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A B S T R A C T   

Widely used traditional supervised deep learning methods require a large number of training samples but often 
fail to generalize on unseen datasets. Therefore, a more general application of any trained model is quite limited 
for medical imaging for clinical practice. Using separately trained models for each unique lesion category or a 
unique patient population will require sufficiently large curated datasets, which is not practical to use in a real- 
world clinical set-up. Few-shot learning approaches can not only minimize the need for an enormous number of 
reliable ground truth labels that are labour-intensive and expensive, but can also be used to model on a dataset 
coming from a new population. To this end, we propose to exploit an optimization-based implicit model agnostic 
meta-learning (iMAML) algorithm under few-shot settings for medical image segmentation. Our approach can 
leverage the learned weights from diverse but small training samples to perform analysis on unseen datasets with 
high accuracy. We show that, unlike classical few-shot learning approaches, our method improves generalization 
capability. To our knowledge, this is the first work that exploits iMAML for medical image segmentation and 
explores the strength of the model on scenarios such as meta-training on unique and mixed instances of lesion 
datasets. Our quantitative results on publicly available skin and polyp datasets show that the proposed method 
outperforms the naive supervised baseline model and two recent few-shot segmentation approaches by large 
margins. In addition, our iMAML approach shows an improvement of 2%–4% in dice score compared to its 
counterpart MAML for most experiments.   

1. Introduction 

Automatic lesion segmentation can help in accurate quantification of 
the area covered by anomalies, precise surgical removal, and treatment. 
Unlike manual processes, which are usually subjective and sub-optimal, 
automated methods can provide a more objective analysis of the lesions 
and their risks. Machine Learning (ML) and Deep learning (DL)-based 
models have already shown successful results in the clinical settings 
[1–3]. 

Data shift and availability of labeled data are major bottlenecks in 
medical image analysis. Other challenges that medical image analysis 

has to deal with are: 1) difficulty to get domain experts to perform an
notations, 2) heterogeneous data, e.g., it could consist of multiple organs 
(skin, gastrointestinal organs) and varied disease types (melanoma in 
skin and polyp in the colon), and 3) large variability between expert and 
novice annotations. The lack of publicly available datasets as well as 
their quality (e.g., missing and erroneous labels) pose additional chal
lenges. In addition, widely used supervised deep learning approaches 
require large amounts of training samples with labels and often fail to 
generalize when tested on different datasets due to data shifts caused by 
different data distribution. Data shift can arise due to population vari
ation (e.g., different demographics), acquisition difference (e.g., devices 
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or imaging protocols), prevalence shift (e.g., environmental factors 
affecting organs) and selection bias (e.g., inclusion criteria for study) 
[4]. 

The state-of-the-art DL models require a large number of high-quality 
and diverse datasets with pixel-wise masks for segmentation that is 
difficult to generate. Additionally, publicly available datasets are still 
limited and often include only a few samples of each unique class, case 
or part of a population. Some example datasets include KvasirCapsule- 
SEG [5] (55 samples), ETIS-Larib [6] (196 samples), PH2 [7]) (200 
samples), EDD2020 [8] (386 samples), Kvasir-instrument [9] (590 
samples), and CVCClinicDB [10] (612 samples). With the available 
datasets, it is still possible to build a ML model by leveraging 
semi-supervised or few-shot learning methods [11], but these datasets 
listed above do not cover all lesion categories or include data from 
multiple sources; for example, rare disease cases, patient variabilities 
and multi-center data sources. Therefore, it is challenging to design a 
model that generalizes well on unseen datasets during clinical deploy
ment. The possible solutions to the dataset mismatch can be domain 
adaptation [12] and domain generalization [13]. Domain adaptation 
utilizes a labeled source training dataset and unlabeled target data to 
develop a model that performs well on the target environment. Imple
menting such adaptation techniques helps to increase the generalization 
capacity of the model towards unseen target domain configuration. On 
the other hand, domain generalization capitalizes on using multi-source 
training datasets to design a classifier that generalizes well on unseen 
target (test) datasets. However, the problem of data scarcity is not 
resolved by any of these techniques in a classical supervised setting as 
they require large training datasets [14–16]. In addition, in domain 
adaptation methods, the learnt features have a similar embedding for 
both source and target dataset, and hence, this trade-off leads to com
promises in the generalization capacity of the model [17,18]. 

To mitigate the problem of data scarcity and domain generalization, 
meta-learning under few-shot settings has emerged as a potential solu
tion [19,20], especially in limited data settings. Meta-learning enables 
learning model weights by leveraging prior knowledge from various 
tasks [21] and can be implemented in different task objectives such as 
few-shot learning or multi-task learning. It is advantageous to use 
meta-learning in few-shot settings, and it has been primarily used in 
image classification [22,23]. Few-shot learning is a method that uses few 
annotated examples (support set) to make predictions on unlabeled 
examples (query set) and is the most appropriate choice when only 
limited data samples are available. An episodic training in a 
meta-learning setting can exploit to generalize to such limited data 
settings and become a natural choice for other tasks such as segmenta
tion. Few-shot learning for segmentation has mostly been explored for 
natural images [24,25]. Recently, it is gaining more attention in the 
medical image segmentation [11,26–30]. Recent work by Ref. [11] used 
a semi-supervised few-shot learning approach to perform skin lesion 
segmentation by feeding the learner with unlabeled surrogate tasks 
[31]. applied a few-shot technique with a squeeze and excite block ar
chitecture to perform volumetric segmentation of multiple organs in 
medical images. In the work proposed by Ref. [32]; few-shot segmen
tation with a self-supervised method has been used to eliminate the need 
for having annotated medical images. They used an adaptive local 
pooling module in conjunction with prototypical networks to perform 
segmentation. 

There are also some studies done to address the data scarcity and 
data mismatch problems in medical imaging field based on Wasserstein 
generative adversarial networks (GAN) where it was adopted for image 
reconstruction [33–35]. Some studies have been carried out to mitigate 
the generalization problem of the ML model in the medical domain, like 
the work done by Ref. [36] where they developed multi-scale deep 

convolutional networks that perform segmentation of overlapping 
cytoplasm. The work done by Ref. [37] proposes an automatic method to 
segment overlapping bacteria regions where they also incorporate 
Markov random field for unsupervised segmentation of small objects. 
These methods show improved generalization capacity. However, these 
methods are not tested under a few-shot setting. Furthermore, all of 
these works based on the few-shot learning approach use the same data 
source and similar tasks for inference, which means that the data shift 
problem has not been tackled. 

A recent study [38] suggested that the supervised transfer learning 
method with fine-tuning can handle the data mismatch better than 
semi-supervised methods. The few-shot semi-supervised method adop
ted by Ref. [11] does not show a promising result, the predicted mask 
stands just at 62.40% of the target mask (ISIC dataset) under the 5-shot 
setting. Thus, in our work, meta-learning is adopted for domain gener
alization by further optimizing model weights via a meta-optimizer to 
overcome the shortcomings of few-shot learning. Recent work by 
Ref. [14] used the gradient-based meta-learning algorithm known as 
Model Agnostic Meta Learning (MAML), where the idea was to operate 
in the semantic feature space and learn semantically invariant features 
across training domains. They evaluated their method with Magnetic 
Resonance Imaging (MRI) images of the brain from different datasets 
that inherited domain shifts. They showed consistent results across all 
the datasets. However, the approach has not been tested under few-shot 
settings, i.e., less number of samples given during training to adapt to 
generalization capability in resource constraint settings during infer
ence. Also, the training and test set included instances from the same 
anatomy. Being able to generalize well over another lesion type by 
training on one lesion type can be advantageous in medical imaging to 
tackle data scarcity problems. Additionally, the used MAML algorithm 
by Ref. [14] has some caveats related to computation and memory ef
ficiency, which makes it difficult to scale up the accuracy as it requires 
several optimization steps [39]. The Implicit Model Agnostic Meta 
Learning (iMAML) algorithm [39,40], on the other hand, can provide 
faster and improved optimization during the meta-learning since the 
solution depends only upon the inner optimization and not the path 
taken by an inner optimization algorithm. 

Primarily, this work explores the efficacy of the iMAML algorithm for 
medical image segmentation with the objective of handling the problem 
of data scarcity and data shift. We propose to demonstrate the use of 
iMAML in medical image segmentation and compare the results with 
other semi-supervised approaches. During this study, the convexity of 
the dice loss function is improved by applying Lovàsz extension [41]. We 
also compared the iMAML algorithm with the MAML algorithm under 
the same setting. The requirement of a few-shot learning paradigm to 
tackle data limitations is well established. However, the fine-tuning of 
the weight parameters has been revisited in several studies showing the 
ability of the model agnostic meta-learning approach. To this end, no 
studies have used an implicit model agnostic approach for medical 
image segmentation. Our contribution includes (i) incorporation of 
attention-UNet [42] mechanism for inner optimization of the weights 
using segmentation tasks on two different datasets during episodic 
meta-training, (ii) utilizing an analytical solution (conjugate gradient) 
for computing meta-gradients to achieve optimized weights, and (iii) a 
comprehensive analysis of the efficacy of iMAML on publicly available 
skin and polyp datasets from multiple sources. Our paper is structured 
into the following sections: Section 2 details the datasets used in this 
work, in Section 3, we present our iMAML segmentation approach and 
the compound loss function, Section 4 contains the experimental details 
and results, in Section 5 we provide comprehensive discussion and 
finally in Section 6 we conclude the paper. 
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2. Datasets 

We use five widely used publicly available datasets, namely Kvasir- 
SEG [43], KvasirCapsule-SEG [5], CVC-612 [10], ISIC-2018 [44,45], 
and PH2 [7]. A combination of these datasets has been used for the 
meta-training stage and tested on a holdout dataset to evaluate our 
proposed iMAML segmentation approach. Table 1 presents information 
of each dataset used in our experimental setup. 

Kvasir-SEG [43] is a widely used publicly available colonoscopy 
dataset. It consists of 1000 polyp images, their corresponding ground 
truth segmentation masks and bounding boxes information of the area 
covered by polyp. The example images from the Kvasir-SEG dataset can 
be found in Fig. 3. The size of each polyp varies from 332 × 487 to 1920 
× 1072. The original images from the Kvasir-SEG are captured during a 
colonoscopy examination using the ScopeGuide colonoscope 
(Olympus). The dataset can be downloaded from https://datasets.si 
mula.no/kvasir-seg/. 

KvasirCapsule-SEG [5] is the wireless video capsule endoscopy 
dataset. This dataset was developed by annotating the ground truth 
segmentation maps from the polyp images found in the Kvasir-Capsule 
dataset [46]. The dataset consists of 55 polyp images and their corre
sponding ground truth segmentation masks and bounding boxes. The 
example of KvasirCapsule-SEG can be found in Fig. 4. The dataset can be 
downloaded from https://www.kaggle.com/debeshjha1/kvasirc 
apsuleseg. 

CVC-ClinicDB [10], also known as CVC-612, is another popular 
polyp segmentation dataset. It consists of 612 polyp images from 31 
colonoscopy videos and their corresponding ground truth masks. The 
sample images from CVC-ClinicDB can be found in stage 1 of Fig. 1. The 
dataset is available at https://www.dropbox.com/s/khtlmehjgv1b07z/c 
vc612.zip?dl=0. 

The ISIC-2018 dataset [44,45] includes both benign and malignant 
skin lesion images. It consists of 2596 dermoscopy images and their 
corresponding ground truth masks. The example samples can be 
observed in Fig. 3. The image resolution is 384 × 512, and the dataset 
can be downloaded from https://challenge.isic-archive.com/data. 

The PH2 [7] dataset consists of dermoscopic images. It consists of 
200 images of melanocytic lesions. The ground truth segmentation mask 
for each image is provided. The dataset can be downloaded from 
https://www.dropbox.com/s/k88qukc20ljnbuo/PH2Dataset.rar. More 
details about the dataset can be found on the webpage.2 

3. Methodology 

This section describes the algorithm and the adopted method used to 
obtain the empirical results. 

3.1. iMAML algorithm 

In general, MAML approaches are trained through a meta-learning 
objective function [20]. However, due to the requirement of 

back-propagation during model training with high-order meta-gra
dients, MAML can suffer from vanishing gradients. In order to eliminate 
this problem [39], suggested to use a bi-level optimization, where an 
inner optimization is focused on computing weights through the Con
volutional Neural Network (CNN) model and an analytic solution is used 
for the outer meta-gradient estimation (see Eq. (1)). 

θ∗
ML :≡ argminθ

1
M
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i )
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, with

Algi(θ) := arg min
φ∈θ

Li(φ) +
λ
2
‖φ − θ‖2

(1) 

In Eq. (1), Dtr
i and Dval

i represent training (support set) and validation 
(query set) in the meta-training phase for the ith task. The task-specific 
parameters in the inner optimization level are represented by φ while 
the optimized weights after meta-training, i.e., the meta-parameters, are 
represented by θ. The final optimized meta-parameters are represented 
as θ∗

ML. In order to avoid overfitting and help anchor, the task parameter 
φ to the meta-parameter θ, an L2-regularization is used for the model 
training Algi. 

The meta-training and meta-testing stages are shown in Fig. 1. 
During the meta-training stage, tasks are generated. The tasks contain a 
support set (train) and query set (validation) with few-shot instances. 
This means that only a few samples are chosen, such as 5 for 5-shot and 
10 for 10-shot. We then initialize our attention U-Net segmentation 
model with random weights θo for the ith task. We then computed the 
loss L between the predicted mask and the ground truth mask in the 
support set with L2 -regularization. Validation loss on the query data 
completes the task for which the optimized φi is fed to the meta-learner 
where meta-gradients are analytically computed and updated as in Eq. 
(2). This is then fed to the model weights of the attention U-Net archi
tecture for further backpropagation and optimization. Such a two-level 
optimization scheme is iterative and done for two different datasets in 
our case (see Fig. 1, top). The meta-training stage is completed once the 
set number of tasks M are completed to obtain the final meta-learned 
parameters θ∗ML. 

θ ← θ − η 1
M

∑M

i=1

d Algi(θ)
dθ

∇φ Li(Algi(θ)) (2) 

The second stage consists of a simple fine-tuning step on the unseen 
data where optimized weight θ∗

ML, say θ for simplicity, is used to optimize 
the loss function L in a few-shot setting. The resulting final weights are 
then used in the final inference for direct segmentation map prediction 
as shown in Fig. 1 (bottom). 

3.2. Loss function 

A compound loss was used during training which comprises of both 
log-cosh-dice loss and binary cross entropy loss. It attenuates the problem 
of class imbalance through dice-loss. The final loss function is devised as: 

L = LBCE + Llc− dce + λ‖θ‖2
2, with

Llc− dce = log(cosh(LDice))
(3)  

where; 

LBCE = − (ylog(ŷ)+ (1 − y)log(1 − ŷ)) (4)  

LDice = 1 −

(

2
∑

i
yi ŷi

)

+ 1
∑

i
yi +

∑

i
ŷi + 1

(5)  

Here, ŷi and yi refer to the pairs of corresponding pixel values of pre
diction and ground-truth, respectively. 

LDice and LBCE have usual meanings for dice loss and binary cross- 

Table 1 
Publicly available medical imaging datasets used in our experiments. Here we 
provide the number of image samples, size of images and imaging type that were 
incorporated in these datasets.  

Dataset # of Images Input size Imaging type 

Kvasir-SEG [43] 1000 Variable Colonoscopy 
KvasirCapsule-SEG [5] 55 Variable Video capsule endoscopy 
CVC-ClinicDB [10] 612 384 × 288 Colonoscopy 
SIC-2018 [44,45] 2596 384 × 512 Dermoscopy 
PH2 [7] 200 768 × 560 Dermoscopy  

2 https://www.fc.up.pt/addi/ph2%20database.html. 
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entropy loss classically used in segmentation approaches [47]. Binary 
Cross-entropy [48] quantifies the difference between two probability 
distributions for a given random variable (eqn (4)). It is popularly 
adopted for object classification or pixel-level classification during 
segmentation. Dice loss (LDice) [49] is based on dice coefficient, which 
measures the overlap between predicted and ground-truth masks (eqn 
(5)). Unlike classical dice loss, Llc− dce is the Lovàsz extension [41] that 

tackles the non-convex nature of dice loss by smoothing it and making 
the function tractable and easy to differentiate. Additionally, we have 
added a weight decay function as an L2 regularization with λ as regu
larization hyper-parameter, and θ is the model weight. This allows to 
encapsulate better generalizability on test samples. 

Fig. 1. Meta-learning with an implicit gradient optimization on medical imaging datasets: Meta training is done as episodic tasks on two public datasets (#1 
and #2). In the first stage, a few-shot learning framework for each task is used for the support set, and validation is done on the query set. During the meta-testing 
stage, an unseen task from the third dataset is provided with the optimized weights obtained from the first stage, #1 and the gradient of the computed loss is used to 
readjust the final weights on only few samples of this dataset. Finally, the fine-tuned weight is used for the inference of the test samples. In all these settings, we use 
attention U-Net [42] to achieve segmentation maps. 
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3.3. Network architecture 

Our proposed model architecture is shown in Fig. 1. Our figure is 
divided into stage 1 and stage 2. In stage 1, meta-training is done on the 
support set, and the validation is done on the query set. Similarly, in 
stage 2, meta-testing is done on the test set. From the figure, we can 
observe that meta-training is performed as episodic tasks on two public 
datasets (PH2 [7], and CVC-ClinicDB [10]). During the meta-testing 
stage (stage 2), an unseen task from the third dataset is provided with 
the optimized weights obtained from the first stage, #1 and the gradient 
of the computed loss is used to readjust the final weights on only a few 
samples of this dataset (please refer to stage 2 part of Fig. 1). The 
network consists of a sampler for creating support and query set for the 
few-shot setting of our experiment and for specific tasks. In all these 
settings, we use attention U-Net [42] as the meta learner to achieve 
segmentation maps. The attention U-Net is used for each task’s 
inner-level parameter optimization φi. We have a meta-gradient opti
mizer for computing the optimized weights fed to the attention U-Net 
model. Finally, the fine-tuned weight is used for the inference of the test 
samples, and the ground truth masks are predicted. 

4. Experiments and results 

This section will describe the experimental setup, implementation 
details, and our results on each dataset. 

4.1. Setup 

4.1.1. Experimental design 
All experiments in this work use few-shot supervised settings for 

which N-way, K-shot tasks are randomly generated from two publicly 
available datasets. In this context, N refers to the number of classes and 
K refers to samples from each class. The number of classes N corresponds 
to the number of different data pools, making our experiments a 2-way 
K-shot task. Finally, the learned parameters were fine-tuned over an 
entirely new task drawn from the hold-out data pool for the meta- 
testing. We present three sets of experiments: (i) tasks that comprised 
of samples exclusively from the Kvasir-SEG (polyp) dataset or from the 
PH2 (skin) dataset, (ii) tasks that are comprised of mixed samples, and 
(iii) tasks trained on the same class datasets and tested on an entirely 
different class, such as meta-training on skin datasets and meta-testing 
on polyp dataset. 

4.1.2. Implementation details 
The meta-parameters were initialized with pre-trained weights from 

U-Net trained on brain MRI scans [50]. The meta-gradient is computed 
by applying conjugate gradient (CG), and the meta-parameters are 
updated using the Adam optimizer [51] with a learning rate of 10− 5 and 
a weight decay of 0.000 5. Our convergence criteria is reached when the 
loss function does not change more than 0.001 over ten epochs. Fig. 2 
shows the training convergence at the 50th epoch for a model trained in 
2-way 5-shot and 2-way 10-shot settings. For the regularization of the 
computed learned weights, we fixed λ = 100. The images and their 
corresponding ground truth were normalized in the range of [− 1, 1] and 
resized to 256 × 256. All implementations were done using the PyTorch 
framework, and experiments were conducted on NVIDIA Tesla 
V100-SXM3. 

4.2. Results 

We present results for three different experimental setups to illus
trate the model efficacy compared to naive supervised attention U-Net 
and two recent SOTA few-shot methods used for medical image 
segmentation. 

4.2.1. Meta-training with samples drawn exclusively from two unique 
datasets and unique categories 

Table 2 presents the episodic training of our meta-learning approach 
on the PH2 and Kvasir-SEG datasets consisting of skin and polyp cate
gories, respectively. It can be observed that on the unseen ISIC dataset 
for test, our proposed iMAML-based segmentation outperformed the 
naive baseline U-Net by a very large margin of 25% and by nearly 23% 
and 16% on the dice coefficient compared to the baseline semi- 
supervised method [11] and the recent mask guided few-shot segmen
tation approach (PMG baseline) [30], respectively. The qualitative re
sults (Fig. 3, left) also provide insight that our method provided optimal 
segmentation masks for different skin lesion types. The proposed 
meta-learning-based segmentation obtained the highest dice coefficient 
of 77.39%, 79.17% and 83.26% for different K-shots, i.e., 5, 10, and 20 
shots, respectively. 

4.2.2. Tasks comprising mixed samples of two unique datasets 
Table 3 presents quantitative results for a different setting where the 

samples are mixed from two datasets (PH2 and Kvasir-SEG). Clearly, 
there is evidence of a performance drop in our meta-learning method. 
Nevertheless, the proposed algorithm consistently outperformed base
line methods. The best dice score of 72.48% is obtained on the ISIC 
(skin) dataset under 2-way 20-shot setting, which is nearly 11.69% and 
5.48% on the dice coefficient compared to the baseline semi-supervised 
method and PMG baseline model, respectively. Similarly, under this 
experimental setup, the segmentation results on the KvasirCapsule-SEG 
dataset using the iMAML and MAML algorithms are also captured in 
Table 5. It can be observed that both the meta-learning algorithms 
iMAML and MAML, outperforms the baseline models by 45% and 42%, 
respectively, that was naively trained under classical supervised setting 
with limited 44 images that were available for the KvasirCapsule-SEG 
dataset. 

4.2.3. Tasks comprising samples from two unique datasets of the same class 
Tables 4 and 6 represent meta-training on two unique datasets, but 

with the same categories and tested on a different class dataset. The 
categories here refers to a particular disease type (polyp or skin lesion). 
It can be observed that for episodic training conducted on the polyp 
datasets (CVC-ClinicDB and Kvasir-SEG) and tested on the skin dataset 
(see Table 4), our method is still able to generalize better than the naive 
baseline approach trained on 800 samples and the recent semi- 
supervised approach. The best dice score of 66.71% is obtained on the 
ISIC (skin) dataset under a 2-way 20-shot setting which is better by 
nearly 5.92% compared to the baseline semi-supervised method and 
competitive to the PMG baseline. Similar observations can be found 
when the method is trained on the skin datasets such as ISIC-2018 and 

Fig. 2. Comparison of learning curves between 2-way 5-shot and 2-way 10-shot 
meta-learning settings that correspond to Table 2 for our proposed iMAML 
approach. Loss up to 50 epochs are provided to illustrate the convergence. 
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PH2 datasets and tested on the Kvasir-SEG and KvasirCapsule-SEG polyp 
segmentation datasets (please refer to Fig. 3 and Table 6). 

Additionally, we further investigated the effect of Lovász extension 
and standard dice loss function in a meta-learning setting using our first 
episodic training setup. Based on the experimental results (see Table 7), 
Lovàsz extension was chosen, which improved the segmentation result 
by nearly 3.00%. 

5. Discussion 

Owing to the challenges such as data scarcity and data mismatch in 
the medical field while applying deep learning techniques, the gener
alization capacity of the trained model is reduced during deployment. 
Furthermore, various biases are introduced during the data collection 
process that can induce data shift at test time and derail the trained 
model’s performance during a clinical deployment. 

Acknowledging these challenges, the ML community has carried out 
some studies, which includes the work by Ref. [11] which is based on a 
semi-supervised few-shot learning method. Similarly, work by Ref. [14] 
uses the meta-learning method MAML to tackle the challenge of data 
shifts due to various data sources. However, these previous works have 
not been tested for completely different anatomies and under a few shot 
settings. We propose a meta-learning method with an implicit gradient 
(iMAML) to overcome these challenges under a few shot settings. The 
adopted meta-learning method is model agnostic and can take any other 
segmentation network as the meta-learner to learn the segmentation 
mask. For our experiment, we select the most popular segmentation 
network, U-Net, with an attention module as the meta-learner. The two 
SOTA methods used in comparison use few-shot learning approaches 
and hence can be directly compared. Adding any other supervised 
models would direct us to similar accuracy gains when used in a 
meta-learning framework. To test the efficacy of the iMAML algorithm, 
we arranged three different experiment setups (see Section 4.1). For 
carrying out the experiments, two datasets for skin, two datasets of 

normal colonoscopy and a dataset from video capsule endoscopy, which 
is a different modality, were used. The idea was to perform 
meta-training with tasks that are comprised of instances either from the 
same medical categories or different medical categories; to observe the 
generalization capacity of the algorithm. So, we picked two datasets that 
provided enough variability for episodic training. The results in Table 2 
are from the first experimental setup where tasks are homogeneously 
comprised either only from the PH2 (skin) dataset or from the 
Kvasir-SEG (polyp) dataset and then tested on the ISIC dataset. The 
segmentation results from the iMAML algorithm outperformed all the 
baseline models with the largest improvement of over 25% compared to 
the naive baseline model. Furthermore, iMAML has an improvement of 
nearly 2%–4% over the standard MAML approach. Similarly, the results 
from the second experiment are tabulated in Table 3 where the 
meta-learning algorithm is trained on tasks comprised of both the PH2 

(skin) and the Kvasir-SEG (polyp) datasets together. The segmentation 
performance on the test task from the ISIC (skin) dataset shows that the 
iMAML algorithm outperforms the naive baseline model by nearly 15% 
and shows distinct performance gains over all other methods in our 
comparison. The overall degradation in performance of both 
meta-learning algorithms compared to the previous setup (see Table 2) 
can be due to the increased variability in samples presented during the 
episodic meta-training that can make the network difficult to converge 
optimally to two different dataset attributes. 

The third experiment setup aims to test the generalization capacity of 
the meta-learning model on an entirely never seen task. The task is 
comprised of polyp datasets, namely from CVC-ClinicDB and Kvasir- 
SEG. Table 4 depicts the result of the third experiment setup where 
the performance of the meta-learning algorithm is further degraded. 
Again, this could be because of training on a completely different dataset 
acquired from a different device and a different class category. Thus, the 
proposed iMAML generalizes well and provides an improved result 
compared to naive baseline by 8.61% and still eclipses the semi- 
supervised baseline method [11] by 5.92%. We further compared the 

Fig. 3. Qualitative results of the proposed method on ISIC-2018 [44,45] (left) presented in Table 2 and results on Kvasir-SEG [43] (right) corresponding to Table 6. 
(Left) represents our first experimental configuration, i.e., training with samples drawn uniquely from two datasets from two different class categories (in this case 
PH2 and Kvasir-SEG) while (right) corresponds to our third setup where samples comprise of two different datasets but of unique class (only skin datasets in 
this case). 
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test results between Kvasir-SEG and KvasirCapsule-Seg while training on 
tasks comprised of skin datasets only. The results captured in Table 5 
demonstrate that even with datasets with few examples like 
KvasirCapsule-SEG, the meta-learning algorithms can perform better 
than the naive baseline models. 

From the empirical observations, we can note that the DSC score is 

Fig. 4. Qualitative results on the KvasirCapsule-SEG dataset corresponding to Table 6. The illustrated prediction maps (left) refer to the results from our third setup 
where samples comprised of two different datasets but with unique class (i.e., skin datasets, PH2 and ISIC-2018, in this case). 

Table 2 
Quantitative results as DSC metric for our first experimental setup. Here, 
episodic training for meta-learning is done independently with 50 tasks, first on 
PH2 (skin) and then on Kvasir-SEG (polyp). Here, naive baseline (i.e., attention 
UNet) is trained on 800 image samples while 5 shot (referring to a few-shot 
training using 5 samples) results for PMG Baseline is reported [30]. Similarly, 
for meta-learning approaches we provide results on 5, 10 and 20 shot episodic 
training. Test samples consist of only unseen ISIC data samples.  

Algorithm K- 
shots 

# 
Tasks 

Target 
Dataset 

DSC 

Naive Baseline 800 – ISIC 58.10 
Semi-supervised. baseline (Feyjie 

et al., 2020) 
5 – ISIC 61.38 
10 – ISIC 61.40 
20 – ISIC 60.79 

PMG Baseline (Xiao et al., 2021) 5 – ISIC 67.00 
Meta-learned (MAML) 5 50 ISIC 75.62 

10 50 ISIC 77.31 
20 50 ISIC 79.60 

Meta-learned (iMAML) 5 50 ISIC 77.39 
10 50 ISIC 79.17 
20 50 ISIC 83.26  

Table 3 
Episodic training on tasks comprised of both PH2 (skin) and Kvasir-SEG (polyp) 
instances. This refers to our second experimental setup. Similar to Table 2, here 
we present DSC metric scores for 5, 10, and 20 shots for meta-learning ap
proaches again tested on unseen ISIC datasets.  

Algorithm K-shots # Tasks Target Dataset DSC 

Naive Baseline 800 – ISIC 58.10 
Semi-supv. Baseline [11] 5 – ISIC 61.38 

10 – ISIC 61.40 
20 – ISIC 60.79 

PMG Baseline [30] 5 – ISIC 67.00 
Meta-learned (MAML) 5 50 ISIC 66.19 

10 50 ISIC 68.54 
20 50 ISIC 70.61 

Meta-learned (iMAML) 5 50 ISIC 70.15 
10 50 ISIC 71.69 
20 50 ISIC 72.48  
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higher with ISIC as the target dataset in comparison with KvasirCapsule- 
SEG. This is because Kvasir-SEG and Kvasir Capsule datasets come from 
colorectal inspection (inside body), where the obtained images are often 
specular and have variable contrast based on their location. In contrast, 
the ISIC dataset is obtained from dermatoscopy, which is usually taken 
from the exposed skin region with polarised or non-polarised light 
sources and are concentrated closer to the area of interest and often have 
diffused reflection. 

Empirically, we showed that the iMAML algorithm could efficiently 
handle tasks with higher variations of instances during deployment. The 
method is model agnostic and should be replicable with other imaging 
modalities. However, we have chosen skin and polyp datasets as the 
domain shift in these data are very observant due to 1) patient or pop
ulation variability, 2) imaging type (e.g., colonoscopy vs capsule 
endoscopy) and 3) class and color variability in skin images (e.g., PH2 
and ISIC). It also illustrates that iMAML can be applied effectively in a 
complex problem like segmentation. During each of the experiment 
setups, the performance of the meta-learning algorithm is further 
improved by increasing the number of training tasks or the number of 
instances in each task which was a trade-off between training time and 
accuracy. This provides a robust method to handle data scarcity prob
lems while training a deep neural network. 

The findings of the empirical studies suggest that optimization-based 
meta-learning can alleviate the problem of data generalization and data 
scarcity which is prominent in the medical domain. We showed that the 
idea of meta-learning is a plausible concept that can benefit medical 
image segmentation under few-shot settings. In the future, we want to 
investigate how prior information about feature embedding from each 
task could be used to reduce the training time. 

6. Conclusion 

We proposed a novel model-agnostic meta-learning segmentation 
method in a few-shot setting that uses an implicit gradient-based opti
mization technique for improved model parameter estimation and 
generalization over unseen datasets with unique and seen categories. 
The proposed method improved performance and generalization capa
bilities compared to naive supervised techniques and the most recent 
few-shot segmentation approaches. We also demonstrated that the 
iMAML algorithm performs better than a popular meta-learning 
approach, MAML. Our method allowed the exploitation of available 
medical imaging datasets for training such that the trained model can be 
applied on an unseen dataset without requiring ample ground truth la
bels. Thus, the proposed method eliminates the need for abundant data 
for each specialized medical imaging category. However, the adopted 
meta-learning algorithm (iMAML) showed only marginal performance 
gain when trained with tasks comprised of instances from various 
medical categories. The generalization capacity of the iMAML algorithm 
is reduced when trained with skewed tasks, for example, tasks 
comprising of instances from skin and polyp datasets. To address such an 
issue, we will aim to shuffle channels or mix embedded features between 
instances of datasets while performing meta-training in future work. 
Nevertheless, this meta-learning approach could potentially contribute 
to developing clinically deployable systems for real-world application in 
the future. 
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Table 4 
Episodic training on CVC-612 (polyp) and Kvasir-SEG (polyp) dataset. Here we 
provide quantitative results from our third experimental setup (i.e., tasks 
comprising samples from two unique datasets of the same class). Similar to 
Table 2, here we present DSC metric scores for 5, 10, and 20 shots for meta- 
learning approaches again tested on the unseen ISIC dataset.  

Algorithm K-shots # Tasks Target Dataset DSC 

Naive Baseline 800 – ISIC 58.10 
Semi-supv. Baseline [11] 5 – ISIC 61.38 

10 – ISIC 61.40 
20 – ISIC 60.79 

PMG Baseline [30] 5 – ISIC 67.00 
Meta-learned (MAML) 5 50 ISIC 59.70 

10 50 ISIC 62.43 
20 50 ISIC 64.70 

Meta-learned (iMAML) 5 50 ISIC 63.56 
10 50 ISIC 65.09 
20 50 ISIC 66.71  

Table 5 
Episodic meta-training on Kvasir-SEG (polyp) and PH2 (skin) dataset from the 
second experimental setup (i.e., tasks comprising mixed samples of two unique 
datasets). Meta-testing is done on instances from unseen KvasirCapsule-SEG 
(wireless capsule endoscopy polyp) dataset. Here, naive baseline (attention U- 
Net) is trained on KvasirCapsule-SEG using 44 samples (80%) and tested on 
remaining samples (20%) as done for other meta-learning approaches.  

Algorithm K-shots # Tasks Target Dataset DSC 

Naive Baseline 44 – KvasirCapsule-SEG 16.23 
Meta-learned (MAML) 5 50 KvasirCapsule-SEG 53.33 

10 50 KvasirCapsule-SEG 56.10 
20 50 KvasirCapsule-SEG 58.47 

Meta-learned (iMAML) 5 50 KvasirCapsule-SEG 56.39 
10 50 KvasirCapsule-SEG 59.34 
20 50 KvasirCapsule-SEG 61.28  

Table 6 
Episodic meta-training on ISIC (skin) and PH2 (skin) datasets from the third 
experimental setup (i.e., tasks comprising samples from two unique datasets of 
the same class). The meta-testing is done on instances from Kvasir-SEG and 
KvasirCapsule-SEG dataset. Here, both naive baseline attention-UNet, MAML 
and iMAML meta-learning approaches are compared.  

Algorithm K-shots # Tasks Target Dataset DSC 

Naive Baseline 800 – Kvasir-SEG 60.53 
44 – KvasirCapsule-SEG 16.23 

Meta-learned (MAML) 5 50 Kvasir-SEG 59.30 
10 50 Kvasir-SEG 61.72 
20 50 Kvasir-SEG 64.09 

Meta-learned (iMAML) 5 50 Kvasir-SEG 62.00 
10 50 Kvasir-SEG 65.10 
20 50 Kvasir-SEG 66.58 

Meta-learned (MAML) 5 50 KvasirCapsule-SEG 52.26 
10 50 KvasirCapsule-SEG 54.09 
20 50 KvasirCapsule-SEG 57.47 

Meta-learned (iMAML) 5 50 KvasirCapsule-SEG 53.80 
10 50 KvasirCapsule-SEG 55.35 
20 50 KvasirCapsule-SEG 58.19  

Table 7 
Quantitative results on the study of the effect of Lovász extension compared to 
the standard dice loss function in a meta-learning setting with 5 shot 2 way. The 
meta-training was done on two datasets (i.e., 2- way) namely CVC-612 and PH2, 
and tested on unseen ISIC dataset.  

Algorithm K-shots # Tasks Target Dataset DSC 

Dice Loss 5 20 ISIC 73.90 
Log(cosh(Dice Loss)) 5 20 ISIC 76.85  
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