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Precision medicine programs to identify clinically relevant genetic variation have

been revolutionized by access to increasingly affordable high-throughput sequencing

technologies. A decade of continual drops in per-base sequencing costs means it is

now feasible to sequence an individual patient genome and interrogate all classes of

genetic variation for <$1,000 USD. However, while advances in these technologies have

greatly simplified the ability to obtain patient sequence information, the timely analysis

and interpretation of variant information remains a challenge for the rollout of large-

scale precision medicine programs. This review will examine the challenges and potential

solutions that exist in identifying predictive genetic biomarkers and pharmacogenetic

variants in a patient and discuss the larger bioinformatic challenges likely to emerge in

the future. It will examine how both software and hardware development are aiming to

overcome issues in short read mapping, variant detection and variant interpretation. It

will discuss the current state of the art for genetic disease and the remaining challenges

to overcome for complex disease. Success across all types of disease will require novel

statistical models and software in order to ensure precision medicine programs realize

their full potential now and into the future.

Keywords: precision medicine, variant detection, high-throughput sequencing, pathogenic variant, variant

prioritization, FPGA—field-programmable gate array, GPU-accelerated

INTRODUCTION

Precision medicine programs are increasingly being implemented worldwide with a goal of
improving patient care for an individual (1). Largely enabled by access to increasingly affordable
high quality sequence data, great strides have been made in the diagnosis and management of
genetic disease. By considering a patients unique genetic, environmental and lifestyle factors
precision medicine aims to develop customized patient-specific treatments. Increasingly important
in precision medicine programs is the ability to utilize genetic information to stratify patients with
regard to treatment options and outcomes. Such patient information can be broadly classified into
predicative and prognostic biomarkers with prognostic biomarkers informing on patient outcome
in contrast to predictive biomarkers which directly guides treatment (the focus of this review).
Currently, diagnosis and treatment of cancer and rare diseases are the largest beneficiaries of
precision medicine programs. In cancer, huge numbers of druggable molecular alterations have
been described and cataloged in growing public repositories like Clinical Interpretation of Variants
in Cancer (CIViC) (2). As of February 2022, CIViC contain an incredible 3,041 actionable variants
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in 464 genes supported by 8,576 evidence items. Beyond cancer,
the genetic cause of more than 80% of the roughly 6,000
known rare diseases has been elucidated in the last decade alone
(3). While impressive, currently only ∼5% of these diseases
have an accepted targeted treatment indicative of the work still
required (3).

Despite progress in diagnosing and treating genetic diseases,
a bottleneck persists in variant interpretation. The increase
in sequencing capacity has identified huge numbers of new
suspected pathogenic variants however there is often sparse or
inconclusive supporting functional evidence. For example, cystic
fibrosis (CF) is caused by up to ∼300 pathogenic variants in
the CTFR gene however their impact is often heterogenous
amongst individuals (4). Functional inference prediction tools
are often run instead to access the likelihood of a mutation
ablating protein function however such tools are known to have
high false positive rates (5). Overall, substantial progress has been
made in genetic disease however numerous challenges need to be
addressed before precision medicine programs can be delivered
at scale and for complex, polygenic disease.

Reliably identifying disease causing variants remains a
challenge within the field particularly for complex disease. While
great strides have been made for cancer and rare diseases, the
diagnosis rates for complex diseases remain much lower (6).
Despite these challenges, there are many examples of genetic
traits in polygenic disease contributing to clinical manifestations
[e.g., blood disease (7), autoimmune disease (8)]. To increase
the diagnosis rates for complex diseases, previous approaches
have employed a wide variety of strategies. For example,
careful sample selection improve diagnosis rates by focusing on
families with multiple affected individuals who exhibit extreme
phenotypes and early onset of disease (9). Additionally, particular
variant classes can be prioritized in different scenarios such
as homozygous mutations for consanguineous pedigrees (10)
and de novo mutations for trios with an affected child and
unaffected parents (11). While these strategies are feasible in
particular scenarios, in many cases only a single patient is
available meaning prioritization strategies must consider all
genetic variation detected in a patient.

An additional challenge in variant detection is the increased
recognition of the importance of larger copy number and repeat
variation in driving disease. These variant classes are harder
to reliably detect than single nucleotide variants (SNVs) and
small insertion/deletions (indels) particularly with short read
sequencing technologies (12). Even for SNVs and small indels
there are limitations with most precision medicine programs
prioritizing variants disrupting gene function yet increasingly
portions of the “missing heritability” in disease is being explained
by small variants that either generate unexpected splicing
errors or disrupt poorly annotated regulatory elements (13).
These challenges are compounded within populations of non-
European ancestry due the over representation of individuals
of European ancestry within public variant databases. While
this trend is improving, a 2016 study found 81% of all GWAS
study samples were of European ancestry with only 4% of
all samples being of African or Latin American ancestry or
Indigenous (14).

Inherent to any successful precision medicine program is
the timely and accurate detection of genetic variation and
the prioritization of the variants most likely to be relevant
to the patient’s condition. Advances in software and hardware
are playing an increasingly innovative role in delivering
on these goals particularly for accurate variant detection
and prioritization. Software-based approaches are varied and
include developing new algorithms, increasing efficiencies of
existing algorithms, increasing parallelization and improved
standardization of common file formats (15). Hardware-based
approaches are increasingly important and include increased
availability of cluster and cloud based compute environments
(16), field-programmable gate arrays (FPGA) devices (17)
and graphical processing units (GPU) enabled bioinformatics
algorithms (18).

Pharmacogenetic variants are also important in precision
medicine with individual variability in drug response increasingly
being attributed to genetic variation. An average individual is
estimated to carry three clinically actionable pharmacogenetic
variants with 97% of individuals carrying at least one such
variant (19). Increasingly large repositories that aggregate and
annotate pharmacogenetic variants [e.g., PharmGKB (20)] are
being used in drug dosage decision making. While encouraging,
the majority of known pharmacogenetic variants remain
underutilized in precision medicine. This is largely due to a poor
understanding of the underlying mechanisms and challenges in
accurately identifying and annotating pharmacogenetic variants.
For example, a recent study showed pharmacogenetic variants
causing missense mutations and associated with off-target effects
are incorrectly classified as benign by functional inference
prediction software (21). Further software development is needed
to account for this special class of variation (22).

Large-scale translation of research results into the
clinic remain a significant bottleneck for the wide-spread
implementation of precision medicine programs. While
increasingly detailed annotation and prioritization workflows
are being described and shared (23), most still remain siloed
within individual institutions or are bound to specific hardware
configurations. Improved containerization of workflows is
helping to facilitate sharing of analysis pipelines (24) with
initiatives like the Global Alliance for Genomics and Health
(GA4GH) facilitating the timely sharing of large genetic data sets.
While improving standardization and sharing of resources is
critical, a larger challenge is the availability of accurate databases
of clinically actionable variants. While many such repositories
exist, studies have identified inaccuracies throughout (25). To
illustrate, a recent study followed up 239 variants in the Human
Gene Mutation Database (HGMD) classified as disease-causing
and found only 7.5% of these variants met the criteria required to
be called disease-causing (26). For precision medicine to succeed
at scale, more accurate and detailed databases of clinically
actionable variants are required.

Despite substantial progress, reliably detecting genetic
variants within precision medicine programs has many
challenges remaining. While solutions are actively being
developed it is clear more improvements are needed if we are to
realize the full potential of population-wide precision medicine
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programs. In this review, I will describe the current and future
challenges for identifying clinically relevant genetic variants in
precision medicine programs with resources summarized in
Table 1.

CURRENT CHALLENGES AND SOLUTIONS

A wide variety of strategies are being employed to detect
clinically relevant genetic variation at scale. These approaches
can be broadly classified as software-based or hardware-based
(Figure 1).

Software Based
Software development and optimization play an important
role in improving precision medicine programs by improving
algorithm performance and reducing run time and memory
requirements. This is occurring via a variety of mechanisms
including the development of new algorithms, optimization
of existing algorithms, increasing parallelization via job
partitioning, and standardized file formats (Table 2).

New algorithms are being developed for a variety of analysis
steps in variant detection workflows, particularly for variant
prioritization.While the generation of either germline or somatic
raw variant calls is increasingly routine [e.g., BWA for short
read alignment (42) followed by GATK best practices (43)],
development of algorithms to identify clinically relevant variants
from raw variant calls remains an active area of software
development. The increasing availability of variant annotation
data has led to the development of annotation aggregator
packages such as ENSEMBL Variant Effect Predictor (VEP)
(31) or ANNOVAR (33). With external annotation sets and
gene models rapidly updating, such tools are indispensable for
applying the latest annotations to raw variant lists. Another
area of active software development is predicting the functional

impact of variant classes such as missense mutations. Heavily
used tools such as PolyPhen2 (36) have been shown to exhibit
high false positive rates (5) and newer tools are increasingly
utilizing machine learning (38) and a consensus-based approach
(44) to try to overcome these limitations however more work
is needed to improve their accuracy. The most active area
of development currently is disease-specific solutions with
the increasing recognition that any disease requires tailored
annotation / prioritization and may even require different types
of sequence data. For example, with autoimmune disease T-cell
receptor (TCR) and B-cell receptor (BCR) repertoires are often
sequenced requiring custom software to identify the relevant
clonotypes (45). Additionally, incorporating disease specific
annotations [e.g., Immgen for autoimmune disease (46)] requires
custom handling as disease-specific databases are generally not
available within the annotation aggregation tools.

Ongoing development of many commonly used
bioinformatics algorithms is reducing run time and memory
requirements. For example, an update to the popular amplicon
cluster software Swarm reduced memory usage by 50% and
run time by 7X (47). These improvements are often driven by
increasingly large data sets with many long-running software
packages having been created when sequence data sets were
smaller. Increasingly, individuals not involved in the original
development of the software are finding ways to speed up and
reduce memory usage of many commonly used algorithms. For
example, an external group modified the popular Minimap2
(48) long read aligner by incorporating multi-index merging
which reduced memory usage by an order of magnitude (49).
While gains have been significant in many instances, further
reductions in run time and memory usage will greatly facilitate
the wide-spread uptake of precision medicine programs.

A common approach to reduce run time is increasing
parallelization via programming models like MapReduce (50).

TABLE 1 | Resources for variant detection in precision medicine programs.

Database Function Web link

dbSNP (27) Population level variation http://www.ncbi.nlm.nih.gov/snp

gnomAD (28) Population level variation https://gnomad.broadinstitute.org

1000 Genomes Phase 3

(29)

Population level variation http://phase3browser.1000genomes.org

Database of Genomic

Variants (30)

Population level variation http://dgv.tcag.ca/dgv/app/home

Variant Effect Predictor (31) Variant annotation https://ensembl.org/info/docs/tools/vep/index.html

dbNFSP (32) Variant annotation https://sites.google.com/site/jpopgen/dbNSFP

AnnoVar (33) Variant annotation http://annovar.openbioinformatics.org/en/latest/

ClinVar (34) Clinical annotation https://www.ncbi.nlm.nih.gov/clinvar

LOVD (35) Clinical annotation http://www.lovd.nl

PolyPhen2 (36) Functional impact http://genetics.bwh.harvard.edu/pph2/

SIFT (37) Functional impact https://sift.bii.a-star.edu.sg/

CADD (38) Functional impact https://cadd.gs.washington.edu/

GTEx (39) Gene expression https://gtexportal.org

Multi-symbol checker (40) Gene naming https://www.genenames.org/tools/multi-symbol-checker

OMIM (41) Gene / disease annotation https://www.omim.org
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FIGURE 1 | Software and hardware-based strategies being employed to address bioinformatic bottlenecks in large scale precision medicine programs.

TABLE 2 | Software based solutions.

Strategy Advantages Disadvantages

Algorithm development – Develop novel approaches – Requires community uptake

– Existing suite of tools available for benchmarking – Challenging to significantly change existing workflows

Algorithm optimization – Quicker to improve existing algorithms – Gains are often minimal if software well-designed initially

– Simple to benchmark versus previous releases – Any changes in expected output requires verification

Job partitioning – Increases parallelization and reduces serial run time – Splitting and combining results adds software complexity

Standardized file formats – Standardized formats allows easy algorithm benchmarking – No flexibility for new data types or information

MapReduce is a general purpose model designed to run
efficiently over large datasets on commodity compute clusters.
The incorporation of MapReduce by Apache Hadoop has led
to its incorporation throughout the bioinformatics landscape,
now found in software such as GATK (43) and BLAST (51).
In addition to using models like MapReduce, custom solutions
are often employed such as partitioning long-running whole
genome jobs into smaller genomic chunks, often at the level of
chromosome (52). Using this approach, we can expect at least an
order of magnitude reduction in run time as the largest single
chromosome represents <10% of the total human reference
genome size. It should be noted that while this approach is
suitable for algorithms where each chromosome is analyzed
independently, this approach won’t work when information
from multiple chromosomes is required for an analysis (e.g.,
genome wide stats, detecting inter-chromosomal translocations).
Another issue with this approach is the increased complexity
required to manage the jobs and merge the per-chromosome
output files.

File formats are increasingly being standardized to improve
reproducibility and data sharing. For example, virtually all short
read aligners now generate SAM alignment files while most
variant detection software outputs variant call format (vcf) files.
Standardizing file types can reduce ongoing storage requirements
via improved compression which allows algorithms to work
entirely with compressed data such as gzipped FASTQ files
or compressed SAM files (BAM/CRAM). For example, read
alignment generates an extremely large SAM file containing
one row per read pair. Given whole genome datasets routinely
contain >1 billion read pairs SAM files quickly become large and
unmanageable formanipulation. To address this, a lossless binary
version of the SAM file was created that reduces the file size by
up to 75%. The resultant BAM file is significantly smaller and
can be effortlessly queried and manipulated via bioinformatic
packages such as SAMTools (53). Despite the improvements
with BAM files, a more compressed format called CRAM was
subsequently developed, resulting in a further reduction of 40–
70% in size relative to BAM (54). While promising, a limitation
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of the CRAM format is that compression is not a lossless
conversion whereas BAM compression is lossless. Overall file
standardization has made significant improvements to variant
detection workflow efficiency and portability however challenges
do exist with frequent version changes often failing to maintain
backwards compatibility.

Hardware Based
Hardware developments are making significant contributions
to precision medicine programs via increasingly large and
accessible compute infrastructure and hardware accelerated
solutions designed to address software bottlenecks. The increase
in available computational resources is primarily driven by
increasingly large and accessible cluster and cloud compute
resources while the hardware accelerated solutions consist largely
of new FPGA devices and GPU-enabled algorithms. Collectively
the increasing uptake of these hardware-based solutions is easing
existing computational bottlenecks within precision medicine
programs (55). However while these hardware solutions are often
designed to address the same bottlenecks, they differ with regard
to ease of use, cost, performance and scalability (Table 3).

Most high throughput genome analysis workflows were
originally designed to run on commodity clusters due to
their affordability, scalability and relative ease of use. From
small clusters running on local infrastructure to enterprise-level
systems with thousands of readily-available cores, their design
follows the same model with scheduler software responsible for
managing jobs and resources across a distributed system of linked
computers. This setup enables efficient parallelization of jobs
using commodity hardware with minimal overhead. As such
systems grow with more users and resources however, increasing
levels of expertise are required for seamless operation. With
such expertise, clusters are able to process huge numbers of jobs
in parallel making this infrastructure critical to many project
requiring efficient and timely data processing.

In addition to increasingly large compute clusters, accessible
and expandable cloud-based compute resources are driving an
increasing number of precision medicine programs (56). In
contrast to cluster based solutions, cloud solutions perform
all analyses on remote systems across a network connection.
In a cloud based model, storage and compute resources are
commodities that can either be borrowed or rented from a

provider such as Amazon Web Services or Microsoft Azure.
The greatest advantage of cloud compute is its flexibility; users
can access exactly the resources required for virtually any
job. This flexibility enables users of any size to utilize cloud
resources providing the appropriate compute environment is
available. Setting up custom cloud-ready workflows requires
a significant effort initially although increasingly the most
common genomics workflows are being made available [e.g., nf-
core (57)]. Potential issues with public cloud resources include
issues handling sensitive patient information and challenges
moving large genomic data sets. To address these, some groups
are opting for a hybrid solution by creating private cloud
infrastructure potentially getting the benefits of both cluster and
cloud approaches. Regardless of the approach, it is clear cloud
compute infrastructure will play an increasingly large role in
precision medicine programs (16).

Beyond increasingly large and flexible compute infrastructure,
hardware accelerated solutions such as GPU-enabled algorithms
and FPGA devices are now being used to reduce run time in
precision medicine programs (15). While GPU-enabled versions
of many popular bioinformatics algorithms have existed for a
long time [e.g., GPU-BLAST is 10 years old (58)], it is only
recently that we are beginning to see wide-spread uptake of these
algorithms. Algorithms able to utilize GPUs can significantly
increase parallelization by taking advantage of the large number
of specialized cores on a single graphics card. In contrast with
sequential CPU processing, GPUs offer superior scalability and
reduced costs per unit however the biggest challenge is creating
the specialized code required to utilize GPUs. Further, portability
is a challenge as any GPU code developed is vendor-specific
meaning it cannot run on another vendors GPUs. In reality, most
GPU-enabled bioinformatics algorithms are currently written
using NVIDIA’s Compute Unified Device Architecture (CUDA)
with examples from variant detection workflows focused on the
short read alignment step [e.g., SOAP3 (59)]. However, with
the increasing availability of GPU-enabled algorithms across the
whole research spectrum more options relevant to precision
medicine are likely forthcoming.

In addition to the potential of GPU-enabled algorithms, an
increasing number of FPGA devices are available for precision
medicine variant detection (60). FPGAs are integrated circuits
designed to be configured for specific software applications.
FPGAs offer many advantages in that they are flexible, inherently

TABLE 3 | Hardware based solutions.

Resource Advantages Disadvantages

Compute cluster – Low cost entry – Controller is single point of failure

– Uses commodity hardware – Technical expertise required

Cloud compute – Highly scalable – Data transfer and cost

– No local installation – Privacy concerns for sensitive data

FPGA – Direct hardware / software link – Challenging to program/re-program

– Relatively low cost – Integration requires technical expertise

GPU – Cheaper than CPUs – Chipset specific coding required

– High parallelization possible – Higher power usage than FPGAs
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parallel, re-programable and relatively low cost. The greatest
limitation of FPGA is they are very difficult to program compared
to GPUs (15) however devices exist for both short read alignment
[Bowtie (61)] and even entire precision medicine workflows
(DRAGEN). Developed by Edico Genome and now owned
by Illumina, DRAGEN can reduce already parallelized variant
detection workflows by up to an order of magnitude (62).
DRAGEN has also been deployed at scale in partnership with
Genomics England for their rare disease analysis platform.
It is clear FPGA devices have a significant role to play in
precision medicine.

While all the software and hardware solutions are described in
isolation, in reality various hardware and software combinations
are being tested in new precision medicine workflows.

Variant Detection
Detecting small genetic variants within sequenced human
genomes is a relatively mature high-through sequencing
application. Despite this progress, challenges remain to
comprehensively characterize all variation. Variant detection
challenges include an incomplete human reference genome, a
limited number of robust validated variant truth sets and no
clear best performing algorithm; challenges which are amplified
for less well characterized variant classes such as repeat and copy
number variation which are increasingly being implicated in
human disease (63).

Since the initial human genome assembly in 2001,
improvements in both software and long read sequencing
technology have improved the genome assembly to the point
where we now have the first telomere-to-telomere genome
assembly for most chromosomes (64). While promising for
the future, most precision medicine programs currently utilize
the GRCh38 assembly and will likely continue to do so for the
near future largely due to the abundance of well characterized
annotations data reported relative to these genomic coordinates.
For example, one of the most important annotation sets
GNOMAD (28) only converted to GRCh38 in October 2019,
almost five full years after the initial GRCh38 assembly was
released in December 2013. A similar period of time will likely
be required to convert existing workflows and annotations to the
improved telomere-to-telomere assembly following wide-spread
acceptance within the community. For context, the GRCh38
assembly still contains 850 sequence gaps with numerous
mis-assembled regions reported over the years.

Improving variant detection workflows requires robust
validated variant truth sets for benchmarking both new
algorithms and updated versions of existing algorithms. Until
quite recently a single reference dataset (NA12878) was available
for benchmarking which was limited by ∼30% of the reported
variants being classified as low confidence due to either low
coverage, local alignment problems, or systematic sequencing
errors (65). The wide-spread availability of high quality long read
sequence data and the increased number of samples available
within consortiums like Genome in a Bottle mean an increasing
number of relatively complete high quality variant truth sets are
available for benchmarking.

While the algorithms for detecting SNVs and small indels are
increasingly accurate and reliable, the algorithms for detecting
other types of variation such as repeat, copy number and
structural variation remain an active area of development. To
illustrate, a recent review reported SNV and small indel F-scores
of >0.975 and >0.85, respectively, (12) while a review of copy
number and structural variant detection algorithms reported
precision values of between 0.40 and 0.91 and recall values from
0.07 to 0.28 depending on the type of variant being detected
(66). Limited data is available reporting the true accuracy of
repeat variation detection algorithms due to lack of a gold
standard reference validation set with most tools instead relying
on analyses using in silico data. It should be noted that despite the
highly precision and recall reporting for SNV calling, studies have
shown that recurrent false positive variants are routinely called
and exist within variant repositories (67).

Central to any analysis step is the selection of the algorithm(s)
to run. While for many analysis steps a single algorithm is
determined to perform sufficiently, for many variant detection
applications leading algorithms generate highly discordant
results with no single algorithm performing optimally under
all conditions (52). To address this, an increasingly popular
approach is to run multiple algorithms and apply a consensus
approach in order to minimize the effect of any potential
biases within a single algorithm [e.g., DNA (52)/RNA (68)].
This approach has been shown to generate the highest quality
variant data sets for either specificity or sensitivity depending
on whether the intersection or the union of the variant calls is
taken, respectively.

Variant Interpretation
Whole genome sequencing (WGS) generates millions of raw
variant calls, the large majority of which are not relevant to
disease. While targeted sequencing experiments such as exome
or gene panel sequencing reduce the number of raw variant calls,
the challenge of variant filtering and interpretation to identify
clinically relevant variants remains. Beginning with raw variant
calls, the most common filtering strategy is to apply a series
of successive annotation and prioritization steps in order to
reduce the genomic search space for clinically relevant variants.
Such strategies include stratifying variants by impact on genes,
running functional inference prediction software for missense
mutations, overlapping to both ethnically matched population-
level and disease-specific variant repositories, and sequencing
pedigrees for germline disease and paired tumor/normal samples
for cancer (Table 4). Overall, each step reduces the genomic
search space with an overarching goal of reducing the final
list of candidate variants down to a size suitable for in-depth
manual interrogation.

Often the first annotation step is to stratify variants based
on their impact on genes. For example, SNVs causing non-
synonomous/nonsense mutations or small indels situated within
exons causing a frameshift are prioritized. Determining this
impact can be challenging however due to factors such as
differences in gene models or multiple isoforms reported within
a single gene model. For example, a recent study aligned RNA-
Seq data to three popular gene models (ENSEMBL, RefSeq,
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TABLE 4 | Strategies for variant prioritization.

Strategy Strengths Limitations

Consensus-approach running – Minimize algorithm biases – Adds computational complexity

multiple algorithms – Reduce specificity or sensitivity by taking intersection or union – Longer run time

Stratify by impact on genes – Prioritize disease enriched variant – Changes reported relevant to specific version of gene model

sets (e.g., missense or splice-site variants) – Multiple isoforms often available

Functional inference prediction – Prioritize mutations likely to disrupt protein – Tools have known high false positive rates

software

Overlap population-level – Allows filtering of common population-level variation – Contains errors and incomplete records due to lack of curation

variant databases

Overlap disease-specific – Identify variants or genes previously implicated in disease – Large numbers of non-causal variants often included

databases

Pedigree sequencing – Generate pedigree-wide annotation (disease inheritance, – Obtaining samples for larger family

compound heterozygosity, etc)

Paired cancer sequencing – Matched tumor/normal samples can detect somatic variation – Sample purity

– Tumor heterogeneity

and UCSC) and found 95% of non-junction read alignments
were identical across the three gene sets however only 53% of
junction spanning read alignments were identical (69). Such
studies illustrate the importance of careful gene model selection.
Even within a single gene model multiple isoforms are often
reported, meaning the choice of isoform can alter the expected
impact on the gene. Many workflows opt to compare the impact
across all isoforms and report the most severe outcome while
others report the impact relative to the annotated “canonical”
transcript as reported by gene models such as ENSEMBL, RefSeq,
and UCSC.

Another challenge in variant interpretation is the
identification of missense mutations most likely to disrupt
protein function. With hundreds or thousands of missense
mutation calls per patient, a large number of computational
tools have been developed to prioritize these variants. Such
tools are generally trained on validated disease mutations as a
positive set and common polymorphisms as a negative set and
consider three main types of evidence; sequence conservation,
protein structure, and protein annotations. These tools however
are untested against the full spectrum of random de novo
mutations and validation studies have reported consistently high
false positive rates for both candidate disease-causing (5) and
pharmacogenetic variants (21). Increasing gains in performance
are reported by tools that apply a consensus approach by
incorporating scores from other algorithms into their own
scoring (e.g., CADD (38). Additional gains have recently been
reported in algorithms applying machine learning approaches
trained on increasing large data sets (70) however wide spread
validation studies are required to validate these claims.

Databases of population-level variation are extremely valuable
for reducing the search space via the removal of common variants
as candidates. Databases like dbSNP (27) and GNOMAD (71)
contain increasingly detailed population-level variant frequency
information which allows both the de-prioritization of common
variants as well as the prioritization of rare or de novo
variants. It is critical when applying such filters to use ethnically
matched allele frequencies using the increasingly granular variant

information available within the variant repositories. Without
ethnic matching, many variants are incorrectly characterized as
novel or rare due to under-sampling in the repository of the
patient’s ethnic group. Despite efforts in recent year to increase
numbers of under-represented ethnicities in such databases,
much work is needed to include all groups such as Indigenous
populations (72).

Equally important to population-level databases are human
disease databases which allow previously implicated variants
and/or genes to be prioritized. Databases of clinically relevant
variants are numerous and growing rapidly in size (e.g., ClinVar
(34) for germline and CIVIC (2) for cancer). Importantly, these
databases follow standardized Human Genome Variation Society
(HGVS) approved nomenclature for DNA and RNA variants
allowing direct comparison across disparate data sets. In addition
to comprehensive generic disease databases, increasingly disease-
specific databases are being developed such as Infevers (73)
for auto-inflammatory disorders or IARC TP53 (74) for TP53
specific mutations. While disease databases are an extremely
valuable resource, most have been shown to contain high
numbers of false positive due to manual curations being made
with incomplete functional data. For example, one study found
27% of reported recessive disease-causing variants were false
positives and were actually either common polymorphisms
or mis-annotated (25). Such studies highlight the need to
improve such databases via increasingly rigorous functional
validation studies.

A powerful approach for reducing the search space for
disease-causing variants in rare disease is the sequencing of
families or pedigrees. Using this approach there are two
main applications; sequencing trios with an affected child and
two unaffected parents or sequencing multiple members of
larger pedigrees containing multiple affected members. In both
instances custom software is required to identify the variants
most likely to be causal; namely de novo mutations in the
trios and variants shared between affected and missing in
unaffected members in the larger pedigrees. With pedigrees,
specialized software is required to concurrently consider all
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variation and provide pedigree-specific annotation such as
disease inheritance patterns, phasing information, and potential
compound heterozygosity (75). While such tools are increasingly
mature, more is needed to incorporate their results into precision
medicine workflows.

For detecting somatic mutations in cancer, the most effective
strategy is sequencing paired tumor and normal samples and
analyzing them simultaneously with cancer-specific software to
identify candidate driver mutations (76). The presence of a
matched control sample facilitates the identification of somatic
variants however issues such as sample cross-contamination and
tumor heterogeneity ensure cancer-specific software is required
for reliable somatic variant detection. In this space, single cell
sequencing has the potential to mitigate some of the issues
around sample heterogeneity (77).

While currently most precision medicine programs run some
combination of the above annotation steps in series, increasingly
machine-learning based approaches are being developed to
identify clinically relevant variants directly from raw variant
lists (78). While much work is required to achieve this lofty
goal, machine-learning based approaches are already being
used successfully for more specific applications within the
larger workflows such as detecting variant pairs causing disease
(79), prioritizing non-coding variants (80) and identifying new
pharmacogenetic variants (22). While these applications show
promise, to date there are limited examples of large machine
learning approaches being utilized at scale in precision medicine
programs (81). In fact, a recent review could identify only a
few examples of machine learning methods impacting clinical
practice; an observation they largely attributing to the poor
performance of the predictive models, difficulties interpreting
complex model predictions and lack of validation in clinical trials
sufficiently demonstrating improvements to current standard of
care (82).

DISCUSSION

Precision medicine programs continue to mature and expand
around the world (1). One of the most common application in
such programs is detecting genetic variation relevant to a patient’s
condition. Significant improvements in both software and
hardware over the last few years have made the detection of small
genetic variation from patient sequence data an increasingly
routine process. To improve the success of existing programs,
work is required both with regard to detecting large and repetitive
genetic variation routinely and with improving the automation
of variant prioritization. In the near-future, it will also be critical
to synthesize patient clinical data with a variety of sequence
data types.

Repeat variation is broadly classified as mobile elements
and tandem repeats which are further divided by size in short
tandem repeats and satellites. Due to challenges detecting repeat
variation using short read sequencing their frequency is largely
unknown but current estimates are ∼10,000 tandem repeats and
∼2,000mobile elements per human genome (83). Repeat variants
are important as they are increasingly being implicated in

driving human disease, particularly neuropathological disorders
like autism (84). Similarly larger structural and copy number
variation (generally defined as deletions, insertions, duplications,
inversions and translocations >50bp) are increasingly being
cataloged and implicated in driving disease, particularly in
cancer (85). Despite the importance of these variant classes to
human disease, they are largely not being interrogated in current
precision medicine programs due to challenges detecting them.
To address this, substantial work is needed in several areas
including improved detection algorithms, better validation truth
sets and repositories of both population-level and clinically-
relevant variation. Long read sequencing will play a critical role
in generating these improved repositories and truth sets.

While variant interpretation and prioritization workflows
continue to improve, greater automation of the process is
required to alleviate this current bottleneck. While annotation
aggregators like VEP are continually incorporating additional
external data sets, custom workflows are typically still required
to collate and rank variants most likely to be clinically
relevant. The desired output of such a workflow is a small
list of candidate variants suitable for manual interrogation
which will undergo an in-depth investigation for potential
inclusion in the final clinical report. This manual process
is extremely time-consuming however and requires further
automation. While challenging to automate, software is urgently
needed which inputs a raw vcf file and the relevant clinical
information and outputs a small lists of likely causal variants
suitably annotated for a clinical report. While an increasing
number of groups are tackling these problems, more work
is needed.

While currently most programs focus on detecting genetic
variants using short-read DNA-based sequencing (e.g., targeted
gene panels, exomes orWGS) increasingly other patient sequence
data is being generated including transcriptome, long read,
microbiome and single cell sequencing. For example, sequencing
the transcriptome from a patient can be used to identify
transcriptional changes likely caused by genetic mutations. A
recent study used this strategy to improve diagnosis rates by
35% over genome sequencing alone by identifying deep intronic
variants which altered splicing (13). Long read sequencing is
increasingly being employed to detect complex variation unable
to be easily detected with short read technologies (86). If
the cost and quality of long read sequencing continues to
improve it is feasible that long reads can be used routinely in
precision medicine programs in the future. Microbiome is likely
to be important in future programs as well. Dysbiosis of the
microbiome is increasingly linked to human disease and the
ability to examine differential abundance of metagenomic data
(87) before and after treatment represents a new avenue for
exploration (88). Finally, single cell sequencing technologies will
have an increasingly large role to play given their ability to detect
disease causing variants at single cell resolution over time (77).
While such possibilities are exciting, it is clear current workflows
are unable to work with complex multi-omics patient data sets
and that substantial developments in software and hardware are
required to support this in the future.
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FUTURE CHALLENGES

The ongoing success of precision medicine programs for
genetic disease has led to increasingly large and diverse
sequence information being generated per patient. Programs
are expanding in terms of number of patients sequenced, the
sequencing technology employed and the type of diseases
being examined. Scaling up and standardizing existing
programs to population level numbers requires significant
improvements in the throughput and interoperability of the
systems. The other significant challenge will be the incorporation
of information from additional sequencing applications
including transcriptome, long read, microbiome, and single cell
sequencing. The next generation of supporting software and
hardware needs to be flexible and robust to manage the coming
deluge of data.

CONCLUSION

Identifying clinically relevant genetic variation is one of the
hallmarks of successful precisionmedicine programs. This review
discusses the wide variety of strategies being employed to
both speed up and improve the detection of clinically relevant

variants. While challenging today, increasingly complex patient
data sets will be generated in the near future which will require
sophisticated hardware and software solutions. To support this,
substantial new methodologies able to synthesize large volumes
of disparate data types will be needed. These new tools will allow
precision medicine programs to realize their full potential both
now and into the future.
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