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“Overcoming naive impressions to figure out how things really work is one of
humanity’s highest callings.”
—Steven Pinker

“Any sufficiently advanced technology is indistinguishable from magic.”
—Clark’s third law






Abstract

The predictive power of modern deep learning approaches is posed to revolu-
tionize the medical imaging field, however, their usefulness and applicability
are severely limited by the lack of well annotated data. Liver segmentation in
CT images is an application that could benefit particularly well from less data
hungry methods and potentially lead to better liver volume estimation and
tumor detection. To this end, we propose a new semantic segmentation model
called ConvMixerSeg and experimentally show that it outperforms an FCN with
a ResNet-50 backbone when trained to segment livers on a subset of the Liver
Tumor Segmentation Benchmark data set (LiTS). We have further developed
a novel Class Activation Map (CAM) based method to train semantic segmenta-
tion models with image level labels without adding parameters. The proposed
CAM method includes a Neighborhood Correlation Enforcement module using
Gaussian smoothing that reduces part domination and prediction noise. Addi-
tionally, our experiments show that the proposed CAM method outperforms
the original CAM method for both classification and segmentation with high
statistical significance given the same ConvMixerSeg backbone.
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Introduction

1.1 Liver Cancer

The liver is one of the essential organs of the human body performing numerous
vital functions. Among these are metabolism of carbohydrates for energy
storage, of proteins and amino acids that aid the bloods coagulating functions
and of lipids for absorption and digestion of fats and fat soluble vitamins. Sadly,
this essential and detoxifying organ is the focus of many unfortunate cancer
patients world wide.

Globally, liver cancer is the type of cancer with the 3-rd highest mortality with
an estimated number of deaths of over 800,000[77]. One of the most common
tools to aid in diagnosis of liver cancer is CT imaging. This is the case not
only for primary liver tumor (hepatocellular carcinoma), but for many types
of cancer as it is common for many other types of cancer to spread to the liver
(hepatic metastases). Examples include colorectal, breast, lung, esophageal,
stomach, kidney and pancreatic cancer.

Because many types of cancer spread to the liver, it is a good place to look for
tumors in screening procedures where the hope is to discover the cancer at an
early stage. Such efforts could help to delay or stop the progress of the cancer
to improve the patients’ health and quality of life.
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1.2 Automated Semantic Image Segmentation
using Deep Learning

Automated image analysis is a field that has experienced great progress in the
last decade. There has been a paradigm shift for image analysis in parallel
with incredible advancements in the field of deep learning, strongly aided by
increasingly accessible low-priced and powerfull computers. While traditional
image analysis methods typically relied on manually defined features [28],
modern methods are often end-to-end trained, i.e. the methods mainly discover
relevant features of input images in an automated fashion based on given data.
Although traditional methods are still used for many applications, modern
deep learning methods can learn to perform well on much more complex
problems?.

One of the most significant deep learning architecture types used for image anal-
ysis is the Convolutional Neural Network (CNN). It applies the basic structure
of artificial neural networks (ANNs) combined with the convolution opera-
tion, which can be viewed as a matching operation between an input and a
template, to automatically create relevant templates that extract information
from a given input image. This is done in several consecutive layers to analyze
and reanalyze the provided information. CNNs have been used for different
tasks such as image classification where the model determines which out of a
given set of groups the image belongs to, image detection where the model
produces a bounding box around a desired object type (e.g. a horse, a face, a
person, a car, etc.) and many others. Among the tasks where CNNs have made
a profound contribution is semantic segmentation where the goal is to classify
every pixel of an image reflecting the semantic meaning of that pixel.

1.3 Weakly Supervised Learning

Despite the progress of deep learning and image analysis models that have
expanded our view of what is possible, deep learning methods are not as
ubiquitous today as one might expect given their performance. Crossing many
old thresholds, new problems have taken over the role as the main bottleneck
of progress. Today, one of the main bottlenecks preventing the use of recent
deep learning models in many domains is the lack of well annotated data.
Data represents what the deep learning models are supposed to learn. So
models trained on inadequate amounts of data are unreliable and generalize
badly.

1. See https://paperswithcode. com/sota for examples.
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Attaining enough high quality annotations demands large amounts of expensive
human labor. Therefore, the community of deep learning researchers are
exploring new solutions that make current models less data hungry.

Weakly Supervised Learning is a field of machine learning that attempts to
utilize features that are indirectly learned by a model, such that the model can
make predictions of higher quality than the data it was trained on. Because
such methods are less picky about their data quality, they could be much more
applicable in the real world to help solve problems.

In this project we will focus on both fully and weakly supervised models that
perform semantic image segmentation of Computed Tomography(CT) images
of livers. The choice of data to analyze is motivated by the potential utility of a
successful model which could help reduce the cost of CT screenings and thus
help people.

For weak supervision, we experiment with the use of only image level labels,
i.e. if an image contains liver or not. This is a very weak type of label, making
the task at hand difficult but also valuable as such labels are much cheaper to
obtain than more detailed alternatives.

1.4 Key Challenges

The advancements of deep learning model architectures have been fast in the
last decade and accelerating in the last few years. Not long ago, the state-
of-the-art models for many fields of image analysis were governed by classic
CNN architectures such as VGG and ResNet [68, 33] that both originated
for the use of image classification. But these models, although revolutionary
when presented, still require a lot of computational power and are still hard to
train. As a response to the omnipresent limitation of computational power, the
branches of development stretch in many directions. Classical CNNs are now
being challenged and surpassed by novel architectures with fewer parameters
and better learning capabilities.

However, the developments do not happen everywhere at once. A revolutionary
model architecture will typically first enter the stage to solve one specific
problem. As an example, the Transformer model has made a sweeping impact on
the field of natural language processing [76]. After some time the architecture
made its way into image classification with e.g. the Vision Transformer [24]
and DeiT [75] where they are making a significant impact. But there is typically
a lag from a model is developed to solve one problem, until someone translates
or generalizes the model to solve a different problems. That lag is a roadblock
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for progress and should be minimized. It it therefore essential to be attentive
and avid of developments and lead the way in the evolution of progress or else
developments will stagnate.

A few months ago, a new image classification model called ConvMixer was
presented [5]. The model is built with an deep architecture very different
from both transformer models and classic CNNs and has a remarkably simple
structure (which we will discuss in detail in Section 6). Surpassing both
ResNet and DeiT in classification performance with fewer parameters, the
model implies a potentially strong network for image analysis which warrants
further investigation.

As thoroughly pointed out by Steven Pinker, progress is driven my hypothesis
testing and deliberate trial and error [59]. But there are good and bad ways
to do trial and error as some errors or successes are more informative than
others. Having modular components on systems that are disentangled is a very
effective way to isolate variables and increase the informativeness of trials. It is
no coincidence that the word "independent" is a particularly familiar word for
statisticians. Independent entities are disentangled and therefore much easier
to analyze to extract valuable information.

When model architectures successfully have been applied to solve problems
in several settings, one will often see references to the common parts in those
architectures as a backbone. When the backbones are modular and methods of
using them allow for that modularity we are able to make much more significant
progress with much less data than when these components are still entangled.
In the setting of weakly supervised semantic segmentation, some of the most
influential and high performing models are not fully modular making it hard
to test the significance of detail in labels independently of model architecture
and parameter count.

Aside from estimating the advantage of level of detail, there are other signifi-
cant limitations of modern weakly supervised semantic segmentation (WSSS)
methods. One is quite general in the sense that the performance is just not as
high as for fully supervised models and not high enough or reliable enough to
be used for most applications. One specific problem that keeps the performance
low in these models is Part domination.

Part domination is the tendency of a model to only focus on the most discrimi-
native parts of an image rather than the whole object of interest. To the best of
our knowledge, this was first noted by the creator of the Class Activation Map
(CAM) method [85], one of the most influential and successful methods overall
in weakly supervised image analysis. Part domination is a problem that has re-
mained a significant issue in WSSS [4o0, 12, 35] as well as in many neighboring
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fields such as weakly supervised object localization (WSOL) [53, 67, 18, 6] and
weakly supervised object detection (WSOD)[9, 10]. Many of the cited papers
in this paragraph attempt to address the problem while few have improved the
overall performance of CAM [19].

1.5 Contributions

In this project, we propose a new semantic segmentation model with an ar-
chitecture developed on the promising and relatively untested structure of
the ConvMixer classification model. We further analyze the proposed model
in comparison with a Fully Convolutional Network (FCN) with a ResNet-50
backbone, a previous state-of-the-art model with a classical CNN backbone
with a large footprint in the world of image analysis [47, 33].

Additionally;, we propose a novel method for weakly supervised semantic seg-
mentation that is completely modular and allows semantic segmentation back-
bones to be trained with image level labels without adding parameters. This
allows us to measure the value of label detail independently of the model ar-
chitecture. We apply our method to train the proposed semantic segmentation
model with image level labels on the Liver Tumor Segmentation Benchmark
data set and show experimentally that our modular weakly supervised semantic
segmentation model outperforms the Class Activation Map method [85] with
high statistical significance.

Finally, as part of the novel weakly supervised semantic segmentation method,
we address the problem of part domination by adding a neighborhood correla-
tion enforcement module and show experimentally that the proposed method,
with statistical significance, reduces the problem.

1.6 Outline

This thesis starts with a dive into the basics of deep learning, fully connected
neural networks. We consider it important to understand the structure and logic
that governs the world of artificial neural networks such that they can learn
from experience. From fully connected neural networks we will proceed with
convolutional neural networks and how and why they have become dominating
for image analysis.

Then we will move into the field of weak supervision. Weakly supervised
semantic segmentation models will be investigated and discussed before we
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present our proposed segmentation model and developmental contributions
for weakly supervised semantic segmentation. We explain our motivation and
the hypotheses to test in our experiments.

This leads to the experimental design where we describe how we train the
models and how we measure their performance. The results of the experiments
are then presented along with our quantitative and qualitative analyses. Finally
we present some reflections about future developments or further relevant
directions of research.



What is an Artificial Neural
Network

Artificial neural networks are very general statistical models. They can be
adapted to replicate a wide variety of different systems that take an input and
return an output. To be more specific we need to make some definitions.

We will define everything a system receives to make a decision or action as its
inputs, which can be arranged as a vector we denote by x. Further, we will
define everything the system does or returns based on the inputs as its outputs,
a vector we denote by y. The mapping of interest is defined by a function
fo(x) which transforms the inputs x to the outputs y, by rules defined by
a set of parameters 6. In this framework, an attempt at a replication of any
system where a set of decisions are made based on initial information can be
represented by:

y = fo(x)
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2.1 The Structure of Fully Connected Neural
Networks

A basic artificial neural network, here represented by the function fp, is built
up in a repetitive pattern made up of subparts called layers. One can think of
each layer as a separate smaller function that performs some small analysis and
outputs a new, more analyzed representation of the input. All representations
of the input are called feature vectors. The first layer of fy is formulated in
Equation (2.1) where the input vector x is mapped to a hidden! feature vector
h;.

h1 = o(wlx + bl) (2.1)

w; is a vector filled with parameters called the weights and b, is a constant
called the bias. The weights decide in what way to linearly combine the features
of x, before the bias is added. o is a function called an activation or a non-
linearity and is the component that allows neural networks to model complex
non-linear dependencies.

As a side note, letting ¢ be a linear function turns a neural network (with an
arbitrary number of layers) into a linear transformation2, turning the model
into an over-parameterized linear regression model.

A full artificial neural network consists of many stacked layers. A formulation
of an arbitrary deep network is shown below.

h1 = cr(wlx + bl)
hy = o(wahy + by)
y = o(wphy + by)

n is here the number of layers. Each layer transforms one feature vector to
another and performs some analysis along the way based on the weights and

1. Since there are other layers that follow, k1 is only a temporary representation and will
rarely be viewed directly, hence the word hidden.

2. Consecutive linear transformations collectively make a linear transformation, but with
composite parameters, i.e. several parameters act linearly on the same input values to
form the outputs.
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biases. Every feature in one layer directly affects every feature in the next.
This type of network is therefore called a fully connected neural network. One
can interpret the structure as letting every feature in one layer influence every
feature in the next.

The stack of layers just described, together make up the function shown be-
low.

y = fwl,...,wn,bl,bz,...,bn (x)
y :fe(.X'), 0= [W],. c Wi, bl,bz,...,bn] (2.2)

In this section we have talked about the technical structure of fully connected
artificial neural networks. We have introduced the idea of a composite function
that, with a suitable choice of weights and biases, is able to model a wide
variety of systems.

Choosing the weights and biases that make the function we actually desire is
not trivial. To do so we first need a measure of performance.

2.2 Objective Function

To be able to learn by trial and error, we humans need a concept of performance.
Some way to understand what needs to change in order to do better. Sometimes
this can be provided by a teacher, but in many cases we also have an intuitive
understanding ourselves which serves as a good teacher and lets us teach
ourselves. When learning to bike, we intuitively know that falling means we
did something wrong. Regardless of how we attain our measure of performance,
that measure is essential to be able to successfully improve our behaviour.

The tool used to measure performance of neural networks is called an Objective
function. It is a function that takes a prediction of a network and returns some
number that indicates how good the prediction was. The weights and biases
of a network can then be optimized or learned to give the best possible score
by the objective function.

The name Objective function is one of many used for the performance measuring
function. Among others are cost function, criterion and error function. The scope
of each term depends on what the function measures and if a higher or lower
score is better, but they all provide the same type of numerical performance
measure from which to adjust a network[29].
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Objective functions come in different forms depending on how we want a
network to behave. In Chapter 5 we will define a task to solve, and show a few
examples of objective functions for that task.

We have talked about how a sequence of layers made up of weights and biases
forms a flexible function that makes predictions in an attempt to replicate a
system. The prediction performance is measured by an objective function which
guides adjustments of the network’s weights and biases. Gradient descent is
an optimization method that can use the objective functions judgments to
improve our network’s weights and biases.

2.3 Gradient Descent

Gradient descent is a first-order function minimization procedure done by
repeatedly taking small steps in the opposite direction of the gradient of
a function. The gradient points in the direction of steepest increase of the
function at any point, thus by stepping in the opposite direction one will
descend along the function hyper surface towards a local minimum.

The method can be visualized as a search for the bottom of a valley by a person
wandering around in dense fog. The person is attempting to find the lowest
point, but cannot see beyond the ground at her feet. The information she has
to work with is the slope of the ground beneath her. By always walking in
the direction of steepest descent, she will eventually arrive at some flat plane
which hopefully is the bottom of the valley.

In more mathematical terms, Algorithm 1 describes how gradient descent can
be applied to minimize a general function f with respect to a parameter

6.

Algorithm 1: Apply gradient descent to minimize a function f with respect
to a parameter 0.

Input :An initial parameter guess 6, and a step size y € R,.
Result: An optimized parameter 6,,;,.
i—0;
while minimum is not reached do
‘ Oir1 < 0; —yVf(0));
end
Omin < Oi1;

For an artificial neural network, the parameters to optimize are the weights
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and biases of the network and the function to optimize is the objective function.
We will here assume the objective function is to be minimized3.

The activation function and the objective function are in modern networks
differentiable by design#. This is essential for training as it allows us to compute
the gradient of the objective function’s outputs with respect to the weights
and biases of the network. i.e. The direction of change to the weights and
biases that (locally) will give the greatest change to the computed results of
the objective function. For a simplified supervised situation, assume we have
one data point x with a corresponding label y. The algorithm for optimizing
a neural network to accurately predict our single data point is formulated
below.

Algorithm 2: Optimize a neural network using gradient descent.

Input :An initial parameter vector guess 6.

Data: A data vector with a corresponding label vector {x, y}.

Result: An optimized parameter vector émin.

Let the function fp be the subject of the minimization with respect to the
parameter vector 6. Assume fy is locally defined and differentiable at
every step of evaluation between 6, and the local minimum émin at
which the algorithm will eventually arrive. Let the step size (also called a
learning rate) be y € R,. The objective function, denoted by L, takes the
predictions ¢ and the corresponding labels y.

while minimum is not reached do

g — fo,,(x);

€(0) — L(9.y;0);

0; < 0;-1 —yVge(0);
end

Note the vague condition for stopping the while-loop. As the function to
optimize is so complex, the parameter landscape is very hard to navigate and
understand. Usually, one will never actually know if one has reached the global
minimum. Rather, one will monitor how the network performs on data it was
not trained on to see if it has learned what we want it to learn.

Generalizing the algorithm to learn from a data set of more than one data point

3. If this is not the case by default, one can easily change a maximization scheme to a
minimization scheme by moving in the direction of the gradient rather than in the
opposite direction.

4. Note that this is for modern artificial neural networks. Their precursor, the Multilayer
Perceptron (MLP) proposed by Frank Rosenblatt [61] used a step function as an activation
function. The step function is is non-differentiable and is generally not well suited for
gradient descent as the gradient is either O or undefined. However, the original MLP was
not trained with gradient descent, but by more manual approaches.
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can be done in many ways. The simplest method is called Stochastic Gradient
Descent and is applied by making an update to the parameter vector 6 for
every data point individually before going back to the first data point. This is
done repeatedly until one believes a good minimum has been reached. There
are other methods, such as Batch Gradient Descent and Mini-Batch Gradient
Descent which we will revisit in Section 2.6.

2.4 Back Propagation

When applying gradient descent to train neural networks, every weight and
bias needs to be adjusted. In Algorithm 2 the process is compressed into a single
line (line 5), which might give the impression that the process is uncomplicated.
This is not the case as the size of modern neural networks makes the task of
finding the gradient with respect to all weights and biases infeasible unless
a very efficient method is used. Typically when using gradient descent, one
would differentiate with respect to every weight and bias and make an update
to each weight and bias independently. Back propagation is a much more
efficient method which utilizes the layer structure of artificial neural networks
to compute the gradient of the weights for each layer sequentially. By use of
the chain rule for differentiation, one can update layer for layer of weights in
an efficient and orderly manner.

In order to do proper dissection of the back propagation scheme, let us revisit
the formulation of an arbitrarily deep fully connected neural network first seen
in Section 2.1. However, note that we have changed y to ¢ to emphasize that
the network only makes a prediction.

h1 = O'(Wlx + bl) (2.3)
h, = O'(W2h1 + bz) (2.4)
(2.5)

§ = o (wphn + by) (2.6)

Assume we have been given a data point x with a corresponding label y to
train on. First we compute a prediction 7. Then we compute the measure of
performance € = £(4, y). The next step is to find the gradient of € with respect
to all weights and biases.

If we want to understand the effects on the outputs caused by changes in the
weights of the first layer, we have to take into account the effects the weights
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of the first layer has on all the other weights in the network. The causality
implies that a reasonable approach is to begin by focusing on the weights and
biases in the last layer as shown below.

de  Je Iy

a9 own

de do d(wph,, + by,)
o o(wihy +by) oy

¥

a 7]

a;n = a_go-,(wnhn + bn)hn (2.7)
de  de Iy

ob, 0y ob,

7] 7]

aben - a—;a’(wnhn +by) (2.8)

(wyh,, + by) is often referred to as the potential or the un-activated output of
the n-th layer. Note that the weights w,, and the bias b,, act on the same step of
the equation, namely the n-th activation. Therefore the gradient propagating
backwards from e towards w,, and b,, is the same for the two until the very last
step. This explains the short derivation of the bias in Equation (2.8).

The common parts of the equations (2.7) and (2.8) show why the objective
function and activation function are differentiable by design, as their derivatives
are used to compute the gradients. h,, and the n-th potential are both computed
as part of the computation of making a prediction ¢, thus by temporary storing
intermediate values when computing the prediction, little extra computation
is needed to find the gradient wrt. w, and b,,.

We have shown how to find the gradients wrt. the weights and biases of the
last layer. To access weights and biases of earlier layers let us think of the first
n — 1 layers as its own self-standing neural network and the last layer as part
of the objective function. From this perspective the prediction of the networks
n — 1 layers would be h,,, and the measure of performance of that prediction
would be a"—,; shown in Equation (2.9).

de  9de Iy
oh, oy oh,
oe Je ,
=0 (thn + bn)wn (2.9)

oh, dy
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Notice that the dependence between 7 and h,, is very similar to the depen-
dence between h, and h,_;. By use of the same method as above to find the
gradient with respect to the newly assigned last layer of our network, we get
the following:

o€ de oh,

oWn_1 - ahn owWn_1

3 o€
= "(Wp—1hp-1 + bp_1)h,—
3Wn—1 ahno-(nlnl nl)nl
de de |, ,
= —o0 (Wph, + bp)wno' (Wp_1hp_1 4+ by_1)h, (2.10)
8wn_1 ay

de  Jde Ohy
obn,_1  oh, dby_q

o€ o€
= "(Wp_1hp—1 + by
BT ahnU (Wn—1 1 1)
d d
< = —fO',(thn + bn)wno-/(wn—lhn—l + bn—l) (2.11)
ab,,_l ay

The pattern has been generalized to formulas for the gradients with respect to
wrt. all weights and biases shown below.

Je 9e &3

=— | o' Wp_ihp_i +by_ i), (2.12)
de de
=— | | o' Wn_ihp_; +b,_;) (2.13)

The equations (2.12) and (2.13) can be used to compute each and every gradient
independently. But the products also suggest that if you have already found the
gradient wrt. a layer, little extra work is needed to compute the gradient wrt.
the layer before it; a testament to the efficiency of back propagation.

2.5 Activations

Activations or activation functions of an artificial neural network allow it to learn
complex dependencies. But they also influence a networks training properties
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that heavily depend on the activations’ derivatives. The most used activation
functions are Sigmoid, Tanh, Softmax, Rectified Linear Unit (ReLU) 5. There are
two main relevant properties of these functions.

Firstly, the range of the functions. All of these functions have a domain that
covers the real line, but their range of output can be actively used to serve a
purpose. A probability ranges between 0 and 1, so does the output of a Sigmoid.
If we want to train a network to output a probability we could choose to use
the sigmoid as the last activation as the output would naturally be limited to
the sensible range.

Secondly, their derivative. The formulas (2.12) and (2.13) show that the weight
gradients used to adjust the network are made up of large products of activation
derivatives; especially those of early layers. To understand why this causes a
problem let us investigate the Sigmoid function.

Vanishing gradients

The Sigmoid maps the real line to the interval (0, 1). As the real line is infinite
and the interval (0, 1) is not, the function has to compress some parts of the
real line into an infinitesimal small size. Figure 2.1 illustrates the function
along with its derivative. Notice that any large x-value is mapped very close
to 1 and any very low x-value is mapped close to 0. For input values far
from 0, changes to the input has little affect on the output, and the gradient
diminishes. For training a neural network, this means that any gradient step
to improve its weights and biases will be extremely small if the prediction is
confident. The matter is made exponentially worse since a prediction might
be confidently predicted through several layers, thus imposing the mitigation
of a weak activation derivative numerous times. This issue is called vanishing
gradients. The result is that for neural networks using the sigmoid activation
at every layer, an increase in number of layers will cause significant mitigation
of gradients. This will prevent such networks from successfully training their
early layers.

Exploing gradients

The opposite problem called exploding gradients arises if one attempts to remedy
vanishing gradients by scaling up the derivative of the activations. By imposing
a scaling factor of, say 10, the vanishing gradient problem would be reduced

as much more extreme values of activation inputs would be needed to severely

5. There are many variations of ReLU, but we will only mention the main one here.
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Figure 2.1: The Sigmoid activation function with its derivative.

diminish the gradients. However, imagine that a prediction of an input data
point resulted in a bad prediction, but with every activation input close to 0
(view the derivative in Figure 2.1 and multiply by 10.). The prediction error
would be significant since the prediction is wrong, and the scaling of activation
derivatives (view the equations (2.12) and (2.13)) would make the gradients
grow exponentially as they propagate back through the network. Because of
the exponential growth, that one erroneous prediction would cause havoc to the
early layers, effectively resetting weights and biases with significant relevance
to the prediction. The careful coordinated nudging of the weights and biases
prior to that prediction would be wasted and the network would have to be
trained slowly again to recover.

Activations that suffer from vanishing gradients and therefore cannot support
very deep networks are the sigmoid and tanh. Tanh is not shown here, but
visually it looks very similar to the sigmoid but with a range of (-1, 1). Its
derivative is also similar, but with a peak around x = 0 of 1 and with a lobe
that is a little narrower than for the sigmoid.

The Rectified Linear Unit(ReLU), or variations of it, is the most used activation
function in modern CNNs. This is mainly due to its very advantageous gradient
properties. The function is equal to its input values if they are positive, and
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0 otherwise. This makes activation gradients that are either O or 1. If they
are 1, the scaling of gradients propagation through a network is much easier
to control than those of the sigmoid or the tanh. Most variations of ReLU are
modifications that avoid the case of a 0 gradient for negative activation inputs
as this causes no learning with difficult recovery; an issue often referred to as
dead nodes.

One of the descendants of the ReLU is the Gaussian Error Linear Unit (GELU)
activation function. It addresses the problem of dead nodes by allowing for a
smoother transition into the negative part of the input domain to only taper
off towards zero asymptotically. The function can be formulated as GELU(x) =
x¢(x), where ¢ is the cumulative distribution function of a standard normal
random variable.

Softmax is an activation that acts only on multidimensional inputs and its
outputs in one dimension depends on the input values in the other dimensions.
It has the convenient feature that the sum across all dimensions of its outputs
is 1. Thus one can interpret the outputs of the softmax as a discrete probability
distribution. A property making it ideal as a final mapping in a network used for
classification. The softmax can be seen as a generalization of the sigmoid[29]
and the two bear similarities in gradient behavior. The value of all other
dimensions held constant, the gradient with respect to one dimension of the
softmax will look very similar to the derivative of the sigmoid, but with the
lobe centered at the maximum value of the other dimensions. The softmax is
rarely used inside deep neural networks though there are exceptions (attention
modules).

A mathematical formulation of the functions mentioned here are shown be-
low.
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1
S(x) = T o (2.14)
§'(x) = S(x)(1 = S(x)) (2.15)
tanh(x) = i (2.16)
eX+e*
tanh’(x) = 1 — tanh?(x) (2.17)
ft i) = : (2.18)
softmax(x;) Zle - 2.1
dsoftmax(x;)  [softmax(x;)(1 — softmax(x;)) , i=j (2.10)
ox; B —softmax(x;)softmax(x;) ,iL#E ] 9
ReLU(x) = max(x, 0) (2.20)
, _ 0 ,x<0
RelLU’(x) = {1 x>0 (2.21)
GELU(x) = xP(X < x), X ~N(0,1) (2.22)

2.6 Optimizations

There are three main problems that will probably present themselves if no
optimizations are applied to the training scheme of artificial neural networks
we have talked about thus far.

The first is that the training is slow or stagnant. The second is training that
converges to a bad result. The third problem is overfitting which in essence
means that our network has learned too much about the training data. When
a model makes predictions based on idiosyncratic details rather than a general
system, it will work badly when presented with new data.

Assuming a convex, and sufficiently smooth function fy(x), gradient descent as
described in Section 2.3 can be shown to always reach the global minimum[31].
However, for neural networks, the parameter landscape is not convex, nor par-
ticularly smooth[36]. Consequently, training neural networks have traditionally
been notoriously difficult [27]. Several decades of research on the subject has
fortunately resulted in a forest of optimizations and modifications that have
improved the method in different ways.
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2.6.1 Batch Size Control

Batch size control refers to controlling the number of data points to use for
each update of the weights and biases. The true parameter landscape we are
interested in finding the bottom of is based on the true distribution of our data;
a distribution which will be forever out of our reach. We might thus assume
our best approach would be to compute the mean gradient based on all our
available data before doing an update of the weights and biases. This approach
is called Batch gradient descent. However, this has not proved the best solution
for a different reason.

Batch size control addresses the second issue of finishing training at a bad
solution. Gradient descent looks for minima, but does not distinguish between
the bottom of a crater or a tiny bump in the parameter landscape. To avoid the
bumps one could try to search around an approached solution in every direction
to see if it makes sense to keep searching. But the parameter landscape of neural
networks typically have millions of dimensions. The curse of dimensionality
thus makes this seemingly small task enormous. The best we can do is introduce
some random movement which might cause the search to jump out of small
local minima. Notice that if we introduce too much randomness, we might just
end up jumping around leaving any minimum we encounter regardless of how
successful the solution might have been.

The method of batch size control that introduces the most randomness is called
Stochastic gradient descent and is performed by doing an update of the weights
and biases for every individual data point.

Between the two extreme methods we have Mini-batch gradient descent which
makes an parameter update with the mean gradient based on a subpart of the
given data. This is the most used approach which strikes a balance between
searching a representative parameter landscape while introducing enough
randomness to avoid the worst local minima.

Note that it has been shown that even if one never reaches the global minimum,
there are a huge number of comparably good local minima. Thus if one escapes
the worst local minima, one will probably approach a good solution even though
one might not arrive at the same solution upon repetition of the training.

2.6.2 Variants of Gradient Descent

The following section is based on an excellent review of gradient descent
methods by Sebastian Ruder [63].
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Imagine that you were the person walking down the slope of a valley in the
dense fog and you found yourself walking in an oscillating pattern downwards.
By remembering the slope at the prior few steps, you might understand that you
are in fact traversing slowly down a declining gulch. To make the descent more
effective you reasonably adjust your next step so that you will probably stop
moving across the gulch and more in direction of its descent. Another method
that might be effective is to move around the current spot a little to figure out
the geometry of the local environment before deciding where to move next. By
viewing the slope at the current location in context with all the information you
already have about the landscape, you can make your descent more effective. In
the context of a gradients, by taking already acquired information into account
or doing small acts of scouting, we can address the problem of slow training.
This is common of methods such as Momentum, Nesterov accelerated gradients,
Adagrad, Adadelta, RMSprop and Adam and AngularGrad.

In Algorithm 2, the updating step of the weights and biases was compressed
into the formulation shown in Equation (2.23).

0; «— 0,1 —yVge (2.23)

€ is the objective, y is a constant learning rate and 6 is the vector of all weights
and biases of the network. By use of the same notation we will now go through
the family of improvements.

Momentum

Gradient descent with momentum introduces a positive autocorrelation with
the prior gradient estimate. This causes less jagged movements and makes the
parameter changes more gradual and smooth. One can visualize it as having a
heavy ball rolling around in a landscape rather than a person walking.

V; — QU;_1 + ﬂVgG(e)

01- — 01-_1 —0; (2.24)

a and f are constants that both serve as learning rate and distribute weight
on the current and prior computed gradient.
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Nesterov Momentum

Nesterov momentum or Nesterov accelerated gradient is very similar to the
method of momentum, but with a small modification. One will first move
forward one step based on the current gradient to scout for the gradient there.
Then one will go back and make the move as a weighted combination of
the current and the scouted gradient. The method is formulated in Equation
(2.25).

V; ¢« QU1 + ﬁV96(0 - O{Z)i_l)

61' — 01'_1 — 0j (2.25)

Adagrad

Each weight and bias will affect the decision making of the network differently,
thus having one constant learning rate that applies to all weights and biases
might not be the best choice. Adagrad introduces a learning rate for each weight
and bias that changes dynamically during training. The method is formulated
below.

gi-1 < Voe(0;-1)

i-1
Gj_1 « diag (Z gtgtT) (2.26)
=1 .
0; — 6;_1 — —r gi-1
Gi-1+¢

& is a small number to avoid extremely high values, o is used to denote elemen-
twise multiplication and G;_1 is the sum of the elementwise squared gradients
of all the recorded gradients up until the current time step. A frequent issue
with this method is that the learning rate will monotonically decrease quite
aggressively which will stop the learning prematurely.

RMSprop

RMSprop is a variation of Adagrad that seeks to mitigate its aggressive shrinking
of gradients. The method switches out the total sum of squared gradients
G;_1, with a decaying recursive mean square of past gradients. The method is
formulated below.
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gi-1 < Vge(0;i-1)

E[g*)i-1 « aE[g*)i2 + (1 - @) g},

0, — 0;_1 - S gi-1

E[g?]i-1+€

(2.27)

Note that g? means the elementwise squared vector of g, not the 2-norm.

Adadelta

Adadelta was developed in parallell with RMSprop to address Adagrads prob-
lem of diminishing parameter changes. The method is almost identical to
RMSprop, but removes the hyperparameter y. The replacement of y is rather
involved as it uses prior parameter changes in addition to prior gradients to to
the updating. Let us define the current change to the parameters as Af;. The
method is thus formulated below.

E[A0?);-1 « aE[AO*];2 + (1 — @) AO?
RMS[AO] -1 < E[AOZ]i_l + §

gi-1 < Voe(6;_1)

E[¢°]i1 < aE[g*lia+ (1 - )g}, (2.28)
RMS[gli-1 < VE[g?li-1 + &
RMS[AG];-
Aei—l «— _& o gi—l
RMS [g] i-1

91' «— 0,-_1 + AGi_l

Note that RMS[AB)];_; takes the place of y.

Adam

Adam is short for Adaptive Moment Estimation and is considered a good default
optimization algorithm for neural networks. As we have just seen, in Adadelta
we keep track of an autoregressive estimate of the squared gradients. With
Adam, we do the same for both the gradients and the squared gradients. Or
rather, we keep track of weighted estimates of the first and second moments of
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the gradients where recent gradients count more than old ones. The method
is formulated below.

gi-1 < V96(9i—1)
mi—1 < Pimi—2 + (1 = p1)gi1
vi-1 < Povia + (1= Ba)gi,

Mg — i1
i-1
1-p5
Di_1 Y1
i-1
1-ps
Y A
01' — 0,'_1 - A—mi—l (2-29)
di1+¢&

m;_1 and 0;_1 are adjusted as m;_; and v;_, are biased estimators of the
gradient moments. f31, >, £ and y are hyper parameters. The authors proposed
the values B = 0.9, f = 0.999, £ = 1078, while the learning rate y must be
adapted to the specific case.

AngularGrad

AngularGrad is a gradient optimization method that not only records the
gradients and parameter steps, but also the changes in parameter movement
angle [62]. It can be seen as a generalization of Adam with one additional factor
reducing the oscillatory movements in the parameter space. The methods is
formulated below.
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gi-1 < Voe(6;1)

gi-1 — gi-2
1+gi1-9gi2
Amin — min(Ai—Z; Ai—l)
$i—1 — tanh(|Z(Amin)]) - A1 + A2
mi_1 « Pimio+ (1 - P1)gi1

Ai_q «— tan~!

vi-1 — Povia + (1= Po)g? 4 (2.30)
i1 il
1-5
i1 fit
1- ﬁz
6, — 0,1 — Pt i1

/(-) is either cos(-) or tan(-) and A;,A; € R are hyper parameters, both
proposed to have a default value of 1/2 based on experimental results [62].
B1, P2 are hyper parameters adopted from Adam.

2.6.3 Batch Normalization

Batch normalization is a procedure used between successive layers in artificial
neural networks to improve their training properties. The process is done
by normalizing every batch going into a layer to have mean o and standard
deviation 1, before introducing trainable parameters to scale and shift the
standardized batch. The advantageous effects of batch normalization are well
established and the technique is widely used in modern networks. It has been
believed that the success of the procedure was a consequence of mitigating
internal covariate shift (ICS)[36], but this has been shown to be incorrect [65].
Rather, batch normalization smooths the parameter landscape making it easier
for optimizers to work with.

The formulation of the method shown below is taken from the original proposal
of the method [36].

The input x is the un-activated output of a layer and y are the values passed
on to an activation function. The parameters y and f are parameters to be
learned by the network. 8 is a batch of m data samples. € is a nonzero (but
very small) constant to avoid zero division.
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Algorithm 3: Batch normalization for a batch of unactivated input data x.

Input: A mini-batch 8 = {x}", }. Parameters to be learned: y, .
Output: {y; = BN, 5(x;)}

1 m
pg — — Z Xi (2.31)
mi3
1 m
oy — ) (xi~ ns)’ (2:32)
i=1
R Xi— Ug
g JTHB (2.33)
0% +€
Y — yXi + f = BNy, g(x;) (2.34)

2.6.4 |Initialization

The gradient descent algorithm need a starting point, a first candidate param-
eter vector to work with. A naive approach would simply be to set the weights
randomly. A somewhat more careful, though arbitrary, approach would be to
choose them randomly, but from a distribution of low values such that no initial
parameter value dominates a prediction.

Recall the issue of vanishing gradients. Inputs to the sigmoid or tanh that
are too big or too small will cause slow or stagnant training. If not being
careful about the initialization, almost all inputs to activations could be extreme
values and would consequently prevent networks from learning. To avoid this
problem Xavier Glorot et al. proposed an initialization method that would
make the distribution of the back propagating gradients stay constant through
the network[27]. The proposed approach was specific for the sigmoid or tanh
activations and is formulated below.

1 1
WA~U|[-——, — .
( \/ﬁ\/ﬁ) (235)

Every weight in a layer of n features would be an observation of the stochastic
variable W.

Kaiming He et al. had a similar approach for finding a good initialization when
using the rectified linear unit activation. They found the variance of weights
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that would let the variance of the activated features stay constant through a
network. Consequently, a distribution was proposed to draw initial weights
from given a layer with a number of nodes n (shown below).

W ~N (O, —) (2.36)

2.7 Evaluation

Earlier we discussed the role of the objective function as a teacher lecturing
the neural network to improve. However, there is a distinction between two
types of evaluation we have not made clear. The one we have discussed is
an evaluation of a prediction done by an objective function with the main
goal of providing the feedback that most effectively lets a network improve
its performance. The other type, done with a function often referred to as an
evaluation metric or just a metric, gives a measure of performance meant for
users of a model to know the capabilities of the network.

A function that provides very good feedback for the network to train is a
function that has a gradient that increases in magnitude as a prediction gets
worse. This property lets the training go faster as very bad predictions will cause
gradients of large magnitude encouraging the optimization scheme to take
bigger steps. When approaching a minimum, the gradients will be smaller and
the optimization scheme will naturally slow down and take small steps.

Gradient properties such as those just described are not very desirable for a
function which is meant to clearly indicate the performance of a network. Small
differences between two bad models will seem much more significant than
small differences between two good models. To better be able to distinguish
usable models, we might even desire the opposite gradient behavior, i.e. large
magnitude gradients for good predictions. This would make small variations in
performance seem more significant for a very good model than for a bad one
which intuitively makes more sense. Note that functions used for evaluation
do not need to be differentiable.

It should also be mentioned that even though we use the term metric, it is
not always the case that the function used satisfies the demands of being
a mathematical metric function. It is typically a function that compares a
prediction and a label yielding a number that depends on their difference.
However, evaluation metrics might yield negative outputs and will not typically
be 0 for perfect predictions. One example is Matthews correlation coefficient
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(MCC) ranging between —1 and 1, where a perfect prediction yields a value of
1.

Occasionally the two evaluation types can be performed with the same tool,
i.e. the objective function and the evaluation metric are the same function, but
this is generally not the case.






Convolutional Neural
Networks

Convolutional neural networks (CNNs) make up a class of deep neural networks
that has had great impact, particularly for image analysis. From self-driving
cars to measurements of the size of the pole ice sheets, CNNs are tools with a
currant and future footprint on our world.

In the last chapter we talked about fully connected neural networks (FCNNs)
that connect every feature in one layer with every feature in the next. A
convolutional layer on the other hand, will only let a feature in one layer
influence a neighborhood of features in the next. Such restrictions significantly
limit the number of possible model configurations. Such restrictions cause
model limitations, but also advantages.

If the model restrictions remove connections that would prove relevant in
the network, it will not be able to learn a good parameter configuration and
no amount of data or training time could lead to a good model. However, a
smaller, less complex model is easier to train. So if the restrictions reflect valid
assumptions about the data generating process, the model restrictions help the
training by limiting the number of parameters to adjust.
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3.1 Convolutions

In this section we will go through how discrete 2 dimensional convolutions are
used in context of Convolutional neural networks(CNNs).

A convolution as used in a CNN is an operation that works with grids of
numbers. The operation takes an image x and a filter @ and produces an
output image y.

The sizes of the grids used in most real applications can get quite large and
are thus difficult to illustrate. For clarity, we will therefore assume both the
image and the filter are monochromatic, meaning there is only one value
per pixel. Generalizations will be shortly explained. Let us begin with some
definitions:

The image, denoted by x, is a rectangular grid of pixels with a height of h,
pixels and a width of w, pixels. The sizes of the filter and the output image are
correspondingly (he, we) and (hy, wy) respectively. The pixel on row i and
column j of the image is denoted by x(i, j) fori =1,...,hc for j =1,..., wy.
References to single pixels in the filter and the output image follow the same
pattern.

3.1.1 The Basic Convolution
Computing one pixel in the output image can be divided into 3 steps:

1. Place the filter on top of the image. The placement of the filter relative
to the image is what defines which pixel of the output image is being
computed.

2. In the region where the filter and image overlap, compute an elementwise
product between each number in the filter and the corresponding number
in the image.

3. Sum the resulting products.

To visualize the operation, view Figure 3.1. In the figure, an image of size (5, 5)
is convolved with a filter of size (3, 3) resulting in an output image of size
(3,3)1. In in each part of the figure, the image is placed at the bottom with
the filter placed over it to compute one pixel of the output image shown on
top.

1. The figure shows the result of the first two and the last step of the convolution.
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Figure 3.1: Visualization of the first, second and last step of a convolution.

It should be mentioned that before the 3 listed steps, a convolution as defined in
mathematics would begin by flipping the filter both vertically and horizontally.
However, as the filters in CNNs are to be learned during training, the flipping
has no practical effect on the network and is hence omitted.

A mathematical formulation of a convolution? applied to the image x and filter
w is given in Equation 3.1.

Yy=x*w
heo—1 we—1

y(a,b) = Z Z x(a+i,b+ jlow(hey +i,we + j) (3.1)
i=0 j=0

a=1,...,hy, b=1,...,wy (3.2)

A way to understand the operation is to think of the filter as a template for
a pattern of interest. The template is then passed all over the image to get
a measure of match between the the image and our pattern of interest. The
resulting output will have bright spots at locations where the input image
matches well with the template.

If the image is not monochromatic, we will have several values for every pixel.
Thus our image would consist of several monochromatic images in a stack
creating a 3D cubeiod of numbers rather than a flat grid. The thickness of such
a cuboid is usually referred to as the number of channels. Since the image is now

2. Note that this is only in context of CNNs. In a normal convolution as defined in mathematics
and signal processing we would use f(hg — i, we — j) instead of f(hg + i, we + j) which
corresponds to flipping the filter in both vertically and horizontally.
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Figure 3.2: Visualization of a convolution with a stride of 2.

3 dimensional, a convolution including it must also be 3 dimensional. Every
step of the convolution will still be to compute a dot product of an overlapping
region between an image and a filter, but the region will now be a cuboid, not
a rectangle.

3.1.2 Tailoring the Convolution

There are a few parameters that can be adjusted to change the behaviour of
the convolution operation.

The stride is the distance of movement of the filter with respect to the image
for each computed value. A stride of 2 would thus produce the same image
as by performing the full convolution and then removing every second row
and column of the output image. View Figure 3.2 for a visualization of the
operation.

Padding is to concatenate new rows and columns around the input image
before preforming the convolution. Which numbers to put in the new rows
and columns is a design choice. Most frequently used is zero padding, where
all new values are set to zero. The main motivation for using padding in CNNs
is to control the size of the output image by changing the number of locations
the filter can take and still fully overlap with the image. Figure 3.3 shows a
regular convolution with zero padding of 1.

Dilation is a variable that determines by how much the filter should be expanded
or inflated before the convolution. This is equivalent to inserting rows and
columns of numbers between the original values of the filter. As with padding
the most usual value to insert is zero. A convolution with a dilation of 2 is
shown in Figure 3.4.
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Figure 3.3: Visualization of a convolution with zero padding of 1.

Figure 3.4: Visualization of a convolution with a dilation of 2.
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All of the mentioned modifications to the original convolution changes the size
of the output image. The formulas (3.3) and (3.4) calculate the size of the
output image y resulting from convolving x with w.

hy+2-p—d(h,-1)-1
hyz{ Tep s( ) +1J (3.3)
wy:{wx4—2'p_i(ww_l)_1+1 (3.4)
(3.5)

p is the padding, s the stride and d the filter dilation.

3.2 Pooling

As convolutions, pooling inputs and outputs grids of numbers, but there is no
filter. Rather, a pooling operation focusses on one region in an input image at
a time, and computes a mapping from that region to one pixel value in the
output image. The most frequently used pooling operation is max pooling for
which the output value is the highest value from the selected region in the
input image. Other pooling types include average pooling, min pooling and
rank-based pooling.

The example below illustrates the use of max pooling with a 2 by 2 kernel and
a stride of 2 in both directions.

3.3 The Convolutional Layer

The phrase layer was in the last chapter used in reference to a subunit of a fully
connected neural network. But the phase is used more generally in reference to
any subpart of a network that maps a set of features to another and they exist
in many forms. The component that defines a convolutional neural network is
the convolutional layer.

The mapping defining a convolutional layer is formulated in Equation (3.6).

Y =0(QxX+B) (3.6)
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Figure 3.5: Illustration of max pooling with a kernel-size of 2, a stride of 2 and dilation
of 1. The bright parts highlight the focus of each step, while the red number
emphasized the basis for the final results.

Note that with convoltional layers, more often than not, one will be working
with multidimensional grids rather than vectors; hence the use of capital
letters.

A note on vocabulary: When the features are structured in matrices or higher
dimensional volumes, they are often called feature maps. Thus the input image
X above is mapped to the feature map Y.

Recall that the convolution could be described as a search for locations in an
image where it matches a filter. Here, the filter is subject to learning. The convo-
lutional layer is thus learning to design a small template3 to extract meaningful
information about the image. A template that, when well trained, will capture
some interactions of relevance between pixels in small neighborhoods of the
image such as an edge.

3.3.1 Benefits of convolutions in Neural Networks
There are three defining features of convolutions that make them ideal for anal-
ysis of data where features mostly interact with features in their neighborhood:

Sparse interaction, parameter sharing and equivalent representations.

Convolutional layers do not attempt to find interactions between pixels outside
the scope of one filter-size. Very few interactions are ever attempted found

3. With several channels there will be more than one filter, but as the concept is in focus here
we will avoid the complicating generalization for now.
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compared to for fully connected layers, a defining feature of convolutional
layers called sparse interactions[29]. The builtin assumption is that a pixel is
only significant in context of its neighborhood, regardless of values on the other
side of the image. If the true dependencies of interest in an image are grouped
into neighborhoods, this is a powerful advantage as resources are not waisted
trying to model a vast number of insignificant interactions.

In an image, one might reasonably assume that there are patterns that look
similar at different locations. An edge at the bottom is not much different from
an edge at the top. A convolutional layer is built to appreciate that fact as the
same filter is used to find matches all over the input image. A filter that has
learned to recognize an edge will for convolutional layers find similar edges
where ever they are in an image. The concept is reasonably called parameter
sharing [29]. Note the contrast to the fully connected analog where one weight
will only connect the same two feature values, one in the input to one in the
output.

If we apply a convolution, then move something in an image, the result would
be identical if we switched the order of operations. This is called equivariant
representations. More generally we can say that if g(f(x)) = f(g(x)), then
g and f are equivariant transformations. A filter that matches well with a
specific feature (e.g. an edge) will give the same response for equal edges
independent of location. Thus spatial displacements and convolutions are
equivariant transformations. The concept fits well with how we humans see
images. A pattern in an image (e.g. a face) is generally the same pattern if it is
moved to the other side of the image.

3.4 Back Propagation

We will only discuss back propagation for convolutional layers in general terms
as the main ideas have already been discussed in the last chapter. The main
difference between a fully connected layer and a convolutional one is the
convolution operation itself. Recall that the gradients of interest are divided
into three main parts. Gradients wrt. the weights, wrt. biases and finally
wrt. the inputs. It can be shown that all of these can in fact be computed by
convolutions. To get an indication of why, view Figure 3.6.

y; is the prediction of one pixel in the output, and the filter of the convolution
is filled with weights to be adjusted. After the prediction is made, the objective
function will return a matrix of gradients of the same size as the output to
propagate backwards. As the receptive field of y; is the region in the input
image that influences the output, it is the same region that corresponds to non-
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Figure 3.6: Visualization of a convolution in a CNN.

zero gradients in the back propagation from y;. Thus the back propagation is a
weighted broadcasting from each output, an operation called a deconvolution or
a transposed convolution. It is the inverse of a convolution, but the operation can
be reconstructed into a regular convolution by flipping the filter, padding the
input, interpreting the stride as an inflation factor of the inputs and interpreting
the given image padding as a removal of the newly padded image frame. Note
that the deconvolution is not just used in back propagation, but can also be
used as its own type of feed forward network layer. The operation is useful as
it will neatly do an up-sampling with learnable parameters by using a stride
higher than 1.

3.5 Optimizations
3.5.1 Filter sizes

The choice of filter size is one of the hyper parameters of convolutional layers.
The filter size affects the number of parameters in a layer, but also the size of
the region with influence on a feature in the next layer, often referred to as
the receptive field of the feature. Intuitively, one might believe that small filters
would prevent the network from learning larger patterns. However, this is only
the case if ignoring the fact that layers can be stacked. A stack of layers will
allow for small structure to be found in the first layer which can be put into
bigger patterns in subsequent layers even if all filters are small. To see why
modern network generally use small filters, we will do a small comparison
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Figure 3.7: Comparison of filter sizes.

between two networks. The first is a stack of two convolutional layers, where
the filter size in each layer is 3 X 3. The second is a single layered network
with a filter size of 5 X 5. The receptive fields of the networks are the same as
can be seen in the illustration in Figure 3.7.

But the two differ in parameter count as the first has 3 X 3 X2 = 18 parameters
compared to 5 X 5 = 25 in the second. The reduction of parameters needed to
cover the same receptive fields for hidden features is advantageous as fewer
parameters need to be trained. In addition, as more activation functions are
used, more complex interactions between pixels can be modeled.

But the change also comes at a cost of increasing network depth. A cost that was
considerably higher before optimizations such as skip connections, initialization
schemes and developments in activation functions.

3.5.2 Skip Connections and Residual Connections

To further reduce the cost of network depth, skip connections and residual
connections have provided instrumental tools for further developments of the
field. Both types of connections are paths in a network where a set of feature
from a layer is moved past several layers to be directly reintroduced into a
layer deeper into the network; by concatenation for skip connections and by
addition for residual connections. It can be proven that residual connections
is a special case of skip connections with parameter sharing in the connection
receiving layers, so we will continue in this section by referring to both by the
name: Skip connections.
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The process effectively makes several parallel paths through a network, some of
which will be shorter than the total network depth as the skipping applies both
ways. The effects during training is a smoother gradient surface to maneuver
with less likelihood of encountering singularities* [54] allowing for deeper
networks.

To understand the effect, an explanatory model is that a skip connection
simplifies the job of the layers being surpassed by the connection. A stack
of layers collectively will try to learn how the input can be understood to
match a given output. Sometimes the best analysis is done when a layer views
the information processed by some hidden layers together with information
from early in the network. With no skip connections, such an analysis can
only happen if several layers perform a selective identity transformation, thus
learning a lot of parameters to do nothing. With the skip connection however, a
layer only has to learn the differences between its inputs and outputs and does
not have to choose what should be kept as is from the previous layer.

Other significant improvements have been made such as analyzing feature
maps on several scales in the same layer (e.g. Inception blocks[72] or Spatial
pyramid pooling [32]) or making systems of skip connections (e.g. ResNet[33]
og DenseNet[34]).

3.6 Models

The figures of the networks shown here were made with open source software
created by Alexander Lenail [44].

3.6.1 AlexNet

AlexNet is a CNN model design proposed by Alex Krizhevsky, Ilya Sutskever
and Geoffrey E. Hinton. It was first used in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) of 2012. With a top-5 test error rate of 15.3%,
the model set a mile stone for the field of image recognition. The construction
of the model is shown in Figure 3.8. The network had 60 million parameters
and was one of the first models to be trained on a GPU.

4. Singularities in this context refer to situations where network capacity is reduced because of
issues in the parameter landscape. This includes hidden features that become consistently
non-active (dead nodes, a known problem of ReLU) or features that become linearly
dependent of others, making them completely redundant.



40 CHAPTER 3 / CONVOLUTIONAL NEURAL NETWORKS

—

2048 2018 1000

Figure 3.8: Illustration of the architecture of AlexNet. The clear blocks indicate layers
ending with an activation. The thicknesses is the number of channels and
the filters are shown as blue boxes. Max-pooling has implicitly been used
for every down sampling (where the feature map size decreases).

The figure is visually informative on a large scale and is therefore used here.
However, some details have been abstracted away to prevent cluttering. Each
clear block indicates a layer including an activation function. The small blue
boxes indicate the filter size of their respective layers. The first 6 layers are
convolutional and the last 3 are fully connected. Softmax is the activation used
for the last layer, while ReLU us used for all the others.

3.6.2 VGG-16

When VGG-16 was announced by Karen Simonyan and Andrew Zisserman in
2015 [68], the model was considered very big. With its approximately 138
million parameters, it is more than double the size of AlexNet. Despite the
major change in size, the change in structure was less striking. Replacing
convolutional layers with large filters by stacks of layers with smaller filters
was perhaps the most significant architectural change.

On the big data set of natural images ImageNet [41], the model achieved a
top-1 error score of 8.15. The model has been one of the most influential to
this day both because of its performance, but also because of the architectural
simplicity.

5. To achieve the score, the training images were rescaled to two different sizes during
training. But the performance was 8.7 without the rescaling.
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Figure 3.9: Illustration of the architecture of VGG-16. The clear blocks indicate lay-
ers ending with an activation. The thicknesses is the number of chan-
nels(visually on the log-scale as the figure would otherwise be very large)
and the filters are all of size 3 X 3. Max-pooling has implicitly been used
for every down sampling (where the feature map size decreases).
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Figure 3.10: Illustration of a block of the ResNet architecture.

3.6.3 ResNet

The ResNet architecture is the deep CNN architecture with the largest footprint.
The original paper written by Kaiming He, Xiangyu Zhang, Shaoqing Ren and
Jian Sun was ranked the most influential paper of 2019 with its citation score
of 25, 256. The current citation count is (as of November 29. 2021) is 97, 694.
The proposed network architecture forms a chain of convolutional blocks that
are all bypassed with a residual connection. Figure 3.10 shows a block of the
ResNet architecture. In the original paper several versions of different size
were proposed, but they all followed the same pattern of blocks similar to the
illustration. The largest and best performing version of the ResNet was made
up of 152 such blocks.

3.6.4 Vision Transformer (ViT)

Less than a year ago(2020), Alexey Dosovitskiy et al. presented results of
applying a transformer model on images®[24].

The Transformer is a deep neural network design built on attention modules.
The, when presented, radical design outperformed all competition in the field
of natural language processing([76, 23]) and has made its way into neighboring
fields such as audio classification[50] and recently also to image analysis.

Dosovitskiy et al. adapted the initial transformer model to images by first
splitting the input image into patches that were flattened into vectors. The
patch vectors were then simply treated as a sequence of words to be directly
fed into the transformer model. The design and its variations now lead the

6. Others have applied transformers on images before this, but not with such combined
simplicity and impressive results.
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score boards of several benchmark image analysis tasks.

Despite its relatively simple structure, a variation of the ViT (ViT-H/14) is the
currently best rated model on the CIFAR-10 image classification benchmark as
well as being rated number 14 on the ImageNet benchmark.

It should be mentioned that there have been other successful attempts to adapt
transformer models to be used with image data. The currently (November 28.
2021) 4 best performing models on the ImageNet classification benchmark as
well as 6 out of 7 of the top performing models on the CIFAR-10 classification
benchmark are all at least partially based on the Transformer model?. Only a
few of these are ViT models or descendants thereof.

3.6.5 ConvMixer

The ConvMixer is a model design recently proposed in the wake of the very
impressive results shown from the use of the ViT. The authors motivate their
experiments by questioning which part of the ViT design most significantly
caused the model’s success, the transformer architecture or the patch encoding.
If the success of the ViT was mostly a result of the patching one could potentially
improve a CNN based model by adding a patch encoding module.

Thus they design a CNN starting with a convolutional encoding using a large
kernel and an equally large stride (suggested to be 7 X 7). This can be viewed
as reading patch for patch of the input with the same set of encoding filters for
every patch. A visualization of the proposed model design is shown in Figure
3.11.
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Figure 3.11: Model illustration of the ConvMixer model.

Ciy is the number of input channels which in this case was 3, one channel for
each input color (RGB). Cy, is the number of hidden channels that is constant
for all hidden representations between the patch encoding and the final global
average pooling.

7. https://paperswithcode.com/sota/image-classification-on-imagenet
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The hidden ConvMixer Layer contains two parts, both revolving a convolutional
operation. The convolutional operation of the first part is called the depthwise
convolution. It is a convolution where each channel is applied a single-channel
filter separately. The operation thus analyses spatial structures of each hidden
channel without viewing the whole context provided by the other channels.
In the second part of the ConvMixer Layer the context between channels is
in focus rather than the spatial structures. The pointwise convolution consists
of 1 x 1 filters that analyses one pixel at a time, but with all channels of that
pixel.

Following each convolutional operation there is a GELU activation function
and a batch normalization layer (discussed in Section 2.5 and 2.6.3 respec-
tively).

The model was design for classification and surpassed the performance of
ResNet on the ImageNet Classification Benshmark with a Top-1 accuracy of
81.37% despite a lower parameter count8. Despite the measured performance,
the model formulated in code was very short and simple. Although with a some-
what cryptic formulation, the model could be formulated in 4 lines of python
code (imports excluded) using the pytorch framework. Their formulation is
shown below.

def ConvMixer(h, depth, kernel_size=9, patch_size=7, n_classes

=1000) :

Seq, ActBn = nn.Sequential, lambda x: Seq(x, nn.GELU(), nn.
BatchNorm2d (h))

Residual = type( , (Seq,), { : lambda self
, x: self[0](x) + x})

return Seq(ActBn(nn.Conv2d (3, h, patch_size, stride=
patch_size)), *[Seq(Residual (ActBn(nn.Conv2d(h, h,
kernel_size, groups=h, padding= ))) ,ActBn(nn.
Conv2d(h, h, 1))) for i in range(depth)], nn.
AdaptiveAvgPo01l2d ((1,1)), nn.Flatten(), nn.Linear(h,
n_classes))

Note that although the authors compares their model with a ResNet, they
did not ablate their model to see which part of the their design had the
greatest effect on the performance. Despite the somewhat unclear effects
of the patch embedding itself, the ConvMixer model shows convincing results
in classification and should be considered a novel CNN architecture worthy of
further experimenting and research.

8. In open revision, this result was put in question because the chosen training scheme was
known to be suboptimal for the ResNet architecture. However, the authors defend their
result by claiming that no hyperparameter optimization was done with respect to the
ConvMixer either. Thus the comparison is in some sense more fair than using a ResNet
optimized training scheme for comparison.
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As the paper is still under open review, the authors are currently anonymous
and the publication not yet peer reviewed. However, we still find it reasonable
to mention the model here for two reasons. The first is its claimed merit of
81.37% on ImageNet; a very strong result deserving of attention. The second is
that we in this project have experimented with the model and some variations
of it. The authors suggest the model could be adapted to semantic segmentation
and we have taken them up on the challenge.

3.6.6 GooglLeNet/Inception (v1-v4)

GoogLeNet[72, 36, 73, 74], also called the Inception architecture, is a CNN
architecture that bears similarities to the ResNet in that it consists of convolu-
tional modules in a chain. However, it does not use residual connections and the
blocks are build differently. Each block in the GoogLeNet architecture outputs
a concatenations of results of applying different sequences of convolutional
layers on the features from the last layer. The authors argue that the design
can be though of as doing analysis of each set of hidden features at several
scales in every layer. In spite of the reasonable hypothesis observations show
that features in early layers of CNNs (including the Inception v1 architecture)
typically captures small features or details of the input image while later layers
typically capture larger structures [81, 52]. Each new version of the Inception
architecture has competed among state-of-the-art models in several image
analysis benchmark tasks [72, 36, 73, 74].

3.6.7 Other Models

Our list of models is not exclusive and there are several state-of-the-art models
that we have not discussed, but most are modified versions of the models
mentioned (e.g. EfficientNet which uses known models, but determines the
hyper parameters with a search algorithm.).






Semantic Image
Segmentation

The phrase Semantic Image Segmentation is made up of two parts, Image
Segmentation and Semantic. Image segmentation is the task of partitioning an
image into non-overlapping regions and then classify the regions[28, chap. 10]?.
The word Semantic implies that the partitioned regions have meaning that
corresponds to their labelled class.

An illustrated example is shown in Figure 4.1. The image is taken from the
publicly available PASCAL Visual Object Classification (VOC) dataset from 2012,
used for training and evaluating semantic image segmentation models [25, 26].
In the example we can see that most of the colored regions in the image to
the right corresponds to objects in the image to the left s.a. the person, horse
and the dining tables. The black regions represent the background which is
made up of all objects that are not included in the list of classes the dataset has
labels for. Note that the edges are also given a separate class. Some datasets
provide this option for detecting region boundaries independently of the region
classes.

1. Gonzalez et al. [28] imposes the restriction that no two neighboring regions can have the
same class, but this restriction can always be satisfied by merging neighboring regions of
the same class in post processing.

47
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Figure 4.1: Sample from the PASCAL VOC 2012 dataset [25, 26]. Left: The sample
image. Right: The segmentation label.

Upon close inspection one might notice that the details of the labeling is far
from perfect in Figure 4.1. The image was chosen not to be a perfect example
of how semantic segmentation can be done, but rather to indicate the goal of
our efforts while also indicating what makes it hard.

4.1 Applications

Semantic segmentation is a type of image analysis that provides very detailed
information about an image. A fact that generally makes it more desirable than
most other types of image analysis, if it can be provided.

The main reason for the rare use in practice is the costs and efforts needed
to make and validate a successful semantic segmentation model. Following
are applications where semantic segmentation models are either currently
being used or are in the development process and have shown convincing
potential.

Self-driving vehicles need powerful tools to analyze their surroundings to be
able to drive safely. Among other things, they need to be able to distinguish
between objects and accurately determine the boundaries of objects. Thus, the
detail provided by semantic segmentation makes it possible for self-driving
vehicles to navigate complex and crowded scenes [38]2.

In the medical domain there are various uses for semantic segmentation. In

2. Not all self-driving vehicle models rely on semantic segmentation. Some use other types
of information such as object detection with bounding boxes and some bypass the segmen-
tation stage by training end-to-end from sensor inputs to appropriate actions, assuming
the necessary scene and context understanding is implicitly learned by the model.
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medical volumetric images s.a. those taken by a nuclear magnetic resonance
machine, semantic segmentation can be applied to estimate the volume and
location of organs and tumors. Such measures are vital for making the appro-
priate choices such as determining the right dosage of medicines for effective
and accurate medical treatment.

4.2 Evaluation Metrics

Semantic image segmentation is a classification task and in the domain of
classification, a set of predictions can be aggregated into a matrix called a
confusion matrix that categorizes every kind of true and false prediction3. We
will first consider the case of two classes and then generalize to the multiclass
case.

4.2.1 Binary Evaluation Metrics

When considering the case of two classes the resulting confusion matrix might
look something like shown in Table 4.1.

True .. .
predicted Positive Negative
Positive True Positives(TP) False Positives(FP)
Negative False Negatives(FN) True Negatives(TN)

Table 4.1: Confusion matrix for 2 classes.

In itself, the confusion matrix provides valuable information about the clas-
sification performance of a model, but it is still not obvious how to directly
compare two models by use of their confusion matrices. One can immediately
see that a confusion matrix with high values along the diagonal and low values
everywhere else is a sign of good performance. All the measures we shall view
have in common that their best values are reached when the matrix is diagonal.
However, the measures tell different things about the models performance and
carry drawbacks in that there are special cases where the measures value will
seem misleading. Such behavior will be exemplified.

We shall now view a few functions based on the confusion matrix that return
informative performance measures that more easily can be applied to directly

3. To the best of the authors knowledge there is not a consensus on the correct orientation
of the matrix. That is if the rows should represent the true values or the predicted once.
We have here arbitrarily chosen to use the latter.
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compare the performance of models. Note that there is a plethora of such
functions based on the confusion matrix and we will only mention some of
those is frequent use in for the subject of semantic segmentation. Below we have
shown one formulation of the measures Accuracy (Acc), Precision / Positive
Predictive Value (Pre), Recall / Sensitivity (Rec), Dice Similarity Coefficient /
F1-score (Dice), Intersection over Union / Jaccard Index (IoU) and Matthews
Correlation Coefficient (MCC) respectively. Note that there are typically several
names for the same measures stemming from their use in different domains.
Although the MCC has a different range than the rest, higher is better for
all.

TP+TN

Acc = Acc € [0,1] (4.1)
TP+ TN + FP + FN
p L Pre € [0,1] (4.2)
e = —— T .
*TTP+rP eclB il 4
Rec = L Rec € [0,1] (4.3)
“TP+FN >+l 143
Dice 21P Dice € [0,1] (4.4)
1 = 1 .
OTP + FN + FP >+l 144
10U P IoU € [0,1] (4.5)
o= ————— (0] .
TP+ FP + FN ol 45
TPXTN — FP X FN
MCC = MCC € [-1,1]
J(TP+EP)(TP + FN)(IN + FP)(IN + FN)
(4.6)

Some of these measures have clear interpretations. The accuracy shown in
Equation (4.1) is the ratio of the number of correct predictions to the total
number of predictions and can thus be interpreted as an estimate for the
probability of making a correct classification given a random sample. Precision
or positive predictive value formulated in Equation (4.2) can be interpreted
as an estimate for the probability of a sample being positive given that it was
predicted positive (hence the name positive predictive value). In segmentation,
it might help to visualize it as the amount of the model’s prediction that was
actually true. The measure gives information about how much one can actually
trust a positive prediction. Conversely, one can interpret recall as an estimate
for the probability of a random true positive being predicted positive. This
gives information about how many positives will go undetected.

Typically, one has to balance between high values of precision and high values
of recall. Imagine a model that has correctly predicted some samples with
a high degree of certainty, but where for some samples, the model is very
uncertain. Assume these uncertain samples consists of a mix of positives and
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negatives. If the model predicts all the uncertain cases to be positive, the overall
recall becomes higher as fewer positive samples go undetected. However, the
precision decreases because not all those positive predictions are correct. The
ideal balance between precision and recall depends on the application.

IoU can be seen as the probability of a sample being a correct prediction
given that it is either predicted positive or is a true positive or both. It is not as
intuitive a measure as precision and recall, but can be seen as an aggregation of
the two as it takes both false positives and false negatives into account.

The dice score is the harmonic mean of precision and recall and is often viewed
as almost analogous to IoU as it is very similar. However, IoU penalizes false
predictions more aggressively.

To the best of the best of the authors knowledge, MCC does not directly
correspond to some visual or probabilistic property of the data.

All measures mentioned except MCC suffer from being misleading when the
classes are imbalanced (i.e. when the true samples of one class heavily outnum-
ber the samples of the other class). To see an example of this, we will compare
the accuracy of the two confusion matrices below (assume they represent the
testing of two models to compare).

=% 4 B

94 5
9 46 [ ] (4.7)

1 0

Both confusion matrix A and B yield an accuracy of 0.94 which would imply
both models did quite well. Despite the impression, matrix B shows the second
model predicts one class for almost all samples and the only prediction of the
second class is false. The high accuracy score is a consequence of the fact that
the true samples of class 1 are 20 times more numerous than those of class 2.
For reference, note that all measures produce high scores for matrix A, while
the results for B are as follows: Pre = 0.96,Rec = 0.99, Dice = 0.97,IoU =
0.95,MCC = —0.02. Among the measures mentioned, MCC is the only one
that successfully reveals the problem in matrix B. Note an MCC value of 0 is
interpreted as "as good as random".

We have only shown one special case where it is very apparent that not all our
measures of performance always reflect the true performance of a tested model.
Chicco et al. have thoroughly compared MCC to accuracy and Dice score[16]
as well as to other measures that are designed to handle imbalances such as
balanced accuracy, bookmaker informedness and Kohen’s Kappa[17]. Their
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conclusion is that MCC for most cases reflects the true performance of a model
used for binary classification compared to the alternatives and they advise MCC
to be used as the default evaluation metric for binary classification.

4.2.2 Multiclass Evaluation Metrics

All the measures in the last section can be generalized to the multi class case.
But this is more easily done when viewing a confusion matrix as a matrix of
indexed rows and columns rather than just a collection of elements. Let the
confusion matrix be denoted by CM and let CM; ; denote the element of the
confusion matrix on row i and column j starting at the index 1 (e.g. the number
of samples predicted to be of class 1 when they in fact belonged to class 3 is
denoted by CM; 3). Some of the measures mentioned are not class agnostic
in that they have one particular class they focus on rather than all of them
together+. In these cases let the class of interest be denoted by «.

The equations (4.8 - 4.13) are generalizations of the equations (4.1 - 4.6) where
K is the class of main interest and N is the total number of samples used. By
letting the class of interest be k = 1, and the number of classes be K = 2,
there is exact equivalence. But these expressions are directly applicable for an
arbitrary number of classes.

A trace(CM) 4.8)
ccuracy = ——— 4.
Zi,j CMi,j
Precisi CMy x (4.0)
recision = ———— 4.9
CMK’ K
Recall = ————— (4.10)
Zi CMi,K
2CMy
Dice = : (4.11)
Zi CMi,K + Zj CMK,j
CM
IoU = s (4.12)

Zi CMi,K + Z] CMK,j - CMK,K

N trace(CM) — X; ; CM « CM
MCC = . (4.13)

The symbol "+" denotes matrix multiplication and the (-)” denotes the trans-

4. Note that there are at least two ways to generalize these specific expressions, "one vs. all"
or "all vs. all". We have chosen to only view the "one vs. all" perspective here.
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posed.

For a deeper understanding of how MCC was generalizes to the expression
shown in (4.13) view the work of Gorodkin et al. [30].

4.3 Objective Functions

In the first chapter we discovered that the objective function provided feedback
for a neural network to evaluate its predictions. Some are quite general and
can be applied in many different situations, while others are designed to make
networks learn very specific behavior.

Cross Entropy

The most used objective function for classification in general is cross entropy
loss. Cross entropy can be seen as a very strict difference measure between
two probability distributions, and has convenient properties as an error mea-
suring tool comparing predictions to labels. When using cross entropy loss we
generally assume the binary case where the labels are either O or 1 and the
predictions lie in the range (0, 1). With a prediction p and a corresponding
label p, the cross entropy of that prediction is shown below.

CE = - (plog(p) + (1 - p)log(1 - p)) (4.14)

With a small reformulation of the problem, the binary cross entropy shown
above can be adapted to the more general case of several classes. Let one
output feature only represents one class such that a prediction is a vector of
probabilities p = [p1, ..., pn]. The label could be changed to a one-hot vector
(a label of class 2 would be changed to p = [p1, p2, ps,...] = [0,1,0,...]).
The cross entropy of a new vector prediction p with a one-hot vector label p is
thus shown below.

CE=— Z pilog(p:) (4.15)
i=1

Notice that even if the function is a sum, the computed loss value for each
prediction will only contain one part of that sum as p only has a single
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non-zero value. If the prediction is good, i.e. close to 1 for the true class,
the computed value will reside close to 0. If the prediction is bad, i.e. close
to O for the true class, the computed cross entropy will be very large as
lim,_,0 —log(x) = oo.

Generalization of the function to apply to more than one dimension (of several
classes) is direct, in which case the sum in Equation (4.15) sums over dimensions
as well as classes.

A known issue with cross entropy loss function arises when there is class
imbalance, i.e. data points from one class outnumber those of another by a large
margin. Because the normal algorithm thus will distribute equal significance
to every data point, much more learning will occur to improve the networks
predictions of one class, compared to another. One way to remedy the problem
is to introduce weights that can be tuned to adjust for the imbalance. Note that
the weights can also be used to generally prioritize classes if that is desirable.
The formulation with weights is shown below.

Leg=- Z w;p; log(p;) (4.16)

i=1

Cross entropy and its variations are generally considered effective classification
loss functions that work well in symbiosis with the softmax output activa-
tion.

Confusion Matrix based Losses

In Section 4.2, we discussed different functions of the confusion matrix that
could be used to measure the performance of a model. As these are our best
tools for measuring good performance, it seems reasonable to want to utilize
the same functions as objective functions (i.e. that a model could be directly
optimized with respect to the outputs of these functions). But there is one
problem, the confusion matrix is not differentiable. To compute the confusion
matrix, one first has to discretize the predictions to the available classes, a non
differentiable process.

However, one can circumvent this problem by doing an approximation. Rather
than simply counting the number of similar and dissimilar predictions, one
can allow for soft predictions. This can be done by representing the labels as
one-hot vectors (vectors of all zeros except a 1 at the index of the true class)
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and not discretizing the prediction vector. Thus, we may reapply all confusion
matrix based evaluation metrics as objective functions. This has been shown
to work quite well for some cases such as for Dice loss or small variations
of it [64, 71, 37]. This, despite that the gradient properties of the confusion
matrix based objective functions are less ideal than e.g. those of cross entropy
loss.

Dice loss, based on the dice coefficient, is probably the most well known
confusion based loss function [37]. Its relative, Tversky loss is very similar but
adds parameters weighting the false predictions (equivalent to element wise
multiplying the confusion matrix by some weight matrix where the diagonal
of the weight matrix are all ones) which has also shown good results [37]. The
IoU loss is similar to Dice loss, but has steeper gradients for good predictions
and flatter gradients for bad once, which implies it should not work as well as
dice loss while otherwise having very similar properties. However, we do not
know of any experimental results on the use of IoU based loss to confirm or
deny our reason based suspicions of its hypothetical properties.

MCC loss, recently proposed by Kumar Abhishek and Ghassan Hamarneh [1],
was shown to work quite well in comparison to dice loss. They argue that the
fact that MCC takes all elements of the confusion matrix into account and is
class agnostic could be advantageous for the classification problem in general
and especially when the data is unbalanced(the setting of their focus). Note
that Abhishek and Hamarneh did not include any versions of cross entropy loss
in their experiments arguing that they typically do not handle imbalance well.
Noting the informative and well behaving evaluation properties of MCC for both
balanced and imbalanced data, it would be interesting to see how MCC loss
compares to other loss functions in general. If its gradients properties prove to
be manageable by optimizers in general one could imagine MCC loss potentially
becoming a default objective function for the case of classification.

4.4 Models

In this section we will mostly discuss models in broad terms to keep focus on
the major developments and general architectural ideas rather than focussing
on the specific details of each. We consider it a good approach for seeking
broad understanding.

The Fully Convolutional Network is a VGG-16 network without the last fully
connected layer, but with an appended deconvolutional up-sampling at the end
resulting in image predictions rather than vector predictions [47]. The model
varies in a few different forms depending on the number of steps used in the
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up-sampling. Common to all variations was the use of the deconvolution for
learnable non-linear up-scaling. The fully connected layers were also replaced
with 1 X 1 convolutions, a computationally equivalent sibling that will allow
variable input sizes. The model was ground breaking in performance when it
was proposed and has been used as a baseline for many methods since. Note
that the method of adapting an upsampling step at the end of a classification
network has been done for other classification networks and this is referred to
as FCN with a different backbone.

The UNet was proposed for the analysis of medical images [60]. Visually, it looks
like two small VGG networks linked head to tail, where the last one is reversed.
The first half of the network, the encoder, has convolutional blocks ended with
max-pooling layers performing a stepwise down-sampling similar to the VGG.
The other half, the decoder, performs up-sampling in the same number of
steps as the down-sampling. For each up-sampling step of the decoder, a skip
connection (as described in Section 3.5.2) was added from the encoder step
with corresponding resolution. Note that in this case, the motivation of the skip
connections was to let the network more easily analyze the images at different
resolutions.

There have been several versions of a model called Deeplab that has performed
very well [14, 15]. An essential part of their architecture is the atrous spatial
pyramid pooling (ASPP) operation which bears similarities to Inception blocks
but for up-sampling. These models have been used with several base-networks
including the ResNet and VGG.

OCNet [80] and DANet [79] are similar networks to those mentioned, but with
the introduction of attention modules to better learn scene contexts. There
are many other networks and architectures, but the most important general
architectures are to the best of our knowledge mentioned here.

From segmentation models trained with full supervision we will now move to
the harder problem of weak supervision.



Weakly Supervised
Learning

Weakly supervised learning is a branch of deep learning where one assumes
the training data is imperfect. The field is motivated mainly by cost and effort.
When reading the leader boards over the best performing methods on publicly
available data sets?, one might get the impression that modern methods could
solve almost any task. But when comparing publicly available data sets with
how real data collection works, one will quickly realize that it takes a lot of
work to get from a well defined problem, to having data of adequate size and
quality to successfully train and test a model. The cost of data collection is
intuitive, but also well documented by facilitators of labeling of data with the
specific purpose of model development [46].

Imperfection of data labelling is a rather vague description that has been elab-
orated by Zhi-Hua Zhou et al. who divide the subject into 3 categories based on
types of imperfection: incomplete, incomplete and inaccurate supervision[86].

Incomplete labels can be further divided into the two categories active learning
and semi-supervised learning. Active learning is a query-based situation, where
a human is asked by the model to verify or label during training of the model.

This might be an advantage as it lets the network choose the data points that

1. https://paperswithcode.com/sota
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will the most informative to get labels for, but it also makes the process of
labeling more demanding. Semi-supervised learning revolves situations where
only a subset of the given training data is labeled. This is by some considered
the most productive type of weakly supervised learning as it does not rely on a
networks ability to learn important details implicitly [19].

Inexact labels are labels that give less detailed information than the model
is assumed to predict. The potential for the type of models that would solve
this problem is hard to overstate. If the models that perform well with full
supervision today could be trained only on weak labels, they would be much
more accessible and therefore useful for a range of applications. In industry and
medicine the collection of information is vast, but usually with a degree of detail
and consistency s.t. an advanced understanding of context is needed for correct
interpretation (e.g. Notes with subject specific jargon and abbreviations). There
is little information that is detailed enough, consistent enough or stored in a
way that makes it convenient to make adequate labels for a neural network to
replicate the labeling process. In such cases, a good weakly supervised model
might automate processes that today seem repetitive to humans, but demands
too much to automate today. It should also be mentioned that the level of detail
of all kinds of labels for data are limited; either by our absolute performance
as humans, or by the nature of the problem (e.g. maximal resolution of images
taken with optical light which is limited by the wavelength of the light used.). In
such cases, models developed for weak supervision could potentially combine
analysis and synthesis to produce results surpassing assumed performance
boundaries?.

Inaccurate labels are the hardest to tackle as they will occasionally give faulty
information. Neural network models are flexible functions that will be misled
if trained with misleading guidance. Thus most ways to solve the problem of
inaccurate labels are attempts to circumvent the problem by identifying the
data points with faulty labels and remove them [86].

5.1 Weakly Supervised Semantic Segmentation
(WSSS)

In the context of semantic segmentation, the phrase "weakly supervised" usually
only refers to inexact labels such as points [8], scribbles [45], bounding boxes

2. This is not as far fetched as it might seem. Generative adversarial networks (GANs) are
methods that explicitly combine analysis and synthesis to generate samples that seem
convincing, but are not deterministic results based on the provided data.
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[22] or image level labels [4, 43, 35, 56, 42]. The types of labels just listed
was arranged from the most to the least informative. Most methods in this
domain focus on utilizing image level labels, i.e. labels that indicate what is
in an image, but not where. Thus models trained on image level labels will be
the main focus of this section.

The motivation for the development of many of the models we will go though
came from a series of observations about what CNNs learned when trained
for classification. Karen Simonyan, Andrea Vedaldi and Andrew Zisserman[69]
thoroughly inspected the activations of intermediate layers of a VGG network
trained for classification. When images containing an object of a given class was
viewed, the location of that object would show up brightly in the intermediate
activations through the network before being aggregated into a prediction
vector.

Their discovery showed that CNNs propagate information about local features
through deep convolutional layers. Based on their discovery, others have made
attempts to utilize the implicitly learned information for generation of segmen-
tation masks. We will thus dive into a set of segmentation models trained with
image level labels.

5.1.1 Models

In this section we will focus on the most defining models or representative
examples of modern weakly supervised semantic segmentation approaches,
but will not investigate all current models in depth. This was considered a
reasonable approach as it keeps the focus on the common ideas rather than
the idiosyncratic details.

Class Activation Map (CAM)

One of the most influential contributions to the field of weakly supervised
segmentation as well as for many other closely related fields (weakly supervised
object localization and detection) is the Class activation map[85]. The method
uses a regular segmentation model such a FCN and replaces the final softmax
with two layers. The first new layer is a global average pooling layer, where the
predicted segmentation map for each class is aggregated by an average into
an output feature. Following the global average pooling is a fully connected
layer finalized with a softmax activation. The model is trained as any other
classification model. However, after making a prediction of one class, one can
attain a heat map from two layers earlier in the network that reflects relevance
or salience for the prediction. The results of the approach were convincing
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and later methods have shown that the precision of discriminative cues are,
to some degree, reliable although noisy [19, 53, 40, 7]. The model has been
used as a baseline in many weakly supervised experiments because of its
combined simplicity and success; among others [40, 35, 13, 83, 18, 84]. But
while the positional cues typically do cover relevant location, they are vague,
not respective of natural boundaries in the input images and prone to only
focus on the most discriminative features of images.

To compute a CAM, the segmentation maps from one prediction are weighted
according to the weights connecting the global average pooling layer to the
output layer, before being summed together. This can be viewed as a partial back
propagation stopping at the segmentation layer. But viewing the computation
of the CAMs as a partial back-propagations can be generalized to focus on
other layers than just the last. Grad-CAM is a generalized version of CAM that
can produce saliency maps from any convolutional layer [66], based on the
change of perspective. It should be mentioned that only positive contributions
for a class, that is positive gradients that correspond with positive activations,
were used(; the equivalent of using a ReLU activation in both propagation
directions).

To improve CAMs tendency to focus only on the most discriminative parts,
many have tried to hide selected features during training to force the network
to focus on larger parts more of the class objects. Junsuk Choe et al. have
investigated such attempts for the task of object localization, i.e. finding the
tightest bounding box around an image class object (assuming only one object
of any class in each image). This is not the same task, but it is a task that
struggles with the same issues of proposals not covering the objects of interest.
The methods analyzed covered a range of attempts from randomly selecting
patches of the input images to hide [70], to specifically hiding the parts that
were considered salient by the network[83]. The conclusion of Choe et al. was
that carefully thersholded CAMs will usually produce results at least as good
as any of the compared erasing methods [49, 9, 70, 83, 84]. Note that the
thresholded CAMs were used to find bounding boxes from which the results
were evaluated. However, the similar feature dropout method have also been
used for segmentation [7] with results that support the conclusion of Choe et al.
as they seem to produce very similar results for segmentation as CAM.

Seed, Expand and Constrain (SEC)

Seed, Expand and Constrain is a model that was proposed by Alexander
Kolesnikov and Christoph H. Lampert in an attempt to address mainly two
problems of the CAM method [40]. First, the tendency for CAM to only focus
on the most discriminative parts of objects rather than the full objects. Second,
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the tendency of CAM predictions to not respect the boundaries of objects in the
input image. The method is a segmentation CNN model trained with a three
part loss; a seeding loss, an expansion loss and a constraining loss. The seeding
loss addresses the location of object predictions and the expansion loss tries
to improve the prediction sizes to better match those of objects in the input
images. Finally, the constraining loss adapts the network to make predictions
that better respects natural boundaries in the input images.

The seeding loss that is only concerned with a small part of the predicted output
image. It begins with a set of proposed seeding segmentation maps generated
by thresholding heat maps found with a visual drop out method with results
equivalent to those of CAM[7]. These are segmentation maps, but with class
labels only covering a very small portion of the objects. The seeding loss is used
to train a CNN in a fully supervised manner to make predictions that cover the
given seeds with the right class. The loss encourages segmentation maps that
cover the given seeds, but since we expect the segmentation regions should be
larger than the seeds, the loss does not penalize false positives.

The next part of the loss is the expansion loss. It is very similar to CAM by
introducing a global pooling layers ending in a cross entropy classification
loss. But there are a few differences. In experiments, the authors observed that
the pooling method used in CAM changes the size of the predicted regions.
Global max pooling only focuses on the highest prediction activation from
each segmentation map during training which results in smaller regions of
high activation; thus causing segmentation maps that are small (similar to the
proposals used in the seeding loss). Using global mean pooling on results in
the opposite problem since every activation aggregated into the pooling layer
counts equally for the prediction; thus overestimating the size of objects3. The
proposed solution is a global weighted rank pooling(GWRP) layer which ranks
the activated pixel class scores based on activation before aggregating them
into a weighted sum. The pooling strategy can be viewed as a generalization
of both global max pooling and global average pooling. The way to distribute
weight on pixels based on the ranks could thus be adjusted to control the size
of the segmentation predictions.

The last part of the loss function is the constraining loss. It was designed to
penalize bad correspondence between predicted segmentation maps and the
spatial and colory information in the image. This was done by using a fully
connected CRF on a predicted segmentation maps resulting in an image used
as a pseudo label. The KL-divergence was then computed between the CRF

3. This depends on the choice of thresholding value for turning the activation maps into
segmentation maps as pointed out by Choe et al. [19]. The subject was however not
thoroughly investigated at the time (to the authors knowledge).
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input and output to form the constraining loss.

SEC is today not among the best models, but it applied many important concepts
that are significant parts of better models. Growing small, reliable regions to bet-
ter cover the objects and using pseudo labels have lead to many improvements
in the field.

Following the SEC are two similar methods that have improved upon the
design. Deep Seeded Region Growing (DSRG) proposed by Zilong Huang et
al. is very similar to SEC, but with one main difference. The region growing
is done with an older algorithm made for that purpose called Seeded Region
Growing (SRG) [2]. The CRF loss is in large part the same, and the seeds are
found by thresholding CAM predictions.

Related Approaches

Other methods such as AffinityNet [48] and IRNet [3] also descend from SEC,
but have further improved on the method for region growing and boundary
constraining. AffinityNet uses the L1 difference scores between neighboring
pixels of an input image to estimate pixel affinities. These are used as transition
probabilities in a random walk process starting with the seeds. The process can
be compared to an MCMC method for estimating a posterior distribution based
on a prior computed from the natural structures in the input image.

A third descendant of SEC is the Saliency and Segmentation Network (SSNet)
[82]. It combines the seed making network and the segmentation network
trained with the pseudo labels such that the seeds might improve during
training.

Different Approaches

Expectation maximization(EM) is a different type of method than those de-
scribed above. Assuming the segmentation maps are latent variables of the
model, a first segmentation prediction can serve as the expected value of those
latent variables. The expected values are then used in a maximization step
performed by training the model in a fully supervised manner with the earlier
predictions as labels, or pseudo labels. The two steps are then alternatingly
repeated until convergence. Pathak et al. have used this method even without
the seeds, by only imposing class specific biases and object size priors during
training [55].

Multiple instance learning (MIL) refers to cases where one starts with clusters
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(called bags) of data points (called words), where the clusters are known to
contain data points of a certain class, but without the knowledge of which or
how many of the data points belong to the class. The task is to assign classes
to the data points. In context of weakly supervised segmentation the bags are
images and the pixels words. Methods such as [57] and [58] use an alternating
method similar to approaches presented as EM. The similarity has also been
noted earlier by [55].

5.1.2 Juxtaposed Objectives

When observing that locations of objects seem to be implicitly learned in models
trained for classification, attempts to exploit this property for localization,
detection or segmentation seems a natural progression. However, one must be
careful when assessing what situations the property of interest applies to as
any objective function in WSSS cannot really measure what we desire.

Not all configurations of a network that produces accurate classifications must
necessarily produce accurate localization or segmentation masks and vice versa.
There is clearly some overlap shown in the observations of Simonyan et al..
However, as noted by Choe Junsuk et al.[19] the problem we are trying to solve
will in many cases be ill-posed because of the nature of the data“.

A supervised model tries to associate features of given inputs with provided
labels. If the model is perfect, it will pick up the strongest associations and
model those. The features of the inputs we intend to be informative might in
some cases provide less conclusive or more complicated evidence to predict
the correct labels than some alternative features. In such cases, even the
perfect model will thus never reach a desired configuration in the sense that
even though measured performance is high, the model does in fact model the
system we are interested in well.

As an example, imagine a case where we want to train a network to classify if a
given image would contain a dog or a cat. The training set in this hypothetical
project are images which happen to be framed. Images with dogs are framed
with blue, those with cats with red. To determine the connection between
the images and the animals, the model might try to learn general features in
the images such as the shape of the ears or nose of the animals. However, a
potentially much easier alternative would be to learn to look at the colored
frames. If we attempted to make segmentation masks of the activations inside

4. Note that the problem assessed by Choe Junsuk et al. was weakly supervised object
localization. But the argument for ill-posedness applies as much for the case of segmentation
as for localization.
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our hypothetical network we would expect to encounter high activation regions
around the features of the input image most significant for the classification
predictions, i.e. the frames. Thus we could have a network that performed very
well according to our classification measures(i.e. the prediction of the correct
season), but which would completely fail on our segmentation measure(i.e.
having high activations near the animals on the images). In this case the
informativeness of the frames are obvious, but such shortcuts to good answers
for the objective function might not be so obvious in all cases.

It should be mentioned that the problem here is a common one in deep
learning in general and it is strongly related to the topics of intepretability and
explainability of deep learning models. Understanding what models actually
learn, why they make the decisions they make and how certain they can be
about their predictions are important for reliability. But the issue is particularly
pronounced in WSL as the lack of strong labels force us to train with an
objective that is further away from our true goal.

The models discussed must therefore be used with caution and must be well
tested on data that well represents the distribution of the data the model will
be used on in practice.



Method

We propose a novel semantic segmentation framework entitled ConvMixerSeg
and a new training scheme for weakly supervised semantic segmentation using
image level labels. The architecture of the proposed model is based on the
ConvMixer classification model discussed in Section 3.6.5, and is motivated by
the ConvMixer’s high performance with few parameters. To the best of our
knowledge, this is the first ConvMixer-based architecture for weakly supervised
semantic segmentation. Moreover, we propose a new weakly supervised CAM
method that does not introduce additional parameters to the segmentation
framework while also mitigating the problem of part domination and prediction
noise.

6.1 ConvMixerSeg

The simplicity and effectiveness of the ConvMixer model discussed in Section
3.6.5 implies the architecture might have merit in neighboring fields. To the
best of our knowledge, neither the patch encoding nor the alternating structure
of the hidden layers in the ConvMixer have previously been used for semantic
segmentation. The results presented in the original paper of the ConvMixer
could imply that the deep architecture learns more with fewer parameters
compared to previous state-of-the-art architectures like the CNN based ResNet
[33] as well as recent transformer based models like DeiT [75]. The results
motivates further development and investigation of the potential of the ar-
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chitecture. Thus we propose a redevelopment of the ConvMixer model and
present with that a novel architecture for semantic segmentation.

View Figure 6.1 for an illustration of the model. We have adopted the patch
encoding with both kernel size and stride of 7 X 7 and the hidden structure
of alternating depthwise and pointwise convolutional blocks!. Recall that we
in Section 3.5.1 Surpassing each of the convolutional blocks we have added a
residual connection.
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Figure 6.1: Illustration of the proposed segmentation model design. The input is an
h X w image with Cj, color channels. The output has the same spatial
dimensions as the input, but with a segmentation map for each data
class. In the illustration the nearest layer represents liver and the other
background.

The upsampling step (shown as a gray block on the right side of Figure 6.1) is
shown in more detail in Figure 6.2. The feature maps of shape Cy, X h/p X w/p
are the outputs of the last ConvMixerSeg layer. The transposed convolutional
block maps the feature maps to the resolution of the inputs but with a channel
count of C; where t marks that the channel count is a transitional step from
the depth of the hidden layers to the very few channels in the output. We then
apply an unactivated convolutional layer with filter size 1 X 1 before applying
Gaussian smoothing which finally outputs the prediction feature maps for each
class.

1. "Block" is here used in reference to the convolutional operation in combination with the
following activation layer and batch normalization layer.
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Figure 6.2: Illustration of the upsampling of the proposed segmentation model. Output
feature maps of the last ConvMixerSeg layer are processed through the
upsampling to return the final segmentation predictions for each channel
(here shown for the classes "background" and "liver").

6.1.1 Symmetric Patch Encoding and Decoding

The first step of the upsampling is inspired by the upsampling structure used
by Long et al. in the Fully Convolutional Network [47], as well as by many
later segmentation models. It performs an upsampling step, but based on
learnable parameters that can model a more complex upsampling scheme
compared to non-learable upsampling methods such as bilinear interpolation.
We use a patch size and stride equal to that of the patch encoding motivated
by symmetry. The original idea that led to the discovery of the CAM method
was that spatial information was seen to be propagated through a CNN, i.e.
contents at a location in the inputs to the network were seen to correspond
with feature activations at the same location later in the network. Thus for
best correspondence between input and output features based on the assumed
locational correspondence in the hidden layers, we find it reasonable to try an
upsampling or patch decoding that is symmetric with the patch encoding.

6.1.2 CAM Modification

In this section we will address the transition from a (C; X h X w) feature
map to the final segmentation prediction output shown in Figure 6.2. The
motivation for the proposed setup is two fold. First, the proposed design allows
a segmentation model to be trained with image level labels without adding
learnable parameters. Second, by using Gaussian smoothing to enforce loca-
tional correlation in the final feature map, we hypothesize the problem of part
domination is mitigated while also reducing noise in prediction segmentation
maps.

To explain the setup, we will first investigate the original CAM method and
the proposed change a little more deeply. View Figure 6.3 where we assume
x is the unactivated output feature map of a backbone segmentation network.
The original CAM model is shown on the left and the modification is shown on
the right.
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Figure 6.3: Illustration of the original CAM model vs. an alternative structure to train
a segmentation model with weak supervision using a classification loss.
illustrated the structure of the final layers in the original CAM model.
illustrated the alternative.

Junsuk Choe et al. showed that the CAMy architecture shown on the right is
computationally equivalent to the CAM,, on the left of the figure when using
global average pooling (GAP) as pooling strategy [19].

This lead us to the idea that the convolutional layers before the segmentation
maps can be defined as part of the base model to be extended by the CAM-
adaptation. An observation that naturally implies a simplifying modification to
the CAM method is to have a base segmentation model with a global pooling
layer directly followed by a softmax activation. With such a model, each channel
in the segmentation map would represent positional information about their
corresponding output class predictions without needing further weighting or
aggregation. This architecture allows us to apply a weakly supervised training
scheme using image level labels on a model designed for fully supervised
semantic segmentation without addition of parameters as long as the final
layer in the segmentation model is a 1 X 1 convolution.

This stands in contrast to the original CAM method, where a segmentation
model is modified to be trained with classification labels by adding a global
pooling layer followed by a fully connected layer. The fully connected layer adds
parameters that are not part of the original segmentation model, thus creating
a change in architectural design. This architectural design difference thus
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introduces an additional difference to take into account besides the training
information itself when comparing the weakly supervised model to its fully
supervised counter part.

Although the architectures are computationally equivalent when using GAP as
shown by Choe et al. [19], this is not the case when using GMP. We show the
computational difference below where y,, , and y,, g denote the class prediction
for the p-th class of model a and f respectively.

Ch

Ypa = Z AkWkp Yp.p = GMP(bijp)
k=1 ’
Ch

Ypa = Z GMP(xijk)Wkp Yp.p = ma,x(bijp)
= >

Ch Cp
yp,a = Z H}%X(lek)Wkp # yp,ﬁ = H}E}X (Z xl]kwkp) > P = 1, L) Cout

k=1 k=1
(6.1)

Note that C, = 100 and C,,; = 2 in our experiments and that generally one
would typically expect Cp, > C,y; as Cj, represents the knowledge capacity
of the hidden layers, while C,,; are only the number of output classes. The
analysis of the creators of the original CAM method, which we will refer to
as CAM,, from here on, was that the final hidden feature map (here of shape
Cp X h X w) would learn to view isolated objects in the image which would be
aggregated in a weighted sum in the final fully connected layer producing the
class prediction. Using max pooling on each of the hidden feature maps with
Cy, channels would pick out the most confident pixel for each hidden channel
producing a confidence score for each of the assumed C}, objects or regions of
significance in the image. A vector of these confidence scores would then be
aggregated in a weighted sum for each class prediction to decide which object
or region of significance contributed positively and negatively for each class
prediction.

The modified architecture which we denote CAMy does not use the max
operation before on the final segmentation feature map of C,,,; channels (here
2). Therefore, only one pixel from each channel in the final feature map will be
used for the class prediction. By inspection of the computation, that would cause
each back propagation step to provide non-zeros gradients fora C, X 1 X 1
vector of values in the last hidden feature map corresponding to the pixel
position of highest confidence in the final segmentation feature map.
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We hypothesize that this could cause easier training by encouraging even more
locational correlation between class predictions and the objects or scalient
features at that location in the input image.

However, note that our modification puts even more weight on the activation
scores at single locations than using the CAM, method with GMP. Thus we
hypothesize the problem of part domination will be even more severe for CAMg
than for CAM,, and we also hypothesize the predictions will be quite noisy as
only one pixel location in both the final segmentation feature map and the
final hidden layer feature map will get direct feed back by the loss function
from each image prediction.

6.1.3 Neighborhood Correlation Enforcement

To address the problems of part domination and noisy predictions, we propose
to apply a Gaussian smoothing layer at the end of the final segmentation feature
map before aggregation with GMP.

Kolesnikov et al. [40] wanted to improve upon the results of CAM,, by finding
a pooling strategy that would produce appropriately sized objects in the final
segmentation predictions [85]. As discussed in Section 5.1.1, they proposed
global weighted rank pooling (GWRP). Their contribution was an attempt to
find a sweet spot between the overestimation of object sizes when using GAP
and underestimation when using GMP. One can visualize the difference as an
adjustment of how many pixel locations in the final feature maps can have a
say in the classification prediction and will therefore also get feed back for a
prediction. When all pixels are equally weighted (GAP), a lot of pixels need
high activations for a positive class prediction. GWRP caused a few more pixels
for each feature map to have a significant influence on the final feature map
compared to GMP. However, their method did not take location correlation
into account. As an alternative attempt to find such a sweet spot, we propose
the addition of the Gaussian smoothing layer to the CAM feature maps. The
smoothing imposes a greater correlation between neighboring pixels both
during forward and backward propagation.

With the CAMg scheme explained in Section 6.1.2, the addition of a Gaussian
smoothing layer would make the gradients flow through the most confidently
predicted neighborhood (not pixel) for each class for each training image. This
could considerably mitigate part domination as the gradients flowing back
from one predicted pixel in the final segmentation map is distributed to a full
neighborhood of locations in all channels of the final hidden feature map.

Additionally, the Gaussian smoothing moderates extreme pixel values in the
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final segmentation feature map by a weighted sum of the neighborhood which
should reduce the noise in the final predictions. Also note that this is different
from adding smoothing only during testing as the network will be trained
to adjust for the introduced error of smoothing which will be particularly
pronounced around sharp corners and regions of detail. To be sure, such
adjustments have limits as the smoothing does prevent any strong contrast
in small neighborhoods despite anything the network can do. However, the
error introduced by the smoothing is very small in comparison to the error
caused by part domination with our parameter choice for the smoothing kernel
(described in the following chapter).

In the next chapter we describe how we have designed our experiments to
address the hypotheses posed.






Experimental Setup

In this section we describe how we trained and tested a set of models to test
the hypotheses posed in Chapter 6. The data set used in these experiments is
the Liver Tumor Segmentation Benchmark data set [11] while we only have
had the computational power to use a small portion of it. The setup is designed
with informativeness in mind and we use a range of metrics to that end while
following the advice of Davide Chicco et al. [16, 17] to make compare overall
performance of binary classification with the use of Matthews Correlation
Coefficient (MCC) discussed in Section 4.2.

In the fully supervised setting, we compare our proposed ConvMixerSeg model
described in Chapter 6 to a Fully Convolutional Network described in Chapter
?? with a ResNet-50 backbone!, which we refer to as FCN-ResNet-50. The
FCN was considered a good candidate for a comparison as it has been one of
the most influential segmentation models in the last 5 years with a current
cite count of more than 27000. The ResNet-50 backbone was chosen as the
ResNet based FCN has been shown to outperform the original FCN for semantic
segmentation [78]. We thus find the FCN-ResNet-50 a strong candidate both
for its footprint and performance while also representing a classical CNN
framework. We hypothesize that the ConvMixerSeg network will train faster
and produce better overall performance than the FCN-ResNet-50.

1. The FCN model used in our experiments was accessed through pytorch and is de-
scribed in the documentation: https://pytorch.org/hub/pytorch_vision_fcn_
resnet101/
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For the case of weakly supervised semantic segmentation, we have several
hypotheses. First, that the overall performance of the proposed CAMy method
in combination with Gaussian smoothing will outperform the CAM,, method
using the same ConvMixerSeg backbone. Second, that the problem of part
domination will be more pronounced in our CAMg model than the CAM,
model when not using the Gaussian smoothing layer. Third, that the Gaussian
smoothing will help specifically for the issue of part domination by on average
being more sensitive and predicting larger object sizes. Forth and finally, we
hypothesize that both the proposed addition of a residual connection and the
use of intensity augmentation during training improves performance.

Note that the order of hypotheses have changed as they are now arranged in
an order corresponding to how we have run our experiments.

To get results that address our hypotheses, we first evaluate how the proposed
architecture performs against the FCN-ResNet-50 in the fully supervised setting.
Then we investigate its performance in the weakly supervised setting and
compare it to the original CAM design. Finally an ablation study is performed to
investigate significance of the effect of each discussed model component.

7.1 Comparisons

In the fully supervised setting, we trained both the proposed ConvMixerSeg
and an FCN-ResNet-50 with weighted cross entropy loss (CE-loss) where the
weights were the inverse frequency of pixels of each class in the training
data.

For the case of weak supervision we first compare the CAM,, to our proposed
CAMp method, both described in detail in Section 6. After some optimization of
the threshold value to convert heat maps into segmentation maps for the CAM,,
method, we settled on 0.5. Note that according to Choe et al. this optimization
step could potentially make a significant difference which is why we attempt
to address it here [19]. The optimization was done using a small subset of the
training data. For Both CAM methods, we use global max pooling (GMP) as
pooling strategy and binary cross entropy loss (BCE-loss) as the classification
objective function.
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7.2 Ablation Study

We investigate the effects of each part of the proposed CAMy method by
comparing our model to alternatives where portions of the design were removed.
The baseline model was the ConvMixerSeg trained with CAMg using GMP and
trained with the use of intensity augmentation (ConvMixerSeg-CAMg). The
alternatives are listed below.

* Baseline-GS: The Baseline less the Gaussian smoothing layer.

* Baseline-GS+BU: The Baseline less the Gaussian smoothing layer where
the transposed convolutional upsampling layer is replaced with bilinear
upsampling.

* Baseline-Res: Baseline less the added residual connection over the point-
wise convolutional block in the hidden ConvMixerSeg layers.

* Baseline-Aug: The Baseline model less the intensity augmentation.

Note that we have added an experiment that might seem surprising. Baseline-
GS+BInrUp is a design to simply make sure our reasoning makes sense. A
worry was posed by a colleague during this project that following a learn-
able upsampling with Gaussian smoothing might negate the effects of having
learnable upsampling at all. Therefore we also experiment with an alternative
where we replace the upsampling and Gaussian smoothing layers with a single
non-learnable bilinear upsampling layer.

For each alternative, we trained at least 40 models independently to get repre-
sentative estimates. For each, we perform a Mood’s median test to estimate the
probably of the median performance. We initially use the Mood’s test rather
than the t-test as it is a non-parametric test that does not assume normally
distributed groups. However, as it is not a very powerful test when groups can
be assumed to be normally distributed, we will also use the t-test to compare
means in a few cases when it is reasonable to assume normality.

7.3 Data

All experiments were conducted on the Liver Tumor Segmentation benchmark
data set (LiTS) [20]. The data set consists of 131 volumetric computed tomog-
raphy (CT) images taken at a variety of different institutions with different
machines (including Ludwig Maxmilian University of Munich, Radboud Uni-
versity Medical Center of Nijmegen, Poly-technique & CHUM Research Center
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Montral, Tel Aviv University, Sheba Medical Center and IRCAD Institute Stras-
bourg and Hebrew University of Jerusalem). The resolution of all are 512X 512
in the horizontal/axial plane while the resolution in the vertical direction varies
between 74 and 987 with a mean of approximately 450. The resolution in the
vertical direction is also affected by the fact that the distance between voxels
(3 dimentional pixels) also varies. We have in all our experiments chosen to
only focus on segmentation on liver and we leave lesion segmentation to future
work. The liver lesion pixels were thus in our experiments labels as part of the
liver.

Because of computational limitations we divide every volumetric image into
slices in the vertical direction and use only a subset of those slices for both
training and testing. To get realistic estimations of performance of unseen
data, we divide the volumetric images into groups used for training, validation
and testing before dividing them up into slices. When divided into slices, we
randomly choose a subset of slices from each volumetric image. Each subset
was designed such that the number of slices containing liver is equal to the
number containing only background. Unless stated otherwise this number
was set to 10 for each volume which produced a total of 2 - 10 - 131 = 2620
2D images. All experiments were run with the same proportions of training,
validation and testing data of 0.6, 0.2 and 0.2 respectively. (i.e. when training
withe the 2620 2D images, 1572 were used for training, 524 for validation and
524 for testing).

As our interest was mainly in the properties of the model architectures, we
settled for the simple preprocessing of mapping the pixel intensities to the
range [—1,1].

7.4 Optimization, Augmentation and
Hyperparameters

For all experiments we use the Adam optimizer with the default f; = 0.9, 5, =
0.999). The learning rate was set to 0.01 for all experiments with the ConvMix-
erSeg model and to 0.001 for the experiments with the FCN based on a few
initial experiments on a small portion of the training data. (Note that this ever
before viewing the results implies the ConvMixerSeg trains more easily).

Intensity augmentation was applied during training for most models. We used
a gamma transformation with randomly chosen gamma values in the range
(0.5, 1.5) which was applied to all inputs during training. The effects of applying
the augmentation was investigated in the ablation study.
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For hyperparameters in the ConvMixerSeg architecture, we have used a depth
of 20 ConvMixerSeg layers, all with a channel number of C;, = 256. The
transition channel count in the upsampling was set to C; = 100.

For the Gaussian smoothing, we use the parameters ¢ = 7 which defined the
spread and a kernel size of 50 X 50.

7.5 Evaluation

For the quantitative evaluation, several measures have been used. As dis-
cussed in Section 4.2, different measures provide different types of information
and some are more prone to being misinterpreted when the data in imbal-
anced.

In our experiments, we have chosen to follow the advice of Davide Chicco and
Giuseppe Jurman in that we use Metthews correlation coefficient (MCC) as our
main source of evidence for evaluating and comparing models [16, 17]. However,
we include other measures for reference and for deeper interpretations as
e.g. the recall score contributes with additional information related to the
discussed problem of part domination, that the MCC does not provide. Thus,
for segmentation, we present the result of all methods using their mean score
of Accuracy (Acc), Matthews Correlation Coefficient (MCC), intersection over
union (IoU), precision (Pre) and recall (Rec) as quantitative measures. The
precision, recall and intersection over union scores were only calculated for the
liver class while the accuracy and the MCC scores were global estimates. For
every measure we provide estimates of mean, standard deviation and median
to aid in analyzing the distributions of each measure.

For classification performance of the weakly supervised methods, we use the
same metrics. Estimators for classification scores are marked with a leading "Cls-
" to clearly distinguish classification and segmentation results. On occasion we
also include maximum values or show full histograms for additional information
and analysis.

A note of caution: The qualitative evaluation of the experiments should be
considered less informative and more prone to erroneous conclusions than
the quantitative analysis. This is because we do not have the capacity to view
enough samples from each independently trained model for every configuration,
to be sure our analyses are actually representative. However, we still deem it
valuable to attempt to view as many examples as possible and analyze them in
context of measured results to see if we can make sense of the numbers.
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7.6 Uncertainty of Estimates

Despite powerful initialization schemes such as those discussed in Section 2.6,
random variations in initialization converges on different solutions. It is thus
hard to know if a single result reflects what one can expect to achieve upon
reproducing the experiment with a different random seed.

In an attempt to provide as informative results as possible about the distribution
of potential results rather than a single sample, we run every experiment at least
25 times with different random seeds and give standard deviation estimates
for quantitative estimates.



Results and Discussion

In this section we analyze the measured semantic segmentation performance of
the proposed ConvMixerSeg model and compare it to an FCN with a ResNet-50
backbone. For the weakly supervised case, we compare our proposed develop-
ment of CAM to the original before investigating the effects of model compo-
nents more thoroughly with an ablation study. We inquire relevant comparisons
using statistical tests and evaluate the experimental results both quantitatively
and qualitatively. Finally we give a summary to address the hypotheses posed
in Chapter 6. Results of all experiments are shown in extended form in the
Appendix 10.1.

8.1 Fully supervised

In this section we show our investigation of the proposed model as well as
the model chosen for comparison before using statistical tools to arrive at a
conclusion about which model performs best. This is done by comparing the
group of trained models using the ConvMixerSeg model and the group using
the FCN-ResNet-50 model. We conclude our results based on estimates of most
representative MCC scores from each group, either the mean or the median
depending on the skewness of group distributions.
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8.1.1 ConvMixerSeg trained with CE-loss

The segmentation performance of the ConvMixerSeg trained with CE-loss is
quantitatively summarized in Table 10.1.

Table 8.1: Measured performance of the ConvMixerSeg model trained with CE-loss
for 25 epochs. Each element is given on the format: mean + std(median).

Training Validation Testing
Acc  0.981 +0.098(0.995) 0.897 +0.223(0.975) 0.893 + 0.233(0.983)
MCC 0.906 +0.126(0.927) 0.669 + 0.251(0.756) 0.682 + 0.27(0.782)
IoU  0.842+0.118(0.864) 0.537 +0.236(0.593) 0.562 + 0.255(0.644)
Prec 0.845+0.118(0.867) 0.556 + 0.247(0.61)  0.582 + 0.266(0.694)
Rec  0.992 +0.03(0.996)  0.939 +0.043(0.953) 0.94 + 0.049(0.959)

There is a drop in the mean scores going from the training data, to the validation
and testing data. This is a sign of overfitting, but the initial impression may
be somewhat incomplete when we see the means in context of the very high
spread of the data as well as the large difference between the means and
medians. The recall varies much less than the rest of the metrics, but standard
deviations of 3 — 5% are still quite high considering that state-of-the-art models
often are separated by less than two percentage points.

Overall, the values imply negatively skewed distributions. If the scores were
all normally distributed, we would expect that ~ (95/2)% = 47.5% of the
samples would lie within two standard deviations above the mean values and
the means and medians would have been very similar. However, the median
value is larger then the mean for all metrics measured for all portions of data
and for some, by > 10 percentage points (e.g. Validation MCC). Observe also
that all of the mean scores in the table would become greater than 1 (the range
limit) if they were added two standard deviations, and some of them by adding
only one standard deviation. We thus induce that the distributions of all scores
in the table are negatively skewed, some largely so.

Note that the accuracy here is quite misleading as the background pixels
outnumber the liver pixels by more than an order of magnitude.

To address the question of overfitting more closely, view Figure 8.1 which shows
a histogram of the MCC scores. The colors correspond with the portion of the
data analyzed; blue for training data, orange for validation data and red for
testing data.

The histogram shows that almost all models score in the upper 80-s or lower
90-s on the training data (The corresponding IoU scores are in the middle
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Figure 8.1: Histogram of the measured MCC score for ConvMixerSeg models trained
with CE-loss. The performance on the training, validation and testing data
are shown in blue, orange and red respectively.

80-s for all). It also shows that approximately one third of the models scored
comparably well or only slightly lower on the testing data. The best model had
an MCC score of 94%, 91% and 92% on the training, validation and testing
data respectively (88%, 84% and 85% IoU).

Note the small blue bar very close to 0 in the histogram. Among all the models
trained in this setting, approximately 2% seems to not have trained at all with
an MCC score implying predictions were as good as random on the training
setl. We have here only shown the histogram of MCC scores, but the histograms
of IoU and precision scores look similar.

Note that even though the generalization of the models vary greatly, most
models have a high recall value with only a few exceptions being lower than
90%. The implication is that the models typically lets few true liver pixels go
undetected. It also means that the majority of the errors made my the models
are false predictions of liver when the true class is background. A description
that seems to describe examples images well in general. See a few examples
from the testing data in Figure 8.2. The first row are the input images, the
second and third rows are the corresponding ground truths and prediction
heat maps2 respectively.

1. Recall that MCC ranges from —1 to 1 where 0 is as good as random.
2. We choose to show heat maps rather than segmentation predictions as they are somewhat
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Figure 8.2: Example images from the testing data shown in (a) with corresponding
labels or ground truths shown in (b) and heat map predictions of arbitrarily
picket ConvMixerSeg models trained with CE-loss in (c).

Some of the predictions are very good such as those in the second, third and
sixth column. This represents well the best third of the models that measurably
does well on all portions of the data. The first, fifth and seventh columns show
predictions that cover the ground truth well, but are somewhat over sensitive
as we would expect with the observed recall scores. Column four and eight
show models that perform very badly.

To summarize the performance of the ConvMixerSeg model trained with CE-
loss, almost all models successfully train to do correct predictions on the
training set, most generalize to some degree to unseen data, while about a
third do comparatively well on training, validation and testing data. Overall,
the measured performance is a mean MCC score of 0.694 + 0.271 and IoU
score of 0.694 + 0.271 and respective median scores of 0.782 and 0.644.

8.1.2 FCN trained with CE-loss

The segmentation performance of the FCN with a ResNet-50 backbone is
quantitatively summarized in Table 10.2.

We will point out three things that are strikingly different here compared to the
results of the ConvMixerSeg. First, the larger similarity between the training

more informative as intensity can be interpreted as the level of confidence by the network.
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Table 8.2: Measured performance of the FCN-ResNet-50 model trained with CE-loss for
25 epochs (marked with R). Each element is given on the format: mean +
std(median). We have here also repeated the table for the ConvMixerSeg
model for reference (marked with C). The highest mean test performances
are shown in bold.

Training Validation Testing
Acc  0.962 +0.01(0.96) 0.936 £ 0.129(0.964)  0.939 + 0.129(0.965)
MCC  0.656 + 0.072(0.649) 0.637 + 0.147(0.677)  0.655 + 0.146(0.686)
R IoU  0.464 +0.094(0.45)  0.459 +0.149(0.49)  0.48 +0.152(0.504)
Prec  0.472 + 0.094(0.458) 0.492 +0.173(0.504) 0.508 + 0.174(0.515)
Rec  0.96+0.013(0.959)  0.923 +0.123(0.962) 0.934 + 0.098(0.966)
Acc  0.981+0.098(0.995) 0.897 +0.223(0.975) 0.893 + 0.233(0.983)
MCC 0.906 + 0.126(0.927) 0.669 + 0.251(0.756) 0.682 + 0.27(0.782)
C IoU 0.842+0.118(0.864) 0.537+0.236(0.593) 0.562 + 0.255(0.644)
Prec 0.845+0.118(0.867) 0.556 + 0.247(0.61) 0.582 + 0.266(0.694)
Rec  0.992 +0.03(0.996)  0.939 + 0.043(0.953) 0.94 + 0.049(0.959)

performance and the validation and testing performance. This could imply
that the model is more robust, but it might also be the result of the ResNet
training slower on average. Second, the mean scores are overall lower than
for the ConvMixerSeg model with one exception. The test accuracy is higher,
but as discussed in Section 4.2, the accuracy metric is misguiding when the
data is imbalanced. Taking all measures into account, the high accuracy is a
symptom of severe undersegmentation of the liver. We will make appropriate
comparisons of distribution representative estimates in the next section. Third,
notice the much more similar values between means and medians. These
distributions are not as skewed as those for the ConvMixerSeg.

The mentioned observations are supported by the histogram of the MCC scores
for the FCN in Figure 8.3.

The distribution of the MCC scores on the training data are more spread out for
the FCN model than for the ConvMixerSeg. The highest scoring models lie in
the lower 80-s. Compared to the ConvMixerSeg, the spread in performance is
generally smaller for the validation and testing data, but wider for the training
data. Approximately 60% of the models score equal or better on the testing
data than the training data indicating very good generalization.

8.1.3 Comparison

To find out if there is a significant difference in means, we could apply a
student t-test. However, the t-test assumes normality in each group which we
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MCC of FCN-ResNet-50 trained with CE-loss
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Figure 8.3: Histogram of measured MCC score for FCN-ResNet-50 models trained with
CE-loss. The performance on the training, validation and testing data are
shown in blue, orange and red respectively.

know to be far from reasonable for the ConvMixerSeg results making a t-test
result potentially misguiding and thus less informative. As a more reasonable
alternative, we have used the non-parametric Mood’s median test witch puts
no assumptions on the distributions of the groups. Also note that the median of
the distribution might be considered more representative of the ConvMixerSeg
models than the mean because of the skewness of the distributions.

Applying Mood’s median test to compare the MCC scores on the testing data
results in a p-valuex 0.006 with the ConvMixerSeg median being the highest.
The p-value for the IoU scores is in this case identical 3. We can thus, with a
high degree of confidence, assume the true median of the distribution of MCC
scores (as well as IoU scores) on the testing data is higher for the ConvMixerSeg
model trained with CE-loss than for the FCN-ResNet-50 trained with the same
objective function. The proposed model outperforms the FCN-ResNet-50 model
in the median with high probability.

3. Note that Mood’s Median test uses ranks of values rather than the actual values to compute
the test result.
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Figure 8.4: MCC performance on training data during the first few epochs of training
for the ConvMixerSeg and FCN-ResNet-50 models, both trained with CE-
loss. The plot shows the estimated means and 95% confidence intervals
for each log step.

8.1.4 Further Discussion

To be sure, we cannot ignore the fact that the ConvMixerSeg model overfitted
more often than the FCN. This could imply that the ConvMixerSeg model trains
faster and thus overfits earlier. By observation of Figure 8.4, this seems to be
the case.

One might question if the number of epochs should have been higher for the
FCN model as the slower learning would imply it would take longer for the
model to reach its full potential. We cannot reject the possibility, but we can
get an indication by seeing if some of the FCN models have overfitted. Typically,
we assume that models learn the relevant features before overfitting, i.e. the
performance on the validation data improves in parallel with the performance
on the training data for as long as the appropriate training lasts. After this, the
training performance and validation performance typically diverge. If many
FCN models overfitted, it could indicate that training further would not improve
the overall result by much. Note however, it might also only imply that the
ideal training length varies greatly.

Approximately 14% of the FCN models had a drop in measured MCC score of
more than 10 percentage points going from training to testing data, a sign of
strong overfitting. This implies a significant proportion of the FCN models have
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overfitted. We therefore assume that one of two cases is true. Either the ideal
length of training for the FCN-ResNet-50 varies significantly or 25 epochs is
near adequate for the FCN-ResNet-50 with the dataset we have used. In both
cases, to our best judgment, it seems reasonable to accept the conclusion of
the comparison as valid.

8.2 Weakly Supervised

For the weakly supervised setting we first analyze our proposed weakly su-
pervised segmentation model, i.e. the ConvMixerSeg trained with CAMz with
Gaussian smoothing using GMP as pooling strategy which we will reference
as ConvMixerSeg-CAMg. Then we investigate the results of using the original
CAM,, method discussed in Section 5.1.1 using the same backbone and thus
denoted by ConvMixerSeg-CAM,,.

8.2.1 ConvMixerSeg-CAMj

The measured classification and segmentation performance of our experiments
with the ConvMixerSeg-CAMy model are shown in Table 8.3 and Table 8.4
respectively.

Table 8.3: Measured classification performance of the ConvMixerSeg model trained
with the CAMg method for 3 epochs. Each element is given on the format:
mean + std(median).

Training Validation Testing

Cls-Acc  0.913 +0.039(0.92)  0.885+0.08(0.93)  0.888 + 0.084(0.936)
Cls-MCC 0.795 + 0.06(0.805) 0.7 +0.271(0.828)  0.707 + 0.279(0.842)
Cls-IoU  0.887 +0.052(0.896) 0.858 + 0.094(0.908) 0.861 + 0.099(0.915)
Cls-Prec  0.975+0.013(0.976) 0.954 + 0.078(0.983) 0.957 + 0.079(0.988)
Cls-Rec  0.909 + 0.056(0.921) 0.902 +0.1(0.936)  0.903 + 0.103(0.936)

For classification, the precision of the ConvMixerSeg-CAMy models is typically
in the high 90-s, while the recall is somewhat lower, i.e. the models will typically
let a few images containing liver go undetected. However, when they predict
that an image contain liver, that is typically correct. As discussed in section
4.2, there is typically a balance between precision and recall where the highest
overall performance is reached by allowing some error in both directions. In
this case the balance is more on the under sensitive side, but the imbalance is
not very large.
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As with the case of full supervision, several of the mean scores are lower for
the validation and testing data than the training data. Yet, this is not reflected
by the medians. Further more, the standard deviations for the unseen data
are much higher than for the training data, particularily for the precision and
MCC scores. The overall picture seems to be that for classification, most models
perform quite well on both training and testing data, while a few models
overfit. The overfitted models produce low scores on the unseen data and thus
reduces the means. But as these models are outnumbered by the models than
generalize well, the medians remains high.

Table 8.4: Measured segmentation performance of the ConvMixerSeg model trained
with the CAMg method for 3 epochs. Each element is given on the format:
mean = std(median).

Training Validation Testing
Acc  0.971 +£0.004(0.972) 0.932 +0.13(0.967)  0.93 + 0.143(0.968)
MCC 0.375+0.169(0.409) 0.279 + 0.222(0.365) 0.301 + 0.234(0.396)
IoU  0.212+0.105(0.218) 0.161 +£0.136(0.171) 0.178 + 0.148(0.203)
Prec  0.684 +0.238(0.747) 0.561 + 0.355(0.719) 0.59 + 0.352(0.765)
Rec  0.23 +0.114(0.24) 0.213 £ 0.184(0.209)  0.239 + 0.202(0.223)

The segmentation performance of the ConvMixerSeg-CAM,, is divided. The dif-
ference between means and medians indicate skewed distributions, especially
prominent in e.g. MCC score for the testing data. But upon closer inspection,
there are really two groups of models. The once that produce class activation
maps that are more or less indicative of the location of the liver and the once
that seem to learn the classification problem in some other way. This can
be more clearly seen in the distribution of the MCC-scores shown in Figure
8.5.

The figure shows what can be understood as a mixture of two distributions.
First, a bell shaped distribution of models with a mean between 0.4 and 0.5.
Second, a high and narrow spike around 0. The first group are models that
perform relatively well. We have inspected a few of these models and have seen
that they consistently produce results that are convincing and typically have
precision scores higher than 0.7. The best models produce MCC scores in the
low 60-s (and IoU scores in the low 50-s) while such results are untypical. The
models in the first group also generalize well as they often produce as good
or ever better results on the validation and testing data than on the training
data.

However, the recall scores lag behind. Upon closer inspection, we find this to
be caused by two problems. First, that some livers go completely undetected.
This is also reflected in the classification recall values. Second is the problem
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Figure 8.5: Histogram of the measured MCC scores for ConvMixerSeg models trained
with the CAM method. The performance on the training, validation and
testing data are shown in blue, orange and red respectively.

of part domination that, although reduced, have not completely solved.

The spike around O shows that there is a small group of models are have
badly overfitted and only produce segmentation maps better than random on
the training data while generalizing poorly to validation and testing data. It
also shows another small group that on average produce nothing better than
random on any data, thus seeming to have learned the classification problem
in a different way.

While some models do not seem to do well, most models produce segmentation
maps with a high correlation between predictions and labels on unseen data
and some reach IoU scores in the lower 50-s. See some examples images with
corresponding prediction heat maps and labels in Figure 8.6.

The figure shows a random subset of the testing data shown on the first
row, the corresponding ground truths or labels on the second row and the
prediction heat maps of arbitrarily picked ConvMixerSeg-CAMg models on the
third row.

In the images we see that the prediction in the second column seems to cover
the true prediction quite well although it also predicts a neighboring organ to be
part of the liver. The more representative situation for the average performance
can be seen in column 1, 4 and 8 where the precision seems high, but some
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Figure 8.6: Example images from the testing data shown in (a) with corresponding
labels or ground truths shown in (b) and heat map predictions of arbitrarily
picket ConvMixerSeg-CAMy models in (c).

part domination is more prominent.

8.2.2 ConvMixerSeg-CAM,,

The classification and segmentation results of our experiments with the ConvMixerSeg-
CAM, model are shown in Table 8.5 and Table 8.6 respectively. Note that we

have repeated the results of the ConvMixerSeg-CAM,, model in the correspond-

ing tables for convenience.

The classification results using ConvMixerSeg-CAM,, are more consistent than
those of ConvMixerSeg-CAMp in that the standard deviations are all lower. The
ConvMixerSeg-CAM,, results also seem to generalize well in that the scores
are similar for training, validation and testing data. Notice that classification
precision is perfect, i.e. all training, validation and testing images containing
liver were correctly predicted to have liver.

But the recall is very low in comparison to the precision, indicating the model
is significantly under sensitive. With the exception of the precision, the overall
scores do not seem to reach up to those of the ConvMixerSeg-CAMy and
we will show that the difference in medians is statistically significant for the
MCC.

In our experiments, the performance of ConvMixerSeg-CAM,, for segmentation
was often close to as good as random despite a consistently much better than
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Table 8.5: Measured classification performance of the ConvMixerSeg model trained
with the CAM,, method for 10 epochs (marked with «). Each element is
given on the format: mean + std(median). For reference we also repeat the
classification results of the CAMg method (marked with B).

Training Validation Testing
Cls-Acc  0.732 +£0.025(0.742) 0.739 +£0.026(0.75)  0.74 = 0.022(0.75)
Cls-MCC 0.557 +£0.027(0.568) 0.565 + 0.027(0.577) 0.566 + 0.024(0.577)
a Cls-IoU  0.643 +0.033(0.656) 0.652 + 0.034(0.667) 0.653 + 0.03(0.667)
Cls-Prec 1.0 £ 0.0(1.0) 1.0 £ 0.0(1.0) 1.0 £ 0.0(1.0)
Cls-Rec  0.643 +0.033(0.656) 0.652 + 0.034(0.667) 0.653 + 0.03(0.667)
Cls-Acc  0.913 +£0.039(0.92)  0.885 + 0.08(0.93) 0.888 + 0.084(0.936)
Cls-MCC  0.795 +0.06(0.805) 0.7 +0.271(0.828) 0.707 + 0.279(0.842)
p Cls-IoU  0.887 +0.052(0.896) 0.858 + 0.094(0.908) 0.861 + 0.099(0.915)
Cls-Prec  0.975 +0.013(0.976) 0.954 +0.078(0.983) 0.957 + 0.079(0.988)
Cls-Rec  0.909 + 0.056(0.921) 0.902 + 0.1(0.936) 0.903 + 0.103(0.936)

Table 8.6: Measured segmentation performance the ConvMixerSeg model trained
with the CAM, method for 10 epochs. Each element is given on the format:

mean + std(median).

Training Validation
Testing
Acc 0.32 +0.079(0.308)  0.394 + 0.145(0.363)  0.406 + 0.147(0.378)
MCC  0.132+0.109(0.122) 0.119+0.119(0.132) 0.107 + 0.126(0.101)
IoU 0.017 +£0.013(0.017) 0.018 +0.017(0.015) 0.02 + 0.018(0.018)
Prec 0.018 +0.013(0.018) 0.019 +0.017(0.016) 0.022 + 0.018(0.021)
Rec 0.345 + 0.241(0.331) 0.3 +0.274(0.272) 0.32 + 0.281(0.319)

random for classification scores. Some models produce segmentation maps
that in some regions are correlated with the labels, but typically also contain
large regions that are falsely predicted.

It should also be mentioned that some of the ConvMixerSeg-CAM, models
among the best for classification actually produced segmentation maps with
negative MCC scores. That is, the predictions did worse than random. Upon
inspection, the predictions of such models typically contained large regions
outside the body predicted liver.

View Figure 8.7 for some examples. The first column shows a small region with
relatively high confidence that is well placed. However, the upper part of the
image is predicted with similar confidence causing very low precision. In the
second column the model correctly predicts a region approximately near the
correct spot and with almost the correct size. But the region is only slightly
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brighter than the bright frame around the image. Thus a very carefully chosen
threshold values is needed to make a good prediction out of the heat map*
which well reflect the significant effect of chosing the right threshold discussed
by Choe et al. [19] when using the same method for object localization(,
although with a different backbone and data set).

The last column seems to overall do worse than random as the highest confi-
dence region mostly does not overlap with the ground truth.

©

Figure 8.7: Example images from the testing data shown in (a) with corresponding
labels or ground truths shown in (b) and heat map predictions of arbitrarily
picket ConvMixerSeg-CAM, models in (c).

8.2.3 Comparison

Mood’s median test was used to find out if the difference in medians, for both
the Cls-MCC score and the MCC score, was significant. The p-value for Cls-MCC
and MCC were ~ 1.3-1078 and ~ 3.6-107>. We therefore confidently conclude
that when using the ConvMixerSeg as backbone, the proposed CAMy training
scheme outperformed CAM,,.

4. We did attempt to optimize this using a small subset of the training data, but the best
threshold value varied from image to image so the overall.
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8.2.4 Further Discussion

We have here used a different training length for the two models. This was
a decision made based on a few (>5) experiments with a small portion of
the training set to see at which training length the models would perform
best on segmentation. Note that for classification, both models typically did a
few Cls-MCC percentage points better if we continued the training for more
epochs.

We chose 3 epochs as we observed in early experiments on a small subset of
the training data that the ConvMixerSeg-CAMg method typically learned the
classification problem quite fast (if it learned at all). Also, when the training was
effective, the segmentation performance often improved in parallel with the
classification performance before quickly deteriorating when the classification
performance started converging.

It should be mentioned that although we have made attempts to improve the
threshold value for the CAM,, model, further experiments to optimize it might
improve the final result. However, this could be considered an unfair extra
optimization of the CAM,, in comparison to the CAMg method for which we
have not optimized the threshold value. Although optimizing the threshold
might improve both methods, it seems the CAMg method is more robust to the
hyper parameter as the heat maps are.

8.3 Ablation Study

To build an understanding of which parts of our proposed model contributed
to the overall performance, we experimented with the alternative models
described in Section 7.2.

For the quantitative analysis, we are mainly concerned with the question of if
each component did in fact contribute positively to the overall performance.
Therefore, we focus on the probability of the observed results occurring assum-
ing equal distribution medians or means depending on what could be safely
assumed about performance distributions. For details about each model’s per-
formance, view Appendix 10.1.

View Table 8.7. For each Alternative Model setup, we perform a Mood’s median
test between scores produced by the proposed ConvMixerSeg-CAMy baseline
model. A p-value lower than 0.05 in each test implies the true population
medians are probably unequal. In all of our experiments, the measured median
values were higher (i.e. better) for the baseline. Thus we can interpret low
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p-values in every cell of the table to imply a greater loss in model performance
caused by the corresponding model modification. The second and third columns
address the classification and segmentation performance respectively.

Table 8.7: Ablation study results. Mood’s median test has been used to test for median
equality between the results of the Baseline and the given Alternative
Model. Values marked with "(*)" indicates the result is significant and it is
reasonable to assume the baseline model is better in the median.

Alternative Model ‘ Cls-MCC: p-value MCC: p-value

Baseline-GS 0.002 (%) 0.01 (%)
Baseline-GS+BlnrUp | 0.03 (¥) 0.03 (%)
Baseline-Res 2.3-1077 (%) 5.6-107% (¥)
Baseline-Aug 0.67 0.39

The first thing to notice in Table 8.7 is that all model changes that have
a significantly effect on segmentation performance also cause a significant
effect on the classification performance. This might be intuitive, but it is not
obvious as some models learned to classify (at least much better than random)
while producing class activation maps that were as good as random or even
worse.

Before continuing the discussion, keep in mind that the p-values do not say
anything about distance between the medians. That is to say, a low p-value
does not necessarily imply a large median difference, just that there is a
difference.

Note that the intensity augmentation contribution was not significant. However,
the difference between median and mean imply less skewed distributions of
segmentation MCC scores than for the fully supervised setting. For symmetric
distributions, the Mood’s test has relatively low statistical power compared to
the t-test. However, as the t-test assumes normality we should test if that is
a reasonable assumption. Thus we applied the Anderson-Darling test to each
group [51] which concluded none were significantly different from normality
confirming that a t-test result would probably be valid. Finally applying the t-test
resulted in a p-value of 0.026. We therefore conclude a significant contribution
of the augmentation to the performance of the final model.

So we have shown all parts contribute significantly. However, for a more com-
plete picture we add some points. We hypothesized that the adding Gaussian
smoothing would mitigate the problem of part domination. A typical symptom
of part domination is a low recall value. Testing for a difference in medians
recall scores (with Mood’s median test) results in a p-value of 0.0002 where
the median of the baseline models is better.
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Figure 8.8: From left to right: Image, ground truth, prediction heat map and thresh-
olded prediction respectively taken from the testing data. The rows corre-
spond to Baseline (a), Baseline-GS (b), Baseline-GS+BlnrUp (c), Baseline-
Res (d) and finally for Baseline-Aug (d).
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Note that the baseline method also performed better overall so one might
question if the improvement was just for the recall or similarly for the precision.
If both improvements were equally significant, that would imply the problem
of part domination was technically not addressed specifically, any more so
than the precision error. Testing for a difference in medians between precision
scores from the baseline to the baseline less the Gaussian smoothing results
in a p-value of 0.12 (with Mood’s medain test). When testing for a difference
in means using the t-test the resulting p-value was 0.45 (both groups passed
the Anderson-Darling test). The precision improvement is thus not significant
although both the mean and median values are higher for the Baseline. Both
the precision and the recall measurements thus support our hypothesis that
adding the Gaussian smoothing improves results by mitigating the problem of
part domination.

For a qualitative evaluation, view the examples shown in Figure 8.8. Each row
corresponds to one model design. The example input images are shown on the
left followed by the ground truths, the prediction heat maps and finally the
thresholded predictions on the right. Note that we have picked examples from
relatively successful models for each model design. But to our best judgment,
the examples illustrate representative patterns we have observed among the
various example images for each model design in general.

The first and final rows represent the baseline and the baseline less the augmen-
tation, which both quantitatively performed yielded high performance scores
overall.

The second row illustrates the issue of both noisy predictions and part domina-
tion (only predicting small discriminative portions of the true object) which we
addressed with the Gaussian smoothing layer. The baseline predicts a larger
portion of the true label and also is much less noisy than the Baseline-GS
prediction. However, the Baseline-GS model is more sensitive to the choice of
thershold as the prediction heat map corresponds much better to the ground
truth than the final prediction. Nevertheless, comparing the heat maps rather
than the predictions we still see that the level of detail correspondence be-
tween input image and heat map prediction seems better for the baseline
model.

For the Baseline-GS+BInrUp experiments were done to test if the Gaussian
smoothing would negate or neutralize the effects of the learnable upsampling.
This hypothesis is neither supported by the quantitative nor the qualitative
evidence as the difference is median of both precision and recall (as well
as MCC) are highly significant. More specifically with p-values of 0.002 and
0.0002 for precision and recall medians respectively.
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The examples shown from the Baseline-Res model are hard to interpret, but
might indicate a network that is a little less developed than the baseline as the
predictions are less detailed, there are larger regions of positive predictions
with low confidence and the overall performance is significantly worse than
for the baseline.

We conclude our analysis with the following: The proposed ConvMixerSeg
model outperforms the FCN-ResNet-50 for fully supervised semantic segmenta-
tion in the median with high statistical significance. For both classification and
segmentation, the results imply that the performance of ConvMixerSeg-CAMg is
better than that of CAM,, in the median with high statistical significance.

Further, the results of the ablation study prove a significant positive effect on
both classification and segmentation from using the gaussian smoothing layer
the added residual connection in the hidden model architecture. Additionally,
the results support the hypothesis that this is caused, at least partly, by the
gaussian layer mitigating the issue of part domination.

8.4 Full vs. Weak Supervision

On a direct comparison of the value of full supervision, the conclusion is clear.
Our results suggest, the gap between full and weak supervision is large. The
performance measurements show that the ConvMixerSeg model trained with
full supervision performs much better on all metrics used than its weakly
supervised counter part. The difference in the median MCC score on the test-
ing data was 0.782 — 0.301 = 0.481 (for IoU the difference in medians was
0.644 — 0.203 = 0.441). The p-value testing for a difference is median preci-
sion scores is 4.8 - 1071°  i.e. profoundly significant. If assuming independent
normally distributed groups, the estimate of difference in mean MCC score
would be: (0.682—-0.301) + \/(0.272 +0.2342) = 0.381+0.357. The estimate
is probably a strong underestimate of the true difference as the distribution of
the fully supervised MCC scores are very negatively skewed, but the estimate
still illustrates a clear difference although not statistically significant as the
uncertainties are very high.

Despite the overall picture, there is a significantly higher mean precision score
for the weakly supervised model than for its fully supervised equivalent with
a p-value of 0.045 (using the t-test as both distributions pass the Anderson-
Darling test for normality). This means that a pixel predicted as liver by the
average weakly supervised model is more trustworthy to be a true positive
prediction than that of the fully supervised model.



8.5 / REFLECTION AND FUTURE DIRECTIONS 97

Reliability is another question that is important to address, especially for weakly
supervised models as one typically cannot test the segmentation performance
in an actual application.

The observed reliability was better for the proposed model than the CAM,,
alternative as the bulk of the distribution of the CAMs models did in fact learn
both classification and segmentation to some extent, while the bulk of the
CAM, models did not.

That being said, the standard deviations of all weakly supervised models tested
here are telling.

We have observed very large spread of results on almost all metrics for both
classification and segmentation in the setting of weak supervision. To our
best judgment, this provides evidence that the weakly supervised methods
investigated in this project have not been reliable as a whole with the small
amount of data we have used. We would thus not advise the weakly supervised
models tested in this project to be used for any real segmentation application
without further investigation of how they perform with more data and/or
testing with at least some fully supervised data.

8.4.1 Further Discussion

In our experiments using image level labels, the training data used is very small.
Both in number of classes and number of samples. With 1572 images used for
training, our data is almost an order of magnitude smaller than the PASCAL
Visual Object Classes (VOC) data set of 2012 often used to benchmark weakly
supervised segmentation or object localization models ([39, 70, 83, 84, 35]).
Additionally, PASCAL VOC 2012 contains 21 classes including the background,
while we have used 2. Thus the information provided for each sample is
markedly weaker. This could partially be one of the reasons why we see a
much worse IoU performance using CAM,, with our data then what has been
reported when the same model has been applied on PASCAL VOC 2012 [19]
as well as what has been qualitatively observed when trained on ImageNet
[85].

8.5 Reflection and Future Directions

In this project we have experimented with both fully and weakly supervised
semantic segmentation. We have presented a new model and tested it. The
tests we have performed have been done in an attempt to steer the direction
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of development towards solving problems that could help a lot of people, thus
we find it valuable to experiment with a data set with real CT images of people
with real liver problems. However, the drawback of this choice is that our
contributions are, at this stage, not easy to rank among other modern models
with the exception of the once we have included in our tests.

Based on our experiments, ConvMixerSeg is expected to lead to improvements
beyond the liver segmentation task. Albeit we cannot know this less a more
thorough study performed on additional datasets. A natural progression of
this project would therefore be to test the proposed methods using both fully
and weakly supervised segmentation on traditional benchmark data sets such
as PASCAL VOC 2012 [25] and Cityscapes [21] to more easily compare with
other models. If yielding convincing results the model could be made publically
available and in that sense become a tool to help users potentially produce
useful results more easily to solve problems.

Testing the model more extensively can provide information about its perfor-
mance, but will more importantly lead to more elaborate understanding of its
limitations which can be targeted for further improvements.

In the weakly supervised setting, we have already seen that part domination,
although reduced, still is a significant source of error in the proposed method.
And while we have showed that the Gaussian smoothing did improve the
problem, we have not yet experimented with adjustments of the o-parameter
which would adjust the size of the neighborhoods in the Neighborhood Corre-
lation Enforcement. The experiments of Kolesnikov et al. [40] indicated object
size estimates on the PASCAL VOC 2012 would typically be over estimated
when using GAP while being underestimated when using GMP. Although their
method was somewhat different to ours, the size estimation is based on similar
principles and should to our best understanding also apply here (note however,
this should be tested). Notice that a very small value of o would correspond
to using GMP while a very large one would correspond to using GAP during
training (although the smoothing would also affect the segmentation maps in a
way it would not using GAP). By carefully adjusting the o parameter, one could
potentially further improve on the problem of part domination in a controlled
manner. By recording precision and recall, the adjustment could be carefully
increased until a quantitative balance was reached between precision and
recall or qualitatively until the smoothing became too much of an issue.

Assuming the smoothing would cause problems, another developmental pro-
posal would be to use the Gaussian smoothing during training, but remove it
during testing as the advantages of more distributed gradients would be kept
during training to help with noisy predictions and part domination, while the
details in predictions would be preserved during testing. This could allow for
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free adjustment of the o parameter for size adjustment of object predictions
while not affecting the level of detail in the predictions for testing. We also
encourage others to explore this.






Conclusion

In this project we have presented a novel semantic segmentation model called
ConvMixerSeg developed for liver segmentation. The model has been explained
and extensively tested in comparison to an FCN-ResNet-50 model. We have
shown that the proposed model outperforms the contender with high statistical
significance on a small subset of the Liver Tumor Segmentation Benchmark
data set and thereby prove its potential.

Moreover, we have developed an effective method for training semantic seg-
mentation models with image level labels without adding parameters, allowing
for modularity and therefore improved experiment informativeness in compar-
ative studies. We have then trained the proposed segmentation model with
only image level labels using the proposed CAMy method and compared it to
the original CAM method [85]. The results show that the proposed method
outperforms the original CAM on the data set used.

The presented CAMg method has finally been tested along side with several
ablated alternatives to find out which parts of our design contributed with a
significant effect to the performance. The results support our hypotheses that
the Gaussian smoothing reduces prediction noise and mitigates part domination
during testing and thus significantly improves overall performance.
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Appendix

10.1

Table 10.1: Measured performance of 52 ConvMixerSeg models trained independently
with CE-loss for 25 epochs. Each element is given on the format: mean +

All Results

std(median).

Training

Validation

Testing

Acc
MCC
IoU
Prec
Rec

0.981 + 0.098(0.995)
0.906 + 0.126(0.927)
0.842 + 0.118(0.864)
0.845 + 0.118(0.867)
0.992 + 0.03(0.996)

0.897 + 0.223(0.975)
0.669 + 0.251(0.756)
0.537 + 0.236(0.593)
0.556 + 0.247(0.61)

0.939 + 0.043(0.953)

0.893 + 0.233(0.983)
0.682 + 0.27(0.782)
0.562 + 0.255(0.644)
0.582 + 0.266(0.694)
0.94 + 0.049(0.959)

Table 10.2: Measured performance of 49 FCN-ResNet-50 models trained independently
with CE-loss for 25 epochs. Each element is given on the format: mean +

std(median).

Training

Validation

Testing

Acc
MCC
IoU
Prec
Rec

0.962 + 0.01(0.96)
0.656 + 0.072(0.649)
0.464 + 0.094(0.45)
0.472 + 0.094(0.458)
0.96 + 0.013(0.959)

0.936 + 0.129(0.964)
0.637 + 0.147(0.677)
0.459 + 0.149(0.49)

0.492 + 0.173(0.504)
0.923 + 0.123(0.962)

0.939 + 0.129(0.965)
0.655 + 0.146(0.686)
0.48 + 0.152(0.504)

0.508 + 0.174(0.515)
0.934 + 0.098(0.966)
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Table 10.3: Measured classification performance the ConvMixerSeg model trained
with the CAM, method for 10 epochs!. Each element is given on the
format: mean = std(median).

Training

Validation

Testing

Cls-Acc
Cls-MCC
Cls-IoU
Cls-Prec
Cls-Rec

0.732 + 0.025(0.742)
0.557 + 0.027(0.568)
0.643 + 0.033(0.656)
1.0 £ 0.0(1.0)

0.643 + 0.033(0.656)

0.739 + 0.026(0.75)
0.565 + 0.027(0.577)
0.652 + 0.034(0.667)
1.0 + 0.0(1.0)

0.652 + 0.034(0.667)

0.74 + 0.022(0.75)
0.566 + 0.024(0.577)
0.653 + 0.03(0.667)
1.0 + 0.0(1.0)

0.653 + 0.03(0.667)

Table 10.4: Measured segmentation performance of the ConvMixerSeg model trained
with the CAM,, method for 10 epochs. Each element is given on the format:

mean + std(median).

Training

Validation

Testing

Acc
MCC
IoU
Prec
Rec

0.32 + 0.079(0.308)

0.132 + 0.109(0.122)
0.017 +0.013(0.017)
0.018 + 0.013(0.018)
0.345 + 0.241(0.331)

0.394 + 0.145(0.363)
0.119 + 0.119(0.132)
0.018 + 0.017(0.015)
0.019 + 0.017(0.016)
0.3 + 0.274(0.272)

0.406 + 0.147(0.378)
0.107 + 0.126(0.101)
0.02 + 0.018(0.018)
0.022 + 0.018(0.021)
0.32 + 0.281(0.319)

Table 10.5: Measured classification performance of the ConvMixerSeg model trained
with the CAMy method for 3 epochs. Each element is given on the format:

mean + std(median).

Training

Validation

Testing

Cls-Acc
Cls-MCC
Cls-IoU
Cls-Prec
Cls-Rec

0.913 + 0.039(0.92)
0.795 + 0.06(0.805)
0.887 + 0.052(0.896)
0.975 + 0.013(0.976)
0.909 + 0.056(0.921)

0.885 + 0.08(0.93)
0.7 +0.271(0.828)
0.858 + 0.094(0.908)
0.954 + 0.078(0.983)
0.902 + 0.1(0.936)

0.888 + 0.084(0.936)
0.707 £ 0.279(0.842)
0.861 + 0.099(0.915)
0.957 + 0.079(0.988)
0.903 + 0.103(0.936)

Table 10.6: Measured segmentation performance of the ConvMixerSeg model trained
with the CAM method for 3 epochs. Each element is given on the format:

mean = std(median).

Training

Validation

Testing

Acc
MCC
IoU
Prec
Rec

0.971 + 0.004(0.972)
0.375 + 0.169(0.409)
0.212 + 0.105(0.218)
0.684 + 0.238(0.747)
0.23 + 0.114(0.24)

0.932 + 0.13(0.967)

0.279 + 0.222(0.365)
0.161 + 0.136(0.171)
0.561 + 0.355(0.719)
0.213 + 0.184(0.209)

0.93 + 0.143(0.968)
0.301 + 0.234(0.396)
0.178 + 0.148(0.203)
0.59 + 0.352(0.765)
0.239 + 0.202(0.223)
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Table 10.7: Measured classification performance of the Baseline-Res model trained for
3 epochs. Each element is given on the format: mean + std(median).

Training

Validation

Testing

Cls-Acc
Cls-MCC
Cls-IoU
Cls-Prec
Cls-Rec

0.774 + 0.048(0.751)
0.238 + 0.26(0.14)

0.757 + 0.048(0.751)
0.812 + 0.082(0.764)
0.934 + 0.092(0.976)

0.788 + 0.07(0.75)
0.253 + 0.344(0.0)
0.773 + 0.072(0.75)
0.825 + 0.106(0.75)
0.945 + 0.107(1.0)

0.787 + 0.07(0.75)
0.249 + 0.343(0.0)
0.772 + 0.072(0.75)
0.824 + 0.105(0.75)
0.947 + 0.106(1.0)

Table 10.8: Measured segmentation performance of the Baseline-Res model trained
for 3 epochs. Each element is given on the format: mean = std(median).

Training

Validation

Testing

Acc
MCC
IoU
Prec
Rec

0.663 + 0.243(0.731)
0.051 + 0.126(0.027)
0.054 + 0.067(0.037)
0.109 + 0.177(0.04)

0.389 + 0.269(0.376)

0.705 + 0.261(0.79)

0.094 + 0.183(0.049)
0.071 + 0.109(0.042)
0.133 + 0.202(0.051)
0.398 + 0.348(0.418)

0.708 + 0.258(0.788)
0.094 + 0.175(0.038)
0.072 + 0.106(0.041)
0.131 + 0.202(0.051)
0.403 + 0.349(0.345)

Table 10.9: Measured classification performance of the Baseline-GS model trained for
3 epochs. Each element is given on the format: mean + std(median).

Training

Validation

Testing

Cls-Acc
Cls-MCC
Cls-IoU
Cls-Prec
Cls-Rec

0.815 + 0.061(0.808)
0.4 + 0.288(0.41)

0.798 + 0.052(0.769)
0.844 + 0.091(0.809)
0.948 + 0.061(0.974)

0.836 + 0.078(0.862)
0.459 + 0.368(0.638)
0.818 + 0.074(0.824)
0.874 + 0.106(0.899)
0.941 + 0.083(0.976)

0.838 + 0.08(0.871)
0.466 + 0.37(0.682)
0.819 + 0.076(0.831)
0.876 + 0.105(0.91)
0.942 + 0.085(0.979)

Table 10.10:

Measured segmentation performance of the Baseline-GS model trained
for 3 epochs. Each element is given on the format: mean + std(median).

Training

Validation

Testing

Acc
MCC
IoU
Prec
Rec

0.942 + 0.024(0.946)
0.128 + 0.129(0.079)
0.072 + 0.079(0.034)
0.291 + 0.272(0.202)
0.168 + 0.215(0.043)

0.93 + 0.073(0.962)
0.154 + 0.175(0.067)
0.082 + 0.106(0.029)
0.411 + 0.325(0.341)
0.19 + 0.275(0.053)

0.93 + 0.076(0.961)
0.164 + 0.179(0.091)
0.086 + 0.11(0.03)
0.435 + 0.335(0.396)
0.195 + 0.279(0.057)
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Table 10.11: Measured classification performance of the Baseline-GS+BlnrUp model
trained for 3 epochs. Each element is given on the format: mean +

std(median).

Training

Validation

Testing

Cls-Acc
Cls-MCC
Cls-IoU
Cls-Prec
Cls-Rec

0.892 + 0.03(0.901)
0.719 + 0.084(0.735)
0.865 + 0.035(0.877)
0.937 + 0.04(0.953)
0.921 + 0.043(0.929)

0.873 + 0.076(0.911)
0.651 + 0.275(0.779)
0.848 + 0.084(0.884)
0.929 + 0.086(0.969)
0.916 + 0.093(0.942)

0.878 + 0.076(0.913)
0.66 + 0.278(0.793)
0.853 + 0.084(0.887)
0.93 + 0.084(0.96)
0.921 + 0.09(0.942)

Table 10.12: Measured segmentation performance of the Baseline-GS+BlnrUp model
trained models for 3 epochs. Each element is given on the format: mean +

std(median).
Training Validation Testing
Acc  0.966 + 0.006(0.965) 0.949 + 0.046(0.959) 0.95 + 0.048(0.96)
MCC 0.251 +0.2(0.266) 0.192 + 0.244(0.06) 0.202 + 0.243(0.073)
IoU  0.154+0.137(0.158) 0.127 +0.171(0.03)  0.133 + 0.169(0.044)
Prec  0.391 + 0.238(0.401) 0.286 +0.305(0.132) 0.308 + 0.3(0.217)
Rec  0.196 +£0.179(0.199) 0.195 + 0.267(0.07)  0.203 + 0.263(0.077)

Table 10.13: Measured classification performance of the Baseline-Aug setup trained
for 3 epochs. Each element is given on the format: mean + std(median).

Training

Validation

Testing

Cls-Acc
Cls-MCC
Cls-IoU
Cls-Prec
Cls-Rec

0.913 + 0.056(0.935)
0.795 + 0.123(0.834)
0.888 + 0.07(0.915)

0.974 + 0.032(0.977)
0.911 + 0.071(0.936)

0.898 + 0.072(0.932)
0.748 + 0.226(0.835)
0.871 + 0.086(0.911)
0.97 + 0.062(0.99)
0.9 + 0.09(0.923)

0.9 + 0.072(0.931)
0.751 + 0.226(0.835)
0.873 + 0.086(0.909)
0.97 + 0.063(0.99)
0.902 + 0.089(0.933)

Table 10.14: Measured segmentation performance of the Baseline-Aug model trained
for 3 epochs. Each element is given on the format: mean + std(median).

Training Validation Testing
Acc  0.963 +£0.039(0.969) 0.961 +0.024(0.964) 0.962 + 0.027(0.966)
MCC 0.322+0.178(0.365) 0.252 +0.186(0.212) 0.259 + 0.183(0.254)
IoU 0.188+0.116(0.197) 0.135+0.124(0.085) 0.139 + 0.119(0.116)
Prec  0.555+0.224(0.621) 0.509 + 0.27(0.535)  0.548 + 0.269(0.61)
Rec  0.215+0.132(0.234) 0.156 +0.144(0.118) 0.158 + 0.135(0.139)
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