
Journal of Artificial Intelligence Research 70 (2021) 351–387 Submitted 08/2020; published 01/2021

The Computational Complexity of
Understanding Binary Classifier Decisions

Stephan Wäldchen stephanw@math.tu-berlin.de
Jan Macdonald macdonald@math.tu-berlin.de
Sascha Hauch sascha.hauch@alumni.tu-berlin.de
Institut für Mathematik,
Technische Universität Berlin,
Berlin, Germany

Gitta Kutyniok kutyniok@math.lmu.de
Mathematisches Institut,
Ludwig-Maximilians-Universität München,
München, Germany

Department of Physics and Technology,
University of Tromsø,
Tromsø, Norway

Abstract

For a d-ary Boolean function Φ: {0, 1}d → {0, 1} and an assignment to its variables
x = (x1, x2, . . . , xd) we consider the problem of finding those subsets of the variables that
are sufficient to determine the function value with a given probability δ. This is motivated
by the task of interpreting predictions of binary classifiers described as Boolean circuits,
which can be seen as special cases of neural networks. We show that the problem of deciding
whether such subsets of relevant variables of limited size k ≤ d exist is complete for the
complexity class NPPP and thus, generally, unfeasible to solve. We then introduce a variant,
in which it suffices to check whether a subset determines the function value with probability
at least δ or at most δ − γ for 0 < γ < δ. This promise of a probability gap reduces the
complexity to the class NPBPP. Finally, we show that finding the minimal set of relevant
variables cannot be reasonably approximated, i.e. with an approximation factor d1−α for
α > 0, by a polynomial time algorithm unless P = NP. This holds even with the promise of
a probability gap.

1. Introduction

Algorithmic problem solving in real-world scenarios often requires reasoning in an uncertain
environment. This necessity leads to the investigation of probabilistic satisfiability problems
and probabilistic computational complexity classes such as PP and NPPP. One prototypical
example, the E-Maj-Sat problem (Littman et al., 1998, 2001), is an extension of the classical
satisfiability problem that includes an element of model counting. The class of NPPP-complete
problems contains many relevant artificial intelligence (AI) problems such as probabilistic
conformant planning (Littman et al., 1998), calculating maximum expected utility (MEU)
solutions (de Campos & Ji, 2008), and maximum a posteriori (MAP) hypotheses (Park,
2002).

©2021 AI Access Foundation. All rights reserved.

Wäldchen, Macdonald, Hauch, & Kutyniok

We connect these probabilistic reasoning tasks to a key problem in machine learning,
namely the problem of interpreting the decisions of neural network classifiers. For this, we
extend the concept of prime implicants (Marquis, 1991, 2000) for Boolean functions to a
probabilistic setting, which formalises existing practical attempts to interpret neural network
classifiers.

1.1 Motivation

Neural networks are parameter-rich, highly nonlinear models and can be seen as continuous
generalisations of Boolean circuits. This is briefly visualised in Figure 1. They have achieved
impressive success in classification (Graves et al., 2013; Krizhevsky et al., 2012; Szegedy
et al., 2013), regression (Sun et al., 2013; Toshev & Szegedy, 2014; Taigman et al., 2014)
and reconstruction tasks (Kang et al., 2017; Xie et al., 2012).1

The same expressiveness that allows for hierarchical reasoning (Fukushima, 1980) and
universal approximation (Hornik, 1991) makes understanding and interpreting these models
more challenging compared to traditional machine learning methods such as linear regression
or decision trees. Further, treating neural networks as “black box” solvers without accessible
reasoning is not feasible in critical applications such as medical imaging and diagnosis (McBee
et al., 2018; Shen et al., 2017).

A significant first step towards understanding network decisions is to distinguish the
relevant input variables from the less relevant ones for a specific prediction, as illustrated in
Figure 2. This has been pursued predominantly in the form of visual maps that assign an
importance value to each input parameter (Bach et al., 2015; Erhan et al., 2009; Simonyan
et al., 2014; Zeiler & Fergus, 2014).

A stringent logical concept that captures the idea of relevance for Boolean circuits are
prime implicant explanations (Shih et al., 2018). These consist of subsets of the input
variables that, if held fixed, guarantee that the function value remains unchanged, independent
of the assignment to the rest of the variables. The problem of finding small prime implicants is
NPcoNP-hard (Eiter & Gottlob, 1995), and practical algorithms rely on highly optimised SAT
or MILP-solvers even for relatively low-dimensional cases (Ignatiev et al., 2019). In general,
since the classifier function is fixed within each problem instance, such complexity results
carry over to all types of classifiers that are able to efficiently represent Boolean circuits. A
prominent example are ReLU-neural networks with weights and biases in {−1, 0, 1}. They
can emulate Boolean circuits of comparable width and depth (Mukherjee & Basu, 2017;
Parberry, 1996), as illustrated in Figure 1.

Prime implicant explanations can be seen as a type of explanation under worst-case
conditions: the explaining set of variables is required to be sufficient for the function value
to remain unchanged for all possible assignments to the other variables.

In this paper, we argue to relax this notion and allow the function value to change with a
small probability over random assignments to the non-relevant variables. This has two main
reasons. First, a worst case analysis might be feasible for binary classifiers of a few variables,
but it is too rigid for very high dimensional cases, such as modern image classification. In
many cases, it would lead to unnecessarily large sets of relevant variables that are not able

1. For excellent introductions to neural networks we recommend the books by Goodfellow et al. (2016) and
Nielsen (2018).

352

The Computational Complexity of Understanding Binary Classifier Decisions

Φ(x1, x2, x3)

∨

∧

x1 x2

¬

x3

+1

+1

−1 +1

x1 x2 x3

+1 +1 −1

−1 −1

−1

−%

[
−1 −1

]
%


1 1 0

0 0 −1



x1

x2

x3

 +

−1

1


 + 1

 + 1

(a) (b) (c)

Figure 1: The Boolean function Φ(x1, x2, x3) = (x1 ∧ x2)∨ (¬x3) viewed as a Boolean circuit
(a) and a rectified linear unit (ReLU) neural network in its graphical (b) and
algebraic representation (c). The neural network weights and biases are denoted
at the edges and nodes respectively. The ReLU activation %(x) = max{x, 0} is
applied components-wise.

0 1 0 0 0 0 1 0

Φ

1

∗ ∗ 0 0 0 ∗ ∗ ∗

Φ

1

Figure 2: The Boolean function Φ: {0, 1}8 → {0, 1} decides if a binary input string contains
a substring of three consecutive zeros. A relevant subset of input variables for an
exemplary input is highlighted by a box. In this simple case the three consecutive
zeros are relevant, because it is sufficient to know them to predict the decision
made by Φ, independent of all other input variables. Note, that in this example
the relevant set is not unique, as there are two sets of three consecutive zeros.

to pinpoint the true importance of variables. This is explained in more detail in Section 2.1.
Secondly, practical heuristic algorithms for determining sets of important variables (Fong &
Vedaldi, 2017; Ribeiro et al., 2018; Khosravi et al., 2019) as well as methods to numerically
evaluate and compare them (Fong & Vedaldi, 2017; Samek et al., 2017a; Zeiler & Fergus,
2014), already implicitly rely on this relaxed probabilistic formulation of relevance. They
estimate the expected change in the function value via random sampling of non-relevant
variables. Thus, practical interpretation algorithms necessarily need to solve the problem
defined in the next section and are subject to our hardness results. A rigorous analysis of
this setting is long overdue and of high importance.

353

Wäldchen, Macdonald, Hauch, & Kutyniok

1.2 Notation

Throughout the paper d ∈ N denotes the arity of the Boolean function Φ: {0, 1}d → {0, 1},
and x = (x1, . . . , xd) ∈ {0, 1}d is an arbitrary fixed assignment to its variables. We denote
the d-dimensional vectors of all zeros or ones by 0d and 1d respectively. We refer to Φ as a
Boolean circuit when its description is in terms of standard logical gates like AND, OR, and
NOT. The description length is the number of gates. We use the usual symbols ∧, ∨, ¬, and
⊕ for the logical conjunction, disjunction, negation, and exclusive disjunction respectively.
We denote [d] = {1, . . . , d}, and for a subset S ⊆ [d] we denote the restriction of x to the
components with index in S by xS = (xi)i∈S . Further, we will use Boolean functions also
interchangeably as logical propositions, in the sense that Φ(x) is shorthand for the logical
proposition Φ(x) = 1. Whenever we discuss statements concerning probabilities of logical
propositions to hold, we assume independent uniform distributions for all involved variables.
Thus,

Py(Φ(y)) =

∣∣{y ∈ {0, 1}d : Φ(y) = 1
}∣∣

|{y ∈ {0, 1}d }|
,

and, conditioned to some event A(y),

Py(Φ(y) |A(y)) =

∣∣{y ∈ {0, 1}d : Φ(y) = 1, A(y) = 1
}∣∣

|{y ∈ {0, 1}d : A(y) = 1 }|
.

We omit the subscript whenever it is clear from the context over which variables the probability
is taken. If the probability is taken over all variables of a Boolean function, we simply write
P (Φ) instead of Py(Φ(y)).

2. Problem Formulation and Complexity Results

Let us now give a formal definition of our probabilistic notion of prime implicant explanations
and state the two main results of this paper.

A subset S ⊆ [d] of variables is relevant for the function value Φ(x) if fixing x on S and
randomising it on the complement Sc does not change the value of Φ with high probability.
The complement then consists of the non-relevant variables.

Definition 2.1. Let Φ: {0, 1}d → {0, 1}, x ∈ {0, 1}d, and δ ∈ [0, 1]. We call S ⊆ [d] a
δ-relevant set for Φ and x, if

Py(Φ(y) = Φ(x) |yS = xS) ≥ δ.

For δ close to one this means that the input x supported on S already determines the
output Φ(x) with high probability. It is clear that S = [d] is always one-relevant, and any
subset S ⊆ [d] is at least zero-relevant. Now, the question arises whether for a given δ there
exists a δ-relevant set of a certain size. Similarly, one could ask to find the smallest δ-relevant
set. This set would then be composed of the most important variables for the function value
Φ(x). This introduces a trade-off since a larger δ will generally require a larger set S.

Definition 2.2. For δ ∈ (0, 1] we define the δ-Relevant-Input problem as follows.

Given: A Boolean circuit Φ: {0, 1}d → {0, 1}, x ∈ {0, 1}d, and k ∈ N, 1 ≤ k ≤ d.

354

The Computational Complexity of Understanding Binary Classifier Decisions

Decide: Does there exist S ⊆ [d] with |S| ≤ k such that S is δ-relevant for Φ and x?

Note that in our formulation δ is not a part of the problem instance, but instead each
choice of δ represents a problem class, similar to k-SAT. We show that the problem is hard
for any fixed δ. The minimisation formulation of the above decision problem can be defined
in the obvious way.

Definition 2.3. For δ ∈ (0, 1] we define the Min-δ-Relevant-Input problem as follows.

Given: A Boolean circuit Φ: {0, 1}d → {0, 1} and x ∈ {0, 1}d.

Task: Find the minimal k ∈ N such that there exists S ⊆ [d] with |S| ≤ k and S is δ-relevant
for Φ and x.

The majority of the remainder of the paper will deal with analysing the computational
complexity of δ-Relevant-Input, Min-δ-Relevant-Input, and related variants thereof.
Our first main contribution shows that the δ-Relevant-Input problem is generally hard to
solve.

Theorem 2.4. For δ ∈ (0, 1) the δ-Relevant-Input problem is NPPP-complete.

Intuitively, the NP-part of the problem complexity arises from the necessity to check all
subsets S ⊆ [d] as possible candidates for being δ-relevant. The PP-part of the complexity
arises from the fact that for any given set S checking if it is δ-relevant is by itself a hard (in fact
PP-hard)2 problem. The problem class NPPP is beyond the scope of conventional computing.
In particular, Min-δ-Relevant-Input is at least as hard to solve as the corresponding
decision problem, which makes it unfeasible to solve exactly. However, in applications it is
rarely required to exactly find the smallest relevant set. It would be desirable to obtain good
approximate solutions within feasible computational complexity.

We present two potential ways for simplifying the problem by allowing approximations:
First, we relax the requirement that a solutions set has to be exactly δ-relevant. Secondly,
we allow an approximation of the the minimal relevant set in terms of its size. The former
would address the PP part whereas the latter would address the NP aspect.

Calculating probabilities or expectation values may be hard in theory, yet it is often
easy to calculate them (approximately) in practice, e.g. by sampling. Checking whether
a logical proposition is satisfied with probability more than δ by sampling only fails if the
true probability can be arbitrarily close to δ both from above and below. These edge cases
cause the hardness of the problem, but in our scenario we do not necessarily care about their
resolution. We make this notion formal by stating a promise version of our problem where, if
the true probability is smaller than δ, it will be smaller by at least γ with 0 ≤ γ < δ. We
refer to this as the γ-Gapped-δ-Relevant-Input problem and it is formally defined in
Section 4. We will see that for positive γ this reduces the problem complexity from NPPP to
NPBPP. The associated optimisation problem is called Min-γ-Gapped-δ-Relevant-Input
and made formal in the same section. Unfortunately, even in this simplified case, it remains
NP-hard to approximate the size of the optimal set S within any reasonable approximation
factor.

2. Checking if a subset is one-relevant is in coNP instead of PP. Thus, we excluded δ = 1 in Theorem 2.4.

355

Wäldchen, Macdonald, Hauch, & Kutyniok

Theorem 2.5. Let δ ∈ (0, 1) and γ ∈ [0, δ). Then, for any α ∈ (0, 1) there is no polynomial
time approximation algorithm for Min-γ-Gapped-δ-Relevant-Input with an approxima-
tion factor of d1−α unless P = NP.

The complete proofs of both main theorems as well formal definitions, detailed discussions,
and analyses of the problem variants are given in Section 3 and Section 4. Already here, we
can draw an important corollary which follows from Theorem 2.5 for the special case γ = 0.

Corollary 2.6. Let δ ∈ (0, 1). Then, for any α ∈ (0, 1) there is no polynomial time
approximation algorithm for Min-δ-Relevant-Input with an approximation factor of d1−α

unless P = NP.

2.1 Related Works

Prime Implicant Explanations A concept closely related to δ-relevant sets are prime
implicant explanations (Shih et al., 2018). An implicant explanation of Φ(x) is a subset S of
the variables such that xS is sufficient for Φ(x). In other words, any completion y satisfying
yS = xS yields Φ(y) = Φ(x). In our terminology, implicants are precisely the one-relevant
sets. A prime implicant is an implicant that is minimal with respect to set inclusion and
can therefore not be reduced further. The δ-Relevant-Input problem with δ = 1 answers
the question if there exists a prime implicant of size at most k. This is known to be hard
for NPcoNP (Eiter & Gottlob, 1995) in general. However, certain representations of Boolean
functions such as Binary Decision Diagrams (BDD) (Akers, 1978) allow for an efficient search
over the prime implicants (Coudert & Madre, 1992; Manquinho et al., 1998).

As already briefly mentioned in the introduction, the case δ = 1 is often too strict,
especially for high-dimensional problems as commonly found in modern machine learning.
Let us illustrate this with the task of image classification as an example. In this case, often
small regions of the input image can be manipulated in a way that changes a classifier
prediction, e.g. through adversarial patches (Brown et al., 2017; Liu et al., 2018). Thus,
prime implicants will have to cover large portions of the input image, independent of the size
of the actual object in the image that led to the original classifier prediction.

Thus, we extend the complexity analysis for δ < 1, which adds a model counting compo-
nent. Although model counting can be done efficiently for various classes of representations of
Boolean functions, e.g. BDDs (Bryant, 1986), deterministic Decomposable Negation Normal
Forms (d-DNNF) (Darwiche, 2000) and Sentential Decision Diagrams (SDD) (Darwiche,
2011), this alone does not solve the inapproximability of our problem as we will prove in
Section 4.2. Going further, we do not see a straightforward way to extend the prime implicant
finding algorithm of Coudert and Madre (1992) for BDDs to our problem setting with δ < 1.
The basic observation underlying the algorithm is that a set of variables not containing xj
is an implicant for Φ(x) exactly if it is an implicant for both Φ(x1, . . . , xj = 0, . . . , xd) and
Φ(x1, . . . , xj = 1, . . . , xd). This is not true for δ-relevance.

Sufficient Explanations Khosravi et al. (2019) introduced sufficient explanations for
binary decision functions obtained from thresholding a continuous prediction model, e.g. a
logistic regression classifier. As in our approach, the authors consider a probabilistic version
of the prime implicant problem. In this case, the classification decision is required to remain
unchanged in expectation instead of for all possible assignments to the non-fixed variables.

356

The Computational Complexity of Understanding Binary Classifier Decisions

More precisely, let f : X → [0, 1] be a continuous prediction model on a domain X (e.g. a
logistic regression model), θ : [0, 1]→ {0, 1} be a binarisation function (e.g. thresholding at
0.5), and D be a distribution on X . A variable xi of an input x ∈ X is called a supporting
variable, if {

Ey∼D
(
f(y)

∣∣y{i}c = x{i}c
)
≤ f(x) if θ(f(x)) = 1,

Ey∼D
(
f(y)

∣∣y{i}c = x{i}c
)
> f(x) if θ(f(x)) = 0.

In other words, randomising xi conditioned on fixing all other variables does not increase the
classification margin in expectation. A sufficient explanation is a cardinality minimal subset
S of all supporting variables satisfying

θ(Ey∼D(f(y) |yS = xS)) = θ(f(x)).

For an already binary function f and D = U
(
{0, 1}d

)
, this approach is essentially the same as

finding small 1
2 -relevant sets. The only difference is that sufficient explanations only consider

subsets of supporting variables, while we make no such distinction. This is however a minor
difference and we conjecture that our hardness results carry over.

Anchors Anchors were introduced recently by Ribeiro et al. (2018) as local model-agnostic
explanations. Given a generic function f : X → Z from a domain X to a codomain Z (for
example a set of class labels) and a threshold δ ∈ [0, 1], an anchor for an input x ∈ X is
some predicate A : X → {0, 1} satisfying

A(x) = 1 and Py∼Dx(f(y) = f(x) |A(y)) ≥ δ,

where Dx is a local distribution in the neighbourhood of x. The description of feasible
predicates A is rather vague, however the predicates explicitly considered by Ribeiro et al.
are of the form

A(y) =

{
1 if yS = xS ,

0 otherwise,

for some subset S of the variables in X , just as in our formulation. Choosing the domain
X = {0, 1}d and codomain Y = {0, 1}, the only difference to our δ-Relevant-Input problem
is that we consider a global uniform distribution instead of local perturbations around x.
Ribeiro et al. suggested to search for an anchor with the largest possible coverage, defined as
cov(A) = Py∼Dx(A(y)). For the uniform distribution this is exactly equivalent to searching
for the smallest set S. We conjecture that our hardness results carry over to the problem of
finding anchors for many possible perturbation distributions Dx.

Shapley Values Another concept for measuring the relevance or the contribution of
individual variables to a collective are the Shapley values (Shapley, 1953) in cooperative
game theory. Here, the variables are seen as players of a coalitional game, and the Shapley
values describe a method to distribute the value achieved by a coalition of players to the
individual players. This distribution fulfils a set of game theoretic properties that make it
“fair”.

Let ν : 2[d] → R be a function that assigns a value to each subset of variables (coalition
of players). It is called the characteristic function of the game. Then, the Shapley value of

357

Wäldchen, Macdonald, Hauch, & Kutyniok

the i-th variable (i-th player) is defined as

ϕi,ν =
∑

S⊆[d]\{i}

|S|!(d− |S| − 1)!

d!
(ν(S ∪ {i})− ν(S)),

which can be interpreted as the marginal contribution of the i-th variable to the value ν
averaged over all possible coalitions. In general it is #P-hard to compute Shapley values
(Deng & Papadimitriou, 1994). However, in some cases efficient approximation algorithms
exist (Fatima et al., 2008).

In our scenario the value of a subset of variables S can be measured by the expected
difference in Φ when fixing variables in S and randomising the remaining variables. Kononenko
et al. (2010) proposed to use

ν(S) =
1

2d−|S|

∑
y∈{0,1}d
yS=xS

Φ(y)− Ey(Φ(y))

for the analysis of classifier decisions, which uses the expectation of the completely randomised
classifier score as a reference value to determine the coalition value. We observe that

Py(Φ(y) = Φ(x) |yS = xS) = 1− 1

2d−|S|

∑
y∈{0,1}d
yS=xS

|Φ(y)− Φ(x)|

= 1− |ν(S) + Ey(Φ(y))− Φ(x)|,

hence S ⊆ [d] is δ-relevant for Φ and x exactly if |ν(S) + Ey(Φ(y))− Φ(x)| ≤ 1− δ.
Despite this relation between δ-relevant sets and the characteristic function ν our problem

formulation is considerably different from the Shapley value approach. The task considered
in this paper is not to distribute the value of coalitions amongst the variables but to find
(small) coalitions that are guaranteed to have a certain value.

3. Computational Complexity of δ-Relevant-Input

Recall the first main theorem, which shows that the δ-Relevant-Input problem is generally
hard to solve for δ ∈ (0, 1).

Theorem 2.4. For δ ∈ (0, 1) the δ-Relevant-Input problem is NPPP-complete.

The proof of Theorem 2.4 will be split into two parts. We will show that δ-Relevant-
Input is NPPP-hard in Section 3.1 and that it is contained in NPPP in Section 3.2.

3.1 δ-Relevant-Input is NPPP-hard

We now give the first part of the proof of Theorem 2.4. This is done by constructing
a polynomial-time reduction of a NPPP-complete problem to δ-Relevant-Input. The
canonical complete problem for NPPP is E-Maj-Sat (Littman et al., 1998).

Definition 3.1. The E-Maj-Sat problem is defined as follows.

358

The Computational Complexity of Understanding Binary Classifier Decisions

Given: A Boolean function Φ: {0, 1}d → {0, 1} in conjunctive normal form (CNF) and
k ∈ N, 1 ≤ k ≤ d.

Decide: Does there exist x ∈ {0, 1}k such that Py

(
Φ(y)

∣∣y[k] = x
)
> 1

2?

In other words, E-Maj-Sat asks whether there is an assignment to the first k variables
of Φ such that the majority of assignments to the remaining d−k variables satisfies Φ. There
are three hurdles to take if we want to reduce this to δ-Relevant-Input.

1. Instead of freely assigning values to a subset of variables we are given an assignment to
all variables and can only choose which to fix and which to randomise.

2. Instead of assigning values to a given set of k variables we can freely choose the set S
of size at most k.

3. Instead of checking whether the majority of assignments satisfies Φ we check if the
fraction of satisfying assignments is greater than or equal to some δ.

We address each of these hurdles and give a chain of polynomial-time reductions

E-Maj-Sat �p IP1 �p IP2 �p δ-Relevant-Input (1)

in three steps with intermediate auxiliary problems IP1 and IP2. The following observations
will turn out to be useful.

Remark 3.2. Let Φ and Ψ be Boolean functions, not necessarily of different variables. Then,

P (Ψ) = 0 ⇒ P (Φ⊕Ψ) = P (Φ),

P (Ψ) = 1 ⇒ P (Φ⊕Ψ) = 1− P (Φ),

and if Φ and Ψ are independent, i.e. P (Φ ∧Ψ) = P (Φ)P (Ψ), also

P (Ψ) =
1

2
⇒ P (Φ⊕Ψ) =

1

2
.

Lemma 3.3. Let EQ: {0, 1}k × {0, 1}k → {0, 1} and Ψ: {0, 1}k × {0, 1}k × {0, 1} → {0, 1}
be defined as

EQ(u,v) =

k∧
i=1

¬(ui ⊕ vi) and Ψ(u,v, t) =

(
k∨
i=1

(ui ⊕ vi)

)
∧ t.

Then, for any Φ: {0, 1}k × {0, 1}d−k → {0, 1} and A : {0, 1}k × {0, 1}k → {0, 1} with

P (A(u,v) ∧ EQ(u,v)) > 0 and P (A(u,v) ∧ ¬EQ(u,v)) > 0,

we have

P (Φ(u, r)⊕Ψ(u,v, t) |A(u,v)) >
1

2
⇐⇒ P (Φ(u, r) |A(u,v),EQ(u,v)) >

1

2
.

359

Wäldchen, Macdonald, Hauch, & Kutyniok

The condition EQ determines whether u = v or not. As soon as there exists an i
with ui 6= vi, Ψ(u,v, t) has the value of t, which is 1 with probability 1

2 . That means by
modulo-adding Ψ to Φ we only have to consider the cases where u = v to decide whether
the majority of assignments to Φ evaluates to true. This is independent from any additional
condition A(u,v).

Proof. We can rewrite Ψ(u,v, t) = (¬EQ(u,v)) ∧ t and therefore

P (Ψ |EQ) = 0 and P (Ψ | ¬EQ) =
1

2
.

Since Φ |A and Ψ |A are conditionally independent given ¬EQ (in this case Ψ depends on t
only), we obtain from Remark 3.2 that

P (Φ⊕Ψ |A,EQ) = P (Φ |A,EQ) and P (Φ⊕Ψ |A,¬EQ) =
1

2
.

Therefore,

P (Φ⊕Ψ |A) = P (Φ⊕Ψ |A,EQ)P (EQ) + P (Φ⊕Ψ |A,¬EQ)P (¬EQ)

= P (Φ |A,EQ)P (EQ) +
1

2
(1− P (EQ))

=
1

2
+

(
P (Φ |A,EQ)− 1

2

)
P (EQ).

This directly implies P (Φ⊕Ψ |A) > 1
2 if and only if P (Φ |A,EQ) > 1

2 .

3.1.1 Fixing or Randomising Variables

Let us now come to the first step of the reductive chain (1). In this, we translate the
possibility of freely assigning the first k variables into the choice of fixing or randomising
variables from a given assignment. This choice is however still restricted to the first k
variables.

Definition 3.4. We define the Intermediate Problem 1 (IP1) as follows.

Given: A Boolean circuit Φ: {0, 1}d → {0, 1}, x ∈ {0, 1}d and k ∈ N, 1 ≤ k ≤ d.

Decide: Does there exist S ⊆ [k] such that Py(Φ(y) |yS = xS) > 1
2?

In other words, IP1 asks the questions whether there exists a subset of the first k variables
of Φ such that fixing these to the values given by x implies that the majority of assignments
to the remaining variables satisfies Φ.

Lemma 3.5. E-Maj-Sat �p IP1, in particular IP1 is NPPP-hard.

Proof. Let {Φ, k} be an E-Maj-Sat instance. We will construct {Φ′,x′, k′} that is a Yes-
instance for IP1 if and only if {Φ, k} is a Yes-instance for E-Maj-Sat. For convenience we
split the d variables of Φ into the first k variables and the remaining d − k variables and
denote this Φ(x) = Φ(u, r). The main idea is to duplicate the first k variables and choose x′

in such a way that fixing the original variables or their duplicates corresponds to assigning
zeros or ones in the E-Maj-Sat instance respectively. More precisely, we define

360

The Computational Complexity of Understanding Binary Classifier Decisions

• Φ′ : {0, 1}k × {0, 1}k × {0, 1}d−k × {0, 1} → {0, 1} as

Φ′(u,v, r, t) = Φ(u, r)⊕

(
k∨
i=1

(ui ⊕ vi) ∧ t

)
,

• x′ = (0k,1k,0d−k, 0) ∈ {0, 1}k × {0, 1}k × {0, 1}d−k × {0, 1},

• k′ = 2k.

This is a polynomial time construction. With Ψ defined as in Lemma 3.3 we can rewrite
Φ′(u,v, r, t) = Φ(u, r)⊕Ψ(u,v, t).

Necessity: Assume that {Φ, k} is a Yes-instance for E-Maj-Sat. Then, there exists an
assignment u∗ ∈ {0, 1}k to the first k variables of Φ such that Pr(Φ(u∗, r)) > 1

2 . Now,
choose S′ = { i ∈ {1, . . . , k} : u∗i = 0 }∪

{
i ∈ {k + 1, . . . , 2k} : u∗i−k = 1

}
⊆ [k′] = [2k]. Let

A : {0, 1}k × {0, 1}k → {0, 1} be given by

A(u,v) =

 ∧
i∈S′∩{1,...,k}

¬ui

 ∧
 ∧
i∈S′∩{k+1,...,2k}

vi−k


and EQ as in Lemma 3.3. Note that A depends on S′ and thus implicitly on u∗. In fact,
A(u,v) = 1 holds if and only if both u∗i = 0 implies ui = 0 and u∗i = 1 implies vi = 1 for all
i ∈ [k]. In particular, we have A(u,u) = 1 if an only if u = u∗. Also EQ(u,v) = 1 if and
only if u = v. Thus, we have

Pr(Φ(u∗, r)) = P (Φ(u, r) |u = u∗)

= P (Φ(u, r) |A(u,u))

= P (Φ(u, r) |A(u,v),EQ(u,v)),

and by the choice of x′, A, and S′ we get

Py′
(
Φ′(y′)

∣∣y′S′ = x′S′
)

= P
(
Φ′(u,v, r, t)

∣∣A(u,v)
)

= P (Φ(u, r)⊕Ψ(u,v, t) |A(u,v)).

We use Lemma 3.3 together with Pr(Φ(u∗, r)) > 1
2 to conclude Py′

(
Φ′(y′)

∣∣y′S′ = x′S′
)
> 1

2
which shows that {Φ′,x′, k′} is a Yes-instance for IP1.

Sufficiency: Now, conversely, assume that {Φ′,x′, k′} is a Yes-instance for IP1. Then,
there exists S′ ⊆ [k′] = [2k] such that Py′

(
Φ′(y′)

∣∣y′S′ = x′S′
)
> 1

2 . Following the same
grouping of variables as before, we write x′ = (u′,v′, r′, t′). We can translate this into
a satisfying assignment u∗ for E-Maj-Sat where u∗i = 0 when i ∈ S and u∗i = 1 when
i+ k ∈ S′. For that, we need two statements to be true. First, not both i and i+ k can be in
S′. And second, if neither i nor i+ k are in S′, then there is always the possibility of adding
one of them to S′ and still satisfy Py′

(
Φ′(y′)

∣∣y′S′ = x′S′
)
> 1

2 .

361

Wäldchen, Macdonald, Hauch, & Kutyniok

To prove the first statement, assume towards a contradiction that there exists an i ∈ [k]
with i ∈ S′ and i + k ∈ S′. Since u′ = 0k and v′ = 1k, we have that (u,v)S′ = (u′,v′)S′

implies ui = 0 6= 1 = vi and hence

Pu,v,t

(
Ψ(u,v, t)

∣∣ (u,v)S′ = (u′,v′)S′
)

=Pu,v,t

(
t
∣∣ (u,v)S′ = (u′,v′)S′

)
=

1

2
.

Thus, Remark 3.2 would imply Py′
(
Φ′(y′)

∣∣y′S′ = x′S′
)

= 1
2 , which contradicts the assumption

that {Φ′,x′, k′} is a Yes-instance for IP1.
For the second statement, assume there exists an i ∈ [k] with neither i ∈ S′ nor i+k ∈ S′.

Then A(u,v) is a condition on u and v that does not include the variables ui and vi.
Therefore,

Pu,v,t

(
Φ′(u,v, t)

∣∣A(u,v)
)

=
1

4
Pu,v,t

(
Φ′(u,v, t)

∣∣A(u,v), ui = 0, vi = 0
)

+
1

4
Pu,v,t

(
Φ′(u,v, t)

∣∣A(u,v), ui = 0, vi = 1
)

+
1

4
Pu,v,t

(
Φ′(u,v, t)

∣∣A(u,v), ui = 1, vi = 0
)

+
1

4
Pu,v,t

(
Φ′(u,v, t)

∣∣A(u,v), ui = 1, vi = 1
)
.

For the second and third summand we have ui 6= vi, thus using Remark 3.2 again, we get

Pu,v,t

(
Φ′(u,v, t)

∣∣A(u,v), ui = 0, vi = 1
)

=
1

2
= Pu,v,t

(
Φ′(u,v, t)

∣∣A(u,v), ui = 1, vi = 0
)
,

and obtain

Pu,v,t

(
Φ′(u,v, t)

∣∣A(u,v)
)

=
1

4
Pu,v,t

(
Φ′(u,v, t)

∣∣A(u,v), ui = 0, vi = 0
)

+
1

4
Pu,v,t

(
Φ′(u,v, t)

∣∣A(u,v), ui = 0, vi = 1
)

+
1

4
Pu,v,t

(
Φ′(u,v, t)

∣∣A(u,v), ui = 0, vi = 1
)

+
1

4
Pu,v,t

(
Φ′(u,v, t)

∣∣A(u,v), ui = 1, vi = 1
)

=
1

2
Pu,v,t

(
Φ′(u,v, t)

∣∣A(u,v), ui = 0
)

+
1

2
Pu,v,t

(
Φ′(u,v, t)

∣∣A(u,v), vi = 1
)
.

Altogether, if Pu,v,t(Φ
′(u,v, t) |A(u,v)) > 1

2 , then at least one of the additional conditions
ui = 0 or vi = 1 must also yield a probability greater than 1

2 . This implies that if
Py′
(
Φ′(y′)

∣∣y′S′ = x′S′
)
> 1

2 then either i or i + k can be added to S′ while keeping the
probability greater than 1

2 .
So, without loss of generality, we can assume that for each i ∈ [k] exactly one of the

cases i ∈ S′ or i + k ∈ S′ occurs. Then, we can define u∗ ∈ {0, 1}k as u∗i = 0 if i ∈ S′
and u∗i = 1 otherwise. We observe that S′ and u∗ are exactly as in the previous step and
the rest of the proof follows analogously. Again we use Lemma 3.3 and conclude from
Py′
(
Φ′(y′)

∣∣y′S′ = x′S′
)
> 1

2 that Pr(Φ(u∗, r)) > 1
2 . This shows that {Φ, k} is a Yes-instance

for E-Maj-Sat.

362

The Computational Complexity of Understanding Binary Classifier Decisions

3.1.2 Allowing for all variables to be chosen

We continue with the second step of the reductive chain (1). Instead of choosing from the
first k variables we are free to chose from all d variables but at most k many.

Definition 3.6. We define the Intermediate Problem 2 (IP2) as follows.

Given: A Boolean circuit Φ: {0, 1}d → {0, 1}, x ∈ {0, 1}d and k ∈ N, 1 ≤ k ≤ d.

Decide: Does there exist S ⊆ [d] with |S| ≤ k such that Py(Φ(y) |yS = xS) > 1
2?

In other words, IP2 asks the question whether there exists a subset of at most k variables
of Φ such that fixing these to the values given by x implies that the majority of the possible
assignments to the remaining variables satisfies Φ.

Lemma 3.7. We have IP1 �p IP2. In particular, IP2 is NPPP-hard.

Proof. Let {Φ,x, k} be an IP1 instance. We will construct {Φ′,x′, k′} that is a Yes-instance
for IP2 if and only if {Φ,x, k} is a Yes-instance for IP1. For convenience, we split the d
variables of Φ into the first k variables and the remaining d− k variables and denote this
Φ(x) = Φ(u, r). The main idea is to extend Φ with clauses that force the set S to be chosen
from the first k variables. More precisely, we define

• Φ′ : {0, 1}k × {0, 1}k × {0, 1}d−k × {0, 1}d−k × {0, 1}d−k → {0, 1} with

Φ′(u,v, r1, r2, r3) = Φ(u, r1 ⊕ r2 ⊕ r3) ∧

(
k∧
i=1

((ui ⊕ ¬xi) ∨ vi)

)
,

where r1 ⊕ r2 ⊕ r3 is understood component-wise,

• x′ =
(
x[k],1k,x[k]c ,x[k]c ,x[k]c

)
∈ {0, 1}k × {0, 1}k × {0, 1}d−k × {0, 1}d−k × {0, 1}d−k,

• k′ = k.

This is a polynomial time construction.

Necessity: Assume that {Φ,x, k} is a Yes-instance for IP1. Then, there exists S ⊆ [k]
such that Py(Φ(y) |yS = xS) > 1

2 . Now, choose

S′ = S ∪ { i ∈ {k + 1, . . . , 2k} : i− k /∈ S }.

Then, |S′| = |S|+ (k − |S|) = k = k′ and for each i ∈ [k] exactly one of the cases i ∈ S′ or
i + k ∈ S′ occurs. The former corresponds to fixing ui = x′i = xi and the latter to fixing
vi = 1. Therefore,

P(u,v)

(
k∧
i=1

((ui ⊕ ¬xi) ∨ vi)

∣∣∣∣∣ (u,v)S′ = x′S′

)
= 1,

363

Wäldchen, Macdonald, Hauch, & Kutyniok

which means, conditioned on (u,v)S′ = x′S′ , the probability of satisfying Φ′ only depends on
Φ(u, r1⊕ r2⊕ r3). Now, since the random vector r1⊕ r2⊕ r3 is independent of this condition,
it has the exact same distribution as the random vector r, and we obtain

Py′
(
Φ′(y′)

∣∣y′S′ = x′S′
)

= P
(
Φ′(u,v, r1, r2, r3)

∣∣ (u,v)S′ = x′S′
)

= P
(
Φ′(u,v, r1, r2, r3)

∣∣uS = xS ,v[k]\S = 1k−|S|
)

= P (Φ(u, r) |uS = xS)

= Py(Φ(y) |yS = xS) >
1

2
. (2)

Hence, {Φ′,x′, k′} is a Yes-instance for IP2.

Sufficiency: Now, conversely, assume that {Φ′,x′, k′} is a Yes-instance for IP2. Then,
there exists a set S′ ⊆ [2k + 3(d− k)] with |S′| ≤ k′ = k and

Py′
(
Φ′(y′)

∣∣y′S′ = x′S′
)
>

1

2
.

First, we show that S′ can contain at most two indices that are not in [2k]. For any
i ∈ [k], consider the term (ui ⊕ ¬xi) ∨ vi, which is true if ui = xi or vi = 1. This could
be assured by i ∈ S′ or i+ k ∈ S′ respectively. Otherwise, Pui,vi((ui ⊕ ¬xi) ∨ vi) = 3

4 . Let
N = |{i ∈ [k] | i /∈ S′ ∧ i+ k /∈ S′}|, then

Py′
(
Φ′(y′)

∣∣y′S′ = x′S′
)
≤ P

(
k∧
i=1

((ui ⊕ ¬xi) ∨ vi)

∣∣∣∣∣ (u,v)S′ = x′S′

)
=

(
3

4

)N
,

and since
(

3
4

)
3 < 1

2 but Py′
(
Φ′(y′)

∣∣y′S′ = x′S′
)
> 1

2 , we know that N ≤ 2.
Therefore, at most two variables out of r1, r2, and r3 can be fixed and thus r1 ⊕ r2 ⊕ r3

conditioned on y′S′ = x′S′ has the same distribution as r1 ⊕ r2 ⊕ r3 without the condition.
So, without loss of generality, we can even assume S′ ∩ [2k]c = ∅.

Similarly, if i ∈ S′, we have P
(
(ui ⊕ ¬xi) ∨ vi

∣∣ (u,v)S′ = x′S′
)

= 1 and additionally
having i+ k ∈ S′ could not increase the probability of satisfying Φ′. Hence, we can assume
i+ k /∈ S′ in this case. Contrary, if i /∈ S′, we have

P
(
(ui ⊕ ¬xi) ∨ vi

∣∣ (u,v)S′ = x′S′
)

=
1

2
+

1

2
P
(
vi
∣∣ (u,v)S′ = x′S′

)
,

which is one if i+ k ∈ S′ and 3
4 otherwise. So including i+ k in S′ does not decrease the

probability.
Altogether, without loss of generality, we can assume S′ ⊆ [2k], |S′| = k and for each

i ∈ [k] exactly one of the cases i ∈ S′ or i + k ∈ S′ occurs. We now choose S = S′ ∩ [k].
Then, the rest of the proof proceeds exactly as in (2), and we conclude

Py(Φ(y) |yS = xS) = Py′
(
Φ′(y′S′)

∣∣y′S′ = x′S′
)
>

1

2
,

implying that {Φ,x, k} is a Yes-instance for IP1.

364

The Computational Complexity of Understanding Binary Classifier Decisions

3.1.3 Changing the Probability Threshold

Now, we want to change the probability threshold from 1
2 to an arbitrary number δ ∈ (0, 1)

and show that the hardness does not depend on δ. Our reduction will depend on whether
δ > 1

2 or δ < 1
2 since we either have to raise or lower the probability threshold. To raise the

probability threshold, we make use of the following lemma.

Lemma 3.8 (Raising the probability, > to ≥). Given 0 ≤ δ1 < δ2 < 1, for any d ∈ N there
exists a monotone function Π: {0, 1}n → {0, 1} such that for all Φ: {0, 1}d → {0, 1} we have

Py(Φ(y)) > δ1 ⇐⇒ P(y,r)(Φ(y) ∨Π(r)) ≥ δ2

with n ∈ O(d2). The function Π can be constructed in O(n) time.

The constructive proof of Lemma 3.8 can be found in Appendix A. An analogous lemma
is used to lower the probability threshold.

Lemma 3.9 (Lowering the probability, > to ≥). Given 0 < δ1 ≤ δ2 ≤ 1, for any d ∈ N
there exists a monotone function Π: {0, 1}n → {0, 1} such that for all Φ: {0, 1}d → {0, 1}
we have

Py(Φ(y)) > δ2 ⇐⇒ P(y,r)(Φ(y) ∧Π(r)) ≥ δ1

with n ∈ O
(
d2
)
. The function Π can be constructed in O(n) time.

Lastly, we introduce an auxiliary operation that allows us to make Φ(x) true for the
initial assignment x, while not changing the overall probability for random assignments.

Lemma 3.10 (Neutral Operation). Given 0 < δ < 1, for any d ∈ N there exists a monotone
function Γd,δ : {0, 1}r → {0, 1} and positive integer nd,δ with r + nd,δ ∈ O

(
d2
)
such that for

all Φ: {0, 1}d → {0, 1} we have

Py(Φ(y)) ≥ δ ⇐⇒ P(y,r,t)

(
(Φ(y) ∧ Γd,δ(r)) ∨

(
n∧
i=1

ti

))
≥ δ

for all n ≥ nd,δ. The function Γd,δ can be consturcted in O(r) time.

The constructive proof of Lemma 3.10 can be found in Appendix D. Now, we are able to
prove the following lemma.

Lemma 3.11. For δ ∈ (0, 1) we have IP2 �p δ-Relevant-Input. In particular, the
δ-Relevant-Input problem is NPPP-hard.

Proof. We start with the reduction for the case of δ ∈ (1
2 , 1). Let {Φ,x, k} be an IP2

instance. We will construct {Φ′,x′, k′} that is a Yes-instance for δ-Relevant-Input if and
only if {Φ,x, k} is a Yes-instance for IP2. Let Π: {0, 1}` → {0, 1} be as in Lemma 3.8 for
δ1 = 1

2 and δ2 = δ. Let Γ = Γd+`,δ and nd+`,δ be defined according to Lemma 3.10 and set
n = nd+`,δ + k. We define

• Φ′ : {0, 1}d × {0, 1}` × {0, 1}m × {0, 1}n → {0, 1},

(y, r, s, t) 7→ ((Φ(y) ∨Π(r)) ∧ Γ(s)) ∨ (
∧n
i=1 ti)

365

Wäldchen, Macdonald, Hauch, & Kutyniok

• x′ = (x,0`,0m,1n) ∈ {0, 1}d × {0, 1}` × {0, 1}m × {0, 1}n,

• k′ = k.

This is a polynomial time construction. By the choice of Φ′ and x′, we guarantee Φ′(x′) = 1
regardless of the value of Φ(x) since

∧n
i=0 1 = 1.

Necessity: Assume that {Φ,x, k} is a Yes-instance for IP2 with satisfying set S. Then
set S′ = S and from the definition of Π and n we get

Py(Φ(y) |yS = xS) >
1

2
⇐⇒ P(u,r)(Φ(u) ∨Π(r) |uS = xS) ≥ δ

⇐⇒ P(u,r,s,t)

(
(Φ(u) ∨Π(r)) ∧ Γ(s) ∨

(
n∧
i=1

ti

)∣∣∣∣∣uS = xS

)
≥ δ

⇐⇒ Py′
(
Φ′(y′) = Φ′(x′)

∣∣y′S′ = x′S′
)
≥ δ.

Hence, {Φ′,x′, k′} is a Yes-instance for δ-Relevant-Input.

Sufficiency: Now assume that {Φ′,x′, k′} is a Yes-instance for δ-Relevant-Input. Then
there exists a subset S′ with |S′| ≤ k′ = k and Py′

(
Φ′(y′) = Φ′(x′)

∣∣y′S′ = x′S′
)
≥ δ. Since

Π and Γ are monotone and their initial input assignments are 0` and 0m, including any of
their variables in S′ does not increase the probability that Φ′ evaluates to Φ′(x′) = 1. Thus,
without loss of generality, we can assume that S′ does no include variables from Γ. At most
k′ = k of the n variables in the conjunction from Lemma 3.10 can be included in S′, which
by the choice of n does not affect whether the overall probability threshold of δ is reached or
not. Thus,

Py′
(
Φ′(y′) = Φ′(x′)

∣∣y′S′ = x′S′
)
≥ δ =⇒ Py′

(
Φ′(y′) = Φ′(x′)

∣∣∣y′S′∩[d] = x′S′∩[d]

)
≥ δ.

We set S = S′ ∩ [d]. Clearly |S| ≤ |S′| = k′ = k. Then analogous to before,

Py′
(
Φ′(y′) = Φ′(x′)

∣∣y′S = x′S
)
≥ δ ⇐⇒ Py(Φ(y) |yS = xS) >

1

2
,

implying that {Φ,x, k} is a Yes-instance for IP2.
The reduction for δ ∈ (0, 1

2] can be done analogously by using Lemma 3.9 instead of
Lemma 3.8 and we omit the details for brevity.

3.2 δ-Relevant-Input is contained in NPPP

We now come to the second part of the proof of Theorem 2.4. We will show that δ-Relevant-
Input is indeed contained in NPPP, meaning that it can be solved in polynomial time by a
non-deterministic Turing machine with access to a PP-oracle. The following lemmas, very
similar to Lemmas 3.8 and 3.9, will be useful.

Lemma 3.12 (Raising the probability, ≥ to >). Given 0 ≤ δ1 ≤ δ2 < 1, for any d ∈ N there
exists a monotone function Π: {0, 1}n → {0, 1} such that for all Φ: {0, 1}d → {0, 1} we have

Py(Φ(y)) ≥ δ1 ⇐⇒ P(y,r)(Φ(y) ∨Π(r)) > δ2

with n ∈ O
(
d2
)
. The function Π can be constructed in O(n) time.

366

The Computational Complexity of Understanding Binary Classifier Decisions

The constructive proof of Lemma 3.12 can be found in Appendix A.

Lemma 3.13 (Lowering the probability, ≥ to >). Given 0 < δ1 < δ2 ≤ 1, for any d ∈ N
there exists a monotone function Π: {0, 1}n → {0, 1} such that for all Φ: {0, 1}d → {0, 1}
we have

Py(Φ(y)) ≥ δ2 ⇐⇒ P(y,r)(Φ(y) ∧Π(r)) > δ1

with n ∈ O
(
d2
)
. The function Π can be constructed in O(n) time.

The constructive proof of Lemma 3.13 can be found in Appendix B.

Lemma 3.14. For δ ∈ (0, 1) the δ-Relevant-Input problem is contained in NPPP.

We will prove this for δ ∈
(

1
2 , 1
)
by lowering the probability threshold from δ to 1

2 . The
case δ ∈

(
0, 1

2

]
can be treated analogously by raising the threshold.

Proof. Let {Φ,x, k} be an instance of δ-Relevant-Input. It suffices to show that the
decision problem whether a given set S ⊆ [d] is δ-relevant for Φ and x is in PP. Without
loss of generality we can assume Φ(x) = 1. Otherwise, we could consider ¬Φ instead. Now,
choose Π: {0, 1}n → {0, 1} as in Lemma 3.13 for δ1 = 1

2 and δ2 = δ. Then,

Py(Φ(y) |yS = xS) ≥ δ ⇐⇒ P(y,r)(Φ(y) ∧Π(r) |yS = xS) >
1

2
.

A probabilistic Turing machine can now draw a random assignment (y, r) conditioned on
yS = xS and evaluate Φ(y) ∧ Π(r). Thus, the machine will answer Yes with probability
strictly greater than 1

2 if and only if S is δ-relevant. This means the subproblem of checking
a set for δ-relevance is contained in PP.

A non-deterministic Turing-machine with a PP-oracle can thus guess a set S ⊆ [d] with
|S| ≤ k and, using the oracle, check whether it is δ-relevant.

4. Variations of the Problem Formulation

We want to consider two variations of the δ-Relevant-Input problem. The first variation
relaxes the requirement to check if a candidate set S is exactly δ-relevant or not by introducing
a probability gap γ. In short, we then ask if a δ-relevant set of size k exists or if all sets of
size k are not even (δ − γ)-relevant.

The second variation concerns the optimisation version of the problem. Here, we introduce
a set size gap and relax the requirement to find the smallest δ-relevant set. Instead, for
k < m we ask if a δ-relevant set of size k exists or if all relevant sets must be of size at least
m.

We show that these problems remain hard to solve (even in combination, that is with
both a gap in probability and set size). This can be used to show that no polynomial time
approximation algorithm for Min-δ-Relevant-Input with approximation factor better
than the trivial factor d can exists unless P = NP. Due to the connection between Boolean
circuits and neural networks, as described in Section 1, this inapproximability result shows
theoretical limitations of interpretation methods for neural network decision.

367

Wäldchen, Macdonald, Hauch, & Kutyniok

no (δ − γ)-relevant
sets exist

No instances

a δ-relevant set
exists

Yes instances

k∗ k

Figure 3: Visualization of the γ-Gapped-δ-Relevant-Input problem for some fixed Φ and
x and for various k. In the unmarked region in the centre no δ-relevant set exists
but δ̃-relevant sets could exist for any δ̃ < δ, in particular also for δ̃ = δ − γ. In
this region we do not expect an answer for the gapped problem. The solution k∗ of
the ungapped optimisation problem Min-δ-Relevant-Input is the left boundary
of the Yes-instance region.

4.1 The Probability Gap

As explained in the problem formulation, see Section 2, probabilities and expectation values
may be hard to calculate in theory, yet are often easy to approximate in practice via sampling.
The edge cases where the true probability can be arbitrarily close to the threshold δ cause
the hardness of problems in PP.

It seems impractical to defend the hardness of the δ-Relevant-Input problem with the
exact evaluation of probabilities. Therefore, we introduce a variant of the problem including
a probability gap. This can be seen as a promise problem with the promise that all sets
S are either δ-relevant or not even (δ − γ)-relevant. Alternatively, this can be seen as the
δ-Relevant-Input problem where we want to answer Yes if a δ-relevant set of size k exists
but only want to answer No if all sets of size k are not even (δ − γ)-relevant. For cases in
between we do not expect an answer at all or do not care about the exact answer. This is
illustrated in Figure 3.

Definition 4.1. For δ ∈ (0, 1] and γ ∈ [0, δ) we define the γ-Gapped-δ-Relevant-Input
problem as follows.

Given: A Boolean circuit Φ: {0, 1}d → {0, 1}, x ∈ {0, 1}d, and k ∈ N, 1 ≤ k ≤ d.

Decide:

Yes: There exists S ⊆ [d] with |S| ≤ k and S is δ-relevant for Φ and x.

No: All S ⊆ [d] with |S| ≤ k are not (δ − γ)-relevant for Φ and x.

For γ = 0 we exactly retrieve the original δ-Relevant-Input problem, but for γ > 0
this is an easier question.

Lemma 4.2. For δ ∈ (0, 1) and γ ∈ (0, δ) the γ-Gapped-δ-Relevant-Input problem is
contained in NPBPP.

Proof. Let {Φ,x, k} be an instance of γ-Gapped-δ-Relevant-Input. It suffices to show
that the decision problem whether a given set S ⊆ [d] is either δ-relevant (Yes) or not

368

The Computational Complexity of Understanding Binary Classifier Decisions

(δ − γ)-relevant (No) for Φ and x is in BPP. To see this, we describe an explicit algorithm
with bounded error probability:

Draw n =
⌈

2 ln(3)
γ2

⌉
independent random binary vectors b(i) ∈ {0, 1}d−|S| for i ∈ [n] from

the uniform distribution on {0, 1}d−|S| and define y(i) ∈ {0, 1}d as y(i)
S = xS and y

(i)
Sc = b(i).

Set

ξ =
1

n

n∑
i=1

ξi, where ξi =

1, if Φ(x) = Φ
(
y(i)
)

0, if Φ(x) 6= Φ
(
y(i)
) for i = 1, . . . , n.

Then, answer No if ξ < δ − γ
2 and Yes if ξ ≥ δ − γ

2 .
The random variables ξi are independently and identically Bernoulli distributed variables

with
p = E[ξi] = E[ξ] = Py(Φ(yS) = Φ(x) |yS = xS).

Therefore, S is δ-relevant if p ≥ δ and not (δ − γ)-relevant if p < δ − γ. We use Hoeffding’s
inequality (Hoeffding, 1994) to bound the error probability of the algorithm. Firstly, assume
p ≥ δ. Then, we make an error if ξ < δ − γ

2 , which implies p− ξ > γ
2 . The probability for

this event can be bounded by

P
(
p− ξ > γ

2

)
≤ e−

nγ2

2 ≤ 1

3
.

Secondly, assume p < δ − γ. Then, we can bound the probability that ξ ≥ δ − γ
2 , and thus

ξ − p > γ
2 , by

P
(
ξ − p > γ

2

)
≤ e−

nγ2

2 ≤ 1

3
.

Altogether the algorithm answers correctly with probability 2
3 , showing that the problem lies

in BPP.
A non-deterministic Turing machine with BPP-oracle can thus guess a set S ⊆ [d] with

|S| ≤ k and, using the oracle, check if it is δ-relevant or not (δ − γ)-relevant .

Similar to the original problem formulation, we can also state an optimisation version
of the gapped problem. In this case, we relax the optimality condition on the set size k by
allowing also sizes in the region between Yes- and No-instances of γ-Gapped-δ-Relevant-
Input (cf. Figure 3). In other words, we want to find any k that is large enough so that
it is not a No-instance for the gapped problem but not larger than the optimal solution of
the ungapped minimization problem. Strictly speaking, this results in a search problem and
not an optimisation problem. However, problems of this type can be referred to as weak
optimisation problems (Grötschel et al., 1988).

Definition 4.3. For δ ∈ (0, 1] and γ ∈ [0, δ) we define the Min-γ-Gapped-δ-Relevant-
Input problem as follows.

Given: A Boolean circuit Φ: {0, 1}d → {0, 1} and x ∈ {0, 1}d.

Find: k ∈ N, 1 ≤ k ≤ d such that

(i) There exists S ⊆ [d] with |S| = k and S is (δ − γ)-relevant for Φ and x.

369

Wäldchen, Macdonald, Hauch, & Kutyniok

(ii) All S ⊆ [d] with |S| < k are not δ-relevant for Φ and x.

Note that both for γ-Gapped-δ-Relevant-Input and Min-γ-Gapped-δ-Relevant-
Input a solution for γ1 will always also be a solution for γ2 > γ1. Specifically, being able
to solve the ungapped problems introduced in Section 2 provides a solution to the gapped
problems for any γ > 0.

4.2 The Set Size Gap (Approximability)

Even the gapped version of the minimisation problem is hard to approximate. We prove
this by introducing another intermediate problem which we show to be NP-hard but which
would be in P if there exists a “good” polynomial time approximation algorithm for Min-
γ-Gapped-δ-Relevant-Input. As mentioned above, strictly speaking Min-γ-Gapped-δ-
Relevant-Input is not an optimisation but a search problem. In order to give a meaning
to the concept of approximation factors we use the following convention.

Definition 4.4. An algorithm for Min-γ-Gapped-δ-Relevant-Input has an approximation
factor c ≥ 1 if, for any instance {Φ,x}, it produces an approximate solution k such that
there exists a true solution k̃ (satisfying both conditions in Definition 4.3) with k̃ ≤ k ≤ ck̃.

An algorithm that always produces the trivial approximate solution k = d achieves an
approximation factor d. We will show that it is generally hard to obtain better factors. More
precisely, for any α > 0 an algorithm achieving an approximation factor d1−α can not be in
polynomial time unless P = NP.

Definition 4.5. For δ ∈ (0, 1] and γ ∈ [0, δ) we define the Intermediate Problem 3
(IP3) as follows.

Given: A Boolean circuit Φ: {0, 1}d → {0, 1}, x ∈ {0, 1}d, and k,m ∈ N, 1 ≤ k ≤ m ≤ d.

Decide:

Yes: There exists S ⊆ [d] with |S| ≤ k and S is δ-relevant for Φ and x.

No: All S ⊆ [d] with |S| ≤ m are not (δ − γ)-relevant for Φ and x.

The restriction to the case k = m is exactly the γ-Gapped-δ-Relevant-Input problem.
However, here we also allow the case k < m with a gap in the set sizes. This is illustrated in
Figure 4.

Lemma 4.6. For δ ∈ (0, 1) and γ ∈ [0, δ) we have SAT �p IP3, in particular, in this case
IP3 is NP-hard.

The idea for this proof is rather simple. Given a SAT-formula Φ with d variables, we
replace each variable by a conjunction of sufficiently many variables, i.e.

ui =

q∧
j=1

u
(j)
i ,

370

The Computational Complexity of Understanding Binary Classifier Decisions

No-instances

Yes-instances

a δ-relevant set of
size k exists

no (δ − γ)-relevant
set of size k exists

no (δ − γ)-relevant
set of size m exists

a δ-relevant set of
size m exists

k = m

k

m

Figure 4: Visualization of the Intermediate Problem 3 for some fixed Φ and x and
for various k and m. As before we do not expect an answer for this problem in
the unmarked regions. The restriction to the diagonal k = m corresponds to the
γ-Gapped-δ-Relevant-Input problem (cf. Figure 3).

371

Wäldchen, Macdonald, Hauch, & Kutyniok

initially set to one. Fixing all u(j)
i effectively sets ui to one. Randomising all u(j)

i effectively sets
ui to zero with high probability. If we now disjoin the resulting formula with a polynomially
large conjunction of independent variables, i.e.

Φ

 q∧
j=1

u
(j)
1 , . . . ,

q∧
j=1

u
(j)
d

 ∨(M∧
i=1

vi

)
,

initially also set to one, then any satisfying assignment for Φ yields a δ-relevant set of size
at most dq by effectively setting u to the satisfying assignment. On the other hand, if Φ is
not satisfiable a (δ − γ)-relevant set has to include almost all of the additional M variables.
Choosing M sufficiently larger than dq results in the desired set size gap. We now make this
argument formal.

Proof. Given a SAT instance in conjunctive normal form (CNF), let Φ: {0, 1}d → {0, 1}
be the Boolean circuit representation corresponding to the CNF formula. From now on we
will not distinguish between Φ and the CNF formula that it represents. We will construct
{Φ′,x′, k′,m′} that is a Yes-instance for IP3 if and only if Φ is a Yes-instance for SAT. Let

q =

⌈
log2

(
d

1− δ

)⌉
and p =

⌊
log2

(
1

δ − γ

)⌋
+ 1.

We set

• k′ = dq,

• m′ ≥ k′ arbitrary but at most polynomial in d,

• Φ′ : {0, 1}d×q × {0, 1}m′+p → {0, 1} with

Φ′(u(1), ...,u(q),v) = Φ

 q∧
j=1

u(j)

 ∨
m′+p∧

i=1

vi

,
where each u(j) ∈ {0, 1}d and the conjunction within Φ is understood component-wise,

• x′ = 1dq+m′+p.

This is a polynomial time construction. By the choice of Φ′ and x′ we guarantee Φ′(x′) = 1
regardless of the satisfiability of Φ.

Necessity: Let Φ be a Yes-instance for SAT. This means that there exists x ∈ {0, 1}d
with Φ(x) = 1. Let S = { i ∈ [d] : xi = 1 } and S′ = S × [q]. Then, |S′| ≤ k′. Denote

A(u(1), . . . ,u(q)) =
∧

(i,j)∈S′
u

(j)
i .

372

The Computational Complexity of Understanding Binary Classifier Decisions

Hence, S′ is δ-relevant for Φ′ and x′ if P
(
Φ′(u(1), . . . ,u(q),v)

∣∣A(u(1), . . . ,u(q))
)
≥ δ. We

have

P
(

Φ′(u(1), . . . ,u(q),v)
∣∣∣A(u(1), . . . ,u(q))

)
≥ P

Φ

 q∧
j=1

u(j)

∣∣∣∣∣∣A(u(1), . . . ,u(q))


≥ P

 q∧
j=1

u(j) = x

∣∣∣∣∣∣A(u(1), . . . ,u(q))

.
From this, with a union bound, we obtain

P

 q∧
j=1

u(j) = x

∣∣∣∣∣∣A(u(1), . . . ,u(q))

 = 1− P

¬ q∧
j=1

u(j) = x

∣∣∣∣∣∣A(u(1), . . . ,u(q))


= 1− P

∃i ∈ Sc :

q∧
j=1

u
(j)
i


≥ 1− |Sc|2−q

≥ δ,

which shows that {Φ′,x′, k′,m′} is a Yes-instance for IP3.

Sufficiency: Now, conversely, let Φ be a No-instance for SAT. Then, for any subset
S′ ⊆ [dq +m′ + p] with |S′| ≤ m′ we have

Py′
(
Φ′(y′) = Φ′(x′)

∣∣y′S′ = x′S′
)

= Py′
(
Φ′(y′)

∣∣y′S′ = 1
)

= P(u(1),...,u(q),v)

m′+p∧
i=1

vi

∣∣∣∣∣∣ (u(1), . . . ,u(q),v)S′ = 1


≤ 2−(m′+p−|S′|)

≤ 2−p

< δ − γ.

This shows that S′ is not (δ−γ)-relevant for Φ′ and x′, hence {Φ′,x′, k′,m′} is a No-instance
for IP3.

Recall the second main theorem of the paper which shows the inapproximability of the
Min-γ-Gapped-δ-Relevant-Input problem.

Theorem 2.5. Let δ ∈ (0, 1) and γ ∈ [0, δ). Then, for any α ∈ (0, 1) there is no polynomial
time approximation algorithm for Min-γ-Gapped-δ-Relevant-Input with an approxima-
tion factor of d1−α unless P = NP.

The proof idea is to choose the m′ in the previous proof large enough such that even an
approximation algorithm that promises only a rough approximation factor could still be used
to solve an NP-hard problem.

373

Wäldchen, Macdonald, Hauch, & Kutyniok

Proof. We prove this by showing that the existence of such an approximation algorithm
would allow us to decide IP3 in polynomial time for certain instances. These can be chosen
as in the proof of Lemma 4.6, which in turn implies that we could decide SAT in polynomial
time. This is only possible if P = NP.

Given a SAT instance as a CNF formula, let Φ: {0, 1}d → {0, 1} be a Boolean circuit
representation of the CNF formula and {Φ′,x′, k′,m′} an equivalent IP3 instance as in the
proof of Lemma 4.6. As before, we will not further distinguish between the SAT formula
in CNF and the circuit Φ representing it. We have seen that there is some freedom in the
choice of m′ as long as it satisfies k′ ≤ m′ and is at most polynomial in d. We will choose
it in such a way, that any approximate solution k with approximation factor d′1−α would
allow us to decide {Φ′,x′, k′,m′} by checking whether k < m′ or k > m′. For this we set
m′ =

⌈
max(2k′(k′1−α + p1−α), (2k′)

1
α + 1)

⌉
with p =

⌊
log2

(
1

δ−γ

)⌋
+1 as before. Recall that

k′ = dq with q =
⌈
log2

(
d

1−δ

)⌉
, so clearly m′ is polynomial in d and k′ ≤ m′. Further, we

have m′ > (2k′)
1
α so 1− k′m′−α > 1

2 and therefore

m′(1− k′m′−α) >
m′

2
≥ k′(k′1−α + p1−α).

Now, let d′ = k′ +m′ + p denote the number of variables of Φ′. By the subadditivity of the
map z 7→ z1−α we finally obtain

k′d′
1−α

= k′(k′ +m′ + p)1−α ≤ k′
(
k′

1−α
+m′

1−α
+ p1−α

)
< m′.

It remains to show that an IP3 instance with m′ > k′d′1−α can be decided by an approxi-
mation algorithm for Min-γ-Gapped-δ-Relevant-Input with approximation factor d′1−α.
Assume such an algorithm exists and let k be an approximate solution. Then, there exists a
true solution k̃ with k̃ ≤ k ≤ d′1−αk̃.

Firstly, assume that {Φ′,x′, k′,m′} is a Yes-instance for IP3. Then, there is a δ-relevant
set of size k′. However, no set smaller than k̃ can be δ-relevant. This implies k̃ ≤ k′ and
therefore k ≤ d′1−αk′ < m′.

Secondly, assume that {Φ′,x′, k′,m′} is a No-instance for IP3. Then, all sets of size at
most m′ are not (δ − γ)-relevant. However, there exists a (δ − γ)-relevant set of size k̃. This
implies k ≥ k̃ > m′.

Altogether, checking whether k < m′ or k > m′ decides {Φ′,x′, k′,m′}.

5. Discussion

We want to briefly discuss the scope of our analysis and the implications for algorithms
that explain the predictions of classifiers such as neural networks. One could ask whether a
solution set S to the Min-δ-Relevant-Input problem is in itself already a good explanation
for a classifier prediction.

We are not arguing that a solution set alone is enough to fully explain the decision of a
classifier to humans. The solution sets have some limitations that are discussed in the following
subsection. We rather argue that any good explanation should contain a solution of the
Min-δ-Relevant-Input problem. Given a good explanation for a classification prediction,

374

The Computational Complexity of Understanding Binary Classifier Decisions

we want to be able to conclude: If we fix these input variables then the classification will
remain unchanged with high probability.

The evaluation methods for explanations of Samek et al. (2017a) and Fong and Vedaldi
(2017) indicate that practitioners agree and design algorithms that should solve Min-δ-
Relevant-Input in practice. Yet, our hardness results indicate that efficient methods
cannot be proven to achieve this under all circumstances.

5.1 Stability and Uniqueness of δ-Relevant Sets

One should note that, like prime implicant explanations, the solution sets of the Min-δ-
Relevant-Input problem are generally not unique. However, this behaviour is expected
since an input can contain redundant information and each part of it alone can already be
sufficient for the prediction. Even for instances with unique solution sets, these can depend
sensitively on the probability threshold δ, i.e. slight changes in δ can lead to very different
(and possibly not even overlapping) solution sets.

Further, the concept of δ-relevance is not monotone, in the sense that if S1 is δ-relevant
then S2 ⊇ S1 does not need to be δ-relevant as well. Again, this behaviour is expected, since
there can be negative evidence in some of the variables. For example, think of a cat-vs-dog
image classifier and an input containing both a cat and a dog. A set of variables including
the cat will get less relevant for the prediction “cat” if we add more variables covering the
dog to it. In fact, this non-monotonicity property was essential for the constructions used in
our proof of the inapproximability theorem.

5.2 Binary vs Continuous

In our analysis, we considered Boolean circuit classifiers and binary input variables. As
discussed in the introduction, the classifier is fixed in each problem instance, thus any class
of classifiers that can efficiently describe Boolean circuits is also subject to our hardness
results. This includes ReLU neural networks as well as Bayesian networks.3

Moreover, we only considered a binary partition into relevant and non-relevant variables
analogous to the prime implicant explanation, even though many practical methods provide
continuous relevance scores (in some cases even negative scores) (Samek et al., 2017b).
The reason for this is two-fold. Firstly, there generally is no agreed upon interpretation of
what continuous relevance scores mean. Therefore, we prefer to keep the clear meaning of a
partition of the variables as in the prime implicants. Secondly, many of the most prominent
applications of these relevance mappings rely on binarisations of the continuous relevance
scores. A mask for relevant objects in the input, e.g. tumor cells in body tissue (Lyu &
Haque, 2018) or expressive genes in a sequence (Vidovic et al., 2015), can be obtained by
considering only the variables with a sufficiently large relevance score. The decision in the
end is thus a binary one.

3. The conditional probabilities describing the Bayesian network can represent truth tables of logical
operators. This allows them to emulate Boolean circuits (Park, 2002).

375

Wäldchen, Macdonald, Hauch, & Kutyniok

5.3 Choice of Distribution

We restricted our analysis to the case of using the uniform distribution over the binary cube
to randomise non-relevant variables. One could also consider more data-adapted or even
empirical distributions. However, this may obscure insights about the classifiers reasoning.
As an example, consider a faulty image classifier for boats that recognises water instead.
If the data-adapted distribution only models images of boats on water, then marking the
boat as relevant will always lead to random completions including water around the boat.
Consequently, the prediction will remain unchanged even though the boat is not the true
underlying reason for the classifier prediction. The classifier appears to work correctly, even
though it will fail for images showing other objects on water. Instead, if the distribution
used for the random completion is oblivious to the correlation between boats and water, the
function output will only remain constant when the water is fixed, revealing the true relevant
region.

6. Conclusion

There exists a wide variety of algorithms that aim to make modern machine learning methods
interpretable. In turn, these algorithms themselves must be trusted. Thus it is clearly
important to define the exact problem that the algorithms try to solve and to gain insights
about the quality of their solution.

We discussed in this paper that our probabilistic version of prime implicant explanations is
a crucial part of the problem that practitioners want to solve when they design interpretation
algorithms. We showed that the task of identifying the relevant components of an input
assignment to the variables of a Boolean circuit is complete for the complexity class NPPP

and thus, for example, as difficult as planing under uncertainty (Drummond & Bresina,
1990).

Our paper furthermore investigates whether it is possible to reduce the complexity of
the problem at the cost of getting only approximate solutions. We relaxed the problem by
introducing the promise of a probability gap that allows for efficient bounding of the fraction
of satisfying assignments. Furthermore we required that a solution set only approximates
the optimal set up to any non-trivial approximation factor. Both these relaxations do not
render this problem computationally feasible unless P = NP.

This makes practical guarantees for the interpretation of neural networks infeasible, as
long as the networks are powerful enough to represent arbitrary logical functions. It is thus
necessary to further restrict the problem setting. However, the hardness instances we construct
can already be represented by neural networks with a fixed number of layers and bounded
weights. Excluding these instances by further restricting these coarse hyperparameters would
go against the idea of neural networks.

This only leaves the option of more subtle restrictions on the neural networks and the
inputs that depend on the actual data structures on which the networks have been trained.
These, however, are not yet well enough understood. As long as this is the case, we have to
rely on heuristic solutions that are thoroughly evaluated numerically.

In a companion paper (Macdonald et al., 2019) we present a heuristic algorithm
for a continuous (non-discrete) variant of the δ-Relevant-Input problem and classifier
functions with compositional (layered) structure (such as neural networks). For several

376

The Computational Complexity of Understanding Binary Classifier Decisions

image classification tasks we demonstrate numerically that our algorithm approximates small
relevant sets better than widely-used comparable methods.

Acknowledgments

The authors would like to thank Philipp Petersen for several fruitful discussions during the
early stage of the project as well as Peter Bürgisser for helpful feedback on the first draft.
J. M. and S. W. acknowledge support by DFG-GRK-2260 (BIOQIC). S. H. is grateful for
support by CRC/TR 109 “Discretization in Geometry and Dynamics”. G. K. acknowledges
partial support by the Bundesministerium für Bildung und Forschung (BMBF) through the
“Berliner Zentrum für Machinelles Lernen” (BZML), by the Deutsche Forschungsgemeinschaft
(DFG) through Grants CRC 1114 “Scaling Cascades in Complex Systems”, CRC/TR 109
“Discretization in Geometry and Dynamics”, DFG-GRK-2433 (DAEDALUS), DFG-GRK-2260
(BIOQIC), SPP 1798 “Compressed Sensing in Information Processing” (CoSIP), by the Berlin
Mathematics Research Centre MATH+, and by the Einstein Foundation Berlin.

Appendix A. Raising the Probability

We give constructive proofs of Lemmas 3.8 and 3.12, starting with the first.

Proof of Lemma 3.8: Let Φ: {0, 1}d → {0, 1} be arbitrary and 0 ≤ δ1 < δ2 < 1. We will
construct a monotone function Π: {0, 1}n → {0, 1} such that

Py(Φ(y)) > δ1 ⇐⇒ P(y,r)(Φ(y) ∨Π(r)) ≥ δ2, (3)

with
n ∈ O

((
d+ log2

(
1− δ1

1− δ2

))
2

)
.

In our context δ1 and δ2 are constant and therefore n ∈ O
(
d2
)
.

Denote Φ′ : {0, 1}d × {0, 1}n → {0, 1} : (y, r) 7→ Φ(y) ∨Π(r), then

P (Φ′) = P (Φ) + (1− P (Φ))P (Π), (4)

which is monotonically increasing in both P (Φ) and P (Π). Thus, it suffices to consider the
edge case when P (Φ) is close to δ1. Since P (Φ) can only take values in

{
0
2d
, 1

2d
, . . . , 2d

2d

}
we

see that (3) is equivalent to the two conditions

P (Φ) =
bδ12dc

2d
=⇒ P (Φ′) < δ2,

P (Φ) =
bδ12dc+ 1

2d
=⇒ P (Φ′) ≥ δ2,

which together with (4) is equivalent to

bδ12dc
2d

+
2d − bδ12dc

2d
P (Π) < δ2 (5)

bδ12dc+ 1

2d
+

2d − bδ12dc − 1

2d
P (Π) ≥ δ2. (6)

377

Wäldchen, Macdonald, Hauch, & Kutyniok

In the case δ1 < δ2 ≤ bδ12dc+1
2d

these conditions are already fulfilled if we simply set Π ≡ 0.

Otherwise, if δ2 >
bδ12dc+1

2d
, rearranging (5) and (6) yields the bounds

a ≤ P (Π) < b

on P (Π), where

a =
δ22d − bδ12dc − 1

2d − bδ12dc − 1
,

b =
δ22d − bδ12dc
2d − bδ12dc

.

It is not hard to check that indeed we have 0 ≤ a < b ≤ 1.
In Appendix C we show for η ∈ [0, 1] and ` ∈ N the existence of a monotone DNF-function

Πη,` : {0, 1}n → {0, 1} such that Πη,`(0n) = 0, Πη,`(1n) = 1, and

|P (Πη,`)− η| ≤ 2−`

with n ≤ `(`+3)
2 ∈ O(`2). We conclude by choosing

η =
b+ a

2
,

` =

⌊
− log2

(
b− a

2

)⌋
+ 1 ∈ O

(
d+ log2

(
1− δ1

1− δ2

))
,

and setting Π = Πη,`. We get n ∈ O(`2) = O
((
d+ log2

(
1−δ1
1−δ2

))
2
)
, which finishes the proof

of Lemma 3.8.

Proof of Lemma 3.12: We proceed analogously to before. For 0 ≤ δ1 ≤ δ2 < 1, we
construct a monotone function Π: {0, 1}n → {0, 1} such that

Py(Φ(y)) ≥ δ1 ⇐⇒ P(y,r)(Φ(y) ∨Π(r)) > δ2,

with
n ∈ O

((
d+ log2

(
1− δ1

1− δ2

))
2

)
.

Again, δ1 and δ2 are constant in our setting and therefore n ∈ O
(
d2
)
.

Similar to before, in the case that δ1 ≤ δ2 <
dδ12de

2d
, we can simply set Π ≡ 0. Otherwise,

we get the bounds
a < P (Π) ≤ b

with

a =
δ22d −

⌈
δ12d

⌉
2d − dδ12de

,

b =
δ22d −

⌈
δ12d

⌉
+ 1

2d − dδ12de+ 1
.

378

The Computational Complexity of Understanding Binary Classifier Decisions

Again, we can check that 0 ≤ a < b ≤ 1, and set

η =
b+ a

2
,

` =

⌊
− log2

(
b− a

2

)⌋
+ 1 ∈ O

(
d+ log2

(
1− δ1

1− δ2

))
,

and Π = Πη,` with n ∈ O(`2) = O
((
d+ log2

(
1−δ1
1−δ2

))
2
)
, which concludes the proof of

Lemma 3.12.

Appendix B. Lowering the Probability

We give constructive proofs of Lemmas 3.9 and 3.13, starting with the first.

Proof of Lemma 3.9: Let Φ: {0, 1}d → {0, 1} be arbitrary and 0 < δ1 ≤ δ2 ≤ 1. We will
construct a monotone function Π: {0, 1}n → {0, 1} such that

Py(Φ(y)) > δ2 ⇐⇒ P(y,r)(Φ(y) ∧Π(r)) ≥ δ1, (7)

with
n ∈ O

((
d+ log2

(
δ2

δ1

))
2

)
.

In our context δ1 and δ2 are constant and therefore n ∈ O
(
d2
)
.

Denote Φ′ : {0, 1}d × {0, 1}n → {0, 1} : (y, r) 7→ Φ(y) ∧Π(r), then

P (Φ′) = P (Φ)P (Π), (8)

which is monotonically increasing in both P (Φ) and P (Π). Thus, it suffices to consider the
edge case when P (Φ) is close to δ2. Since P (Φ) can only take values in

{
0
2d
, 1

2d
, . . . , 2d

2d

}
we

see that (7) is equivalent to the two conditions

P (Φ) =
bδ22dc

2d
=⇒ P (Φ′) < δ1,

P (Φ) =
bδ22dc+ 1

2d
=⇒ P (Φ′) ≥ δ1,

which together with (8) is equivalent to

bδ22dc
2d

P (Π) < δ1 (9)

bδ22dc+ 1

2d
P (Π) ≥ δ1. (10)

In the case bδ22dc
2d

< δ1 ≤ δ2 these conditions are already fulfilled if we simply set Π ≡ 1.

Otherwise, if δ1 ≤ bδ22dc
2d

, rearranging (9) and (10) yields the bounds

a < P (Π) ≤ b

379

Wäldchen, Macdonald, Hauch, & Kutyniok

on P (Π), where

a =
δ12d

bδ22dc+ 1
,

b =
δ12d

bδ22dc
.

It is not hard to check that indeed we have 0 ≤ a < b ≤ 1.
In Appendix C, we show for η ∈ [0, 1] and ` ∈ N the existence of a monotone DNF-function

Πη,` : {0, 1}n → {0, 1} such that Πη,`(0n) = 0, Πη,`(1n) = 1, and

|P (Πη,`)− η| ≤ 2−`

with n ≤ `(`+3)
2 ∈ O(`2). We conclude by choosing

η =
b+ a

2
,

` =

⌊
− log2

(
b− a

2

)⌋
+ 1 ∈ O

(
d+ log2

(
δ2

δ1

))
,

and setting Π = Πη,`. We get n ∈ O(`2) = O
((
d+ log2

(
δ2
δ1

))
2
)
, which finishes the proof of

Lemma 3.9.

Proof of Lemma 3.13: We proceed analogously to before. For 0 < δ1 < δ2 ≤ 1, we
construct a monotone function Π: {0, 1}n → {0, 1} such that

Py(Φ(y)) ≥ δ2 ⇐⇒ P(y,r)(Φ(y) ∧Π(r)) > δ1,

with
n ∈ O

((
d+ log2

(
δ2

δ1

))
2

)
.

Again, δ1 and δ2 are constant in our setting and therefore n ∈ O
(
d2
)
.

Similar to before, in case that dδ22de−1

2d
≤ δ1 < δ2, we can simply set Π ≡ 1. Otherwise,

we get the bounds
a < P (Π) ≤ b

with

a =
δ12d

dδ22de

b =
δ12d

dδ22de − 1
.

Again, we can check that 0 ≤ a < b ≤ 1, and set

η =
b+ a

2
,

` =

⌊
− log2

(
b− a

2

)⌋
+ 1 ∈ O

(
d+ log2

(
δ2

δ1

))
,

380

The Computational Complexity of Understanding Binary Classifier Decisions

and Π = Πη,` with n ∈ O(`2) = O
((
d+ log2

(
δ2
δ1

))
2
)
, which concludes the proof of

Lemma 3.13.

Appendix C. Construction of the Functions Πη,`

For η ∈ [0, 1] (the target probability) and ` ∈ N (the accuracy) we construct a Boolean
function Πη,` : {0, 1}n → {0, 1} in disjunctive normal form with n ∈ O(`2), Πη,`(0n) = 0,
Πη,`(1n) = 1, and

|η − P (Πη,`)| ≤ 2−`.

If η ≤ 2−`, we can simply choose Πη,`(x1, . . . , x`) =
∧`
k=1 xk. So from now on assume

2−` < η ≤ 1. In this case we construct a sequence of functions Πi : {0, 1}ni → {0, 1} such
that pi = P (Πi) is monotonically increasing and converges to η from below. We proceed
according to the following iterative procedure: Start with the constant function Π0 ≡ 0. Given
Πi and pi we can stop and set Πη,` = Πi if |η− pi| ≤ 2−`. Otherwise, we set ni+1 = ni + ∆ni
with

∆ni = argmin
{
n ∈ N : pi + (1− pi)2−n ≤ η

}
, (11)

and

Πi+1(x1, . . . , xni+1) = Πi(x1, . . . , xni) ∨

 ni+1∧
k=ni+1

xk

.
Clearly, we obtain pi+1 = pi + (1 − pi)2−∆ni . We will see below that ∆ni can not be too
large and thus (11) can be efficiently computed by sequential search.

Lemma C.1. The sequence (pi)i∈N is monotonically increasing and we have

|η − pi+1| ≤
1

2
|η − pi|

for all i ∈ N. In particular |η − pi| ≤ 2−i and pi → η as i→∞.

Proof. Since 0 = p0 ≤ η and by choice of ∆ni, we have pi ≤ η for all i ∈ N. Also from
(11) we know that pi + (1− pi)2−(∆ni−1) > η since otherwise ∆ni would be chosen smaller.
Therefore,

η − pi+1 = η − pi − (1− pi)2−∆ni

= η − 1

2
pi −

1

2

(
pi + (1− pi)2−(∆ni−1)

)
≤ 1

2
(η − pi).

The second part simply follows by repeatedly applying the above recursion i times and from
the fact that η − p0 = η ≤ 1.

We conclude that the desired accuracy is reached after at most ` iterations in which case
we stop and set Πη,` = Π`. It remains to determine how many variables need to be used in
total. We first bound how many variables are added in each step.

381

Wäldchen, Macdonald, Hauch, & Kutyniok

Lemma C.2. For any i ∈ N, we have ∆ni < − log2(η − pi) + 1.

Proof. As before we know pi + (1− pi)2−(∆ni−1) > η since otherwise ∆ni would be chosen
smaller. This implies

2−(∆ni−1) >
η − pi
1− pi

≥ η − pi,

and therefore ∆ni < − log2(η − pi) + 1.

This can finally be used to bound how many variables are used in total.

Lemma C.3. The total number of variables for Πη,` = Π` is

n = n` =
∑̀
i=1

∆ni−1 ∈ O
(
`2
)
.

Proof. From Lemma C.1 we get η − pi ≥ 2(η − pi+1) and thus η − pi ≥ 2`−1−i(η − p`−1).
Without loss of generality we can assume η − p`−1 ≥ 2−` since otherwise we can stop the
iterative construction of Πη,` at `− 1. Using Lemma C.2, this immediately results in

n =
∑̀
i=1

∆ni−1

≤
∑̀
i=1

− log2(η − pi−1) + 1

≤
∑̀
i=1

− log2

(
2`−i(η − p`−1)

)
+ 1

≤
∑̀
i=1

− log2

(
2−i
)

+ 1

=
`(`+ 1)

2
+ ` ∈ O

(
`2
)
.

Appendix D. Neutral Operation

We provide a constructive proof of Lemma 3.10.

Proof of Lemma 3.10: Let Φ: {0, 1}d → {0, 1} be arbitrary and 0 < δ < 1. We will
construct a function Γ = Γd,δ : {0, 1}r → {0, 1} so that for some nd,δ ∈ N we have

Py(Φ(y)) ≥ δ ⇐⇒ P(y,r,t)

(
(Φ(y) ∧ Γ(r)) ∨

(
n∧
i=1

ti

))
≥ δ, (12)

for all n ≥ nd,δ and

r + nd,δ ∈ O
(

log

(
1

δ

)
+ d2

)
.

382

The Computational Complexity of Understanding Binary Classifier Decisions

We introduce Φ′ = Φ ∧ Γ and Φ′′ = Φ′ ∨ (
∧n
i=1 ti). Let us distinguish three cases

Case I: δ ≤ 2−d,

Case II: δ > 2−d and
⌈
δ2d
⌉
− δ2d ≥ 2

3
,

Case III: δ > 2−d and
⌈
δ2d
⌉
− δ2d < 2

3
.

Let us begin with the construction for the first case. Here, we see that P (Φ) < δ is equivalent
to P (Φ) = 0. We simply set Γ ≡ 1 and nd,δ =

⌈
log
(

1
δ

)⌉
+ 1. It is easy to check that this

satisfies Equation (12).
Next, for the second case, we want to construct Γ such that

P (Φ) =

⌈
δ2d
⌉

2d
=⇒ P (Φ′) ≥ δ, (13)

P (Φ) =

⌈
δ2d
⌉
− 1

2d
=⇒ P (Φ′) < δ − 1

3
2−d, (14)

which results in the condition
a ≤ P (Γ) < b

with

a =
δ2d

dδ2de

b =
δ2d − 1

3

dδ2de − 1
.

Thus we can set Γ = Πη,` according to Appendix C with η = b+a
2 and ` = blog

(
2
b−a

)
c+ 1.

Using the fact that δ > 2−d and hence

b− a =
δ2d − 1

3

⌈
δ2d
⌉

dδ2de (dδ2de − 1)
≥ 1

3
2−2d,

we obtain ` ≤ 2d + blog(6)c+ 1 = 2d + 3. In Appendix C we showed that r ∈ O
(
`2
)
and

thus r ∈ O
(
d2
)
. We continue to construct Φ′′ by choosing nd,δ such that

P (Φ′) ≥ δ =⇒ P (Φ′′) ≥ δ,

P (Φ′) < δ − 1

3
2−d =⇒ P (Φ′′) < δ,

holds for all n ≥ nd,δ. The first condition is automatically fulfilled. From

P (Φ′′) = P (Φ′) + (1− P (Φ′))2−n,

as well as (1− P (Φ′)) ≤ 1 we observe that

2−n <
1

3
2−d

is sufficient for the other condition. Thus, we choose nd,δ = d+ blog(3)c+ 1 = d+ 2.
Finally, for the third case, we again want to construct Γ so that (13) and (14) hold. Here,

this is already satisfied by setting Γ ≡ 1. We continue analogously as in the second case and
choose the same nd,δ.

383

Wäldchen, Macdonald, Hauch, & Kutyniok

References

Akers, S. B. (1978). Binary decision diagrams. IEEE Transactions on computers, C-27 (6),
509–516.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., & Samek, W. (2015).
On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PLOS ONE, 10 (7), 1–46.

Brown, T. B., Mané, D., Roy, A., Abadi, M., & Gilmer, J. (2017). Adversarial patch. CoRR,
abs/1712.09665.

Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation. Computers,
IEEE Transactions on, 100 (8), 677–691.

Coudert, O., & Madre, J. C. (1992). Implicit and incremental computation of primes and
essential primes of boolean functions.. In DAC, Vol. 92, pp. 36–39.

Darwiche, A. (2000). On the tractable counting of theory models and its application to belief
revision and truth maintenance. CoRR, cs.AI/0003044.

Darwiche, A. (2011). Sdd: A new canonical representation of propositional knowledge bases.
In Twenty-Second International Joint Conference on Artificial Intelligence.

de Campos, C. P., & Ji, Q. (2008). Strategy selection in influence diagrams using imprecise
probabilities. In Proceedings of the Twenty-Fourth Conference on Uncertainty in
Artificial Intelligence, UAI’08, pp. 121––128, Arlington, Virginia, USA. AUAI Press.

Deng, X., & Papadimitriou, C. H. (1994). On the complexity of cooperative solution concepts.
Mathematics of Operations Research, 19 (2), 257–266.

Drummond, M., & Bresina, J. (1990). Anytime synthetic projection: Maximizing the probability
of goal satisfaction. NASA, Ames Research Center, Artificial Intelligence Research
Branch.

Eiter, T., & Gottlob, G. (1995). The complexity of logic-based abduction. Journal of the
ACM (JACM), 42 (1), 3–42.

Erhan, D., Bengio, Y., Courville, A., & Vincent, P. (2009). Visualizing higher-layer features
of a deep network. Tech. rep. 1341, University of Montreal. Also presented at the
ICML 2009 Workshop on Learning Feature Hierarchies, Montréal, Canada.

Fatima, S. S., Wooldridge, M., & Jennings, N. R. (2008). A linear approximation method for
the shapley value. Artificial Intelligence, 172 (14), 1673–1699.

Fong, R. C., & Vedaldi, A. (2017). Interpretable explanations of black boxes by meaningful
perturbation. In Proceedings of the IEEE International Conference on Computer Vision,
pp. 3429–3437.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position. Biological cybernetics, 36 (4),
193–202.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. http:
//www.deeplearningbook.org.

384

http://www.deeplearningbook.org
http://www.deeplearningbook.org

The Computational Complexity of Understanding Binary Classifier Decisions

Graves, A., Mohamed, A.-R., & Hinton, G. (2013). Speech recognition with deep recurrent
neural networks. In 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 6645–6649.

Grötschel, M., Lovász, L., & Schrijver, A. (1988). Geometric Algorithms and Combinatorial
Optimization, Vol. 2 of Algorithms and Combinatorics. Springer.

Hoeffding, W. (1994). Probability inequalities for sums of bounded random variables. In
The Collected Works of Wassily Hoeffding, pp. 409–426. Springer.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural
networks, 4 (2), 251–257.

Ignatiev, A., Narodytska, N., & Marques-Silva, J. (2019). Abduction-based explanations
for machine learning models. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33, pp. 1511–1519.

Kang, E., Min, J., & Ye, J. C. (2017). A deep convolutional neural network using directional
wavelets for low-dose x-ray ct reconstruction. Medical Physics, 44 (10), e360–e375.

Khosravi, P., Liang, Y., Choi, Y., & Van den Broeck, G. (2019). What to expect of
classifiers? reasoning about logistic regression with missing features. In Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19,
pp. 2716–2724. International Joint Conferences on Artificial Intelligence Organization.

Kononenko, I., et al. (2010). An efficient explanation of individual classifications using game
theory. Journal of Machine Learning Research, 11 (Jan), 1–18.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Pereira, F., Burges, C. J. C., Bottou, L., & Weinberger,
K. Q. (Eds.), Advances in Neural Information Processing Systems 25, pp. 1097–1105.
Curran Associates, Inc.

Littman, M. L., Goldsmith, J., & Mundhenk, M. (1998). The computational complexity of
probabilistic planning. Journal of Artificial Intelligence Research, 9, 1–36.

Littman, M. L., Majercik, S. M., & Pitassi, T. (2001). Stochastic boolean satisfiability.
Journal of Automated Reasoning, 27 (3), 251–296.

Liu, X., Yang, H., Song, L., Li, H., & Chen, Y. (2018). Dpatch: Attacking object detectors
with adversarial patches. CoRR, abs/1806.02299.

Lyu, B., & Haque, A. (2018). Deep learning based tumor type classification using gene expres-
sion data. In Proceedings of the 2018 ACM International Conference on Bioinformatics,
Computational Biology, and Health Informatics, pp. 89–96. ACM.

Macdonald, J., Wäldchen, S., Hauch, S., & Kutyniok, G. (2019). A rate-distortion framework
for explaining neural network decisions. CoRR, abs/1905.11092.

Manquinho, V. M., Oliveira, A. L., & Marques-Silva, J. (1998). Models and algorithms
for computing minimum-size prime implicants. In Proceedings of the International
Workshop on Boolean Problems.

Marquis, P. (1991). Extending abduction from propositional to first-order logic. In Inter-
national Workshop on Fundamentals of Artificial Intelligence Research, pp. 141–155.
Springer.

385

Wäldchen, Macdonald, Hauch, & Kutyniok

Marquis, P. (2000). Consequence finding algorithms. In Kohlas, J., & Moral, S. (Eds.),
Handbook of Defeasible Reasoning and Uncertainty Management Systems: Algorithms
for Uncertainty and Defeasible Reasoning, pp. 41–145. Springer Netherlands, Dordrecht.

McBee, M. P., Awan, O. A., Colucci, A. T., Ghobadi, C. W., Kadom, N., Kansagra, A. P.,
Tridandapani, S., & Auffermann, W. F. (2018). Deep learning in radiology. Academic
Radiology, 25 (11), 1472–1480.

Mukherjee, A., & Basu, A. (2017). Lower bounds over boolean inputs for deep neural
networks with relu gates. CoRR, abs/1711.03073.

Nielsen, M. A. (2018). Neural networks and deep learning..

Parberry, I. (1996). Circuit complexity and feedforward neural networks. Hillsdale, NJ:
Lawrence Erlbaum.

Park, J. D. (2002). Map complexity results and approximation methods. In Proceedings of
the Eighteenth conference on Uncertainty in artificial intelligence, pp. 388–396. Morgan
Kaufmann Publishers Inc.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2018). Anchors: High-precision model-agnostic
explanations. In Thirty-Second AAAI Conference on Artificial Intelligence.

Samek, W., Binder, A., Montavon, G., Lapuschkin, S., & Müller, K.-R. (2017a). Evaluating
the visualization of what a deep neural network has learned. IEEE Transactions on
Neural Networks and Learning Systems, 28 (11), 2660–2673.

Samek, W., Wiegand, T., & Müller, K. (2017b). Explainable artificial intelligence: Under-
standing, visualizing and interpreting deep learning models. CoRR, abs/1708.08296.

Shapley, L. S. (1953). A value for n-person games. In Kuhn, H. W., & Tucker, A. W. (Eds.),
Contributions to the Theory of Games II, pp. 307–317. Princeton University Press,
Princeton.

Shen, D., Wu, G., & Suk, H.-I. (2017). Deep learning in medical image analysis. Annual
Review of Biomedical Engineering, 19 (1), 221–248.

Shih, A., Choi, A., & Darwiche, A. (2018). A symbolic approach to explaining bayesian
network classifiers. In Proceedings of the 27th International Joint Conference on
Artificial Intelligence, IJCAI’18, pp. 5103––5111. AAAI Press.

Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Deep inside convolutional networks:
Visualising image classification models and saliency maps. In Bengio, Y., & LeCun, Y.
(Eds.), 2nd International Conference on Learning Representations, ICLR 2014, Banff,
AB, Canada, April 14-16, 2014, Workshop Track Proceedings.

Sun, Y., Wang, X., & Tang, X. (2013). Deep convolutional network cascade for facial point
detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3476–3483.

Szegedy, C., Toshev, A., & Erhan, D. (2013). Deep neural networks for object detection.
In Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., & Weinberger, K. Q.
(Eds.), Advances in Neural Information Processing Systems 26, pp. 2553–2561. Curran
Associates, Inc.

386

The Computational Complexity of Understanding Binary Classifier Decisions

Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). Deepface: Closing the gap to
human-level performance in face verification. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1701–1708.

Toshev, A., & Szegedy, C. (2014). Deeppose: Human pose estimation via deep neural networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
1653–1660.

Vidovic, M. M.-C., Görnitz, N., Müller, K.-R., Rätsch, G., & Kloft, M. (2015). Opening the
black box: Revealing interpretable sequence motifs in kernel-based learning algorithms.
In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 137–153. Springer.

Xie, J., Xu, L., & Chen, E. (2012). Image denoising and inpainting with deep neural networks.
In Pereira, F., Burges, C. J. C., Bottou, L., & Weinberger, K. Q. (Eds.), Advances in
Neural Information Processing Systems 25, pp. 341–349. Curran Associates, Inc.

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In
Fleet, D., Pajdla, T., Schiele, B., & Tuytelaars, T. (Eds.), Computer Vision – ECCV
2014, pp. 818–833, Cham. Springer International Publishing.

387

	Introduction
	Motivation
	Notation

	Problem Formulation and Complexity Results
	Related Works

	Computational Complexity of Delta-Relevant-Input
	Delta-Relevant-Input is NP^PP-hard
	Fixing or Randomising Variables
	Allowing for all variables to be chosen
	Changing the Probability Threshold

	Delta-Relevant-Input is contained in NP^PP

	Variations of the Problem Formulation
	The Probability Gap
	The Set Size Gap (Approximability)

	Discussion
	Stability and Uniqueness of Delta-Relevant Sets
	Binary vs Continuous
	Choice of Distribution

	Conclusion
	Raising the Probability
	Lowering the Probability
	Construction of the Functions PI_(eta,l)
	Neutral Operation
	References

