Designs, Codes and Cryptography (2021) 89:387-405
https://doi.org/10.1007/510623-020-00824-w

®

Check for
updates

Greedy weights for matroids

Trygve Johnsen' - Hugues Verdure'

Received: 18 February 2020 / Revised: 6 November 2020 / Accepted: 11 November 2020 /
Published online: 19 December 2020
© The Author(s) 2020

Abstract

We introduce greedy weights of matroids, inspired by those for linear codes. We show that a
Wei duality holds for two of these types of greedy weights for matroids. Moreover we show
that in the cases where the matroids involved are associated to linear codes, our definitions
coincide with those for codes. Thus our Wei duality is a generalization of that for linear codes
given by Schaathun. In the last part of the paper we show how some important chains of cycles
of the matroids appearing, correspond to chains of component maps of minimal resolutions of
the independence complex of the corresponding matroids. We also relate properties of these
resolutions to chainedness and greedy weights of the matroids, and in many cases codes, that
appear.
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1 Introduction

For a linear code C over a finite field IF, an important way to characterize the code is to
decribe its parameters, the word length n, the dimension &, and the minimum distance d. A
refinement of the minimum distance is the ordered set of the generalized Hammimg weights
di, ..., dy, where d; is the smallest support of any i-dimensional linear subcode of C, for
i =1,..., k. Inparticular d; = d. In the 1990’s (and early 2000’s) several authors (see e.g.
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[4-7,18-20]) became interested not only in the individual subcodes of each dimension that
where optimal with respect to (small) support size, but also in chains of codes that where
somehow optimal, in a similar way. This gave rise to various definitions of greedy weights,
which we will recall in Sect. 2.1. These weights are similar to, but in general different from,
the generalized Hamming weights d;. The topic has attracted new interest in recent years
[1,13].

In [9] we described how the d; are determined by certain properties of the matroid coming
from any parity check matrix of the linear code. In the present paper we will describe how also
the various greedy weights are determined by the matroids associated to the code. Since this
description can be done for any finite matroid , we will define and describe greedy weights
for finite matroids in general, and show that they coincide with those of linear codes when
the matroids come from such codes. We will show a form of Wei duality relating certain
weights of a matroid and its dual, inspired by a corresponding result for linear codes [19] or
for (demi-)matroids [2,12].

The spirit of the paper is the following: there is a poset of cycles of the matroid coming from
any parity check matrix of the code, where a cycle is an inclusion minimal set among those
subsets of £ = {1, ..., n} having a fixed nullity for the rank function in question. This is dual
to (the upside down version of) the poset of flats of the matroid coming from any generator
matrix of the code. We will show that the greedy weights correspond to optimal ways to
traverse the nodes of this poset through maximal chains of it. We define a lexicographical
and a rev-lexicographical order on these chains in order to make it precise in what sense they
are optimal.

In the last part we relate our results to a more concrete way to traverse maximal chains via
non-zero component maps in a minimal resolution of a certain Stanley—Reisner ring, where
the components in each fixed step corresponds to the nodes of a corresponding fixed rank of
the poset of cycles.

This paper is organized as follows. In Sect. 2 we will give some necessary definitions
relating to codes and matroids. In Sect. 3 we will describe the greedy weights for matroids,
relate to those of codes, and show our form of Wei duality, which is inspired by the corre-
sponding Wei duality for codes, proven in [19]. In Sect. 4 we discuss the connection between
resolutions of the Stanley—Reisner ring associated to the matroid or the code, and the greedy
weights. We also discuss the notion of chained codes and chained matroids.

The main results are Theorems 2, 3 and 4.

2 Definitions and notation
2.1 Generalized Hamming weights and greedy weights of codes

Definition 1 Let C be a [n, k] linear code over . Let ¢ = (cy, ..., ¢;) € C. The Support
of ¢ is the set

Supp(e) ={i € {1,...,n}:¢; #0}.
Its weight is

wt(c) = [Supp(c)].
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Similarly, if T C C, then its support and weight are

Supp(7) = (_J Supp(e) and wi (T) = [Supp(T)|.
ceT
In [3] and [1] one describes and treats greedy weights of linear codes C over finite fields.
First we recall the definitions of the generalized Hamming weights introduced by Wei [22]:

Definition 2 Let C be a [n, k]-linear code. For 1 < r < k, the rth generalized Hamming
weight is
d, = min{wt¢(D)|D is a subcode of C with dim D = r}.

A subcode D C C computes d, if it is of dimension r and weight d,.
Then, following the terminology of [18] or [20], we have the (bottom-up) greedy weights
of a code:

Definition 3 Let C be a [n, k]-linear code. A (bottom-up) greedy 1-subcode is a subcode of
dimension 1 of minimal weight. For r > 2, a (bottom-up) greedy r-subcode is a subcode of
dimension r containing a (bottom-up) greedy (» — 1)-subcode, and such that no other such
subcode has lower weight.

Definition 4 Let C be a [n, k]-linear code. For 1 < r < k, the rth (bottom-up) greedy weight
e, of C is the weight of any (bottom-up) greedy r-subcode.

Remark 1 We have e; = d.
Also introduced by Schaathun [18, Definition 6] are the top down greedy weights:

Definition 5 Let C be a [n, k]-linear code. A top-down greedy k-subcode is C itself. For
r < k — 1, a top-down greedy r-subcode is a subcode of dimension r contained in a top-
down greedy (r + 1)-subcode, and such that no other such subcode has lower weight.

Definition 6 Let C be a [n, k]-linear code. For 1 < r < k, the rth top-down greedy weight
e, of C is the weight of any top-down greedy r-subcode.

Remark2 We have ¢, = dj and e = dj_1.

Remark 3 Let F be the set of towers of subcodes Dy C - -- C Dy of C satisfying dim D; = i.
Alternative definitions for the bottom-up and top-down greedy weights would be

(e1,...,er) =r{1in{(wt(D1), ...,wt(Dy)), Dy C---C Dy € F}
(D¢
and

1, ...,e) = min {(wt(Dy),...,wt(Dy)), Dy C --- C Dy € F},
revlex

where lex and revlex are the lexicographic and reverse lexicographic orders respectively.
There is also another definition, used e.g by [1], essentially introduced in [7]:

Definition 7 Let C be a[n, k]-linear code. A CEZ greedy 1-subcode is a subcode of dimension
1 of minimal weight. For r > 2, a CEZ greedy r-subcode is a subcode of dimension r
containing a subcode that computes d,_1, and such that no other such subcode has lower
weight.

Definition 8 Let C be a [n, k]-linear code. For 1 < r < k, the rth CEZ greedy weight g, of
C is the weight of any CEZ greedy r-subcode.

Remark4 We have gy = e; =d; and gy = ¢

For more interesting material on this topic, see [4-6,13,18].
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2.2 Matroids

A matroid is a combinatorial object that capture the essence of independence. Codewords
of linear codes being dependence relations between the column vectors of any parity check
matrix of the code, it is natural to look at the matroid associated to a linear code. In [9], we
describe how important characteristics of the code can be given a matroidal interpretation.
It turns out that matroid theory has important applications in, among other, graph theory,
network theory, combinatorial optimization, topology, ...

There are many equivalent definitions of a matroid. We refer to [17] for a deeper study of
the theory of matroids.

Definition 9 A matroid is a pair M = (E, r) where E is a finite set and r : 2 5 Nisa
function, called the rank function, satisfying

(Ry) If X C E, then
0 =r(X) =I|X],
(Ry) If X C Y C E then
r(X) =r(¥),
(R3) If X, Y are subsets of E, then
rXNY)+r(XUY) <r(X)+r).

The rank of the matroid is r (M) = r(E).

It is a well known fact the rank function of a matroid is unit rank increase, thatis,if X C E
and x € E, then

r(X) =r(XUfx}) =r(X)+1.

Definition 10 The nullity function of the matroid (E, r) is the function defined on 2Z by: for
XCE,

n(X) = |X| — r(X).

The nullity function of a matroid is also unit rank increase. Moreover, it satisfies (Rp),
(R) as well as

(N3) If X, Y are subsets of E,thenn(X NY)+n(XUY)>n(X)+ny)

for X, Y subsets of E.

Definition 11 Let M = (E, ) be a matroid. Then its dual matroid is the matroid M = (E, 7)
where 7 is defined by

7(X) = |X[ +r(E\X) —r(E)

for X C E.

Some subsets of the ground set of a matroid will be of special interest in this paper:
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Greedy weights for matroids 391

Definition 12 Let (E, r) be a matroid. A subset X C E is dependent if
n(X) >0

and independent if
n(X) =0.

A circuit is a inclusion minimal dependent set. We denote by Z and C the sets of independent
sets and circuits respectively.

For 1 <i < |E| — r(M) will denote by N; the set
Ni={XCE, n(X)=i}
and by N; the inclusion minimal elements of A;. It is clear that
C=N;.

A cycle is an element of N; for some i. Cycles can also be described as unions of circuits,
and the nullity of the cycle is equal to the maximal number of non-redundant circuits in the

cycle [9].
If C is a [n, k]-linear code given by a (n — k) x n parity check matrix H, then we can
associate to it a matroid M¢c = (E, r), where E = {1,...,n}and if X C E, then

r(X) =rk(Hy),

where Hy is the column submatrix of H indexed by X. It can be shown that this matroid is
independent of the choice of the parity check matrix of the code, and we may thus call it the
matroid of C.

2.3 Resolutions

If M = (E, r) is a matroid, then (E, Z) is naturally a simplicial complex (that is, Z # ¥ and
is closed under taking subsets). Let K be a field. We can associate to M a monomial ideal
Iy in S = K[{X,}ecg] defined by

Iy =<X°:0€eC>

where X is the monomial product of all X, for e € o. This ideal is called the Stanley—
Reisner ideal of M and the quotient Sy, = /Iy the Stanley—Reisner ring associated to M.
We refer to [8] for the study of such objects. As described in [9] the Stanley—Reisner ring
has minimal N and N"-graded free resolutions

0« Sy« S @S« « @ S(=j)lEroni —0
jeN jeN
and

0« Sy <85« P Sa)fre —... — @ S(—a)iri—rone 0.

aeN? aecN?

In particular the numbers B; ; and B; , are independent of the minimal free resolution,
(and for a matroid also of the field K) and are called respectively the N-graded and N"-graded
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Betti numbers of the matroid. Note also that if @ ¢ {0, 1}", then g; » = 0 [15, Corollary

1.40]. We have
Bii= Y. Pia

wt(a)=j

We also note that By o = 1.
We will also frequently use ([9, Theorem 1], first part):

Theorem 1 Let C be a [n, k]-code over IF,. The N-graded Betti numbers of the matroid M¢c
satisfy: Bi ;j # 0 if and only if there exists a member in N; of cardinality j. In particular,
Bi.x # 0 ifand only X € N;. Furthermore

di =min{j : f; j # 0}.

Remark 5 The fact that 8; x # 0if and only X € N; is a consequence of the considerations
on [21, p. 59], where one also relates these Betti numbers to Mobius numbers of related
lattices of cycles.

3 Greedy weights for matroids

We will now give definitions for greedy weights for matroids, and later show that greedy
weights for linear codes and their associated matroids coincide. First, recall the definition for
generalized Hamming weights for matroids, given in [12]:

Definition 13 Let M be a matroid of rank n — k on a set of cardinality n. For 1 < r <n —k,
d, = min{lo|: o € N;} = min{|o|: o € N,}.

Definition 14 Let M be a matroid on n elements of rank n — k. Let X be the set

E={(o1,...,00) € N1 x--- x NiJo1 C -+ C o}
Let X be the set
T ={eS) = (o1],...,lok]): S=(o1,...,01) € T}.
Then the (bottom-up) greedy weights (ey, ..., ex) of M are the
(e1,...,ex) :nllixnf
while the top-down greedy weights (éy, .. ., &) of M are
é1,...,8) = min %.

revlex

IfS = (oy,...,0%) € N1 x---x Ny issuchthate(S) = (ey, ..., e) (resp. (€1, . . ., €)),
we say that o; computes e; (resp. €;).

Definition 15 Let M be a matroid of rank n — k on a set of cardinality n, and let (dy, . .., di)
be its generalized Hamming weights. The CEZ greedy weights (g1, ..., gr) are defined as
follows:

g1 =di

and for2 <r <k,

g =min{|lo|: o0 € N, and It € N,_| suchthatt C o and |7| = d,_;}.
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Greedy weights for matroids 393

We say that o € N; computes g; if it satisfies the conditions in the definition.
Example 1 Let C be the [8, 4]-linear code over F3 defined by the generator matrix

0 0 0 0 O

I 1
1 1
0 0
0 0

S O O =

1 0 0 0 O
0 1 1 1 0
0 1 2 0 1

Its weights are
(d1,dr, d3,ds) = (2,4,6,8),
(e1,e2,e3,e4) = (81, 82,83, 84) = (2,4,7.8)
and
(e1,e2,e3,e4) = (3,4,06,8).

As a consequence of the unique rank increase of the nullity function, both the bottom up
and the top down greedy weights are strictly increasing sequences. The CEZ greedy weights
gi are not necessary monotonous, as the following example shows.

Example2 Let M on E = {1, ..., 23} whose circuits are the following: all the subsets of
{13, ..., 23} of cardinality 9 together with {1, ..., 8}, {5, ..., [2}and {1, 2, 3,4, 9, 10, 11, 12}.
This is a matroid of rank 18. Then,

(di,da, d3,ds, ds) = (8,10, 11, 19, 23),

(e1, €2, €3, e4,€5) = (8, 12,21, 12, 23),

(€1, ez, e3,e4,e5) = (10, 11,12, 19, 23),

(81, 82, 83, 84, 85) = (8,12, 11, 19, 23).

Example 3 Consider the following graph:

Its associated matroid, that is, the matroid whose circuits correspond to cycles of the graph,
is a matroid on the set of its 25 edges, and rank 21. The generalized Hamming weights of the
matroid are

(d1, dn, d3, ds) = (6, 12, 18, 25).
The greedy weights are
(e1, e2, €3, e4) = (6, 13,21, 25),
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394 T.Johnsen, H. Verdure

(e1,e2,e3,e4) = (8,12, 18,25),
(g1, 82, 83, 84) = (6,13, 18, 25).

The weight d; corresponds to the minimum support of the union of two different cycles (the
right part of the graph), while the weight e> corresponds to the minimum cardinality of the
support of the union of two different cycles, where one of the cycles is a cycle of minimal
length (the left part of the graph, since the only cycle of minimal length is the hexagon on
the left part). See also [14] for the computation of generalized Hamming weights of (signed)
graphs.

In Definitions 14 and 15, we could actually have asked the subsets to be in N;, not just
N, as the following proposition shows:

Proposition 1 Let M be a matroid of rank n — k on a set of cardinality n. Let ¥’ be the set
> ={(o1,...,01): 01 C--- Coxando; € N;, Vi}.
Then we have the following:
(e1,...,ex) = rgixn{e(S) : Sexy,
@1, ..., 6 :rg}g{e(S) : Sex’},
and forall2 <i <k,
gi =min{|lo|: o € N; and 3t € N;_1 suchthatt C o and |t| = d;_1}.

Proof The first and third assertions rely on the same observation. We will thus only treat the
first assertion. It is clear that

Hllin{E(S) DS e} Ziex (1, .., ).
X
Now, let S = (o071, ..., 0r) € X such that

e(S)=(er,...,ex) = I{lin{e(S) : Se X

We will show that o; € N; for all i. If not, let i be the smallest index for which this is not
true. By definition of N; and the lexicographic order, i > 1. Since o; ¢ N;, this means that
there exists T C o; such that n(tr) = i. Obviously, 0;_1 ¢ 7 otherwise, replacing o; by 7 in
the sequence S, we would get a chain of sets that would contradict the minimality of e(S) for
the lex ordering. Thus, we can find x € o;_1 — . Without loss of generality, we can suppose
that T = o; — {x}. Consider then p = 0;_1 — {x}. By minimality of o;_ in the set of subsets
with nullity i — 1, and by the unique rank increase property of n, n(p) = i — 2. Then, by
(N3):

2i =2 =n(p) +n(o;) =n(oi—-1N7t)+n(oi-1Ut) = n(oi—1) +n(r) =2i — 1,

which is absurd. Thus, all elements in S are in N;, and the first assertion is proved.
The second assertion is easier to prove since we don’t have any bottom constraints. Again, it
is clear that

min{e(S): S € E/} >lex (€1, ..., k).
revlex
For the contrary, let S = (o1, ..., 0x) € X such that
e(S)=(e1,...,exr) = min{e(S): S e X}
revlex
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Assume that there exists an index i such that o; ¢ N;.Lett; C o; suchthat t; € N;, and take

=

recursively for j < i any t; C 74 such that n(z;) = j. This can always be done by the
unique rank increase property of . Then the sequence §’' = (z1, ..., T;, Gi+1,...,0%) € %,
and by construction,

e(S/) <revlex (),
which is absurd. This in turn shows that

min{e(S): S e X'} <iex @1,...,8e).
revlex

[m}

Remark 6 The set X’ appearing in Proposition 1 is the set of maximal chains in the poset
of cycles for the matroid. Taking complements, this is the poset of flats of the dual matroid.
If d+ > 3, then this poset is a geometric lattice with atoms of cardinality 1. Then the
cardinalities c s of the flats, and hence all the cardinalities n — ¢y of the cycles o of the
matroid, can be given a purely lattice-theoretical interpretation in terms of atoms. Hence it
is possible to reformulate Proposition 1 by lattice-theoretical invariants.

Corollary 1 Let M be a matroid of rank n — k on a set of cardinality n. For 1 <i <k,
X C E is a (top-down, bottom-up, CEZ) i-greedy subcode = B; x # 0
and
gi.ei e €{jlBi; #0}.

Proof In the proof above, we showed that any subset that computes a greedy-weight is a
cycle. This is then a direct consequence of Theorem 1. O

3.1 Wei duality of greedy weights

If M is a matroid, then it is proved in [12] that the weight hierarchy of the matroid and its
dual satisfy Wei duality, that is

{di,...,di}U{n+1—dy,....n+1—dy}=1{1,...,n},

where d; denotes the ith generalized Hamming weight of M. This result is a generalization
of duality for linear codes proved by Wei [22]. In his doctoral thesis [19], Schaathun proves
a Wei duality for greedy weights for linear codes, namely that

ler,...,e)Un+1—2¢1,....n+1—é,_}={1,...,n}.

In this section, we will prove that his result extends to matroids. As opposed to [12], our
proof is constructive, in the sense that we exhibit an element in X’(M) that computes the
greedy weights of the dual matroid. Before doing so, if S = (o1, ...,0%) € X, we define
8(S) in the following (not unique) way: consider a maximal chain

bemG--SCm=E

that contains all the E — o; for 1 <i < k. Obviously, we have |p;| =i forevery 1 <i <n.
Then 6(S) is the chain t; C -+ C 7, obtained by removing all the subsets of cardinality
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396 T.Johnsen, H. Verdure

n — |o;| + 1. Even if this is not uniquely defined, the set §(S) = {|71], ..., |T.—x|} is, since
we have

5(S)={l,....|El} —{n+1—|oj| : 1 <i <k}.
In particular, we have, with a slight abuse of notation,
888 =e(S) = {loil, ..., lox|}.
Denote by 7 the nullity function of M.

Lemma 1l Let S = (o1, ..., 0%) be a tower that computes the bottom up greedy weights of
M, and let 6(S) = (t1 ..., Ty—k). Thenforall 1 <i <n —k,

n(t) =i.
Proof Using the notation from the definition of §(S), we have for every i the chain
E—-oit1=p; & Cpj+s=E—0;

where j = n — |oj41| and s = |oj4+1| — |oj|. From the duality formula for the rank functions
and nullity functions, we get that, since n(o;) = t,

n(E—ojp) =k+i+1—|oj41]
while
n(E—o))=k+i—|oil.

Since 7 is unit rank increase, this means that all 7(p 1) are distinct, except for 2 of them, and
that they span the set {k+i+1—loj 1], ..., k+i—lo;|}. We show now thatn(p;) = n(pj41).
Since both set differ by just 1 element, we have either7n(p;) = n(pj+1) orn(p;) = n(pjy1)—
1. Suppose the latter occurs. Then,

n(oit1) =n(E —p;) =n—k —|p;j| +n(p;) =n(E — pj+1).
Since
0i CE—pjt1 C E—pj=0it1

(the first strict inclusion coming from the fact that n(o;) = n(ojy1) —1 =n(E —pj41) — 1),
the tower

=

01C G0 CE—-pj4y1 S oipn--Cor€X

and the k-tuple formed by the cardinalities of the elements of the tower is strictly lower for
the lex order than (ey, ..., e;) which is absurd. O

Lemma?2 Let S, S € X. Then
e(S) <iex €(S') & e(8(S)) <reviex €(8(S").

Proof Write § = (o1,...,0%), 8’ = (0{,...,07), 8(S) = (z1,..., Ty—x) and 8(§) =
(r{, o Tr/hk)' By hypothesis, there exists an 1 < i < k such that forall 1 < j < i,
loj|l = |o;| while |o;| < |0i’ |. In our definition of § above (and we keep the notation, using

ps and p! for S and S’ respectively) this means that for/ > n — |o;| —k +i + 1,

lul =7
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while
Tnfoi|—k+i| < |Tnjos—kii| =1 — loil + 1,
that is
e(8(8)) <reviex €(8(5")
The other way is done in a similar way, noticing that e86(S) = 88(S) = e(S). O

We then obtain the following analogue of [19, Theorem 10.2], where one showed Wei duality
for greedy weights of linear codes:

Theorem 2 Let M be a matroid of rank k on a ground set E of cardinality n. Then

{er,...,ex}U{n+1 —&1,...,n+1 —?,,_k}:{l,...,n}.
Proof Let Sex such that e(S) = (eq, ..., ex). Consider T = §(S5). By Lemma 1, we know
that T € X (M), and thus
e(T) Zrevtex (@1, -+ Enp)-
If this is not an equality, let 7" € X (M) such that e(T”) = (é1, ..., &,—x). Then by Lemma 2

and the fact that e§§(T') = e(T'), we get that

e(S) >1ex €(8(T)) Ziex (e1, ..., ek) = e(S)

which is absurd. ]

3.2 Greedy weights of codes and matroids

In for example [1,3-7,18-20] one describes and treats greedy weights of linear codes C over
finite fields in various ways. In this part, we will show that the greedy weights for codes and
their associated matroids coincide. We start with some lemmas:

Lemma3 Let C be a [n, k]-code, M its associated matroid and X C {1, ..., n}. Consider
the subcode

C(X) ={w € C| Supp(w) C X} C C.
Then
dim C(X) = n(X) = n(Supp(C(X))).

Proof The first equality is an easy consequence from the fact that C(X) = ker Gg_x, and
a rewriting of the rank-nullity theorem using the relation between the rank of the matroid
and its dual. Moreover, the dimension of the relations between the columns of H indexed
Supp(C (X)) is n(X), that is,

n(Supp(C(X))) = n(X).

m}

Theorem 3 The greedy weights of a [n, k]-linear code C and those of its associated matroid
M coincide.
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398 T.Johnsen, H. Verdure

Proof Let first § = o7 C --- C or € X be such that e(S) = (e1(M), ..., ex(M)), and let
D; = C(o;). Then dim D; = n(o;) =i and D| C --- C Di. We always have Supp(D;) C
o;, which shows that

(e1(C), ..., e(C)) <iex (e1 (M), ..., ex(M)).

For the converse, let D} C --- C Dy be subcodes of C withdim D; = i and wt(D;) = ¢; (C).
Let o; = Supp(D;). Of course

oy C .- C oy,
and since D; C C(o;), we always have
n(o;) =dim C(o;) > dim D; = i.

We claim that there is equality. If not, let i be minimal such that n(o;) > i. Then, there exists
T withn(t) =i suchthato;—1 C v C o; (take 09 = Jinthe casei = 1), and let le = C(7).
Clearly

Dy C---Dj_ CD;
and dim le = n(t) = i. This would give rise to a tower of subcodes
D C---Di.yCcD;C--CDy

with dim D} = j fori < j < k that would contradict the minimality of (e;(C), ..., ex(C))
for the lexicographic order. This shows that

(e1(C), ..., e(C)) Ziex (e1 (M), ..., ex(M)).

The proofs for top-down and CEZ greedy weights are done in a similar way. O

Theorem 3 is a generalization of Wei duality for linear codes as presented in [19]. From
[17, Theorem 2.2.8], the matroid associated to the dual of linear code is precisely the dual of
the matroid of the linear code in question

4 Greedy weights and resolutions of Stanley-Reisner rings

Let M be a matroid of rank n — k over a finite set E of cardinality n (for example the matroid
associated to a [n, k]-linear code). As seen in Corollary 1, the sets that compute the different
greedy weights are to be found in the sets that have non-zero Betti numbers. Together with the
main result from [9], this suggests that all information about various kinds of greedy weights
might be encoded in minimal free resolutions of the associated Stanley—Reisner ring. This
is what we will look into in the first part of this section. In the second part, we will look into
the concept of chained codes and matroids.

4.1 Greedy weights from strands

In the rest of this section, if M is a matroid on the finite set E of cardinality 7, then S denotes
the polynomial ring K[e, e € E]. This ring is naturally N* and N graded.
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Definition 16 Let
[P S=o) — P S(-o)'
oeNt oeNt
and p, u € N". Then
fou: S(=p) = P S(=0)* - P S(=)’ - S(=w)"n.

oeN" oeN"

Similarly, in the N-graded context, let
g: P s - Psit
ieN ieN
and p, g € N. Then
8pq : S(=p)? = P S(=i) — @S - S(—g)™.
ieN ieN

In both cases, the leftmost map is the inclusion map, while the rightmost map is the natural
projection.

We are now able to define the strands of a resolution.

Definition 17 Let M be a matroid of rank n — k on a finite set of cardinality n. If
0 sSyls <—EBS( L fi@S(—j)ﬁw <0
jeN jeN

is a N-graded resolution, and if & = (hy, ..., hi) € N, the h-strand of the resolution is the
sequence

(S1.0.81> Sk has -+ o0 Sl ) -
The strand of the resolution is the h-strand with h = (d; ..., di).

If
0<—SM<¢£S<¢—1 S(_j)ﬂl.af’i.. & @S( o 0
oeN” oeN”
is a N"-graded resolution, and if ¢ = (01, ..., 0%) € (N")¥ the o -strand of the resolution is

the sequence

(¢l,(0...,0),(rl s ¢2,01,¢72» e ¢k,ak,1,ok)-

We have already mentioned that 8; » # 0 = o € {0, 1}". In the sequel, we will therefore
identify elements of {0, 1}"* with subsets of E = {1, ..., n}. The main theorem of this section,
will be a consequence of the following lemma.

Lemma4 Let M be a matroid of rank n — k on a set E of cardinality n. Let

0y L8 P scafe L. &P safie <0

aeN? aeN?

be any minimal N" graded resolution of its Stanley—Reisner ring. Let p, |1 be two subsets of
E. Then

$rpp 70 p€ N1, pw€Nrandp C p.
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Proof Any minimal resolution differs from the Taylor resolution (see [8, Section 7.1] by
adding trivial resolutions of the form
0« -« 0« S(—o) lllS(—O) «— 0« -« 0.

For p, n C E, itis easy to see thatif f = g @ h, then f, , = g5, ® hy . In particular, if
p # W, then

Vipu =0
for every i, so that
Prppu #0 & Prpu#0
where W, are the maps in the Taylor resolution. In any minimal free resolution, we have
Bx #0 & X e N,

so we might assume that p € N;_| and u € N, otherwise ¢, , = 0. In particular, this
means that p # u.
In a first step, we prove that

pCusdrtel, u=tUp.

One way is obvious. For the other way, let y € u\p. Since u is a cycle, there exists T € C
with y € © C . Then we have

n(u) zn(pUt) zn(p)+n(@) —n(pNe)=1-1

the equality coming from the fact that n(p N t) = O since p Nt C 7 is strictly included in a
circuit and has thus nullity 0. Since n() = [ and px is minimal, we have equality

pUt = L.

Now, if pUt = pand p € N;_1, by [9, Proposition 1], we can write p = Uf;ll o; for some

distinct circuits o, and by construction of the differential of the Taylor complex,

Do #0.

Conversely,if W, , , # 0, then again by construction of the differential of the Taylor complex,
w is the union of / circuits, and we obtain p by taking the union of all these circuits but 1. O

‘We then have:

Theorem 4 Let M be a matroid of rank n — k on a set of cardinality n. Let
0<—sSyls <—EBS( R fi@S(—j)ﬂm <0
JjeN jeN

and

0<—SM?£S<¢—I @S(_}')ﬂl,a LA @S( )P <0

oeN"? oeN"

be N and N"-graded resolutions respectively. Then

1. ey = g1 =d, =min{j, i ; # 0} and & = min{j, By ; # 0}.
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2. For2 <1 <k, the greedy weight e; is
e; = min{|o|, 3t that computes ej_1, ¢; .o 7% 0}.
3. Forl <1 <k — 1, the top down greedy weight ¢; is
e; = min{|o|, 3t that computes é+1, ¢1.0.r 7% 0}.
4. For2 <1 <k, the CEZ greedy weight g; is
g =min{j, fra_,; # 0}

5.

(e1,...,ex) = Iﬁixn{e(a), S (2E)”, the o -strand consists of non-zero maps}.
6.

@i,...,ex) = rg}g{{e(o), o€ (ZE)", the o -strand consists of non-zero mapsy.

Proof The first point is just the definition. The second and third point are consequences of
the previous lemma. The fourth point is also a consequence of the previous lemma. Here, we
can take the N-graded resolution, since any subset of cardinality d;—; with non-zero Betti
number computes ;1. The two last points follow from the second and third point, as well
as Proposition 1. O

Example 4 Using for example [16], we are able to compute the N"-graded resolution of the

code of Example 1.

[678 578 568 567 234 134 12]
. S(=678)D S(=578) D S(~568) D S(~567)

5 D S(—234) P S(—134) P S(—12)
—234 0 0 0 —13 0 0 0 -12 0 0 0 -5 -5 -5 0 0
0 -234 0 0 0 —134 0 0 0 —12 0 0 6 0 0 0 0
0 0 234 0 0 0 —134 0 0 0 —-12 0 0 7 0 0 0
0 0 0 234 0 0 0 —134 0 0 0 —-12 0 0 8 0 0
678 578 568 567 0 0 0 0 0 0 0 0 0 0 0 -1 -1
0 0 0 0 678 578 568 567 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 678 578 568 567 0 0 0 0 34
§(—234678) @ S(—234578) @ S(—234568)
S(—678) @ S(—578)  S(—568) @D S(—234567) @ S(—134678) @ S(—134578)
@ S(—567) D S(—234) — @ S(—134568) @ S(—134567) @ S(—12678)
BS—134) P S(—12) @D S(—12578) P S(—12568) @ S(—12567)
D S(—5678)° @ S(—1234)*
r-s -5 -5 0 0 0 1 1 0 0 0 0 0 0 0 0 07
6 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
o0 7 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
o0 0 8 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 -5 -5 -5 -2 0 0 0 0 0 0 0 0 0 0
0o 0 0 6 0 0 0 0 -2 0 0 0 0 0 0 0 0
o 0 o0 0 7 0 0 0 0 0 -2 0 0 0 0 0 0
o 0 o0 0 0 8 0 0 0 0 0 0 -2 0 0 0 0
0 0 0 0 0 0 0 -3¢ 0 0 0 0 0 0 -5 -5 -5
0 0 0 0 0 0 0 0 0 —34 0 0 0 0 6 0 0
o0 0 0 0 0 0 0 0 0 0 0 34 0 0o 0 7 0
0 0 0 0 0 0 0 0 0 0 0 0 0 -3 0 0 8
234 0 0 13 0 0 0 0 0 0 0 0 0 0 12 0 0
0 23 0 0 13 0 0 0 0 0 0 0 0 0 0 12 0
0 0 23 0 0 134 0 0 0 0 0 0 0 0o 0 0 12
0o 0 O O O 0 678 0 58 0 58 0 57 0 0 0 0
Lo o o o0 O O O 658 0 58 0 568 0 567 0 0 0]
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S(—234678) @ S(—234578) P S(—234568)
@ S(—234567) P S(—134678) P S(—134578)
@D S(—134568) @ S(—134567) P S(—12678) «~—
@D S(—12578) P S(—12568) B S(—12567)
D S(—5678)> @ S(—1234)?

§(—2345678)° @ S(—1345678)3
D S(—1234678)> @ S(—1234578)%
D S(—1234568)* @ S(—1234567)%

@D S(—125678)3

-1 0 0 -1 0 0
0 -1 0 0 -1 0
0 0 -1 0 0 -1
2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
5 -5 =5 0 0 0
0 0 0 -5 -5 -5
6 0 0 0 0 0
0 0 0 6 0 0
0 7 0 0 0 0
0o 0 0 0 7 0
0 0 8 0 0 0
o 0 0 0 0 8
0 0 0 3 0 0
0 0 0 0 34 0
L0 0 0 0 0 34]

5(—2345678)° @ S(—1345678)° @ S(—1234678)>
D S(—1234578)> @ S(—1234568)> @ S(—1234567)> «— S(—12345678)°
P S(—125678)°

where, for compactifying the notation, the number a;---a, represents the monomial
Xq, -+ X4, Here the ({1, 2}, {1, 2,3,4},({1,2,3,4,6,7, 8}, E)-strand is

678 0 -5 -5 -5 0 0 0
(200 = [ ol [0 0 0 5 5 %)
thus

(el , €2, €3, 64) flex (27 45 77 8)

and there is actually equality here.

4.2 Chained codes and matroids

Definition 18 Let C be a linear code of dimension k. It is called chained if there is a chain
Dy CDyC--- C Dy
of linear subcodes, such that D; computes d;, for 1 <i <k.
Then we have:
Proposition2 Let C be a linear code of dimension k. Then the following assertions are

equivalent:
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The code C is chained,

- (dy,...,dy) = (e1,...,ex),
- (dy,....dy) = (e1,...,er),
- i, dl) = (g1, 8K)-

Proof This is obvious from the definitions. O
This can be generalized to matroids:

Definition 19 A matroid of rank n — k on a set of cardinality n is chained if there exists a
chain

GIC'CO'k

where o; € N; computes d;.

Proposition 3 Let M be a matroid of rank n — k on a set of cardinality n. then the following
assertions are equivalent:

The matroid M is chained,

- (dy,...,dy) = (e1,...,ex),
- (di,....dy) = (e1,...,er),
- (i, dl) = (g1, 8K)-

Proof This follows from the definitions. O

Moreover, we have the following:
Proposition 4 A linear code is chained if and only if its associated matroid is chained.
Proof This is a direct consequence of Theorem 3. 3. O

We will end this article with commenting on the connection between chainedness of a
code or matroid, and properties of minimal resolutions of their Stanley—Reisner rings.

Definition 20 Let M be a matroid of rank n — k on a set of cardinality n. It has a pure
resolution if the N-graded resolution satisfies:

V1 <i=<k, 3j, Bij #0.
Furthermore, we say that the pure resolution is linear if
V1<i<k, jiv1 =i
A linear code has pure resolution (resp. linear resolution) if its associated matroid has.
Proposition 5 Linear codes and matroids with pure resolutions are chained.
Proof This follows from the fact that 8; x # 0 < X € N; and the definitions. ]

MDS codes and uniform matroids have linear resolutions, and as such are chained. On
the other hand, we have some codes that do not have linear resolutions, but pure resolutions.
Examples of such codes are Reed—Miiller of the first order and constant weight codes [10,
Theroem 2.1]. These codes are thus also chained. In the case of constant weight codes, we have
in addition that any chain of subcodes of dimension i actually compute ¢; = d;. In general,
chained codes do not need to have pure resolutions. For example, non-binary Veronese codes
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studied in [11] are such codes. These codes are defined through the Veronese embedding
P, — Ps. Elements of N; correspond to complements of geometrical configurations, and
it follows easily from [11, Theorem 21] that the code is chained but does not have pure
resolution.

The set of codes/matroids with pure/linear resolutions is not closed under taking duals.
However, we have:

Proposition 6 A matroid (resp. linear code) is chained if and only ifits dual (resp. orthogonal
complement) is chained.

Proof This follows from Wei duality for greedy weights and Hamming weights. O
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