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Abstract: At the end of December 2019, an outbreak of COVID-19 occurred in Wuhan city, China.
Modelling plays a crucial role in developing a strategy to prevent a disease outbreak from spreading
around the globe. Models have contributed to the perspicacity of epidemiological variations between
and within nations and the planning of desired control strategies. In this paper, a literature review was
conducted to summarise knowledge about COVID-19 disease modelling in three countries—China,
the UK and Australia—to develop a robust research framework for the regional areas that are
urban and rural health districts of New South Wales, Australia. In different aspects of modelling,
summarising disease and intervention strategies can help policymakers control the outbreak of
COVID-19 and may motivate modelling disease-related research at a finer level of regional geospatial
scales in the future.

Keywords: COVID-19; models; different settings; intervention strategies; NSW

1. Introduction

Over the last few decades, the world faced a massive challenge in controlling infectious
disease outbreaks in several areas [1]. Recently, a new infectious disease, SARS-CoV-2
named COVID-19, a virus of coronaviridae family and genus beta coronavirus, has emerged
globally, and almost all countries and territories are now fighting against this newly
appeared infectious disease [2]. The Municipal Commission in Wuhan, China, reported a
cluster of pneumonia cases that had an unfamiliar etiology on 12th December 2019. COVID-
19 was first identified in Wuhan city, Hubei Province of China, on 31st December 2019, and
it spread so fast that within only five months, nearly two million people were infected in
185 countries around the world [3]. On 11th March 2020, the World Health Organization
(WHO) announced the transmission of COVID-19 as a global pandemic because of the
rapid increment of its infection rate [4]. Following SARS-CoV, which originated in China
in 2003, and MERS-CoV, which originated in Saudi Arabia in 2013, SARS-CoV-2 seems
to have become the third most significant public health concern of its type. The current
fatality rate for COVID-19 cases is about 3.4%, significantly less than SARS and MERS, but
potentially higher than those reported for endemic human non-SARS CoV infections [5].

The number of cases quickly rose to 44, with 11 of these patients in severe condition
on 3rd January 2020. The COVID-19 virus spread across mainland China with over
30 thousand confirmed cases and over 600 deaths within only one month [6]. The World
Health Organization (WHO) published an online resource that presented countries with
guidance on detecting, testing and controlling possible cases on 10th January 2020 [7]. The
first case outside of China was reported on 13 January 2020. Then, by 11th March 2020,
the WHO declared COVID-19 to be a pandemic, based on its fast spread outside China.
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As of 11th November 2020, over 51.3 million people have been infected globally, with
a 2.5% death rate [8]. Currently, almost 47.7% of the total global infections are in three
countries—the United States (US), India, and Brazil. Together, deaths in these countries
make up around 41.7% of global deaths [8]. According to the Worldometer estimation,
up to the date 20th July 2021, nearly 191.7 million people have been identified as infected,
with more than 4 million deaths, and about 174.5 million individuals have recovered in
213 countries and territories around the globe [9].

In the US, state and local governments, following the Center for Disease Control
(CDC) guidance, started monitoring all individuals who had been in close proximity with
confirmed COVID-19 cases. As a result, by 26th February 2020, 12 travel-related positive
cases and three positive cases with no travel history were documented [10]. Specifically,
the latter category of infections was a cause for concern since it indicated a significantly
higher presence of the virus in the United States. In worldwide COVID-19 deaths, the US
has been severely burdened by the disease and it alone accounts for about 18.9% of the
global deaths, followed by Brazil and India with about 12.8% and 10.0% of global deaths,
respectively [4].

The first cases of COVID-19 were linked to a live animal market in Wuhan, China [11];
however, the current rapid spread is via human-to-human transmission. Once infected,
the individual will first undergo a period without visible clinical symptoms, called a latent
SARS-CoV-2 infection. People with latent SARS-CoV-2 can become infectious one to two
days before the onset of symptoms and continue to be infectious up to seven days after
that [12]. Therefore, after a certain period, the latent SARS-CoV-2 infection progresses to an
active COVID-19 infection. The disease spreads quickly from a person with active COVID-
19 infection to another person when the infectious and susceptible persons are close [13].
The spread of COVID-19 depends on the length of exposure of susceptible people to the
infected person [14]. It is, in turn, dependent on many factors, such as the crowdedness of
the environment, any super-spreading events, the prevailing climatic conditions and the
immune status of the exposed individual [15].

Despite extensive epidemiological research on various coronaviruses, there are still
many unknowns about this new disease. It is thought that COVID-19 primarily spreads
via respiratory droplets and aerosol and has an incubation period of up to 14 days, with
symptom onset generally occurring at around days 5–6, similar to SARS-CoV, the cause of
the severe acute respiratory syndrome (SARS) epidemic in 2002 [16–18]. However, unlike
SARS-CoV, which resulted in high viral loads in the lower respiratory tract and led to viral
shedding with symptom onset, SARS-CoV-2 has been shown to result in viral shedding due
to asymptomatic infection from the upper respiratory tract and making it problematic to
organisation preventative procedures that depend on symptomatology [6,19]. As a result,
it led to an extreme contact rate from infectious persons to susceptible individuals, and
while SARS was basically under control within eight months, the nature of COVID-19 is
resembled differently due to the several variants [20]. COVID-19 has various signs and
symptoms, varying from a mild cough and fever to a shortness of breath, pain, and even
anosmia [21]. The disease is also severely prevalent, with most affected persons being
asymptomatic or presenting only mild symptoms. However, the other critical forms of
COVID-19 require hospitalisations and, in many cases, prolonged intubations. Treatment
for the COVID-19 generally focused on supportive capacities, with only limited antiviral
medicine (and announced vaccines in all nations that are open or ready for extensive use
to remarkably reduce the number of people dying from COVID-19 through vaccination),
presenting some promise at that moment [22–26].

A recent study on risk factors conducted by the Oxford Royal College of General
Practitioners Research and the Surveillance Centre primary care network investigated
severe disease combined infection rate and disease rate and showed a higher probability
of infection for older people, men, people of ethnicity other than white, as well as people
from areas with a higher socio-economically deprivation or population density [27]. In
addition, initial studies showed COVID-19 to be associated with older age, ethnicity, high
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population density, and comorbidities such as respiratory infections, hypertension, diabetes,
and cardiovascular diseases [19,21,28–30]. Notwithstanding significant improvements in
science and technology, our perception of the pathogenesis of COVID-19 still seems to be
rudimentary, with new (and sometimes conflicting) data emerging almost daily to address
the pandemic more efficiently and a race to possible intervention strategy selections.

Modelling has been used as a tool to address gaps in knowledge and to inform
health policies for the prevention and control of COVID-19 [31–34]. Currently, researchers
have developed different types of modelling approaches to estimate the relationship
between COVID-19 and various risk factors in different sociodemographic and geospatial
settings [21,33,35–37]. In addition, modelling studies also explore the impact of different
intervention strategies to identify the most effective ones. In this study, we carry out a
literature review on COVID-19 and infectious disease modelling strategies to develop a
robust research framework for the regional areas of New South Wales (NSW), Australia. We
believe this may help improve the control strategy for COVID-19 epidemics at the regional
level in NSW, and the prospective modelling outcomes will be helpful to decision-makers.

2. Modelling Experience from Three Countries for COVID-19

In this section, we appraise different modelling strategies used for the COVID-19
outbreak in three countries—China, the UK, and Australia. Within Australia, we will focus
on the transmission dynamics modelling approach considered in NSW.

2.1. Models with Single and Multiple Interventions

A mathematical model is an essential tool to determine which combination interven-
tions would be most effective for reducing the outbreak of COVID-19. Prem et al. [34]
developed a modified SEIR model to investigate the impact of physical distancing and
population mixing on the progression of COVID-19 in Wuhan, China. In this study, the
authors applied synthetic location-specific contact patterns in Wuhan and adjusted these
for school closures, extended workplace closures, and decreasing mixing in the general
population. They also considered predicting the impact of lifting control measures by
permitting people to return to work in their offices. This study found that physical dis-
tancing measures were the most useful for controlling COVID-19 in Wuhan. However,
implementing physical distancing measures produced varying results, with the duration
of infectiousness and the adaptation of school and workplace closures during COVID-19
outbreaks. This study suggests that the premature and sudden lifting of restrictions could
lead to a secondary outbreak. Nevertheless, the risk of a secondary outbreak could be
minimised or controlled by relaxing restrictions systematically. The limitations of this
study are statistical uncertainties about measures of the basic reproduction number and
the continuation of infectiousness.

Most of the mathematical modelling studies focus on the transmission dynamics
of COVID-19 and do not consider the changing epidemiology and temporal and spatial
transmission heterogeneity. Hou et al. [38] developed a modified multi-stage SEIR model
to describe the transmission dynamics of COVID-19 in Wuhan at different spatio-temporal
scales. In this study, the authors consider the variation in infectivity and introduce the
control, the basic reproduction number, by assuming the exposed population to be in-
fectious and simulate the future spread of COVID-19 across Wuhan. The authors also
built a novel source-tracing algorithm to infer the initial exposed number of individuals
and to estimate the number of infections during the epidemic. The significant findings of
this study are that the spatial patterns of COVID-19 spread are heterogeneous, and the
infectivity is significantly more remarkable for the exposed population than the infectious
population. However, in this study, the predicted exposed population is much greater than
the officially reported size of the infectious population in Wuhan.

Due to the insufficient number of COVID-19 vaccines in the early stage, in many
countries, lockdown is one of the most effective measures to control the spread of infection
and to evaluate the influence of non-pharmaceutical interventions, including the reopening
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of schools and workplaces, as well as household contacts, and the broader relaxation of
physical distancing. Panovaka-Griffiths et al. [39] develop a stochastic individual-based
model for the transmission dynamics of COVID-19 in the UK to estimate the impact of
school reopening strategies and contact tracing–testing scenarios. The results showed
that increasing testing levels and effective contact tracing coupled with isolation might
control COVID-19 in the UK. However, without raising testing levels and widespread
contact tracing, the reopening of schools together with the gradual relaxing of lockdown
measures are likely to cause secondary outbreaks of COVID-19. This study suggests that for
preventing secondary spikes in COVID-19 in the UK, the relaxation of physical distancing
such as the reopening of schools must be followed by large-scale, effective contact tracing,
supported by isolation and the testing of symptomatic individuals [39].

Despite the first confirmed case of COVID-19 in the UK occurring on 30th January
2020, the UK government waited until lab-confirmed cases reached 11,080 before initiating
a lockdown on 24th March [40]. How and when to make public health decisions during
epidemics are challenging questions to answer. The appropriate policy response should be
based on scientific evidence, which depends on good data and modelling. Modelling is
the most effective way of measuring and controlling the current outbreak of COVID-19.
The critical parameter for explaining the spread of COVID-19 is the basic reproduction
number, which is the expected number of secondary cases caused by a single infectious
individual introduced into a susceptible population. If the basic reproduction number is
less than one, the disease is endemic; otherwise, it is an epidemic. In looking at the effect
of the basic reproduction number on the dynamics of the outbreak of COVID-19 in the
UK, Wang et al. [41] considered the SIR and SEIR model. Here, the authors defined four
types of populations; susceptible (S)—those who are not in contact with the virus but might
be infected as a result of transmission from an infected individual; Exposed (E)—those
who are infected but not infectious; Infected (I)—those who are infected and infectious;
Removed (R)—those who were previously infected but are now free of the disease. The
results showed that the basic reproduction number plays a crucial role in explaining the
dynamics of the outbreak of COVID-19 in the UK, but due to the novel nature of COVID-19,
there is still a challenge to evaluate the epidemiological implications. Therefore, further
research is urgently required to fill the gaps.

COVID-19 spreads quickly from one person with the virus to another person when
the infectious person coughs and the susceptible person comes into physical contact [13].
Stutt et al. [42] developed a mathematical model to show the effect of wearing facemasks
with or without lockdown times on the transmission dynamics of COVID-19 in the UK.
The results showed that when the public adopts wearing facemasks most of the time,
the effective reproduction number can be reduced to below one, leading towards the
elimination of epidemic spread. Furthermore, when lockdown times are implemented in
combination with facemask use, there is a lesser spread of the disease, and the secondary
peak is not as high. This study suggested that a combination of strategies, including
wearing facemasks and social distancing or lockdowns, may constitute a satisfactory policy
for controlling COVID-19.

COVID-19 has placed significant extra pressure on hospital intensive care services in
many countries, including Australia [43]. Mathematical modelling can provide important
insights into the likely cause of the epidemic—these insights are valuable for the intensive
care services during the epidemic. Adekunle et al. [36] developed a stochastic metapopula-
tion model to describe the effect of travel bans imposed globally and within Australia on
international flight travel volumes. The results showed that travel bans on international
passengers arriving from different countries, including Iran, Italy and South Korea, had no
significant impact on decreasing the outbreak of COVID-19 cases. However, in the case of a
ban on travellers from China, it did have a significant impact. The authors mentioned that
one reason for this was that the prevalence of the disease in countries like Iran, Italy and
South Korea was lower than in China, and Italy had previously implemented a lockdown
by the time Australia implemented restrictions on travellers coming from Italy. Thus,
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they suggested that the travel ban is very efficient in delaying the extensive transmission
of COVID-19. A similar conclusion was drawn by Ip et al. [44] who evaluated various
mitigation policies implemented by the state and federal governments of Australia using
a generalised space–time autoregressive model. They found that both international and
interstate border controls helped to reduce the number of new COVID-19 cases in Australia.

Kang et al. [6] explained the spatio-temporal pattern and explored the spatial rela-
tionship of the COVID-19 epidemic in mainland China. This study found that most of the
models, except medical-care-based connection models, showed a significant spatial rela-
tionship of COVID-19 infections, which means that the management of the spatial spread
in the early stage of COVID-19 is very significant for the control of the further transmission.
However, although this study has incorporated the spatial aspect of COVID-19, it has some
limitations. Firstly, this study did not take into account the number of suspected cases.
Therefore, it is a challenge to understand the spatio-temporal transmission of COVID-19.
Secondly, this study did not incorporate the urban–rural connection, which might have
an important impact on transmission. Therefore, further research is needed to include the
most critical factors and to explore the spatial spread of COVID-19.

Costantino et al. [45] developed a deterministic model to further explore the effective-
ness of full and partial travel bans in Australia for travellers from China against the spread
of COVID-19. They modelled three basic scenarios—no ban, the current ban, followed by a
full or partial lifting to examine the influence of travel bans on the dynamics of COVID-19
outbreak control. Moreover, they used COVID-19 incidence data from China and details
of passenger flights between China and Australia during and after the outbreak in China,
obtained from incoming passenger arrival record cards. The results show that without a
travel ban, an increase of more than 2000 cases and around 400 deaths would have occurred.
The complete travel ban decreased the number of cases by more than 86%, while the partial
travel ban reduced the number of cases by 50%. These figures indicate the efficacy of policy
decisions. This study suggests that imposing travel restrictions with a country (China)
experiencing an epidemic peak is highly effective. Further tabulated information of the key
literature review on COVID-19 modelling in China, the UK, and Australia is summarised
in Table 1, which follows.
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Table 1. Summary of the key findings of some important literature about COVID-19 modelling in China, the UK, and Australia.

Countries Author(s) Research Aims Methodology Significant Findings Strategies

China Zhao and Chen [46]

To characterise the dynamics of
COVID-19 and explicitly
parameterise the intervention effects
of control measures in China.

A Susceptible Un-quarantined,
Quarantined infected, Confirmed
infected (SUQC) model is applied to
analyse the daily cases of COVID-19
outbreak in China.

The quarantine and control measures
are effective in preventing the spread
of COVID-19.

Quarantine and control
measures.

China Liu et al. [47]

To summarise and share the
experience of controlling the spread
of COVID-19 and provide effective
recommendations to enable other
countries to save lives.

A modified SEIR model is applied. It
considered many influencing factors
including spring festival, sealing off
the city and construction of the
fangcang shelter hospital.

Four different scenarios were
investigated to capture different
intervention practices. The
combination of intervention measures
is the only effective way to control the
spread and not a single one of them
can be omitted.

Seal off the city, enough
medical resources, a
combination of several
interventions, authorities did
nothing to control the
epidemic.

China Hao et al. [48]

To reconstruct the full-spectrum
dynamics of COVID-19 between 1
January 2020 and 8 March 2020
across five periods marked by events
and interventions based on 32,583
laboratory confirmed cases.

A modified
susceptible-exposed-presymtomatic
infectious-ascertained
infectious-unascertained
infectious-isolated-removed
(SAPHIRE) SEIR model is applied
and considered presymtomatic
infectiousness, time-varying
ascertainment rate, transmission
rates and population movements.

Identified two key features of the
outbreak: high covertness and high
transmissibility. Found multi-pronged
interventions had considerable
positive effects on controlling the
outbreak of COVID-19 and decreasing
the reproduction number.

Presymtomatic infectiousness,
time-varying ascertainment
rate, transmission rates and
population movements.

China Wu et al. [49]

To estimate the clinical age specific
severity, which requires properly
adjusting for the case ascertainment
rate and the delay between the onset
of symptoms and death.

A SIR model is applied, which
included the number of passengers
and confirmed cases who returned to
their countries from Wuhan on
chartered flights.

Estimated the overall case,
symptomatic case, fatality risk, and
found that the risk of symptomatic
infection increased with age.

Case ascertainment rate,
symptoms onset and deaths.



Viruses 2021, 13, 2185 7 of 23

Table 1. Cont.

Countries Author(s) Research Aims Methodology Significant Findings Strategies

China Mizumoto et al. [50]
To investigate a link between the wet
market and the early spread of
COVID-19 in Wuhan, China.

A quantitative modelling framework
was applied, which includes daily
series of COVID-19 incidence to
estimate the reproduction number
for market to human and human to
human transmission, the probability
of reporting and the early effects on
public health.

Found that the basic reproduction
number of market to human
transmission was lower than for
human to human transmission. In
contrast, the reporting rate for cases
stemming from market to human
transmission is 2–34 fold higher than
that for cases stemming from human to
human transmission, suggesting that
contact history with the wet market
plays an important role in identifying
COVID-19 cases.

Wet market to human and
human to human
transmission.

China Zhang et al. [51]

To analyse contact survey data for
Wuhan and Shanghai before and
during the outbreak and
contact-tracing information from
Hunan province.

A simple SIR model applied to show
the impact of age, contact patterns,
social distancing, susceptibility to
infection for the dynamics of
COVID-19 in Hunan province,
China.

The results showed that children 0 to
14 years of age are less susceptible to
COVID-19 infection than adults 15 to
64 years of age. However, individuals
65+ years of age are more susceptible
to infection. Further, this study found
that social distancing alone is sufficient
to control COVID-19 in China.

Age, contact patterns, social
distancing and susceptibility
to infection.

China Pang et al. [52]

To compute the basic reproduction
number and analyse the disease free
equilibrium as well as sensitivity
analysis.

A modified SEIR model was used to
explore the dynamics of COVID-19
in Wuhan, China and calculate the
most important parameters.

The transmission rate is the most
important parameter that can increase
the severity of COVID-19 outbreak.

Transmission rate.

UK Yang et al. [53]

To conduct a feasibility study for
robustly estimating the number and
distribution of infection, growth of
death, peaks and lengths of
COVID-19 breakouts by taking
multiple interventions in the UK.

A modified SEIR model is used to
infer the impact of mitigation,
suppression and multiple rolling
interventions for controlling the
COVID-19 outbreak in the UK.

Rolling intervention is probably an
optimal strategy to effectively and
efficiently control COVID-19 outbreaks
in the UK.

Mitigation, suppression.
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Table 1. Cont.

Countries Author(s) Research Aims Methodology Significant Findings Strategies

UK Davies et al. [54]

To assess the potential impact of
different control measures for
mitigating the burden of COVID-19
cases in the UK.

A stochastic age-structured
transmission dynamic model is
applied to explore the range of
intervention scenarios and estimate
the impact of varying adherence to
interventions across countries.

Four base interventions including
school closures, physical distancing,
shielding of people aged 70 years or
older and self-isolation were each
likely to decrease the basic
reproduction number but not
sufficiently to prevent ICU demand
from exceeding health service capacity.
Intensive interventions with lockdown
periods will need to be considered to
prevent excessive health-care demand.

School closures, physical
distancing, shielding of
people aged 70 years or older
and self-isolation.

UK Booton et al. [55]

To develop a regional transmission
dynamics model of COVID-19, for
use in estimating the number of
infections, deaths and required acute
and intensive care (IC) beds in the
south west of the UK.

A modified age-structured SEIR
model to estimate cumulative cases
and deaths and the impact of
interventions.

Before any interventions, the basic
reproduction number value is 2.6, with
social distancing reducing this value to
2.3 and lockdowns/school closures
further reducing the basic
reproduction number to 0.6, which
indicates that lockdowns/school
closures are very effective
interventions for controlling
COVID-19.

Social distancing,
lockdowns/school closures.

UK Stutt et al. [43]

To estimate the impact of facemasks
as a non-pharmaceutical
intervention, especially in the setting
where high-technology interventions
including contact tracing or rapid
case detection are not feasible.

A modified SEIR model is used to
examine the dynamics of COVID-19
epidemics when facemasks are worn
by the public, with or without
imposed lockdowns.

The results revealed that when
facemasks are used by the public all
the time, the effective reproduction
number can be decreased below 1,
leading to the mitigation of epidemic
spread. Further, with the combination
of lockdowns and 100% facemask use,
there is vastly less disease spread.

Lockdowns and facemasks.

UK Rawson et al. [56]

To investigate the efficacy of two
potential lockdown release strategies
including ending quarantine and a
re-integration approach.

A SEIR model is used to explore the
gradual release strategy by allowing
different fractions of lockdown.

Ending quarantine for the entire
population simultaneously is a
high-risk strategy; a gradual
re-integration approach would be
more reliable.

Lockdowns.



Viruses 2021, 13, 2185 9 of 23

Table 1. Cont.

Countries Author(s) Research Aims Methodology Significant Findings Strategies

UK Thompson [57] To predict the effects of different
non-pharmaceutical interventions.

A simple SIR model is used to
demonstrate the principle that a
reduction in transmission can delay
and reduce the height of the epidemic
peak under different
non-pharmaceutical interventions.

The results revealed that lockdowns are
more effective than other
non-pharmaceutical interventions and
need to be implemented immediately for
controlling COVID-19 in the UK.

Lockdowns, school closures,
social distancing, shielding of
high-risk individuals and
self-isolation.

UK Peiliang and Li [58]
To predict the number of cases and
estimate the basic reproduction
number under different scenarios.

A modified SEIR model structure is
used to explore the effect of time lag
and the probability distribution of
model states under different
interventions.

Self-isolation can reduce the basic
reproduction from 7 to 2 in the UK. Strict
lockdowns and social distancing are
effective interventions for reducing the
basic reproduction number below 2.

Self-isolation, lockdowns and
social distancing.

Australia Chang et al. [59]

To compare several intervention
strategies including restrictions on
international travel, case isolation,
home quarantine, social distancing
and school closures.

An agent-based model is developed
for a fine-grained computational
simulation of the ongoing COVID-19
pandemic in Australia.

The results showed that school closures
do not bring decisive benefits unless
coupled with a high level of social
distancing. Furthermore, a 90% level of
social distancing is effective to control
the COVID-19 within 13–14 weeks when
coupled with effective case isolation and
international travel restrictions.

International travel, case
isolation, home quarantine,
social distancing and school
closures.

Australia Fox et al. [60]

To explore the effect of varying the
infection reproduction number,
which can be reduced by effective
social distancing measures at the
peak of the epidemic.

A simple SEIR model is used, which
includes household quarantine and
social distancing.

The results showed that without social
distancing, the number of people
requiring hospitalisation in NSW will
peak at 450 per 100,000 population and
the number of individuals requiring
critical care are at 150 per 100,000
population.

Household quarantine and
social distancing.

Australia Moss et al. [61]

To estimate the healthcare
requirements for COVID-19 patients
in the context of broader public
health measures.

An age- and risk-stratified
transmission model of COVID-19
infection is used to simulate an
unmitigated epidemic in current
estimates of transmissibility and
severity.

The results showed that case isolation
and contact quarantine alone will not be
sufficient to constrain case presentations
within a feasible level of expansion of
health sector capacity. Social restrictions
will need to be applied at some level
during the epidemic.

Case isolation and contact
quarantine.
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Table 1. Cont.

Countries Author(s) Research Aims Methodology Significant Findings Strategies

Australia Milne and Xie [62]

To evaluate a range of social
distancing measures and to
determine the most effective
strategies to reduce the peak daily
infection rate and consequential
pressure on the healthcare system.

A transmission dynamics
individual-based model is used to
generate the rate of growth in cases,
the magnitude of the epidemic peak
and the outbreak duration.

The application of all four social
distancing interventions including
school closures, workplace
non-attendance, increased case isolation
and community contact reduction is
highly effective for controlling
COVID-19 in Australia.

School closures, workplace
non-attendance, increased
case isolation and community
contact.

Australia Costantino et al. [45] To test the impact of travel bans on
epidemic control in Australia.

An age-specific deterministic model is
used to explore the impact of three
travel ban scenarios.

The results showed that without travel
bans the epidemic in Australia will
continue for more than a year, partial
travel is minimal and may be a policy
option. Finally, travel restrictions are
highly effective for controlling the
outbreak of COVID-19 in Australia.

Travel restrictions.

Australia Adekunle et al. [36]
To evaluate the effect of travel bans
in the Australian context and predict
the epidemic until May 2020.

A stochastic meta-population model
was used. It categorises the global
population into susceptible, exposed,
infectious or recovered (SEIR)
individuals.

The results showed that without travel
bans Australia would have experienced
local transmission as early as January 15
and possibly would have become the
Pacific epicentre. Furthermore, having
interventions in place can reduce the
outbreak of local transmissions of
COVID-19 in Australia.

Travel bans.

Australia Price et al. [63]
To describe how the epidemic and
public health response unfolded in
Australia up to 13 April 2020.

A SEEIIR model is applied to estimate
the time-varying effective reproduction
number, which can be used for
controlling COVID-19 in Australia.

The results showed that the effective
reproduction number is likely below 1 in
each Australian state since mid-March
and forecast that hospital ward and
intensive care unit occupancy would
remain below capacity thresholds during
the last two weeks of March.

Intensity and timing public
health intervention.



Viruses 2021, 13, 2185 11 of 23

2.2. Models with Age Structure and Vaccination

Age is one of the significant factors which can influence the occurrence and severity of
the COVID-19 disease. Chang et al. [59] developed an agent-based model for transmission
dynamics of the ongoing COVID-19 outbreak in Australia. The authors applied the model
to compare several intervention strategies, including travel restrictions, case isolation,
school closures, social distancing, and home quarantine. The results showed that the
rate of symptomatic cases in children is one-fifth of the rate for adults. This study also
shows that the intervention of school closures alone was not effective unless coupled with
a high level of social distancing. Therefore, the authors asserted that the combination of
social distancing with effective isolation and international travel restrictions was the most
effective way to control the outbreak of COVID-19.

Vaccination is often considered the best way to prevent or control outbreaks of infec-
tious diseases including COVID-19 [64]. In addition, in the cases of some infectious diseases,
there is no specific treatment except vaccination. Although the exploration of vaccines for
COVID-19 was a great challenge, different types of vaccines are now available to combat
the spread of COVID-19. The European Medicines Agency and the Italian Medicines
Agency have approved Pfizer, Moderna, AstraZeneca AZD1222 and J&J Ad26.COV2.S on
13th March 2021 [65].

Table 2 presents a tabulated summary of the current models that include the vac-
cination strategies specifically focused on China, the UK, and Australia. For instance,
McBryde et al. (2021) developed a COVID-19 model with a vaccination to explore the
direct and indirect effects of vaccination by vaccine type, age strategy, and coverage in
Australia [66]. The model incorporated some crucial factors, including age-specific mix-
ing, infectiousness, susceptibility and severity, to examine the epidemic under different
intervention scenarios. The authors found that the current mixed program, including
vaccination with AstraZeneca and Pfizer, would not achieve herd immunity unless 85% of
Australia is covered, including 5–16 years of age and considering the effective reproduction
number for Delta variant is 5. However, when the value of the effective reproduction
number is 3, the mixed program can achieve herd immunity at 60–70% coverage without
vaccinating 5–15 years of age. The general finding of this study was that vaccination can
prevent 85% of death compared to without vaccination [66].

In 2021, with numerous vaccines becoming available in Australia, Maclntyre et al.
(2021) developed a compartmental COVID-19 model to explore the vaccine’s effectiveness
for target groups, including health workers, young people and older adults, and mass
vaccination in NSW Australia [67]. For the target group, results showed that health worker
vaccination is necessary for health system resilience. Furthermore, age-based policies with
restricted doses of the vaccine can reduce a small amount of infections, but vaccinating older
people reduces the prevalence of death. On the other hand, mass vaccination, including
66% of the NSW population, can achieve herd immunity. However, this study also found
that slower vaccination rates can lead to a prolonging of the COVID-19 pandemic, and a
higher number of cases and deaths in the population [67].
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Table 2. Some current models that include vaccination strategies in China, the UK, and Australia.

Countries Author(s) Model Assumptions Implicit (and Explicit) Applications in Predicting
COVID-19 Policy Implications

Australia McBryde et al. [66] An individual based model with
vaccination.

The model incorporates some important
factors including age-specific mixing,
infectiousness, susceptibility, and severity
to examine the epidemic size under
different intervention scenarios.

Predicting the impact of combination
second doses vaccination strategies
including AstraZeneca and Pfizer.
Vaccination can prevent 85% of death
compared with no vaccination.

Australia government can
take immediate action to
vaccinate all population.

Australia Maclntyre et al. [67] An age-structured deterministic
compartmental model.

Includes target groups
including health workers, young people
and older adults as well as mass
vaccination to explore the effectiveness
of vaccine.

Results show that health worker
vaccination is necessary for health
system resilience.
Mass vaccination which includes 66%
of the NSW population can achieve the
herd immunity.
Slower rates of vaccination can lead to
COVID-19 longer, higher cases and
deaths in the population.

Must be vaccinated all age
group to get heard immunity.

China Han et al. [68] A data-driven mechanistic model
with five compartments.

Seventeen age group are considered to
explore the time varying vaccination effect.

A time varying vaccination program
for the different age groups is the most
effectively way for reducing deaths
and infections.
Early phase of high vaccination
capacity is the key to achieve great
advances of policies arrangements.

To minimize the number of
deaths and ICU admissions,
over 65 years older people
and near of them should be
vaccinated before moving to
other groups.

UK Moore et al. [69]

A modified SEIR-type model
with force of infection determines
by age dependent social contact
matrices.

New secondary infections increase due to
the first infections within a household.
Secondary household contacts to be
quarantined and subsequently
performance no additional role.

Vaccine is most effective for elderly
and vulnerable population which
reduce number of deaths and
healthcare demands.

To reduce death and health
care demand elderly people
must be vaccinated.

UK Moore et al. [70] Age-structured mathematical
model

Incorporated two-dose vaccination and
non-pharmaceutical interventions to
explore the different scenarios.

vaccination alone is not sufficient to
contain the outbreak of COVID-19.
In the absence of non-pharmaceutical
intervention, the vaccine will prevent
85% infections of the population.

Combine vaccination and
non-pharmaceutical
interventions is essential to
eliminate COVID-19 outbreak
in the UK.
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Besides, to measure the optimal vaccine prioritisation of COVID-19 transmission,
Han et al. (2011) developed a data-driven mechanistic model in China [68]. In this model,
they considered 17 age groups and divided the population into five compartments: the
unvaccinated susceptible population (S); persons who received at least the first dose of
vaccine but have yet to develop protection (V); persons who received the second dose of
the vaccine but failed in protection (U); infectious individuals including asymptomatic and
symptomatic infections (I); and recovered or immune individuals (R). The result showed
that a time-varying vaccination program for the different age groups is the most effective
means of reducing deaths and infections. Furthermore, this study recommended that, to
minimise the number of deaths and ICU admissions, people over 65 years of age should
be vaccinated before moving to other groups such as younger and middle-aged people.
Finally, the early phase of high vaccination capacity is the key to achieving significant
success of policy measures and implementations [68].

Moreover, a mathematical model with different age groups in the UK was proposed
by Moore et al. (2021) to investigate different COVID-19 vaccination scenarios and the
age-specific vaccine efficacy [69]. A modified SEIR-type model was considered with a force
of infection determined by age-dependent social contact matrices. The authors assumed
that the new secondary infections increase due to the first infections within a household.
However, the secondary household contacts were to be quarantined and subsequently
performed no additional role for the outbreak of COVID-19. The result showed that
vaccination is the most effective for the elderly and vulnerable population, which helped
reduce the number of deaths and healthcare demands [69]. Modelling vaccination with non-
pharmaceutical interventions is necessary to investigate significant variations in behaviours
associated with COVID-19 prevention, detection and treatment than a single intervention.
Furthermore, Moore et al. [70] proposed another age-structured model-integrated two-dose
vaccination and non-pharmaceutical interventions in the UK. The finding showed that
vaccination alone is not sufficient to contain the outbreak of COVID-19. In the absence
of non-pharmaceutical interventions, the vaccine will prevent 85% of infections in the
population. Combining vaccination and non-pharmaceutical interventions can eliminate
the COVID-19 outbreak in the UK [70].

Statistically, modelling plays a vital role in efforts that focus on predicting, assessing,
and controlling potential outbreaks of different kinds of infectious diseases. Modelling can
also be used to explore the contagious disease dynamics that impact numerous variables
ranging from the micro host–pathogen level to host-to-host interactions and dominant
ecological, social, economic, and geographical factors across the globe. Additionally, Table 3
discusses some key literature for different infectious disease modelling approaches and
their control strategies. For instance, Kanyiri et al. (2018) provide modelling results of the
transmission dynamics of influenza by incorporating the aspect of drug resistance and using
dynamical systems and sensitivity analysis [71]. Overall, the findings of Table 3 studies
reveal some consistencies and disparities between the modelling tools and techniques,
as well as the diseases and the nature of infections. Indeed, the knowledge of these
modelling approaches would help develop a contemporary and robust research framework,
which may specifically focus on different spatial levels within a region. Location-specific
knowledge is required to develop an appropriate model for a particular area such as
regional areas in NSW, Australia.
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Table 3. Review of key literature for other infectious diseases modelling.

Author(s) Research Aims Methodology Significant Findings

Kanyiri et al. [71]
Mathematical modelling of
the transmission dynamics of
influenza.

Dynamical systems, analysis of
stability of stationary points,
sensitivity analysis.

A mathematical model
incorporating the aspect of drug
resistance is formulated. The
qualitative analysis of the model is
given in terms of the control
reproduction number, Rc.
Numerical simulations reveal that
despite reducing the reproduction
number below unity, influenza can
still persist in the population.
Hence, it is essential, in addition to
vaccination, to apply other
strategies to curb the spread of
influenza.

Wu et al. [72] Modelling of univariate and
multivariate time series data.

Transformer-based machine
learning.

The authors developed a novel
method which uses
transformer-based machine
learning models to forecast time
series data. This approach works by
leveraging self-attention
mechanisms to learn complex
patterns and dynamics from time
series data. Their framework can be
applied to both univariate and
multivariate time series data. The
authors used influenza-like illness
(ILI) forecasting as a case study and
showed that their
transformer-based model can
accurately forecast ILI prevalence
using a variety of features.

Lewnard et al. [73]

Assessment of the
effectiveness of interventions
used in the Ebola outbreak
and how these interventions
may be used individually or
in combination to avert future
Ebola Virus Disease (EVD)
outbreaks.

Building of a transmission model
for the Ebola outbreak fitted to
Ebola cases and deaths in
Montserrado, Liberia. The model
was used to assess the
intervention measures such as
expanding EVD treatment centres,
allocation of PPE and case
ascertainment numbers. 23
September 2014 was used as the
base for all behaviour and contact
patterns. The primary outcome
measure was the expected
number of cases averted by 15
December 2014.

The authors estimated that the
reproductive number for EVD in
Montserrado was 2.49. The
allocation of 4800 additional beds at
EVD treatment centres and
increasing case ascertainment
numbers 5-fold can avert 77,312
cases by 15 December 2014.
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Table 3. Cont.

Author(s) Research Aims Methodology Significant Findings

Kucharski et al. [74]

To understand the
transmission dynamics of
Zika virus (ZIKV) using a
mathematical model of
vector-borne infections.

A compartmental mathematical
model was used to simulate
vector-borne transmission. People
and mosquitoes were modelled
using a susceptible-exposed-
infectious-removed (SEIR)
framework.

An estimation of key
epidemiological parameters such
as the reproduction rate. Median
estimates of 2.6–4.8 reproduction
rates were found. An estimated
94% of the total population of the
6 archipelagos of French
Polynesia were found to be
infected during the outbreak.
Based on the demography of
French Polynesia and the results,
an implication was that an initial
ZIKV infection provided
protection against future
infections. It would also take
between 12–20 years before there
was a sufficient number of
susceptible individuals for ZIKV
to re-emerge.

Farah et al. [75]

To develop an efficient,
computationally inexpensive
Bayesian dynamic model for
influenza.

A statistical model that combines
a Gaussian process (GP) for the
output function of the simulator
with a dynamic linear model
(DLM) for its evolution through
time was developed.

The modelling framework is
found to be both flexible and
tractable, resulting in efficient
posterior inference for the
parameters of the influenza
epidemic.

Luksza and Lassig [76]
To build a model to predict
the evolution of the influenza
virus for vaccine selection.

Sequence data which contain HA
(a particular type of protein) were
used to build genealogical trees.
Strain frequencies were then
estimated, and mutations were
mapped. Predictions were done
based on the model fitted. Based
on the results, a vaccine strain
was selected.

Factors that determine the fitness
of a strain were found. A
principled method for vaccine
selection was suggested.

Agusto and Khan [77]

To investigate the optimal
control strategy for curtailing
the spread of dengue disease
in Pakistan.

Optimal control theory is used to
compare the different
intervention strategies, including
insecticide use and vaccination.

The results show that a strong
reciprocal relationship exists
between the insecticide use and
vaccination. The cost of
insecticide increases as the use of
vaccination increases. Due to the
increase in cost, the use of
insecticide slightly increases
when vaccination decreases.

Kuddus et al. [78]

To estimate the drug-resistant
tuberculosis amplification rate
and intervention strategies in
Bangladesh.

Optimal control strategy is used
to evaluate the cost-effectiveness
of varying combinations of four
basic control
strategies—distancing, latent case
finding, case holding and active
case finding.

The results reveal that a
combination of one or more
intervention strategies is the most
cost-effective way for controlling
the outbreak of drug-susceptible
and multi-drug resistant
tuberculosis in Bangladesh.
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Table 3. Cont.

Author(s) Research Aims Methodology Significant Findings

Rahman
and Kuddus [79]

To support the National
Malaria Control Program for
the design and
characterisation of the malaria
disease in Bangladesh.

A reliable qualitative and
quantitative modelling technique
used to identify the most
influential factors in the outbreak
of malaria.

From a qualitative viewpoint, the
results show that service factors,
disease related factors,
environmental factors, and
sociological factors are significant.
From the quantitative modelling
approach, the results reveal that
the transmission rate is the most
important risk factor for the
outbreak of malaria in
Bangladesh.

Bhunu et al. [80]
To assess the effects of
smoking on the transmission
dynamics of tuberculosis.

A transmission dynamics of
tuberculosis model was used,
considering the fact that some
people in the population are
smoking in order to assess the
influence of smoking on
tuberculosis transmission.

The results reveal that smoking
enhances tuberculosis
transmission and progression
from latent tuberculosis cases to
active tuberculosis cases. This
study also shows that the number
of active tuberculosis cases
increases as the number of
smokers increases.

3. Developing Models with a Regional Focus

COVID-19 poses a significant challenge for the government healthcare system in
regional areas of NSW. One of the most significant challenges is the demand for hospitals
to treat critically ill COVID-19 patients [60]. Current knowledge from the outbreak in
Italy suggests that a severe demand for intensive care support can occur at the peak of
an epidemic. The shortage of intensive care support often leads to preventable deaths
due to the lack of accessible intensive care units (ICU) and healthcare workers [81]. The
epidemic trajectory of COVID-19 in NSW seems delayed by many weeks compared to
several states, including Victoria, due to the travel bans implemented at the beginning of the
epidemic. The situation is changing very quickly, and NSW government policy has recently
focussed on prevention rather than lockdowns or eliminating COVID-19 infection from the
community [60]. Nonetheless, unless an effective vaccine is produced, it seems possible
that the outbreak of this disease will transmit quickly within the general population [82].
The effectiveness of current and prospective non-pharmaceutical intervention strategies,
including social distancing, is unpredictable or highly reliant on the extent to which they
are implemented.

Mathematical modelling is one of the most effective ways to gain insights into the
dynamics of an epidemic and to assist in the allocation of resources, including intensive
care resources, during different stages of the pandemic. Fox et al. [60] developed a modified
SEIR model to estimate hospitalised cases and ICU cases per 100,000 population in NSW.
This study considers two scenarios; one is no intervention within a basic reproduction
number of 2.4, and the other is social distancing strategies leading to a basic reproduction
number of 1.6. The results showed that without social distancing measures, the peak of
the COVID-19 cases for hospitalisation would be 450 per 100,000, with about 150 people
needing intensive care. According to the scenario without intervention, the outbreak
infection peak would be late June and hospital usage in early July. Under the second
scenario with social distancing, around 180 people would be hospitalised per 100,000, with
65 people needing intensive care. The outbreak will move to early October, and peak
ICU usage will move to mid-November. The authors suggested that the social distancing
intervention strategy would be partially effective for the delay of the epidemic peak by
around 12 weeks. However, this study did not estimate the effect of suppression strategies,
which would reduce the peak of ICU demand. Therefore, further modelling is required to
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explore the impact of suppression strategies at the time of the epidemic in NSW, including
on ICU demand. Such modelling strategies will help to notify the public concerning the
timing, severity, and continuation of mitigation policies.

Weather variables including temperature, humidity and rainfall are critical determi-
nants for the outbreak of COVID-19 in NSW [83] and other states and countries [84]. To
explore the association between meteorological variables and the number of COVID-19
cases, Ward et al. [83] used a time series analysis in NSW. They used a multivariate gen-
eralised additive model (GAM) where a correlation matrix was used to select a weather
variable to avoid multicollinearity in the analysis. The best model was selected based on
the backward algorithm and the Akaike information criteria (AIC) value. Weather variables
were analysed through a 14-day interval based on the incubation time, and the natural
splines function with two degrees of freedom is used for the model trend and seasonality.
The results showed that temperature and rainfall have no relationship with COVID-19 in
NSW, while low temperature and low humidity are suitable for the survival and spread of
the virus, because they dry out the mucous membrane, reduce the function of cilia and fa-
cilitate the spread of suspended matter in the atmosphere [84,85]. Some modelling studies
suggested that lower temperatures may increase the number of COVID-19 cases [84,86].
Therefore, more research is needed to explore the association between temperature and the
number of COVID-19 cases.

In the future, we propose to develop a comprehensive model of COVID-19 trans-
mission dynamics over time to infer the impact of mitigation, suppression and multiple
interventions and their cost-effective analysis for controlling COVID-19 outbreaks in NSW.
We will develop a modified SEIR model to account for the following mutually exclusive
compartments: Susceptible S(t), uninfected individuals who are susceptible to the COVID-
19 infection; Exposed E(t), representing those who are infected and have not yet developed
active COVID-19; Infectious I(t), comprising individuals with active COVID-19; the Re-
covered R(t), who were previously infected and successfully treated, or death D(t). For
estimating healthcare needs, we will categorise the infectious group into two sub-cases:
Mild M(t) and Critical C(t); where Mild cases do not require hospital beds; and Critical
cases need hospital beds. A flow diagram of our proposed model is presented in Figure 1.

To the best of our knowledge, in previous modelling studies, many mathematical
models have been investigated, focusing on mysterious transmission dynamics of COVID-
19 using different types of intervention strategies. However, none of them have used a
cost-effective analysis for the economy in NSW, Australia. This model will consider a set
of non-linear differential equations and will distinguish two essential features—the direct
link between the Exposed and Recovered population and the practical healthcare demand
resulting from the separation of infections into mild and critical cases. First, we will use
a next-generation matrix to determine the basic reproduction number R0 of COVID-19,
where R0 is the estimated number of secondary cases produced by single infectious cases
and exclusively the susceptible population. Then, to supplement and validate the model
structure, we will calibrate the number of cases from the COVID-19 data in NSW. Following
this, we will perform a sensitivity analysis to explore the impact of parameters on the
model outcomes. Finally, we will incorporate the economic compartment into our proposed
model to explore the financial consequences of different interventions and their impact on
the dynamics of COVID-19 in NSW, Australia.
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Figure 1. Extended SEIR model structure: The population is divided into the following six classes: susceptible, exposed
(and not yet symptomatic), infectious (symptomatic), i.e., mild (mild or moderate symptom) and critical (severe symptoms),
death and recovered (i.e., isolation, recovered, or otherwise non-infectious).

4. Conclusions

COVID-19 has had more attention from the government and media than any previous
infectious disease, including influenza. Modelling studies can contribute to developing
novel control methods, improving computational tools, and public data sharing. For
example, modelling studies strongly advised border closures, and China first imposed an
internal travel lockdown on Wuhan, which delayed the epidemic peak of COVID-19 within
China but had a more significant impact on other countries [35,87,88]. Statistical modelling
has also projected the shifting of outbreaks from one country to another, based on these
locations’ connectedness [89].

Age is a significant risk factor that can increase the severity of the outbreak of COVID-
19. Mixing models can examine age-specific contact patterns and infection risk and use
relative infectiousness [90]. Modelling studies have found that children are less likely to
acquire an infection, and when infected, they are much less likely to show symptoms. This
information will assist policymakers in strategy development. In addition, mixing models
have showed that school lockdowns have a modest impact on COVID-19 transmission,
encouraging authorities to re-open schools or to avoid school lockdowns completely [34,91].

Mathematical models can estimate the potential epidemic outbreak of COVID-19. One
of the essential components for the modelling studies is the basic reproduction number,
which is the expected secondary cases caused by a single infectious case in a susceptible
population. Modelling studies have shown that implementing suppression (i.e., immedi-
ate lockdown) strategies will decrease the reproduction number to less than one, which
means that the disease dies out gradually without the need to take any further action.
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Furthermore, any deficiencies in performing mitigation strategies will increase the risk of
having a reproduction number greater than one, which indicates that the disease persists
in the population, and governments need to take more actions to control the disease [92].
Intervention strategies and government-imposed constraints on human migration have
started to decrease the spread. Models presenting variations in transmission rates over
time have been influential tools, helping decision-makers to implement improvements in
outbreak control within public health strategies [93].

It is well known that vaccines are very effective for infectious disease control [94,95].
Therefore, for the elimination of COVID-19, a vaccine is urgently needed for global-scale
use. There are many clinical trials of COVID-19 vaccines underway, though a few countries
claimed success in efficacy trials at their local or national scale. Modelling studies are
beneficial in evaluating the effectiveness of vaccines within clinical trials and for reducing
biases [96,97]. Modelling can also assist in evaluating the possible effectiveness of vaccina-
tion policies, including location-specific ring-vaccination, age-specific vaccination, and the
socioeconomic and geopolitical advantages of vaccination. However, for COVID-19, the
situation is even more challenging as the disease affects different age groups differently.
There is also a greater risk of co-infection and mortality with other diseases, especially in
the older age group.

The information generated from the models of the COVID-19 pandemic allows collab-
orative involvement between decision-makers and researchers. Policymakers can provide
researchers with a clear outlook of the policy settings, while researchers can construct
models that assist in decision-making. Decision-makers can then plan the policy aims and
the intervention strategies and should ideally build a setting where decision-makers and
modellers work in combination on an ongoing basis.

Modelling studies may also perform a crucial role in expanding the scope of limited
resources under discussion. For instance, a modelling study infers that UK health offi-
cials did not examine a policy that included testing due to a limited testing capacity [98].
Modellers also advise using suppression strategies in China rather than mitigation, as the
results reduce exposure in China and reduce the number of global cases [99]. Modelling
may also provide more optimal scenarios for different intervention strategies with signifi-
cant benefits at a low cost. For example, in Australia, mitigation strategies are commonly
considered rather than suppression strategies (except in Melbourne recently during the
second wave of COVID-19 outbreaks) [61]. If modelling studies show that suppression
strategies would provide better results, these actions can be implemented early in Aus-
tralia, including in NSW. Our future application paper will consider this in the context
of analysing epidemiological surveillance data to develop an optimal strategy to control
COVID-19-type outbreaks in urban and rural health districts of NSW efficiently.

Non-pharmaceutical interventions and vaccination strategies are implemented to
prevent and control COVID-19 in most countries in the world. Modelling can assess the
potential impact of different interventions measures for mitigating the burden of COVID-
19 across the globe [100]. Vaccination is the best way to prevent or control outbreaks
of COVID-19. Mathematical models can examine the impact of vaccination on death if
herd immunity is not achieved, and it also explores the direct effects of vaccination on
reducing death are very good for which vaccines. Therefore, the steps for future research
in modelling will be models with a combination of control strategies.

In this review, we have discussed some important COVID-19 models and have at-
tempted to classify them by their structures (including some core assumptions). In addi-
tion, we summarise the model outcomes and distinctive features, including the impact
of different intervention strategies and their cost, stability, and sensitivity analysis to
identify the most impelling risk factors addressing model biases. In doing so, we have
identified some open challenges and encouraging prospects for upcoming COVID-19
modelling-related research.

Finally, every study has its limitations. For future research, it is prudent to note
those limitations that have posed a challenge to the findings of this study. This study’s
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specific limitation is the reliance on previously published research regarding mathematical
modelling of COVID-19 in three countries, including Australia, China, and the UK, from
2019 to 2021. In addition, the quality of information obtained might not always be reliable,
e.g., incidence, prevalence, health demand, etc., which may contaminate findings.
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