no. 1, 1988.

[10] M. Jogin, Mohana, M. S. Madhulika, G. D. Divya, R. K. Meghana, and
S. Apoorva, “Feature Extraction using Convolution Neural Networks
(CNN) and Deep Learning,” in 2018 3rd IEEE International Conference
on Recent Trends in Electronics, Information Communication Technology
(RTEICT), pp. 2319–2323, 2018.

39

https://youtu.be/idA-TmYP45c
https://youtu.be/idA-TmYP45c
https://www.rapiddirect.com/blog/cnc-history/
https://lens.google/
https://www.thinkautonomous.ai/blog/?p=computer-vision-applications-in-self-driving-cars
https://www.thinkautonomous.ai/blog/?p=computer-vision-applications-in-self-driving-cars

40 bibl iography

[11] H. Bandyopadhyay, “YOLO: Real-Time Object Detection Explained.” https:
//www.v7labs.com/blog/yolo-object-detection, 2022. Accessed: 2022-
01-17.

[12] J. Sullivan, “Machine learning LEGO image recognition: Using virtual
data and YOLOv3,” Towards Data Science, 2020. Accessed; 2022-04-30.

[13] K. Sarkar, K. Varanasi, and D. Stricker, “Trained 3D models for CNN
based object recognition,” in Proceedings of the 12th International Joint
Conference on Computer Vision, Imaging and Computer Graphics Theory
and Applications - Volume 5 (A. P. Cláudio, D. Bechmann, P. Richard,
T. Yamaguchi, L. Linsen, A. Telea, F. Imai, and A. Tremeau, eds.), 2017.

[14] B. Heisele, G. Kim, and A. J. Meyer, “Object Recognition with 3D Models,”
tech. rep., Honda Research Institute, Cambridge, USA, 2009.

[15] R. Kumar, S. Lal, S. Kumar, and P. Chand, “Object detection and recognition
for a pick and place Robot,” in Asia-Pacific World Congress on Computer
Science and Engineering, pp. 1–7, 2014.

[16] TensorFlow, “TensorFlow.” = https://www.tensorflow.org/„ 2022. Ac-
cessed: 2022-04-30.

[17] “Keras: the Python deep learning API.” https://keras.io/, 2022. Ac-
cessed: 2022-04-30.

[18] A. Clark and F. Lundh, “Python Pillow.” https://python-pillow.org/,
2022. Accessed: 2022-04-30.

[19] B. Woodsend, “Welcome to vtkplotlib’s documentation! – vtkplotlib 1.4.1
documentation.” https://vtkplotlib.readthedocs.io/, 2021. Accessed:
2022-04-30.

[20] OpenCV team, “About - OpenCV.” https://opencv.org/about/, 2022. Ac-
cessed: 2022-05-02.

[21] PyTorch, “PyTorch.” https://pytorch.org/, 2022. Accessed: 2022-05-03.

[22] Oracle, “What is Java and why do I need it?.” https://java.com/en/
download/help/whatis_java.html, 2022. Accessed: 2022-05-03.

[23] The Mathworks, Inc, “Help Center for MATLAB, Simulink and other
MathWorks products.” https://se.mathworks.com/help/index.html?s_
tid=CRUX_lftnav, 2022. Accessed: 2022-05-03.

https://www.v7labs.com/blog/yolo-object-detection
https://www.v7labs.com/blog/yolo-object-detection
=
https://keras.io/
https://python-pillow.org/
https://vtkplotlib.readthedocs.io/
https://opencv.org/about/
https://pytorch.org/
https://java.com/en/download/help/whatis_java.html
https://java.com/en/download/help/whatis_java.html
https://se.mathworks.com/help/index.html?s_tid=CRUX_lftnav
https://se.mathworks.com/help/index.html?s_tid=CRUX_lftnav

bibl iography 41

[24] T. Peters, “PEP 20 – The Zen off Python | peps.python.org.” https://
peps.python.org/pep-0020/, 2004. Accessed: 2022-05-03.

[25] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean,M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
systems.” https://www.tensorflow.org/, 2015. Software available from
tensorflow.org.

[26] A. Paszke, S. Gross, S. Chintala, and G. Chanan, “pytorch/pytorch: Tensors
and Dynamic neural networks in Python with strong GPU acceleration.”
https://github.com/pytorch/pytorch, 2022. Accessed: 2022-04-30.

[27] Kitware, “VTK - The Visualization Toolkit.” https://vtk.org/, 2022. Ac-
cessed: 2022-01-27.

[28] pawangfg, “VGG-16 | CNN model - GeeksforGeeks.” https://www.
geeksforgeeks.org/vgg-16-cnn-model/, 2020. Accessed: 2022-05-03.

[29] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,”
Journal of Big Data, vol. 3, no. 9, 2016.

[30] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition.” https://arxiv.org/abs/1409.1556,
2014.

[31] B. A. Bremdal, “Convolutional Networks.” https://uit.instructure.
com/courses/22308/files/1500060?module_item_id=504809, 2021.
Power Point presentation from lecture in course DTE-3606, Accessed:
2022-05-11.

[32] A. Rosebrock, “Turning any CNN image classifier into an ob-
ject detector with Keras, TensorFlow, and OpenCV.” https:
//pyimagesearch.com/2020/06/22/turning-any-cnn-image-classifier-
into-an-object-detector-with-keras-tensorflow-and-opencv/, 2020.
Accessed: 2022-04-30.

[33] J. Prakash, “Non Maximum Suppression: Theory and Implementation in
PyTorch.” https://learnopencv.com/non-maximum-suppression-theory-
and-implementation-in-pytorch/, 2021. Accessed; 2022-05-03.

https://peps.python.org/pep-0020/
https://peps.python.org/pep-0020/
https://www.tensorflow.org/
https://github.com/pytorch/pytorch
https://vtk.org/
https://www.geeksforgeeks.org/vgg-16-cnn-model/
https://www.geeksforgeeks.org/vgg-16-cnn-model/
https://arxiv.org/abs/1409.1556
https://uit.instructure.com/courses/22308/files/1500060?module_item_id=504809
https://uit.instructure.com/courses/22308/files/1500060?module_item_id=504809
https://pyimagesearch.com/2020/06/22/turning-any-cnn-image-classifier-into-an-object-detector-with-keras-tensorflow-and-opencv/
https://pyimagesearch.com/2020/06/22/turning-any-cnn-image-classifier-into-an-object-detector-with-keras-tensorflow-and-opencv/
https://pyimagesearch.com/2020/06/22/turning-any-cnn-image-classifier-into-an-object-detector-with-keras-tensorflow-and-opencv/
https://learnopencv.com/non-maximum-suppression-theory-and-implementation-in-pytorch/
https://learnopencv.com/non-maximum-suppression-theory-and-implementation-in-pytorch/

A
Task Description
Included in this appendix is the original task description for this thesis. The
following pages contain the document in its entirety, as received at the start of
the project period.

43

Faculty of Engineering Science and Technology
Department of Computer Science and Computational Engineering
UiT - The Arctic University of Norway

Automatic generation of custom image recognition

models

Magnus Fredheim Hanssen

Thesis for Master of Science in Technology / Sivilingeniør

In the machine laboratory in Narvik at DIE, there has been built a reconfigurable
manufacturing system (RMS). The system has different platforms such as a 3D printer
that can atomically print parts and robot arms that can pick and place objects. The
system can reconfigure itself automatically and the goal is to get it 100% automated
when producing parts. A video demonstrating how the system works can be found at:
https://youtu.be/idA-TmYP45c .

One of the tasks that needs to be automated is to have the robot arm pick and place the
parts coming from the 3D printer. To do this, we need custom image recognition models
so that the robot can automatically recognize the 3D printed parts. This will rely on
machine learning models for image recognition. Due to the fact that such parts can be
unique and without any presidents suited for training machine learning algorithms for
image classification synthetic data need to be established. Creating such can be a dull,
tedious and time-consuming process. However, 3D prints are driven by 3D model of the
parts. The primary challenge is to use such as the basis for annotated images that can be
used for training and testing of image recognition models. The new idea is to use a 3D
model (CAD model) and atomically generate images from the model, which can be used
to create a custom image recognition model of various parts. The 3D model can be
rotated and different backgrounds can be inserted to produce a sufficient set of
perspectives for robust and resilient training.

Hence the objective of the MSc can be formulated:

1. Create an image recognition system based on state-of-the-art machine learning
models that can be used for the purpose described above

2. Create a basis for training and testing by means of synthetic images using 3D models
generated by the CAD system used to design and produce the parts to be recognized and
classified.

The student should spend the first part of this project to formulate the precise problem
and suggest possible solution strategies to determine how to recognize and classify a
part and instructions. The initial part of the project should probe into state-of-the-art
and solicit related work on which the planned effort should build on.

Dates

Date of distributing the task: <10.01.2021>

Date for submission (deadline): <16.05.2021>

Contact information

Candidate

Supervisor at IDBI

Co-supervisor at IE

Co-supervisor at IDBI

Magnus Fredheim Hanssen

Mha430@post.uit.no

Bernt Bremdal
bernt.bremdal@uit.no

Halldor Arnarson
halldor.arnarson@uit.no

Shayan Dadman
shayan.dadman@uit.no

General information

This master thesis should include:

 Preliminary work/literature study related to actual topic
- A state-of-the-art investigation
- An analysis of requirement specifications, definitions, design requirements, given

standards or norms, guidelines and practical experience etc.
- Description concerning limitations and size of the task/project
- Estimated time schedule for the project/ thesis

 Selection & investigation of actual materials
 Development (creating a model or model concept)
 Experimental work (planned in the preliminary work/literature study part)
 Suggestion for future work/development

Preliminary work/literature study

After the task description has been distributed to the candidate a preliminary study
should be completed within 3 weeks. It should include bullet points 1 and 2 in “The work
shall include”, and a plan of the progress. The preliminary study may be submitted as a
separate report or “natural” incorporated in the main thesis report. A plan of progress and
a deviation report (gap report) can be added as an appendix to the thesis.

In any case the preliminary study report/part must be accepted by the supervisor
before the student can continue with the rest of the master thesis. In the evaluation
of this thesis, emphasis will be placed on the thorough documentation of the work
performed.

Reporting requirements

The thesis should be submitted as a research report and could include the following parts;
Abstract, Introduction, Material & Methods, Results & Discussion, Conclusions,
Acknowledgements, Bibliography, References and Appendices. Choices should be well
documented with evidence, references, or logical arguments.

The candidate should in this thesis strive to make the report survey-able, testable,
accessible, well written, and documented.

Materials which are developed during the project (thesis) such as software / source code
or physical equipment are considered to be a part of this paper (thesis). Documentation
for correct use of such information should be added, as far as possible, to this paper
(thesis).

The text for this task should be added as an appendix to the report (thesis).

General project requirements

If the tasks or the problems are performed in close cooperation with an external company,
the candidate should follow the guidelines or other directives given by the management
of the company.

The candidate does not have the authority to enter or access external companies’
information system, production equipment or likewise. If such should be necessary for
solving the task in a satisfactory way a detailed permission should be given by the
management in the company before any action are made.

Any travel cost, printing and phone cost must be covered by the candidate themselves, if
and only if, this is not covered by an agreement between the candidate and the
management in the enterprises.

If the candidate enters some unexpected problems or challenges during the work with the
tasks and these will cause changes to the work plan, it should be addressed to the
supervisor at the UiT or the person which is responsible, without any delay in time.

Submission requirements

This thesis should result in a final report with an electronic copy of the report including
appendices and necessary software, source code, simulations and calculations. The final
report with its appendices will be the basis for the evaluation and grading of the thesis.
The report with all materials should be delivered according to the current faculty
regulation. If there is an external company that needs a copy of the thesis, the candidate
must arrange this. A standard front page, which can be found on the UiT internet site,
should be used. Otherwise, refer to the “General guidelines for thesis” and the subject
description for master thesis.

The supervisor(s) should receive a copy of the the thesis prior to submission of the final
report. The final report with its appendices should be submitted no later than the decided
final date.

B
Installation and Use of
Program

The code used for the project is contained in a zip-archive attached to the
thesis. The program consists of a series of Python files, image files and STL
files. This appendix describes the installation of packages required to run the
program, and a quick guide to using the program for classification and image
recognition.

B.1 Installation

After unpacking the archive containing the project, one should either navigate
to the resulting directory in a console window, or open up the folder as a project
in an Integrated Development Environment (ide) of choice. In the root of this
directory, the file “requirements.txt” lists the packages required for the project.
This installation guide assumes that Python 3.9 with pip is installed.

B.1.1 Creating a virtual environment

When installing Python packages for a project, it is recommended to use
a virtual environment. To create a virtual environment with a Python 3.9

49

50 appendix b installation and use of program

installation, “python -m venv c:/path/to/virtual/environment” can be
written into the console if the only python version installed is Python 3.9 and
the path to the executable has been added to the PATH variable. Otherwise,
“python” should be swapped with the path to the executable of a Python 3.9
installation. In order to use the virtual environment instead of the default
Python installation, the environment needs to be activated. To do this, the
script “.\venv\Scripts\activate” should be run in the console. The name of
the virtual environment in parentheses should now be displayed to the left of the
current directory in the console window to indicate that the virtual environment
is active. Packages installed from this window will now be installed into the
virtual environment, and Python scripts will be executed using the virtual
environment and packages installed therein. There are other tools available
for creating virtual environments, but this guide assumes that such advanced
users need no further instruction in setting up virtual environments.

B.1.2 Installing requirements

“requirements.txt” contains a list of all required packages. These packages are
all available from the Python Package Index, and can be installed with pip, a
tool included with Python installations after version 3.4, using the following
command:

pip install -r requirements.txt

If this command is run from the root directory of the project, and with the
virtual environment activated as described in Subsection B.1.2, all the packages
required to run the project should be installed.

B.2 User Guide

In order to quickly and easily train an image recognition model, running the
script “main.py” in the project directory will create images from the included
STL files, train an image recognition model based on the VGG-16 feature
extractor, and save this model as “default” in the “saved_models” directory. To
customize the number of images generated, as well as details of the model
trained, the user can eithermake changes to “main.py” before running it, or they
can open a Python thread in the console (by giving the prompt “python”) and
create an ImageGenerator and ObjectClassifier object in the console, changing
data members before generating images and training a model as shown in the
script.

b.2 user guide 51

The ImageGenerator constructor takes as a parameter the number of viewpoints
to generate images from for each 3D model. The number of images per class
then becomes this number of view points multiplied by “bg_mult”, 5 by default,
which determines how many times each view is rendered on top of a random
background. The color used to render the model can be changed by setting
“color” to a different hexadecimal string.

The ObjectClassifier constructor takes a string as a parameter, using this string
as the name of the model, and defaulting to “default” if none is provided. The
methods used to save the model, the training history of the model, and the
corresponding graphs, all use this name in the respective file names unless
another name is provided. The script “log_train_classifier.py” demonstrates
how the optimization algorithm and image augmentation steps of an image
recognition model can be changed, and how a number of different models can
be trained and metrics from the training logged. The script “test_classifier.py"
demonstrates how a series of models with certain prefixes were tested and
the results logged. The code therein demonstrates how the user can similarly
evaluate a model.

To use an image recognitionmodel for object detection, the script “object_detector.py”
can be run. Unlike previous scripts, however, this script must be run with ad-
ditional options. The program requires one of two options to be provided;
“python object_detector.py -wc [camera port number]” can be run to
run object detection using the “default” model from previous steps on an
image from a web camera on the specified port. Web cameras connected to
a computer are numbered from 0, so debugging includes incrementing this
number if several cameras are attached to the computer.

When the program is used with a web camera, the user is prompted to write
“Q” to quit, and hitting the enter key with any other input will result in an
image being taken and for the loop to continue. Alternately, the user can
provide the option for running image detection on an image file, with “-i
path/to/image.png”. The optional arguments can be listed by running the
script with the “-h” or “–help” option. Enabling extra visualization is not
recommended, as it is an option left over from debugging, and will show
thousands of images in sequence.

The images “grumpy_cat.jpg” and “test_image.jpg” are included to provide
example images with and without any of the 3D printed parts.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Background
	1.2 Objective
	1.3 Theory
	1.3.1 Computer vision
	1.3.2 Machine learning
	1.3.3 Artificial neural networks
	1.3.4 Convolution and feature extraction

	1.4 The State of the Art
	1.5 Strategy
	1.5.1 Creating and training an image recognition model
	1.5.2 Automatic generation of datasets
	1.5.3 Implementing object detection
	1.5.4 Testing and experiments

	2 Tools and Methods
	2.1 Tools and Tool Selection
	2.2 Programming language
	2.2.1 Deep learning software
	2.2.2 Image rendering and manipulation

	2.3 Methods
	2.3.1 Creating and training an image recognition model
	2.3.2 Automatic generation of datasets
	2.3.3 Object detection
	2.3.4 Testing and experiments

	3 Results and Discussion
	3.1 Results
	3.1.1 Image recognition
	3.1.2 Object detection

	3.2 Discussion
	3.2.1 Analysis
	3.2.2 Goal achievement

	4 Further Development and Conclusion
	4.1 Further development
	4.2 Conclusion

	Bibliography
	A Task Description
	B Installation and Use of Program
	B.1 Installation
	B.1.1 Creating a virtual environment
	B.1.2 Installing requirements

	B.2 User Guide

