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Summary

Population cycles in small rodents have attracted attention from ecologists
for more than a century. This spectacular phenomenon is crucial for the
functioning of many northern food-webs and has intrigued ecologist be-
cause of its lessons for general ecology. Knowledge about the rodent cycle
has, however, been hampered by the lack of reliable monitoring methods
both for rodents and some of their assumed interactants (e.g. the small
mustelids).

In resent decades, camera traps have become widely used in ecology
as they provide a cost-efficient and non-invasive method for wildlife mon-
itoring. In this thesis, consisting of four studies, I will investigate how
camera trap tunnels tailored for small mammals can enhance rodent mon-
itoring. First, in study I, I together with colleagues conducted the first
large scale assessment of the applicability of tunnel-based camera traps to
estimate population parameters in a small mammal community, includ-
ing during a long Arctic winter. We showed that the camera trap provide
estimates of rodent occupancy also under the snow during winter. Fur-
ther we give recommendation on micro-scale placement of the traps to
maximize technical functionality in order to avoid loss of data. Then, in
study II, we expand on dynamic occupancy models for interacting species
by including two nested spatial scales. This allows for camera trap-based
investigation of the rodent-mustelid interaction on both a local and a
landscape scale. Features of this interaction are assumed to be a key to
understand the cause(s) of the rodent population cycles. In study III, we
apply the statistical framework developed in study II to a dataset derived
from the long-term monitoring program Climate-ecological Observatory
for Arctic Tundra (COAT). Our results show that presence of mustelids
increased the extinction probability of rodents on both a local and a land-
scape scale. Furthermore, we demonstrate a clear habitat dependence
and indications of a season-dependency in the rodent-mustelid interac-
tion strength. Finally, in study IV, we assess whether camera trap-based
abundance indices can be used to study population dynamics of two rodent
species (gray-sided vole (Myodes rufocanus) and tundra vole (Microtus oe-
conomus)). This was done by comparing camera trap-based abundance

xi



indices to abundance estimated from capture-mark-recapture (CMR). For
gray-sided voles a single camera trap provided reliable abundance indices
with camera trap counts aggregated over 5-days. For tundra voles counts
from four spatially replicated camera traps from a single day within the
same local population needed to be aggregated to obtain a good corres-
pondence to the abundance estimated from CMR. Such species-differences
imply that the design of camera trap studies should be adapted to the spe-
cies in focus. This study further highlight that camera traps yield much
more temporally resolved abundance metrics than alternative methods.

To conclude, the work presented in this thesis demonstrates how cam-
era trap-based rodent monitoring provides multiple improvements com-
pared to previous methods. Camera traps are non-invasive avoiding the
ethical issues kill-trapping are fraught with. Further, camera traps provide
data year round — including from underneath the snow— on a fine tem-
poral scale. In addition camera traps are not species specific and provide
data on the whole small mammals community including small rodents,
shrews and small mustelids. In addition, camera traps provide a reliable
abundance index at least for two of the most ecologically important ro-
dents species in northern Fennoscandia. Furthermore, this thesis present a
statistical framework for investigating mustelid-rodent interactions based
camera trap data and exemplify how this framework can improve on the
knowledge on one of the longest standing mysteries in ecology.



Introduction

1.1 Population cycles in small rodents

Ecology and population cycles

One definition of Ecology is “the scientific study of the distribution
and abundance of organisms and the interactions that determine distribu-
tion and abundance” (Begon and Townsend, ). In most populations
of wild animals both distribution and abundance typically exhibit strong
temporal variation. Hence, one of the key tasks for ecologists is to explain
and predict this temporal variation. In the process of doing so, the atten-
tion of scientists was initially drawn to a specific phenomenon where some
species were observed to fluctuate between highs and lows in abundance
and distribution with regular intervals (Elton, ). Such regular multi-
annual fluctuations are often referred to as populations cycles. Already in
the early 1920’s the famous Lotka-Volterra model (Lotka, ; Volterra,

) demonstrated theoretically how population cycles can be created.
Specifically, the predator-prey version of the Lotka-Volterra model demon-
strated how interspecific interactions alone might create regular, multi-
annual, oscillations in species abundance (i.e. population cycles). The
first empirical evidence of existence of population cycles in wild animals
were presented by Charles Elton in 1924, based on number of fur-bearing
animals from Hudson Bay Company in Canada and observations of the
Norwegian lemmings (Lemmus lemmus) in Fennoscandia, collected by the
Norwegian zoologist Robert Collett (Elton, ). Since then, ecologists
have considered population cycles one of nature’s great mysteries (Myers,

). Much work motivated by cyclic populations has been important
in the development of current knowledge on variability in abundance and

distribution of wildlife species.
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The small rodent population cycles: why are they important?

Population cycles have been observed in many different groups of an-
imals (e.g. mammals, insects (Myers and Cory, ) and birds (Martinez-
Padilla et al., )). However, population cycles in small rodents have
received a particular attention in the scientific community because of their
spectacular appearance. Further, they are crucial for the functioning of
many boreal and tundra food webs (Ims and Fuglei, ). The violent
boom and bust cycles of rodents cascade through the food-web, where
grazing impact of the herbivorous rodents on tundra vegetation can be
so strong that it can be seen from space during peak population densit-
ies (Olofsson et al., ). Furthermore, the rodent population dynamics
are decisive for the survival, breeding density and reproductive success of
most northern mammalian (Angerbjorn et al., ; Gilg et al., ) and
avian predators (Hellstrom et al., ; Therrien et al., ). In addition,
rodent populations peaks have an indirect positive effect on other prey spe-
cies through shared predators. This is often referred to as the alternative
prey hypothesis and makes existence of resident alternative prey popula-
tions possible where a high predation pressure would otherwise drive them
to local extinction (Angelstam et al., ; Bety et al., ; McKinnon et
al., ). In fact, indirect positive interactions between prey species that
share predators have been theoretically demonstrated to be stronger in the
presence of population cycles (Abrams et al., ). The alternative prey
mechanism in cyclic northern food-webs are contributing to a latitudinal
gradient in predation-pressure on ground nesting birds, which might help

explaining bird migration (Gilg and Yoccoz, ; McKinnon et al., ).

The small rodent population cycles: what do we know?

Since Elton’s introduction of the rodent population cycles to the sci-
entific community thousands of scientific papers has been published on the
topic. Almost a hundred years later, we can say that the understanding of
this phenomenon has been considerably improved. Over the last 50-years,
sometimes longer, ecologists have established and maintained long time
series on the population dynamics of rodents (Hanski et al., ; Eker-

holm et al., ; Hornfeldt et al., ; Kausrud et al., ; Korpela et
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al., ; Ehrich et al., ). Based on these empirical investigations, the
anatomy of rodent population cycles can be dissected into four phases (i.e.
increase, peak, crash and low phase), each with distinct features (Krebs
and Myers, ; Ol ). The cycles typically consist of a gradual
increase phase, leading to a peak followed by a step decline (i.e. the crash
phase) (see e.g. figure 2 in Andreassen et al. ( )). Fluctuating ro-
dent populations are known for large temporal variability in population
size (i.e. high cycle amplitude), where the increase from the low phase
to the peak often is by 3 orders of magnitude, or more (Ims and Fuglei,

). However, for a given location, the cycle amplitude is highly vari-
able between different cycle peaks (Kleiven et al., ). The periodicity
of the rodents cycles is typically between 3 and 5 years and for a single loc-
ation, remarkably consistent between cycles. In addition to multi-annual
population cycles, northern rodents also have strong seasonal cycles. In
northern areas rodents have a seasonal breeding cycle, following the plant
productivity so that breeding mainly happen during summer and only ex-
ceptionally during winter (except for lemmings) (Andreassen et al., ).
In addition, mortality might be increased during the long snowy winter
when rodents are living in the subnivean space at the bottom of the snow
pack (Korslund and Steen, ; Poirier et al., ). There are, in fact,
indications of a latitudinal gradient in the periodicity of rodent popula-
tion cycle, where northern rodent populations have longer periodicity than
southern populations (Bjgrnstad et al., ). Furthermore, there is also
a latitudinal gradient in cyclicity in wildlife populations in general, and
for rodents in particular, where population cycles are more pronounced in
highly seasonal northern areas (Hansson and Henttonen, ; Kendall et
al., ). I however, note that although population cycles in rodents also
most common in northern areas they do also exist in some more temporal
areas (see e.g. (Cornulier et al., : Mougeot et al., )). Empirical
models that have accounted for seasonality have demonstrated that strong
negative delayed-density dependency during winter is a direct cause for the
multi-annual population cycles in rodents (Hansen et al., : Stenseth
et al., ). Theoretically, strong negative delayed-density dependence

during winter can be caused by both bottom-up (plant-herbivore) and
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top-down (predator-prey) interactions. In a high arctic food-web lacking
predators, Fauteux et al. ( ) found that bottom-up interactions was
unlikely to cause multi-annual cycles with periodicity longer than 2 years.
This is contrasting the 3-5 year multi-annual population cycles typically
found in rodents, suggesting top-down effects to play an important role as

cycle driving mechanisms.

Another striking feature in small rodent population fluctuations is
that they are synchronized over much larger areas than can be expec-
ted from intrinsic population processes, like e.g. individual dispersal dis-
tance (Steen et al., ; Angerbjorn et al., : Henden et al., ).
This is particularly interesting as the scale and strength of synchrony
might reflect how rodents are affected by different processes with differ-
ent scales (Bjornstad et al., ). Both predation (Ims and Andreassen,

) and stochastic weather events (Moran, ) have been found to
play important roles in driving population synchrony. Furthermore, inter-
specific synchrony between sympatric small rodent populations are com-
monly observed (Krebs, ). This indicates that population processes
for all species in a local small rodent community, often containing species
with different diets (Soininen et al., ), social organization (Ims, :
Bondrup-Nielsen and Ims, ) and habitat preferences (Soininen et al.,

), are affected by common factors.

The small rodent population cycles: Theoretical models and predator-prey

interactions

Despite nearly a century of intense research on rodent populations dy-
namics and the accumulated knowledge summarized above there are still
also some unanswered questions. While both theory and empirical in-
vestigation of long time series has showed that rodent population cycles
are characterized by delayed density dependence in population growth
rate, exactly what is causing this delayed density dependency has lead
to intense debates among ecologists (Stenseth, ). A wide range of
hypotheses has been proposed, but there is still no consensus on which

is the most plausible (and even if a single one could be sufficient). T will
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not attempt to provide a complete review of all of them here, as this has
been done very well elsewhere (see e.g. Oli ( )). However, I shall
point out like other authors that the connection between empirical and
theoretical work for many of the hypothesised cycle driving mechanism
has often been weak (Stenseth, : Oli, ). This is a pity, as, to
say it with the words of Haila and Jérvinen ( ): “Sound naturalism
is to ecology what legs are to a runner; but anti-theoretical naturalists
are, quite naturally, like headless runners”. In fact, theoretical work has
displayed the potential of different hypothesized mechanisms to function
as cycle-driving mechanisms by enforcing strong delayed density depend-
ence (Inchausti and Ginzburg, ; Turchin and Hanski, ; Turchin
and Batzli, ). However, this thesis will mainly focus on the assumed
key interaction between rodents and small mustelids. In fact predation for
specialist predators was one of the first hypothesized cycle driving mech-
anisms with roots all the way back to the initial predator-prey modelling
by Lotka ( ) and Volterra ( ). The specialist predator hypothesis
postulated that resident specialist predators respond numerically to the
increase in numbers of prey (i.e. rodents) with a time delay, for instance
caused by delayed reproduction. In the northern areas the small rodents
spend the long snowy winters in the sub-nivean space which protect them
from avian and large mammalian predators. However, the small mustelids
follow in the rodent runways also under the snow (Wilson et al., ; Ims
and Fuglei, ). Many theoretical predator-prey models have therefore
been tailored specifically for the rodent-mustelid interaction. This has
been done by extending a two-dimensional differential equation system
to include both the effect of generalist predators, the strong seasonal-
ity in northern ecosystems and environmental stochasticity (Turchin and
Hanski, ; Hanski et al., ). When comparing the predicted rodent
dynamics from these theoretical models to long time series on rodents in
Fennoscandia the similarity is striking (Turchin and Hanski, ). Al-
though this body of theoretical work clearly has demonstrated the poten-
tial of specialist predation from mustelids to drive the population cycles
of rodents, empirical validation has so far been hampered by the lack of

empirical data on rodents and mustelids to compare to theoretical model
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predictions.

1.2 Monitoring of rodents and small mustelids

There are three central questions needed to be addressed for successful
wildlife monitoring (Yoccoz et al., ). First, the purpose of the monit-
oring needs to be clearly defined ("why monitor?”). In the case of rodents
and mustelids I hope that at least one answer to "why monitor” has been
given already (i.e. to increase our understanding of the role of mustelids
as a potential driver of the rodent population cycles). Second, depending
on the purpose of the monitoring one needs to decide what to monitor.
Most theoretical work on predator-prey interactions and cyclic popula-
tions have been focused on population abundance. However, if the aim of
the monitoring is to study population dynamics, for instance by means of
time series analyses (Stenseth, ; Cornulier et al., ; Barraquand
et al., ) indices of abundance can be used if there is a proportionate
relationship between true abundance and the abundance index (Hanski
et al., ; Lambin et al., ; Yoccoz et al., ; Gilbert et al., ).
In addition, insights about the rodent-mustelid interaction might be at-
tained from a metapopulation framework, where species occupancy (i.e.
presence/absence) can be used to study local and regional scale coloniz-
ation and extinction dynamics (Hanski, ). Then the final question
is how to monitor these variables (i.e. abundance, abundance indices or
occupancy). Most wildlife species are observed imperfectly which might
lead to biased population state estimate if not accounted for. For species
abundance the detection error can be estimated by the use of capture-
mark-recapture (CMR) methods. However, such methods are often very
laborious, which lead most studies to apply indices of abundance as a
cheaper alternative. It is then crucial that such indices are well calibrated
with reliable abundance estimates to avoid biased inference. In the case
of occupancy, the detection error can be estimated using repeated obser-
vations within a time period where the occupancy process is assumed to
be closed (MacKenzie et al., ). A second issue that needs to be care-
fully considered is spatial variation and survey error (Yoccoz et al., ).

Ecological monitoring can rarely monitor large areas entirely, hence it is

6
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important that the spatial design of the monitoring is appropriate to an-

swer the question of interest.

Rodent monitoring
Method Variable Effort | Temporal | Species | Example
scale studies

Live trap- | abundance | high biannual | CL, BL, | Fauteux et
ping estimate \Y% al. ( )
Kill traps abundance | medium | biannual | all Kleiven et

index al. ( )
Nest count | abundance | low annual CL, BL | Sittler

index ( )
Sign index | abundance | low biannual | L, M Vindstad et

index al. ( )
Incidental | presence/ | low annual all Bowler et
observa- absence al. ( )
tions

TABLE 1. This table list the most common monitoring
methods for small rodents in northern areas as well as the
typical state variables they give and temporal scale they are
applied on. I note, however, that these are just examples
and many other studies using these or similar monitoring
methods for rodents exist. To some degree other studies
also extract different state variables and are conducted on
different temporal scales then what I display here. Abbre-
viations: L=Lemmus sp., M=Microtus sp., CL=Collared
lemming, BL=Brown lemmning, V=all vole species.

One important reasons for the limited understanding of rodents pop-
ulation cycles, despite the huge effort over the last century, is the chal-
lenge of obtaining reliable estimates of rodent abundance and/or occu-
pancy. CMR methods are only rarely applied for rodent monitoring, des-
pite providing reliable abundance estimates. CMR is often considered
too labour-intensive to be regularly applied in long-term monitoring pro-
grams (Fauteux et al., ; Ehrich et al., ). Kill traps (snap traps)
are currently the most commonly monitoring methods applied for rodents
(Turchin et al., ; Hornfeldt et al., ; Korpela et al., : Cornulier

et al., ; Kleiven et al., ; Ehrich et al., ). They are cheap, give

7
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reliable information for species identification and give information on indi-
vidual features, like sex, weight and reproductive status, and most import-
antly provide and abundance index, e.g. number of animals caught per
100 trap nights (Oksanen and Oksanen, ). However, snap-trapping
share many of the labour intensive features of CMR-trapping, where traps
have to be set and revisited. Therefore, snap-trapping of rodent are typ-
ically conducted once or twice (to capture the strong seasonality) a year
when applied for long-term monitoring (Ehrich et al., ). Kill traps are
also fraught with both ethical issues (Powell and Proulx, ) and ques-
tionable assumptions regarding sampling errors (Xia and Boonstra, ;
Hanski et al., ). Snap-trapping also has an important limitation in
that it has only rarely been attempted during winter, and these attempts
has most often failed (Bilodeau et al., ). This has lead some research-
ers, especially in high Arctic sites, to use number of winter nests along
fixed transects as an index of winter abundance (Sittler, ). However,
while this density index has been found to correlate moderately well with
rodent density in a high Arctic site (Fauteux et al., ), the method is
not likely to be generalizable to low Arctic, or boreal areas. This because
nests in low-arctic and boreal sites are mainly placed in hollows under-
ground or in dense vegetation making them practically undetectable for
human above-ground observers. Some studies have used signs of activity
(feces or marks of grazing) as an index of abundance (Lambin et al., ;
Vindstad et al., ). This index has been validated in at least one case
(Lambin et al., ), however, while it might work well on some rodent
species that leave clear traces (like e.g. Norwegian lemming and tundra
vole) it is likely to perform poorer on species leaving less traces (like e.g.
gray-sided vole). Some studies have applied incidental observations of
presence/absence (Bowler et al., ) or counts (abundance index) to
monitor the population state of rodents (Fauteux et al., ). However,
again this index is mostly not validated. Both sign-based indices and in-
cidental observations must be heavily confounded with activity. Rodents
may exhibit density-dependent shifts in behavior (Semb-Johansson et al.,

), which may confound such indices. In general, I argue that current

methods available for monitoring of small rodents are poorly validated,
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have low temporal resolution and cannot be used during winter (with the

exception of winter nest surveys in the high Arctic).

Mustelid monitoring
Method Variable Effort | Temporal Refs
scale

Live trapping | abundance | high biannual | Mougeot et al.

estimate ( )
Kill traps abundance | high biannual | King and Powell

index ( )
Snow track- | abundance | medium| annual | Oksanen et al.
ing index ( )
Predated abundance | low annual | Gilg et al. ( )
nests index
Tracking abundance | medium| annual | Graham ( )
tunnels index

TABLE 2. This table list the most common monitoring
methods for small mustelids as well as the typical state vari-
ables they give and the temporal scale they are applied on. I
note, however, that these are just examples and many other
studies using these or similar monitoring methods for small
mustelids exist. To some degree other studies also extract
different state variables and are conducted on different tem-
poral scales then what I display here.

Small mustelids are particularly difficult to monitor, even more so than
small rodents. This is likely because they appear in low numbers (consid-
erably lower numbers than rodents), are patchy, and sometimes unpredict-
ably distributed, the traps are not active for long enough for mustelids to
encounter them, and finally because mustelids actively avoid traps (King
and Powell, : King et al., ). To put it in numbers, King ( )
trapped only five common weasels in a total of 4032 trap-rounds in a de-
ciduous woodland in Britain. Hence, trapping of mustelids with live or
kill traps are only feasible for short intensive efforts and not for long-term
monitoring. Finnish researches therefore developed a snow tracking dens-
ity index by defining fixed transect that would be systematically checked
after every snowfall (Korpiméki and Norrdahl, : Korpimaki et al.,

; Oksanen and Oksanen, ). However, this method has several

9
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weaknesses that should lead us to search for alternatives. First, mustelids
(particularly least weasel) are generally believed to follow rodents in their
tunnels below the snow, which complicates the interpretation of numbers
of tracks at the top of the snow layer (King and Powell, )— the lack of
supranivean activity might actually correspond to more subnivean activ-
ity. Second, it has been shown that the snow conditions affect the relative
presence of mustelids on top of the snowpack and in the sub-nivean space,
further biasing a tracking based density index (Jedrzejewski et al., ).
Furthermore, this method can only be applied in snow-covered areas that
are not too wind affected: heavy wind makes the snow so hard that tracks
cannot be seen. On the barren Arctic tundra, mustelids have been mon-
itored by the help of the ratio of mustelids predated rodent nests (Gilg
et al., ; Gilg et al., ). While this might approximate mustelid
densities in some high Arctic regions, it has, as far as I know not been
properly validated and has the same problems with generalization to other
areas as rodent nests are mainly found in large numbers on the high Arctic
tundra. Furthermore, nest-indexes can only provide yearly abundance in-
dexes masking short-term and seasonal variations. Tracking tunnels have
been used to monitor small mustelids in places and season without snow
(Graham, ). However, when mustelids appear in low numbers, like
they most often do in northern areas, the number of tracking tunnels
needed to obtain reliable estimates will be extremely laborious to operate
(Choquenot et al., ). In addition, abundance indices from tracking
tunnels does not seem to be linearly related their density as estimated
from CMR (Graham, ). To summarize, the monitoring methods that
exist for mustelids in northern areas are either extremely laborious, lim-

ited in what system they can be applied or generally poorly validated.

From the summary of available monitoring methods for small rodents
and small mustelids above, the need for new methods to shed light on the
role of mustelids in driving the rodent population cycles is clear. In gen-
eral, one would need monitoring methods for both rodents and mustelids,
which provide reliable information on population state variables (e.g. pres-

ence/absence and abundance) with a high temporal resolution matching
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that of the assumed interaction with reasonably low labour effort and

costs.

1.3 Population dynamics of rodents in the time of climate

change

The attention given to rodent population fluctuations has in the last dec-
ades been fuelled by emerging evidence of dampening or even disappear-

ing of cycles caused by antropogenic climate change (Kausrud et al., ;

Ims et al., ; Cornulier et al., ). The velocity of climate change
is especially fast (Serreze and Barry, ) and its importance to wildlife
particularly acute in northern regions (Post et al., ). Clear trends are

already seen in both temperature which are increasing and the length of
the snow covered season which is decreasing (Box et al., ). Climate
change is increasing the frequency of extreme weather events (Diffenbaugh
et al., ; Peeters et al., ), where increased frequnecy of phenomen-
ons like rain-on-snow and winter warms spells has been found to have
detrimental impacts on rodent populations as well as on whole northern
food webs (Kausrud et al., ; Gilg et al., ; Hansen et al., ).
Some pathways through which climate might impact northern rodent pop-

ulation are known, like e.g. hardening of the snow which affect the energy

required for locomotion in the snow pack (Poirier et al., ) or formation
of ground ice-layer blocking food plants (Aars and Ims, ; Korslund
and Steen, ). However, climate impacts are complex and predicting

their effects is difficult. For instance recent research implies that climate
impacts might be contingent on which species’ interactions that are most
influential in the food web (Fauteux et al., ). The complexity of pre-
dicting climate effects are also illustrated by the sudden reappearance of
the high amplitude rodent fluctuations Kausrud et al. ( ) predicted
to disappear in the early 2000’s (Wegge and Rolstad, ). I propose
that better monitoring data on rodents and their local abiotic conditions
on fine temporal and spatial scales, especially during the crucial winter
period, will be needed to fully understand the potential pathways through

which climate change will impact rodent population dynamics.
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1.4 The rise of camera traps in wildlife monitoring

Over the last decades, the use of camera traps has seen a drastic in-
crease in ecology as they provide a low-cost and non-invasive alternative
to existing wildlife monitoring methods (Rowcliffe and Carbone, ).
Camera traps provide multiple advancements to previous state-of-the-art
monitoring methods. First, camera traps have the potential to providing
temporally fine-scale observations (Sollmann, ). Second, camera traps
can simultaneously provide data on a whole community of species (Ridout
and Linkie, ). Third, camera traps have the potential to record local
abiotic conditions, either by using additional sensors (e.g. temperature)
or by assessing information in the images themselves (e.g. presence of
snow or water). Camera trap studies have so far focused mainly on large
mammals (Burton et al., ), however a camera trap approach was re-
cently developed to monitor northern small mammal communities, also

underneath the snow during winter (Soininen et al., ).

Camera traps, like any other monitoring method, detect species im-
perfectly. This means that it is possible that a focal species or individual
goes undetected even though it is present. To avoid bias in population
estimates it is crucial to account for this detection process (Chen et al.,

). In state-of-the-art ecological modelling this is most reliably dealt
with using capture-mark-recapture techniques where individual detection
probability can be estimated. These methods do, however, require recog-
nition of individuals, something which is for most species not possible from
camera trap images. Therefore, instead, most camera trap studies choose
to model presence/absence dynamics following the occupancy modelling
framework developed by MacKenzie et al. ( ). In this framework the
detection process is modelled using repeated samplings of the same popu-
lation within a period, where the population is assumed to be closed (no
change in species space-use). In the 20 years since its introduction the oc-
cupancy modelling framework has proven to be an effective way to obtain
unbiased estimates on species distribution. This framework have been ex-

tended and generalized to deal with a broader range of ecological questions
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1.4 — The rise of camera traps in wildlife monitoring

(see Guillera-Arroita, for an overview). As ecologists often are inter-
ested in explaining drivers of species distribution across time, one of the
first extensions of occupancy models was to enable estimation of coloniza-
tion and extinction dynamics over multiple temporal occasions (typically
referred to as dynamic models) (MacKenzie et al., ; MacKenzie et
al., ). As it is well recognised that interspecific interactions play im-
portant roles in driving colonization and extinction dynamics, dynamic
occupancy models were then generalized to deal with multiple interacting
species (Richmond et al., ; Waddle et al., ). Later these dynamic
occupancy models for interacting species have been extended to deal with
more than two species and to enable estimation of covariate effects on

colonization and extinction parameters (Rota et al., ; Fidino et al.,

).
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Thesis Objectives

2.1 Thesis context

This thesis was conducted as a part of the long-term monitoring program
Climate-ecological Observatory for Arctic Tundra (COAT) (see www.coat.no
and Ims et al. ( )). COAT is an adaptive, ecosystem-based observation
system established aiming to unravel how climate change impacts Arctic
tundra food webs. COAT applies a multi-dimensional monitoring system
with multiple modules each centered around a food web compartment par-
ticularly important to the functioning of the food web or with high societal
impact. At the core of each module is a conceptual model illustrating po-
tential climate change and management impact pathways. As has been
described in detail in the introduction, the population dynamics of small
rodents are central to the functioning of most tundra food webs. Small
rodents are therefore an important monitoring target of COAT, making
them the center of one of the COAT modules. The conceptual model for
the small rodent module incorporates climate impacts and interactions
with specialist predators (i.e. small mustelids) as key targets for the mod-
ule (Fig. 2.1).

In monitoring of the state variables in the conceptual models, COAT
aims to apply an adaptive monitoring framework where improved know-
ledge or emergence of new technology or statistical methodology will lead
to updated monitoring protocols (see Fig. 2.2). This thesis was conducted
during the late implementation phase of COAT, as a part of the COAT
tools + project. The overarching aim of COAT-tools + is to combine new
monitoring technology with development of beyond state-of-the-art stat-
istical methods to provide better monitoring of state variables in COAT.
With this context, the aims of this thesis are described below.

14
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FiGURE 2.1. Conceptual model of the small rodent mod-
ule in COAT. It displays potential climate and management
impact pathways on small rodents at the same time as de-
scribing the most important food-web interaction affecting
population dynamics of small rodents. The assumed relat-
ive importance of the different relations and interactions is
proportionate to the boldness of the arrows. The figure is
reproduced from Ims et al. ( ) with the permission from
the authors.
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FI1GURE 2.2. Figure describing the adaptive monitoring ap-
proach and specifically illustrating the implementation of
new technology and methods. The figure is reproduced from
Ims et al. ( ) with the permission from the authors.
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2.2 Thesis aim

In this thesis I will assess the applicability of novel camera trapping tech-
nology to improve the monitoring of small rodents on the Arctic tundra.
This will be combined with the development of a novel statistical frame-
work for modelling of predator-prey interactions from camera trap-based
population monitoring. This will be done by answering the following four

questions:

Can camera traps provide reliable estimates of occupancy dynamics of
northern rodent populations on an extensive spatial scale also during the

long Arctic winter?

To answer this questions we do, in study I, the first extensive-scale
assessment of technical functionality of the tunnel camera traps of Soin-
inen et al. ( ) under harsh environmental conditions on the low Arctic
tundra and investigate the camera traps ability to provide reliable inform-

ation on the Arctic small mammal community.

Can camera trap data be used to study the interactions between predators
and prey that operate on two different spatial scales within the occupancy

modelling framework?

As interacting species in general, and predators and their prey in par-
ticular, often operate on different spatial scales monitoring programs fo-
cused on interacting species might be conducted on nested spatial scales.
In study II, we will combine the frameworks of dynamic occupancy models
for interacting species with multi-scale occupancy models by developing a
dynamic occupancy models for interacting species with two nested spatial
scales. We will further assess the reliability of the model in producing un-
biased estimates of a simulated predator-prey interaction under different

occupancy and detection scenarios.

What role does mustelids predation play on local and regional scale coloniz-

ation and extinction dynamics of rodents and how does this predator-prey
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interaction vary in space and time?

Camera traps gives a unique opportunity to pin-point the assumed
key mechanisms underlying rodent cycles. In study II we apply the dy-
namics occupancy models for interacting species with two spatial scales to
COAT’s spatially hierarchical camera trap-based rodent-mustelids data-
set. In study III we investigate in more detail, and with more data,
whether the mustelid-rodent interaction differ between seasons and hab-
itats.

Can camera trap counts provide a reliable index of abundance for rodents?

Even though occupancy dynamics has been used to answer a wide
range of ecological questions, it is less informative than studying abund-
ance dynamics. We will therefore in study IV perform a calibration study
by comparing camera trap-based species counts to density estimates de-
rived from capture-mark-recapture (CMR) to investigate the potential of

camera traps to provide a reliable index for abundance of small rodents.
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Methods

3.1 Study area

The studies in this thesis were all conducted in northern Norway. Study I-
1T were conducted in COAT’s long-term monitoring sites on the Varanger
Peninsula in the Norwegian low-Arctic (70 °N and 27-30°E, Fig 3.5). The
Norwegian low Arctic tundra consists of hilly plains dominated by dry
dwarf shrub heaths (mostly common species are Empetrum nigrum, Vac-
cinium spp. and Betula nana) carved by river valleys and occasional mesic
hummock tundra and mires with lusher vegetation and snowbeds domin-
ated by mosses. The river valleys are dominated by willow thickets and
particularly lush grasslands, while mesic hummock tundra and mires have
high abundance of sedges and herbs. The Norwegian low-Arctic food-web
is described in detail by Ims et al. ( ). Study IV is conducted in the
forest-tundra transition zone, which is characterized by mountain birch
forest with understory vegetation dominated by dwarf shrubs intermixed
with grasses and herbs (Fig. 3.6). Both the tundra and the forest-tundra
transition zone exhibit strong environmental seasonality with long snowy

winters lasting 6-8 months.

3.2 The small mammal community

The Norwegian low Arctic tundra is inhabited by three rodent species:
the Norwegian lemming, gray-sided vole (Myodes rufucanus) and tundra
vole (Microtus oeconomus) (fig. 3.3). They all differ in their preferred
habitat and diet. The Norwegian lemming is assumed to spend the sum-
mer in moist hummock tundra sites and move to snowbed sites during
winter (Aho and Kalela, ; Koponen, ) (Fig. 3.4). During sum-

mer tundra voles co-occur with Norwegian lemmings in hummock tundra
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3.2 — The small mammal community

Norwegian lemming

Gray-sided vole Least weasel

Ficure 3.3. Camera trap images showing Norwegian lem-
ming (upper left), gray-sided vole (lower left), stoat (upper
right) and least weasel (lower right) captured by COAT’s
long-term monitoring system for small mammals on the
Varanger peninsula.

sites (Tast, ), in addition to frequently inhabiting grassy meadow
sites (Henden et al., ). The dwarf-shrub dominated vegetation both
in the tundra and the mountain birch forest is the primary habitat of the
gray-sided vole (Viitala, ). In addition to rodents, the small mammal
community on the low Arctic tundra also consist of shrews (the common
shrew Sorex araneus, masked shrew Sorex caecutiens and pygmy shrew
Sorex minutus). The insectivorous shrews are ecologically very different
from small rodents and their interaction with small mammals predators
are debated, where some have suggested that shrews are not a preferred
prey (Korpiméki, : Korpimaki and Norrdahl, ). In addition two
species of small mustelids are present: the least weasel (Mustela nivalis)
and stoat (M. erminea). Both the least weasel and the stoat are con-
sidered to be specialized predators on small rodents, still there are some
species specific differences which might impact their interaction with ro-
dents. The least weasel is in general considerably smaller than the stoat,
however a large sexual dimorphism in body weight in both stoats and least
weasels still cause overlap in body size between the two species (King and

Powell, ). Furthermore, least weasels are known to reproduce up to
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three times a year (Sundell, ), increasing the potential for rapid shifts
in population size. The stoat on the other hand has delayed implanta-
tion, which only make them able to reproduce once a year, lowering the
potential for a quick increase in population size (King and Powell, ).
The small mammal community in the northern birch forest is very similar
to the one on the nearby low Arctic tundra. The main difference is that
the most Arctic rodent species, the Norwegian lemming is only present in
the northern birch forest during the peak phase of their population cycles

when they disperse from the nearby tundra.

Snowbed Hummock tundra

FIGURE 3.4. Images of two example sites with camera-
tunnels. On the left in a snowbed site and on the right
in a hummock tundra site. The camera tunnels are covered

by stones to avoid drifting snow from entering the tunnel
and block the view of the camera (see discussion on this
study I).

3.3 Study design

Camera traps

The camera trap-based small mammals monitoring system in COAT
is applying the tunnel camera traps presented by (Soininen et al., ).
The key feature of this camera trap is that it applies an artificial tunnel,
with small opening in each end with a larger cavity in the middle. Similar
natural cavities are frequently used by rodents and mustelids. The cam-

era has a wide-angle lens focused for photographing objects at relatively
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3.3 — Study design

close range. The camera trap also has a wide-angle passive-infrared (PIR)
detection sensor with a detection zone covering the whole tunnel, hence
any animal entering the tunnel will trigger the camera. The cameras are
set to capture two images every time they are triggered, and can only be

triggered once per minute (i.e. 1 minute quite time after a trigger event).

Spatial design of COAT’s long-term small mammal monitoring

(study I-11I)

Studies I-11I use data from COAT’s camera trap-based long-term mon-
itoring system for small mammals on the low Arctic tundra. This monit-
oring system targets the two preferred habitats of the Norwegian lemming
(i.e. hummock tundra and snowbeds). Snowbed sites were selected to
include relatively rich vegetation consisting of mosses, graminoids, herbs
and prostrate shrubs (Saliz herbacea and Vaccinium spp). In addition, the
snowbed sites was chosen to be in proximity of boulder fields that provide
shelter to small mammals (Magnusson et al., ; Soininen et al., ).
Hummock tundra sites were moist, bordering mires with lush vegetation
containing sedges, herbs and erect shrubs (e.g. Betula nana, Vaccinium
spp.) as well as hummocks providing shelter. Even though the monitor-
ing targeted the Norwegian lemming, small mustelids (i.e. least weasel
and stoat), voles and shrews are also commonly observed. To account for
the contrasting movement ranges of mustelids and rodents the monitoring
design includes two nested spatial scales (Fig. 3.5). Sites (i.e. camera
traps) are spaced > 300 m apart and clustered in blocks, which again
are spaced > 3000m apart. The sites are assumed to yield independent
occupancy measures of rodents (i.e. different cameras should not overlap
the home range of the same rodent individual) (Ims, ; Andreassen
et al., ). In contrast all sites within the same block could poten-
tially be within the home range of the same mustelid (Hellstedt and Hent-
tonen, ). Hence colonization-extinction dynamics of mustelids on the
site-scale will represent within home range movements, like e.g. foraging
movements. The blocks are assumed to give independent measurement of
mustelid occupancy. For rodents, colonization-extinction dynamics on the

block scale will represent more their landscape-scale population dynamics.
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snowbeds. Figure reproduced from paper III with permis-
sion from the authors.

Spatial design of calibration study (study IV)

In study IV we took advantage of two existing long term monitoring-
series of rodent population dynamics obtained from multiple CMR trap-
ping grids in the mountain birch forest. One of the time-series focused on
the gray-sided vole (region Porsanger) and the other on the tundra vole
(region Hakgya) (see Fig. 3.6).

These are the two numerically dominant species of voles in the moun-
tain birch forest and on the low Arctic tundra in northern Norway. In
the beginning of the work with this thesis, in fall 2017 (Hakgya) and
spring 2018 (Porsanger), we deployed one tunnel camera trap within each
live trapping grid in both regions. These were maintained and checked
yearly and live trapping conducted 3 and 5 times a year respectively for
Porsanger and Hakgya. We used data from deployment in spring 2018 to
end of 2020, to make sure that we covered all phases of the small rodent

cycle.
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18.83°E 24.5°E

FIGURE 3.6. Maps of the CMR grids with camera traps
used in study IV. Black circles represent CMR grids. Figure
from paper IV with premission from the Authors.

3.4 Data analysis
Study I-111

In study I-III we used data from COAT’s long-term monitoring of small
mammals to model occupancy dynamics. Study I used data from autumn
2014 to summer 2015, which was the first year of camera trap-based small
mammal monitoring in COAT. During this initial year, much was learned
about camera placement to avoid malfunctioning of cameras (see details
about this in paper I). Hence, most camera traps were relocated accord-
ingly during summer of 2015. Hence, the dataset from summer 2014 to
2015 is limited in ecological information and not directly comparable to

the following years. We applied a dynamic single species occupancy model
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to test the ability of the data from COAT’s tunnel trap to provide occu-

pancy estimates for lemmings, voles and shrews during winter.

For study II we extended the existing occupancy modelling framework
for interacting species (Rota et al., ; Fidino et al., ) to be able
to account for the spatial hierarchical study design in the small mammal
monitoring in COAT (see study II for a detailed description of the model).
In a case study, to demonstrate the real-world applicability of the model,
we analysed COAT’s small mammal data collected from summer 2015 to
summer 2019. As this model is considerably more complex compared to
the model used in study I, we lumped the three rodent species and the two
mustelid species to two functional groups (i.e. predators (mustelids) and
prey (rodents)). We did not model any covariate effects on colonization
or extinction probability, but did include a season effect on the detection
probability of both functional groups. We did check the model perform-
ance by conducting a prior sensitivity analysis, parameter identifiability

analysis as well as assessing the goodness-of-fit.

The same model was again applied in study III. This time we analysed
data from COAT’s small mammal monitoring from summer 2015 to sum-
mer 2021. We still used the same functional groups as in study II. We
now focused on the estimation of the effect of one temporal (season) and
one spatial (habitat) covariate on the colonization and extinction probab-

ilities, while accounting for the seasonal effect on detection probability.

It be noted that the seasonality covariate differ between study II and
study III. In study II we used temperatures measured in the camera traps
to estimate beginning and end of winter, while we in study III defined the

winter to be between 1sth of November and 1sth of July.

Study 1V

In this study IV, we assess the adequacy of using camera-trap-based
abundance indices, from the camera tunnels developed by Soininen et al.

( ), for monitoring population dynamics of the gray-sided vole and
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3.4 — Data analysis

the tundra vole. We performed a calibration-regression analysis, with the
camera trap-based indices (CT-indices), based on number of photos of
a given species from single camera traps, as the exposure variable and
CMR-based abundance estimates as the ground-truthing variable. In the
case of tundra vole, for which several camera traps and grids were located
within the same local population (Fig. 3.6), we assessed if aggregating
data over several camera traps and grids could improved the fit of the
calibration regression. As the camera traps provide continuous-time data,
we assessed which temporal discretization of the data that gave the best
calibration results (i.e, maximized the R?). In addition, we performed

inverse prediction to estimate vole abundance using the best CT-index.
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Results and discussion

4.1 Study I

Study I represents the first large scale application of camera traps to estim-
ate population parameters (i.e. occupancy state) of within a small mam-
mal community. We learned that the micro-scale location of the traps was
very important to assure best possible year-round technical functionality
of the tunnel-trap developed by (Soininen et al., ). In particular, we
found it necessary to avoid placement of camera tunnels in small depres-
sions. At the same time camera tunnel entrances have to be appropriately
sheltered to avoid snow from drifting into the open cavity of the tunnel
blocking the camera lens. We give recommendations on how to avoid
these problems, which we later have successfully implemented in COAT.
On the other hand, we did not experience problems with frost, which has
recently been reported from a camera trapping study on the High Arctic
tundra (Pusenkova et al., ). This might be because our low-Arctic
study area lacks permafrost and has a thick snow cover in winter (up to
4m thick (Soininen et al., )). The functional camera traps recorded
Norwegian lemmings, gray-sided voles, tundra voles, shrews and mustelids
both during the snow-free and snow-covered period. The mustelid record-
ing in this pilot study, however, were too few for occupancy modelling. For
the three rodent species and shrews (the latter combined in one functional
group), we were able to estimate weekly occupancy and detection prob-
abilities. Estimated occupancy of both the rodents and shrews decreased
at the onset of winter, but quickly stabilized at low to medium occupancy
rates, before they increase following snow-melt in the spring. Regarding
the estimated detection probabilities, shrews generally had lower detection
probability than rodents and snow did not seem to have large negative ef-

fects on the detection probabilities. This suggests that camera traps can
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be used to monitor occupancy of small mammals, including under the
snow during the long Arctic winters. The latter, is particularly important
as monitoring of small mammals in the sub-nivean space previously has

not been possible (Bilodeau et al., ).

A additional feature of camera traps is their ability to record not only
biotic information (e.g. species presence), but also local-scale abiotic in-
formation on a fine temporal scale. In Study I, we demonstrate how in-
formation about the local-scale environmental conditions can be extracted
from the images (e.g. presence of snow or water) as well as the temper-
ature recorded by a sensor in the camera. This is particularly promising
as local environmental conditions can cause both direct and lagged effects
on populations processes, which is still often ignored in studies of small

mammal ecology (Hallett et al., ).

4.2 Study II

We were able to successfully develop and validate a dynamic occupancy
model for interacting species with two spatial scales, which was inspired by
both the model for interacting species by Fidino et al. ( ) and the dy-
namic multi-scale occupancy model by Tingley et al. ( ). The model
performed well in retrieving unbiased parameter values in a simulation
study with varying scenarios of occupancy and detection probabilities.
The contrasted scenarios in the simulation study attempted to investigate
the data requirements of the spatially hierarchical occupancy model where
parameter values were chosen according to previous knowledge from occu-
pancy studies (Specht et al., ) and what could be expected about the
parameters from a predator-prey interaction. When applying the model
to the spatially hierarchical COAT monitoring dataset on rodents and
mustelids, we found that the site-level extinction probability of rodents
drastically increased when mustelids were present. Unfortunately, two
block-level parameters (extinction probability of mustelids and coloniza-
tion probability of rodents when mustelids were present) appeared to be
unidentifiable based on the COAT dataset (using data from 2015-2019).

This can be explained by the large amount of missing observations, strong
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seasonality in addition to multi-annual population fluctuations and low
detection rates of the two functional groups. Furthermore, the fact that
it is only the block parameters that appear to be unidentifiable can be
explained. All observations come from the site-level, with the block-level
parameters thus depending on the reconstruction of two latent states.
Also, the nested study design implies that there are more sites than blocks,
providing more data to estimate the site-level parameters than the block-
level parameters. Considering the complexity of this model, it is likely
to require large datasets to be able to identity all parameters. Hence we
suggest that the challenges with parameter identifiability might be solved
with more data. This was in fact later confirmed by study III were we

have two more years of data.

On a more self-critical note, the identifiability issues we meet in the
real world case study might indicate that the scenarios in the simulation
study did not challenge the model enough in terms of detection rates
and temporal heterogeneity in the data. Indeed, hierarchical occupancy
models are becoming increasingly complex, however only seldom the exact
data requirements of these models are assessed. See further discussions

on more aspects on hierarchical occupancy modelling in section 5.1.

4.3 Study III

In study III we apply the dynamic occupancy model for interacting spe-
cies with two spatial scales developed in study II to a temporally ex-
tended dataset from COAT’s small mammals monitoring system (Fig.
4.7). Based on this almost 6-year dataset, which included two decrease
phases of the rodent cycle, we investigated if the strength of the inter-
action between rodents and mustelids differed between two seasons (i.e.

summer and winter) and habitats (i.e. hummock tundra and snowbed).

We found clear empirical evidence of a strong predator-prey interaction
between rodents and mustelids, where mustelids increased the extinction
probability of rodents on both the local spatial scale of sites (matching

the home range size of rodents) and larger scale of blocks (matching the
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home range size of mustelids). Furthermore, we found a clear habitat de-
pendency in the strength of the rodent-mustelid interaction in the sense
that it was most pronounced in the snowbed habitat. While it seemed
that the interaction was slightly stronger during summer than during the
winter, the habitat effect was considerably stronger and more prevalent
than the season effect. It should however, be noted that the analysis may
not have been able to account for the profound seasonal transitions in the
observed occupancy rates of mustelids, which did not match well our fixed

definition of summers and winters (Fig. 4.7).
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FiGURE 4.7. Temporal patterns in the proportion camera
traps sites with weekly records of rodents (black lines) and
mustelids (grey lines) in hummock tundra and snowbeds.
Pale green background denote summer seasons (July 1-
November 1), while the pale blue background denote the
winter season.

The result of this study, should be seen more as a first glance into as-
pects of mustelid-rodent interactions that conventional monitoring meth-

ods have not been able to uncover, rather than giving definitive answers
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about the role of mustelids in generating population cycles in rodents. In-
deed, there are several limitations to this study. First, it only included
approximately only one and a half rodent cycle, which is problematic as
rodent cycles are known for being inherently variable both in terms of
amplitude and shape (Kleiven et al., ). Second, the study covered
only two tundra habitats (i.e. snowbeds and hummock tundra) and not
the more productive river valleys and tundra-forest transition zones, which
may be important winter habitats for mustelids (Oksanen and Oksanen,

; Aunapuu and Oksanen, ). Third, local environmental condi-
tions (e.g. physical snow properties) appear to be important determinants
of space-use of rodents and mustelids during winter (Jedrzejewski et al.,

; Poirier et al., ). Unfortunately, due to a lack of reliable local
scale environmental information and a too sparse dataset to include addi-
tional covariates, we were not able to model such effects. Finally, the fixed
definitions of seasons in this study may not have adequately accounted for
the seasonal variation in environmental conditions affecting rodents and
mustelids. Despite these limitations, the spatio-temporal variability in in-
teraction strength between rodents and mustelids revealed by this study
may have significant bearings on how mustelid affect the population dy-
namics of Arctic rodents (Sih, ). Overall, our study highlight the
ability of camera trap-based monitoring systems to provide novel insights
about an ecological phenomenon that have been out of reach of previous

monitoring methods.

Future camera-trap studies that include more tundra habitats and span
multiple rodent cycles are needed to work out the full role mustelids may
potentially play in the generation of the population cycles of northern
rodent populations. Such empirical studies should be accompanied by
theoretical studies that assess the potential consequences of habitat- and

season dependency in the interaction between mustelid and rodents.

4.4 Study IV

Overall the results from the index calibration in study IV show that cam-

era traps have the ability to provide a reliable abundance index for both
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the gray-sided vole and the tundra vole. For the gray-sided vole, a single
camera trap was able to provide a reliable abundance index when tem-
porally aggregating camera trap counts over only 5 days. However for
the tundra vole, abundance indices based on single camera traps per-
formed much more poorly. It was needed to aggregate camera count
over four camera traps within the same local tundra vole population to
obtain a good correspondence between the camera-trap indices and the
CMR-based abundance estimates. This difference is likely attributed to
species differences in spatio-social organization of the vole populations
(Tms, ; Bondrup-Nielsen and Ims, ). Female territoriality makes
gray-sided voles more evenly distributed in space, while tundra vole fe-
males have spatially clustered kin-groups that are temporally unstable, as
tundra vole females frequently shift home range, also within a breeding
season (Tast, ). We suggest that the improved calibration perform-
ance in case of the tundra vole was obtained when aggregating the data
over four local monitoring sites are caused by the smoothing out of this
temporally fast and spatially small-scaled variability. This species differ-
ence stress the importance of conducting such calibration studies when
applying new monitoring methods to new species. This is also interesting
in the context of a more general discussion on index calibration studies.
Index calibration is particularly challenging when true species abundance
is not known (which is the case for most wildlife populations) as the er-
ror of the population abundance estimate (i.e. the ground-truth variable)

may not be negligible (Gopalaswamy et al., ).

It is important that camera traps can produce ecologically relevant
information on species abundance based on appropriate study design (i.e.
temporal and spatial replications). While it is true that many ecological
questions can successfully be studied by the use of presence-absence dy-
namics, some questions can only be answered using more informative state
variables (like abundance). The approach of analysing predator-prey in-
teraction between mustelids and rodents with occupancy models (study II
and III) illustrated this point. With occupancy models one has to assume

that mustelid predation is sufficient to drive rodents into either local or
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regional extinction. Furthermore, one has to assume that the presence
of rodents is enough to drive mustelid colonization. However, mustelids
might in fact impact rodent populations by reducing their abundance,
without driving them to local or regional extinction. It is also possible
that it is not the presence of rodents, but rather their abundance that af-
fect the colonization probability of mustelids. Although as one zooms into
smaller and smaller spatial scales, local abundance eventually transforms
into presence-absence of single individuals. The site-scale considered in
studies II and III is typically a little larger, as it potentially could include

overlapping home ranges of several rodent individuals.

For these reasons I really think that the possibility of studying pop-
ulation dynamics of rodents by means of calibrated abundance indexes
derived from camera traps will greatly improve our knowledge about ro-
dent population dynamics and how such dynamics is affected by biotic

and abiotic factors.
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4.5 Challenges with complex hierarchical occupancy models

After being presented to the ecological community 20 years ago (MacK-
enzie et al., ; Tyre et al., ), occupancy models have been widely
adopted by ecologists and generalized to answer a wide range of ecological
questions (Guillera-Arroita, ). Occupancy models have been fitted
both in a frequentist framework, using maximum likelihood (MacKen-
zie et al., ) and penalized maximum likelihood methods, and in the
Bayesian framework (Royle and Kéry, ). Today a range of methods
are available for Bayesian model fitting, where Markov Chain Monte Carlo
(MCMC) simulations are likely the method most frequently used by eco-
logists. MCMC-simulations provide a full probability distribution for the
estimated parameters (i.e. posterior distribution). Further, the Bayesian
framework allow for inclusion of prior knowledge by including prior distri-
butions for model parameters. The Bayesian framework is more flexible
and is therefore often preferred by ecologists over the frequentist approach
when performing non-standard statistical analysis (Clark, ; Dorazio,

). I find that ecological data have a tendency to be messy in terms of
often containing various dependency structures, indirect observations and
unaccounted for confounding factors. Hence, ecological data are rarely as
clean as standard statistical methods typically assume. Context depend-
ence (Catford et al., ), spatial autocorrelation (Johnson et al., )
and complex detection processes (Royle, ) are only a small subset of
the challenges one might meet when analysing ecological data. Therefore,
I find the need for case specific model modifications to be the rule rather
than the exception in ecological data analysis. Ecological datasets are
often relatively small as data collection often is laborious and expensive.

Another advantage with Bayesian inference is that it is theoretically valid
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at any sample size. However, even though inference might be theoret-
ically valid when there is little information in the data, more emphasis
is given to the prior distribution (Dorazio, ). Hence, these sparse
datasets often hamper the use of complex statistical models, therefore I
see ecological data-analysis as a trade-off between accounting for the most
prominent sources of bias, while at the same time avoiding models that

are too complex for the data.

The advantages of now being able to fit complex Bayesian occupancy
models, however, do not come without costs, which I have experienced
in the work with this thesis. When models are extended with additional
model parameters, typically the data requirements of the models also in-
crease. This is can be problematic as ecological datasets often are rel-
atively small. This is well demonstrated in this thesis. In study II, two
block level parameters (extinction probability of mustelids and coloniza-
tion probability of rodents when mustelids were present) in the spatially
hierarchical occupancy model were unidentifiable from the COAT data-
set from 2015-2019. However, when adding two more years to the dataset
(2019-2021), which we did in study II1, all block level parameters appeared
to be identifiable. We note that while the COAT dataset appears to be
relatively large seen in number of primary occasions it is poorer in term
of actual species observations, in particularly so for the mustelids which

are rare and elusive.

The opportunity to include prior information in the Bayesian frame-
work is rarely taken by analysts of ecological data (Northrup and Gerber,
). This has been criticised, as e.g. Lemoine ( ) argue for the

use of weakly informative priors. Moreover, prior distributions have to be
specified carefully as even seemingly uninformative priors can have large
unintended effects on the estimated posterior distributions (Seaman and
Stamey;, ). Another important challenge with complex hierarchical
models analysed in a Bayesian framework is the lack of general methods
for model checking. This has led ecological data analysts using complex

occupancy models to most often ignore model checking (Conn et al., ),
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in stark difference to for example capture-mark-recapture models (Gime-
nez et al., ). To address these challenges in study II we performed a
prior sensitivity analysis demonstrating that the model estimates were not
sensitive to the prior distributions chosen (except for the two parameters
we deemed to be unidentifiable). In addition, we extended on a model
checking procedure proposed by Kéry and Royle ( ) for single species
dynamic occupancy models with one spatial scale. To apply this approach
we had to consider the two species (rodents and mustelids) separately and
ignore the the two nested spatial scales in our data. We did a simple check
of the applicability of this approach by first applying it to the simulation
study from study II. Even though this is discussed briefly in the appendix
of study II, I want to stress that this is not an extensive validation of this
model checking procedure. The limitations already mentioned, e.g. ignor-
ing the nested spatial structure, are likely to affect the performance of the
model check. More work will definitively be needed to develop and valid-
ate reliable model checking methods for complex hierarchical multi-scale,

multi-species occupancy models, and similar complex occupancy models.

A limitation with MCMC-methods is that they are often computation-
ally intensive. For complex hierarchical models and large datasets this can
often lead to long run times. For instance, the model in study III uses a
week to run despite paralleling the separate chains (multiple chains are
necessary to assess convergence in MCMC methods) of the MCMC ana-
lysis on separate cores when analysed using JAGS (Plummer, ). For
other models and datasets it can be considerably longer. I note that more
computationally efficient methods for analysis of hierarchical models in
the Bayesian framework are available (e.g. NIMBLE (de Valpine et al.,

) and Stan (Stan Development Team, ))-

4.6 Estimating detection probability in the occupancy

framework

An important reason why occupancy models were so quickly adopted by

the ecological community is their ability to account for imperfect detection
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in a practical and theoretically sound way. In the initial occupancy mod-
els detection probability was estimated from the pattern in multiple in-
dependent replicated observations (secondary occasions) of detection and
non-detection at the same location within a time period where the focal
population is assumed to be closed for changes in occupancy (i.e. primary
occasion) (MacKenzie et al., ; Tyre et al., ). This is not entirely
unproblematic in many ecological studies. Most populations are in fact
not closed for the time periods typically considered in occupancy studies
(7 days to 3 months) (Rota et al., ). If the closure assumption is not
valid because species randomly move in and out of the area, the estim-
ated occupancy can be considered as species activity to avoid unbiased
ecological inference (Mackenzie, ; Latif et al., ). If the changes
in occupancy during a primary occasion are non-random they can poten-
tially lead to both positively and negatively biased occupancy estimates
(Rota et al., ; Hines et al., ; Kendall et al., ; Otto et al.,

). Which implications may this have for the studies presented in
this thesis? Space-use of mustelids on the tundra is poorly understood.
However, mustelids are known to cover large areas and frequently shift
foraging grounds. Furthermore, they exhibit seasonal changes in space
use, driven both by snow conditions, but also by their seasonal breeding
cycle (Hellstedt and Henttonen, ). In addition they are both rare
and elusive (King and Powell, ). This makes the weekly closure as-
sumption unlikely to be a good approximation, at least for mustelids, with

unknown consequences.

Furthermore, while we see a sharp decrease in the observed presence
of both our functional groups (i.e. rodents and mustelids) at the begin-
ning of every winter followed by a sharp increase around the beginning of
every summer, the difference in the estimated detection probability both
of rodents and mustelids is relatively small between summer and winter.
Especially the sharp increase in observed presence in the spring, when
most rodents have not yet started to reproduce, cannot be caused by a
sharp increase in population size. We cannot completely rule out strong

seasonal migration as a potential cause, as we do not cover all tundra
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habitats. Still, I find it quite plausible that at least a part of this sharp
seasonal shifts in observed presence are caused by seasonal changes in the
ecological interpretation of the occupancy measure (see Lele et al. ( )

for general discussion).

Replicated measures (i.e. secondary occasions) that are fully inde-
pendent can be difficult to obtain, especially so when they should be close
in time to avoid breaking the closure assumption. In addition, also re-
peated primary occasions (period within which closure is assumed) might
be close in time. Many camera trap studies collect data in continuous
time before arbitrary split them into primary and secondary occasions,
which then often abut each other in time (see for e.g Bischof et al. ( ),
Davis et al. ( ) and Kass et al. ( ), see Sollmann ( ) for fur-
ther discussion of temporal dependencies in continuous camera trap data).
Further, the requirement of temporally replicated observations limits the
possibilities to model temporally fine-scaled processes. To illustrate the
issue with independent sampling, think about the continuously sampled
camera trap data from the small mammal monitoring in COAT which
this thesis is based on. We have tried to obtain temporally independ-
ent secondary occasions by considering ecologically reasonable temporal
windows (i.e. treating each day as a secondary occasion, as rodents have
a circadian rhythm). In addition we have set the length of the primary
occasion to match the expected time scale of the mustelid-rodent interac-
tion. This is in itself particularly challenging as population dynamics of
rodents and mustelids happen on different temporal scales. Furthermore,
both secondary and primary occasions do still abut one another. This
is clearly problematic. However, when data is continuously sampled, the
only way it can be avoided in the classical occupancy framework is to leave
out data. While that may make the modelling more theoretically sound,

it will also drastically reduce the amount of data available.
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4.7 Mechanistic interpretation of occupancy model parameters

Most of the theoretical understanding on predator-prey interactions in
general, and the mustelid-rodent interaction in particular, comes from the-
oretical models focusing on population size (Hanski, ; Turchin et al.,

; Turchin and Hanski, ; Turchin and Batzli, ). These mod-
els generally consider global rodent and mustelid populations and assume
population processes to be spatially homogeneous. This contrasts dynamic
occupancy models, which are frequently used for empirical investigation of
predator-prey interactions (e.g. Magle et al. ( ), Bischof et al. ( )
and study II and III in this thesis). Dynamic occupancy models apply
the theoretical metapopulation framework (Hanski, ), by analysing
spatially explicit patterns in local colonization and extinction. Hence, the
link between the findings from theoretical mustelid-rodent models focused
on population size and dynamic occupancy models focused on local col-
onization and extinctions is not clear. In an attempt to close this gap

we extended on the basic theoretical mustelid-rodent model from Hanski

et al. ( ). The basic model can be defined as follows:
dN N CNP
— = - = - 4.1
a - (1 K) D+N (4.1)
dpP QP
— =sP (11— — 4.2
i = (1-%) 4

Where the parameters are defined in table 3.

Parameter Verbal description
Rodent population density
Mustelid population denisty
Rodent intrinsic rate of increase
Mustelid intrinsic rate of increase
Carrying capacity for rodent
The maximum predation rate
Mustelid’s attack rate
Constant related to carrying capacity of mustelid
Number of blocks (i.e. rodent sub-populations)
Rate of migration

LWOTaAR® 3 w2

TABLE 3. Verbal definition of parameters of Eqs 4.1-4.4.
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We assumed four separate rodent sub-populations with a small pro-
portion of density-dependent migration between the sub-populations (de
Roos et al., ). All rodent sub-populations interacted with a global
mustelid population. The individual mustelids are assumed to be dis-
tributed in the rodent sub-populations according to their relative sub-
population size. Further we added seasonality in population growth rates

according to Turchin and Hanski ( ). This gave the following model:

N,
dN; rN? CNiﬁP L
f . 1 B . 2 t Ni _ i i=1*'1 _ d NZ - — Nz 43
o ri (1 — e sin(2nt)) K; D+ N; B; o
P P
1P _ 1 sinomn) P s%_ (4.4)

The model resulted in predator-prey population cycles, similar to what
is typically observed in rodents. We further tried to mimic the assumed
detection process from the camera traps in COAT small mammals monit-
oring on the Varanger Peninsula (described in detail in section 3.3). First,
we assigned individual rodents and mustelids to the area covered by single
camera traps within each sub population (site). Then, individuals present
at a site could be detected by the camera trap on a given day according
to a species-specific detection probability. We then used this theoretical
model to simulate a 10 year dataset from 12 camera trap sites in 4 blocks.
This data was analysed by the use of the dynamic occupancy model for

interactions species with two spatial scales.

Connecting the two frameworks was challenging. First, we realised
that while the mechanistic model produced detection probabilities of indi-
viduals, these had to be translated into probabilities of detection of each
species. When this was implemented, we then realised that the weekly
closure assumption of the dynamic occupancy model required us to switch
to a mechanistic model with constant state variables during a single week.
When this new feature was again implemented, we were finally able to es-
timate detection probabilities but block-level colonization and extinction

probabilities were not identifiable. Why exactly is still unclear. Site-level
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probabilities were identifiable, but the signature of predator-prey inter-
actions was almost invisible (e.g. €4 p was barely under €4). One diffi-
culty with the differential equations framework is that it rarely translates
into extinction at block level, which is nonetheless required for estimating
block-level parameters. It is a bit unclear why site-level parameters are so
uninformative when fitted on the mechanistic model, but it might well be
that local extinction is still too rare and that the continuous state vari-
ables N; and P;, even when sampled stochastically through multinomial or
Poisson variables, have increases that do not quite resemble the coloniza-
tion process in the statistical, dynamic occupancy model. In other words,
the occupancy model resembles more a metapopulation framework than
the local population framework of differential equation models. We have
considered increasing the quantity of environmental stochasticity to have
more frequent colonizations and extinctions, but perhaps a mathematical
framework where these happen naturally would be better, like a probab-
ilistic cellular automata (which in some cases can be related to classical
differential theory, e.g. Hosseini ( )). It would, however, be a much
larger endeavour to do this in the spatially hierarchical setup described in
this thesis.
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The work presented in this thesis provides recommendations for max-
imizing the technical functionality of year-round small mammals camera
tunnels on the Arctic tundra. In addition, we have extended state-of-
the-art dynamic occupancy models for interacting species to account for
the two nested spatial scales applied in the small mammal monitoring of
COAT. Together, the temporally highly resolved camera trap data and
the novel statistical methods show that mustelids increased rodents ex-
tinction probability on a local and a regional spatial scale. Furthermore,
we were able to demonstrate a clear habitat dependency in the strength of
the mustelid-rodent interaction. Further we have validated the perform-
ance of camera trap-based indices to assess abundance dynamics of two
common species of rodents in Fennoscandia. We show that camera traps
give reliable population estimates given that the right species-specific pre-

cautions (e.g. temporal and spatial aggregation) are taken.

Related to the conceptual model centered on rodent population dy-
namics in COAT, study II and III have directly improved ecological know-
ledge on the interaction between rodents and their specialist predators (i.e.
the mustelids). Furthermore, the methodological framework developed in
this thesis have paved the way for future analysis. So, when the time
series from the COAT monitoring grow longer, encompass multiple rodent
cycles as well as being extended to more tundra habitats, a lot more will
be learned about the mustelid-rodent interaction. In addition, both occu-
pancy and abundance of rodents can now be monitored on a fine temporal
scale year round. This is important in the context of the conceptual model
as it opens the door for more detailed investigations of rodent interactions
also with the plant community and the generalist predator community

(e.g. avian predators and foxes) as well as addressing abiotic impacts
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from a changing climate. For all these interactions and potential im-
pacts, seasonal timing is important and previous understanding has been
hampered by the low temporal resolution of the rodent state variables
(Ims and Fuglei, ). Rodents are mainly available to generalist predat-
ors during summer, but their numerical response to rodent numbers (e.g.
by deciding to breed or not) are likely affected by rodent spring densities
(Angerbjorn et al., ), which have earlier not been known. Rodent-
plant interactions are highly seasonal, where winter herbivory might have
different impact on the plants compared to summer herbivory (Ravolainen
et al., ). Furthermore, climate impacts might be highly seasonal and

only detected on a very fine temporal scale (Hallett et al., ).

So what is the way forward? A key limitation in the modelling frame-
work applied in this thesis, as in many other occupancy models analysing
continuously sampled camera trap data, is the need to discretize the data
into arbitrary chosen sampling occasions to account for the detection pro-
cess. Further, the assumption of closure in the occupancy process during
a primary occasion (5 - 7 days in this thesis) are likely especially prob-
lematic in highly mobile species like the small mustelids. Continuous time
detection models have over the last decades started to emerge in the CMR
framework (Chao, : Schofield et al., : Zhang and Bonner, ),
however only very recently they have been developed for occupancy mod-
els (Kellner et al., ). If this proves successful it will be a key to take
full advantage of the vast amount of wildlife camera data currently gen-
erated in continuous time. Continuous time detection models might solve
the concerns I raise about the closure assumption and primary and sec-
ondary occasions close in time (in section 5.2). Furthermore, continuous
time detection models will allow for investigation of drivers of tempor-
ally fine-scaled dynamics. This will be important to fully understand the
potential impacts of climate change on Arctic small mammals as abrupt

climatic events, like e.g. rain-on-snow which are becoming more frequent

with anthropogenic climate change (Peeters et al., ), are assumed to
have considerable impacts on small mammals (Kausrud et al., ; Ims
et al., ; Stien et al., ; Cornulier et al., ; Fauteux et al., ).
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High quality biotic data combined with state-of-the-art statistical meth-
ods are not by itself enough to investigate the impact of climate effects.
Temporally fine-scaled data on relevant abiotic variables are also needed.
In study I we show how camera trap images can provide information about
some simple abiotic parameters (i.e. presence of snow or water). However,
more informative environmental variables (e.g. physical snow properties
like snow hardness and depth of the snow layer) that are important to
small mammals (Kausrud et al., ; Poirier et al., ) are gener-
ally lacking from remote Arctic tundra sites. This is because direct local
scale environmental observations are mostly missing and spatial extrapol-
ation techniques are generally too imprecise. For these reasons, COAT
have recently deployed a network of synoptic weather stations, which will
supplement the local-scale camera trap temperature and simple abiotic
observations. Collaboration with geophysicists will then be needed to
combine these two sources of information to provide reliable and ecolo-
gically relevant local-scale abiotic state variables that directly affect the

small mammal community.

Our empirical investigation of one of the longest standing and most
discussed hypothesis about population cycle driving mechanisms in north-
ern rodents — the specialist predation hypothesis — has demonstrated
that mustelids impact on rodents are strong enough to increase extinction
probability of rodents both on a local and a regional scale. Furthermore,
it demonstrates a profound habitat-dependency in the strength of the
rodent-mustelid interaction. I hope this reaches the attention of theor-
eticians. While seasonality already has been included for species-specific
growth rates in theoretical mustelid-rodent models (see e.g. Hanski et al.
( ) and Hanski et al. ( )), it is not clear what consequences season-
and habitat-dependency in interaction strength will have for the potential

of specialist predation to cause multi annual population cycles in rodents.

Study IV in this thesis has opened the door for camera trap-based

counts to be used as an abundance index. This drastically enhances the
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information in camera trap-based small mammal time series like the one
collected by COAT. Statistical models to estimate species interactions
while at the same time accounting for imperfect detection exist. How-
ever, they are leaning on many of the same assumptions as the occupancy
frame work (i.e. closed populations over fixed primary periods) (Dorazio
et al., ; Roth et al., ). Hence, further extensions of abundance
model for interaction species should be done to include continuous time
detection and nested spatial scales. Furthermore, new studies will be
needed to validate the camera trap-based abundance indices for mustelids
and lemmings. Attempts to perform similar index-calibration analysis for
these species are likely to meet the same constrains as we did, as reliable
ground-truthing data is extremely challenging. However, this might be
solved by resent advances in statistical frameworks to estimate abundance
correct for detection probability from unmarked populations (Gilbert et
al., : Palencia et al., ) or detection rates (Ait Kaci Azzou et al.,

). Alternatively abundance models for voles might be combined with
occupancy models for mustelids, as we have already showed that the pres-
ence of the mustelids affect the extinction probability of rodents. In any
case, | am convinced that these model developments combined with the
unique camera trap dataset on small mammals collected in COAT will
greatly improve the knowledge on the mustelid-rodent interaction, as well

as about population cycles of rodents in general.

Long-term multi-dimensional observation programs like COAT, includ-
ing both rodents, mustelids, environmental factors and other important
biotic factors (e.g. plant biomass and breeding density of avian predators)
will be key to compare the relative strength of the many factors affect-
ing population dynamics of rodents. At the same time, statistical models
tailored to unravel ecological mysteries based on camera trap data will
continue to be extended and improved. These developments together will
over the next decades revolutionize our understanding of tundra food web
dynamics centered around small rodents, and how they will be affected by

climate change.
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Using subnivean camera traps to study Arctic
small mammal community dynamics during
winter

Jonas P. Mélle, Eivind F. Kleiven, Rolf A. Ims, and Eeva M. Soininen

Abstract: Small rodents are a key indicator to understand the effect of rapidly changing
winter climate on Arctic tundra ecosystems. However, monitoring rodent populations
through the long Arctic winter by means of conventional traps has, until now, been
hampered by snow cover and harsh ambient conditions. Here, we conduct the first exten-
sive assessment of the utility of a newly developed camera trap to study the winter
dynamics of small mammals in the Low Arctic tundra of northern Norway. Forty functional
cameras were motion-triggered 20 172 times between September 2014 and July 2015, mainly
by grey-sided voles (Myodes rufocanus (Sundevall, 1846)), tundra voles (Microtus oeconomus
(Pallas, 1776)), Norwegian lemmings (Lemmus lemmus (Linnaeus, 1758)) and shrews (Sorex
spp.). These data proved to be suitable for dynamical modelling of species-specific
site occupancy rates. The occupancy rates of all recorded species declined sharply and
synchronously at the onset of the winter. This decline happened concurrently with changes
in the ambient conditions recorded by time-lapse images of snow and water. Our study
demonstrates the potential of subnivean camera traps for elucidating novel aspects of
year-round dynamics of Arctic small mammal communities.

Key words: lemmings, voles, occupancy modelling, snow, winter ecology.

Résumé : Les petits rongeurs constituent un indicateur clé pour comprendre I'effet du
changement rapide du climat hivernal sur les écosystémes de la toundra arctique.
Cependant, le suivi des populations de rongeurs pendant le long hiver arctique au moyen
de piéges conventionnels a jusqu’a présent été entravé par la couverture neigeuse et les
conditions ambiantes difficiles. Les auteurs réalisent ici la premiére évaluation approfondie
de I'utilité d’un nouveau piége photographique pour étudier la dynamique hivernale des
petits mammiferes dans la toundra du bas-arctique au nord de la Norvege. Quarante appa-
reils photo fonctionnels ont été déclenchés par le mouvement 20 172 fois entre septembre
2014 et juillet 2015, principalement par des campagnols de Sundevall (Myodes rufocanus
(Sundevall, 1846)), des campagnols nordiques (Microtus oeconomus (Pallas, 1776)), des
lemmings norvégiens (Lemmus lemmus (Linnaeus, 1758)) et des musaraignes (Sorex spp.). Ces
données se sont avérées appropriées pour la modélisation dynamique des taux d’occupation
des sites spécifiques aux espeéces. Les taux d’occupation de toutes les especes enregistrées
diminuaient abruptement et de fagon synchrone au début de I’hiver. Ce déclin se produisait
en méme temps que les changements des conditions ambiantes enregistrés par les images
de neige et d’eau prises a intervalles. Cette étude démontre le potentiel des piéges
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photographiques subnivaux pour élucider de nouveaux aspects de la dynamique des
communautés de petits mammiféres de ’Arctique tout au long de I’année. [Traduit par la
Rédaction]

Mots-clés : lemmings, campagnols, modélisation de I'occupation, neige, écologie hivernale.

Introduction

The Arctic climate is changing with temperatures rising more than twice as fast as the
global average (Davy and Outten 2020). This change in temperature drives profound
changes in snow conditions during the long Arctic winter season (AMAP 2017). The chang-
ing cryosphere alters the characteristics of the tundra ecosystems, and investigation of
the ecological consequences requires more effort (ACIA 2004; Post et al. 2009; Ims et al.
2013a). To better understand the ecosystem impacts of changing winter climate, it is crucial
to specifically monitor species with key functions in the food web that can be expected to
have a clear link to changes in winter climate (Christensen et al. 2013; Ims et al. 2013b). In
many Arctic food webs, lemmings (Lemmus and Dicrostonyx spp.) and voles (Myodes and
Microtus spp.) have such roles. Their high-amplitude population cycles have repercussions
for the entire food web (Ims and Fuglei 2005), and these dynamics appear to change as a
result of changes in the duration and physical properties of the snow layer (Kausrud et al.
2008; Gilg et al. 2009; Stien et al. 2012; Berteaux et al. 2017; Domine et al. 2018). Winter
warm spells and rain-on-snow events appear to have a considerable negative effect on
rodent survival rates by disrupting the insulating snow layer and causing that ground ice
blocks habitat and food sources (Korslund and Steen 2006; Kausrud et al. 2008; Ims et al.
2011; Berteaux et al. 2017). However, this understanding is mainly based on indirect
inferences from data collected during the snow-free period, and no direct assessment of
wintertime dynamics of rodent populations within the Arctic has been published.

To understand how the environmental drivers affect the dynamics of cyclic small rodent
populations it is essential to acquire high-quality monitoring data (Ims et al. 2008; Korpela
et al. 2013). However, it is problematic to observe winter dynamics of Arctic and boreal
small rodents as they live under the snow (Krebs 2013; Berteaux et al. 2017). Generally, the
strength of the inferences about ecological mechanisms is limited by the temporal resolu-
tion of the data that can be generated (Krebs 2013). It is particularly essential to monitor
small rodent dynamics with an adequate frequency (Ehrich et al. 2020) that matches the
timing of abrupt climatic events (Domine et al. 2018). To fully understand small rodent
cycles and keep track of their changing dynamics in Arctic ecosystems, new approaches
are needed (Ehrich et al. 2020).

During the last few years, cheaper and more advanced camera technology has led to
wide-scale implementation of camera trapping studies (Steenweg et al. 2017) and methodo-
logical adaptations of camera traps to specific ecosystem conditions and questions have
been made (Nichols et al. 2010; Glen et al. 2013; Burton et al. 2015; Soininen et al. 2015).
Camera traps require low fieldwork effort while providing a high sampling resolution
(Kucera and Barrett 2011; Soininen et al. 2015). Camera traps are already applied in the
monitoring of small mammals (Meek et al. 2012; Glen et al. 2013; Rendall et al. 2014;
Villette et al. 2016), and a small-scale pilot study from the subarctic forest has presented a
below-snow camera trap to study small rodents during winter (Soininen et al. 2015).
Indeed, as the winter dynamics of small mammals may be subjected to rapid environmen-
tally driven extinctions of local populations (e.g., Aars and Ims 2002), camera trap
occupancy data may be particularly suitable for modelling such extinction—colonization
dynamics at the landscape scale. Occupancy models are the established way to analyse
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Fig. 1. Map of Fennoscandia (left panel) and zoom on the study area on Varanger Peninsula (right panel) with the
44 camera trap sites (black points) in four spatially segregated blocks arranged in an elevation gradient. Numbers
denote the elevation (in metres) of the summits of the highest hills. Grey lines represent elevation contours and
blue lines represent rivers. The base map was taken from https://kartkatalog.geonorge.no/metadata/n250-map-
data/442cae64-b447-478d-b384-545bc1d9ab48 (Kartverket 2015).
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camera trapping data when one cannot detect all individuals that are present (Nichols et al.
2010). Still, such methods for studying winter season dynamics of cyclically fluctuating
rodent communities have not yet been published.

Here, we present the first extensive-scale assessment of camera traps as a method for
investigating winter season dynamics of an Arctic small mammal community. We investi-
gated how the camera trap developed by Soininen et al. (2015) performed both in terms of
technical functionality under the harsh ambient winter conditions in Arctic tundra and in
terms of animal detection rates under such conditions. Furthermore, we assessed how
information about the particular environmental conditions potentially affecting rodent
winter dynamics could be gained from the camera trapping data. Finally, a major aim of
the study was also to assess the utility of the camera trap data for state-of-the-art statistical
models (Nichols et al. 2010) to estimate species-specific occupancy rates.

Methods

Study area

This study was conducted in a Low Arctic tundra landscape in the inner part of Varanger
Peninsula, northeast Norway (70°N, 30°E) (Fig. 1). Hilly plains carved by river valleys shape
the study area that is located on an elevation between 165 and 489 m a.s.l. The plains are
characterised by dwarf-shrub dominated heaths (Empetrum nigrum L., Vaccinium spp., Betula
nana L.), occasionally interspersed by mesic areas with mires and graminoid- or moss-
dominated snow bed habitats. Upland areas are covered with boulder fields above the
alpine limit of vascular plants, whereas lowland valleys have rivers lined by wet meadows
and willow thickets (Salix spp.).

Monthly mean temperatures (period 1961-1990) at the nearest weather station
(Batsfjord, at 150 m a.s.l. and ca. 20 km from the nearest camera trap), range from —6.5 °C
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Fig. 2. Seasonal and multi-annual dynamics of the three focal rodent species on the Varanger peninsula during the
population cycle that encompassed the present camera trap study. Points denote the number of trapped rodents
per 100 trap nights in early July and September each year. Solid lines denote changes over the 2-month summer
periods (early July—early September), whereas broken lines denote changes over the 10-month periods (early
September—early July) encompassing fall, winter, and spring. The light grey bar denotes the focal camera trap
study period. The snap-trap data are from three sub-regions on Varanger Peninsula described by Ims et al. (2011).
Each trapping period is based on 1176 trap-nights. The data are available from https://data.coat.no/dataset/
v_rodents_snaptrapping_abundance_regional v1 (COAT 2018).
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in January to 11.0 °C in July and the annual mean precipitation amount is 545 mm
(NMI 2020). The area is normally fully covered by snow at least from October to May
(Malnes et al. 2016) with an average depth of 57 cm (Virtanen et al. 1999). However, the snow
cover is very heterogeneous, and snow beds can be covered by 4 m of snow and persist until
late July (Soininen et al. 2017).

Small mammal community

The study area is inhabited by three species of small rodents: Norwegian lemming
(Lemmus lemmus (Linnaeus, 1758)), grey-sided vole (Myodes rufocanus (Sundevall, 1846)) and
tundra vole (Microtus oeconomus (Pallas, 1776)). Norwegian lemmings spend the summer in
habitats with moist hummock tundra or mires and move to snow beds on dry ground in
the winter (Kalela 1957). During summer, they co-occur with tundra voles that also tend to
shift habitat between summer and winter seasons (Tast 1966). Grey-sided voles prefer dwarf
shrub habitats (Viitala 1977). The three species exhibit an interspecifically synchronous,
high-amplitude four year cycle on Varanger peninsula (Ims et al. 2011; Kleiven et al. 2018;
Soininen et al. 2018). The population cycle of the Norwegian lemming has an amplitude that
is typically more variable than the vole cycles and sometimes the peaks of this species are
missing in time series derived from snap trap monitoring (Ims et al. 2011).

The present study covers a 9.5-month period from mid-September 2014 to early July 2015.
As is evident from large-scale and long-term monitoring of the small rodent community on
the Varanger Peninsula based on snap-trapping (Kleiven et al. 2018), our study period
encompassed the winter season preceding the peak phase summer of the rodent cycle
(Fig. 2). According to the snap-trapping data, the grey-sided vole was clearly the numerically
dominant species during our study period, whereas the Norwegian lemming was almost
absent (Fig. 2).

Other small mammals in the study area that so far have not been systematically moni-
tored are insectivorous shrews (the common shrew, Sorex araneus Linnaeus, 1758, masked
shrew, Sorex caecutiens Laxmann, 1788, and pygmy shrew, Sorex minutus Linnaeus, 1766) and
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Fig. 3. Typical camera trap placements in different habitats and relations to micro-topographic features. Mesic
hummock tundra with paths and grazing signs of rodents (left panel). Snow bed in early July (centre panel).
Hummock tundra where the camera was damaged by flooding during the spring thaw (right panel).

carnivorous small mustelids (ermine, Mustela erminea Linnaeus, 1758, and least weasel,
Mustela nivalis Linnaeus, 1766).

Study design

The camera trap is described by Soininen et al. (2015). We replaced the wooden camera
box, presented by Soininen et al. (2015), with an aluminium box to improve durability. We
programmed the cameras (Reconyx SM 750 Hyperfire; Reconyx Inc., Holmen, Wisconsin,
USA) to take two images for each motion-triggered event and to have a 1-min quiet period
(i.e., delay) after each event to avoid an excessive number of photos. To verify whether the
camera was functional and to monitor the ambient environmental conditions inside the
camera trap, we programmed two additional time-lapse images per day (at 1:00 AM and
PM). The cameras had a thermometer, and the temperature was recorded every time an
image was taken.

During 15-17 September in 2014, 44 camera traps were set up to cover lemming habitats
at different elevations in the study area. They were placed in four separate blocks (n =11
trap sites in each block) (Fig. 1). Two of the blocks consisted primarily of snow bed sites
(Fig. 1, blocks 3 and 4), whereas the two other blocks had heath, mesic hummock tundra,
and mire sites (Fig. 1, blocks 1 and 2). Within each block, the traps were placed in two lines
with 5-6 traps. The minimum distance between traps was 300 m to avoid the same rodent
individual including more than one camera trap within its home range (Ims 1987;
Andreassen et al. 1998) and, thus, to ensure that occupancy rates would be independent
between the traps.

Criteria for the choice of location of traps within blocks were that the vegetation should
include food plants preferred by lemmings (mosses and graminoids) (Soininen et al. 2017).
Placed among micro-topographic structures (between stones or hummocks), the camera
traps were integrated with natural pathways that rodents normally use for movements in
tundra habitats. Stones from the surrounding environment were put on the sides and top
of the camera traps to secure them from strong winds (Fig. 3).

Memory cards from all cameras were collected during 1-6 July in 2015 so that the entire
study period covered approximately 290 days. Malfunctioning of cameras due to flooding
and water damage or for other reasons was recorded.
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Data analysis
Image data

Cameras with technical failure from the onset of the study were excluded from the
analysis (n =4). Images of all other cameras were classified using Reconyx MapView profes-
sional software (Reconyx Inc., Holmen, Wisconsin, USA). When a malfunctioning camera
flash or snow/ice on the lens caused bad quality images and impeded their inspection, these
images were excluded from the data set.

For the movement-sensor triggered images, we noted whether an image contained lem-
mings, tundra voles, and grey-sided voles, or “unknown vole” if the two vole species could
not be distinguished. Mustelids and shrews were also recorded, but the latter without being
able to distinguish the different species.

Based on the two time-lapse images per day, we recorded a daily score for the presence of
snow and water (see Appendix A, Fig. 1A).

Snow was scored as:

(0) No snow present in the entrances of the camera traps,

(1) shallow snow present, but not sufficient to cover the trap entrances and, thus, not a
closed snow layer that can harbour a rodent tunnel system,

(2) a closed snow layer that was higher than both of the 7 cm high entrances of the traps, or

(3) a lot of snow inside the trap to the extent that it potentially prevented the detection of
animals tunnelling their way through the trap.

‘Water was scored as:

(0) No visible humidity inside the trap,

(1) big drops of water or generally wet surface of the floor of the trap,

(2) light flooding with water up to half the height of the trap entrances, or

(3) severe flooding with a water level more than half as high as the trap entrances or higher
so that terrestrial animals were not able to enter the traps.

The scores with the value of 3 for both snow and water obstructed the observation of
animals. To be able to include camera traps with such scores in the occupancy model, these
covariate values were treated in the analysis as NAs.

In addition to images, the camera traps provide a temperature record for each image.
Temperature recordings from time-lapse images provide site-level data that can be useful
to estimate the length of the snow-covered season, or indicate insulating properties of the
snow pack. However, as we recorded explicit data for snow and water within the camera
boxes, we here provide temperature data only to illustrate its possible uses.

Occupancy modelling

Occupancy models determine the probability of a species presence, taking into account
that some individuals may remain unobserved. This framework allows both occupancy
probability and detection probability to be estimated as a function of covariates
(MacKenzie et al. 2003). Here we used a dynamic (i.e., estimating changes over time)
occupancy model over repeated sampling occasions to estimate occupancy of the three
rodent species and shrews collectively over the entire study period (MacKenzie et al.
2003). Mustelids occurred too infrequently to be included. As our main interest here was
to investigate the functionality of the camera traps, we modelled detection probability as
a function of environmental covariates, and occupancy probability without covariates.

We defined primary sampling occasions as five-day units (59 primary sampling occasions
in the study period). Five days was chosen to be in line with the recommended sample sizes
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of MacKenzie and Royle (2005) and so that this period would be short enough for the local
population at a given trap site not to change considerably. The occupancy rates were
estimated for these time units. Within the primary occasions (i.e., the five-day units), the
presence or absence of the different species was recorded each day (secondary occasion).
As the camera traps recorded relatively few numbers of lemmings, the records of all three
rodent species and shrews were combined to model a single stronger data set. To be able
to obtain species-specific parameter estimates (White et al. 2013), the model was extended
by a “species dimension”. The presence-absence observations (y) at site i in primary occasion
(five-day unit) t and secondary occasion (day) j for species s, can be described with a
Bernoulli distribution:

(D) Yigjslzies ~ Bernoulli (z;,,sp; )

where z;;; denotes the true state of occurrence and p;;; the detection probability.

Detection probability (p): Through a logit link function, species-specific detection probabil-
ities were modelled as a function of two categorical environmental covariates snow and
water. The equation for detection probability was thus

(2) 1logit(piss) = Pblsnow,,, + Pb2water,,

where pbl and pb2 are the coefficients that describe the effect of the environmental covari-
ates. As the three-level categorical covariates snow and water (see section “Image data”) in
eq. (2) are specified at the temporal resolution of primary occasions t (five-day periods),
although they were recorded from time-lapse photos each day (i.e., at secondary occasions
j), the scores for the covariates were set to the highest recorded value (0-2) per trap and sec-
ondary occasion. Records of NAs for the covariates at any given site (e.g., scores of 3) were
replaced with the median of the scores of the other sites within a block.

Occupancy probability (¥): The initial occupancy probability (¥; = occupancy probability of
small rodents in the first primary occasion) was modelled as

(3) logit(¥is=1s) =as

where a; is a species-specific intercept. The development of the occupancy changes over
time (¥, 1, here z) was modelled as a function of site colonization (y) and extinction (¢)
events:

(4) Zits ~ Bernouui(zi.t—l.s X (1 - Es) + (1 - Zi.t—l.s) X Ys)

Extinction (&) and colonization (y) probability: Both were modelled similar to ¥; with a logit
link:

(5) IOgit(ys) = gbs
and
(6) logit(e;) = eb

The model of the four parameters (p, ¥, 7, and ¢) was implemented using the R software
(R Core Team 2019). The estimation of the parameters was done in a Bayesian framework,
running a Markov chain Monte Carlo (MCMC) with JAGS. For the model to converge, three
chains with 160 000 iterations were run and the first 10 000 iterations were discarded as
burn-in and 40 000 was used as adaptations. The model was checked and indicated chain
convergence as all R values were <1.1 (Gelman et al. 2013) and trace plots showed that the
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chains were mixed well. We ascertained that the model was fit for the data set by perform-
ing a posterior predictive check (Kéry 2010). All occupancy estimates are provided with 95%
credible intervals based on their posterior distributions.

Results

Camera trap functionality and ambient conditions

Of the 40 cameras that were technically functional from the onset of the study,
four ceased to function in autumn and a further 12 had water-induced hardware damage
associated with flooding during the spring thaw period in May-June (Fig. 4). Thirteen traps
were infiltrated by snow and five traps were flooded by water to the extent that it prohib-
ited detection of animals (snow and water category 3) for shorter or longer periods during
the winter and spring (Fig. 4).

The first snow was recorded in late September (Fig. 4). However, this shallow snow cover
(snow 1) melted soon and caused some water (water 1) in most traps. A closed snow cover
(snow 2) established quite simultaneously across the sites/blocks in mid-October. In the turn
of October-November, snow 2 transitioned to snow 0/1, associated with the presence of
water in some of the traps (Fig. 4). A permanently closed snow cover (snow 2) was present
from early November until the spring thaw period when a lot of water (water 2 and 3) was
prevalent in many of the traps (Fig. 4).

In total, the cameras recorded 60 547 images of which 40 346 were motion-triggered. The
number of motion-triggered images per camera across the whole study period (290 days)
ranged from 14 to 4726 with a mean of 506. Of the motion-triggered images, 10.4% did not
show a presence of animals in the trap despite good-quality images. Moreover, 4.2% of the
motion-triggered images were of such bad quality because of malfunctioning cameras, or
ice or dew on the lens, that animals would not be visible even if they were present
(Appendix A, Table A1). When rodents were recorded, the species could be identified in
almost all cases, i.e., only 0.3% were classified as unknown voles (Appendix A, Table A1) that
were discarded from the analysis.

The grey-sided vole was recorded most frequently (64.5% of the trigger images;
Appendix A, Table A1) with the largest and most even spatial distribution across sites and
blocks (Fig. 4). Tundra voles were the next-most frequent species and with most of the
records aggregated on two of the blocks. The Norwegian lemming had the most restricted
distribution of the rodents, whereas shrews appeared more scattered in time and space
than the rodents (Fig. 4). Least weasels and ermines were recorded on three and two sites,
respectively (Appendix A, Table A1).

Occupancy modelling

The estimated occupancy probabilities (%) of all small mammal species decreased during
October-November contemporary with the abrupt shift in ambient conditions in terms of a
drop in temperature and the emergence of a closed snow cover (Fig. 5; see Appendix A,
Table A2 for estimates of other parameters). Thereafter, the occupancy probabilities of the
most prevalent species — the grey-sided vole — became remarkably stable for the rest of
the winter and spring. Tundra vole occupancy continued to have a declining trend until
the spring thaw when occupancy rates increased. The lemming exhibited a long period of
complete absence after the decline in the early winter. Shrews had quite low occupancy
rates with more short-term variability than the rodents.

The estimated detection probability (p;;s) ranged between 0.065 and 0.909 depending on
the species and ambient conditions (Fig. 6). Shrews had mostly lower detection probabil-
ities than the rodents. The detection probabilities for the lemming were more affected by
the ambient conditions than for the two vole species, with a peak associated with the
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Fig. 4. Records of ambient conditions (snow and ice) and the presence of small mammals at 40 camera trap sites
during the 9.5 month study period from mid-September 2014 to early July 2015. Each cell represents a five day
sampling period per site. The sites (i.e., the rows) are grouped according to the four blocks shown in Fig. 1. For
the snow and water panels, the white squares indicate occasions where the cameras were malfunctioning,
i.e., not recording information of ambient conditions. For the animal species panels, the white squares also
include images of bad quality and record snow 3 and water 3.
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Fig. 5. Small mammal occupancy dynamics and ambient conditions per five-day units during the 9.5 month study
period. Occupancy rates are the means of the posterior distribution of ¥ averaged over sites with functional camera
traps. Water and snow are the proportion of functional camera traps (sites) with records of the three snow and
water categories. Temperatures are highest recorded daily air temperature per five-day unit from the nearest
weather station (Batsfjord) and recorded by the camera traps (averaged over all functional traps).
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appearance of shallow snow (snow 1) at the onset of the winter, and a sharp drop with the
presence of water (water 1 and 2) in the traps. Of note, the development of a closed snow-
pack (snow 2) as compared with snow-free tundra (snow 0) only appeared to have a negative
effect on the detection probability of the tundra vole (Fig. 6).
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Fig. 6. Small mammal detection probabilities for the recorded categories of snow and water (see text for a
description of the categories). The violin and box plots show estimated posterior distributions obtained from the
dynamic occupancy model. The estimates for the three snow categories were obtained for water 0, whereas the
estimates for three water categories were obtained for snow 0.
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Discussion

We performed the first assessment of the applicability of camera traps for providing
data on small mammal community dynamics during the Arctic winter. Whenever
functional, the camera traps developed by Soininen et al. (2015) yielded data suitable for
dynamical occupancy modelling with generally high detection probabilities — especially
for the three rodent species that were present in our study area. The detection/
non-detection data acquired from camera traps do not provide the kind of abundance
estimates/indices that have been the standard way to study Arctic rodent population
dynamics (Krebs 2013; Ehrich et al. 2020). However, at a landscape scale cyclically fluctuat-
ing rodents can be considered as metapopulations that are driven by local-scale extinction
and colonization events (Glorvigen et al. 2013). The year-round data collection enabled by
camera traps thus provides a means for assessing the link between such metapopulation
events and potentially influential ambient events such as snowfalls, snowmelt, and flood-
ing. Our camera traps provide daily site-specific data on such ambient events that can be
used as covariates in occupancy models. This allows both to correct for their influence on
the detection rates as done in the present study, and to estimate their impact on meta-
population processes (e.g., colonization and extinction rates) in future multi-annual studies.
Ultimately, this approach will yield improved knowledge about how Arctic climate change
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impacts Arctic rodent community dynamics. Our results on snow and water indicate that
such ambient conditions need to be modelled as species-specific parameters.

This study revealed some important challenges due to the severe ambient conditions in
Arctic tundra during winter and spring that resulted in reduced camera trap functionality.
Drifting snow caused some cameras to be clogged with snow to the extent that it hindered
data capture for shorter or longer periods through the winter. An action that can reduce
snow infiltration through the trap entrances, is to erect piles of stones around the camera
traps (Appendix A, Fig. A2) functioning as snow fences, but still leaving gaps for passages
of small mammals. In tundra areas without access to stones, the camera traps can be differ-
ently designed, for instance, with entrances formed as angled tubes that will likely prevent
snow from clogging the main compartment of the trap.

Flooding due to melting snow, particularly during the spring thaw, permanently
damaged a proportion of the cameras. This problem can be counteracted by avoiding plac-
ing the camera traps in topographic features such as small-scale depressions, where water
is likely to accumulate. Waterproof cameras will prevent damage to hardware, but water-
logged traps will still hinder passages of terrestrial small mammals and cause loss of
data — so sites that are vulnerable to such events should be avoided.

‘We experienced only minor problems with frost or dew on the camera lenses contrary to
what has been reported from a High Arctic study site with very cold permafrost and pro-
found vertical temperature gradients in the snow packs (Kalhor et al. 2019). The Varanger
Peninsula has only sporadic warm permafrost (Farbrot et al. 2013) and we recorded
subnivean temperatures that were only slightly below zero (Fig. 4). Hence, the camera traps
used in the present study should be tested under a wider range of ambient conditions to
verify their general functionality.

It is still uncertain whether data from camera traps will be able to yield the same
numerical aspects of population arithmetic as conventional trapping data (removal
sampling and capture-recapture). It is, however, promising to notice that the abundance
relations between rodent species and the observed overwinter decrease obtained by camera
trapping (Fig. 5) and snap-trapping (Fig. 2) show similar patterns. Furthermore, the
occupancy estimates showed the characteristic drop at the onset of the winter previously
found by mark-recapture trapping of boreal rodent populations (e.g., Merritt and Merritt
1978; Johnsen et al. 2018), indicating that occupancy estimation is able to show the main
features of seasonal and multi-annual dynamics of cyclic rodent populations. However, we
encourage future studies to assess how occupancy estimates compare with more conven-
tional metrics of Arctic small mammal population dynamics — such as estimates or indices
of population density and growth rate.

To conclude, we find that camera traps can be used to monitor small mammal
community dynamics during the Arctic winter. In addition, the camera traps also collect
environmental data that can be used to estimate climate-driven colonization and extinction
events in Arctic small mammal communities. As the camera traps also provide simultane-
ous data on presence/absence of mustelids, future more long-term studies that cover all
phases of the multi-annual cycle can provide new insights about how the dynamics of mus-
telids (predator) and rodents (prey) are linked. It is also noteworthy that our relatively
modest sample of camera traps was able to capture the seasonal dynamics of the
Norwegian lemming, a key species in the focal ecosystem (Ims et al. 2017), given that the
lemmings were almost absent in the extensive sample of snap-trapped rodents. Hence, we
conclude that subnivean camera traps bear great promise in terms of elucidating novel
aspects of the community dynamics of Arctic small mammals and how these communities
respond to climate change.
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Appendix A

Fig. A1. Example images of recorded classes of snow and water described in the main text.

Water 1

For persona use only.

Fig. A2. Example of a camera trap embedded in a stone pile made to prevent infiltration of drifting snow that may
clog the trap as shown in Fig. A1, Snow 3.
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Table Al. Summary statistics of observations of presence of different image

categories.
No. camera No. five-day

Observation traps units No. days No. triggers
Lemming 10 31 92 830
Grey-sided vole 26 398 1336 13 019
Tundra vole 19 203 526 2596
Unknown vole 8 15 25 48
Shrews 23 148 278 716
Ermine 2 2 2 2
Least Weasel 3 7 10 15
Bad quality 14 96 172 845
Total 40 636 3238 20172

Note: Row “total” refers to the number of sampling units that were available for
observations, i.e., sum of active camera traps included in the study, total number of
five-day units, camera trap and days, and the total number of movement trigger

releases.

Table A2. Parameters estimates of colonization probability (y),
extinction probability (¢) and initial season occupancy (y)
given as the means of the posterior distribution and 95%
credible intervals (CI).

Posterior

Parameter Species mean 95% CI

4 Lemming 0.005 0.002-0.009
e Lemming 0.335 0.180-0.512

W Lemming 0.058 0.010-0.146

4 Grey-sided vole 0.042 0.032-0.052
€ Grey-sided vole 0.192 0.154-0.234
174 Grey-sided vole 0.383 0.240-0.533
7 Tundra vole 0.025 0.018-0.033
€ Tundra vole 0.217 0.156-0.283

W Tundra vole 0.241 0.121-0.386

y Shrew 0.026 0.018-0.036
€ Shrew 0.263 0.185-0.346
W Shrew 0.215 0.046-0.420

< Published by Canadian Science Publishing
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Abstract

Occupancy models have been extended to account for either multiple spatial scales or
species interactions in a dynamic setting. However, as interacting species (e.g., predators and
prey) often operate at different spatial scales, including nested spatial structure might be espe-
cially relevant to models of interacting species. Here we bridge these two model frameworks
by developing a multi-scale two-species occupancy model. The model is dynamic, i.e. it
estimates initial occupancy, colonization and extinction probabilities—including probabilities
conditional to the other species’ presence. With a simulation study, we demonstrate that the
model is able to estimate parameters without marked bias under low, medium and high average
occupancy probabilities, as well as low, medium and high detection probabilities. We further
evaluate the model’s ability to deal with sparse field data by applying it to a multi-scale camera
trapping dataset on a mustelid-rodent predator-prey system. Most parameters are accurately
estimated, although very sparse observations of predators in our case study make two param-
eters unidentifiable at the largest spatial scale. More broadly, our model framework creates
opportunities to explicitly account for the spatial structure found in many spatially nested study
designs, and to study interacting species that have contrasted movement ranges with camera

traps.

Keywords: co-occurrence, multi-scale, occupancy, predator-prey, spatial, species interactions
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1 Introduction

Much of the data available to ecologists consists of species occurrences, which in turn have sparked
the development of statistical models to analyse such data (Bailey et al., 2014). Due to their ability
to model species occurrences while accounting for imperfect detection and therefore unobserved
species, occupancy models have become widely used in ecology (Bailey et al., 2014; Guillera-
Arroita, 2017). Initial formulations of occupancy models estimated species occupancy across mul-
tiple sites that were assumed to be spatially independent (MacKenzie et al., 2002). However, this
assumption is rarely met in the field (Johnson et al., 2013), and failing to account for spatial de-
pendencies will lead to overconfidence in estimated uncertainties, and might in some cases lead to
bias in estimated effects of predictor variables (Guélat & Kéry, 2018).

There are numerous extensions of occupancy models to incorporate spatial dependencies. In
static occupancy models, occupancy can be made dependent on the occupancy probability of neigh-
boring sites (Bled et al., 2011; Eaton et al., 2014; Yackulic et al., 2014; Broms et al., 2016), while
in dynamic models (i.e., models that explicitly estimate change over time), colonization probability
can be made a function of latent occupancy status at nearby sites. Spatial dependencies may be
formulated as explicit functions of distance or connectivity between sites (Sutherland et al., 2014;
Chandler et al., 2015), or in the form of random spatial effects (Johnson ez al., 2013; Rota et al.,
2016b).

Data from many ecological studies exhibit multiple nested spatial scales, which mirrors the fact
that population dynamics result from different processes occurring at multiple scales (Baumgardt
et al., 2019). Accordingly, recently developed multi-scale occupancy models enable analyses of
data from designs with such a hierarchy of spatial scales (Nichols et al., 2008; Aing et al., 2011;
Mordecai et al., 2011; Kéry & Royle, 2015; Smith & Goldberg, 2020), and can be extended to
dynamic versions to estimate colonization and extinction probabilities (Tingley et al., 2018).

A parallel development of occupancy models—dynamic multi-species models— addresses how



44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

interacting species co-occur over time (MacKenzie et al., 2004; Waddle et al., 2010; Richmond
et al., 2010; Rota et al., 2016a; MacKenzie et al., 2017, Fidino et al., 2019; Marescot et al., 2020).
These models have great potential to increase our knowledge of species interactions. However,
interacting species in general, and predators and prey in particular, often move at different spatial
scales (de Roos et al., 1998; Fauchald et al., 2000). Incorporating the multiple spatial scales of
interacting species would therefore lead to more intuitive and ecologically meaningful model pa-
rameters as colonization and extinction parameters may represent different ecological processes on
different spatial scales.

Here we build on dynamic multi-species models by MacKenzie et al. (2017) and Fidino et al.
(2019), as well as the dynamic multi-scale occupancy model by Tingley et al. (2018) to develop a
multi-scale dynamic two-species occupancy model. In this model, initial occupancy, colonization
and extinction probabilities are estimated at two spatial scales, i.e. both at site level and at a block
level, spanning a cluster of sites. After describing the model, we perform a simulation study to
investigate potential issues of bias and precision under different scenarios. Finally, we apply the
model to a camera trapping data set with two spatial scales to estimate the predator-prey interaction

strength between small mustelids and small rodents.

2 Methods

2.1 Case study

The case study that motivated the development of this model was a camera trap dataset from
the long-term monitoring program COAT (Climate-ecological Observatory for Arctic Tundra, Ims
et al., 2013). The camera trapping program targets small rodents and their (small) mustelid preda-
tors. Here rodents (grey-sided vole Myodes rufocanus, tundra vole Microtus oeconomus and Nor-

wegian lemming Lemmus lemmus) constitute prey, while mustelids (stoat Mustela erminea and least
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weasel Mustela nivalis) constitute predators. Rodents and mustelids have for decades been known
to exhibit a predator-prey interaction (Hanski ef al., 1991). However, estimating the prevalence
and strength of that interaction has been difficult, as reliable data—especially on mustelids—have
previously been lacking (King & Powell, 2006). The camera trap monitoring was started in the au-
tumn of 2015 and consisted of 4 blocks, with 11 camera trap sites within each block. In the summer
of 2018, the monitoring was expanded by 4 blocks, containing 12 camera trap sites each, to make
up a total of 8 blocks. The camera traps, described by Soininen et al. (2015), are functional year-
round in arctic tundra habitats (70°20°N 29°38’E , Mélle et al., 2021). The sampling design has a
multi-scale structure, where sites (camera traps), are spaced >300m apart, but clustered in blocks
of 11 to 12 cameras covering two different habitats, snowbeds and hummock tundra (see Appendix
S1). This spatial structure can be matched to the movement ranges of small rodents and mustelids,
where sites represent independent samples of rodent presence and blocks represent independent
samples of mustelid presence (Hellstedt & Henttonen, 2006). Since mustelid observations almost
only occurred in the snowbed habitat, we chose to focus only on these sites, reducing the number
of cameras to 5 - 6 per block. As the rodents are known to exhibit rapid local scale colonization-
extinction dynamics (Andreassen & Ims, 2001) we here define a primary occasion as one week (i.e.
7 days) and secondary occasions as the days within that week. While mustelids have slower de-
mographic processes than small rodents, they are assumed to show a spatially aggregative response
(movement towards prey-rich areas) on a short time scale (i.e., changing foraging grounds from
one week to the next, Hellstedt & Henttonen, 2006). As there were particularly few observations
of least weasel and Norwegian lemming, the analysis could not be conducted at the species level.
However, on the Arctic tundra, rodents and mustelids can be considered functional groups as both
mustelid species prey on all rodent species. We therefore combine the data for the two functional
groups in a multi-state occupancy dataset with 4 states (U = none of the species are observed, A =
only small rodents observed, B = only small mustelids observed or AB = both small rodents and

small mustelids are observed). When analyzing the data from the case study, we included all weeks
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from the beginning of the monitoring in 2015, resulting in a total of 203 weeks. The case study is

viewed as an inspiration for the following model framework, which is nonetheless more general.

2.2 Model framework and latent ecological states

Compared to the classical occupancy model, we have added an additional spatial level so that we
have b € {1,...,B} blocks, each of which contains k € {1,...,K} sampling sites. Each sampling
site is surveyed over ¢ € {1,...,T} sampling occasions (hereafter primary occasions). Between the
primary occasions the populations are assumed to be open (i.e. the species can colonize or go
extinct). Within each primary occasion each site is sampled J times, j € {1,...,J} being the index
of the survey (hereafter secondary occasion). Between the secondary occasions the populations are
assumed to be closed (the species are assumed to neither colonize nor go extinct at any site) . For
each secondary occasion j, considering two species (or functional group), any given site can then
either be observed as unoccupied (yp 1 s,; = U), occupied by species A only (yp ks, ; = A), occupied
by species B only (y s, ; = B) or occupied by both species A and B (yp x+,j = AB). These replicated
samples within primary occasions, during which the populations are assumed to be closed, allow
for the estimation of the detection process (MacKenzie et al., 2017). The true latent state of each
site (k) during each primary occasion (¢) in a given block (b) can then be described with a latent
variable z, ; ;, that can take on any of the same 4 states. In this model we also consider an ecological
process on the block level by describing a latent block state, x;,, that can take on any of the same
four states as the latent site level state (U, A, B, or AB). This process occurs on a larger spatial scale
than the site level, and will for instance in our case study represent the spatial scale of dispersal
(e.g. changing home ranges) for mustelids, compared to the site level which represents the foraging
movements within their home range. The site states will then depend on the state of the block they
belong to (e.g. if a block is unoccupied by a given species, all sites within that block also have to

be unoccupied by that species, although the converse is not true).
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2.3 Transition model

After initial states have been modelled as a random categorical variable (see Appendix S1 for
details), transitions between states are modelled with the transition probability matrices © for the
block level and ® () for the site level, with the latter depending on the block state (see Fig. 1

for an illustration of the spatial setup and the model structure).

a) b)

Site state z changes over
I I | time as a function of yand € Latent block state
 n < as described in @,
LI |

and is dependent on

L u [ ]
. the state of the block [ ] -
| |
m E = [ ]
K L I |
Block state x changes over time as a a n" Latent site stat
. . . atent site state
function of ' and E as described in ©
| |
" m g L I
= . . " - - m Site (observation unit)

n "on
n u L] |:|Block (cluster of sites)| Observed site state

Figure 1: Conceptual diagram of the design and model structure. Panel (a) describes the
multi-scale structure of the design, data sampling and state variables (probabilities) with clusters
of sites nested in 4 blocks. Parameters ¥ and € denote site level colonization and extinction
probabilities, respectively, and ® denotes the site transition probability matrix. Parameters I" and
E are the block level colonization and extinction probabilities, respectively, and ® denotes the
block level transition probability matrix. The diagram in panel (b) shows the conditional
dependencies among the state variables in the model for observation j in primary occasion ¢ at site
k in block b.

It is assumed that the site colonization () and extinction (€) probabilities are dependent on the
site state in the previous time step (zz »,—1) as well as the block state in the same time step (xp;).
The latter is assumed because site level colonization is only possible whenever the given species
is already present in the block. Because site transition probabilities are dependent on the block

state in the same time step (®(xp,)), it is possible that both a block and sites within that block are
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colonized in the same time step. However, because sites do not cover all available habitat within
the block, blocks are not forced to go extinct even though all sites within that block are extinct.
Hence, the model allows for a block to remain occupied even when all of its sites go extinct. On
the other hand, when a block goes extinct, all of its sites are forced to go extinct (i.e. if x,, = U
then z x, = U). The state transitions of a given species are only dependent on the presence of the
other species in the previous time step. For that reason, it is important that the temporal resolution
of the primary occasions correspond to the time scale relevant for the interaction of interest.

The transition probability matrix (®) for blocks (b) can be written as follows, with block level

transition parameters defined in Table 1,

To block state

U A B AB
?gf U [(1-T\)(1-Ty)  Ta(1-Ty) (1-Ty)s T
®= f8 A Eq(1-Tp,)  (1—Ex)(1-Tpp) ExTg) (1=Ea)Tpa
g B (1-TB)Es Ly8EB (1=Typ)(1 —Es) Ly (1 —Ep)
“ AB ExpEp|a (1—EaB)Ep|a Eqp(1—Epa) (1 —Eap)(1 —Epp)

6]



Parameter Verbal description

Iy Probability that species A colonize a block at time t given that species B was absent at t-1
LCap Probability that species A colonize a block at time t given that species B was present at t-1
I's Probability that species B colonize a block at time t given that species A was absent at t-1
Ipa Probability that species B colonize a block at time t given that species A was present at t-1
Ey Probability that species A goes extinct in a block at time t given that species B was absent at t-1
Eyp Probability that species A goes extinct in a block at time t given that species B was present at t-1
Ep Probability that species B goes extinct in a block at time t given that species A was absent at t-1
Epja Probability that species B goes extinct in a block at time t given that species A was present at t-1

Table 1: Verbal definition of block level transition parameters.

136 Since the site transition probabilities depend on the block level state (x;,) we create one site
17 transition matrix for each possible block state in the following way with site level transition param-

1w eters defined in Table 2:

To site state

U A B AB
g Uf1 00 0

Dy, =U)= = Lo o0 o )
gBIOOO
8
AB\1 0 0 0



To site state

U A B AB
2 U /[(I-n) 4/ 0 0
Pl =4) = ; A & (1—e4) 0 0 )
g B [ (1—745) YalB 0 0
= AB €alB (1—&) 0 O
To site state
U A B AB
2 U /(-1 O s 0
Bl =) = é Al (1-7ga) O Y8/A 0 @
5 es 0 (l—g) O
T OAB\ e 0 (- O
To site state
U A B AB
g U (0-nl-m (1= 7s) (1=m) M¥B
B, = AB) = é A ea(l—vpa)  (1—€a)(1—18a) €AYBlA (1—¢€a)71a
g B (I—1B)es Ya|BEB (1—=7a8)(1—¢€p) Yajp(1 — €p)
~ AB €4|BEB|A (1—&sB)€pa eap(1—¢€gu) (1 —&4p)(1 —&ppu)
®)
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Parameter Verbal description
YA Probability that species A colonize a site at time t given that species B was
absent at t-1 and that the given block was colonized by species A at time t
Ya|B Probability that species A colonize a site at time t given that species B was
present at t-1 and that the given block was colonized by species A and B at time t
V8 Probability that species B colonize a site at time t given that species A was
absent at t-1 and that the given block was colonized by species B at time t
Y8/A Probability that species B colonize a site at time t given that species A was
present at t-1 and that the given block was colonized by species B and A at time t
N Probability that species A goes extinct in a site at time t given that species B was
absent at t-1 and that the given block was colonized by species B at time t and t-1
€AlB Probability that species A goes extinct in a site at time t given that species B was present at t-1
and that the given block was colonized by species A at time t and t-1 and species B at time t
ep Probability that species B goes extinct in a site at time t given that species A was
absent at t-1 and that the given block was colonized by species B at time t and t-1
€pla Probability that species B goes extinct in a site at time t given that species A was present at t-1
and that the given block was colonized by species B at time t and t-1 and species A at time t

Table 2: Verbal definition of site level transition parameters.

Then the full model for both block- and site-level states can be written as

Xp|(xps—1,T,E) ~ Categorical(®y,, , o) fort=2,....,T
' ‘ (6)

bt | (Xbts T pi—1,7,€) ~ Categorical(@(x;,y,)zhh‘rfl7.) fort=2,....,T.

The indices x;,_; describe the specific row in ® which has value x;,_; and z 5,1 the row in ®

which has value z; j, ,_1, while e refers to all columns of that row.

2.4 Detection model

All observations on which the model relies on are coming from the site level. Hence, the detection
probability can be modelled similarly to other two-species occupancy models. Models to estimate
detection probabilities of one species dependent on the presence (Rota et al., 2016a) or the detection

of the other species (Miller et al., 2012; Fidino et al., 2019) exist. It is possible that such detection-

11
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interactions also exist for mustelids and rodents. However, as we have no indications that they do,
for simplicity, we assumed that the detection of each species is independent of both the presence
and detection of the other species. In the simulation study we also assumed that the detection
probability is constant over sites, blocks and temporal occasions. However, note that a temporal
binary covariate is added to the detection model in the empirical case study (see related section
below). Let p4 and pp be the detection probabilities of species A and B at a given site, the detection

probability matrix (A) can then be defined as

Observed state

U A B AB
U 1 0 0 0

A= § A 1—pa pa 0 0 @
;E) B 1 —ps 0 B 0

AB \(1—=pa)(1 =pp) pa(l—pp) (1—pa)ps PpaPB

s« The observation at site k in block b at visit j during time 7 (yx 4, ;) can then be described by the

155 following equation:

Yib,jit| (Kb, 2kb) ~ Categorical(Az, ,, o) ®)

s with zy 5, being the chosen row of the detection matrix (1) to draw the observed state.
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2.5 Simulation study

We conducted a simulation study to evaluate the performance of our model by examining potential
issues of bias and variance in parameter estimates of colonization, extinction and detection. The
spatiotemporal structure of the simulated data was largely inspired by our empirical case study (see
section below for a more detailed explanation). Hence, we simulated data for 8 blocks, each con-
taining 12 sites. We chose weeks as primary occasions and days within each week as secondary
occasions corresponding to the expected rate of the dynamics of the empirical case study (An-
dreassen & Ims, 2001). We simulated data for 50 weeks (approximately one year). The chosen
parameters values were also inspired by the predator-prey case study (e.g. E4 <Ep. See all param-
eter values in Appendix S1). To investigate how contrasting scenarios affected bias of parameters,
we simulated data where both species had low (lo), medium (mo) and high (ho) average occu-
pancy probability (with medium detection probability). In addition we simulated data where both
species had low (1d), medium (md) and high (hd) detection probabilities (with medium occupancy
probability, for more details, see Appendix S1). For each scenario, we simulated and analyzed 50
replicate datasets. The models were analyzed in a Bayesian framework using the JAGS software
(Plummer, 2003) with the jagsUT package (Kellner, 2015) in R v4.0. 3 (R Core Team, 2020).
We note that the model is a hidden Markov model and could also be fitted in a maximum likelihood
framework using the Forward algorithm (McClintock et al., 2020). We specified Uniform(0, 1)
prior distributions for the detection, colonization and extinction probabilities and Uniform(0,0.5)
prior distributions for the initial occupancy probabilities. The MCMC algorithm was run with an
adaptation phase (initial phase where the Bayesian sampler can adapt to increase efficiency) of a
1000 iterations. No additional iterations was discarded as burn-in. The model was run for 5000
iterations with a thinning of 10 (keep every 10 values in the chain to construct the posteriors) (Gel-
man et al., 2013). Convergence was assessed by having a R <1.1 for all key parameters (Gelman

et al., 2013) and from graphical investigation of traceplots.
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2.6 Analysing the empirical case study

All images of the two functional groups (i.e. rodents and mustelids) were identified by means of
an algorithm for automatic classification of camera trap images. The MLWIC R-package (Tabak
et al., 2019) was used to train the algorithm (see Appendix S1 for more details). The resulting
dataset describes, for each secondary occasion (day), if each functional group was detected or not.
The blocks were established at different times, which resulted in inclusion of missing data since
more than half of the sites were only observed for the last 47 weeks.

This study system exhibits strong seasonality that needs to be accounted for. However, there is
a lack of detailed environmental data representative of the seasonality in this area. Therefore, we
used temperature measurements from the camera traps to estimate the onset of winter (defined as
the first day after summer with a daily mean temperature < 0) and the time of snow melt (defined
as the first day in spring with daily mean > 0) for each camera trap individually. Such partitioning
of the year will account for most of the seasonal changes affecting detection, as the winter period
is mostly snow-covered, forcing small mammals into the subnivean space at the bottom of the
snow pack, while the summer season is mostly snow-free. Indeed, presence of snow is known to
impact the detection probability of small rodents on the Arctic tundra (Moélle et al., 2021). Season
was therefore included as a covariate on detection probabilities (p4 and pp) through a logit-link
function. The model was analyzed similarly to the simulation model.

In addition, we performed a prior sensitivity analysis by running the model with 3 different
sets of priors. The first set contained flat uniform priors (~ Uniform(0, 1)) except for the detection
probabilities, which were given a Normal(0, 1) prior distributions since they are defined on a logit
scale. For the second set we used centered priors by using a Beta(4,4) distribution for all priors,
again except for the detection probabilities which now were given a Logistic(0, 1) prior distribu-
tion. The third set of priors was specified to be skewed towards our ecological expectations, by

using either a Beta(2,4) or Beta(4,2) depending on the expected relationships in a predator-prey
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system. Detection probabilities were given a Normal(—0.5, 1) prior distribution on the logit scale
(see Appendix S1). The prior sensitivity analysis was also used to investigate identifiability by
additionally estimating prior-posterior overlap (Gimenez et al., 2004). To assess the goodness of
fit we calculated a Bayesian p-value as described by Kéry & Royle (2020) (see details in Appendix
S1). To reach convergence with the field dataset we needed to run the model for 20 000 iterations,
with 5 000 steps of adaptation. In addition we discarded the first 1000 iterations as burn-in and

used a thinning of 20. We note that this was slightly longer than for the simulation study.

3 Results

3.1 Simulation study

All colonization and extinction probabilities at both spatial scales were estimated without bias for
most data scenarios (Fig. 2 and Tables S5-S7 in Appendix S1). However, in the low detection
scenario there was a slight positive bias in the block extinction probability of species B when
species A were absent (Ep, 21% bias) and in the block extinction of species A when B were present
(Eq|p, 20% bias), see Fig. 2. Both detection probabilities (ps and pp) were estimated without
any apparent bias (Fig. S12 in Appendix S1). The initial values were also estimated without any
obvious bias except for yup under the low occupancy and low detection scenario (Fig. S13 in

Appendix S1).
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Figure 2: Violin plots and boxplots of the posterior means of site and block colonization (y and I')
as well as extinction probabilities (€ and E), from 50 simulation replicates. The thick red bar
indicates the true parameter values while the thick grey bar indicates the average of the posterior
means from the 50 simulated replicates. The x-axis displays the 6 different data scenarios: low,
medium and high detection probability of both species (Id, md, hd) and low, medium and high
average site occupancy probability of both species (lo, mo, ho).

= 3.2 Empirical case study

2s Rodents generally had a higher detection probability than mustelids, and mustelids were less de-

226 tectable during winter than in summer (for detection probabilities, see Appendix S1).

16



227

228

229

230

231

232

233

234

235

236

237

238

239

For rodents, we found a clear indication of strong mustelid impacts at the site level, as mustelid
presence increased the site level rodent extinction probability from 0.09 to 0.33 (an increase of 0.23
with 95% CRI (0.12-0.36)). For colonization/extinction probabilities that did not show marked
effects, see Fig. 3. At the block level, on the other hand, rodent extinction appeared unaffected by
the presence of mustelids in the block. Meanwhile, the estimated effects of rodents on mustelids
were small and uncertain (Table S9 in Appendix S1). We note, however, that two of the block-
level parameters (i.e. block-level colonization of rodents when mustelids were present (I'y|3) and
block-level extinction of mustelids alone (Ep)) were estimated with a large uncertainty. They were
also quite sensitive to prior choice and probably unidentifiable in practice, according to the prior-
posterior overlap (Appendix S1, section 4). This makes ecological inference about these parameters
impossible for our case study (See Tables S8 and S9 in Appendix S1 for numerical values of
estimates of all colonization and extinction probabilities, and the differences between them, with

corresponding credible intervals).

Block parameters Site parameters
1.00
0.75
0.50
0.25
-4 slla e <+
0.00

En Eag Eg Ega I'a Tag Is Iga €rn €aB € €A YA YAB B VBA

Figure 3: Violin plots of the estimated posterior distribution of site and block colonization (Y and
I') and extinction probabilities (€ and E) for the case study. Subscript A denotes small rodents and
B denote small mustelids. Red bars indicate posterior means.
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4 Discussion

We constructed a dynamic multi-scale occupancy model for interacting species. Through simula-
tions, we demonstrated that the model is able to produce unbiased estimates of colonization and
extinction parameters under most scenarios of average presence and detection. We find the current
extension of the dynamic multi-species occupancy framework to nested spatial scales useful for
two reasons. First, it is possible to explicitly account for the spatial structures found in many spa-
tially nested study designs. This should reduce bias and increase precision in parameter estimates.
Second, it makes it possible to investigate the joint colonization and extinction dynamics of species
pairs that have contrasted movement ranges, where the daily movement range of one species (e.g.,
the predator) is equivalent to the dispersal distance for another species (e.g., the prey). Analysing
data from a multi-scale monitoring program of two species with contrasted movements ranges (cf.
our mustelid-rodent case study) with a single scale model would make little sense. Not only would
this violate the assumption of spatial independence, it would also compromise inference in terms of
ecologically meaningful model parameters. Indeed, the two spatial scales represent different eco-
logical processes for predator and prey: the spatial scale of short distance colonization for rodents
(between sites) corresponds to the scale of within-home range movements for mustelids (e.g. forag-
ing), while the spatial scale of long distance colonization for rodents (between blocks) correspond
for mustelids to the scale of between-home range movements (e.g. changing territories). Our work
therefore helps to bridge the gap between the separate developments of multi-scale dynamic oc-
cupancy models (Tingley et al., 2018) and dynamic multi-species occupancy models (MacKenzie
et al., 2017; Fidino et al., 2019).

The simulation study showed that all model parameters are estimated without any considerable
bias in most data scenarios (see Appendix S1 Table S6). The exception is the low detection scenario
where small biases appeared for the block extinction probability of A when B is present (E, 3) and

in block extinction probability of B when A is absent (Ep). A likely explanation is that when few
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blocks are occupied with species B, there are also few blocks that have the potential to go extinct.
Furthermore, the block-level parameters appear to vary more between models than the site-level
parameters. This could result from all observations coming from the site-level, with the block-level
parameters thus depending on the reconstruction of two latent states. Also, the nested study design
has logically more sites than blocks, providing more data to estimate the site-level parameters than
the block-level parameters. If an auxiliary data stream constituted of indices of block presence (e.g.
snow track data for mustelids) could be constructed, it could be fed to a joint model to increase the
precision on estimated block-level parameters. In the current model framework, the simulation
study demonstrates that care has to be taken when analysing data on species with low detection
probability. We encourage further work on the data requirements of similarly complex multi-scale
occupancy models, possibly with more informed priors and/or additional data streams. We consider
this simulation exercise as opening doors rather than providing definitive answers.

Our real-world case study incorporates some of the classical empirical challenges that ecolo-
gists have to deal with. First, the dataset has a high proportion of missing data and detection prob-
ability differs between the functional groups. Second, the dataset comes from an ecosystem with
both strong seasonality and multi-year cyclicity, which likely affects the detection, colonization
and extinction probabilities. Third, we use functional groups instead of species, potentially adding
some unexplained variability in the data. Moreover, we treated blocks as if they were identical,
which is likely to be an oversimplification. Even without addressing these challenges specifically
in the model (with the exception of a seasonal covariate on detection probability), the model seems
to be able to identify most parameters. However, it is evident that some parameters (I'y3 and Ep)
are estimated with large uncertainties, to a degree where it limits the ecological inferences that
can be made (Fig. 3). Why I'yp and Ep are the parameters that are not practically identifiable
can be explained. First, these are block-level parameters, and by design fewer transitions between
states occur at block level (since there are less blocks than sites). These are also predator-related

parameters, conditional on predator presence, and there were fewer observations of mustelids than
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of rodents (see Table S4 in Appendix S1). It is expected that predators have fewer observations
than prey as they usually are at lower density. However, mustelids are also known to be especially
difficult to observe (King & Powell, 2006). Our empirical case study appears thus to constitute
the minimal data requirements for this model. It is likely that a longer time series would increase
parameter precision (Guillera-Arroita er al., 2014), especially in the case study system where the
population dynamics are ruled by 4-year population cycles. Other predator-prey systems where the
predator is more conspicuous might also make it easier to identify all parameters including at block
level.

Despite the abovementioned challenges, the model gave some evidence of a predator-prey in-
teraction between mustelids and rodents (Hanski et al., 1993; Norrdahl & Korpiméki, 2000). On
the site level, mustelid presence lead to a four-fold increase in rodent extinction probability, which
is probably due to direct effects (killing) and indirect effects (predator avoidance) of predation by
mustelids. This result is coherent with the hypotheses that mustelids are able to induce population
crashes in boreal and arctic rodent populations (Hanski et al., 1993). Most of the current obser-
vational evidence for this hypothesis comes from indirect observations of mustelids (snow tracks
Korpela et al., 2014 and winter nests Gilg et al., 2003) and spatially aggregated rodent counts once
or twice per year: we provide here some support for the predation hypothesis from direct observa-
tions of mustelid and rodent individuals, at spatial and temporal scales commensurate to those of
theoretical models.

‘We note that numerous extensions to this model could be possible. Although we only included a
simple binary covariate (season) for the detection probabilities in the case study, the model could be
extended to include both temporal and spatial covariates on initial occupancy, colonization and ex-
tinction probabilities by including a multinomial logit link function following earlier multi-species
occupancy models (Rota et al., 2016a; Fidino et al., 2019; Kéry & Royle, 2020). Our model also
has the potential to be extended to more species (similar to models by Rota et al. 2016a and Fidino

et al. 2019) or spatial levels. However, complicating the model further (e.g. by increasing num-
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ber of species) may require regularization (shrinkage of some parameters) or variable selection
(Hutchinson et al., 2015; McElreath, 2015).

To conclude, we developed a dynamic occupancy model for interacting species at two spatial
scales, which estimates initial occupancy, colonization and extinction probabilities as well as detec-
tion probabilities. Applied to northern rodent population dynamics, the model provided evidence
consistent with the predation hypothesis, while accounting for the fact that interactions between

predators and prey arise from processes occurring at two nested spatial scales.

5 Data Availability

All data and code used in this manuscript are available at UiT Open Research Data

(doi.org/10.18710/ZLW59W).
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Appendix S1: A dynamic occupancy model for interacting
species with two spatial scales

1 Model specification

1.1 Initial occupancy state

It is necessary to define in what state the blocks and sites are in the first primary occasion (or initial
state). Since all observations are exclusively done at the site level and there is no information regarding
the site state before the first sampling season, the initial latent site state (zxp¢=1) is modeled as the
following categorical random variable (generalized Bernoulli), where k denotes site, b block and ¢
primary occasion

2k, bi=1 ~ Categorical(vp) (1)

where v, is a vector describing the initial state probabilities of sites within a given block. To assure
that the initial state probabilities sum to one, one state probability is obtained through subtraction.
Then the initial state probability vector (1) can be written as

U A B AB
Vo= [(1—ta, —¥B, —¥aB,) Ya, UB, ¥as,] (2)

where 94,, ¥p, and ¥ ap, are the probabilities that a site within a given block will be in state A, B
or AB respectively in the first primary occasion. Since there are no direct observations of the latent
block state, it is assumed that the initial latent block state (zp4=1) is solely a function of the states
of the sites within the given block (e.g. if at least one site is in state A and no sites are in state B or
AB, then the block state is A).

We note that the initial state model presented above is rather simplistic. The reason for this
is that the mustelid-rodent case study has a limited number of spatial replicates, compared to the
relatively large number of primary occasions. Also the ecological interest in this example is mainly
in the dynamical part of the model. In other cases where there is a stronger ecological interest in
the initial states we recommend implementing a initial state model where site state are dependent on
block states, in line with the way we model transition probabilities.

2 Simulation study

To investigate how detection and occupancy probability affect bias we simulate data from 6 sets
of parameter values: 3 sets with varying detection probability and 3 sets with varying occupancy
probability. See exact parameter values in Table S1. The parameters values for all scenarios was
chosen to reflect a predator-prey setting, e.g. I'a > T'4p and €4 < e4)p. Moreover, varying detection
and occupancy scenarios was based on a review of occupancy studies by Specht et al. (2017) defining
common species as occupancy > 0.5, rare species as occupancy < 0.3 and cryptic species as detection
probability < 0.3.



Parameter ld md hd lo mo ho
Ta 05 ] 05 | 05 ] 01 ] 05] 08
I'p 01 ] 01 | 01]005] 01| 02

Tap 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.2
Tpa 04 | 04 | 04 | 02| 04 | 07
Ea 0.05 | 0.05 | 0.05 | 0.1 | 0.05 | 0.05
Ep 06 | 06 | 06 | 06 | 0.6 | 0.8
Eap 05| 05|05 ]| 05| 05| 04
Ep|a 02 ] 02021 02]02] 02
PaA 02| 05|09 ] 05| 05| 05
B 01 ] 05|08 ]| 051 05| 05
YA 05 ] 05|05 ]| 03] 05| 08
VB 03] 03] 03] 03] 03] 03
YalB 01| 01|01 ] 01| 01] 01
YBla 07 | 07|07 1] 06| 07| 07
€A 03] 03] 03] 03] 03] 01
B 08 | 0.8 | 0.8 | 0.8 | 0.8 | 0.6
€AlB 09 | 09 |09 1] 09| 09| 06
€p)a 01 ] 01 ]01]01] 01|01
Y =1 05 | 05 ] 05 | 06 | 05| 04
Ya=1 0.250.25]025| 02 | 025 0.3
VB.i=1 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.2
Yaps=1 | 01 | 0.1 | 0.1 [0.05]| 0.1 | 0.1

Table S1: Description of parameter values used in the simulation study under the 6 different
scenarios. We use low, medium and high detection probability (1d, md, hd) and low, medium and

high occupancy probability (lo, mo, ho).

We also plotted the trends in the simulated observed occupancy probability at site level (Figure S1).
This helps to clearly describe the actual data that was used, and show that the contrasted scenarios
give the expected gradient in observed occupancy, where the low detection and low occupancy scenarios
result in the lowest number of observations, while the medium detection and occupancy also gives an
intermediate number of observation. High occupancy and detection result in the highest number of

observations, so that the simulated datasets all serve their purpose.
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3 Camera trapping data
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Figure S2: Map of the study area (Varanger peninsula, in northern Norway, red box), describing the
spatial setup of the sampling design from the empirical case study. Black dots mark camera trapping
sites and black boxes highlight blocks of camera traps.

To illustrate the real world applicability of our model we apply it to a camera trap data set from
the long-term monitoring program COAT (Climate-ecological Observatory of the Arctic Tundra) on
small rodents (grey-sided vole, tundra vole and norwegian lemming) and small mustelids (stoat and
least weasel) on the Norwegian part of the low-arctic tundra. This monitoring program was started in
autumn of 2015 and then consisted of 4 blocks of camera trap sites, with 11 sites with-in each block. In
the summer of 2018 it was extended with 4 more blocks containing 12 sites within each block, to then
make it a total of 8 blocks. The two groups of interest (i.e., small rodents and small mustelids) have
different home ranges, so the spatial hierarchy in the sampling is designed so that sites (>300m apart)
do not overlap the home range of the same individuals of small rodents, while they do so for small
mustelids. The blocks are spaced out so that they do not overlap the home range of an individual of
neither small rodents nor small mustelids (>3000m apart). At each camera trap site there is a tunnel
containing a camera trap with a PIR-sensor places in a natural runway for small mustelids and small
rodents. The cameras is out and active year round and monitors the animals in continuous time by
capturing two consecutive pictures any time the PIR-sensor is triggered (see Soininen et al. (2015) for
further details on camera site setup). All pictures captures by the cameras was automatically classified
with the MLWIC R-package (Tabak et al., 2019). The model was trained with a total of 47029 pictures
from 8 different classes (see table S2 for details). The class “bad quality” was used for images where
the quality is so low that it is likely that and animal could go undetected even though it was present
(e.g. if the camera is full of snow or water). Such images were treated as missing observations in the
data analysis. This training dataset was manually classified by experts (see Table S2 for classes and
number of training pictures).



Class ID Number of pictures
Bad quality 6695
Bird 1448
Empty 9001
Least Weasel 749
Lemming 8047
Shrew 8333
Stoat 3181
vole 9575
Total 47029

Table S2: Classes used for the training of the image classification model. In the right column, we
show how many images were included in each category of the training data.

We used a separate test data consisting of 4425 expert classified images to validate the model.
From these, the model classified 97.2% correctly.

The animals exhibit a day rhythm in activity patterns (Soininen et al., 2015) hence we choose to
discretize the data into weeks (periods of 7 days) as primary occasions and every day within a week
as secondary occasions. We combine the data for the two species to a multi-state occupancy data set
with 4 states (U = none of the species are observer, A = only small rodents observed, B = only small
mustelids observed or AB = both small rodents and small mustelids are observed). To analyze this
data we included all weeks from the beginning of the monitoring in 2015, making it a total of 203
weeks. This will include much missing data, since more then half of the sites were only observed for
the last 47 weeks.

The data is from a seasonal system, with long snowy winters. In addition there is a multiyear
dynamics with 3 to 5-years population cycles (Ims & Fuglei, 2005). This is visible in the observed data
(see Fig. S3 and S4). Note that the number of observed sites increased during the study.
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Figure S3: Number of occupied sites in the case study plotted against weeks (primary occasions).
The black line indicate small rodents and the gray line indicates small mustelids
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Figure S4: Proportion of active sites that were observed as occupied by either small rodents (black
line) or small mustelids (gray line) in a given week (primary occasion).

Table S3 gives the number of transitions observed between the blocks states. It highlight that even
though the case study cover many primary occasions, it does in fact not observe that many block level
state transitions, especially so for states involving mustelids. We also see that some transitions are
more common that others, something that potentially can give a hint about the data requirement of
such a model.

To site state
U A B AB
U /398 42 15 1
A 39 335 15 14
B 15 17 54 9
AB 0 14 13 12

From site state

Table S3: This table gives the number of observed block state transition in the case study. A is used
to indicate rodents and B to indicate mustelids.

4 Model checking for case study

4.1 Evaluating goodness of fit

Goodness-of-fit (GOF) testing is challenging for complex occupancy models analysed in a Bayesian
framework and is often ignored in the ecological litterature (Conn et al., 2018). However, some ap-
proaches have been developed to investigate the GOF for simple dynamic occupancy models (Kéry &
Royle, 2020) and community occupancy models (Zipkin et al., 2012). To assess the GOF in our case
study analysis, we adopted the approach presented by Kéry & Royle (2020). This approach considers
separate fit statistics for the open (between primary occasions) and closed (within primary occasions)
part of the model. To be in line with Kéry & Royle (2020) we tested the GOF only on site level and
did separate tests for the two species. The test for the open part of the model was done by calculating
the number of observed and expected transitions between model states for each species separately.
While for the closed part of the model, observed and expected detection frequencies at individual sites
were calculated for the two species separately. A replicated dataset under the model was simulated.
Both the observed and replicated datasets were compared to the expected number of transitions and
detection frequencies to calculate x? discrepancies as follows:



2 _ 2
Xtransition - (Otransition - Etransition) /Etransition (3)

X%requency = (Ofrequency - Efrequency)z/Efrequency (4)

where Ojransition 18 the observed number of transitions between states, Firansition 1S the number
of transitions between states expected under the model (calculated from data simulated under the
model), Ofrequency 1S the observed detection frequency within a primary occasion and Efrequency i the
detection frequency within a primary occasion expected under the model (calculated from the data
simulated under the model).

As it is not clear how one would interpret the results of the GOF-test for the dynamic two-species
occupancy model with nested spatial scales, we first applied the GOF-test on a data set simulated
under the model (mid occupancy scenario from the simulation study) to investigate how the test
would preform under ideal circumstances (see Fig. S5). However, we do stress that this is not a
complete investigation of how this GOF-test performs for complex occupancy models. Furthermore,
we want to highlight that more work is needed to understand the sensitivity of GOF-tests for complex
occupancy models and how the outputs of these tests should be interpreted (Kéry & Royle, 2020).
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Figure S5: Goodness-of-fit check of the open and closed parts of the model based on data simulated
under the model for the two different species groups (rodents (A) and mustelids (B)). The Bayesian
p-value (Bpv) is the proportion of points above the 1:1 line.
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Figure S6: Goodness-of-fit check of the open and closed parts of the model based on the observed
data for the two different species groups (rodents (A) and mustelids (B)). The Bayesian p-value
(Bpv) is the proportion of points above the 1:1 line.

We see from figure S5 and S6 that with the case study data, the x? discrepancies between the
replicated and observed data are a little more different from each other than for data simulated under
the theoretical model. The large discrepancy is for species A in the closed part of the model. This
could indicate that there are factors affecting the detection probability of rodents that we do not
account for. However, regarding the open part of the model for both functional groups, and for the
closed part of the model for mustelids, we see that there is not a considerable difference between what
is expected under ideal circumstances (data simulated under the model) and what we see with the case
study data.

4.2 Prior sensitivity analysis

To ensure that the parameters were not estimated only from the prior distribution we performed a prior
sensitivity analysis. This was done by running the model with three different sets of priors (see table
S4) and comparing parameter estimates. This prior sensitivity analysis can also be used to investigate
parameter identifiability by estimating the prior-posterior overlap.



Parameter | previously used priors | centered prior set | skewed prior set
T'a Uniform(0,1) Beta(4,4) Beta(2,4)
Tas Uniform(0,1) Beta(4,4) Beta(2,4)
T's Uniform(0,1) Beta(4,4) Beta(2,4)
I'pja Uniform(0,1) Beta(4,4) Beta(2,4)
E4 Uniform(0,1) Beta(4,4) Beta(2,4)
EyB Uniform(0,1) Beta(4,4) Beta(4,2)
Ep Uniform(0,1) Beta(4,4) Beta(4,2)
Ep|a Uniform(0,1) Beta(4,4) Beta(2,4)
YA Uniform(0,1) Beta(4,4) Beta(4,2)
YA|B Uniform(0,1) Beta(4,4) Beta(2,4)
VB Uniform(0,1) Beta(4,4) Beta(2,4)
YB|A Uniform(0,1) Beta(4,4) Beta(4,2)
€A Uniform(0,1) Beta(4,4) Beta(2,4)
€AlB Uniform(0,1) Beta(4,4) Beta(4,2)
€B Uniform(0,1) Beta(4,4) Beta(4,2)
€BlA Uniform(0,1) Beta(4,4) Beta(2,4)
A0 Normal(0,1) logistic(0,1) Normal(0.5,1)
apo Normal(0,1) logistic(0,1) Normal(-0.5,1)
i Uniform(0,0.5) Beta(4,4) Beta(2,4)
o Uniform(0,0.5) Beta(4,4) Beta(2,4)
o Uniform(0,0.5) Beta(4,4) Beta(2,4)

Table S4: This table gives details on what priors were used for the prior sensitivity analysis. «a4¢ and
apo are the intercept in the logit link function for the detection probabilities p4 and pg. These are
parameters are on the logit scale. 1, 15 and 13 are the initial state probabilities for the states A, B
and AB. I" and E are the colonization and extinction probabilities on block level while v and € are
the colonization and extinction probabilities on site level. All initial state, colonization and
extinction probabilities are defined on the probability scale. Exact definitions of these with subscripts
can be found in table 1 and 2 in the main text.
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Figure S7: Violin plot of the colonization and extinction probabilities estimates with the different sets
of priors. The red bar indicate the posterior mean. In the x-axis label 1-3 indicate the prior set used.
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Figure S8: Violin plot of the detection probabilities estimates with the different sets of priors. The
red bar indicate the posterior mean. In the x-axis label 1-3 indicate the prior set used.

We see from figure S7 and S8 that the estimates detection, colonization and extinction probabilities
seem to have little sensitivity to the priors distributions, except for I'y|p and Ep where the posterior
seems to change slightly depending on the prior distribution.

4.3 Parameter identifiability

To check parameter identifiability we investigated the overlap of the prior and posterior distributions.
This was done for all colonization, extinction and detection parameters for the same 3 sets of prior
distributions that were used in the prior sensitivity analysis (see table S4). The results are shown in
figure S9, S10 and S11, where we see that all parameters except Ep and I'4p appear to be identifiable.
For Ep and I' 4 the posterior is very similar to the prior distribution, especially so for prior sets 2
and 3. This indicates that these parameters are not identifiable from this data.
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Figure S9: Violin plot of both prior (indicated by subscript T) and posterior distributions for block
colonization and extinction parameters with the different sets of priors. Subscript 1:3 indicate the
prior set used.
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Figure S11: Violin plot of both prior (indicated by subscript T) and posterior distributions for block
colonization and extinction parameters with the different sets of priors. Subscript S and W refer to
summer and winter estimates, while 1:3 indicate the prior set used.

5 Results

5.1 Simulation study

In this section we give a more detailed description of the simulation results.

Table S7 and S6 give the results from the simulation study. We see that the model is able to
estimate most parameters without bias. Some small biases appear, especially so under the low detection
probability scenario.

11



low det mid det high det

Parameter | true | mean | sd | true | mean | sd | true | mean | sd
Ty 0.50 | 0.43 | 0.06 | 0.50 | 0.48 | 0.04 | 0.50 | 0.49 | 0.05
TaB 0.05 | 0.05 | 0.03 | 0.05 | 0.07 | 0.03 | 0.05 | 0.06 | 0.02
T'p 0.10 | 0.06 | 0.03 | 0.1 0.10 | 0.03 | 0.10 | 0.10 | 0.03
Ipja 0.40 | 0.36 | 0.04 | 04 0.40 | 0.05 | 0.40 | 0.41 | 0.04
Ea 0.05 | 0.10 | 0.03 | 0.05 | 0.06 | 0.02 | 0.05 | 0.06 | 0.02
EyB 0.50 | 0.61 | 0.08 | 0.50 | 0.53 | 0.05 | 0.50 | 0.52 | 0.06
Ep 0.60 | 0.73 | 0.08 | 0.60 | 0.63 | 0.06 | 0.60 | 0.60 | 0.05
Ep|a 0.20 | 0.21 | 0.04 | 0.20 | 0.20 | 0.04 | 0.20 | 0.20 | 0.04
YA 0.50 | 0.46 | 0.02 | 0.50 | 0.49 | 0.02 | 0.50 | 0.50 | 0.01
YA|B 0.10 | 0.06 | 0.03 | 0.10 | 0.08 | 0.03 | 0.10 | 0.09 | 0.03
B 0.30 | 0.23 | 0.05 | 0.30 | 0.29 | 0.02 | 0.30 | 0.30 | 0.02
VB|A 0.70 | 0.74 | 0.07 | 0.70 | 0.70 | 0.02 | 0.70 | 0.70 | 0.02
€4 0.30 | 0.34 | 0.03 | 0.30 | 0.31 | 0.02 | 0.30 | 0.30 | 0.01
€AlB 0.90 | 0.94 | 0.03 | 0.90 | 0.92 | 0.03 | 0.90 | 0.91 | 0.03
€B 0.80 | 0.84 | 0.07 | 0.80 | 0.81 | 0.02 | 0.80 | 0.80 | 0.02
€BlA 0.10 | 0.11 | 0.04 | 0.10 | 0.09 | 0.02 | 0.10 | 0.09 | 0.02

Table S5: Results from the 3 scenarios with varying detection probabilities in the simulation study
given as mean and standard deviation of the posterior means from the 50 replicated sets.

low occ mid occ high occ
Parameter | true | mean | sd | true | mean | sd | true | mean | sd
T4 0.10 | 0.10 | 0.02 | 0.50 | 0.50 | 0.05 | 0.80 | 0.79 | 0.05
I 0.05 | 0.07 | 0.03 | 0.05 | 0.06 | 0.03 | 0.20 | 0.21 | 0.05
T'p 0.05 | 0.05 | 0.01 | 0.10 | 0.10 | 0.03 | 0.20 | 0.19 | 0.05
I'pja 0.20 | 0.22 | 0.05 | 0.40 | 0.40 | 0.06 | 0.70 | 0.69 | 0.04
Ea 0.10 | 0.10 | 0.03 | 0.05 | 0.06 | 0.02 | 0.05 | 0.07 | 0.02
EqB 0.50 | 0.53 | 0.07 | 0.50 | 0.53 | 0.05 | 0.40 | 0.39 | 0.04
Ep 0.60 | 0.63 | 0.08 | 0.60 | 0.62 | 0.06 | 0.80 | 0.79 | 0.05
Epla 0.20 | 0.21 | 0.06 | 0.20 | 0.21 | 0.04 | 0.20 | 0.19 | 0.03
YA 0.30 | 0.29 | 0.02 | 0.50 | 0.49 | 0.02 | 0.80 | 0.79 | 0.01
YA|B 0.10 | 0.10 | 0.04 | 0.10 | 0.09 | 0.03 | 0.10 | 0.08 | 0.02
vB 0.30 | 0.29 | 0.02 | 0.30 | 0.29 | 0.02 | 0.30 | 0.29 | 0.02
VB|A 0.60 | 0.59 | 0.04 | 0.70 | 0.70 | 0.02 | 0.70 | 0.69 | 0.02
€A 0.30 | 0.30 | 0.03 | 0.30 | 0.31 | 0.02 | 0.10 | 0.10 | 0.01
€AlB 0.90 | 0.90 | 0.05 | 0.90 | 0.92 | 0.02 | 0.60 | 0.63 | 0.03
€B 0.80 | 0.80 | 0.04 | 0.80 | 0.80 | 0.02 | 0.60 | 0.61 | 0.03
€B|A 0.10 | 0.10 | 0.04 | 0.10 | 0.09 | 0.02 | 0.10 | 0.09 | 0.02

Table S6: Results from the 3 scenarios with varying occupancy probabilities in the simulation study
given as mean and standard deviation of the posterior means from the 50 replicated sets.
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low det mid det high det low occ mid occ high occ
Par | bias | rel. | bias | rel. | bias | rel. | bias | rel. | bias | rel. | bias | rel.
Ta 0.07 | 14% | 0.02 | 4% | 0.01 | 2% 0 0 0 0 0.01 | 1%
CaB 0 0 0.02 | 40% | 0.01 | 20% | 0.02 | 40% | 0.01 | 20% | 0.01 | 5%
I'p 0.04 | 40% 0 0% 0 0% 0 0% 0 0% | 0.01 | 5%
Ipja | 0.04 | 10% 0 0% | 0.01 | 3% | 0.02 | 10% 0 0% | 0.01 | 1%
E4 | 0.05 | 50% | 0.01 | 20% | 0.01 | 20% 0 0% | 0.01 | 20% | 0.02 | 40%
Eqp | 011 | 22% | 0.03 | 6% | 0.02 | 4% | 0.03 | 6% | 0.03 | 6% | 0.01 | 3%
Eg | 013 |22% | 0.03 | 5% 0 0% | 003 | 5% | 0.02 | 3% | 0.01 | 1%
Epja | 0.01 | 5% 0 0% 0 0% | 001 | 5% | 0.01| 5% | 0.01 | 5%
YA 004 | 8% | 0.02 | 4% 0 0% [ 001 ] 3% |0.01] 2% |0.01 | 1%
Yyaip | 0.04 | 40% | 0.02 | 20% | 0.01 | 10% 0 0% | 0.01 | 10% | 0.02 | 20%
YB 0.07 | 23% | 0.01 | 3% 0 0% | 0.01 | 3% | 0.01 | 3% | 0.01 | 3%
Bl | 0.04 | 6% 0 0% 0 0% | 0.01 | 1% 0 0% | 0.01 | 1%
€A 0.04 | 13% | 0.01 | 3% 0 0% 0 0% | 0.01 | 3% 0 0%
eaqp | 004 | 4% | 0.02 | 2% | 0.01 | 1% 0 0% | 0.02 | 2% | 0.03 | 5%
€B 0.04 | 5% | 0.01 | 1% 0 0% 0 0% 0 0% | 0.01 | 2%
€gla | 0.01 | 10% | 0.01 | 10% | 0.01 | 10% 0 0% | 0.01 | 10% | 0.01 | 10%

Table S7: Comparison of the true and estimated parameter values in the simulation study. The table
gives the absolute and relative bias.

From Figure S12 and S13 we see that detection probabilities (p4 and pp) and initial occupancy

probabilities (4, ,, ¥B, , and ¥ap, ,) are estimated without bias.
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Figure S12: Violin plot and boxplot of the posterior mean of detection probability (p4 and pg) from
the 50 simulations. The red bar indicates the true parameter values. x-axis displays the 6 different
data scenarios (low, medium and high detection probability: 1d, md, hd, and low, medium and high

occupancy probability: lo, mo,ho).
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Figure S13: Violin plot and boxplot of the posterior mean of initial occupancy (¢;=1) from the 50
simulations. The red bar indicates the true parameter values. x-axis displays the 6 different data
scenarios (low, medium and high detection probability: 1d, md, hd, and low, medium and high
occupancy probability: lo, mo,ho).

5.2 Case study

This section gives detailed results on the case study. Table S8 gives more details on the estimated
colonization and extinction parameters in the case study while table S9 gives more information on the
estimated differences between colonization and extinction parameters depending on the presence or
absence of the other species. Figure S14 displays the difference in detection probability between the
two species groups and the two seasons as described in the main text.

Parameter | mean sd 95% CI
T4 0.027 | 0.012 | 0.007 0.054
Tas 0.257 | 0.234 | 0.013 0.874
I'p 0.018 | 0.016 | 0.001 0.057
FB|A 0.027 | 0.011 | 0.011 0.052
E\ 0.020 | 0.011 | 0.003 0.043
EA\B 0.022 | 0.019 | 0.001 0.070
Ep 0.374 | 0.269 | 0.029 0.947
Ep|a 0.092 | 0.034 | 0.039 0.170
YA 0.059 | 0.009 | 0.042 0.079
yap | 0.094 | 0.027 | 0.047 0.154
B 0.139 | 0.046 | 0.064 0.238
YB|A 0.119 | 0.045 | 0.046 0.220
€A 0.093 | 0.012 | 0.070 0.117
€A|B 0.326 | 0.072 | 0.194 0.476
€B 0.092 | 0.038 | 0.030 0.175
€B|A 0.183 | 0.089 | 0.028 0.367

Table S8: Results from the case study given as mean and standard deviation from the posterior
distribution in addition to the 95% credible intervals.
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Parameter | mean 95% CI

Ya-as | 0033 | -0.087 0.009
vB - pa | 0020 | -0.0760.115
€A - €A|B - 0.229 | -0.360 -0.115
€B - €BlA -0.086 | -0.259 0.062
Fya-Tap | -0.146 | -0.756 0.008
Tp-Tpa | 0.012 | -0.037 0.023
Ea-EaB 0.001 -0.040 0.028
Ep - EB|A 0.218 -0.065 0.810

Table S9: Estimated differences between dependent and independent colonization and extinction
probabilities with 95% credible intervals.
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Figure S14: Violin plot of the posterior mean of detection probability (p4 and pg) for summer (S)
and winter (W) in black. The red bar indicates the mean of the posterior distribution.

Figure S15 shows the estimated initial occupancy probabilities from the case study (¢=1). In
blocks bl to b4 we see some variation both between blocks, where blocks b2 and b4 have a higher
occupancy. Note that 1, is occupancy probability of species A only, 15 is occupancy probability of
species B only and 13 is the probability that both species A and B occupy a given site. Block b2 has
high occupancy probability of species A (11) and b4 has high occupancy probability of species B (13).
Please also note that we do not have any observations from blocks b6-b8 in the initial season, and that
we do not include any spatial covariates in the model.
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Figure S15: Violin plot and boxplot of the posterior mean of initial occupancy (1¢—1) for each of the
8 blocks (b1-b8).
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Abstract

The interaction between small mustelids (stoats and weasels) and their preferred prey (small
rodents) is hypothesized to be the key driver of the renown population cycles of boreal and Arc-
tic rodents. However, although the role of this predator-prey interaction may depend on how
its strength varies between seasons (summer and winter) and habitats, such dependencies have
not been empirically investigated due to methodological constraints. Based on a recently de-
veloped camera trap tailored for monitoring small mammals year-round, and a new dynamic
occupancy model for analysing spatial structured trophic interaction, we assessed whether there
was evidence for season- and habitat-dependence in mustelid-rodent interactions in low-arctic
tundra. We analysed a data set from a spatially extensive monitoring system consisting of repli-
cated landscape blocks with nested camera sites located in two key rodent habitats (snowbeds
and hummock tundra). The 6-year monitoring period included two cyclic phases of declines in
the rodent populations, in which predator-prey interactions could be expected to be strong. We
found evidence for a predator-prey interaction on a weekly time scale both on the block and site
level. The interaction was most consistent and strong in terms of increased weekly extinction
probabilities of rodents in presence of mustelids. At the site level, for which the occupancy
model allowed for season- and habitat-dependent estimates, the predator-prey interaction was
strongest in the snowbed habitat. Overall, the impact of mustelids on rodent population dynam-
ics was likely most important in summer as the mustelids occurred most frequently in this sea-
son. We conclude that our study demonstrates that camera-trap-based monitoring systems open
opportunities for a much more spatially and temporally nuanced knowledge of mustelid-rodent
interactions. We propose that future camera trap studies could be advanced by (1) developing
more refined and flexible criteria for defining different seasons than the arbitrary and inflexible
definitions used in most studies, (2) investigating species-specific interactions such as partial
effects of weasels and stoats on lemming and voles and (3) including all habitats that may be

involved in landscape-scale predator-prey interactions.
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1 Introduction

While the interaction between small mustelids and rodents for decades has been hypothesized to be
the key driver of the renown, multi-annual population cycles of boreal and Arctic small mammals
(Hansson & Henttonen, 1988; Hanski et al., 1991, 1993; Ims & Fuglei, 2005; Krebs, 2013;
Boonstra et al., 2016), recent reviews have concluded that new approaches are needed to obtain
more empirical information about critical features of this predator-prey interaction (Myers, 2018;
Oli, 2019; Andreassen et al., 2021). A crucial feature of the northern population cycles, already
highlighted by Charles Elton a century ago (Elton, 1924), is seasonality. Indeed, modern-time
analyses of long-term population time series have suggested that season-specific biotic interactions
should be invoked to explain these cycles (Hansen et al., 1999; Stenseth et al., 1998, 2003; Fauteux
et al., 2021). Accordingly, Andreassen et al. (2021) proposed that how seasonality interacts with
predation and other biotic drivers of cyclic rodent population dynamics is an essential question that

remains to be solved.

There are several reasons why the rodent-mustelid interaction may be season dependent.
The impact of mustelid predation may be particularly important in the winter season, because
weasels (Mustela nivalis) and stoats (M. erminea) are the only predators capable of following
the rodents down in the subnivean space (Norrdahl & Korpiméki, 1995). On the other hand, the
mustelid-rodent interaction may be particularly influential in summer as there are indications
that reproducing rodent females are most vulnerable to weasel predation (Hanski et al., 2001).
Moreover, some rodent species are known to change habitats between summer and winter (e.g.
Tast (1966); Kalela (1971)). Thus, if predation risk is habitat dependent (Jacob & Brown, 2000;
Sundell & Ylonen, 2008), there may be an interaction between seasonality and habitat use that

influences the dynamics of predator-prey interactions (Schmitz et al., 2017).
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Seasonality is incorporated in some mathematical models of rodent-mustelid interactions
(Turchin & Hanski, 1997; Hanski er al., 2001; Klemola et al., 2003). However, these models are
based on the the simplifying assumptions that only the population growth rates are season-specific
and, hence, that the parameters of the functional and numerical response that determine the the
strength of the interaction are independent of season. Moreover, the interaction is assumed to
be spatially homogeneous (i.e. no habitat dependence). Empirical studies have on other hand
been hampered by methodological constraints. A few field studies have obtained information on
predation rates based on radio-tagged rodents in summer (Norrdahl & Korpimiki, 1995), however
this approach appears inapplicable to the subnivean life-style of small mammals in winter. Data
on mustelids have mostly been obtained by means of track-surveys of supranivean activity one or
a few times during the winter (Oksanen et al., 1992; Aunapuu & Oksanen, 2003) or by inspecting
rodent winter nest for signs of mustelids at the end of the winter (Gilg et al., 2003; Vigués et al.,
2021). Such data have been used to infer mustelid habitat use in winter (Oksanen et al., 1992) and
moreover to parameterize mathematical (winter nests, (Gilg et al., 2003)) or statistical population
dynamics models (snow-tracking, Sundell et al. (2013); Korpela et al. (2014)). However, we are
not aware of any empirical studies that have been able to address how rodent-mustelid interactions

may depend on both habitat and season.

The use of camera traps has recently opened opportunities to obtain multi-species data on tem-
poral and spatial scales that have not been possible by previous monitoring methods (Burton et al.,
2015; Tobler et al., 2015; Sollmann, 2018). Moreover, statistical approaches (i.e. occupancy mod-
els) have been developed to enable estimation of inter-specific interactions in terms of conditional
extinction and colonization probabilities based on camera trap data (Rota et al., 2016; Fidino et al.,
2019). In the present study we apply a dynamical occupancy model developed by Kleiven et al.
(2021) to an unique data set from a landscape-scale, years-round, camera-trap-based monitoring

system that targets an Arctic small mammal community. Our main aim is to assess whether the
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interaction between rodents and mustelids are dependent on season and habitat.

2 Methods

2.1 Study area and species

This study was conducted in low-arctic tundra on Varanger Peninsula, NE Norway (70°20°’N
29°38’E; Fig. 1). The species of the small mammal community focal to the present study includes
three species of rodents (Norwegian lemming Lemmus lemmus, gray-sided vole Myodus rufocanus
and tundra vole Microtus oeconomus) and two species of mustelids (stoat and least weasel) (Molle
etal.,2021; Kleiven et al., 2021). Although the habitat use of the three rodent species differ, their 4-
5 year population cycles exhibit profound inter-specific synchrony on Varanger Penisula (Soininen
et al., 2018; Kleiven et al., 2018) and in alpine-arctic tundra elsewhere in Fennoscandia (Turchin
et al., 2000; Kausrud et al., 2008; Olofsson et al., 2012). It has been suggested that shared mustelid
predation is the cause of this synchrony (Sundell & Ylonen, 2008). Consequently, we will in this
study treat rodents and mustelids as two functional groups (prey and predators) like have been done
in several previous theoretical and empirical analyses of mustelid-rodent interactions (Hanski et al.,

1993; Sundell et al., 2013; Korpela et al., 2014).
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Figure 1: Maps of the study area. Left: Varanger Peninsula in NE Norway with the two study
sub-areas Vestre Jakobselv and Komagdalen denoted as rectangles. Right: The spatial setup of the
camera trap monitoring system within the two sub-areas. Brown circles denote camera trap sites in
hummock tundra, while red squares denote camera trap sites in snow beds. Green shades represent
areas with tall shrubs or sub-arctic forest

We used data from the camera-trap-based small mammal monitoring system of the Climate-
ecological Monitoring for Arctic Tundra (COAT, Ims et al. (2013)). The monitoring system
included the two habitats (snowbeds and hummock tundra) that were assumed focal to the
Norwegian lemming (Aho & Kalela, 1966; Koponen, 1970). The snowbed sites were selected
based on the criterion that they should harbour fairly rich vegetation consisting of mosses,
graminoids, herbs and prostrate shrubs (Salix herbacea and Vaccinium spp.) as well as they should

be adjoining boulder fields that could provide shelter to small mammals in summer (Magnusson

et al., 2013; Soininen et al., 2018). The selected hummock tundra sites were typically moist (often
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bordering mires) and contained lush vegetation of sedges, herbs and erect shrubs (e.g. Betula
nana, Vaccinium spp.) as well as hummocks providing shelter to small mammals. Within each of
the selected sites one tunnel-based camera trap of the version developed by Soininen et al. (2015),

and with the camera setting described by Molle et al. (2021)), was established.

To account for the different movement ranges of rodents and mustelids the monitoring system
has a hierarchical structure, where multiple camera sites are clustered in blocks (see Fig. 1). Cam-
era traps within a block are > 300m apart. Each block contain 11-12 camera traps and blocks are
> 3km apart. In September 2015 the camera traps were deployed in 4 blocks in Komagdalen with
5 or 6 cameras in each of the two habitats (i.e. hummock tundra and snowbeds) within each block.
In August 2018 the monitoring system was extended by an additional 4 blocks in Vestre Jakobselv
with 6 cameras in each of the two habitats. Hence, when fully established the monitoring system
amounts to a total of 8 blocks and 93 camera trap sites. For more details on the camera trap setup

and functionality see Molle et al. (2021) and Kleiven et al. (2021).

2.3 Data analysis

We trained a neural network model for automatic classification of camera trap images. We then used
this model to automatically classify all images with respect to presence of rodents and mustelids
as well to identify periods when certain camera traps were not functional (for more information
see https://data.coat.no/dataset/v_rodents_cameratraps_image_classification_lemming_blocks_v1).
Malfunctioning camera traps were most prevalent during winters (Mdlle et al., 2021) and such
traps/sites were excluded from the data set for those periods they could not record images. In
total, the dataset consists of 109 601 functional camera trap days spanning a period of 304 weeks
(i.e. primary occasions) and nearly 6 years (from September 2015 to July 2021). According to

a snap-trap-based rodent monitoring on Varanger Peninsula (cf. https://www.coat.no/en/Small-
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rodent), our study period included two cyclic phases of rodent population declines (2015-2017 and

2019-2021) in which the mustelid-rodent interaction could be expected to be strong.

The data was analysed by means of the dynamic occupancy model developed by Kleiven et al.
(2021) for interacting species at two nested spatial scales (i.e. blocks and sites). This model allows
for the estimation of scale-specific colonization (I" and 7, for block and site level respectively)
and extinction (£ and &, for block and site level) probabilities dependent on the presence of the
other functional group, in two habitats and seasons. We used the estimated difference in these
probabilities (i.e. contrast estimates) in absence and presence of the other functional group as a
measure of the strength of the predator-prey interaction (Emmerson & Raffaelli, 2004; Wootton &

Emmerson, 2005).

To account for the detection process, we discretized the camera trap data by considering
every week (i.e. 7-day period) primary occasions, between which the populations are assumed
to be open (i.e. sites can become colonized and go extinct). The length of the primary occasions
was assumed to match the fast population processes in rodents, i.e. leading to rapid site-scale,
colonization-extinction dynamics (Andreassen & Ims, 2001). Mustelids have slower demographic
processes, but are assumed to alter frequently site-scale hunting grounds (Hellstedt & Henttonen,
2006). Every day within a week is considered secondary occasions (i.e. temporal replicates),
between which the population is assumed to be closed (i.e. no colonization nor extinction occur).

The secondary occasions are used to estimate the detection probability.

The site and block level states can be estimated as any of the following four states: none of
the species present (U), only rodents present (R), only mustelids present (M) or both rodents
and mustelids present (RM). The site state depends on the block state, as a block would need to

be occupied before a site within that block can become occupied. However, the model does not
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assume the reverse to be true, meaning that a block can remain occupied even when all sites within
that block are extinct. Ecologically this means that the sum of the sites within a block does not
cover the entire block, hence it is possible for a species to be present in the area outside of the sites

but still within the block. For a more detailed model description see Kleiven et al. (2021).

On the site-level we included (through a logit link function) habitat and season as functional
group-specific covariates on the extinction and colonization probabilities and season as a covariate
on the functional group-specific detection probabilities. We did not include covariates on the
block-level extinction and colonization probabilities, because initial analysis revealed that the
dataset was insufficient to estimate all possible covariate combinations. Similar to other analyses
of season dependency in boreal and Arctic rodents populations (Hansen et al., 1999; Stenseth
et al., 1998, 2003; Fauteux et al., 2021), we defined a fixed schedule for the two seasons; i.e. the
summer season as the 4-month period between July 1 and November 1 and the remaining 8-month

period of the year as the winter season.

The model was analysed in a Bayesian framework using the JAGS software (Plummer, 2003)
with the jagsUI package (Kellner, 2015) in R v4.1.2 (R Core Team, 2021). The MCMC
chains was run for 20 000 iterations with a thinning of 10 where we discarded the first 5000 as
burn-in. We used an adaptation phase of 5000 iterations. Convergence was assessed by having a R

<1.1 for all key parameters (Gelman et al., 2013) and from graphical investigation of traceplots.



72

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

3 Results

3.1 Occupancy data

Rodents were recorded in 19 196 camera trap days of which the largest proportion was recorded
in the hummock tundra during the summer season (Table 1). Mustelids were recorded in 1 100

camera trap days with clearly the largest proportion in snowbeds during summer.

Season
Habitat
Winter Summer

Hummock tundra | 135/3845 (31981) | 288 /7489 (18579)
Snowbed 157 /3337 (38769) | 520 /4525 (20272)

Table 1: Number of camera trap days with mustelids and rodents in the total data set according to
season (winter and summer) and habitat (snowbeds and hummock tundra). The numbers are given
as mustelid/rodents (total number of camera trap days).

The weekly proportions of camera sites with recorded presence of rodents and mustelids exhib-
ited violent fluctuations between the two seasons (Fig. 2). For rodents these seasonal fluctuations
were larger in hummock tundra than in the snowbed habitat due to higher peaks in summers and
sometimes absence of recordings in winters. The multi-annual component of the rodent fluctua-
tions were much smoother than the seasonal component. However, gradual decline phases over
the years 2015-2017 and 2019-2021 were apparent, thus mirroring the pattern evident in the snap-
trap-based series (Fig. 6 in Appendix A). The relatively much smaller proportions of camera trap
days in mustelids exhibited a weaker multi-annual component, especially in the snowbed habitat.
The most conspicuous pattern in the mustelid occupancy data was the long periods with absence of

recordings in the winters.

10



188 Some of the seasonal differences in the raw occupancy data (Fig. 2) can be attributed to mod-
10 erately reduced detection probabilities in winter for both rodents and mustelids (Fig.3). The daily

190 detection probabilities were substantially higher for rodents than for mustelids.
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Figure 2: Temporal patterns in the proportion camera traps sites with weekly presence of rodents
(black lines) and mustelids (gray lines) in hummock tundra and snowbeds. Pale green background
denote summer seasons (July 1- November 1), while the pale blue background denote the winter
seasons.
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Figure 3: Violin plots of the estimated posterior distributions for the daily detection probabilities
of rodents (P4) and mustelids (Pp) in the two seasons. The black bar denotes the posterior mean.

3.2 Colonization and extinction probabilities

Several of the estimated block-level probabilities, which could not be made conditional on season
and habitat, had large uncertainties especially for mustelids (Fig. 4). This limited which inferences
could be made about rodent-mustelid interactions at this scale. However, the weekly rodent ex-
tinction probability increased from 0.005 (Eg) when mustelids were absent to 0.048 (Egjp;) when

mustelids were present (an increase of 0.043 with 95% CI [0.013 - 0.075]). The other contrasted

12
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parameters that could indicate predator-prey interactions had credible intervals that included zero

(see Tab. 3 Appendix C).
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Figure 4: Violin plots of posterior distributions of block-level colonization (I") and extinction prob-
abilities (E). The subscript R denotes rodents and M mustelids. Estimates for each functional group
are provided both in case of absence (i.e subscript R or M) and in presence of the other functional
group (i.e. subscript R|M for rodents in presence of mustelids and M|R for mustelids in presence
of rodents). The black bars show the posterior means.

At the site level, the evidence for predator-prey interactions was most evident in the snowbed
habitat in terms of extinction probabilities (Fig. 5). In this habitat, presence of mustelids increased
the weekly extinction probability of rodents from 0.11 (&g) to 0.37 (£R| u) (i.e. an increase of 0.26
with 95% CI [0.13 - 0.40]) in summer and from 0.15 to 0.30 (an increase of 0.15 with 95% CI
[0.001 - 0.304]) in winter. Somewhat curiously, in summer the extinction probability of mustelids
in the snowbeds also increased in presence of rodents; i.e. from 0.07 (&) to 0.34 (eyr) (an in-
crease of 0.27 with 95% CI [0.11-0.43]). The other habitat- and season-specific parameter contrasts
that could be interpreted as resulting from predator-prey interaction were uncertain (i.e. credible

intervals included zero; see Tab. 4 in Appendix C). However, there was a tendency for higher

13
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mustelid colonization probabilities when rodents were present in both habitats and seasons (Fig. 5).

Independent of predator-prey interactions, the effect of season and habitat was most pronounced
in case of the rodent colonization probabilities (). These were higher in the summers than in the
winters and moreover, higher in the hummock tundra than in the snowbed habitat (Fig. 5). In
addition, the extinction probability of rodents (€g) tended to be higher in winter than in summer
(see Fig. 5). For mustelids, effects of habitat and season on extinction and colonization probabilities
were less clear, partly owing more uncertain estimates. However, the extinction probabilities (&x)

may have been higher in hummock tundra than in the snowbed habitat (Fig. 5).

Rodent colonization Rodent extinction
Hummock tundra | Snowbed Hummock tundra Snowbed
0.3 0.6 [
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Figure 5: Violin plots of habitat- and season-specific posterior distributions site-level colonization
() and extinction probabilities (€). The subscript R denotes rodents and M mustelids. Estimates for
each functional group are provided both in case of absence (i.e subscript R or M) and in presence
of the other functional group (i.e. subscript R|M for rodents in presence of mustelids and M|R for
mustelids in presence of rodents). Dark green violins denote estimates from the summer season,
while dark blue violins denote estimates from the winter season. The black bars denote the posterior
means.
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4 Discussion

The predator-prey interaction between mustelids and rodents has been perceived as a key driver of
the population cycles in northern rodents (Henttonen et al., 1987; Hanski et al., 2001; Korpiméki
et al., 2002). However, it has been difficult to obtain direct empirical estimates of this interaction,
mostly due to lack of data that fit the temporal and spatial scales of both interactants. Small
rodents, and likely also the least weasel, have multivoltine life cycles. This combined with
profound climatic seasonality may give rise to rapid and/or episodic interactions not captured by
conventional population survey methods (e.g. snap-trapping or snow-track surveys) conducted
once or twice per year. By using data derived from a continuous, camera-trap-based monitoring
system recently established in arctic tundra landscapes, we have now estimated the strength of
the mustelid-rodent interaction on a weekly time scale, year round. By applying a dynamical
occupancy model specifically tailored to the hierarchical spatial structure of these monitoring data,
we found evidence for a rapid (i.e. week-scale) predator-prey interaction. This interaction was
most consistent in terms of increased probability of extinction of rodents in presence of mustelids,
as this effect was found on both spatial scales considered (block and site). At the site-scale the
strength of the interaction was habitat dependent as it was only found to be significant in the
snowbeds, which was also the habitat where mustelids were most frequently recorded. Mustelids
were generally recorded much less frequently in winter than in summer, but whenever they
were present their impact on rodent extinction probability in the snowbeds was also apparent in
winter. Although the interaction strengths, here assessed in terms of conditional extinction and
colonization probabilities, appeared to be somewhat more prevalent and stronger in summer than
in winter, our study does not provide clear evidence for any season dependency in the strength of

mustelid-rodent interaction.

The mustelid-rodent interaction was only clear in snowbed habitat. This may be explained
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in terms of species-specific habitat use within the two functional groups. The stoat was the most
frequently recorded mustelid in the snowbeds, while the least weasels tended to be recorded
relatively more often in hummock tundra (see Fig. 8, in Appendix B). While the least weasel
is regarded to be the most specialized rodent predator (Sundell & Ylonen, 2008), little is so far
known about the relative impact of the two mustelids on rodent populations. Lemmings were as
expected proportionately more frequently recorded than voles in snowbeds, while the hummock
tundra was proportionally dominated by voles (see Fig 7, Appendix B). As lemmings may be more
vulnerable to predation than voles (Oksanen et al., 2008), this difference in habitat use of tundra
rodents may explain the higher impact of mustelid presence on rodent extinction rates in snowbeds.
Surprisingly, the extinction probability of mustelids in snowbeds was also found to increase when
rodents were present. We suggest that this is likely an artefact of the high extinction rate of rodents
in presence of mustelids. If a mustelid eradicates the rodents on a site within a primary occasion
(i.e. within a week), and then leaves this site before the next primary session, this will appear as a
mustelid extinction event conditional on presence of rodents. This highlights a general challenge
of multi-species occupancy models in terms of defining a length of the primary occasions that are

equally suitable for different species that are included in the model.

Northern small mammals exhibit strong seasonal variability in the demographic processes
governing their population dynamics (Hansen et al., 1999; Stenseth et al., 2003; Andreassen
et al., 2021). Reproduction occurs mainly in summer. Hence for the rodents, we found (as could
be expected) colonization probabilities to be highest in summer and extinction probabilities to
be highest in winters. The probability estimates for the mustelids were more uncertain and not
significantly different between seasons. However, the occupancy data suggested that there was
also a profound seasonal dynamics in the mustelids as they were mostly present during summer
(Table 1). Sharp declines and increases in weekly habitat occupancy data were especially prevalent

in the transitions (i.e. the shoulder seasons) between summer and winters (Fig. 5). This may
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have obscured (i.e. cancelled out) seasonal differences in extinction and colonization probabilities,
which were assumed to be constant within the two seasons in our model. The profound seasonal
fluctuations in mustelid habitat occupancy, that appeared to be most prevalent in the stoat (see Fig.
8, Appendix B), may indicate that their movements become restricted in the subnivean space - at
least in the two habitats included the present study. Previous snow tracking studies of mustelid in
tundra landscapes have found that they prefer more productive habitats (e.g. meadows) in river
valleys (Aunapuu & Oksanen, 2003). In tundra areas that are in close proximity to the boreal
forest, mustelids tend to spend the winter in the forest-tundra transition zone (Oksanen et al.,
1992). Hellstedt & Henttonen (2006) suggested that mustelid space use is season dependent, both
due to their seasonal breeding cycle and due to changing environmental conditions (e.g. presence
of snow). Hence, such seasonal variability in habitat use of mustelids, where they mainly spend
the winters in habitats not covered by this study, may have limited our ability to reveal important
features of their landscape-scale interactions with rodents. We also note that our estimates of
interaction strength, in terms of extinction and colonization probabilities conditional on weekly
co-occurrences of both interactants, are not directly compatible with those parameters that are
used to assess the impact of mustelids in empirical and theoretical models on rodent population

dynamics.

We regard our study as more of a first glance into the spatial and temporal components of the
rodent-mustelid interaction, rather than aiming for definitive answers about the role of this interac-
tion in northern rodent cycles. Population cycles are inherently, temporally variable in their shapes
and amplitudes (Krebs, 2013), and this study encompassed only one and a half cycle. This limits
our ability to generalize our findings. Also, lumping different rodent and mustelid species into two
functional group limits possible generalizations, as both population and detection processes are
likely species specific. The same is true regarding the lack of detailed environmental covariates

included in the analysis. For instance, boreal and Arctic small mammals have been found to be very
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sensitive to the physical properties of the snow pack (Jedrzejewski et al., 1995; Poirier et al., 2021).
Unfortunately, lack of reliable local-scale environmental information combined with a too sparse
dataset to include additional covariates, made it impossible to model such effects. Furthermore,
our fixed definition of summer and winter seasons did not match very well the observed seasonal
dynamics in the occupancy data. This regards especially the transition from winter to summer that
also appeared to differ between habitats and years (Fig 2). Future analysis should attempt to use
more flexible definitions of climate seasonality, for instance, based on site-level environmental data
derived from the temperature sensors of the camera traps (Molle et al., 2021). Finally, the ability of
mustelids to drive rodents to local and regional extinction might be dependent on the phase of the

rodent population cycle (Norrdahl & Korpiméki, 1995), something we where unable to account for .

Despite these limitations, our study have provided insight about aspects of mustelid-rodent in-
teractions that until now have been constrained by available monitoring technologies. Most clearly
we found that the strength of the interaction is habitat dependent in Arctic tundra. Our study indi-
cates that the impact of mustelids on rodent population dynamics is likely season dependent too,
due to the strong seasonal fluctuation in presence of the mustelids in the two habitats encompassed
by the camera-based monitoring system. Future landscape-scale, species-specific analyses based
on camera trap monitoring data that span a wider range of habitats and multiple rodent cycles will
be needed to fully elucidate which role mustelids play in the generation of northern rodent cycles.
More generally, this study demonstrate how novel technology can shed new light on long-standing

mysteries in ecology.
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«~ A Shap trapping

w0 A long-term snap-trapping-based monitoring program is run on the Varanger Peninsula (Kleiven
w1 et al,2018). The time series derived from this monitoring program yield independent informa-
w2 tion on the population dynamics of rodents during the study period (2015-2021) and shows that it
w3 includes two cyclic decrease phases over the years 2015-2017 and 2019-2020, respectively (Fig.
w 0).
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Figure 6: Time series plots of two population density indices (late June and early September) per

year derived from the snap trapping monitoring system on the Varanger Peninsula.
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Figure 7: Temporal patterns in the proportion camera traps sites with weekly presence of lemmings
(grey lines) and voles (black lines) in hummock tundra and snowbeds. Pale green background
denote summer seasons (July 1- November 1), while the pale blue background denote the winter
seasons. Note that only sites from the 4 blocks in Komagdalen were functional before summer

2018.
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Figure 8: Temporal patterns in the proportion camera traps sites with weekly presence of least
weasels (grey lines) and stoats (black lines) in hummock tundra and snowbeds. Pale green back-
ground denote summer seasons (July 1- November 1), while the pale blue background denote the
winter seasons. Note that only sites from the 4 blocks in Komagdalen were functional before sum-

mer 2018.
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« C All occupancy model parameters

« C.1 Block level parameters

Parameter | mean sd 95% CI

I'r 0.052 | 0.033 | 0.0060.124
LUrim 0.272 | 0.122 | 0.080 0.544
I'm 0.089 | 0.105 | 0.008 0.389
Tyir 0.050 | 0.012 | 0.029 0.079
Eg 0.005 | 0.004 | 0.0002 0.016
Erm 0.048 | 0.014 | 0.0230.079
Ey 0.264 | 0.107 | 0.090 0.505
Eyir 0.059 | 0.017 | 0.031 0.096

Table 2: Means, standard deviations and 95% credible intervals based the posterior distributions
of block level colonization (I') and extinction probabilities (E) of rodents (R) and mustelids (M)

dependent on the presence of the other functional group.
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«» C.1.1 interaction strength

Parameter | mean 95% CI

g - Ty | -0.220 | -0.5120.017
Ty - Ty | 0.038 | -0.049 0.333
Eg - Egpyy | -0.043 | -0.075-0.013

Eyv - Eyig | 0.205 | 0.0210.452

Table 3: Estimated differences (i.e. contrasts) between independent (i.e. rodents and mustelids in
absence of the other) and dependent (i.e. rodents and mustelids in presence of the others) coloniza-

tion and extinction probabilities with 95% credible intervals.
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«~ C.2 Site level parameters

«» C.2.1 interaction strength

Parameter Habitat Season mean 95% CI

Y& - YR | Hummock tundra | Summer | 0.059 | -0.0200.123
YR - YR | Hummock tundra | Winter | -0.049 | -0.133 0.011
TR - YRIM Snowbed Summer | 0.012 | -0.0300.048
TR - YRIM Snowbed Winter | -0.052 | -0.127 -0.001
€g - &gy | Hummock tundra | Summer | - 0.052 | -0.129 0.011
€g - &gy | Hummock tundra | Winter | 0.015 | -0.094 0.094
€R - ER|M Snowbed Summer | - 0.261 | -0.399 -0.131
€R - ER|M Snowbed Winter | - 0.146 | -0.305 -0.001

Y - Yug | Hummock tundra | Summer | -0.049 | -0.083 -0.019
Ym - Yyig | Hummock tundra | Winter | -0.059 | -0.108 -0.021
™ - Yur Snowbed Summer | -0.048 | -0.094 -0.008
™ - Yur Snowbed Winter | -0.063 | -0.116 -0.021
&m - €yg | Hummock tundra | Summer | -0.120 | -0.268 0.026
&m - €y|g | Hummock tundra | Winter | -0.025 | -0.251 0.186

&M - EyR Snowbed Summer | -0.267 | -0.432 -0.111

&M - EyR Snowbed Winter | -0.170 | -0.396 0.042

Table 4: Estimated differences (i.e. contrasts) between independent (mustelid or rodents in ab-
sence of the other) and dependent (mustelid or rodents in presence of the other) colonization and

extinction probabilities with 95% credible intervals at the site level.
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« C.2.2 Rodent parameters

Parameter Habitat Season | Mean sd 95% CI
TR Hummock tundra | Summer | 0.164 | 0.012 | 0.1420.188
Yr Hummock tundra | Winter | 0.041 | 0.004 | 0.034 0.048
Yr Snowbed Summer | 0.097 | 0.007 | 0.0830.112
Yr Snowbed Winter | 0.023 | 0.002 | 0.018 0.028

Yrim Hummock tundra | Summer | 0.105 | 0.034 | 0.048 0.180
YrRiM Hummock tundra | Winter | 0.090 | 0.037 | 0.0310.173

Yrim Snowbed Summer | 0.085 | 0.018 | 0.054 0.123
Yrim Snowbed Winter | 0.075 | 0.032 | 0.0250.148
Er Hummock tundra | Summer | 0.092 | 0.008 | 0.078 0.108
Er Hummock tundra | Winter | 0.127 | 0.011 | 0.106 0.149
€r Snowbed Summer | 0.113 | 0.011 | 0.093 0.135
€r Snowbed Winter | 0.154 | 0.013 | 0.1300.179

ERIM Hummock tundra | Summer | 0.144 | 0.034 | 0.0850.217
ERIM Hummock tundra | Winter | 0.112 | 0.046 | 0.040 0.215
ERim Snowbed Summer | 0.374 | 0.066 | 0.249 0.509

ERIM Snowbed Winter | 0.300 | 0.073 | 0.160 0.451

Table 5: Means, standard deviations and 95% credible interval based on the posterior distribution

of all rodent parameters at the site level.
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«» C.2.3 Mustelid parameters

Parameter Habitat Season | Mean sd 95% CI
Ym Hummock tundra | Summer | 0.020 | 0.007 | 0.009 0.036
Ym Hummock tundra | Winter | 0.014 | 0.006 | 0.005 0.028
Ym Snowbed Summer | 0.036 | 0.010 | 0.019 0.058
i Snowbed Winter | 0.024 | 0.008 | 0.011 0.042

YR Hummock tundra | Summer | 0.069 | 0.014 | 0.045 0.100
YR Hummock tundra | Winter | 0.073 | 0.022 | 0.037 0.120

Tur Snowbed Summer | 0.085 | 0.019 | 0.050 0.126
Yuir Snowbed Winter | 0.089 | 0.024 | 0.047 0.141
Em Hummock tundra | Summer | 0.143 | 0.045 | 0.064 0.239
ey Hummock tundra | Winter | 0.177 | 0.069 | 0.056 0.325
Em Snowbed Summer | 0.070 | 0.021 | 0.0320.117
Em Snowbed Winter | 0.093 | 0.047 | 0.023 0.205

Euir Hummock tundra | Summer | 0.263 | 0.058 | 0.160 0.383
EmIR Hummock tundra | Winter | 0.202 | 0.081 | 0.067 0.386
EmIR Snowbed Summer | 0.337 | 0.081 | 0.188 0.500

EmIR Snowbed Winter | 0.263 | 0.098 | 0.088 0.470

Table 6: Means, standard deviations and 95% credible interval based on the posterior distribution

of all mustelid parameters at the site level.
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Abstract

Camera traps have become increasingly popular as a labor-efficient and non-invasive tool to
study animal ecology. Despite rodents being the most abundant and specious order of living
mammals, camera trap studies have mainly focused on larger mammals. Here we investigate
the suitability of camera-trap-based abundance indices to monitor population cycles of two
species of voles with key functions in boreal and Arctic ecosystems. The targeted species —
gray-sided vole (Myodes rufocanus) and tundra vole (Microtus oeconomus) — differ with respect
to habitat use and spatial-social organization, which allow us to assess whether such species-
traits influence the accuracy of the abundance indices. For both species, multiple live-trapping
grids yielding capture-mark-recapture (CMR) abundance estimates, were matched with single
tunnel-based camera traps (CT) intended to yield abundance indices. The study encompassed
three years with contrasting abundances and phases of the population cycle. First, we used lin-

ear regressions to calibrate CT-indices based on photo counts over different time-windows as a



function of CMR-derived abundance estimates. Then, we performed inverse regressions to pre-
dict CMR-abundances from CT-indices. We found that CT-indices (for windows showing best
goodness-of-fit) from single camera traps predicted adequately the CMR-based estimates for
the gray-sided vole, whereas such predictions were generally poor for the tundra vole. However,
aggregating photo counts over several nearby camera traps yielded also reliable abundance in-
dices for the tundra vole. The two species differed also with respect to the optimal time-window
for the CT-indices, which was 1 day for the tundra vole and 5 days for the gray-sided vole. Such
species differences imply that the design of camera trap studies of rodent population dynamics
should to be adapted to the species in focus. Overall, tunnel-based camera traps yield much
more temporally resolved abundance metrics than alternative methods. This gives a potential
for revealing new aspects of the multi-annual population cycles of voles as well as other small

mammal species they interact with in boreal and Arctic ecosystems.

Key words: Rodents, Index-calibration regression, inverse prediction, camera trap, population

monitoring

1 Introduction

During the last decade, the use of camera traps has increased drastically in animal ecology as this
provides a non-invasive and cost efficient alternative to traditional census methods (Wearn and
Glover-Kapfer, 2019). In studies of mammals, the use of camera traps has so far largely focused
on large-sized species (Burton et al., 2015). Nonetheless, smaller-sized rodents represent the most
abundant and specious order of mammals (Wilson and Reeder, 2005). Many rodent species are
cryptic, and hence resource-demanding, or otherwise difficult to study by means of conventional
methods. Hence, camera traps specifically adapted to study small rodents may advance our abil-
ity to investigate their ecology (Rendall et al., 2014). Studying the population dynamics of small

rodents is important for several reasons (Krebs, 2013). Many rodent species pose risks to humans
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as vectors of zoonoses (Meerburg et al., 2009a; Capizzi et al., 2014) or by damaging crops (Meer-
burg et al., 2009b; Andreassen et al., 2021). Moreover, voles and lemmings exert key ecosystem
functions, especially in northern biomes where they exhibit multi-annual population cycles (Ims
and Fuglei, 2005). Therefore, accurate monitoring of boreal and Arctic small rodent populations is
fundamental to studies of ecosystem dynamics (Legagneux et al., 2014; Boonstra et al., 2016) and
to the successful conservation of endangered species that are directly (Ims et al., 2018) or indirectly
affected by their population dynamics (Marolla et al., 2019; Henden et al., 2021). Many boreal and
Arctic rodent monitoring programs are still based on kill-traps (snap-traps), providing counts as
indices of abundance (Turchin et al., 2000; Hornfeldt et al., 2005; Korpela et al., 2013; Cornulier
et al., 2013; Kleiven et al., 2018; Ehrich et al., 2019). However, kill-trapping is fraught with both
ethical issues (Powell and Proulx, 2003) and questionable assumptions regarding sampling errors
(Hanski et al., 1994). Live-trap-based, capture-mark-recapture (CMR) monitoring is less invasive
and allows to account for sampling errors (Krebs et al., 2011). However, live-trapping requires
much effort from qualified personnel and is therefore rarely sufficiently long-term and spatially
extensive to support monitoring programs. In addition, several species display very low trappabil-
ity in live-traps and are thus inadequately monitored by capture-recapture methods (Boonstra and
Krebs, 1978; Jensen et al., 1993). In general, existing monitoring programs of rodent populations
are logistically limited in terms of their coarse temporal resolution. In northern ecosystems such
monitoring is usually restricted to two trapping sessions per year (Cornulier et al., 2013). This
implies an important limitation due to the multivoltine life histories and the fast population dynam-
ics of voles and lemmings. Camera traps may potentially resolve such constraints by providing
means for spatially extensive and continuous year-round monitoring, even in climatically harsh and
remote boreal and Arctic regions (Soininen et al., 2015; Mdlle et al., 2021).

Camera traps are today most commonly used to analyze presence-absence dynamics (i.e. oc-
cupancy probability) (MacKenzie et al., 2002; Bailey et al., 2014). However, presence-absence

is a less informative population state variable than abundance, especially when density-dependent
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population regulatory mechanisms are of concern. Hence, the use of camera traps to estimate
abundance is increasing. Most of these studies have however focused on marked (or otherwise
distinguishable) individuals (Gilbert et al., 2021; Palencia et al., 2021). For many species, such
as small rodents, it is not feasible to either mark or distinguish individuals by clues that are visi-
ble in camera trap images. Moreover, design constraints make presence-absence-based abundance
estimators less applicable in the case of unmarked small mammals.

If the aim is to study population dynamics, for instance by means of time series analyses
(Stenseth, 1999; Cornulier et al., 2013; Barraquand et al., 2017), simple indices of abundance
can be used if there is a proportionate relationship between true abundance and the abundance
index (Hanski et al., 1994; Lambin et al., 2000; Yoccoz et al., 2001; Gilbert et al., 2021). Counts
of motion triggered photos appear to be a promising abundance index for large- to medium-sized
mammals (Palmer et al., 2018). Recent studies suggest that this may also be the case for some small
rodent species (Villette et al., 2015; Parsons et al., 2021). However, as of yet, such camera-based
abundance indices have not been validated for rodent species that exhibit multi-annual popula-
tion cycles, for instance, boreal and Arctic voles. Furthermore, previous works have been limited
in scope and have not assessed the uncertainty associated with using camera-trap indices to esti-
mate population abundance. A potential challenge in the case of such population dynamics is that
there may be density- and/or cyclic phase-dependent aspects of their performance (sensu Stenseth
(1999)) that may influence the reliability of camera-trap (CT) indices.

Proper calibration of CT-based abundance indices as a function of CMR-based abundance esti-
mates is challenging. Generally, calibration consists of modelling the measurable response variable
(e.g. a population index) as a function of a ground-truthing variable that typically is assumed to be
measured accurately (e.g. a population state variable measured without error). Once a calibration
function is established, it can be used in inverse regression to predict the state variable for a given
value of the response variable (Eisenhart, 1939). The goodness of the fit of the regression may be

assessed using the ordinary coefficient of determination (R?). In most ecological studies, the true
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state of a population is not known and must be estimated with some error, for instance, based on
CMR trapping. As the error of the population state estimate (i.e. the ground-truth variable) may not
be negligible, this becomes a more difficult calibration problem because the uncertainty of the true
abundance can bias the estimation of the population state (Gopalaswamy et al., 2015). Thus it is
important to assess the accuracy of prediction after establishing a calibration function (Diefenbach
et al., 1994), to ensure high precision of the abundance predictions, which can sometimes be too
low (Jennelle et al., 2002). Furthermore, camera trap-based abundance indices have been criticized
for not being generalizable to other species or sampling sites (Jennelle et al., 2002). It is there-
fore important to investigate potential differences in the performance of the abundance index for
different species, i.e., to assess out-of-sample predictive ability of the index-calibration models.

In this study, we assess the suitability of camera-trap-based abundance indices for studying
population dynamics of the gray-sided vole (Myodes rufocanus) and the tundra vole (Microtus
oeconomus). Both species are renowned for their multi-annual cycles (Hansen et al., 1999; Turchin
et al., 2000; Cornulier et al., 2013) and key roles in boreal and sub-arctic ecosystems (Ims and
Fuglei, 2005; Boonstra et al., 2016). The two vole species are also known to differ profoundly
in their habitat use and spatial-social organization (Ims, 1987a; Bondrup-Nielsen and Ims, 1990),
which provides a case for assessing whether such species-specific traits influence camera trap-
based abundance indices (CT-indices). For both species, we used time series of spatio-temporally
matched CT-indices and CMR-estimates, spanning a wide range of abundances and different phases
of the population cycle. We followed a two-step calibration approach. First, we fitted calibration
regressions, with the CT-indices, based on photo counts from single camera traps, as the exposure
variable and CMR-based abundance estimates as the ground-truthing variable. In the case of tundra
vole, for which several camera traps were used within the same local population, we also assessed to
what extent aggregating data over several camera traps improved the fit of the calibration regression,
i.e., treating the cameras as spatial replicates. As the camera traps provide continuous-time data,

we assessed which temporal resolution (i.e. time-window) of the camera trap data was optimal,
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in the sense of providing the best goodness-of-fit calibration regression (i.e, maximized the R?).
As the second step, we performed inverse prediction to estimate vole abundance using the optimal
CT-index, and evaluated the predictive performance of the model using k-fold cross-validation, bias

and a classification metric for three abundance classes.

2 Methods

2.1 Study areas and species

The data were obtained from two study areas in sub-arctic Norway (Figure 1), where long-term
monitoring of vole population is ongoing by means of CMR-trapping. Regional-scale population
dynamics of gray-sided vole were monitored in Porsanger (N 70.05°, E 24.97°) with multiple trap-
ping stations spaced along a 170 km transect (Nicolau et al., 2020). The sampling was conducted in
mountain birch forest, where the gray-sided vole is the most common species within a community
with four other rodent species (Yoccoz and Ims, 2004). The phases of the 4-year population cycle
exhibit a great deal of spatial synchrony across the sampled region. In case of the tundra vole, local
population dynamics were monitored within an area of 1km? on the small oceanic island Hikgya
(N 69.67°, E 18.83°). The tundra vole is here the only rodent species present. The population is
distributed on patches of coastal meadows (Soininen et al., 2015), which is the preferred habitat for

this species in Arctic and boreal ecosystem (Tast, 1966; Soininen et al., 2018).
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Figure 1: Maps of the study areas. Bottom left: regional map of Fennoscandia with the two study
areas marked with different colored rectangles (Hakgya in black and Porsanger in gray). Left:
Hékgya study area for the tundra vole. Right: Porsanger study area for the gray-sided vole. Black
dots denote sampling stations, green hue is forest, light yellow corresponds to non-forested areas
on dry ground (e.g. alpine or coastal heaths), gray is mire and the blue is sea. Notice the different
scale of the two study area maps.
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2.2 Sampling design

2.2.1 CMR-trapping

CMR-trapping was conducted with baited Ugglan No. 2 live traps during the snow-free seasons
in the years 2018-2020. Unless previously marked, trapped animals were marked with a passive
induced transponder (PIT)-tag, and the individual covariates weight and sex were recorded.

For the gray-sided vole monitoring, the trapping was conducted on 15 trapping stations spaced
along the study transect (Figure 1). Each trapping station consisted of a standardized grid with
16 live traps, covering an area of about 0.5 ha (Ehrich et al., 2009). In each of the three years,
trapping was conducted in three sessions: middle of June, beginning of August and middle of
September. During each session, the trapping was conducted over two consecutive days trapping
days, following a trap-setting day (see Ehrich et al. (2009) for more details).

For the tundra vole monitoring, trapping was conducted in variably shaped and sized coastal
meadow patches. For the purpose of the present study, we defined 4 sampling stations with sizes
(approximately 0.5) and trapping grids (10-20 live traps) that were comparable to the sampling
stations of the gray-sided vole monitoring. However, in contrast to the widely spaced trapping
stations in the regional-scale monitoring of the gray-sided vole, the adjacent tundra vole trapping
stations were considered to cover the same local population. CMR-trapping of tundra voles was
conducted monthly from June to October (i.e., five trapping sessions) in each of the three years. As
the trappability of tundra voles is lower than that of gray-sided voles (@vrejorde, 2007), the tundra
vole trapping was conducted over three consecutive days per session. Trappability was further

enhanced by pre-baiting the live-traps one day prior to the first trap-night.
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2.2.2 CMR-based abundance estimation

To address the sampling error associated with capture heterogeneity, abundances were estimated
using the capture histories of each of the trapped individuals. Specifically, individual capture prob-
abilities were assumed to have a temporal effect (model M,; in Otis et al. (1978)). We then fitted
a multinomial regression model, where the logit-transformed probabilities of the capture histo-
ries were modelled in terms of the individual variables weight and sex. In addition, the predictor
included independent random effects for stations, to account for spatially-varying capture hetero-
geneity. Finally, the CMR-based abundances (N;,) were estimated using the Horvitz-Thompson
estimator (Horvitz and Thompson, 1952), for each station s and trap season ¢ (Huggins and Hwang,
2011). This corresponds to the CR-INLA framework presented in Nicolau et al. (2020). Finally, we

standardized the abundance estimates according to the number of live traps per trapping location.

2.2.3 Camera trapping and abundance indices

In November 2017 (tundra vole) and June 2018 (gray-sided vole), a single camera trap was placed
within each of the CMR-grids, for a total of 15 camera traps in Porsanger and 4 in Hakgya. We used
the tunnel trap developed by (Soininen et al., 2015) and with the specific camera settings described

in Molle et al. (2021) and Appendix A.2.
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Figure 2: Schematic representation of the time-windows used to aggregate photo counts for the
camera trap-based abundance indices. Days related to the CMR-trapping are presented in green,
with day O corresponding to the first capture day (following trap-setting on the previous day; day
-1), followed by one (gray-sided vole) or two (tundra vole) capture days. Two types/groups of
time-windows are defined: CMR-encompassing, centered on first CMR day and thus including all
days with activated live traps, shown by the upper set of of vertical arrows; and CMR-preceding,
for the days preceding the trap-setting day, shown by the set of bottom left vertical arrows.

We use a range of time-windows of daily photo counts to derive CT-indices (Figure 1). Let X,
k= —11,...,11, denote the number of photos counted at day k relative to the first day of CMR-
trapping (k = 0). The different temporal windows I denote intervals of d days. Each CT-index is
then defined as the average CT-counts per day for a given I, given by ¥; = %Zke 1 X

We define two types/groups of time-windows, depending on whether the window encompassed
the CMR-trapping or preceded it. We make this distinction to account for the potential confounding
effect of entrapment of animals during CMR-trapping (i.e. considering that animals in live traps
cannot be camera trapped). For the CMR-preceding intervals, we assessed the windows I = [k, —2],
where k = —11,...,—2. For the CMR-encompassing intervals, we used the windows I = [—k, k],

where k =0,...,11.
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2.3 Calibration analysis

For each time-window, we calibrated the CT-indices from the single camera trap per sampling sta-
tion against the temporally matching CMR-based abundances estimates for the same station. For
gray-sided voles, the dataset includes in total 115 calibration points, while there are 60 calibration
points for the tundra voles (see Appendix A.1). As the 4 trapping stations for the tundra vole cov-
ered the same local population, we additionally perform a calibration analysis with the abundance

indices and estimates averaged over all stations, which yields 15 calibration points.

2.3.1 Calibration Regression

Let Y7 5 denote the CT-index for a given temporal window I, measured at station s and trap season
t. A linear relationship between the CT-index and the CMR-abundance (N;,) is best fitted on a

log-scale. A linear regression model is thus formulated by

log(Yr s+ 1) = Po+ Bilog(Nys, +1) + €154, )

where ) and B; are coefficients to be estimated to define the calibration line for each temporal
window I. The set {&,} denotes error terms that are assumed to be independent and normally
distributed with homogeneous variance. The number 1 was added to ensure positive arguments of
the log-function. The ordinary coefficient of determination R? is used as a measure of the goodness-

of-fit.

2.3.2 Inverse prediction and model validation

For a simple linear regression model, the prediction interval for the explanatory variable can be

calculated by inverting the corresponding prediction interval for the response variable. Here, we
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used the R-package investr (Greenwell and Schubert Kabban, 2014) to compute the Wald 95%
prediction interval for a new observation, Xy = y‘%ﬁo, where X is the CMR-abundance estimate
using the observed CT-index yy, and 30 and ﬁl denote estimates of the coefficients.

To assess the predictive performance of the calibration model with the time-window with the
highest R? value, we employ a k-fold cross-validation approach. Specifically, we remove all cali-
bration points for a given station and estimate the coefficients of (1) using the remaining stations.
We then predict the CMR-abundances given the corresponding CT-index of the excluded station.
This is repeated for all stations, thus being equivalent to a 15-fold cross-validation approach for
the gray-sided vole and a 4-fold cross-validation approach for tundra voles. For the spatially aggre-
gated tundra vole calibration, performing cross-validation is not feasible (only 15 calibration points
at a single spatial location).

Different measures of predictive performance are computed. These include coverage of the 95%
prediction interval for the explanatory variables log CMR-abundances, the mean absolute error and
the root mean squared error. Additionally, we define an ecological classification metric (ECM)
which intends to provide qualitative information on predictions that are functionally relevant for
a cyclic populations (i.e. cycle phases). We define the following three population density cate-
gories: low-abundances (low phase of the cycle), intermediate abundances and high abundances
(high phase). The high and low abundances are defined as the 25% and 75% quantiles of the re-
spective sample distributions for each species. The ECM is thus defined as the proportion of times

the true observed log-abundance value and the predicted value belong to the same category. The

analysis was conducted in R 4.0.3 (R Core Team 2020).
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3 Results

3.1 Abundance estimates and indices

Annual means of the CMR-based abundance estimates reveal the phases/years of population in-
crease (2018), peak (2019) and crash (2020) for both vole species (Figure 3). The distributions
of the standardized abundance estimates and indices were similar between the species (Table 1).
Moreover, neither the overall means nor the variance in the CT-indices differed notably between
species or time windows (Table 1 and Figure 4). However, there was a difference in the temporal
autocorrelations of daily CT-counts between the two species. While the estimated auto-correlations
decreased linearly over time with relatively little scatter for the gray-sided vole, the estimated auto-
correlations for the tundra vole showed a steeper decrease over the first 4 days before it leveled
off with a large scatter. Furthermore, for the gray-sided vole, there was an increase in the mean
number of photos taken the days right after the trapping experiment, which could suggest a possible

interaction between the two methodologies.
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Figure 3: Population dynamics over trapping seasons (within-years) and years based on log-scale
CT-abundance indices (blue circles) and log CMR-abundance estimates standardized by number of
traps (orange circles). The indices and estimates represent means with standard error bars over all
trapping stations for the two species. The optimal time-windows for the CT-index are used for both

species (see Figure 5).

Table 1: Distribution statistics (arithmetic mean, standard deviation and range) for the standard-
ized log-transformed abundances estimates (CMR-based; log(abundance/N traps) and CT-indices
(log(CT-counts)/(N days)) used in the calibration regression models. The CT-indices are given for
the time-window that provided the best fitting calibration regression (see Figure 5).

Metric Statistic | Gray-sided vole | Tundra vole
Mean 0.54 0.59
CMR-estimates | STDev 0.44 0.34
Range 0-1.63 0-1.59
Mean 0.93 1.13
CT-indices STDev 0.84 0.94
Range 0-3.10 0-3.22

14
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Figure 4: CT-count variation and temporal correlations. Left panels: mean of all the log CT-
counts on each day relative to the trapping experiment (according to Fig.2), with standard deviation
bars. Right panels: temporal auto-correlations in daily CT-counts per trap and trapping session as a
function of temporal distance, i.e., days apart. The solid lines are non-parametric smooth regression
lines from the smooth. spline function of the stats R-package (version 4.0.3).

3.2 Linear calibration regression

The linear calibration regressions based on the single camera trap per trapping station yielded
R?-values that greatly differed between the two species. The R>—values for all time-windows are
substantially higher for the gray-sided vole than the tundra vole (Figure 5). For the gray-sided
vole, all time-windows for the CMR-encompassing group yielded similarly good fits (all R* > 0.5
except for ¥jg o). The best fitting calibration model (R? = 0.58, coefficients: By = 0.15; B; = 1.44)
was obtained for the 5-day time-window that encompassed the live-trapping session (¥|_; 7). This

regression model fulfilled the assumptions regarding log-scale linearity. For the tundra vole, the
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best fit (RZ = 0.21, coefficients: Bo =0.37; B; = 1.28) was obtained for the CT-index based on the
single day before the onset of the live-trapping (Y] 5, _)). For the other time-windows (all R*><0.2)
the difference between the two groups of time-windows was small. When the data were aggregated
over four adjacent sampling stations for the tundra vole population, the fit of the calibration function

improved substantially (R? = 0.81, Coefficients: Bo = —0.16; B; =2.17, Figure 6).
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Figure 5: Statistics for linear calibration regressions. Left panels: R> values for the calibration lin-
ear regressions fitted to the two groups of time-windows (CRM-encompassing: light gray symbols
and CMR-preceding: dark gray symbols). The highest R> values for each species is marked with
an enlarged blue dot. Right panels: Data points and regression lines with 95% confidence intervals
for the species-specific linear calibration models that yielded the highest R%.
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Figure 6: Calibration regression for tundra vole using aggregated data across all stations for the
best fitting time-window (¥|_ _)). Coefficients: fp = —0.16; i = 2.17; p-value < 0.001.

3.3 Inverse prediction and validation

As could be expected from the differences in the goodness-of-fit of the calibration regression (i.e.
the R? values), the prediction intervals derived by the inverse regression were wider for the tundra
vole than for the gray-sided vole (Figure 7). The RMSE value (indicating the width of the interval)
was almost twice as high as for the tundra vole compared to the gray-sided vole, and the bias was
about three times higher (Table 2). In terms of classifying abundances based on the single camera
traps with respect to the three abundance classes (cf. ECM metrics in Table 2), two thirds of the
instances were correctly classified for the gray-sided vole, compared to roughly one third for the

tundra vole.
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Table 2: Prediction metrics for the models with highest R? for both the gray-sided Vole (Y[—22)
and the tundra vole (Y5 _)).

Species Coverage ECM, Bias RMSE
Gray-sided vole 0.957 0.661 -0.004 0.385
Tundra vole 0.933 0.350 0.013 0.701

Gray-sided Vole Tundra Vole

CMR-abundance
1
|
CMR-abundance
1
|

T T T T T T T T “— T T
00 05 10 15 20 25 30 0 1 2 3

CT-index CT-index

Figure 7: Inverse prediction plots for the CT-index windows yielding the best goodness-of-fit for
each region, on the log scale. The Wald 95% confidence intervals are colored in yellow, and the
data points are plotted in black dots.

18



225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

4 Discussion

We have here assessed the adequacy of using photo counts, from the tunnel-camera trap developed
by Soininen et al. (2015), as abundance metrics to study population dynamics of two ecologically
important vole species that exhibit multi-annual cycles in boreal and Arctic ecosystems. Our assess-
ment employed a two-step calibration approach, in which different temporally-scaled CT-indices
from single camera traps were used as exposure variables calibrated against CMR-based abundance
estimates from local live-trap grids, as the ground-truthing variable. In order to be adequate, abun-
dance indices are required to have proportional (e.g. linear) relationships to the true abundance as
well as reasonable precision. Considering that count-based camera trap indices (i.e. the number
of motion-triggered animal passages) also reflect animal behavior (e.g. spacing behavior; sensu
Krebs (1996)), which for long has been known to be density and phase dependent in cyclic vole
populations (Chitty, 1960; Krebs, 2013), the assumption regarding proportionality can be violated.

While the proportionality assumption (on the log-scale) appeared to be met for both vole
species, the precision of the abundance indices based on single camera traps differed consider-
ably between them. For the gray-sided vole, the CT-indices from the single camera traps correlated
well with the CMR-abundance estimates from the matched live-trapping grids, whereas equivalent
correlation for the tundra vole was poorer. Accordingly, validation metrics of the inverse regres-
sions showed that the abundance predictions based on single camera traps were substantially better
for the gray-sided vole than the tundra vole. Compared with two previous calibration studies of
non-cyclic vole populations in boreal America, the goodness of fit of the calibration regression for
the cyclic gray-sided vole population (R> = 0.58) performed equally good (Villette et al., 2015)
or better (Parsons et al., 2021). The two American studies employed a different camera trap; i.e.
open cameras mounted in front of the entrance of baited live traps. Moreover, these previous stud-
ies used aggregated CT-indices over 15-16 (Villette et al., 2015) and 16-20 camera traps (Parsons

et al., 2021) per live-trapping grid, which was twice the size of our grids. The fact that we obtained
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275

at least an equally good calibration for gray-sided vole with a single camera trap, and an even bet-
ter calibration (R*> = 0.81) for the tundra vole when aggregating the data over only 4 camera traps,
indicates that our unbaited tunnel-based traps are more efficient in capturing voles.

The differences in goodness-of-fit of the calibrations (and thus also precision of the abun-
dance predictions) of gray-sided voles and tundra voles are reflected by the different optimal
time-windows and the temporal auto-correlations of CT-counts for the two species. The optimized
time-window for the gray-sided vole was longer (5 days including the live trapping days) and less
temporally distinct (high R?-values for wide range of time-windows) than for the tundra voles. The
best time-window for the tundra vole was based on a single day just prior to the onset of the live-
trapping sessions. Accordingly, the auto-correlations of the daily camera counts dropped faster and
had a generally higher scatter for the tundra vole than the gray-sided vole. We believe this can
be explained by the fact that the two vole species differ with respect to how their populations are
spatio-socially organized (Ims, 1987b; Bondrup-Nielsen and Ims, 1990). Due to female territorial-
ity, gray-sided voles are more evenly spaced within their habitat than tundra voles where females
form spatially clustered kin-groups. These local tundra vole kin-groups are temporally unstable
since females frequently shift home ranges (Tast, 1966). Consequently, local-scale abundance dy-
namics of tundra voles is typically characterized with a high turnover (Andreassen and Ims, 2001)
and weak auto-correlations (Ims and Andreassen, 1999). The much improved fit of the tundra vole
calibration regression, when based on 4 instead of 1 camera trap, is most likely due to the effect of
smoothing out the large small-scale spatio-temporal variability. This result underlines the benefit
of spatially replicating camera traps within the same location/local population, which has also been
highlighted by other authors (Kolowski et al., 2021). However, our study also shows that only a few
tunnel-based camera traps may be needed to get adequate abundance indices for both vole species.
In fact, a single camera trap was able to capture the main features of the cyclic dynamics of gray-
sided vole. This indicates there may be a potential for conducting spatially extensive monitoring,

for instance in order to estimate patterns of large-scale spatial population synchrony (Bjgrnstad
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et al., 1999), even with a limited number of camera traps available.

We believe that the greatest asset of the tunnel-based camera trap employed in our study is
its ability to yield population metrics year-round, with a finer temporal resolution than any other
presently available method. For small rodents with multi-annual cycles, the transitions between
the different cyclic phases (e.g. between peak and crash) can be very rapid and take place at any
time of the year (Krebs, 2013). By providing reliable abundance indices for time-windows as
short as a few days, camera traps radically enhance our options for identifying the drivers of cyclic
rodent dynamics. Strongly density-dependent interactions and rapid community-level dynamics
have for long been assumed to be driving rodents cycles (Hansson and Henttonen, 1988; Turchin
and Hanski, 2001; Barraquand et al., 2017). Assumed key interactions — such as those between
voles and small mustelids — have been beyond the reach of thorough investigations owing to dif-
ficulty of obtaining adequately scaled data for both interactants simultaneously (King and Powell,
2006). Our tunnel-based camera traps recorded substantial data (i.e. relatively high number of
photo counts) for all members of the small mammal community in both study areas, including
small mustelids (least weasel Mustela nivalis and stoat Mustela erminea), Norwegian lemmings
(Lemmus lemmus) and shrews (Sorex spp.) (see also (Molle et al., 2021) and Appendix B.3). While
species-interactions based on camera trap data can be analysed based on absence-presence records
within an occupancy modelling framework ((Rota et al., 2016; Fidino et al., 2019)), abundance met-
rics are more informative as they allow analyses of the density-dependent interactions that appear
to drive population cycles (Stenseth, 1999). New studies are needed to validate camera trap-based
abundance indices for species such as mustelids and lemmings. As true ground-truthing variables
for such species (especially mustelids (King and Powell, 2006)) are extremely difficult to obtain,
there may be alternatives to use other statistical frameworks to obtain detectability corrected abun-
dance indices (Gilbert et al., 2021; Palencia et al., 2021). Such frameworks may also be used derive
unbiased abundance indices from camera-trap data during the boreal and Arctic winter, when deep

snow and harsh climatic condition hinder calibration studies of the kind we have performed in this
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study. Hence, although our study highlights the potential of tunnel-based camera traps to likely
advance studies of cyclic rodent populations, it also illustrates the need for performing species- and

context-specific validation studies.
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« A  Supplementary Methods

« A.1 Temporal distribution of data sampling

2018 2019 2020
Month M|JT |1 |als|M|1|1]Aals|M|1]1]AlS
Station [1[2 (3|4 |5]|6|7[8|9]I10

-FuII data available
Log-Abundance data only
No camera data available

-Camera malfunction
No CMR data available

Figure 8: Temporal distribution of the index-calibration data for each of the stations for the different
regions.
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A.2 Camera Trap sampling

We used Reconyx™™ SM750 Hyperfire” (Reconyx Inc., Holmen, WI, USA) with a passive in-
frared (PIR) motion sensor. Each camera trap was placed at the roof of an artificial metal tunnel,
facing down. These tunnels were deployed in natural small mammal runways without any kind of
lure, simulating natural tunnels/cavities which small mammals typically enter. For a more detailed
description of the small mammal camera setup see (Soininen et al., 2015) and (Molle et al., 2021).
At Porsanger, where the capture-recapture was done in standardized trapping grids, the camera
traps were always deployed close to the center of the grid. At Hakgya, where the shape of the
capture-recapture grids did not follow a structured design, the camera traps were deployed within
the trapping grid.

This methodology allowed us to collect continuous camera trap data from the small rodent
populations monitored by the capture-recapture design, with a total of 15 camera traps (and capture-
recapture grids) in Porsanger and 4 in Hakgya. The camera traps collected data continuously and
were checked once a year to replace batteries and collect memory cards. To avoid multiple camera
trap counts from the same trigger event and to save power so that battery would not run out before

next check, the cameras were set to not be triggered more than once per minute.

A.2.1 Camera trap image annotations

Once collected, all the camera trap images were annotated using the MLWIC package in R
(Tabak et al., 2019) for automatic image classification. We set the classification threshold at 95%
confidence for positive identification of a species in a photo. For the images from Hakgya, an
area only inhabited by a single vole species, the images were classified to species level with high
accuracy. For the Porsanger dataset, which contains multiple vole species, it was not possible to

obtain sufficient classification results using the MLWIC package, as it did not separate different
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si7 species of voles accurately (only possible at genus level). Therefore, we manually annotated the
sis  images for the Porsanger analysis to species level.

519
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- B Supplementary Results

sz In this section we present the calibration model coefficients for the different CT-indices tested in
s2 this study, as well as the predictive metrics, separately for the Gray-sided Vole (B.1) and for the
22 Tundra Vole (B.2). Finally, we show the photo counts of all the species detected in the camera traps

sa (B.3).

= B.1 Gray-sided Vole

= B.1.1 Linear Regression Coefficients

Table 3: Coefficients for region Porsanger for all the CMR-encompassing windows.

Window By (£s.e.) P (£s.e) p-value (B;) R?

005+£0.1 1454+0.15 <0.001  0.466
0.14+£0.09 1414+0.13 <0.001 0521
0.15+0.08 144+0.12 <0.001  0.578
0.16+£0.08 1394+0.11  <0.001  0.569
0.164£0.08 1344+0.11 <0.001  0.569
0.15+0.08 1324+0.11 <0.001 0.564
0.164£0.08 12840.11 <0.001  0.545
0.16+0.08 127+0.11 <0.001  0.546
0.164+0.08 125+0.11 <0.001  0.541

o 0.16+0.08 1244011 <0.001 0534
Yi 1000 0.15+£0.08 123+£0.11  <0.001  0.535
Yy 0.14£0.07 122011 <0001 0535
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Table 4: Coefficients for region Porsanger for all the CMR-preceding windows.

Window By (& s.e.) B1 (£ s.e.) p-value (f;) R?

Y 5 5 —001£0.09 1.05£0.13 <0001 03732
Y3 5 0.05+£0.08 096+0.12 <0001 03626
Y4 o 0.04+£0.08 098+0.11  <0.001 03938
Yi s o 0.04+008 099£0.12 <0001  0.3964
Y o 006£0.09 098012 <0001  0.3636
Yig 5 007+£0.08 1.03£0.12  <0.001 03901
Yig o 009+£008 1024012 <0001  0.3889
Yo 5 0.09+£0.08 101£0.12 <0001 03894
Y 10 5 0.09+£0.08 103+0.12 <0.001 03955
Y o 008+008 1£0.12 <0001  0.3945
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~ B.1.2 Predictive Performance

Table 5: Predictive performance of the calibration models for Porsanger, using the CT-index for the
CMR-encompassing windows to predict log-abundance.

Window Coverage ECM Bias RMSE

Yo 0957  0.617 -0.008 0.483
Yoy 0957  0.600 -0.007 0.431
Y2y 0957  0.661 -0.004 0.385
Y33 0957  0.652 -0.004 0.394
Y 4 0948  0.670 -0.003 0.394
Y ss 0948  0.652 -0.004 0.399
Yiegq 0957 0.609 -0.005 0415
Y ;7 0957 0617 -0.004 0415
Y gg 0948  0.609 -0.005 0.421
Y oo 0948 0617 -0.005 0.427
Y000 0939  0.609 -0.005 0.427
Yo 0939 0.626 -0.005 0427

36



Table 6: Predictive performance of the calibration models for Porsanger, using the CT-index for the
CMR-preceding windows to predict log-abundance.

Window Coverage ECM Bias RMSE

Yo o 0930 0617 -0.011 0.599
Y3 5 0948 0548 -0.011 0.611
Y4 5 0983 0548 -0.009 0.571
Yis o 0965 0557 -0.009 0.568
Yie o 0965 0574 -0.009 0.605
Y7 5 0957 0591 -0.007 0.570
Yig o 0948 0591 -0.007 0574
Yig 5 0948 0591 -0.007 0573
Y1 s 0957 0609 -0.007 0.566
Y g 0957 0583 -0.007 0.566
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= B.2 Tundra Vole

= B.2.1 Linear regression coefficients

Table 7: Coefficients for region Hakgya for all the CMR-encompassing windows.

Window By (£s.e.) B (£s.e) p-value (B;) R?

Yoo 0.43£025 096+0.37 0012  0.104
Y,y 046+£024 1.13£035 0002  0.150
Y 2y 053£023 1.1+034 0002  0.152
Y 35 058£023 1.1+034 0003  0.145
Y 4y 0642022 1.0£0.33 0004  0.137
Y 55 070£022 091£0.32 0007  0.120
Y 6 0.71£022 0.89+032 0008  0.117
Y 77 073£022 0.87+£032 0008  0.114
Y gg 0724022 0.89+£032 0007  0.118
Y oo 072£021 091£031 0005  0.126
Y 1000 072£021 0.89+£031  0.006  0.124

Y 073£021 0.89+£031  0.005  0.126
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Table 8: Coefficients for region Hakgya for all the CMR-preceding windows.

Window By (£ s.e.) B (£ s.e) R? p-value (f;)

Yo o 037+£0.22 1.28+0.33 02109 < 0.001
Y39 054022 1.09+£0.32 0.1692 0.001
Y49 061+£021 1.00+£0.32 0.1471 0.002
Y 5.9 0.68+£022 0.88+0.32 0.1162 0.008
Y 62 071+£021 0.83+0.32 0.1056 0.011
Y 7.9 075+£0.22 0.82+0.32 0.1025 0.013
Y g o 075+£0.22 0.84+0.32 0.1039 0.012
Y9 9 076022 0.86+0.32 0.1097 0.010
Y 10,2 0.78£0.22 0.85+0.32 0.1082 0.010
Y11,y 0.76£0.22 0.87+£0.32 0.1136 0.008
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« B.2.2 Predictive performance

Table 9: Predictive performance of the calibration models for Hikgya, using the CMR-
encompassing windows.

Window Coverage ECM Bias RMSE

Yo 0933 0283 0022 1.109
Yoy 0933 0367 -0.003 0.860
Y,y 0933 0333 0.003 0.886
Y53 0950 0300 0013 0921
Y 44 0967 0300 0012 0942
Y ss 0950 0267 0.037 1.040
Yieg 0950 0250 0.045 1.073
Y ;7 0950 0250 0.038 1.077
Y gg 0950 0250 0.026 1.050
Y og 0950 0250 0.020 0.996
Y 000 0933 0283 0011 0988
Yo 0933 0283 0010 0.987
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Table 10: Predictive performance of the calibration models for Hakgya, using the CMR-preceding
windows.

Window Coverage ECM Bias RMSE

Y, 5 0933 0350 0013 0.701
Y3 5 0967 0383 0017 0.793
Y4 o 0950 0317 0.034 0.891
Yis 5 0950 0283 0.070 1.072
Yie o 0983 0267 0084 1.178
Y7 5 0983 0217 0065 1.164
Yig o 0983 0217 0059 1.127
Yig 5 0967 0233 0.048 1.075
Y s 0983 0233 0028 1.056
Y g 0967 0233 0022 1.021
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B.3 Other species

The camera traps provide information on more species than the two vole species used in this cal-
ibration. Figure 9 displays counts of all species observed in the camera during the course of the
study. In Porsanger, the Norwegian Lemming (Lemmus lemmus) is regularly observed (it is absent
on Hékgya). This is a rodent species that has been considered particularly difficult to trap, and
in fact no lemmings have been trapped by the live traps during this study (and only one during
the previous 20 years in the same grids). Shrews are also observed in about the same numbers as
voles in both study regions. Moreover, small mustelids (stoat (Mustela erminea) and least weasel

(Mustela nivalis)) are also frequently observed in the regions where they exist (least weasel is not

o
present on Hakgya).
o o
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Figure 9: Number of trigger events for all species recorded by the camera traps as a monthly total
for the two regions Hakgya and Porsanger, using automated classification data.
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