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E-mail: FerrariP@iarc.fr 
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Ref.: NMB/PF/kz/21/02/JNCI 24 February 2021 
  

Dear Dr Ganz and the JNCI Editorial Board, 

We thank you and the Reviewers for the feedback on our manuscript “Novel biomarkers of habitual 
alcohol intake and associations with risk of pancreatic and liver cancers and liver disease mortality” 
(JNCI-20-1776), a research initiative led by scientists at the International Agency for Research on 
Cancer and at the US National Cancer Institute. We carefully revised the manuscript according to 
the Reviewers’ comments that contributed to further improve the text. You will find it enclosed, 
together with our point-by-point response letter. 

Based on the comments received, we now refer to our study as a multi-stage study design rather 
than a replication, and we have revised the manuscript accordingly. We carefully explained the 
reasons for not conducting a proper discovery-replication study with features acquired by the same 
laboratory platforms at different times for each of the three components of our study. We also 
added information on the stability of 2-hydroxy-3-methylbutyric acid based on 1-year intraclass 
correlation coefficient and emphasized the need to examine 2-hydroxy-3-methylbutyric acid (and 
other candidate biomarkers) in an alcohol feeding trial. Several other details related to the design, 
analysis and interpretation of the results of our study were further clarified in the response letter 
and in the text, as requested by the Reviewers. In an attempt to comprehensively amend the text 
in line with the Reviewers’ suggestions, the text now slightly exceeds the 3300-word limit.   

Once again we confirm that the authors of this research paper have directly participated in the 
planning, execution, or analysis of the study, and have read and approved the final version 
submitted. The contents of this manuscript have not been copyrighted or published previously. The 
contents of this manuscript are not under consideration for publication elsewhere. The contents of 
this manuscript will not be copyrighted, submitted, or published elsewhere while acceptance by 
the Journal is under consideration.  

Please do not hesitate to let us know if you require any further information. Thank you in advance 
for your kind consideration. 

Yours sincerely, 

 
 
 
 
Pietro Ferrari, PhD 

Author Cover Letter Click here to access/download;Author Cover
Letter;2021.02.24_Letter JNCI r1.pdf
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Head, Nutritional Methodology and Biostatistics Group 



 ------------------------------------------  
 
Comments from the Editors 
 
Because the accepted versions of manuscripts will now be published on the Journal site before they 
undergo copyediting and typesetting by the Journal, we are asking authors to carefully proofread their 
manuscripts for correct spelling and grammar as part of the revision process. 
 
Reviewers raise important concerns regarding the design of discovery and verification of novel 
biomarkers including need for better use of dimension reduction techniques. As noted by the reviewers, 
the current design is not a true replication study but a multi-stage study. Please address these and the 
other concerns they raise as noted below: 
 
We thank the editors for giving us the opportunity to respond to the Reviewer’s comments and 
improve the manuscript. We also recognize that our study is better characterized as a multi-stage 
study design rather than a replication. We have revised the manuscript accordingly. Please refer to 
our responses to the Reviewers’ concerns below for a detailed explanation of our rationale.  
 
Fundamental details of the biomarker stability /decay and time-frame in relation to alcohol intake 
(acute, chronic, or some combination) that it actually represents?  
 
The editor highlights an important consideration; however, studies on the kinetics of candidate 
biomarkers that we identified are currently lacking. We did, however, find data on 1-year intraclass 
correlation coefficients for 2-hydroxy-3-methylbutyric acid (i.e., alpha-hydroxyisovalerate) ranging 
from 0.76 to 0.49 in independent samples of 60 women with blood collections at baseline and 1-year 
in the Shanghai Women’s Health Study and 30 adults (14 women and 16 men) with blood collections 
at baseline and 1-year in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, 
respectively. These ICCs indicate low to moderate within-subject variability (i.e., good to moderate 
reliability) over 1-year. We have added this information to the discussion (page 13) and have also 
highlighted the need for studying 2-hydroxy-3-methylbutyric acid and other candidate biomarkers of 
alcohol intake in an alcohol feeding trial, which is better suited to establishing the dose-response 
relationship between alcohol and these candidate biomarkers, as well as the timeframe of biomarker 
decay/stability in relation to alcohol intake (page 14). 
 
As noted in the manuscript, alcohol intake is well reported and validated in the EPIC study – correlation 
of 0.79 between FFQ and 12 and 24 hour recalls over a year was clearly higher than the validation 
correlation for any other nutrient or food group. This is consistent with a large body of literature and 
raises the question of potential value added over the questionnaire intake for this marker. 
 
Although validation studies have shown larger correlations between dietary questionnaire and 24-
hour dietary recall (24-hdr) measurements of alcohol intake than for most other dietary constituents, 
this information may not reflect the level of accuracy. Alcohol drinking is a sensitive exposure to 
recall, making it prone to systematic underreporting across types of assessments. As a result, 
estimates of validity coefficients for alcohol intake could be inflated (biased upward) by correlation 
between errors in the two types of self-reported assessments, questionnaires and 24-hdrs, making the 
validity better than its nominal true level. We have expanded the introduction (page 5) to address this 
issue. 
 

Response to Reviewer Letter Click here to access/download;Response to Reviewer
Letter;JNCI comments - 19 Feb 2021 (clean version).docx

https://www.editorialmanager.com/jnci/download.aspx?id=396326&guid=fd1a87d2-73f0-456f-99ec-8b24d53ec1a6&scheme=1
https://www.editorialmanager.com/jnci/download.aspx?id=396326&guid=fd1a87d2-73f0-456f-99ec-8b24d53ec1a6&scheme=1


For these reasons, there is a need for objective assessments of long-term alcohol use that reliably 
distinguish light from moderate and heavy drinkers. Moreover, the features identified in this study 
may help clarify associations of alcohol intake with disease risk by providing insights into mechanisms 
underlying these associations. We have added text to the discussion (page 14) to highlight the 
potential added value of these markers in etiologic studies. 
 
Comments from the Reviewers 
 
Please note: All the comments to authors we have received are included below, regardless of the 
numbering of the reviewers. 
 
Reviewer 1: Major concerns with the statistical analyses: 
 
The distribution of the feature intensities should be checked to ensure that the log2 transformation is 
appropriate. 
 
Metabolite distributions tend to be non-normal and are often skewed right, but identifying an 
optimal, universal transformation for 100s to 1000s of metabolites is unrealistic. Therefore, in 
metabolomics studies, it has become standard practice to log-transform features (i.e., relative peak 
levels) to improve symmetry and approximate normality. This is particularly useful in correlation 
analyses to make proper statistical inference for correlation values. Using a logarithm of base 2 is also 
common in metabolomics studies because it lends itself to the simple interpretation of regression 
parameters in logistic regression models, where feature concentration values are related to the risk of 
a given disease. The exponential of regression parameter indicates the increase in disease OR 
associated with a 1-unit increase corresponding to a doubling of the exposure variable, i.e. the feature 
level in this case. We further standardized the continuous variables such that a 1-unit increase 
corresponded to a 1-standard deviation increase on the log-scale. In this way, disease-specific OR 
estimates were computed for comparable increases of the exposure variables, in turn, alcohol intake 
and feature levels, as reported in Table 3. We used histograms and QQ-plots to show the distribution 
of each metabolite feature that was correlated with alcohol, and we confirmed that log-
transformation substantially improved normality and symmetry for both metabolites in EPIC and 
ATBC (see plots below).
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It's not clear why features selected in the discovery dataset were carried to the second dataset, then a 
subset of these features was then, again, carried to the third dataset. All features should be considered 
separately in all three data sets via dimension reduction techniques, and the final set should be chosen 
by the union of these selected features. 
 
Multiple approaches for selecting metabolite features of interest have been employed in recent years 
across hundreds of metabolomics studies, but, to the best of our knowledge, there is no consensus on 
an optimal approach as it likely varies by study question and design. In the current study, we worked 
with metabolomics data from four independent sets of data that were generated over a period of four 
years at four distinct times: 1. EPIC cross-sectional study, 2. EPIC hepatocellular carcinoma (HCC) and 
3. pancreatic cancer nested case-control studies, and 4. ATBC nested liver cancer and liver disease 
mortality case-control study. Although the metabolomics data were generated by the same 
metabolomics lab at IARC, there are unavoidable differences in retention times and overall 
performance of the LC columns used over the years.  
 
Consequently, we did not attempt to align all the features from the different datasets. Rather, we 
manually matched features from a single discovery dataset to those from the other datasets. For this 
reason, we adopted a multi-stage design to optimize the information extracted from each set of data 
and to limit the number of multiple comparisons across successive replication phases. We began our 
discovery process with the EPIC cross-sectional sample, which was the largest of 3 EPIC datasets and 
did not rely on controls from nested cancer studies. Out of the 6,597 features in the EPIC cross-
sectional sample, 133 (98 RP+ and 35 RP-) were associated to alcohol intake, after FDR correction. 
Based on spectral data, these features were manually matched to features acquired in controls 
(n=280) from the two EPIC nested case-control studies on pancreatic cancer and hepatocellular 
carcinoma, resulted in 49 matching features (38 RP+ and 11 RP-), of which 10 features (7 RP+ and 3 
RP-) were correlated with alcohol intake, after Bonferroni correction. In the third and final stage, the 7 
RP+ features were successfully matched to features measured in ATBC controls. Note that in ATBC 
study only RP+ mode was available, and all 7 features were correlated with alcohol intake.  
 
In summary, our multi-stage design was motivated by the challenge of individually matching features 
that were generated at different time points, and it was agreed by our team of biostatisticians, 
chemists, and epidemiologists as the best suited design to the data and question at hand. In 
agreement with the Reviewer’s suggestion, we have updated the definition of our design from a true 
replication design to a multi-stage design.   
 
It's also not clear why false-discovery rate was used in the first dataset while Bonferroni was used in the 
second. Suggest adopt supervised dimension reduction conditional on the same selection criteria 
instead of stepwise selection. 
 
The first stage of analysis was exploratory in nature and included 6,597 features, many of which were 
highly correlated with each other, indicating that accounting for multiple comparisons via FDR-
corrected p-values was reasonable to account for multiple comparisons. As the number of tests in the 
second and third sets were restricted to those features that were matched between stage 1 and 2 and 
then between stages 2 and 3, respectively, we deemed it prudent to adopt the more conservative 
Bonferroni threshold for statistical significance.  
 
In line with the Reviewer’s suggestion, we conducted complementary analysis using a supervised 
dimension reduction technique. Features were selected via the LASSO regression, which was applied 



to the EPIC cross-sectional sample. LASSO selected 14 features, including one with m/z and retention 
time similar to features that we identified in univariate analyses as part of the metabolite 2-hydroxy-

3-methylbutyric acid. We also implemented elastic-net regression. For  = 0.1 (=1 corresponds to the 

pure lasso; =0 to pure ridge regression), 54 features were identified, 3 of which had retention time 
close to 2.78 that originated from the 2-hydroxy-3-methylbutyric acid.   
 
We acknowledge that we could have used various study designs and analytical strategies. As shown 
by our additional analyses, LASSO, elastic net and other multivariate machine learning techniques 
would have selected a limited number of correlated features; thus, an advantage of the methodology 
we chose, based on univariate tests and correction for multiple testing, is that univariate tests tend to 
repeatedly select features originating from the same metabolite; since some of the features were not 
retained after matching across different sets of data, techniques that tend to select one or only a few 
features out of several candidates would offer an efficient yet suboptimal analytical strategy in our 
setting.  
 
Leave-one-out cross validation does not seem appropriate in this particular case, because the samples 
are matched case-control. 
 
The analysis in question only used data from controls; however, in line with the Reviewer’s comment, 
we have removed this analysis from the manuscript owing to concerns about its limited value.  
 
Reviewer 2: `Review of Loftfield et al JNCI-20-1776 
This paper describes untargeted metabolomics analysis that lead to a biomarker for alcohol (2-hydroxy-
3-methylbutyric acid) which was correlated with FFQ-based alcohol intake and was associated with risk 
of liver cancer, pancreatic cancer, and fatal liver disease in EPIC and or ATBC. 
 
If these results hold up in further replication, they could be quite important, but there are many 
practical issues to consider. If it was possible to fit one (or both) of the biomarkers into a targeted 
metabolomics array that could be run at much lower cost than untargeted chips and if batch effects 
could be reduced or eliminated, then these results may be quite significant. I think that the paper needs 
to touch on these issues (replication, cost, and data quality) much more than it currently does. 
 
Thank you for your comments and feedback. We agree that these issues are important and have 
added the following text to our discussion (page 12): “Additionally, targeted metabolomics panels 
that can simultaneously measure multiple alcohol-related metabolites , including 2-hydroxy-3-
methylbutyric acid and related compounds, should be developed to measure absolute concentrations, 
which will enable comparisons and pooling of data across studies, supporting replication and 
improving risk estimation; this is especially important for diseases such as pancreatic cancer, for 
which the literature is suggestive [40] yet inconsistent [41].” 
 
We also think it is important to note that in the current analysis we developed and applied a pre-
processing pipeline to correct unwanted laboratory features in the data, including variability 
introduced by well plate and batch. Additionally, we considered the correlations between residuals of 
metabolite features and alcohol intake so that we could adjust features for batch variables in addition 
to other potential confounders, like age and smoking, that were also relevant to alcohol intake. 
 
Other comments: 
 



Abstract - not important to indicate base of logarithmic transformation if expressed per SD (log2). This 
applies elsewhere. 
 
We have made this change throughout the text. 
 
Abstract states that this is a potential biomarker for habitual alcohol intake but is anything known about 
how quickly it itself is metabolized? Could this be a biomarker of recent alcohol intake instead? 
 
As noted in our response to the editor (above), the rate at which a metabolite is broken down is an 
important consideration; however, studies on the kinetics of the candidate biomarkers that we 
identified are lacking. We did, however, find data on the 1-year reliability of 2-hydroxy-3-
methylbutyric acid in previously published metabolomics methods studies, and we have added this 
information to the discussion (page 13). In the discussion, we have also highlighted the need for 
studying 2-hydroxy-3-methylbutyric acid and other candidate biomarkers of alcohol intake in an 
alcohol feeding trial (page 14), which is better suited to establishing the dose-response relationship 
between alcohol and these candidate biomarkers. 
 
Methods: I am annoyed by the way in which the word "replication" is used throughout the paper. There 
are two results that need replication 
 
1. The observed relationship between the two metabolites and alcohol use from the EPIC FFQ found in 
the untargeted analysis. (Although technically what is described is not really a replication study but is 
rather a multi-stage study, with associations being winnowed down at each stage). 
 
This concern was also raised by the first Reviewer (see detailed response above), and we agree that a 
multi-stage design better characterizes our approach. Thus, we have revised the text to reflect this 
change in description and to better explain our rationale for this approach. 
 
2. The association between the two metabolites and liver cancer (HCC specifically) and pancreatic cancer 
in the EPIC nested case control study. The ATBC study case-control study serves as only a partial 
replication of what is found in the EPIC, much more replication work is needed, in particular these 
studies are all quite small, and the number of total associations considered is quite large, lessening 
confidence (and widening confidence intervals). 
 
The Reviewer is correct that the metabolite-endpoint associations are only partly replicated and that 
more work is needed to corroborate our findings; this includes replicating and extending these 
findings in other existing nested case-control sets and metabolomics consortia. We have highlighted 
this in the discussion (page 12). 
 
Page 6 second paragraph is especially confusing. Attention shifts in the third sentence to the cases from 
the case control studies case control studies, this threw me a bit since I was expecting to hear about the 
two "replication" studies for the relationship between alcohol use and the metabolites first, before 
getting into the etiological studies (case-control studies). I suggest reorganizing this paragraph and the 
next to discuss first the discovery and then the two replication studies of the association between self-
reported alcohol and metabolites, before describing the case control studies. This should be much 
clearer and would better correspond to Figure 1. 
 



Thank you for this suggestion. We have made this change (pages 6 & 7 ), which improved clarity and 
readability. 
 
Page 8. Make sure that alcohol intake in the EPIC and ATBC is consistently referred to as self-reported.  
 
We have added “self-reported” as a qualifier of alcohol intake throughout the manuscript. 
 
Give a citation for the "residual method" in linear regression models. Actually, the residual method is 
biased and suffers loss of power compared to just including the variable of interest into the model. Here 
the variable of interest could be the residuals for the feature intensities. Suggest including these in the 
model for alcohol intake (rather than calculating the correlation of the residuals of the feature 
intensities with the residuals of alcohol intake). It probably doesn't matter much here, but in general it is 
better. 
 
We have added the following citation to the methods (page 8) for the residual method: Kleinbaum, D. 
G., Kupper, L. K. and Muller, K. E. (1987) Applied regression analysis and other multivariable methods. 
Duxbury Press, Belmont, CA. We agree with the limitations mentioned by the Reviewer. It is 
noteworthy that the residual method is prone to conservative results, which is a desirable feature in 
an exploratory setting. Also, over a standard adjustment in regression models, the residual method 
has the advantage of allowing the role of specific covariates to be controlled for, separately for each 
variable analyzed in a correlation study. In this study, well plate and batch indicators were used to 
adjust metabolomics feature concentrations only, but not self-reported alcohol intake.  
 
In agreement with the Reviewer’s request, we ran additional analyses using linear models with raw 
values of self-reported alcohol as the independent variable and either raw values of feature 
intensities or residuals of feature intensities, (to correct for laboratory factors) as the dependent 
variable.  In either case, models were adjusted for the other covariates (smoking intensity, etc.). 
Results were overall very similar to the ones presented in the manuscript, and included the same 
features associated with 2-hydroxy-3-methylbutyric acid and the unknown compound.  
 
Page 8. As a coffee-drinker I would prefer that you say that coffee drinking is associated with "reduced 
risk" of liver cancer and liver disease, rather than just "risk". 
 
Yes, we agree and have clarified this in the text on page 8: “Coffee drinking and coffee-associated 
metabolites have been strongly associated with lower risk of liver cancer and liver disease mortality in 
ATBC”. 
 
Page 10: What was the partial correlation between the two metabolites found in the discovery stage 
and self-reported alcohol intake in the three cohorts? This is a better way of expressing the results of 
linear regression analysis than dichotomizing the data and then doing AUROC analysis in my opinion. 
 
As clarified earlier, we estimated the correlations between the residuals of self-reported alcohol 
intake, adjusted for age, sex, country (in EPIC only), body mass index, smoking status and intensity, 
and coffee consumption, and the residuals of each feature adjusted for the same potential 
confounders as well as plate number, position within the plate (row and column indexes), and the 
study (EPIC stage 2) or batch indicator (ATBC stage 3).  
 



In agreement with the Reviewer’s comment, we have removed the AUROC analysis and highlighted 
the correlations between residuals of the two metabolites and between residuals of each of the two 
metabolites and self-reported alcohol intake (page 10). We have summarized the correlations below 
for your convenience: 
 

 Correlation coefficient between residuals* 

EPIC stage 1 (n = 454 
participants) 

Alcohol Unknown metabolite 
(m/z: 231.0839) 

2-hydroxy-3-methylbutyric 
acid (m/z: 203.0227) 

Alcohol 1.00   

Unknown metabolite (m/z: 
231.0839) 

0.41 1.00 
 

 

2-hydroxy-3-methylbutyric acid 
(m/z: 203.0227) 

0.26 0.23 1.00 
 

EPIC stage 2 (n = 280 controls)    

Alcohol 1.00   

Unknown metabolite (m/z: 
231.0839) 

0.38 1.00 
 

 

2-hydroxy-3-methylbutyric acid 
(m/z: 203.0227) 

0.24 0.25 1.00 
 

ATBC stage 3 (n = 438 controls)    

Alcohol 1.00   

Unknown metabolite (m/z: 
231.0839) 

0.40 1.00 
 

 

2-hydroxy-3-methylbutyric acid 
(m/z: 203.0227) 

0.40 0.54 1.00 
 

 
 
Page 11: It seems odd that self-reported alcohol was not a predictor of HCC or PC but the metabolite 
was. After all the metabolite was discovered by determining it was strongly associated with self-
reported alcohol (not of true alcohol consumption). If self-reported alcohol is a very poor predictor of 
true alcohol consumption, then it seems kind of serendipitous that something highly correlated with 
self-reports turned out to be such a good predictor of HCC and PC risk. 
 
The Reviewer’s skepticism is warranted, yet we think that there is a logical explanation for the 
seemingly incongruent findings. First, it is important to note that the correlations between self-
reported alcohol intake and each metabolite, although highly statistically significant, are modest, 
ranging from 0.38 to 0.41 and from 0.24 to 0.40 across the three data sets for the unknown 
metabolite (m/z: 231.0839) and 2-hydroxy-3-methylbutyric acid, respectively. This observation is 
compatible with the fact that feature intensities show varying levels of association with the 
endpoints, as compared to self-reported alcohol. Despite wider confidence intervals the odds ratios 
(ORs) for self-reported alcohol are consistent with ORs for the unknown compound, which is likely 
linked to  ethanol metabolism. The larger ORs for 2-hydroxy-3-methylbutyric, consistently observed 
across the four endpoints, may reflect that 2-hydroxy-3-methylbutyric acid is not a constituent or a 
byproduct of alcohol intake; rather, its level may reflect a relevant biological response to alcohol 
intake that potentially plays a role in the etiology of multiple chronic diseases. The fact that 
associations of alcohol with 2-hydroxy-3-methylbutyric acid were robust across all 3 studies is also 
likely not a coincidence given that previous studies have reported fairly large values of 1-year ICCs, 



indicating that within person or biologic variability over time is lower than between person variability. 
Finally, the larger correlations between self-reported alcohol with the unknown metabolite than with 
2-hydroxy-3-methybutyric acid could be in line with this reasoning.  
 
More generally, was self-reported alcohol consumption considered as a covariate (adjustment) variable 
in the cancer risk analyses? I.e. do the two metabolites significantly improve the model over just using 
self-reported alcohol? (Presumably they do in the EPIC case-control study). Clearly this is a result that 
will need further confirmation/replication in the future. 
 
To follow-up on the Reviewer’s question, we added self-reported alcohol intake to the model and 
added this to the methods (page 9). The OR estimates for the metabolites did not change 
substantially. Moreover, in these models each metabolite was more strongly associated with the 
disease endpoint than self-reported alcohol was. We present these results the revised version of 
Table 3 and in the results (page 11) and discussion (pages 11 and 14).  
 
Figure 1. The red box indicates two metabolites identified but only lists one (the unknown compound). 
 
Thank you for catching this. The figure has been revised accordingly. 
 
Reviewer 3: The authors identified biomarkers related to alcohol consumption and investigated the 
associations with risk of pancreatic and liver cancers as well as liver disease mortality, using two 
European cohort studies. The use of untargeted metabolomics in the discovery and replication datasets 
is a major strength of this study that may help address potential limitations of self-reported alcohol 
intake. In general, the paper is nicely written with well-rounded metabolomics approaches. However, 
some revisions in text and data presentation seem to be required. Please see the following comments 
and suggestions: 
 
Major comments: 
 
* The authors observed much weaker or null associations for hepatocellular carcinoma (HCC) and 
pancreatic and liver cancers when using questionnaire-derived alcohol intake as opposed to alcohol-
associated metabolites. Could it be due to the use of a single assessment of alcohol? 
 
It is certainly possible that participants’ alcohol intake changed over time, and we have noted on page 
14 that having a single assessment of alcohol intake in both EPIC and ATBC is a limitation of the study: 
“Additionally, self-reported alcohol intake and blood measures were assessed in each study at 
baseline only; therefore, we are unable to account for changes in alcohol intake or metabolites over 
time.”  
 
* Alcohol metabolism and susceptibility to its metabolites can be different between men and women as 
authors applied different categories to classify high vs low consumers in the EPIC replication dataset. In 
Table 3, have authors explored sex-specific associations for disease risk in EPIC? Sex was not taken into 
account in the model. 
 
The results summarized in table 3 are from conditional logistic regression models, and in the EPIC 
nested case-control studies sex was a matching factor. ATBC included men only. 
 



We did not originally conduct sex-stratified analyses due to limited sample size. However, as 
suggested by the Reviewer, we undertook additional analyses to examine interactions by sex in EPIC 
(see below). For both HCC and pancreatic cancer, the interaction term between sex and each 
metabolite or self-reported alcohol intake was not statistically significant. Although the OR for 2-
hydroxy-3-methylbutyric acid and HCC is statically significant in men but not women, the confidence 
intervals are overlap, indicating that OR estimates are homogeneous. Overall, sex stratified analyses 
and tests for interaction lack statistical power owing to small sample size. Therefore, we have 
included the results for your review but do not think they warrant inclusion in the manuscript. 
 

Associations of self-reported alcohol and alcohol-related metabolites with HCC and pancreatic cancer in EPIC 
stratified by sex 

 
Men  

(n=87 case-control sets) 

Women  

(n=41 case-control sets) 

Interaction 
with Sex 

  OR (95% CI) p-value OR (95% CI) p-value p-value 

HCC, EPIC (128 case-control sets)        

Alcohol intake (12g/day) 1.03 (0.87-1.23) 0.72 1.97 (0.93-4.17) 0.08 0.45 

Alcohol intake (1-SD (log2)) 0.67 (0.42-1.07) 0.09 1.23 (0.53-2.87) 0.63 0.40 

Unknown compound (1-SD (log2)) 2 0.99 (0.59-1.67) 0.97 0.84 (0.23-2.99) 0.78 0.40 

2-hydroxy-3-methylbutyric acid (1-SD 
(log2)) 3 3.76 (1.69-8.35) 0.001 2.63 (0.66-10.4) 0.17 0.50 

Pancreatic cancer, EPIC  
(152 case-control sets) 

Men  
(n=60 case-control sets) 

Women  

(n=92 case-control sets) 
 

Alcohol intake (12g/day) 1.15 (0.89-1.50) 0.29 0.86 (0.59-1.24) 0.41 0.27 

Alcohol intake (1-SD (log2)) 1.27 (0.73-2.21) 0.40 0.87 (0.58-1.31) 0.50 0.30 

Unknown compound (1-SD (log2)) 2 2.23 (1.02-4.87) 0.05 0.96 (0.70-1.30) 0.77 0.06 

2-hydroxy-3-methylbutyric acid (1-SD 
(log2)) 3 

2.02 (0.95-4.28) 0.07 1.52 (0.98-2.37) 0.06 0.88 

1 Models for hepatocellular carcinoma (HCC) were adjusted for body mass index (BMI, kg/m2), waist 

circumference (cm), recreational and household physical activity (Met-hours/week), a composite variable 

comprising smoking status and intensity (Never, Current: 1-15 cig/day, Current: 16-25 cig/day, Current: 26+ 

cig/day, Former: quit <= 10 years, Former: quit 11-20 years, Former: quit 20+ years, Current, occasional 

pipe/cigar use, Current/Former: missing, Unknown), level of educational attainment, and coffee intake 

(grams/day, log2-transformed); models for pancreatic cancer were adjusted for BMI (kg/m2), sex-specific 

physical activity categories and smoking;  

2 Unknown compound (m/z=231.0839);  

3 2-hydroxy-3-methylbutyric acid (m/z=203.0227). 

 
* Does EPIC have any data on smoking intensity that can be included as a covariate? 
 
Thank you for highlighting this. There was a mistake in our table 3 footnote regarding covariate 
adjustment for smoking in the EPIC nested case-control studies. We did in fact adjust for a 
comprehensive composite variable comprising smoking status and intensity (Never, Current: 1-15 



cig/day, Current: 16-25 cig/day, Current: 26+ cig/day, Former: quit <= 10 years, Former: quit 11-20 
years, Former: quit 20+ years, Current, occasional pipe/cigar use, Current/Former: missing, Unknown). 
We have revised the table footnote accordingly. At the same time, we updated the models for 
pancreatic cancer and HCC since these mistakenly used the feature residuals rather than the log2 
value of feature signals. ORs did not meaningfully change, and we have updated all ORs in the tables 
and text. 
 
Minor comments: 
* The authors may want to define what m/z, f1 and f2 stand for when mentioned first in the text. 
 
We have made these changes to the text on pages 7, 8, and 9. 
 
* Page 8, line 2: abd ackground - typo? 
 
Thank you for catching this. It now reads “and background”. 
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Abstract  

 

Background: Alcohol is an established risk factor for several cancers, but modest alcohol-cancer 

associations may be missed due to measurement error in self-reported assessments. Biomarkers of 

habitual alcohol intake may provide novel insight into the relationship between alcohol and cancer risk. 

Methods: Untargeted metabolomics was used to identify metabolites correlated with self-reported 

habitual alcohol intake in a discovery dataset from the European Prospective Investigation into Cancer 

and Nutrition (EPIC; n=454). Significant correlations were tested in independent datasets of controls from 

case-control studies nested within EPIC (n=280) and the Alpha-Tocopherol, Beta-Carotene Cancer 

Prevention (ATBC; n=438) study. Conditional logistic regression was used to estimate odds ratios (OR) 

and 95% confidence intervals for associations of alcohol-associated metabolites and self-reported alcohol 

intake with risk of pancreatic cancer, hepatocellular carcinoma (HCC), liver cancer, and liver disease 

mortality in the contributing studies.  

Results: Two metabolites displayed a dose-response association with self-reported alcohol intake: 2-

hydroxy-3-methylbutyric acid and an unidentified compound (m/z(+):231.0839). A 1-SD (log2) increase 

in levels of 2-hydroxy-3-methylbutyric acid was associated with risk of HCC (OR=2.54; 1.51-4.27) and 

pancreatic cancer (OR=1.43; 1.03-1.99) in EPIC and liver cancer (OR=2.00; 1.44-2.77) and liver disease 

mortality (OR=1.98; 1.51-2.60) in ATBC. Conversely, a 1-SD (log2)  increase in questionnaire-derived 

alcohol intake was not associated with HCC or pancreatic cancer in EPIC or liver cancer in ATBC but 

was associated with liver disease mortality (OR=2.19; 1.60-2.86) in ATBC.  

Conclusions: 2-Hydroxy-3-methylbutyric acid is a candidate biomarker of habitual alcohol intake that 

may advance the study of alcohol and cancer risk in population-based studies. 

 

Keyword: alcohol intake, untargeted metabolomics, 2-hydroxy-3-methylbutyric acid, biomarkers, EPIC, 

ATBC.  
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In 2016, an estimated 2.8 million deaths, corresponding to 6.8% and 2.2% of age-standardized 

deaths in men and women, respectively, were attributed to alcohol use worldwide [1]. Excessive 

alcohol consumption is an established risk factor for many acute and chronic health conditions [2], 

including cancers of the upper aerodigestive tract, female breast, liver, colon, and rectum [3]. 

However, the relationship of alcohol, particularly light-to-moderate alcohol consumption, with other 

cancer sites remains controversial [4].  

Self-reported alcohol intake is, like other dietary factors, prone to underreporting [5]. 

Validation studies have shown larger correlations for alcohol intake measured via dietary 

questionnaire and 24-hour dietary recall than those many other dietary constituents; however, this 

information may not reflect the level of accuracy since alcohol is a sensitive exposure, making it 

susceptible to under-reporting across self-reported assessments. Consequently, the extent and 

distribution of exposure misclassification is unknown [6], and it is likely that observed associations 

between alcohol use and disease risk in prospective studies are attenuated and that estimates of 

alcohol-attributable death and disease are underestimated. Biomarkers of liver function and oxidative 

stress are used to study alcohol-related liver injury and alcoholic liver disease (ALD) [7, 8], but most 

alcohol consumers, particularly light-to-moderate consumers, will never manifest ALD. There are also 

biomarkers of recent (e.g., ethyl glucuronide) and heavy alcohol use (e.g., carbohydrate deficient 

transferrin and phosphatidylethanol (PEth)) [9-11]. However, biomarkers of habitual alcohol use, 

including light-to-moderate drinking, are needed to better assess alcohol exposure in epidemiological 

studies and to improve risk estimates for diseases including cancer where modest associations may 

exist.  

Metabolomics is a powerful tool for discovering dietary biomarkers. When used in an 

untargeted mode, it can detect a wide range of compounds in biological samples including metabolites 

formed during digestion, metabolism, and microbial fermentation [12, 13], making it well-suited for 

discovering novel biomarkers of exposure or response to habitual alcohol consumption. Herein we 

applied a multi-stage design, using untargeted metabolomics and independent discovery and test 

datasets, to identify serum metabolites associated with habitual alcohol consumption among free-

living individuals with a wide range of intake. We then estimated the associations of these candidate 
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alcohol biomarkers with risk of pancreatic cancer, liver cancers, and liver disease mortality in the 

European Prospective Investigation into Cancer and Nutrition (EPIC) study and the Alpha-

Tocopherol, Beta-Carotene Cancer Prevention Study (ATBC). 

 

METHODS 

 

Study design 

EPIC recruitment and study procedures, including dietary assessment methods and blood 

collection are described extensively elsewhere [14]. Briefly, EPIC is a large cohort study of over half a 

million men and women recruited between 1992 and 2000 in 23 European centers. Diet, including 

average daily alcohol intake, over the 12 months before enrolment was assessed by validated country-

specific food frequency questionnaires (FFQ) designed to capture local dietary habits with high 

compliance. Country-specific self-reported alcohol intake was calculated based on the estimated 

average glass volume and ethanol content for wine, beer, cider, sweet liquor, distilled spirits, or 

fortified wines, using information collected in standardized 24-hr dietary recalls from a subset of the 

cohort [15]. The correlation between alcohol intake estimated by FFQ and 24-hour dietary recall was 

0.79 [16]. Blood samples were collected and stored at -196ºC under liquid nitrogen at the International 

Agency for Research on Cancer (IARC) for all countries except Sweden (-80°C freezers), and 

Denmark (-150°C, nitrogen vapor).  

Our study included a discovery and two independent test datasets (Figure 1). The discovery 

set (n=454) was nested in the EPIC cross-sectional study [17, 18]. The first test set included control 

subjects from two EPIC nested case-control studies of hepatocellular carcinoma (HCC; n=128) and 

pancreatic cancer (n=152) with untargeted metabolomics data [19-21]. The second test set included 

two nested case-control studies in the ATBC cohort of male Finnish smokers [22]. In ATBC, 

participants reported on demographics, lifestyle, and medical history via questionnaires and donated a 

fasting serum sample at baseline, which was stored at -70°C. For this study, we excluded controls (as 

well as cases) with missing self-reported alcohol intake (n=72) and those with samples that failed 

laboratory analysis (n=18); of the remaining 864 observations, n=438 were controls . 
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 In EPIC, non-metastatic incident HCC (n=128) and pancreatic cancer (n=152) cases, were 

matched 1:1 with cancer-free controls on study center, sex, age at blood collection ( ± 1 year), date 

( ± 6 months) and time of the day ( ± 2 h) of blood collection, fasting status, and, for women, 

exogenous hormone use. Follow-up was based on a combination of methods, including health 

insurance records, registries, and active follow-up [14]. Approval for the EPIC study was obtained 

from the IARC ethics review board (Lyon, France) and local review bodies of participating 

institutions. In ATBC, participants were passively followed during the post-intervention period via 

linkage with the Finnish Cancer Registry and death registry. Liver cancer (n=229) and liver disease 

mortality (n=248) cases were individually matched 1:1 with controls, selected by incidence 

density sampling, on baseline age (+/-5 years) and serum draw date (+/-30 days) [23]. After excluding 

ATBC cases and controls with missing data, 192 and 199 complete liver cancer and liver disease 

mortality case-control set remained. Approval for the ATBC study was obtained from the Institutional 

Review Boards of National Cancer Institute (Bethesda, Maryland), and the National Public Health 

Institute of Finland. EPIC and ATBC studies were conducted according to the guidelines of the 

Declaration of Helsinki; all participants provided written informed consent. 

 

Metabolomics analyses 

Sample analysis, data pre-processing, matching of features across datasets, and compound 

identification are described in detail in the Supplementary Methods. Briefly, all samples were 

analyzed by the same laboratory at IARC with a UHPLC-QTOF-MS system (1290 Binary LC system, 

6550 QTOF mass spectrometer; Agilent Technologies, Santa Clara, CA) using reversed phase 

chromatography and electrospray ionization. Raw data were processed using Agilent MassHunter 

Qualitative analysis B.06.00, ProFinder B.08.00, and Mass Profiler Professional B.12.1 software with 

Agilent’s recursive feature finding procedure. The m/z (mass to charge ratio) values of the features of 

interest were searched against the Human Metabolome Database (HMDB) [24] and METLIN 

[25].Compound identity was confirmed by comparison of chemical standards and representative 

samples.  
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Statistical analyses 

We used an integrated workflow for metabolomics data analysis [26]. Features detected in 

<50% of the discovery set samples and background features, (i.e., feature intensities present in all 

blanks with ratio of geometric mean intensities of non-blank:blank samples <5) were excluded. 

Feature intensities were log2-transformed. Study participants with >50% missing features and those 

identified as outliers by a PCA-based approach were excluded [27]. Missing values were imputed 

within each plate by a K-nearest neighbours method, with K=10 [28]. Last, feature intensities 

measured across plates within any single batch were normalised by applying a random forest-based 

approach to correct for unwanted variation [29]. In the EPIC discovery set and test sets, these steps 

were applied on feature matrices acquired in positive and negative modes separately. In ATBC, these 

steps were applied on each batch.  

In the discovery and test sets, self-reported alcohol intake (g/day) was adjusted for age, sex, 

country (in EPIC only), body mass index (BMI, kg/m2), smoking status and intensity, coffee 

consumption (g/day, log-transformed) via the residual method in linear regression models [30]. Coffee 

drinking and coffee-associated metabolites have been strongly associated with lower risk of liver 

cancer and liver disease mortality in ATBC [23, 31]; for consistency, coffee drinking was considered a 

potential confounder across discovery and test sets. Residuals for feature intensities were also adjusted 

for well plate number within the analytical batch, position within the plate (row and column indexes), 

and the study (EPIC HCC or pancreatic cancer) or batch indicator (ATBC) as random effects. We used 

the principal component partial-R2 (PC-PR2) method [32] to quantify the contribution of alcohol and 

potential confounders to the variability of the 67 features intensities that were statistically significantly 

associated with self-reported alcohol intake in the discovery set [33]. 

We calculated Pearson correlation coefficients using the residuals for self-reported alcohol 

intake and for feature intensities; correlations with a false discovery rate (FDR)-corrected p-

value<0.05 were considered statistically significant, and each feature in this set (f1) was carried 

forward for testing in our multistage design. After the discovery stage, f 1 residual-adjusted correlation 

coefficients were computed and corrected by the more conservative Bonferroni method . The 

correlations between f1 features and self-reported alcohol with a p-value <0.05/f 1 were considered 
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statistically significant comprised a second set of features (f2) that were carried forward to the next 

stage in ATBC. Again, correlations between the residuals of self-reported alcohol intake and of feature 

intensities were calculated. The linearity of the association between standardized residuals of 2-

hydroxy-3-methylbutyric acid and self-reported alcohol intake was evaluated with cubic regression 

splines with 5 knots [34], by comparing the log-likelihood of models with and without the non-linear 

terms to a chi-distribution with 2 degrees of freedom. 

We estimated odds ratios (OR) and 95% confidence intervals (95% CI) for candidate features 

and HCC and pancreatic cancer in EPIC and liver cancer and fatal liver disease in ATBC using 

conditional logistic regression models. In crude models (conditioned on the matching criteria only), 

multivariable models, and multivariable models additionally adjusting for self-reported alcohol intake, 

log2-transformed feature intensities were centered and scaled (i.e., mean=0, standard deviation=1) to 

ensure comparability of OR across different endpoints.  

All statistical analyses were performed using the Statistical Analysis Software, release 9.4 

(SAS Institute Inc., Cary, NC, USA) and R version 3.6.0 [35]. 

 

RESULTS 

Population characteristics 

Baseline participant characteristics are presented in Table 1. In the EPIC discovery set, most 

participants were women (57.5%) and never (52.2%) or former (26.4%) smokers. In the set of EPIC 

HCC and pancreatic cancer controls , there was a higher percentage of men (52.7%) and a lower 

percentage of never smokers (46.2%) than in the discovery set. In the set of ATBC liver cancer and 

liver disease death controls , all participants were Finnish men and current smokers. Median self-

reported alcohol intake was 10.0 g/day, 6.6 g/day, and 11.5 g/day in the EPIC discovery, EPIC and 

ATBC test sets, respectively.  

 

Biomarker discovery analysis 

After excluding participant samples identified as outliers or as having too many missing 

values, the final discovery set (stage 1) comprised 451 and 452 study participants in positive and 
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negative ionization mode datasets, respectively. The final EPIC test set (stage 2) comprised 271 and 

277 study participants in positive and negative ionization datasets, respectively. Residuals of 205 

features in the discovery set were significantly correlated with residuals of self-reported alcohol intake 

(163 features in positive and 42 features in negative ionization mode; Figure 1), with correlation 

coefficients ranging from -0.29 to 0.50 in log-log plots (Table S1).  

Of the 205 features in the discovery set, 51 features in positive and 16 features in negative 

ionization mode (f 1=67) matched by mass and retention time with equivalent features in the EPIC test 

set, and PC-PR2 analyses showed that self-reported alcohol intake explained >7% of variability in the 

feature intensities (f 1=67; Figure 2). Residuals of f2=10 features were statistically significantly 

correlated with residuals of self-reported alcohol intake (Table 2). The first two features corresponded 

to a compound that could not be unequivocally identified, but had an identical mass, isotope pattern, 

ion formation (mostly [M+Na]+ and [M+HCOOH-H]-) and retention time to ethyl glucoside 

(HMDB0029968) [37]. However, chromatograms (Supplementary Methods) indicated a lack of 

specificity, and although fragmentation of the [M+Na]+ ion could not be induced, our results suggest 

the unknown is a combination of ethyl-α-D-glucoside, ethyl-β-D-glucoside, and an additional 

structural isomer. The remaining eight features corresponded to a single compound, which was 

confirmed by comparison with an authentic standard as 2-hydroxy-3-methylbutyric acid 

(HMDB0000407). Residuals of all seven positive ionization mode features selected in the EPIC test 

set were positively correlated with residuals of self-reported alcohol in the ATBC test set (stage 3; 

Table 2).  

For subsequent analyses, the feature with the greatest chromatographic intensity (i.e., main 

feature) for each metabolite was used (Table 2). In each of the three datasets, the residuals of the main 

features for the two candidate metabolites were significantly correlated, with correlation coefficients 

ranging from 0.23 in the EPIC discovery set to 0.54 in the ATBC test set. The test for non-linearity 

with cubic regression splines using restricted regression spline was borderline significant for residuals 

of 2-hydroxy-3-methylbutyric acid and self-reported alcohol intake (p=0.06; Figure S1).  

 

Disease risk associations  
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In multivariable models (Table 3), 2-hydroxy-3-methylbutyric acid was associated with 

increased odds of HCC (OR1-SD=2.54: 1.51, 4.27) and pancreatic cancer (OR1-SD=1.43: 1.03, 1.99) in 

EPIC, as well as liver cancer (OR1-SD=2.00; 1.44, 2.77) and fatal liver disease (OR1-SD=2.16; 1.63, 

2.86) in ATBC; associations remained following adjustment for self-reported alcohol intake. The 

unknown candidate biomarker was associated with increased odds of liver cancer (OR1-SD=1.70; 95% 

CI: 1.29, 2.25) and liver disease mortality (OR=1.98; 95% CI: 1.51-2.60) in ATBC, and these 

associations were also independent of self-reported alcohol intake. However, the unknown was not 

associated with HCC or pancreatic cancer in EPIC. Self-reported alcohol intake was not associated 

with HCC (OR1-SD=0.78; 95% CI: 0.56, 1.09) or pancreatic cancer risk (OR1-SD=1.03; 0.77, 1.39) in 

EPIC, but was strongly associated with liver disease mortality (OR1-SD=2.19: 95% CI, 1.60, 2.98) in 

ATBC. The alcohol findings are in line with previously published EPIC and ATBC analyses [36-38]. 

 

DISCUSSION 

Using untargeted metabolomics data from a discovery and two independent sets of cancer-free 

controls to validate correlations between candidate metabolite feature and self-reported alcohol, we 

found two serum metabolites that were highly correlated with self-reported habitual alcohol intake. 

One compound was identified as 2-hydroxy-3-methylbutyric acid; the other remains unknown but is 

likely a combination of isomers of ethyl glucoside. Of note, ethyl-α-D-glucoside is a known 

constituent of some alcoholic beverages [39]. Notably, 2-hydroxy-3-methylbutyric acid was strongly 

associated with HCC and pancreatic cancer risks in EPIC, and with liver cancer and fatal liver disease 

in ATBC, and these associations remained after adjustment for self-reported alcohol intake. This 

suggests that 2-hydroxy-3-methylbutyric acid, which is not a constituent or a by-product of alcohol 

intake, may reflect a relevant biological response to alcohol intake that potentially plays a role in the 

aetiology of multiple chronic diseases. In contrast, self-reported alcohol intake was only consistently 

associated with liver disease mortality risk in ATBC. Further research is needed to elucidate the 

potential metabolic cascade from alcohol drinking to 2-hydroxy-3-methylbutyric acid to disease and to 

replicate and extend the observed associations. Additionally, targeted metabolomics panels that can 

simultaneously measure multiple alcohol-related metabolites using authentic standards, including 2-
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hydroxy-3-methylbutyric acid and related compounds, should be developed to measure absolute 

concentrations, which will enable comparisons and pooling of data across studies, supporting 

replication and improving risk estimation; this is especially important for diseases such as pancreatic 

cancer, for which the literature is suggestive [40] yet inconsistent [41].  

Prior population-based studies have used a targeted or semi-targeted metabolomics approach 

to identify alcohol-specific metabolomic profiles of self-reported alcohol intake. Three studies, 

including one in EPIC, used targeted metabolomics, measuring 123 to 163 metabolites, to gain insight 

into metabolic pathways linking alcohol drinking to human health [42-44]; ten alcohol-metabolite 

associations were common to all three studies and included phosphatidylcholines (PCs), LysoPCs, 

acylcarnitines and sphingomyelins. Of note, PCs contribute to the formation of PEth in human tissues 

[45], which is a known biomarker of recent and heavy alcohol consumption used to diagnose alcohol 

abuse [46, 47]. A fourth targeted study used nuclear magnetic resonance to evaluate cross-sectional 

associations of 76 lipids, fatty acids, amino acids, ketone bodies and gluconeogenesis-related 

metabolites with alcohol consumption [48]. The endogenous metabolites identified by these targeted 

platforms did not overlap with the compounds most highly correlated with self-reported alcohol intake 

in our untargeted study, underscoring the breadth of the metabolome and discovery potential of 

untargeted metabolomics methods.  

Metabolomics analyses that limit biomarker discovery to previously annotated compounds 

have also identified several alcohol-related biomarkers. For example, using prediagnostic serum 

samples from a nested breast cancer case-control study within a U.S. cohort, self-reported alcohol 

intake was associated with 16 of the 617 annotated metabolites, including 2-hydroxy-3-methylbutyric 

acid, 2,3-dihydroxyisovaleric acid (i.e., 2,3-hydroxy-3-methylbutyric acid), ethyl glucuronide and 

several endogenous metabolites related to androgen metabolism [49]. Other cross-sectional analyses, 

measuring hundreds of metabolites, also found associations of 2-hydroxy-3-methylbutyric acid, 2,3-

dihydroxyisovaleric acid (i.e., 2,3-hydroxy-2-methylbutyric acid)  and ethyl glucuronide with self-

reported  alcohol intake using prediagnostic serum [50, 51]. However, these studies did not test 

associations in multiple, independent datasets, and estimated correlations in cases and controls 

combined . One study, which reported using discovery and replication sets, evaluated associations 
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between self-reported alcohol intake and 356 known metabolites among 1500 African Americans and 

carried significant metabolites forward for testing in a smaller set of 477 African Americans [52]. This 

study found that alcohol was associated with five 2-hydroxybutyrate-related metabolites including 2-

hydroxy-3-methylbutyric acid [52]. Also using a multi-stage design, a Japanese study of 107 

metabolites identified positive associations between 2-hydroxybutyric acid and self-reported alcohol 

intake in a discovery set and independent test set  [53].  

The production of 2-hydroxy-3-methylbutyric acid and other hydroxybutyric acid-related 

metabolites is linked to the rate of hepatic glutathione synthesis, which can increase considerably in 

response to oxidative stress or detoxification of xenobiotics in the liver [54]. A targeted metabolomics 

investigation in EPIC found evidence suggesting that glutathione metabolism is involved in the 

development of HCC [20]. Additionally, 2-hydroxy-3-methylbutyric acid is a product of branched-

chain amino acid metabolism, which has been linked to alcohol drinking [53, 55]. Finally, prior 

research on metabolite variability reported 1-year intraclass correlation coefficients for 2-hydroxy-3-

methylbutyric acid (i.e., alpha-hydroxyisovalerate) ranging from 0.76 to 0.49 in independent samples 

of 60 Chinese women and 30 US men and women, respectively [56], suggesting low to moderate 

within-subject variability (i.e., good to moderate reliability) over one year. 

To our knowledge, this study is unique in its untargeted metabolomics approach without 

preselected metabolites and its use of a multi-stage design to test the associations of thousands of 

metabolite features with self-reported alcohol intake in a large discovery dataset and then retest 

candidate metabolite features in two independent sets of cancer-free controls. By considering nearly 

7,000 features, many of which are correlated, we greatly increased the number of potential candidates, 

but we also incurred stronger penalisation for multiple testing. Consequently, our approach may have 

missed features that did not meet stringent statistical significance thresholds.  A strength of our 

approach was the use of three large independent datasets although matching features across sets may 

have resulted in the loss of relevant information. Other potential limitations relate to generalizability, 

measurement error, and changes in alcohol use over time. Circulating metabolite levels reflect 

environmental exposures as well as host and microbial metabolism [57-59], and identification of 

candidate biomarkers that are sufficiently specific to ethanol and generalizable to diverse populations 
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is challenging. Measurement error, both systematic and random, is inherent to self-reported 

assessments [60-62] and likely biases association estimates in aetiological studies as well as biomarker 

discovery studies. Additionally, self-reported alcohol intake and blood measures were assessed in each 

study at baseline only; therefore, we are unable to account for changes in alcohol intake or metabolites 

over time. Despite our use of cutting-edge untargeted metabolomics methods, a robust study design, 

and an aetiological component to evaluate the associations of our candidate biomarkers with disease 

outcomes, we cannot dismiss the possibility that our findings were impacted by measurement error in 

self-reported alcohol intake.  

In summary, we observed robust correlations between self-reported habitual alcohol intake 

and 2-hydroxy-3-methylbutyric acid and an unidentified compound in a discovery set and two 

independent test sets of cancer-free participants. Associations for 2-hydroxy-3-methylbutyric acid with 

risk of HCC and pancreatic cancer in the EPIC study and with liver cancer in ATBC were stronger 

than those for either self-reported alcohol intake or the unidentified compound. Both candidate 

biomarkers were associated with liver endpoints independent of self-reported alcohol intake, 

indicating value beyond being correlates of intake. In conclusion, 2-hydroxy-3-methylbutyric acid is a 

promising candidate biomarker for studying the relationship between habitual alcohol intake and 

health [49-52], but further research, preferably in the context a randomized-controlled trial, is needed 

to better characterize the relationship between 2-hydroxy-3-methylbutyric acid and alcohol at varying 

levels of intake. 
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Figure legends 

 

Figure 1. Flowchart of the multi-stage study, displaying features and samples size of the EPIC cross-

sectional study that was used as a discovery set (stage 1 and the independent sets of cancer-free 

controls from EPIC (stage 2) and ATBC (stage 3) (blue box), as well as of the aetiological analyses in 

nested-case-control studies (red box). 

 

Figure 2. PC-PR2 (Principal Component Partial R2) analysis to quantify the contribution of potential 

confounder variables to the variability of the set of f1=67 feature intensities that were statistically 

significantly associated to alcohol intake in the discovery set.  
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Table 1. Descriptive statistics of the EPIC and ATBC samples used to identify and confirm associations of metabolite features with self-reported alcohol 

intake.  

 EPIC Discovery (stage 1) 1 EPIC controls (stage 2) 2 ATBC controls (stage 3) 3 

 (n=454) (n=280) (n=438) 

Men (%) 42.5 52.7 100 

BMI (median kg/m2; 10-90th %) 25.8 (20.9-31.6) 26.6 (20.7-34.1) 26.2 (22.5-31.3) 

Age (median years; 10-90th %) 55.2 (42.5-63.9) 59.4 (49.0-68.6) 56.0 (51.0-63.0) 

Smoking status (%)    

Current 18.5 19.2 100 

Former 26.4 33.5  

Never 52.2 46.2  

Unknown 2.9 1.1  

Smoking intensity (median cig/day; 10-90th %) 11.5 (2-26) 15 (4-30) 20 (10-30) 

Country (%)    

France  14.5 0.4  

Italy  34.8 18.5  

Spain  - 10.0  

United Kingdom - 17.1  

The Netherlands - 10.3  

Greece 12.3 10.7  

Germany  38.3 24.9  

Denmark - 8.2  

Finland - - 100 

Alcohol non-drinkers (%) 4 8 14 9 

Alcohol intake (median g/day; 10th-90th %)    

Men 21.4 (1.3-50.4) 14.9 (1.0-51.7) 11.5 (0.2-42.1) 

Women 5.2   (0.02-24.9) 2.0 (0.01-23.3) -- 

Coffee intake (median g/day; 10th-90th %) 146.3 (21.4, 580.2) 190 (3, 857) 550 (220-1,100) 

1EPIC cross-sectional sample;  
2Controls from both liver and pancreatic cancer EPIC nested case-control studies; 
3Controls from liver cancer and liver disease mortality ATBC nested case-control studies excluding those with missing data on alcohol 

intake;    
4Alcohol non-drinkers are considered as those with alcohol intake ≤0.1g/day. 
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Table 2. Feature-specific intensity and reproducibility (coefficient of variation=CV) in quality control (QC) samples, and adjusted Pearson correlation coefficients (r) with 

alcohol intake in the discovery and independent test sets. 

    
QC samples 1 

(n=38) 

EPIC Discovery  

(stage 1; n=454) 2 

EPIC controls 

(state 2; n=280) 3 

ATBC controls 

(stage 3; n=438) 

m/z 4 
RT 5 

(min) 
Method Associated metabolite 

Mean 

intensity 

CV 

(%) 
r p-value q-value 6 r p-value 7 r p-value 8 

231.0839 9 0.89 RP+ Unknown 58378 18.5 0.41 1.2 x 10 -19 4.4 x 10-16 0.38 7.0 x 10-11 0.40 6.3 x 10-18 

253.0925 0.93 RP- Unknown 11140 13.2 0.39 2.6 x 10-18 4.6 x 10-15 0.32 3.2 x 10-8 -10 - 

203.0227 9 2.78 RP+ 2-hydroxy-3-methylbutyric acid 204079 14.8 0.26 1.9 x 10-8 2.0 x 10-6 0.24 5.3 x 10-5 0.40 1.1 x 10-18 

217.9895 2.78 RP+ 2-hydroxy-3-methylbutyric acid 36539 11.7 0.30 9.0 x 10-11 2.1 x 10-8 0.25 2.3 x 10-5 0.38 2.4 x 10-16 

250.0134 2.78 RP+ 2-hydroxy-3-methylbutyric acid 122838 12.5 0.28 9.0 x 10-10 1.6 x 10-7 0.27 8.2 x 10-6 0.40 3.5 x 10-18 

221.0605 2.78 RP+ 2-hydroxy-3-methylbutyric acid 56192 11.2 0.28 2.6 x 10-9 3.2 x 10-7 0.25 2.1 x 10-5 0.39 1.9 x 10-17 

218.9958 2.78 RP+ 2-hydroxy-3-methylbutyric acid 115590 11.7 0.28 1.3 x 10-9 2.1 x 10-7 0.26 1.8 x 10-5 0.40 1.7 x 10-18 

235.0479 2.78 RP+ 2-hydroxy-3-methylbutyric acid 34447 15.5 0.20 2.3 x 10-5 1.0 x 10-3 0.26 2.1 x 10-5 0.38 4.2 x 10-16 

117.0559 2.78 RP- 2-hydroxy-3-methylbutyric acid 211842 12.1 0.28 1.3 x 10-9 2.2 x 10-7 0.28 2.0 x 10-6 -10 - 

261.9788 2.78 RP- 2-hydroxy-3-methylbutyric acid 15985 11.9 0.27 7.2 x 10-9 8.3 x 10-7 0.28 2.7 x 10-6 -10 - 

1 Quality control samples within the discovery set; 
2 The analyses of features acquired in positive and negative modes used data from 451 and 452 participants, respectively, after the exclusion of outliers and samples with too 

many missing values;  
3 The analyses of features acquired in positive and negative modes used data from 271 and 277 participants, respectively, after the exclusion of outliers and samples with too 

many missing values;  
4 m/z= monoisotopic mass divided by the charge state values, as observed in the discovery set; 
5 Retention time; 
6 Q-values associated to False Discovery Rate (FDR) procedure to correct for multiple testing [63], alpha=0.05;  
7 Threshold for statistical significance corrected with Bonferroni method for multiple testing, equal to 0.0007463 (0.05/f 1, with f 1=67). 
8 Threshold for statistical significance corrected with Bonferroni method for multiple testing, equal to 0.007 (0.05/f 3, with f 3=7); 
9 Feature chosen for analysis of disease see Table 3;    
10 Feature not available in ATBC. 
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Table 3. Crude and adjusted odds ratios (OR, 95% CI) of self-reported alcohol intake (12 g/day) and the main features of the unknown compound and 2-

hydroxy-3-methylbutyric acid (per 1-SD) with hepatocellular carcinoma (HCC; 129 case-control sets) and pancreatic cancer (152 case-control sets) in EPIC, 

and with liver cancer (194 case-control sets) and liver disease mortality (201 case-control sets) in ATBC  

 Crude models Adjusted models1 Alcohol-adjusted models2 

  OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value 

HCC, EPIC (128 case-control sets)          

Alcohol intake (12g/day) 1.13 (1.00, 1.27) 0.05 1.04 (0.89, 1.20) 0.65    

Alcohol intake (1-SD (log2)) 0.93 (0.73, 1.20) 0.59 0.78 (0.56, 1.09) 0.14    

Unknown compound (1-SD (log2)) 3 1.27 (0.92, 1.76) 0.15 1.01 (0.66, 1.52) 0.98 1.23 (0.75, 2.01) 0.40 

2-hydroxy-3-methylbutyric acid (1-SD (log2)) 4 2.28 (1.52, 3.43) 7.0 x 10-5  2.54 (1.51, 4.27) 4.2 x 10-4 3.12 (1.74, 5.56) 4.2 x 10-4 

Pancreatic cancer, EPIC  

(152 case-control sets) 

         

Alcohol intake (12g/day) 1.07 (0.92, 1.25) 0.36 1.04 (0.88, 1.24) 0.65    

Alcohol intake (1-SD (log2)) 1.08 (0.83, 1.40) 0.58 1.03 (0.77, 1.39) 0.83    

Unknown compound (1-SD (log2)) 3 1.15 (0.92, 1.46) 0.22 1.10 (0.91, 1.41) 0.48 1.10 (0.83, 1.46) 0.50 

2-hydroxy-3-methylbutyric acid (1-SD (log2)) 4 1.43 (1.07, 1.92) 0.02 1.43 (1.03, 1.99) 0.03 1.46 (1.03, 2.06) 0.03 

Liver cancer, ATBC  

(192 case-control sets) 

         

Alcohol intake (12g/day) 1.25 (1.09, 1.43) 1.2 x 10-3 1.17 (1.01, 1.36) 0.03    

Alcohol intake (1-SD (log2)) 1.33 (1.05, 1.67) 0.016 1.23 (0.94, 1.60) 0.13    

Unknown compound (1-SD (log2)) 3 1.34 (1.07, 1.68) 0.01 1.70 (1.29, 2.25) 2.0 x 10-4 1.76 (1.28, 2.41) 5.0 x 10-4 

2-hydroxy-3-methylbutyric acid (1-SD (log2)) 4 2.08 (1.53, 2.82) 2.7 x 10-6 2.00 (1.44, 2.77) 3.4 x 10-5 2.07 (1.43, 2.98) 9.9 x 10-3 

Liver disease mortality, ATBC  

(199 case-control sets) 

         

Alcohol intake (12g/day) 1.38 (1.22, 1.55) 1.1 x 10-7  1.32 (1.16, 1.50) 1.6 x 10-5    

Alcohol intake (1-SD (log2)) 2.37 (1.78, 3.14) 2.8 x 10-8 2.19 (1.60, 2.98) 8.4 x 10-7    

Unknown compound (1-SD (log2)) 3 2.11 (1.63, 2.72) 1.0 x 10-8 1.98 (1.51, 2.60) 8.6 x 10-7  1.65 (1.24, 2.20) 7.0 x 10-4  

2-hydroxy-3-methylbutyric acid (1-SD (log2)) 4 2.26 (1.73, 2.95) 2.1 x 10-9  2.16 (1.63, 2.86) 9.6 x 10-8 1.85 (1.38, 2.48) 3.9 x 10-5 

1 Models for hepatocellular carcinoma (HCC) were adjusted for body mass index(BMI, kg/m2), waist circumference (cm), recreational and household physical activity 

(Met-hours/week), a composite variable for smoking status and intensity (Never, Current: 1-15 cig/day, Current: 16-25 cig/day, Current: 26+ cig/day, Former: quit <= 
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10 years, Former: quit 11-20 years, Former: quit 20+ years, Current, occasional pipe/cigar/ use, Current/Former: missing, Unknown), level of educational attainment, 

and coffee intake ((log2)grams/day); models for pancreatic cancer were adjusted for BMI (kg/m2), sex-specific physical activity categories and the composite variable 

for smoking status and intensity; ATBC liver cancer and fatal liver disease models were adjusted for age (years), BMI (kg/m2), leisure time physical activity, smoking 

intensity (cigarettes/day), level of educational attainment, and coffee intake ((log2)grams/day ); 

2 Models were further adjusted for self-reported alcohol intake ((log2)grams/day; 

3 Unknown compound (m/z=231.0839);  

4 2-hydroxy-3-methylbutyric acid (m/z=203.0227). 
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Abstract  

 

Background: Alcohol is an established risk factor for several cancers, but modest alcohol-cancer 

associations may be missed due to measurement error in self-reported assessments. The identification of 

bBiomarkers of habitual alcohol intake may enhance evidence on the role of alcohol in cancer onset 

provide novel insight into the relationship between alcohol and cancer risk. 

Methods: Untargeted metabolomics was used to identify metabolites correlated with self-reported 

habitual alcohol intake in a discovery dataset from the European Prospective Investigation into Cancer 

and Nutrition (EPIC; n=454). Significant correlations were tested in independent datasets of controls from 

case-control studies nested within EPIC (n=280) and the Alpha-Tocopherol, Beta-Carotene Cancer 

Prevention (ATBC; n=438) study. Conditional logistic regression was used to estimate odds ratios (OR) 

and 95% confidence intervals for associations of alcohol-associated metabolites and self-reported alcohol 

intake with risk of pancreatic cancer, hepatocellular carcinoma (HCC), liver cancer, and liver disease 

mortality in the contributing studies.  

Results: Two metabolites displayed a dose-response association with self-reported alcohol intake: 2-

hydroxy-3-methylbutyric acid and an unidentified compound (m/z(+):231.0839). A 1-SD (log2) increase 

in levels of 2-hydroxy-3-methylbutyric acid was associated with risk of HCC (OR=2.54; 1.51-4.27) and 

pancreatic cancer (OR=1.43; 1.03-1.99) in EPIC and liver cancer (OR=2.00; 1.44-2.77) and liver disease 

mortality (OR=1.98; 1.51-2.60) in ATBC. Conversely, a 1-SD (log2)  increase in questionnaire-derived 

alcohol intake was not associated with HCC or pancreatic cancer in EPIC or liver cancer in ATBC but 

was associated with liver disease mortality (OR=2.19; 1.60-2.86) in ATBC.  

Conclusions: 2-Hydroxy-3-methylbutyric acid is a candidate biomarker of habitual alcohol intake that 

may advance the study of alcohol and cancer risk in population-based studies. 

 

Formatted: Highlight



5 

 

Keyword: alcohol intake, untargeted metabolomics, 2-hydroxy-3-methylbutyric acid, biomarkers, EPIC, 

ATBC  



6 

 

In 2016, an estimated 2.8 million deaths, corresponding to 6.8% and 2.2% of age-standardized 

deaths in men and women, respectively, were attributed to alcohol use worldwide [1]. Excessive 

alcohol consumption is an established risk factor for many acute and chronic health conditions [2], 

including cancers of the upper aerodigestive tract, female breast, liver, colon, and rectum [3]. 

However, the relationship of alcohol, particularly light-to-moderate alcohol consumption, with other 

cancer sites remains controversial [4].  

Self-reported alcohol intake is, like other dietary factors, prone to underreporting [5]. 

Validation studies have shown larger correlations for alcohol intake measured via dietary 

questionnaire and 24-hour dietary recall than those for mostmany other dietary constituents; however, 

this information may not reflect the level of accuracy since alcohol is a sensitive exposure, making it 

susceptible to under-reporting across self-reported assessments. Consequently, the extent and 

distribution of exposure misclassification is unknown [6], and it is likely that observed associations 

between alcohol use and disease risk in prospective studies are attenuated and that estimates of 

alcohol-attributable death and disease are underestimated. Biomarkers of liver function and oxidative 

stress are used to study alcohol-related liver injury and alcoholic liver disease (ALD) [7, 8], but most 

alcohol consumers, particularly light-to-moderate consumers, will never manifest ALD. There are also 

biomarkers of recent (e.g., ethyl glucuronide) and heavy alcohol use (e.g., carbohydrate deficient 

transferrin and phosphatidylethanol (PEth)) [9-11]. However, biomarkers of habitual alcohol use, 

including light-to-moderate drinking, are needed to better assess alcohol exposure in epidemiological 

studies and to improve risk estimates for diseases including cancer where modest associations may 

exist.  

Metabolomics is a powerful tool for discovering dietary biomarkers. When used in an 

untargeted mode, it can detect a wide range of compounds in biological samples including metabolites 

formed during digestion, metabolism, and microbial fermentation [12, 13], making it well-suited for 

discovering novel biomarkers of exposure or response to habitual alcohol consumption. Herein we 

applied a multi-stage design, using untargeted metabolomics and independent discovery and test 

datasets, to identify serum metabolites associated with habitual alcohol consumption among free-

living individuals with a wide range of intake. We then estimated the associations of these candidate 
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alcohol biomarkers with risk of pancreatic cancer, liver cancers, and liver disease mortality in the 

European Prospective Investigation into Cancer and Nutrition (EPIC) study and the Alpha-

Tocopherol, Beta-Carotene Cancer Prevention Study (ATBC). 

 

METHODS 

 

Study design 

EPIC recruitment and study procedures, including dietary assessment methods and blood 

collection are described extensively elsewhere [14]. Briefly, EPIC is a large cohort study of over half a 

million men and women recruited between 1992 and 2000 in 23 European centers. Diet, including 

average daily alcohol intake, over the 12 months before enrolment was assessed by validated country-

specific food frequency questionnaires (FFQ) designed to capture local dietary habits with high 

compliance. Country-specific self-reported alcohol intake was calculated based on the estimated 

average glass volume and ethanol content for wine, beer, cider, sweet liquor, distilled spirits, or 

fortified wines, using information collected in standardized 24-hr dietary recalls from a subset of the 

cohort [15]. The correlation between alcohol intake estimated by FFQ and 24-hour dietary recall was 

0.79 [16]. Blood samples were collected and stored at -196ºC under liquid nitrogen at the International 

Agency for Research on Cancer (IARC) for all countries except Sweden (-80°C freezers), and 

Denmark (-150°C, nitrogen vapor).  

Our study included a discovery and two independent test datasets (Figure 1). The discovery 

set (n=454) was nested in the EPIC cross-sectional study [17, 18]. The first test set included control 

subjects from two EPIC nested case-control studies of hepatocellular carcinoma (HCC; n=128) and 

pancreatic cancer (n=152) with untargeted metabolomics data [19-21]. The second test set included 

two nested case-control studies in the ATBC cohort of male Finnish smokers [22]. In ATBC, 

participants reported on demographics, lifestyle, and medical history via questionnaires and donated a 

fasting serum sample at baseline, which was stored at -70°C. For this study, we excluded controls (as 

well as cases) with missing self-reported alcohol intake (n=72) and those with samples that failed 
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laboratory analysis (n=18); of the remaining 864 observations, n=438 were controls and were included 

in the second test set. 

Complete case-control sets were used to calculate risk estimates. In EPIC, non-metastatic 

incident HCC (n=128) and pancreatic cancer (n=152) cases, were matched 1:1 with cancer-free 

controls on study center, sex, age at blood collection ( ± 1 year), date ( ± 6 months) and time of the day 

( ± 2 h) of blood collection, fasting status, and, for women, exogenous hormone use. Follow-up was 

based on a combination of methods, including health insurance records, registries, and active follow-

up [14]. Approval for the EPIC study was obtained from the IARC ethics review board (Lyon, France) 

and local review bodies of participating institutions. In ATBC, participants were passively followed 

during the post-intervention period via linkage with the Finnish Cancer Registry and death registry. 

Liver cancer (n=229) and liver disease mortality (n=248) cases were individually matched 1:1 with 

controls, selected by incidence density sampling, on baseline age (+/-5 years) and serum draw date 

(+/-30 days) [23]. After excluding ATBC cases and controls with missing data, 192 and 199 complete 

case-control sets remained in our liver cancer and liver disease mortality case-control set 

remainedanalytic samples, repsectively. Approval for the ATBC study was obtained from the 

Institutional Review Boards of National Cancer Institute (Bethesda, Maryland), and the National 

Public Health Institute of Finland. EPIC and ATBC studies were conducted according to the 

guidelines of the Declaration of Helsinki; all participants provided written informed consent. 

 

Metabolomics analyses 

Sample analysis, data pre-processing, matching of features across datasets, and compound 

identification are described in detail in the Supplementary Methods. Briefly, all samples were 

analyzed by the same laboratory at IARC with a UHPLC-QTOF-MS system (1290 Binary LC system, 

6550 QTOF mass spectrometer; Agilent Technologies, Santa Clara, CA) using reversed phase 

chromatography and electrospray ionization. Raw data were processed using Agilent MassHunter 

Qualitative analysis B.06.00, ProFinder B.08.00, and Mass Profiler Professional B.12.1 software with 

Agilent’s recursive feature finding procedure. The m/z (mass to charge ratio) values of the features of 

interest were searched against the Human Metabolome Database (HMDB) [24] and METLIN 
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[25].Compound identity was confirmed by comparison of chemical standards and representative 

samples.  

 

Statistical analyses 

We used an integrated workflow for metabolomics data analysis [26]. Features detected in 

<50% of the discovery set samples and background features, (i.e., feature intensities present in all 

blanks with ratio of geometric mean intensities of non-blank:blank samples <5) were excluded. 

Feature intensities were log2-transformed. Study participants with >50% missing features and those 

identified as outliers by a PCA-based approach were excluded [27]. Missing values were imputed 

within each plate by a K-nearest neighbours method, with K=10 [28]. Last, feature intensities 

measured across plates within any single batch were normalised by applying a random forest-based 

approach to correct for unwanted variation [29]. In the EPIC discovery set and test sets, these steps 

were applied on feature matrices acquired in positive and negative modes separately. In ATBC, these 

steps were applied on each batch.  

In the discovery and test sets, self-reported alcohol intake (g/day) was adjusted for age, sex, 

country (in EPIC only), body mass index (BMI, kg/m2), smoking status and intensity, coffee 

consumption (g/day, log-transformed) via the residual method in linear regression models [30]. Coffee 

drinking and coffee-associated metabolites have been strongly associated with lower risk of liver 

cancer and liver disease mortality in ATBC [23, 31]; for consistency, coffee drinking was considered a 

potential confounder across discovery and test sets. Residuals for feature intensities were also adjusted 

for well plate number within the analytical batch, position within the plate (row and column indexes), 

and the study (EPIC HCC or pancreatic cancer control set) or batch indicator (ATBC control set) as 

random effects. We used the principal component partial-R2 (PC-PR2) method [32] to quantify the 

contribution of alcohol and potential confounders to the variability of the 67 features intensities that 

were statistically significantly associated with self-reported alcohol intake in the discovery set [33]. 

We calculated Pearson correlation coefficients using the residuals for self-reported alcohol 

intake and for feature intensities; correlations with a false discovery rate (FDR)-corrected p-

value<0.05 were considered statistically significant, and each feature in this set (f1) was carried 
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forward for testing in our multistage design. After the discovery stage, f 1 residual-adjusted correlation 

coefficients were computed and corrected by the more conservative Bonferroni method in the set 

independent set of EPIC controls. The correlations between f1 features and self-reported alcohol with a 

p-value <0.05/f 1 were considered statistically significant comprised a second set of features (f2) that 

were carried forward to the next stage in ATBC. Again, correlations between the residuals of self-

reported alcohol intake and of feature intensities were calculated. The linearity of the association 

between standardized residuals of 2-hydroxy-3-methylbutyric acid and self-reported alcohol intake 

was evaluated with cubic regression splines with 5 knots [34], by comparing the log-likelihood of 

models with and without the non-linear terms to a chi-distribution with 2 degrees of freedom. 

We estimated odds ratios (OR) and 95% confidence intervals (95% CI) for candidate features 

and HCC and pancreatic cancer in EPIC and liver cancer and fatal liver disease in ATBC using 

conditional logistic regression models. In crude models (conditioned on the matching criteria only), 

multivariable models, adjusting for potential confounders, and multivariable models additionally 

adjusting for self-reported alcohol intake, log2-transformed feature intensities were centered and scaled 

(i.e., mean=0, standard deviation=1) to ensure comparability of OR across different endpoints.  

All statistical analyses were performed using the Statistical Analysis Software, release 9.4 

(SAS Institute Inc., Cary, NC, USA) and R version 3.6.0 [35]. 

 

RESULTS 

Population characteristics 

Baseline participant characteristics are presented in Table 1. In the EPIC discovery set, most 

participants were women (57.5%) and never (52.2%) or former (26.4%) smokers. In the set of EPIC 

HCC and pancreatic cancer controls that was used first to test correlations between candidate features 

from the discovery set and self-reported alcohol intake, there was a higher percentage of men (52.7%) 

and a lower percentage of never smokers (46.2%) than in the discovery set. In the set of ATBC liver 

cancer and liver disease death controls that was used second to test correlations between remaining 

candidate features and self-reported alcohol intake, all participants were Finnish men and current 
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smokers. Median self-reported alcohol intake was 10.0 g/day, 6.6 g/day, and 11.5 g/day in the EPIC 

discovery, EPIC and ATBC test sets, respectively.  

 

Biomarker discovery analysis 

After excluding participant samples identified as outliers or as having too many missing 

values, the final discovery set (stage 1) comprised 451 and 452 study participants in positive and 

negative ionization mode datasets, respectively. The final EPIC test set (stage 2) comprised 271 and 

277 study participants in positive and negative ionization datasets, respectively. Residuals of 205 

features in the discovery set were significantly correlated with residuals of self-reported alcohol intake 

(163 features in positive and 42 features in negative ionization mode; Figure 1), with correlation 

coefficients ranging from -0.29 to 0.50 in log-log plots (Table S1).  

Of the 205 features in the discovery set, 51 features in positive and 16 features in negative 

ionization mode (f 1=67) matched by mass and retention time with equivalent features in the EPIC test 

set, and PC-PR2 analyses showed that self-reported alcohol intake explained >7% of variability in the 

feature intensities (f 1=67; Figure 2). Residuals of f2=10 features were statistically significantly 

correlated with residuals of self-reported alcohol intake (Table 2). The first two features corresponded 

to a compound that could not be unequivocally identified, but had an identical mass, isotope pattern, 

ion formation (mostly [M+Na]+ and [M+HCOOH-H]-) and retention time to ethyl glucoside 

(HMDB0029968) [37]. However, chromatograms (Supplementary Methods) indicated a lack of 

specificity, and although fragmentation of the [M+Na]+ ion could not be induced, our results suggest 

the unknown is a combination of ethyl-α-D-glucoside, ethyl-β-D-glucoside, and an additional 

structural isomer. The remaining eight features corresponded to a single compound, which was 

confirmed by comparison with an authentic standard as 2-hydroxy-3-methylbutyric acid 

(HMDB0000407). Residuals of all seven positive ionization mode features selected in the EPIC test 

set were positively correlated with residuals of self-reported alcohol in the ATBC test set (stage 3; 

Table 2).  

For subsequent analyses, the feature with the greatest chromatographic intensity (i.e., main 

feature) for each metabolite was used (Table 2). In each of the three datasets, the residuals of the main 
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features for the two candidate metabolites were significantly correlated, with correlation coefficients 

ranging from 0.23 in the EPIC discovery set to 0.54 in the ATBC test set. The test for non-linearity 

with cubic regression splines using restricted regression spline was borderline significant for residuals 

of 2-hydroxy-3-methylbutyric acid and self-reported alcohol intake (p=0.06; Figure S1).  

 

Disease risk associations  

In multivariable models (Table 3), 2-hydroxy-3-methylbutyric acid was associated with 

increased odds of HCC (OR1-SD=2.54: 1.51, 4.27) and pancreatic cancer (OR1-SD=1.43: 1.03, 1.99) in 

EPIC, as well as liver cancer (OR1-SD=2.00; 1.44, 2.77) and fatal liver disease (OR1-SD=2.16; 1.63, 

2.86) in ATBC, and these; associations remained following adjustment for self-reported alcohol 

intake. The unknown candidate biomarker was associated with increased odds of liver cancer (OR1-

SD=1.70; 95% CI: 1.29, 2.25) and liver disease mortality (OR=1.98; 95% CI: 1.51-2.60) in ATBC, and 

these associations were also independent of self-reported alcohol intake. However, the unknown was 

not associated with HCC or pancreatic cancer in EPIC. Self-reported alcohol intake was not associated 

with HCC (OR1-SD=0.78; 95% CI: 0.56, 1.09) or pancreatic cancer risk (OR1-SD=1.03; 0.77, 1.39) in 

EPIC, but was strongly associated with liver disease mortality (OR1-SD=2.19: 95% CI, 1.60, 2.98) in 

ATBC. The alcohol findings are in line with previously published EPIC and ATBC analyses [36-38]. 

 

DISCUSSION 

Using untargeted metabolomics data from a discovery and two independent sets of cancer-free 

controls to validate correlations between candidate metabolite feature and self-reported alcohol, we 

found two serum metabolites that were highly correlated with self-reported habitual alcohol intake. 

One compound was identified as 2-hydroxy-3-methylbutyric acid; the other remains unknown but is 

likely a combination of isomers of ethyl glucoside. Of note, ethyl-α-D-glucoside is a known 

constituent of some alcoholic beverages [39]. Notably, 2-hydroxy-3-methylbutyric acid was strongly 

associated with HCC and pancreatic cancer risks in EPIC, and with liver cancer and fatal liver disease 

in ATBC, and these associations remained even after adjustment for self-reported alcohol intake. This 

suggests that 2-hydroxy-3-methylbutyric acid, which is not a constituent or a by-product of alcohol 
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intake, may reflect a relevant biological response to alcohol intake that potentially plays a role in the 

aetiology of multiple chronic diseases. In contrast, self-reported alcohol intake was only consistently 

associated with risk of liver disease mortality risk in ATBC. Further research is needed to elucidate the 

potential metabolic cascade from alcohol drinking to 2-hydroxy-3-methylbutyric acid to disease and to 

replicate and extend the observed associations between higher levels of 2-hydroxy-3-methylbutyric 

acid and greater risk of pancreatic cancer and liver endpoints. Additionally, targeted metabolomics 

panels that can simultaneously measure multiple alcohol-related metabolites using authentic standards, 

including 2-hydroxy-3-methylbutyric acid and related compounds, should be developed to measure 

absolute concentrations, which will enable comparisons and pooling of data across studies, supporting 

replication and improving risk estimation; this is especially important for diseases such as pancreatic 

cancer, for which the literature is suggestive [40] yet inconsistent [41].  

Prior population-based studies have used a targeted or semi-targeted metabolomics approach 

to identify alcohol-specific metabolomic profiles of self-reported alcohol intake. Three studies, 

including one in EPIC, used targeted metabolomics, measuring 123 to 163 metabolites, to gain insight 

into metabolic pathways linking alcohol drinking to human health [42-44]; ten alcohol-metabolite 

associations were common to all three studies and included phosphatidylcholines (PCs), LysoPCs, 

acylcarnitines and sphingomyelins. Of note, PCs contribute to the formation of PEth in human tissues 

[45], which is a known biomarker of recent and heavy alcohol consumption used to diagnose alcohol 

abuse [46, 47]. A fourth targeted study used nuclear magnetic resonance to evaluate cross-sectional 

associations of 76 lipids, fatty acids, amino acids, ketone bodies and gluconeogenesis-related 

metabolites with alcohol consumption [48]. The endogenous metabolites identified by these targeted 

platforms did not overlap with the compounds most highly correlated with self-reported alcohol intake 

in our untargeted study, underscoring the breadth of the metabolome and discovery potential of 

untargeted metabolomics methods.  

Metabolomics analyses that limit biomarker discovery to previously annotated compounds 

have also identified several alcohol-related biomarkers. For example, using prediagnostic serum 

samples from a nested breast cancer case-control study within a U.S. cohort, self-reported alcohol 

intake was associated with 16 of the 617 annotated metabolites, including 2-hydroxy-3-methylbutyric 

Formatted: Highlight
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acid, 2,3-dihydroxyisovaleric acid (i.e., 2,3-hydroxy-3-methylbutyric acid), ethyl glucuronide and 

several endogenous metabolites related to androgen metabolism [49]. Other cross-sectional analyses, 

measuring hundreds of metabolites, also found associations of 2-hydroxy-3-methylbutyric acid, 2,3-

dihydroxyisovaleric acid (i.e., 2,3-hydroxy-2-methylbutyric acid)  and ethyl glucuronide with self-

reported  alcohol intake using prediagnostic serum [50, 51]. However, these studies did not test 

associations in multiple, independent datasets, and estimated correlations in cases and controls 

combined rather than in controls only. One study, which reported using discovery and replication sets, 

evaluated associations between self-reported alcohol intake and 356 known metabolites among 1500 

African Americans and carried significant metabolites forward for testing in a smaller set of 477 

African Americans [52]. This study found that alcohol was associated with five 2-hydroxybutyrate-

related metabolites including 2-hydroxy-3-methylbutyric acid [52]. Also using a multi-stage design, a 

Japanese study of 107 metabolites identified positive associations between 2-hydroxybutyric acid and 

self-reported alcohol intake in a discovery set and independent test set of Japanese men [53].  

The production of 2-hydroxy-3-methylbutyric acid and other hydroxybutyric acid-related 

metabolites is linked to the rate of hepatic glutathione synthesis, which can increase considerably in 

response to oxidative stress or detoxification of xenobiotics in the liver [54]. A targeted metabolomics 

investigation in EPIC found evidence suggesting that glutathione metabolism is involved in the 

development of HCC [20]. Additionally, 2-hydroxy-3-methylbutyric acid is a product of branched-

chain amino acid metabolism, which has been linked to alcohol drinking [53, 55]. Finally, prior 

research on metabolite variability in free-living populations over time reported 1-year intraclass 

correlation coefficients for 2-hydroxy-3-methylbutyric acid (i.e., alpha-hydroxyisovalerate) ranging 

from 0.76 to 0.49 in independent samples of 60 Chinese women and 30 US men and women, 

respectively [56], suggesting low to moderate within-subject variability (i.e., good to moderate 

reliability) over one year. 

To our knowledge, this study is unique in its untargeted metabolomics approach without 

preselected metabolites and its use of a multi-stage design to test the associations of thousands of 

metabolite features with self-reported alcohol intake in a large discovery dataset and then retest 

candidate metabolite features in two independent sets of cancer-free controls. By considering nearly 
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7,000 features, many of which are correlated, we greatly increased the number of potential candidates, 

but we also incurred stronger penalisation for multiple testing. Consequently, our approach may have 

missed features that did not meet stringent statistical significance thresholdsthresholds. for statistical 

significance. A strength of our approach was the use of three large independent datasets although 

matching features by mass and retention time across sets may have resulted in the loss of relevant 

information. Other potential limitations relate to generalizability, measurement error, and changes in 

alcohol use over time. Circulating metabolite levels reflect environmental exposures as well as host 

and microbial metabolism [57-59], and identification of candidate biomarkers that are sufficiently 

specific to ethanol and generalizable to diverse populations is challenging. Measurement error, both 

systematic and random, is inherent to self-reported assessments [60-62], including alcohol intake, and 

likely biases association estimates in not only aetiological studies, but also in as well as biomarker 

discovery studies. Additionally, self-reported alcohol intake and blood measures were assessed in each 

study at baseline only; therefore, we are unable to account for changes in alcohol intake or metabolites 

over time. Despite our use of cutting-edge untargeted metabolomics methods, a robust study design, 

and an aetiological component to evaluate the associations of our candidate biomarkers with disease 

outcomes, we cannot dismiss the possibility that our findings were impacted by measurement error in 

self-reported alcohol intake.  

In summary, we observed robust correlations between self-reported habitual alcohol intake 

and 2-hydroxy-3-methylbutyric acid and an unidentified compound in a discovery set and two 

independent test sets of cancer-free participants. Associations for 2-hydroxy-3-methylbutyric acid with 

risk of HCC and pancreatic cancer in the EPIC study and with liver cancer in ATBC were stronger 

than those for either self-reported alcohol intake or the unidentified compound, and b. Both candidate 

biomarkers were associated with liver endpoints independent of self-reported alcohol intake, 

indicating value beyond being correlates of self-reported alcohol intake. In conclusion, 2-hydroxy-3-

methylbutyric acid is a promising candidate biomarker for studying the relationship between habitual 

alcohol intake and health [49-52], but further research, preferably in the context a randomized-

controlled trial, is needed to better characterize the relationship between 2-hydroxy-3-methylbutyric 

acid and alcohol at varying levels of intake. 
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Figure legends 

 

Figure 1. Flowchart of the multi-stage study, displaying features and samples size of the EPIC cross-

sectional study that was used as a discovery set (stage 1 and the independent sets of cancer-free 

controls from EPIC (stage 2) and ATBC (stage 3) (blue box), as well as of the aetiological analyses in 

nested-case-control studies (red box). 

 

Figure 2. PC-PR2 (Principal Component Partial R2) analysis to quantify the contribution of potential 

confounder variables to the variability of the set of f1=67 feature intensities that were statistically 

significantly associated to alcohol intake in the discovery set.  
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Table 1. Descriptive statistics of the EPIC and ATBC samples used to identify and confirm associations of metabolite features with self-reported alcohol 

intake.  

 EPIC Discovery (stage 1) 1 EPIC controls (stage 2) 2 ATBC controls (stage 3) 3 

 (n=454) (n=280) (n=438) 

Men (%) 42.5 52.7 100 

BMI (median kg/m2; 10-90th %) 25.8 (20.9-31.6) 26.6 (20.7-34.1) 26.2 (22.5-31.3) 

Age (median years; 10-90th %) 55.2 (42.5-63.9) 59.4 (49.0-68.6) 56.0 (51.0-63.0) 

Smoking status (%)    

Current 18.5 19.2 100 

Former 26.4 33.5  

Never 52.2 46.2  

Unknown 2.9 1.1  

Smoking intensity (median cig/day; 10-90th %) 11.5 (2-26) 15 (4-30) 20 (10-30) 

Country (%)    

France  14.5 0.4  

Italy  34.8 18.5  

Spain  - 10.0  

United Kingdom - 17.1  

The Netherlands - 10.3  

Greece 12.3 10.7  

Germany  38.3 24.9  

Denmark - 8.2  

Finland - - 100 

Alcohol non-drinkers (%) 4 8 14 9 

Alcohol intake (median g/day; 10th-90th %)    

Men 21.4 (1.3-50.4) 14.9 (1.0-51.7) 11.5 (0.2-42.1) 

Women 5.2   (0.02-24.9) 2.0 (0.01-23.3) -- 

Coffee intake (median g/day; 10th-90th %) 146.3 (21.4, 580.2) 190 (3, 857) 550 (220-1,100) 

1EPIC cross-sectional sample;  
2Controls from both liver and pancreatic cancer EPIC nested case-control studies; 
3Controls from liver cancer and liver disease mortality ATBC nested case-control studies excluding those with missing data on alcohol 

intake;    
4Alcohol non-drinkers are considered as those with alcohol intake ≤0.1g/day. 
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Table 2. Feature-specific intensity and reproducibility (coefficient of variation=CV) in quality control (QC) samples, and adjusted Pearson correlation coefficients (r) with 

alcohol intake in the discovery and independent test sets. 

    
QC samples 1 

(n=38) 

EPIC Discovery  

(stage 1; n=454) 2 

EPIC controls 

(state 2; n=280) 3 

ATBC controls 

(stage 3; n=438) 

m/z 4 
RT 5 

(min) 
Method Associated metabolite 

Mean 

intensity 

CV 

(%) 
r p-value q-value 6 r p-value 7 r p-value 8 

231.0839 9 0.89 RP+ Unknown 58378 18.5 0.41 1.2 x 10 -19 4.4 x 10-16 0.38 7.0 x 10-11 0.40 6.3 x 10-18 

253.0925 0.93 RP- Unknown 11140 13.2 0.39 2.6 x 10-18 4.6 x 10-15 0.32 3.2 x 10-8 -10 - 

203.0227 9 2.78 RP+ 2-hydroxy-3-methylbutyric acid 204079 14.8 0.26 1.9 x 10-8 2.0 x 10-6 0.24 5.3 x 10-5 0.40 1.1 x 10-18 

217.9895 2.78 RP+ 2-hydroxy-3-methylbutyric acid 36539 11.7 0.30 9.0 x 10-11 2.1 x 10-8 0.25 2.3 x 10-5 0.38 2.4 x 10-16 

250.0134 2.78 RP+ 2-hydroxy-3-methylbutyric acid 122838 12.5 0.28 9.0 x 10-10 1.6 x 10-7 0.27 8.2 x 10-6 0.40 3.5 x 10-18 

221.0605 2.78 RP+ 2-hydroxy-3-methylbutyric acid 56192 11.2 0.28 2.6 x 10-9 3.2 x 10-7 0.25 2.1 x 10-5 0.39 1.9 x 10-17 

218.9958 2.78 RP+ 2-hydroxy-3-methylbutyric acid 115590 11.7 0.28 1.3 x 10-9 2.1 x 10-7 0.26 1.8 x 10-5 0.40 1.7 x 10-18 

235.0479 2.78 RP+ 2-hydroxy-3-methylbutyric acid 34447 15.5 0.20 2.3 x 10-5 1.0 x 10-3 0.26 2.1 x 10-5 0.38 4.2 x 10-16 

117.0559 2.78 RP- 2-hydroxy-3-methylbutyric acid 211842 12.1 0.28 1.3 x 10-9 2.2 x 10-7 0.28 2.0 x 10-6 -10 - 

261.9788 2.78 RP- 2-hydroxy-3-methylbutyric acid 15985 11.9 0.27 7.2 x 10-9 8.3 x 10-7 0.28 2.7 x 10-6 -10 - 

1 Quality control samples within the discovery set; 
2 The analyses of features acquired in positive and negative modes used data from 451 and 452 participants, respectively, after the exclusion of outliers and samples with too 

many missing values;  
3 The analyses of features acquired in positive and negative modes used data from 271 and 277 participants, respectively, after the exclusion of outliers and samples with too 

many missing values;  
4 m/z= monoisotopic mass divided by the charge state values, as observed in the discovery set; 
5 Retention time; 
6 Q-values associated to False Discovery Rate (FDR) procedure to correct for multiple testing [63], alpha=0.05;  
7 Threshold for statistical significance corrected with Bonferroni method for multiple testing, equal to 0.0007463 (0.05/f 1, with f 1=67). 
8 Threshold for statistical significance corrected with Bonferroni method for multiple testing, equal to 0.007 (0.05/f 3, with f 3=7); 
9 Feature chosen for analysis of disease see Table 3;    
10 Feature not available in ATBC. 
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Table 3. Crude and adjusted odds ratios (OR, 95% CI) of self-reported alcohol intake (12 g/day) and the main features of the unknown compound and 2-

hydroxy-3-methylbutyric acid (per 1-SD) with hepatocellular carcinoma (HCC; 129 case-control sets) and pancreatic cancer (152 case-control sets) in EPIC, 

and with liver cancer (194 case-control sets) and liver disease mortality (201 case-control sets) in ATBC  

 Crude models Adjusted models1 Alcohol-adjusted models2 

  OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value 

HCC, EPIC (128 case-control sets)          

Alcohol intake (12g/day) 1.13 (1.00, 1.27) 0.05 1.04 (0.89, 1.20) 0.65    

Alcohol intake (1-SD (log2)) 0.93 (0.73, 1.20) 0.59 0.78 (0.56, 1.09) 0.14    

Unknown compound (1-SD (log2)) 
3 1.27 (0.92, 1.76) 0.15 1.01 (0.66, 1.52) 0.98 1.23 (0.75, 2.01) 0.40 

2-hydroxy-3-methylbutyric acid (1-SD (log2)) 
4 2.28 (1.52, 3.43) 7.0 x 10-5  2.54 (1.51, 4.27) 4.2 x 10-4 3.12 (1.74, 5.56) 4.2 x 10-4 

Pancreatic cancer, EPIC  

(152 case-control sets) 

         

Alcohol intake (12g/day) 1.07 (0.92, 1.25) 0.36 1.04 (0.88, 1.24) 0.65    

Alcohol intake (1-SD (log2)) 1.08 (0.83, 1.40) 0.58 1.03 (0.77, 1.39) 0.83    

Unknown compound (1-SD (log2)) 
3 1.15 (0.92, 1.46) 0.22 1.10 (0.91, 1.41) 0.48 1.10 (0.83, 1.46) 0.50 

2-hydroxy-3-methylbutyric acid (1-SD (log2)) 
4 1.43 (1.07, 1.92) 0.02 1.43 (1.03, 1.99) 0.03 1.46 (1.03, 2.06) 0.03 

Liver cancer, ATBC  

(192 case-control sets) 

         

Alcohol intake (12g/day) 1.25 (1.09, 1.43) 1.2 x 10-3 1.17 (1.01, 1.36) 0.03    

Alcohol intake (1-SD (log2)) 1.33 (1.05, 1.67) 0.016 1.23 (0.94, 1.60) 0.13    

Unknown compound (1-SD (log2)) 
3 1.34 (1.07, 1.68) 0.01 1.70 (1.29, 2.25) 2.0 x 10-4 1.76 (1.28, 2.41) 5.0 x 10-4 

2-hydroxy-3-methylbutyric acid (1-SD (log2)) 
4 2.08 (1.53, 2.82) 2.7 x 10-6 2.00 (1.44, 2.77) 3.4 x 10-5 2.07 (1.43, 2.98) 9.9 x 10-3 

Liver disease mortality, ATBC  

(199 case-control sets) 

         

Alcohol intake (12g/day) 1.38 (1.22, 1.55) 1.1 x 10-7  1.32 (1.16, 1.50) 1.6 x 10-5    

Alcohol intake (1-SD (log2)) 2.37 (1.78, 3.14) 2.8 x 10-8 2.19 (1.60, 2.98) 8.4 x 10-7    

Unknown compound (1-SD (log2)) 
3 2.11 (1.63, 2.72) 1.0 x 10-8 1.98 (1.51, 2.60) 8.6 x 10-7  1.65 (1.24, 2.20) 7.0 x 10-4  

2-hydroxy-3-methylbutyric acid (1-SD (log2)) 
4 2.26 (1.73, 2.95) 2.1 x 10-9  2.16 (1.63, 2.86) 9.6 x 10-8 1.85 (1.38, 2.48) 3.9 x 10-5 

1 Models for hepatocellular carcinoma (HCC) were adjusted for body mass index(BMI, kg/m2), waist circumference (cm), recreational and household physical activity 
(Met-hours/week), a composite variable for smoking status and intensity (Never, Current: 1-15 cig/day, Current: 16-25 cig/day, Current: 26+ cig/day, Former: quit <= 
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10 years, Former: quit 11-20 years, Former: quit 20+ years, Current, occasional pipe/cigar/ use, Current/Former: missing, Unknown), level of educational attainment, 

and coffee intake ((log2)grams/day); models for pancreatic cancer were adjusted for BMI (kg/m2), sex-specific physical activity categories and the composite variable 
for smoking status and intensity; ATBC liver cancer and fatal liver disease models were adjusted for age (years), BMI (kg/m2), leisure time physical activity, smoking 

intensity (cigarettes/day), level of educational attainment, and coffee intake ((log2)grams/day ); 

2 Models were further adjusted for self-reported alcohol intake ((log2)grams/day; 

3 Unknown compound (m/z=231.0839);  

4 2-hydroxy-3-methylbutyric acid (m/z=203.0227). 
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