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Multi‑phenotype genome‑wide 
association studies of the Norfolk 
Island isolate implicate pleiotropic 
loci involved in chronic kidney 
disease
Ngan K. Tran1,9, Rodney A. Lea1,9, Samuel Holland2, Quan Nguyen2, Arti M. Raghubar2, 
Heidi G. Sutherland1, Miles C. Benton3, Larisa M. Haupt1, Nicholas B. Blackburn4,5,6, 
Joanne E. Curran4,5, John Blangero4,5, Andrew J. Mallett2,7,8 & Lyn R. Griffiths1*

Chronic kidney disease (CKD) is a persistent impairment of kidney function. Genome-wide association 
studies (GWAS) have revealed multiple genetic loci associated with CKD susceptibility but the 
complete genetic basis is not yet clear. Since CKD shares risk factors with cardiovascular diseases and 
diabetes, there may be pleiotropic loci at play but may go undetected when using single phenotype 
GWAS. Here, we used multi-phenotype GWAS in the Norfolk Island isolate (n = 380) to identify new 
loci associated with CKD. We performed a principal components analysis on different combinations 
of 29 quantitative traits to extract principal components (PCs) representative of multiple correlated 
phenotypes. GWAS of a PC derived from glomerular filtration rate, serum creatinine, and serum urea 
identified a suggestive peak (pmin = 1.67 × 10–7) that mapped to KCNIP4. Inclusion of other secondary 
CKD measurements with these three kidney function traits identified the KCNIP4 locus with GWAS 
significance (pmin = 1.59 × 10–9). Finally, we identified a group of two SNPs with increased minor allele 
frequencies as potential functional variants. With the use of genetic isolate and the PCA-based multi-
phenotype GWAS approach, we have revealed a potential pleotropic effect locus for CKD. Further 
studies are required to assess functional relevance of this locus.

Chronic kidney disease (CKD) is the gradual deterioration of kidney function or structure over at least 3 months1. 
CKD can result in end-stage kidney disease (ESKD) whereby kidney replacement therapy is required. CKD preva-
lence and burden is steadily rising, with an estimated 10–15% of the world’s population affected2. Increased serum 
levels of creatinine, cystatin C or urea are often used to indicate kidney dysfunction3. The best current marker of 
CKD is glomerular filtration rate (GFR), which can be directly measured using exogeneous markers or estimated 
(eGFR) based on concentrations of endogenous filtration markers such as serum creatinine or cystatin C4.

The pathophysiology underlying CKD is not yet fully understood, which has hindered the early detection 
and prevention of CKD as well as development of effective therapeutic treatments. Genome-wide association 
studies (GWAS) have identified a number of loci in relation to CKD, eGFR or complementary biomarkers, e.g. 
serum creatinine and blood urea5–8. A recent GWAS meta-analysis of eGFR (n = 765,348) identified 308 associ-
ated loci, which together explained 19.6% of eGFR heritability5. In addition, the GWASs to date have mostly 
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focused on populations with European ancestry, hence the complete genetic architecture underlying CKD has 
not yet been established2.

Other chronic disorders such as diabetes, high blood pressure, and obesity exhibit co-morbidity with CKD9,10. 
Furthermore, many endophenotypes for CKD risk exhibit substantial intercorrelation. This suggests that a genetic 
commonality, perhaps acting via pleiotropic mechanisms, may play a role in CKD and related disorders. This 
is supported by a phenome-wide association study (PheWAS) that revealed association of eGFR index SNPs 
with 7 phenotypes out of 23 cardiovascular and diabetes-related traits11. Principal component analysis (PCA) of 
multiple correlated quantitative endophenotypes can capture important underlying structure in the phenotypic 
data, which when analysed as outcomes in GWASs may reveal loci that would remain undetected when traits 
are analysed individually. Avery et al.12 sucessfully identified three new loci associated with multiple-phenotype 
domains of metabolic syndrome by using the PCA-based GWAS approach. Applying the same method, Fatumo 
et al.13 identified new susceptibility genes for blood cell traits that were not identified in the standard univari-
ate GWAS. Thus, investigating multiple CKD-related phenotypes via PCA might reveal new insights into the 
genetic basis of CKD.

The use of genetically isolated populations can empower genetic mapping studies of complex traits. Genetic 
isolates are often defined by founder effects resulting in reduced genetic diversity and increased frequency of 
variants that are rare in other populations14. Norfolk Island (NI) is a small and remote island located in the 
Pacific Ocean and is about 1400 km off the east coast of mainland Australia. Most of the modern-day Norfolk 
Island population are direct descendants of 11 European Mutineers of the HMS Bounty and 6 Polynesian women 
from the late eighteenth century. Thus, the NI population now exhibits founder effects, admixture and increased 
homozygosity. For almost 20 years, the NI isolate has been a valuable resource for genetic research15–19. Notably, 
a study of multiple cardiovascular disease (CVD) risk traits in the NI cohort group identified a potential pleio-
tropic effect locus on chromosome 1p22.2. This locus was only revealed from a GWAS of a multiple quantitative 
endophenotypes for CVD19.

In this study, we performed a GWAS of multiple phenotypes in 380 individuals of the NI isolate with the aim 
of identifying pleiotropic loci associated with CKD. The phenotypes included for CKD were primary traits, i.e. 
creatinine-based eGFR, serum creatinine level, and serum urea level, as well as 26 secondary phenotypes includ-
ing anthropometric and biochemical measurements. We applied PCA on the 3 CKD-primary traits to identify 
components representing covariance among them and then performed GWAS on the principal components 
yielding statistically significant heritability. We also included 26 secondary CKD traits into the analysis based on 
correlation clusters and combined these with the primary traits to perform the same PCA and GWAS workflow. 
As a result, we were able to identify variants in the KCNIP4 gene, which encodes for the Potassium Voltage-Gated 
(Kv) channel-interacting protein 4, as a potential pleiotropic locus of CKD. In addition, we also identified two 
SNPs with MAFs substantially enriched in NI isolate to be the potential functional variants.

Results
Epidemiology of CKD risk in NI.  To compare eGFR levels of the NI isolate to those of other populations, 
we obtained CKD-related phenotypic data from the UK Biobank20 (UKBB) (Fig. 1). The number of individuals 
and age range in each ethnicity can be found in Supplementary Table S1. To ensure the NI data was compa-
rable to the UKBB data in terms of age range we included only NI individuals aged between 40 and 70 years, 
comprising 278 samples. Out of all the populations, the NI isolate exhibited the lowest eGFR profile (Fig. 1a). 
Further examination of eGFR that was less than 60 mL/min/1.73 m2, a level indicative of reduced kidney func-
tion, showed the NI cohort as the population with the highest proportion in this category (Fig. 1b). Collectively, 
eGFR levels in the NI isolate indicated a very high degree of potential kidney disease prevalence when compared 
to other world populations. Importantly, the actual prevalence of CKD in NI may be even higher as individuals 
with end-stage renal disease leave the island for mainland Australia to receive treatments such as renal transplant 
or dialysis.

The high rate of reduced kidney function observed in the NI isolate may also reflect the influence of Polyne-
sian ancestry in the gene pool. We note that there is not comparable eGFR data available for Polynesian popula-
tions, however, many studies have shown that the prevalence of ESKD is much higher in Polynesian populations 
in comparison to Europeans21.

Single phenotype analysis.  Serum creatinine, eGFR, and serum urea were 3 CKD-primary traits avail-
able in the NI isolate phenotypic collection. According to the literature22, heritability estimates of eGFR, serum 
urea, and serum creatinine were 44%, 31%, and 37% respectively. In our study, these traits showed lower herit-
ability estimates, ranging from 0.27 to 0.3 (P < 0.05) (Supplementary Table S2). GWAS of these individual traits 
did not identify loci passing the genome-wide significance P-value threshold (results not shown).

Principal components of the 3 CKD‑primary traits.  A PCA of serum creatinine, eGFR, and serum 
urea (CGU) generated 3 principal components (PC): CGU-PC1, CGU-PC2, and CGU-PC3 (Table 1). CGU-
PC1 explained approximately two thirds of the total variance. For this component, serum creatinine and serum 
urea were found to be highly correlated to each other, but both were negatively correlated to eGFR. In relation 
to kidney diseases, low eGFR and high serum urea and creatinine levels are indicative of impaired kidney func-
tion. CGU-PC2 was also significantly correlated to all the 3 traits, with a particularly high contribution from 
serum urea levels; samples with high CGU-PC2 scores exhibited high serum urea, but relatively normal levels of 
creatinine and eGFR. As for the last component, CGU-PC3 accounted for the positive correlation between eGFR 
and creatinine, without inclusion of urea. The individual component map under CGU-PC1 and CGU-PC2 is 
illustrated in Supplementary Fig. S1.
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Figure 1.   Comparison of eGFR in NI isolate to those of other populations. (a) Distributions of eGFR in NI 
isolate and other populations. There were statistically significant differences between mean of eGFR in NI 
compared to those of other population (adjusted P-values < 2e−13). (b) Proportion of people with reduced 
kidney function (eGFR < 60 mL/min/1.73 m2) in each population. Data are represented as the percentage ± SE.

Table 1.   Statistics of principal components extracted from eGFR, serum creatinine, and serum urea.

Principal component % Variance

Loadings Heritability

eGFR Serum creatinine Serum urea h
2 P-value

CGU-PC1 66  − 0.600 0.607 0.522 0.33 7.75 × 10–4

CGU-PC2 21.1 0.406  − 0.331 0.852 0.26 6.66 × 10–3

CGU-PC3 12.9 0.690 0.723  − 0.048 0.12 1.35 × 10–1
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Heritability and GWAS analysis of CKD components.  Heritability estimation showed that only CGU-
PC1 and CGU-PC2 had statistically significant heritability of 0.26 and 0.33, respectively (P < 0.05).

GWASs of CGU-PC1 and CGU-PC2 did not identify any genome-wide significant loci. However, there was 
a cluster of SNPs mapped to the KCNIP4 gene on chromosome 4 forming a clear GWAS peak for CGU-PC1 
(Fig. 2, lead SNP rs12640604-A, MAF = 0.355, beta =  − 0.344, se = 0.066, P = 1.67 × 10–7). Given the high capacity 
of CGU-PC1 in explaining kidney dysfunction and the negative effect size of the lead SNP, the identified KCNIP4 
locus could be relevant in decreased susceptibility of CKD.

Combinations of the 3 CKD traits and other measurements.  Following analysis of the three pri-
mary CKD traits, we expanded the analysis to include other CKD-secondary phenotypes. Along with eGFR, 
serum creatinine, and serum urea, there were 26 other continuous measurements that were assessed (Supple-
mentary Table S3).

Whether negatively or positively, correlated traits tend to gather into the same PCs. Therefore, we first clus-
tered all the 29 continuous traits into groups based on significant bivariate correlations (P ≤ 0.05, Supplementary 
Table S4). Phenotypic traits indicative for specific metabolic functions were highly correlated to each other. For 
example, the three liver enzyme measurements: alkaline phosphatase, alanine aminotransferase, and gamma-
glutamyl transferase all clustered into the same group. We also included the three CKD-primary phenotypes in 
the correlation analysis to see their relationships to each other and to the remaining phenotypes. The three traits 
clustered well into a single group as they are the biomarkers of renal function. The clusters were then combined 
with the three CKD-primary traits for PCA as well as further downstream analyses.

In total, there were ten combinations included for further analyses (Supplementary Table S4). From a total 
of 58 generated combination PCs, 30 showed statistically significant heritability estimates and significant asso-
ciation peaks were identified in three PCs (Table 2). Notably, the KCNIP4 gene was identified in two of those. 
Specifically, a KCNIP4 association was found in PCs extracted from the three CKD-primary traits combined with 
other secondary traits as follows: total cholesterol (TC)/HDL-C ratio, HDL, triglyceride, and waist hip ratio (i.e. 
CGU-CHTW-PC2); body fat and height (i.e. CGU-BH-PC1). Of note, the association of KCNIP4 in the CGU-
CHTW-PC2 combination was identified with the the lowest P-value of pmin = 1.59 × 10–9 (Fig. 3). 

Figure 2.   Manhattan plot for CGU-PC1 extracted from the 3 CKD primary traits. The red line indicates 
genome-wide significance threshold of 5 × 10−8, while the blue line indicates the suggestive threshold of 1 × 10−5. 
CGU—serum creatinine, eGFR, and serum urea.

Table 2.   Combination PCs with genome-wide significant association peaks.

Principal component Chr. SNP BP A1 A2 Freq. Beta P-value Gene

CGU-AT-PC3 2 rs17863787 233,702,448 G T 0.314 0.603 1.18 × 10–13 UGT1A8

CGU-BH-PC1 4 rs12640604 20,999,244 A G 0.355  − 0.347 3.37 × 10–8 KCNIP4

CGU-CHTW-PC2 4 rs12640604 20,999,244 A G 0.355  − 0.448 1.59 × 10–9 KCNIP4
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Further analysis of the index SNP (rs12640604) with all the 29 phenotypic traits showed this locus to be 
highly associated with eGFR, creatinine, and urea (Supplementary Fig. S2). The inclusion of more correlated 
traits in PCs might increase the statistical power to identify susceptible loci in GWAS. We examined the trait 
correlation with component variables in each PC (Supplementary Table S5). CGU-PC1, CGU-CHTW-PC2, and 
CGU-BH-PC1 all had very similar contributions to the three CKD-primary traits, i.e. the PCs were all positively 
correlated to serum creatinine and eGFR as well as negatively correlated to serum urea. We looked at other PCs 
with similar profiles. Interestingly, we found that the sum of all the correlation coefficients was highly correlated 
to the corresponding GWAS P-value (Supplementary Fig. S3). Therefore, the observed increase in the statistical 
power to identify loci can be attributed to the decrease in total correlation coefficients in the PCs. Conversely, 
some trait combinations, e.g. BMI, hip circumference, waist circumference, and weight (CGU-BHWW-PC1 in 
Supplementary Table S5), when added to the three CKD-primary traits increased the sum of all the correlation 
coefficients between the variables and the PCs, and hence resulted in a high GWAS P-value. It should also be 
noted that the increased power achieved was not due to increased heritability of the combined PCs (Pearson 
correlation =  − 0.29).

The inclusion of both serum creatinine and eGFR in all the PCAs was unnecessary as eGFR was estimated 
from creatinine, along with age and sex information. We examined whether removing serum creatinine out 
of the PCAs would alter the GWAS results. Consequently, the KCNIP4 peak was still detected and rs12640604 
continued to be the most significant SNP in all of these additional GWASs (Supplementary Table S6).

Along with KCNIP4, we also identified suggestive genome-wide significance at the UGT1A8 locus in the 
GWAS of CGU-AT-PC3 (derived from the three CKD-primary traits, albumin, and total bilirubin). UGT1A8 is 
an established bilirubin-associated gene.

Replication analysis.  We utilized the UKBB data to test for replication of the association between the index 
SNP for KCNIP4 gene (rs12640604) and CGU-PC1 extracted from the three CKD-primary traits. The UKBB 
is comprised of multiple different ethnic (and ancestral) subgroups and these were analyzed separately (Sup-
plementary Table S7). The MAF for rs12640604 in each of the UKBB ethnicities are shown in Table 3 and were 
not substantively different to NI. In each subgroup, CGU-PC1 was newly constructed using the same formula 
developed for the NI cohort. Similar to the CGU-PC1 in the NI isolate, all the components in the UKBB popu-
lations were positively correlated to serum creatinine and urea, while negatively correlated to eGFR (Table 3). 
In the Caribbean and Indian subgroups, rs12640604-A and CGU-PC1 showed some evidence of association 
(P-values < 0.05). However, the effect size in the NI isolate (beta =  − 0.313 and P-value = 1.38 × 10–6) was several 
times higher than those in the Caribbean and Indian. Finally, only the Indian subgroup effect size was in the 
same direction as that in the NI isolate. Of note, the index SNP showed some evidence for association to the 
individual CKD traits in several subgroups (P < 0.05) although the modest level of statistical significance would 
not implicate this SNP in large GWASs.

Figure 3.   Manhattan plot for CGU-CHTW-PC2 showing KCNIP4 peak with higher significance than in 
the GWAS of CGU-PC1. The red line indicates the genome-wide significance threshold of 5 × 10−8, while the 
blue line indicates the suggestive threshold of 1 × 10–5. CGU​ serum creatinine, eGFR, and serum urea, CHTW 
cholesterol HDL-C ratio, HDL-cholesterol, triglyceride, and waist hip ratio.
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Potential functional variants in KCNIP4.  In the NI cohort we identified 8940 SNPs spanning KCNIP4 
of which, there were 47 SNPs that exhibited some LD (R2 > 0.2) with the index SNP (rs12640604). These SNPs 
showed MAFs ranging from 0.146 to 0.491. Comparison with the MAFs taken from the UKBB, in which 46 
SNPs were available, showed that most of the SNPs had comparable MAFs to NI cohort (the ratios of NI MAFs 
to the UKBB MAFs ranged from 0.6 to 2.3). In contrast, two SNPs (rs148583816 and rs143182955), which are a 
few base pairs apart from one another, have MAFs approximately tenfold higher than their MAFs in NI isolate 
(Table 4). These SNPs were part of an LD region spanning approximately 37.8 Mb in the NI cohort. However, in 
the UKBB, rs148583816 and rs143182955 were not in LD (LD < 0.2) with the index SNP.

Examining these 2 SNPs in the UCSC Genome Browser23, we observed that they are located on a T-enriched 
region and coincided with a histone modification H3K4me3. H3K4me3, or tri-methylation of lysine 4 on his-
tone H3, is a chromatin modification at the transcription start site and its level is positively associated with 
transcription24. For KCNIP4, several transcripts have been identified, some of which are expressed in the human 
kidney25. Interestingly, the associated SNPs are located on the promoter region of isoform KCNIP4-IeΔII which 
is one of the transcripts expressed in the kidney along with KCNIP4-IbΔII and KCNIP4-IcΔII. Taken together, 
these SNPs may play a regulatory role in KCNIP4 gene expression due to founder effect in NI.

Spatial gene expression of KCNIP4.  Using Visium Spatial Gene Expression (10 × Genomics), we local-
ized the expression of KCNIP4 gene to the tubules, in both non-scarred and scarred human cortical kidney tissue 
sections (Fig. 4). Furthermore, we found no expression of the KCNIP4 gene in the glomeruli or vasculature of the 
non-scarred and scarred human kidney tissue sections.

Discussion
For the past decade, multiple genetic loci associated with kidney function have been identified via GWAS. 
However, the genetic basis of CKD is still not completely understood and requires a range of approaches to 
tackle the problem. In this study, we aimed to identify novel susceptible loci underlying kidney function using a 
multi-phenotype approach in combination with the use of the genetically isolated cohort of Norfolk Island (NI). 
As a result, the KCNIP4 locus was identified in principal component traits derived from three CKD-primary 
traits as well as with various secondary trait combinations. The three derived composite phenotypes, i.e. CGU-
PC1, CGU-BH-PC1, and CGH-CHTW-PC2, have encapsulated information that were not entirely expressed 
in the individual traits, hence, we were able to identify the KCNIP4 locus in these components but not in any 
single-phenotype.

The gene KCNIP4 which encodes for the Potassium Voltage-Gated (Kv) channel-interacting protein 4 has 
several transcripts with varied cellular expressions, and potentially different protein functions. In kidney, the 
three active transcripts are KCNIP4-IbΔII, KCNIP4-IcΔII, and KCNIP4-IeΔII25. Previously, the disruption of 
KCNIP4 has been observed in patients with renal-cell carcinoma. This is possibly due to alteration of the normal 
transcriptional regulation since the breakpoint interval coincides with the promoter of transcript KCNIP4-IcΔII26. 

Table 3.   Association analyses of rs12640604-A and in UKBB data and CGU-PC1 in each UKBB subgroup. (–) 
Association results with P-values > 0.05.

Principal components

Loadings Association with rs12640604-A

eGFR Creatinine Urea Allele frequency BETA P

African-CGU-PC1  − 0.577 0.598 0.556 0.614 – –

British-CGU-PC1  − 0.605 0.6 0.524 0.379 – –

Caribbean-CGU-PC1  − 0.581 0.6 0.55 0.578 0.064 0.047

Chinese-CGU-PC1  − 0.599 0.598 0.533 0.388 – –

Indian-CGU-PC1  − 0.591 0.59 0.55 0.274  − 0.07 0.022

Irish-CGU-PC1  − 0.604 0.599 0.526 0.386 – –

Pakistani-CGU-PC1  − 0.602 0.608 0.518 0.258 – –

Table 4.   Statistics of the two potential functional SNPs.

ID Chr. Position Ref Alt

Compared to the index SNP 
rs12640604

Distance R2 D’

rs148583816 4 20,999,427 G T 183 0.3363 0.6434

rs143182955 4 20,999,431 G T 187 0.2492 0.5334

ID MAF in the NI isolate

MAF in the UK biobank

British Chinese Irish Indian Caribbean African Pakistani

rs148583816 0.458 0.044 0.048 0.043 0.043 0.092 0.093 0.04

rs143182955 0.443 0.044 0.039 0.04 0.026 0.015 0.012 0.026
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In our study, the associated SNPs were located in the region corresponding to the promoter of the transcript 
KCNIP4-IeΔII, hence the associated variants may have a regulatory role in gene expression. In a recent publica-
tion, Gerhardt et al.27 found that KCNIP4 was markedly up-regulated at the late injury stage in proximal tubule 
cells in an ischemia–reperfusion injury model for studying acute kidney injury (AKI). Kidney proximal tubule 
is particularly vulnerable to injury and maladaptive repair of injured tubules after AKI can lead to CKD28,29. 
Therefore, the up-regulation of KCNIP4 can be one of the factors involved in the consistent impairment of the 
proximal tubule in kidney injury. In support of this we were also able to identify spatial gene expression of 
KCNIP4 in two human cortical kidney tissue sections. In these samples, KCNIP4 expression was localized to the 
tubules, with no expression in the glomeruli or vasculature of the cortical kidney tissue.

To pinpoint the potential regulatory SNPs, we analyzed all the SNPs in LD with the index SNP and found two 
nearby SNPs with MAFs much greater in NI isolate compared to other world populations. Consistent with the 
hypothesis that the associated SNPs involved in transcriptional regulation, this group was in a region where the 
histone modification H3K4me3 occurred. The founder effect of NI isolate, along with the high inbreeding rate, 
has mostly likely increased the frequencies of these alleles, which in turn has increased the power to detect the 
association relative to other major ancestral populations.

One of the limitations of the study was the lack of urine biomarkers for measuring albuminuria, which are 
especially important to detect CKD when eGFR is in normal range3. However, because the initial aim of the 
Norfolk Island Health Study (NIHS) was to study cardiovascular diseases, only serum biomarkers were collected. 
Also, the inclusion of both eGFR and serum creatinine in PCA was not entirely justified because these were highly 
correlated variables i.e. eGFR was calculated based on serum creatinine, age, and sex. However, the exclusion of 
serum creatinine did not alter the current findings.

In conclusion, the use of the NI genetic isolate in combination with the PCA-based multi-phenotype approach 
revealed the KCNIP4 locus to be associated with CKD. Two associated variants which minor allele frequencies 
that were about tenfold higher in the NI isolate than in other world populations potentially play a regulatory role 
in the KCNIP4 gene expression. Further studies are needed to assess the biological functions of the identified 
variants in relation to CKD.

Materials and methods
Norfolk Island Health Study.  The Norfolk Island Health Study (NIHS) is a well-established study aimed 
at identifying genetic and environmental risk factors for CVD and related diseases16,17,30.

In this study, we included 380 individuals with available genomic and phenotypic data. These individuals 
consisted of 196 females (mean age: 49.8 ± 16.5) and 184 males (mean age: 47.1 ± 15.3) all of whom were members 
of the core-pedigree and at least 18 years of age at the time of collection. Serum samples were drawn from each 
individual to measure serum biomarkers as well as to collect blood-based DNA.

Ethical approval was granted prior to the commencement of the study by the Griffith University Human 
Research Ethics Committee (approval no: 1300000485). Ethics approval and management of the NIHS has 
since been transferred to Queensland University of Technology (approval no: 1600000464). All individuals 
gave written informed consent prior to the study and all methods were carried out in accordance with relevant 
guidelines and regulations.

Principal component analysis of CKD endophenotype data.  In total there were 29 quantitative phe-
notypic traits (Supplementary Table S3) along with age and sex information of 380 NIHS individuals included 
in this study. eGFR was calculated using the CKD-EPI Creatinine equation31. Missing data were imputed using 

Figure 4.   Spatial gene expression of KCNIP4 in human cortical kidney tissue sections. We localized KCNIP4 
gene expression within the tubules of both sample one, composed of non-scarred (green) and scarred cortical 
regions and sample two, composed of non-scarred cortical region.
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the MissMDA 1.3 package32. The package can perform multiple imputation using principal component analysis 
(PCA), meaning the imputed values will not affect PCA results.

After the imputation of missing data, the PCA method was applied to transform multi-dimensional data into 
fewer components. PCA is one of the optimal approaches in multiphenotype analysis, especially in the case of 
association studies33. Principal component (PC) analyses were performed with the package FactoMineR 1.4234, 
which integrated multiple PCA exploratory methods and illustrations.

Genome‑wide SNP genotyping.  NI genomic data were generated from two platforms: Illumina HiSeq 
X10 sequencing (n = 108) and Illumina 610-Quad array (n = 506). Whole genome sequencing (WGS) directly 
revealed nearly 20 million SNPs, while the SNP-array, which was imputed using the 1000 genomes project35 as a 
reference, identified over 26 million SNPs. In total, genomic data was available for 520 individuals.

To merge the SNP-array and WGS data, the common SNPs across both data sets were identified, and data 
associated with the common SNPs extracted. The merge procedure was performed using the default parameters 
of the ‘bmerge’ function in PLINK 1.936. For overlapping individuals, WGS data was given preference such that 
SNP-array data was removed.

Quality control filters were applied to the unified genomic data set to ensure high quality SNP data for 
subsequent analysis. A P-value of 1.84 × 10–7 was applied as the HWE threshold—a specific value calculated to 
account for widespread linkage disequilibrium in the NI cohort. A 5% missing genotyping filter was also applied 
on individuals and variants to ensure high quality data for subsequent analysis. Finally, variants with a minor 
allele frequency less than 0.05 and samples without phenotype data were removed. A total of 380 individuals 
and 4,753,086 SNPs remained after filtering.

Heritability estimation.  We utilized the SOLAR 8.5.1 program37 to estimate heritability for each indi-
vidual trait and phenotypic PCs. The extended pedigree information of the NI isolate38 was integrated to account 
for the high degree of relatedness among the samples. All traits and PCs with a high excess kurtosis were inverse-
normal transformed prior to heritability estimation.

Genome‑wide association analysis.  Genome-wide association analysis (GWAS) was only performed 
for traits that yielded heritability estimates that were statistically significant at a nominal level (P < 0.05). To 
account for the family relatedness in association testing, we applied the mixed linear model, where a genetic 
relationship matrix (GRM) containing all the genotype correlations between all pairs of individuals was fitted as 
a random effect with age and sex fitted as additional fixed effects when computing the associations between phe-
notype and genetic markers. However, tested SNPs were excluded from calculating the GRM as implemented in 
the GCTA-LOCO approach39 to avoid loss of power when double-fitting of the candidate variants in the model.

We examined the inclusion of principal components of all genotyped SNPs’ GRM as a common method to 
address confounding due to population structure. PCA was performed with PLINK 1.9 and the first numbers of 
PCs were included as covariates along with age and sex in the GWAS. We found that as more PCs were included, 
the deflation in the statistics tests increased (Supplementary Fig. S5). However, further testing showed that the 
association signal from the top (index) SNP was not appreciable changed by the inclusion of PCs 1 and 2 (Sup-
plementary Table S4). Given the modest sample size used in this study and the risk of overburdening the GWAS 
model with covariates we chose to omit genomic PCs from the primary analysis.

We also applied a filter to remove loci due to spurious associations. Since there is extended LD present in 
the NI cohort, we reasoned that associated SNPs would mostly be in LD with other associated SNPs located 
nearby. Thus, significantly associated loci were deemed as those that passed the genome-wide significance P-value 
threshold of 5 × 10–8, as well as having 2 or more variants within a 50 kb distance and with P-value ≤ 1 × 10–5. LD 
tests were performed with PLINK 1.9.

Fine mapping.  We used the WGS data of 108 NI samples to explore allele frequencies of variants that are 
in LD with the GWAS most associated SNP rs12640604 at the KCNIP4 locus. Minor allele frequencies (MAFs) 
of these SNPs were then compared to those in the gnomAD database (v3.1.1)40 and the UKBB data. Genes and 
SNPs were visualized on the UCSC Genome Browser.

Visium spatial gene expression.  Existing Visium spatial gene expression data of two human cortical 
kidney tissue section41 were used to identify the spatial gene expression of KCNIP4. These data were visualized 
using the gene_plot function of stLearn42 and compared to existing data from the Human Protein Atlas.

Replication analysis.  We performed association analysis between the index SNP mapped to the KCNIP4 
gene and CGU-PC1 extracted from the 3 CKD-primary traits in populations included in the UKBB20 data 
(Supplementary Table S5). Serum creatinine and serum urea were available while creatinine-based eGFR was 
calculated using the CKD-EPI formula31. CGU-PC1 were newly constructed for each sub-group. Genotypic 
association analysis for each population was performed with simple linear models using the allele counts of 
rs12640604-A as independent variable and CGU-PC1 as the outcomes.

Data availability
The genotypic and phenotypic data of the Norfolk Island isolate supporting the current study are not publicly 
available due to ethics constraints but are available from the corresponding author on reasonable request.
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