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This paper proposes a new micro-particles localization scheme in digital holog-
raphy. Most conventionnal digital holography methods, are based on Fresnel
transform and have several issues such as twin-image, border effects... To avoid
these difficulties, we propose an inverse problem approach, which yields the op-
timal particles set which best models the observed hologram image. We resolve
this global optimization problem by conventional particle detection followed by
a local refinement for each particle. Results on both simulated and real digital
holograms show strong improvements in the localization of the particles, par-
ticularly along the depth dimension. In our simulations, the position precision
is about or better than 1➭m rms. Our results also show that the localization
precision does not deteriorate for particles near the edges of the field of view.

➞ 2007 Optical Society of America

OCIS codes: 090.1760, 100.3190, 100.5010, 100.6640, 100.2000

1. Introduction

The potential of in-line holography to analyse flow
by means of particles, has been noted since its very
beginnings1. The development of optical holography ap-
plications in fluid mechanics2,3 established the capability
of holography to give access to both particle size and tri-
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dimensional position. In-line holography is a technique
which allows a description of a three-dimensional (3D)
image of micro-objects to be stored on a bi-dimensional
(2D) detector. The digital version of holography sup-
presses the wet chemical processing step by recording
the hologram directly on a numerical sensor. Numerical
processing makes it possible to acquire volume objects
within a short time. This is particularly interesting for
high speed phenomena analysis as in fluid mechanics.

Over the past decade, many contributions have been
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made in the field of digital hologram processing in order
to improve the measurement accuracy of the localization
of micro-objects. The two main steps of the numerical
processing are: a numerical reconstruction step to obtain
a synthesized 3-D image with focused particles, and a
segmentation step to extract locations and sizes of the
particles from this 3-D distribution.

The reconstruction step is classically done by numer-
ical simulation of the hologram diffraction, consisting
in a Fresnel transform of the hologram at different dis-
tances z from the hologram. This approach has been
well described by Kreis4, and expressed as a discrete
wavelet transform by Liebling5. Improved reconstruction
schemes by means of filtering have also been introduced
to suppress artefacts, e.g. double peak phenomenon6, to
improve the depth precision7 or to reduce the twin-image
noise8.

The segmentation step consists of finding the location
of each particle in the reconstructed 3-D distribution.
The segmentation can be obtained by analyzing the gray
levels in the volume (thresholding)9,10. Some authors
also build their analysis on the reconstructed complex-
amplitude11.

Let us notice that the reconstruction step is time con-
suming and generates a huge volume of data to process.
Consequently, several processing schemes based on a di-
rect analysis of the hologram have been proposed12,13.

To summarize, the most important issues in digital
holography are:

❼ Limited depth resolution: The depth resolution is
given by14 δz ≥ λ/Ω2 where λ is the wavelength
and Ω is the numerical aperture of the imaging
setup which may be limited by the size of the sen-
sor. Usually Ω is less than 0.1 and hence δz ≥
100 λ. The lateral resolution is given by δx = λ/Ω
and is therefore better than the depth resolution,
e.g. for Ω ≤ 0.1, δx ≥ 10 λ.

❼ Field of view limitations: With the classical in-
line holography setup, i.e. with a collimated refer-
ence wave, the field of view is limited transversally
by the detector size, typically 1 cm × 1 cm. The
accuracy of the measurements for particles whose
transversal position lie near the edges of the de-
tector is much worse than for particles near the
center of the detector. In practice, this limits the
transversal field of view to the central part of the
detector.

❼ Processing time: Existing algorithms are too slow
(about 15 minutes to process a single hologram)
for real-time processing of hologram images. Un-
less the processing time is significantly reduced,
this slowness can also severly restrain the post-
processing of data from high frame rate cameras
required for tracking particles.

In this paper, we propose a new method allowing a
fine location of the particles and improving the transver-
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Fig. 1. In-line holography setup.

Fig. 2. Notations used in the hologram model. The pa-
rameters pj = {xj , yj , zj , rj} are the position and radius
of the j-th particle, (Xk, Yk) is the location of the k-th
pixel and ρj,k is the distance between the projection of
the j-th particle on the detector and the k-th pixel.

sal field of view. Our processing is based on an inverse
problem approach. In the field of digital holography, Sot-
thivirat and Fessler15 have also followed an inverse prob-
lem scheme but that was to estimate a 3D surface not for
particles detection.

In this approach we search for the set of particle sizes
and positions yielding a hologram model which best fits
the real hologram image. Stated like this, the problem
requires global optimization over the space of particle
parameters. We effectively solve this global optimization
problem by an iterative algorithm which alternates coarse
location of the particles and local optimization. Since
the signature of a given particle is severly disturbed by
the patterns due to the other particles, we achieve an
improved sensitivity to the detection and location of faint
particle signatures, by repeating our processing over the
residual images. Our new algorithm gives an improved
precision of the particle locations, in particular along the
depth dimension, and increases the size of the effective
transversal field of view.

The paper is organized as follows. First, we recall
the model of the hologram formation and introduce the
mathematical notation used throughout the paper. Then
we detail the principle of the proposed algorithm. Fi-
nally, we apply our method to the reconstruction of holo-
grams using both simulated and real world data.
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2. Model of the hologram image

In-line holography is one of the most classical techniques
in holography. In this simple setup (see Fig. 1), every
optical apparatus (laser, optics and camera) is aligned,
studied particles are illuminated with a collimated laser
beam, and both the object wave (scattered light) and the
reference wave (laser) are interfering and recorded on a
digital camera. In this section, we derive the model of
the observed holograms under Fresnel’s diffraction ap-
proximation. This model will be the basis of our fine
particle positionning approach in section 3 B. The result-
ing hologram expression is a sum of terms depending on
the position and size of each diffracting particle. Figure 2
summarizes the notation and coordinate system used in
our model.

We consider an incident beam of complex amplitude A0

which is diffracted by opaque spherical particles of radii
rj and coordinates (xj , yj , zj). In the remainder, un-
derligned symbols denote complex quantities. We work
under Fresnel approximation, i.e. the distance z be-
tween a diffracting particle and the observation plane is
such that16 z3 ≫ 4π r4

j /λ achieved for z & 1 mm when
rj ≈ 50 ➭m is the largest particle’s axis and λ = 532 nm
is the laser wavelength. In this case, the complex am-
plitude in the observation plane, i.e. at depth z = 0,
diffracted by a single particle j is16:

Aj(x, y) = A0

[

1 − ηj

(

ϑj ∗ hzj

)

(x − xj , y − yj)
]

(1)

where ∗ denotes 2-D convolution along x and y dimen-
sions, ϑj is the binary apperture of the opaque particle
defined by

ϑj(x, y) =

{

1 if
√

x2 + y2 ≤ rj

0 if x > rj
(2)

and hzj
is the Fresnel function:

hzj
(x, y) =

1

iλ zj

exp

(

i
π

λ zj

(x2 + y2)

)

(3)

where i =
√
−1. In Eq. 1, we introduce the real factor ηj

to account for possible variation of incident energy seen
by a particle due to non-uniform laser illumination.

Neglecting wave front distortion due to successive par-
ticles, the complex amplitude in the observation plane
diffracted by n particles of coordinates (xj , yj , zj) be-
comes:

A(x, y) = A0



1 −
n
∑

j=1

ηj

(

ϑj ∗ hzj

)

(x − xj , y − yj)





(4)
For spherical particles of radius rj small enough to

have zj ≫ 4 r2
j /λ, the convolution product ϑj ∗ hzj

can

be approximated by17:

(ϑj∗hzj
)(x, y) ≃ rj λ zj

2
√

x2 + y2
J1

(

2 π rj

√

x2 + y2

λ zj

)

hzj
(x, y)

(5)

where J1 is the first order Bessel function. Since, zj ≈
250 mm in our setup, the approximation is valid for par-
ticles such that rj . 60 ➭m. The complex amplitude
fj(x, y) of the wave diffracted by a single particle at co-

ordinates (xj , yj , zj) and observed at position (x, y, z = 0)
therefore reads:

fj(x, y) =
rj

2 i ρj(x, y)
J1

(

2 π rj ρj(x, y)

λ zj

)

exp

(

i
π ρ2

j (x, y)

λ zj

)

(6)

where ρj(x, y) =
√

(x − xj)2 + (y − yj)2 is the distance
between the point (x, y, z = 0) of the observation plane
and the projection (xj , yj , z = 0) of the position of the j-
th particle on the detector at z = 0. Thus, for n particles
of parameters {xj , yj , zj , rj ; j = 1, . . . , n} the complex
amplitude at the position (x, y) of the observation plane
becomes:

A(x, y) = A0



1 −
n
∑

j=1

ηj fj(x, y)



 . (7)

The intensity measured by the detector at position (x, y)
is given by:

I(x, y) = γ |A(x, y)|2 + Ibg

= γ
∣

∣A0

∣

∣

2
+ Ibg − 2 γ

∣

∣A0

∣

∣

2
n
∑

j=1

ηj Re
(

fj(x, y)
)

+γ
∣

∣A0

∣

∣

2
n
∑

i=1

n
∑

j=1

ηi fi(x, y) ηj f∗

j (x, y) (8)

where γ accounts for the quantum efficiency and the con-
version factor of the detector whereas Ibg accounts for the
detector background level and for other spurious emission
sources if any.

In Eq. 8, ηj and fj are adimensional. Moreover, |ηj | ≤
1 and from Eq. 6 under condition described above (zj ≈
250 mm and rj . 55 ➭m), we found:

2

n
∑

j=1

ηj Re
(

fj(x, y)
)

>>

n
∑

i=1

n
∑

j=1

ηi fi(x, y) ηj f∗

j (x, y)

for most (x, y). So the second order terms (interferences)
can be neglected and the intensity simplifies to:

I(x, y) = I0 −
n
∑

j=1

αj Re
(

fj(x, y)
)

(9)

where αj = 2 γ
∣

∣A0

∣

∣

2
ηj and I0 = γ

∣

∣A0

∣

∣

2
+ Ibg is the

image level given by the detector under the laser illumi-
nation but without diffracting particles. In the following,
we will make use of the hologram model given by Eq. 6
and Eq. 9 and assume the same approximations which
lead to these equations.



4

Fig. 3. Synopsis of the method.

3. Iterative algorithm

Holograms are classically processed by detecting local
maxima in the probed volume reconstructed by an ap-
proximate inverse transform (as explained in section 3A).
We suggest here an improved processing which performs
in three steps per particle. First, the particle with maxi-
mum contribution is located (using classical coarse local-
ization). Then, the position of this particle is refined by
searching for the set of parameters {xj , yj , zj , rj} which
minimizes the difference between the observed hologram
and the hologram model. Finally, the contribution of
the particle to the hologram is substracted and the same
steps can be repeated to detect and localize a new parti-
cle in the residual image. These iterations are performed
until no significant particle can be detected in the resid-
uals.

A. Particle detection

This first step consists of finding the approximate loca-
tion and size of a particle from a (residual) hologram im-
age. This step can be carried out by existing algorithms.
For instance, under Fresnel approximation, the hologram
can be numerically convolved with Fresnel kernel hz to
approximately reverse the diffraction phenomenon at a
given distance4. Indeed, by changing the distance pa-
rameter z, the reconstructed volume can be scanned in
order to locate particles by digital focusing. Thus, when
the reconstruction distance matches the actual distance
of the particle, a minimum of amplitude is reached. This
so-called maximum of focus can be derived from the re-
constructed volume after thresholding by computing the
centroid of the segmented 3-D particle-image. Such a
detection procedure is classically performed for particle-
hologram processing, but it has a limited accuracy and
is prone to artifacts. The next steps of our algorithm are
intended to refine the particle location.

B. Fine particle positionning

After the coarse detection of a new particle, the parame-
ters {αn, xn, yn, zn, rn} of the newly detected particle can
be refined using a local optimization technique. To that
end, we perform a non-linear fit of the hologram model
to the hologram image by minimizing the weighted least-
squares penalty:

Pn =

Npixel
∑

k=1

Wk [Mn,k − Dk]
2

(10)

where Dk is the k-th pixel value of the observed hologram
and Wk = 1/ Var(Dk) is its statistical weight. The model
Mn,k for n particles is directly given by Eq. 9:

Mn,k = I0 −
n
∑

j=1

αj Re
(

fj(Xk, Yk)
)

, (11)

where (Xk, Yk) are the coordinates of the k-th pixel.

1. Reparametrization

In order to simplify the equations and reduce the condi-
tion number of the optimization problem (which should
improve the convergence rate of the fit), we introduce the
following dimensionless variables:

x′ = x/ω , y′ = y/ω , z′ = λ z/ω2 , and r′ = r/ω

where ω is the pixel width and we define:

gj(x
′, y′) = Re

(

fj(ω x′, ω y′)
)

=
r′j

2 ρ′j
J1

(

2 π r′j ρ′j
z′j

)

sin

(

π ρ′j
2

z′j

)

(12)

where ρ′j =
√

(x′

j − x′)2 + (y′

j − y′)2. Our model now

reads:

Mn,k = I0 −
n
∑

j=1

αj gj(X
′

k, Y ′

k) , (13)

where (X ′

k, Y ′

k) = (Xk/ω, Yk/ω) are the coordinates of
the k-th image pixel in pixel units.

2. Partial local optimization

In order to speed up the non-linear fit, we make use of
two tricks in the local optimization.

First, we only consider optimizing on the constant level
I0 and on the parameters of the last particle. In other
words, we minimize Pn with respect to the parameters
{I0, αn, x′

n, y′

n, z′n, r′n} and consider the other particle pa-
rameters as fixed. This is the same as fitting the param-
eters {I0, αn, x′

n, y′

n, z′n, r′n} on the residual image Rn−1,k

after having subtracted the contribution of the previous
n − 1 particles:

Rn−1,k = Dk +

n−1
∑

j=1

αj gj(X
′

k, Y ′

k) , (14)
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where, of course, R0,k = Dk. Our misfit criterion then
reads:

Pn =

Npixel
∑

k=1

Wk [Rn−1,k − I0 + αn gn(X ′

k, Y ′

k)]
2

. (15)

Optimizing only on the new particle parameters rather
than fitting all parameters for all particles yields a sig-
nificant speed up in the algorithm. To achieve ultimate
detection sensitivity, we however always perform a local
fit with respect to all the parameters whenever no signifi-
cant particle can be detected in the residuals. In practice,
we have observed that this strategy is much faster and
yields almost the same results as if I0 and all the param-
eters of all the particles were refined at every step.

Second, since the model is linear with respect to I0

and αn we can simply derive their optimal values, say
I+
0 and α+

n , by simple linear regression given the coor-
dinates (x′, y′, z′) and radius r′ of the sought particle.
This reduces the number of explicit parameters to adjust
to {x′

n, y′

n, z′n, r′n} and we define:

P+
n = Pn|I0=I

+
0 ,αn=α

+
n

=

Npixel
∑

k=1

Wk

[

Rn−1,k − I+
0 + α+

n gn(X ′

k, Y ′

k)
]2

,(16)

with:

I+
0 =

1

Qn

(

∑

k
Wk G2

n,k

) (

∑

k
Wk Rn−1,k

)

− 1

Qn

(

∑

k
Wk Gn,k

) (

∑

k
Wk Rn−1,k Gn,k

)

(17)

α+
n =

1

Qn

(

∑

k
Wk Gn,k

) (

∑

k
Wk Rn−1,k

)

− 1

Qn

(

∑

k
Wk

) (

∑

k
Wk Rn−1,k Gn,k

)

, (18)

where Gn,k = gn(X ′

k, Y ′

k) and:

Qn =
(

∑

k
Wk

) (

∑

k
Wk G2

n,k

)

−
(

∑

k
Wk Gn,k

)2

.

(19)
The minimization of P+

n with respect to x′

n, y′

n, z′n and r′n
is then performed by a trust-region Newton algorithm18.
Such an algorithm requires a local quadratic approxi-
mation of the penalty function P+

n which is provided
by the first and second order partial derivatives of the
penalty with respect to the parameters. The computa-
tion of these partial derivatives and further approxima-
tion which can be made in our particular case are detailed
in Appendix A.

C. Algorithm summary

The different stages of our iterative algorithm are sum-
marized in Fig. 3. We expect that the coarse localization
step followed by the local optimization step effectively
solve the global optimization problem of finding the best

Fig. 4. Small particles simulations. Left: 10 particles;
right: 100 particles.

size and location of a particle in the (residual) hologram
image. A typical run of the algorithm on real data is
shown by Fig. 6.

When a hologram image is processed, the patterns due
to particles other than the one of interest contribute as a
kind of noise which can bias the localization of the par-
ticle of interest. It can even prevent its detection if its
own signature is too faint. This can strongly limit the
sensitivity of conventional algorithms. By repeating the
detection and localization steps after removal of previ-
ously detected particles, we expect that our algorithm
will be able to find particles with very faint signatures.

Since our algorithm was derived following an inverse
problem approach, it does not require any explicit direct
inversion of the observed hologram: all required com-
parisons are made in the data space. As a result, our
algorithm has a number of advantages over other exist-
ing methods. For instance, our method is insensitive to
the twin-image problem inherent in in-line holography.
Moreover, our algorithm even does not suffer from bias
for particles found close to the borders of the field of view.

4. Results

A. Simulated data

We first used simulated data to assess the actual perfor-
mances of our algorithm under various conditions. To
check the robustness with respect to the particle density,
we considered two different concentrations: 10 and 100
particles per hologram. To evaluate the influence of the
particle size on the precision of the measured depth and
particle diameter, we used two different typical particle
sizes: the so-called large ones and the so-called small
ones. The first particle configuration consisted of real-
istic conditions close to those of the experimental test
(see Sec. 4 B) with particles of radius between 35 ➭m and
50 ➭m at about 100 mm of the camera. In the second par-
ticle configuration, we simulated smaller particles with
radii from 3.5 ➭m to 5 ➭m at a distance of about 250 mm
from the camera such that the approximations made in
Sec. 2 remain valid. All simulations were made for a
1024×1024 camera with a 6.70 ➭m×6.70 ➭m pixel and a
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Table 1. Root mean squared errors for the estimated
particle parameters in several simulation configurations.

∆x ∆y ∆z ∆r

configuration (➭m rms) (➭m rms) (➭m rms) (➭m rms)

10 large particles 0.27 0.26 0.74 0.06

100 large particles 0.30 0.30 2.37 0.12

10 small particles 0.28 0.28 0.26 0.15

100 small particles 0.28 0.29 0.85 0.51

large particles are for 35 ➭m ≤ r ≤ 50➭m and small particles
are for 3.5➭m ≤ r ≤ 5➭m.

laser of wavelength 632.8 nm. The volume of interest for
the detection was a box of 8 mm × 8 mm × 30 mm. Ex-
amples of simulated images for the small particles case
at two different concentrations are shown in Fig. 4.

Our inverse problem approach is based on a simplified
model of the hologram image formation. To account for
the effects of such simplifications on the detection and lo-
calization of the particles, we use a more accurate model
to simulate the hologram images used in this test. More
precisely, we use the image model given by Eq. 8 to simu-
late the holograms whereas the simplified model in Eq. 9
is assumed during the detection and localization steps of
the algorithm. Hence the interference pattern between
waves diffracted by different particles is accounted for in
the simulated images whereas it is neglected by the algo-
rithm. In order to properly simulate quantization by the
detector, the simulated hologram images are converted
into 8-bit integer values prior to their processing.

In the particle detection step (described section in 3 A),
a reconstruction every millimeter in z was sufficient for
a correct coarse detection. The parameters estimated by
our algorithm on the simulated images under the var-
ious conditions were compared to their actual values.
No significant bias was noticed and the corresponding
root mean squared (RMS) errors are listed in Tab. 1.
These results mainly demonstrate the excellent precision
achieved by our algorithm under all the considered con-
ditions. Our method seems to be efficient with densities
up to 100 particles per hologram.

Sub-pixel precision is reached for the transversal po-
sition with ∆x ≃ ∆y ≃ 0.3 ➭m or 1/20 pixel. This
transversal precision does not significantly depend on the
size and density of the particles.

Increasing the number of particles strengthens the in-
terference between diffracted waves which are neglected
in the assumed model. This also increases the occurences
of particles almost aligned along the depth direction.
These two effects worsen the precision of the estimated
depth and particle radius.

The high spatial frequency diffraction rings help to pre-
cisely locate the depth of the particles. Since these rings
are attenuated as the size of the particles grow, the lon-
gitudinal errors are worse for bigger particles. On the

Fig. 5. Pair of experimental holograms separated by a
delay of 100➭s.

Fig. 6. Iterative particle removal in real hologram image.
From top left to bottom: initial hologram image R0 = D
and residual images R1, R2, R3 and R4 after detection
and removal of 0, 1, 2, 3 and 4 particles respectively.

other hand, this attenuation favors the determination of
the particle radius.

In Sec. 3 C we argued that the position errors should
not be biased for particles near the edges of the field
of view. In our simulations, we have measured no dif-
ferences in the precision of the tri-dimensional particle
positions wherever their actual locations were.

B. Experimental data

We carried out an experimental test of our algorithm us-
ing real data from an in-line holography setup. The ex-
perimental layout is shown by Fig. 1 and the components
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are as follows:

The laser is a double cavity YAG (ULTRA-PIV 30,
Quantel) with a 0.532 ➭m wavelength. It emits
pulses of 7 ns short enough to freeze the droplets
motion. The laser is synchronized with the cam-
era to trigger the acquisition of pairs of hologram
images separated by a delay of 100➭s. This is in-
tended to allow for the measurement of the instan-
taneous velocity of the particles.

The injector is a piezoelectric device which generates
monodisperse droplets. The droplet diameter is
tunable from 50➭m to 100 ➭m. The injector
can work in droplet-on-demand mode, generating
droplets at constant time intervals (1000 Hz in the
case of the considered data set).

The camera is a 12-bit CCD (PCO Sensicam) with
1280 × 1024 pixels of size 6.7 ➭m × 6.7 ➭m. The
camera is at about 25 cm of the injector in order
not to disturb the flow experiment. This leads to a
small but realistic numerical aperture of Ω = 0.014.

The experimental test data consists of a set of 100 pairs
of holograms with four or five droplets on each image. An
example of such a pair is shown in Fig. 5. The 3-D posi-
tions and diameters of droplets were extracted from this
data set by our algorithm. Figure 6 shows the residual
images during the processing of one of the experimental
hologram.

The measured particles positions are shown in Fig. 7
under various projections. Clearly the average trajec-
tory of the particles is a straight line as can be expected
from the experimental conditions. In Fig. 7, ζ denotes
the direction of this line. It is important to notice that
the trajectory of the droplets is recovered with the same
precision in the transversal (x, y) plane than in the lon-
gitudinal (ζ, z) plane. These observed deviations from
the ideal straight trajectory (66➭m in (x, y) plane and
58 ➭m in (ζ, z) plane) are however mostly due to real
physical effects. Indeed the oscillations and the beam
divergence which can be seen in Fig. 7 are due to vibra-
tions of the injector. Hence the effective precision of the
measured positions is smaller than the variations due to
these physical effects.

The droplet sizes estimated by our algorithm have a
bell-shaped distribution (see Fig. 8) with a mean diam-
eter of 94.1 ➭m and a standard deviation of 0.3 ➭m in
agreement with the settings of the droplet injector.

5. Discussion

In this paper we describe a new algorithm for the de-
tection and localization of particles in digital hologra-
phy. The most important difference with other existing
techniques is that our processing is based on an inverse
problem approach and does not require any direct inver-
sion. In this framework, we introduce a simplified model
of the hologram images which depends on the sizes and
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Fig. 7. Droplets jet reconstruction. From top to bot-
tom: (x, y) view, (ζ, z) view and 3-D representation of
segmented droplets. The best fit line is represented as a
gray thick line.

positions of the diffracting particles. We then solve the
problem by seeking for the set of particle parameters for
which the difference between the model and the data is
statistically minimal. Such a criterion turns out to have
multiple local minima and thus global optimization is
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required to properly solve the problem. Our algorithm
effectively achieves the global minimum by performing
an approximative detection of the particles in the whole
parameter space followed by a local refinement of the
parameters. By repeating these steps on the residual im-
ages, obtained by subtracting the model to the data, our
algorithm is able to detect several particles even the ones
which have a faint signature compared to the diffraction
pattern due to the other particles.

We have tested our algorithm on simulated and real
data. Our results show that the precision along the depth
direction is largely improved and is much better than
the optical resolution in such conditions (δz ≥ λ/Ω2 =
2.6 mm). From our simulations, we get a depth precision
as good as ∆z = 0.3 ➭m, comparable to the transver-
sal precision, for low particle density and small particle
sizes. As expected, the depth precision is degraded as the
density and/or the size of the particles increase. On the
contrary, we found that the transversal precision achieved
by our algorithm, ∆x = ∆y = 0.3 ➭m in the conditions
of our simulations, does not significantly depend on the
particle density, nor on the particle sizes.

Being based on an inverse problem approach, an im-
portant property of our algorithm among the other exist-
ing methods is that it has no particular bias for particles
near the edges of the field of view (i.e. the ones with
the most truncated signatures). Indeed we have found
no significant degradation of the precision in the mea-
sured positions for the most distant particles from the
center of the field of view. As a result, the effective field
of view can be extended to account for the whole area of
the detector and not just its central part. Similarly, our
algorithm can account for bad data or non-rectangular
holograms by setting to zero the weights of bad pixels or
pixels outside the area covered by the detector.

Not only the simplifications made in the model as-
sumed by the proposed method are not an issue but,
when dealing with real data, it appears that our algo-
rithm is also robust with respect to non-homogeneous il-
lumination and to spurious patterns as the CCD fringes
which can be seen in the last residual image of Fig. 6. In
principle, it is possible to use the same algorithm with a
different model to account for more complex or more re-
alistic experimental conditions. For instance, we can use
a diffraction model for fibers or elongated particles with
7 parameters per particle: 3-D position, width, length,
and orientation angles. This may however have a pro-
hibitive impact on the memory and on the processing
time required by the method.

The actual sensitivity of the detection is largely im-
proved by iteratively working on the residual images.
This allows us to correctly detect and locate particles
with densities as high as 100 particles per hologram. The
maximum density achievable by our algorithm has yet to
be estimated, e.g. from further simulations. To allow
for this study, we however need to improve the speed of
our algorithm. The processing time scales as the number
of particles per hologram image. For the present experi-
ments, with a Pentium IV CPU 3.60 GHz with 2 GBytes
of RAM our algorithm took 7 minutes per particle: 4
minutes for the detection and 3 minutes for particle pa-
rameters refinement. We plan to greatly reduce this time
by performing multiple detections per pass of our itera-
tive algorithm. We also expect a speedup by a factor
of roughly two thanks to trivial computational optimiza-
tions such as using faster numerical routines to compute
the Bessel functions. The routinely processing of large
number of holograms would also benefit from these im-
provements.

Appendix A: Partial derivatives

In this appendix we detail the computation of the partial
derivatives of the penalty P+

n with respect to the sought
parameters. Such derivatives are required to approxi-
mately describe the behaviour of the penalty function
in the parameter space so that the trust region Newton
algorithm18 can derive a change of parameter to reduce
the penalty.

By applying the chaining rule, the partial derivative of
the penalty P+

n with respect to a parameter θ (where θ
can be x′

n, y′

n, z′n or r′n) writes:

∂P+
n

∂θ
=

∂Pn

∂θ

∣

∣

∣

∣ I0=I
+
0

αn=α+
n

+
∂α+

n

∂θ

∂Pn

∂αn

∣

∣

∣

∣ I0=I
+
0

αn=α+
n

+
∂I+

0

∂θ

∂Pn

∂I0

∣

∣

∣

∣ I0=I
+
0

αn=α+
n

.

However, since:

{α+
n , I+

0 } = arg min
αn,I0

Pn ,

the partial derivatives of Pn with respect to αn and I0

exactly cancel at α+
n and I+

0 . The partial derivative of
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P+
n therefore simplifies to:

∂P+
n

∂θ
=

∂Pn

∂θ

∣

∣

∣

∣ I0=I
+
0

αn=α+
n

= 2α+
n

Npixel
∑

k=1

Wk

[

Rn−1,k − I+
0 + α+

n gn,k

] ∂gn,k

∂θ
(A1)

where gn,k = gn(X ′

k, Y ′

k) of which the partial derivatives
are:

∂gn,k

∂x′

n

=

(

x′

n − X ′

k

)

r′n

2 ρ′n,k

3
[φn,k J0(φn,k) sin θn,k

−2 J1(φn,k) (sin θn,k − θn,k cos θn,k)](A2)

∂gn,k

∂y′

n

=

(

y′

n − Y ′

k

)

r′n

2 ρ′n,k

3
[φn,k J0(φn,k) sin θn,k

−2 J1(φn,k) (sin θn,k − θn,k cos θn,k)](A3)

∂gn,k

∂z′n
=

r′n
2 ρ′n,k z′n

[J1(φn,k) (sin θn,k − θn,k cos θn,k)

−φn,k J0(φn,k) sin θn,k] (A4)

∂gn,k

∂r′n
=

π r′n
z′n

J0(φn,k) sin θn,k (A5)

with

θn,k =
π ρ′n,k

2

z′n
(A6)

φn,k =
2 π r′n ρ′n,k

z′n
(A7)

ρ′n,k =

√

(

x′

n − X ′

k

)2
+
(

y′

n − Y ′

k

)2
. (A8)

Exact computation of the second order partial deriva-
tives would require the partial derivatives of α+

n and I+
0

and the first and second order partial derivatives of gn,k.
A nice property of descent minimization methods such
as the trust region Newton algorithm is that they only
need an approximation of the Hessian (matrix of second
order partial derivatives). We make use of this feature
to approximate the second order partial derivatives with
respect to parameters θ1 and θ2 by:

∂2P+
n

∂θ1 ∂θ2

≃ 2 α+
n

2
Npixel
∑

k=1

Wk

∂gn,k

∂θ1

∂gn,k

∂θ2

(A9)

which is somewhat reminiscent of Levenberg-Marquardt
approximation in non-linear least squares. Thanks to our
approximation, only the partial derivatives of gn,k with
respect to the sought parameters x′

n, y′

n, z′n and r′n are
required.
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