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Scattering of low energy neutrinos and antineutrinos by atomic electrons
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Studies of neutrino mixing and oscillations, solar neutrinos as background in dark matter searches
involving electron detection, detection of sterile neutrino warm dark matter, and of possible
electromagnetic properties of neutrinos, have generated interest in the low energy O(10 keV) scattering
of electron neutrinos and antineutrinos by atomic electrons where the binding of the atomic electron
cannot be ignored. Of particular interest is the ionization of atoms by neutrinos and antineutrinos. Most
existing calculations are based upon modifications of the free electron differential cross section which
destroy the relationship between the neutrino helicities and the orbital and spin angular momenta of the
atomic electrons. The present calculations maintain the full collision dynamics by formulating the
scattering in configuration space using the bound interaction picture, rather than the usual formulation in
the interaction picture in momentum space as appropriate to scattering by free electrons. Energy spectra
of ionization electrons produced by scattering of neutrinos and antineutrinos with energies of 5, 10, 20,
and 30 keV by hydrogen, helium and neon have been calculated using Dirac central field eigenfunctions,
and are presented as ratios to the spectra for scattering by free electrons. Binding effects increase strongly
with atomic number, are largest for low neutrino energy and, for each neutrino energy, greatest at the high
electron energy end of the spectrum. The most extreme effects of binding are for 5 keV scattering by Ne
where the ratios are less than 0.1. The energy spectra have been calculated for both a Coulombic final
electron state and a free final electron state. The results indicate that the binding effects from the
continuum state of the final electron are significant and can be comparable to those arising from the

bound initial electron state.

DOI: 10.1103/PhysRevD.105.013008

I. INTRODUCTION

Studies of neutrino mixing and oscillations [1], solar
neutrinos as background in dark matter searches involv-
ing electron detection [2], detection of sterile neutrino
warm dark matter [3], and of possible electromagnetic
properties of neutrinos, such as magnetic and electric
dipole moments, using low energy elastic scattering of
neutrinos and antineutrinos [4,5], have generated interest
in the low energy O(10 keV) scattering of electron
neutrinos and antineutrinos by atomic electrons

Ve(De) + €7 = v,(De) + e (1)

The standard scattering is due to the weak interaction and
involves both W-boson charged current and Z-boson neutral
current exchange. If neutrinos do have electromagnetic
properties, generated by quantum loop effects, there will
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also be scattering due to single photon exchange. The weak
and electromagnetic scatterings are incoherent and their
dependences upon the energy transferred T = E, — E, , 1o
the atomic electron for T < E,, are quite different, with their
differential cross sections do/dT being approximately con-
stant for the standard scattering and « 1/7 for the electro-
magnetic scattering. The effect of a neutrino magnetic
moment is then a distortion in the shape of the atomic
electron recoil spectrum at low E, . For all these low energy
studies the binding of the atomic electron cannot be ignored
and one can expect modifications of the free electron
scattering formulas. Neutrino-atom collisions has been
reviewed by Kouzakov and Studenikin [6]. In this present
study we consider only the scattering by the standard weak
interaction.

Of particular interest is the ionization of atoms by
neutrinos and antineutrinos. The case of ionization of
hydrogen-like atoms was first considered by [7] who found
the ionization cross section per electron exceeded the free
electron cross section by a factor of 2 or 3 for neutrino
energies £, ~ aZm,. Subsequently, calculated electron spec-
tra from inelastic scattering of neutrinos by atomic electrons
of 'F and *"Mo were found [8,9] to differ significantly from
scattering by a free electron and were always smaller than the

Published by the American Physical Society


https://orcid.org/0000-0001-8947-2095
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.013008&domain=pdf&date_stamp=2022-01-12
https://doi.org/10.1103/PhysRevD.105.013008
https://doi.org/10.1103/PhysRevD.105.013008
https://doi.org/10.1103/PhysRevD.105.013008
https://doi.org/10.1103/PhysRevD.105.013008
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

IAN B. WHITTINGHAM

PHYS. REV. D 105, 013008 (2022)

free electron case. lonization cross sections for scattering by
bound electrons in the light atoms H, He and Ne were also
found [10] to be smaller than the corresponding free electron
cross sections. The calculations were then extended [11] to
the electron spectra for H, He and Ne, and integrated
1onization cross sections for H, He, Ne and Xe.

The calculations of [10,11] are based upon the assumption
of spin-independent nonrelativistic atomic wave functions
and consider the scattering to occur from a free electron
whose energy E, is set to the energy of the initial bound
electron m, + €, where ¢ is the binding energy, and whose
momentum p,, is determined by the probability amplitude
W01 m, (Pe,) [, where W, ;. (p,,) is the momentum-space
atomic wave function. The bound electron is then described
by the effective squared mass

= 2 = 2 —pt. @

Coulombic effects on the final electron are also ignored. This
allows the v, -electron scattering process to be described as a
probability weighted scattering by a free electron of mass 7.
This scattering can then be averaged (summed) over all
initial (final) electron and neutrino spin states, giving the
invariant squared scattering amplitude

|F(vee™ = veem) P =2Gi{(v, — a,)*(s — mg)(s — in?)
+ (T + @, )*(u — mg) (u — im?)
+2m% (v — az)t}, (3)

where

s=(p,+pe,)? t=(p,—p,) u=(p,—pr,) (4

are the usual kinematic invariants, and it has been assumed
that the scattering occurs at low momentum transfers
* < M% . Here, 1, = 1 +4sin? 0y and a, = —1 where
Ow is the weak mixing angle. For scattering by a free
electron, /” is replaced by m2. The result for 7,-electron
scattering follows from (3) by interchanging s and u. The
differential cross section in this approach is

1
=5 .
o 1677:2E1/[-Eei (pef + pl,f pei py’_)
d’p
X | 2 ¢
| n;l;m; (pe,)| (2”)3
3 3

,d'p,, dp,,

(5)

F - - .
e T T

An alternative approach has been introduced [12-14]
which assumes T < E,, and T' < m, so that the electrons
and scattering can be treated non-relativistically. The
atomic target is considered to be unpolarized. The differ-
ential cross section is then the low-7 form of the free
electron result modified to the form

do G}

d—T—E(l+4sin29W+83in49W)/S(T, q*)dq*, (6)

where S(T, ¢?) is the dynamical structure function

S(T.q*) =) _8(T—E; + E)[{flo(@[D (7)
7

and q is the spatial momentum transfer with 7% < ¢* < 4E7 .
The sum is over all final atomic states |f) of energy E,
consistent with energy conservation, with |i) being the initial
state. Here

pla) = explig-r,) (8)
a=1

is the Fourier transform of the electron number density and
the sum is over the positions r, of all the Z electrons in
the atom.

The dynamical structure function is evaluated through its
relationship

S(T.q?) = ZImF(T. ). ©)

to the density-density Green’s function

_ [(flp(@)|i)?
F(T,qz>_§f:T_Ef+Ei_i€, (10)

Atomic binding deforms the density-density Green’s func-
tion by broadening and shifting the free electron J-peak at
g> =2m,T, but Kouzakov et al [14] argue that the
modifications relative to the free-electron expressions are
quite small. Analytical results are obtained for 1s, 2s and
2p hydrogenlike states.

The more recent calculations by Chen et al. [15-17] use
the four-fermion contact form for the weak interaction

2 2
@0 _ G L | ol

")
= 11
dTdQ 27’ E, i (1)

where the scattering of the neutrino of momentum p, and
helicity s; is described by the tensor

L(D)aﬂ = <pl/f’ sf|ya(1 - 75)|p1/ivsi>
X Py syl (L =vs)Ipys sy (12)

The effects on the atomic system are represented by the
response functions
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Ra/} 2 +IZZ f|]

x 8(T + E; — Ey), (13)

f|Jw i)

which involve a sum/integral over the final atomic electron
states |f) and a spin average over the initial atomic states
|li) = [j;»m;j . ...). The relativistic weak current represent-
ing the sum of the charged and neutral currents is

e'(D,y" + a.r%s)e. (14)

N[ =

=

The model has been applied to Ge with the response functions
evaluated using the multiconfiguration relativistic random
phase approximation. Consequently, the leading relativistic
terms in the atomic Hamiltonian are treated nonperturbatively
by using Dirac eigenfunctions, the two possible configura-
tions for the Ge ground state are included, and the Random
Phase Approximation accounts for the two-body correlations.
The weak current operator (14) is expanded in spherical
multipoles.

The calculations [10-14] destroy the relationship
between the neutrino helicities and the orbital and spin
angular momenta of the atomic electrons. Some of these
issues are addressed by [16,17], and their approach is
closest in spirit to the present calculations. To maintain the
full collision dynamics, the scattering of the neutrino by
the bound electron will be treated in a similar manner to
that of bound Compton scattering [18] in that the
scattering will be formulated in configuration space using
the Furry bound interaction picture [19] rather than the
usual formulation in the interaction picture in momentum
space as appropriate to scattering by free electrons.

The general formalism for the scattering of neutrinos and
antineutrinos by atomic electrons is presented in Sec. II. This
includes the derivation of the S-matrix and differential cross
sections for the scattering processes in terms of the con-
traction of neutrino and atomic electron tensor amplitudes,
and the explicit evaluation of the atomic electron amplitude
for the case of an atomic electron represented by a central
field Dirac eigenfunction. The nature of the radial matrix
elements which occur in the atomic electron amplitude are
discussed in Sec. III, and issues relating to the evaluation of
the cross sections in Sec. IV. Results for the energy spectra of
the ionization electrons produced by scattering of neutrinos
and antineutrinos off hydrogen, helium and neon are
presented and discussed in Sec. V. Section VI contains a
summary and conclusions for the investigation. Details of
the derivation of the S-matrix in the Bound Interaction
Picture are given in Appendix A, explicit expressions for the
electron scattering tensors in Appendix B, and computa-
tional details for the evaluation of the radial matrix elements
in Appendix C.

II. GENERAL FORMALISM

A. S-matrix for scattering by bound electrons

As discussed above, in order to treat the effects of atomic
binding on the scattering of neutrinos by atomic electrons,
the second-order S-matrix element will be developed in the
Furry picture [19] in which the electron is in the presence of

a c-number electromagnetic field A(ext)( ) and the electron
field operator satisfies
170, = ey A (x) = m Je(x) =0. (1)

where 0, = 0/0x®. The natural unit system 2 =c =1 is
used throughout, the scalar product of two 4-vectors is
A-B=g¥ AuBs = AgBy — A - B, the Dirac matrices y?,
(@ =0,1,2,3)satisfy {y*, y*} = 2¢", ys = iy’y'y*y>, and
the field operators for a given particle are denoted by the
symbol for that particle.

The part of the Standard Model lepton interaction
Lagrangian which describes the interactions between an
electron-neutrino v, and an electron e is [20,21]

cl;ee _ ﬁ?«Wﬁ +£I;eZVe + ,sze, (16)
where

£ = 29 N1 —ys)Wie

2v2
+er(1—ys) W), (17)
v, U, _g TR
£ eZU, — N a(l — Y4 ol 18
7 4COS€W [1/67/ ( 75) al/c] ( )
L% = 4 cos Oy Nley*(ve + acrs)Zqel. (19)

Here g is the SU(2) gauge coupling constant, v, = —1 +
4sin®> @y, and a, = 1 are the weak neutral current param-
eters, W) and Z are the charged and neutral weak gauge
boson field operators respectively, and N is the normal
ordering operator.

The total S-matrix for v, scattering at low momentum
transfers k> < M3%, where A = W, Z, is (see Appendix A)

14 . G 14 e a
s\ = -mjga(E},))Mg},ni(q) M

where

2 (puf’sﬂ pl/i’ si)a (20)

Mﬁlj)'”i(q)a - /d3xei(p”i_p“f)'x
X P (X) (B, + ars)ph (x),  (21)

and
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MY (py,.57Pu,s51)e =15 (P, )7a(1=75)ul) (p,,).  (22)

Here u*)(p,) are the plane wave spinors describing a

neutrino with momentum p, and helicity s, and ¢S,+)(X) is
the energy eigenfunction for an electron in a state of the
external field AV specified by the quantum numbers 7.
The quantity

3(EY)) = 68(E,, +E, —E, —E,). (23)

incorporates energy conservation, and q = p, — is the
Vi vy

momentum transfer from the neutrino. The electron mixing
parameters are

b,=v,+2=1+4sin’0y, a,=a,—2=-1. (24)

For scattering of antineutrinos, M*) is replaced by
M<D) (pv_,- ’ Sfﬂ pl/i ’ Si)a - D(Si) (pu,»)%x(l - 75) U(Sf) (pvf )’ (25)

where »*)(p,) is the antineutrino plane wave spinor, and
6(E.<';)) is replaced by 6(E;f:))

B. Cross section

We assume each atomic electron acts as an independent
scattering center. In order to obtain the scattering cross
section per atomic electron, § (fyl) is expressed in the form

s\ = 8(E,, + E,, —E, —E, )M\ (26)

The corresponding transition probability per unit time is
then [22]

v ! v
de(‘i) = %‘%Enf + Evf - En[ - Eu;)|M§‘i)|2' (27)

For v, scattering into the momentum interval (p, Pyt
&’p, f,), the transition probability per unit time is

dP¥) = "dPdpdp'e. (28)
"y

where dp}”) (dp;e)) is the density of final v, (e) states and the

sum is over all final electron states consistent with energy
conservation. For plane wave neutrino spinors normalized to

' (p,)u®)(p,) = 2E,, the density of states is dp!") =
&’p,,/[(27)*2E, ] and the incident neutrino flux is 2E, .
The differential cross section is then

dPV) 1 d’p,
doV) — —— NapW gl (29
7 T 2E, 215%,Z /i (2m)2E, 1 (29)

Writing d°p, ;= E,Z//_dE,/ /_dQ,, ; then

o1
do) = S S(EY)
7 T (2n)4E, - Esi)

x E, dE, dQ, dp" | M P, (30)

where, from (20),
M) = i SE M, @M (B, 5701500 (31)
i \/z ol f i

The neutrino contribution to |/\/l;”l)|2 is [21]

LW (p,,. p,, )P = [0 (p,, )y’ (1 = ys)ut) (p,,)]
x a0 (p,, )y (1 —ys)ul)(p,,)
=8(plpe + pepl, — pu, - P9
+ie”p, py,,)s (32)

where s; = s, = —1/2. The scattering of antineutrinos
involves

LO(p,,. p,, )P =[50 (p,, )y’ (1 = y5)00 ) (p,,)]"
X b(lm(pm)ya(l - 75)v<lyf.)(pl/f)
= L(U)(_pl/f’ _pyi)/}a9

= (LY (py,. o, V4T (33)

where s; = s, = +1/2.

C. Atomic electron amplitude
The electron amplitude (21) requires the solutions

¢£l+) (x) of (15). We assume the atomic electron moves
in a spherically symmetric potential V(r) = eA®)(r) and
use the Dirac representation for the y matrices

I 0 0 o* 017
0: b k: b = b 34
Y (0 _1> Y (—ok ) Ys <1 0) (34)

where o%, k = 1, 2, 3, are the Pauli 2 x 2 matrices, and I is
the unit 2 x 2 matrix. The eigenfunctions have the form
[23]

1 (9@
brastrion =3 (55000 ) 09

where (r,0,¢) = (r,Q) are spherical polar coordinates,
and yj(Q) are the spinor spherical harmonics

| —m
X’;(Q) = ZC<ZK7§’]7M _m_wmsv/u) Yl;K S(Q)/me' (36)
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Here C(jy, js, j3,my, my, m3) is a Clebsch-Gordon coef-
ficient, and y,, are the two component Pauli spinors. The
total angular momentum j and orbital angular momentum
[ are obtained from the quantum number x by

1 K k>0 K
=K==, .= L Le=l—X (37
=l -1 {_K_1,<<o s

where k takes all nonzero integral values. Note that the
subscript e has been dropped from the electron energies.
The radial functions satisfy

< d/dr+x/r

S —(E+m,— V(F))) (gK,E(r)

=0. (38
dfdr—x/r fK,E(r)> G8)

As no observation is made upon the final continuum
electron, all possible states of the electron must be summed
over, with the result that the asymptotic form of the
continuum eigenfunction is not important [24]. Any set
of continuum functions may be used and the form (35) is
the obvious choice.

In order to evaluate

Vi@ = [ PdrdQeni, i (1.0.9)
X ya(l_)e + a675)¢1<i,;4,»,E,-(r’ 6? ¢)’ (39)
we introduce the expansion

oo +/

et =4z "N " ilji(|qlr)Yr@) Yr(Q)  (40)
=0 m=-1
and note that
I'@ = y%*(p, + a,rs) (41)

have the form

Hence (39) becomes

0,k Aym () *
NI (q) = 42> 'Y (@)
l.m

x {[Be(@.) 17 (q) (Y7 (1. 6F) k)

+ 117 (q) e 1Y (1, 0[]

+ia, ()1 (q) G 1Y (L o))

= 9 (q) (%, 1Y (1 o) i)} (44)

where, e.g., 7,(a,) for a = 0(k) respectively, ¢ = |q| and
the radial integrals are

10) = [ drgi, s, 0)inlar)ae.s ()
(@)= [ drgi, g, (e (0),
1(a)= [ dr s, 5, () ian)gs ()
@)= [drfe s (itanfoe . @9

Here on we use the simplified notation /,; .= ligs Iy, ;=

l; ; and mg = m;;.
The matrix elements of 6% can be evaluated by trans-
forming to a spherical basis 6%, 1 = 0, &1, where
otl=x L (o' +ic?) o =o° (46)
\/E ’

and using the Wigner-Eckart theorem

o

1 1 1 1
<)(mj|al|)(m,> :C<§’ls§7ml9l’mf> <§ §>9 (47)

where the reduced matrix element is
1
2

(VYY) = Ol Ly = mpompg = my)

l> = V3. (48)

2

Similarly,

X (LY |17) (49)
where
vy = e 1,000, (50)
' Vanlly] ‘
Here [ab...] = [(2a + 1)(2b + 1)...]'/2. The matrix ele-

ments between the spinor harmonics in the spherical basis
can then be written
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k) =

1. 1
<lf,§7]faﬂf_mfamfvﬂf>c<livi’fivﬂi —m

U

A
Van ngm : (Kf’ ki) (51)

mivﬂi)

mpy—H;

. 1 . .
= 5m.ﬂf—;4i [liji]c(ln 3 lf" 0,0, O)W(l, li’Jf’ 3 lﬂ]i) C(LJi’Jf’/‘f - ﬂi#hﬂf)v (52)

el |Y(1, ot
where
J W g 10005 ¢
l.m(Knyi)_ [l] (i’ s vfs Us Uy )Z
/ mp,n;
x C(li’ L, lf’/"i —mg,m,fy — m,)‘)‘smf,m;(S
and [18]

1

l; | i
ngn)’l(Kf’Kl) = ﬂ%C(ZH 17 lfvovovo) Zc<lf’§’]fuuf _mfv mfnuf)C(li’Ea]i’/’ti _mivmiyﬂi>

myg,m;

X C(Li L L,y — my m, py — mf)C<, J=,m;, A, mf>

C(Lf.jp b — Hi

where W(a, b, c,d, e, f) is a Racah coefficient. The ele-
ments with —«; or —k are obtained from the above through
the replacements /; — [; and [; — [; respectively.

For scattering by all of the electrons in a specified atomic
shell or subshell (labeled by «;), with no reference being
made to the final state of the atomic electron, the cross
section must be summed over all possible initial and final
electron states. We therefore need the quantities

/5(1 — Z Nﬁl er ) (54)

KfHgHi

For the case of H, the y; summation over electrons in each
shell or subshell is replaced by its average over the K-shell.

The calculation of these coefficients is greatly simplified
by choosing the coordinate system such that the neutrino
momentum transfer q is along the Oz axis and p,, lies in the
x—z plane. Thus

m (A . [l]
Yi(a) = W(Sm,ﬂ- (55)
For m=ps—p; this gives uy=p; whereas, for

m = ps—p; — 4, this gives 4 = py — ;.

1
.
22

: 1 L.
= Spy—p—2 V(LG C (L. 1. zf,o,o,O)Z[f]W(l z,,Jf, Ay, f) ( 5 S l,-,E,J,)

= A pi + A up)C(jis 1, fs i A i + 2), (53)

[
We need the combinations

ACD(L, Dy, 1y 1) = S (g, ) ) (e, ),
HysHi »
(56)
A<1’/1>(ll7 12’ 137 l4) = Z‘]%[rzn(ikf’ j:Kl)*JE/lVZl(:I:Kf’ :l:Ki)’
HysHi ,
(57)
A“’U(ll’ by, I3, l4) = ZJ%(in’ iKi)*JE,Ifiz (lLKf’ iK")’
Hy-Hi ’
(58)

AMI’A)(II, lz, 13, 14) = Z‘Iélll;:(:t’(f’ :l:Kl)*JE,/BL(:th’ ﬁ:Ki).

Hyfi

(59)

Here (11,15, 13,1y) = (I;.1;, 1y, 1;) for the case (+k, +x;),
with the replacements /; — [; for the case —«; and [; — [,
for the case —ky. Withm = m = 0, then 4 = 0 in (57), (58)
and A = A in (59).

After some standard Racah algebra manipulations (see,
e.g., [25]) we obtain
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b1
)(11,12,13,14)—511[ijl] [ 4]

. oY)
A%”)(ll, L. 13, 14) = 8,0(=1)7=IrH1V/6[ 1 ji)? : fl]d

[l] C(lz,l ll,O O O) (l4,l, 13,0,0,0) (l 12 ]f,z ll,]l>W(l l4 Jf,z l37.]1>

(60)

C(15,1,1;,0,0,0)C(l4,1,15,0,0,0)C(1,1,1,0,0,0)

o1 . o1 1 1. - .
X W(L ZZ’J]‘"E?ll’.]i)Z[f]ZW(l’ l47.]f’§al37f>W<ls§7f’ l41§?]i>W(1’]i’l?f’Jf.’ 1)’ (61)
f

Al 1A
A1 1 1. 1) = AT (1. 14, 1 ), (62)
A%”’”(ll,lz, l3,1y) = 5/1/,/1(—l)j"_jf_lgﬁ%[jf]’i]z[1214]C(12,77 1,.0,0,0)C(l4.1,15,0,0,0)
i} i} 1
x Y C(1.1.9.0,0,0)C(1, 1, 9.-1.2.0)>_[Ff*W (1 bapy 11,f>w<1, 14,Jf,§,13,f)
g If
1 - 1 1 1. 77 . Z -
x W 17§’f’ 1275’]1' w 1’§’f7 l4’§’]i w lvf’ l»fv]f’g)W(l’fv 17f7]i’g)' (63)
In order to evaluate the quantities (54) we need the Cartesian components A#%(/ 1234), Where
A00(11234) ;1”)(11234),
~ < L —1-1
A;ljl(11234) = Ayzl'2<11234) =5 [A% )(11234) +A§, >(11234)],
~ ~ i _1—
AP (lip3g) = =A% (Lpag) = —5 [A§11’1>(11234) —A§, " (1)),
AP (L) = A%,I‘O)(llm), A2 (1o34) = A;?J)(ll234),
A (1) = A (13a). (64)
For brevity, we have introduced /534 = {l;, 5, [3,l;}. Thus we finally obtain
L)@y = PR, + a2Lel, + Ta (L, + LE%,)), (65)
Kfs 1,1
|
where § = (0,0, ¢). Explicit expressions for L%, | etc., are o (5 W\ 7 (€) {5\
given in Appendix B R = [ a s @
The cross section (30), summed over all possible initial
and final electron states, is Z / dE;S(E f, ( )* N§ (@), (68)

G2
do :7F/5E<R>E dE, dQ, dE
o (27[)232meEu,~ ( fl) T T Tt |
XLfi(qvpuivpuf)’ (66)
where
Lf,-@,py,.,pb,.)=Re[L“-’<~>ﬂa1Re[L<v><py,.,pyf>ﬂa1
—Im[ (@) Im[L " (puoPu, gl (67)

and we have used, for final electron states normalized
according to (C9), dp;f) = dEy/m,. Introducing

Kpfyopi

then the cross section has the form used by [16,17] with
their response functions (13) corresponding to (68).

Of particular interest is the energy spectrum of the
ionization electrons

dG(y) GIZ: Evf
- Q, Li(a
dE; (271')232meEu1/ W L@ P ) (69)

where, in (69), it is understood that E, ;= E,+E, —Ey.
As the coordinate system has been chosen such that p,, P,
and q lie in the x—z plane with q along the Oz axis, the

013008-7



IAN B. WHITTINGHAM

PHYS. REV. D 105, 013008 (2022)

integration over Q, becomes —2x J d(cos®) where 0 is
the angle between p,, and p,. Noting that ¢*> = E7 +
E;, —2E,E,, cos0, then —d(cos 0) = dq*/(2E,E,,), and
our final expression for the energy spectrum is

do Gi 1
dE;  8m 16m,E2

/ dqufl((], py,-’ pl/f)‘ (70)

III. RADIAL MATRIX ELEMENTS

The radial integrals (45) involve the Dirac radial func-
tions g, z(r) and f, g(r) for the initial bound electron and
the final continuum electron. For a Coulombic potential
V(r) = —aZ/r, the radial Dirac equations (38) have
analytic solutions [23] in terms of confluent hypergeomet-
ric functions | F(a, ¢, z).

In this study we consider the scattering by electrons in the
ground states of H, He and Ne. As these systems involve
only K- and L- shell electrons, we can use the simplified
expressions

K; i r e Ei
9, £, (1) _ N,( m, + )(2/1,-r)7fe"1i’
fx,-,E,-(”) —v/m, —E;

G+ G o

Ai = m; — EF, Vi=/ ki — (aZ)? (72)

and the initial state energy E; is

7 27-1/2
E,. :me[1+ <0’7> ] . )
. el 7

The dimensionless coefficients (¢ 1, aq 1, N;) for the K-shell
(n=1,k; = —1),Lj-subshell (n = 2, x; = —1), Lyj-subshell
(n=2,k;, =+41) and Ljg-subshell (n =2,x; = —2) are
tabulated in [23]. (Note that [23] uses relativistic units
h=c=m,=1.) Since aZ <« 1, the initial state binding
energy €; = m, — E; can be approximated as (aZ)>m, /2 for
K-shell electrons and (@Z)?m, /8 for L-shell electrons. The
screening effects of the electrons in the filled K- shell (for He
and Ne), and L-subshells (for Ne) are represented by an
effective nuclear charge Z. = Z —s;, a procedure that
should be reasonable for small principal quantum number
n and small n — [ [26]. These screening constants s;, taken
from the fits [27] of Dirac single electron eigenfunctions to
empirical binding energies, are 0.656 (K-shell), 2.016 (L;-
subshell), 6.254 (Ly-subshell) and 7.482 (Ly-subshell).

The final electron continuum states, energy normalized
according to (C9), are

where

)@mwmw+m

gKf‘Ef(}") N ( \/m
() )N E = m,
X =PIy (a, ¢, 2ip,r) £ ec],  (74)

where
a’ZE
=\ (aZ). pr=y\/Ei-ml. y=—-2L  (75)
Pr
and

o2in — _ X1~ iyme/Ef'

: (76)
vty
The dimensionless normalization constant is
e™? Ty |U(yy +iy)|
F=" — (77)

ap; T2y, +1)°

The parameters in the hypergeometric function are a =
yp+1+iyand ¢ =2y, + 1. Since a and z =2ip,r are
complex, the computation of F(a,c,z) involves the
summation of a slowly convergent complex series for each
required value of z. Consequently we choose to integrate
the Dirac equation directly. For each shell and subshell
calculation, the continuum state electrons are assumed to
move in the same potential as the bound state elec-
trons [28].

Details of the computation of the continuum radial
functions and the radial integrals (45) are given in
Appendix C.

IV. EVALUATION OF CROSS SECTIONS

The cross section involves the contraction of the electron
tensor L;fi)(q)ﬂ”, given by (65), with the neutrino tensor
L}fa)( Pu.s pbf) given by (32). From (64), we need only the
diagonal elements (f, ) and the off-diagonal elements
(B,a) =(1,2),(2,1),(0,3),(3,0) of the two tensors.

The summation over [ in the electron tensor is constrained
by the conditions A(l3,14,1) where I3 = (I, l') and
Iy = (1;,1}). Here A(a,b,c) implies |a —b| < ¢ <a+ b,
together with a + b + ¢ = even integer. Similar constraints
apply to the summation over . As I; has the values 0 or 1,
and [; the values O, 1 or 2, the number of terms in these
summations is quite small. However, the summation over k¢
is unconstrained, with convergence coming from the
decreasing overlap between the initial bound and final
continuum electron eigenfunctions with increasing x; in
the radial integrals.
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For x; = —1, the special case

1.1 A4
AYD(1,,0,1,,0) = A¥D(1,,0,1,,0)
2, +1
= 81,01, 2+ 12 (78)

can be used to check the evaluation of the A coefficients. A
similar result holds for x; = 1 with /; replaced by /.

The required elements of the neutrino tensor are
calculated from (32) where, with our choice of coordinate
system, p,, = (E,, sin(y — 0),0,E, cos(y — 0)) and p,, =
(E,, siny,0,E, cosy). Here, y is the angle between q and
p,, and is related to the scattering angle 6 via

sin @

tany =—————.
I os0 = E,/E,

(79)

These elements can be expressed [16] in terms of the energy
transfer T = E, — E, and the quantity Q*> = ¢* — T?, that
is, 0? = —t > 0. Explicitly,

0
v)0,0 _ 2( 2
L®00 — 16E, E, cos <2>

0 0 2
LWL — 16E,,‘_E,,fcos2 <§> [tan2 <§> + g—]
0 0
LW?2 = I6E,E, cos’ <2> tan? <2> ,

0\ T?
LW33 — 16E, E, cos® <—> =,
2/ q

0 0
W12 — 1021 — _16; 2(Z Z
L L 16iE, E, cos <2> tan <2>

2] 2
X 4 [ tan? <§) + 7
O\ T
L0103 = L0)30 = |6E, E, cos? (E) e (80)

For antineutrino scattering, L®#¢ = (LWFa)*  The
difference between v, and ¥, scattering therefore arises
solely from the (1,2) and (2,1) components.

V. RESULTS AND DISCUSSION

The energy spectra do/dE of the ionization electrons
produced in low energy scattering of electron neutrinos and
antineutrinos by atomic electrons have been calculated as a
function of the electron kinetic energy €, = E; —m,.
Results are obtained for scattering of 5, 10, 20, and
30 keV neutrino energies by the ground state systems
H(1s), He(1s%), and Ne(15%25%2p®) where, for He and Ne,

the electrons are considered as independent scattering
centers.

The energy spectra are compared to that for scattering
from free electrons, for which, in the laboratory frame,
E; =m,,p,, = 0 and the kinematic variables simplify to

s =m,(m, +2E,),
U= me(me - 2Euf)’
t=2m,(m, — Ey). (81)

Setting /i = m, in (3), the energy spectrum of the scattered
electron for v, scattering is then [10]

de™) Gim, .,
(dE > =gz (e~ 0EL
f/ (Free) Ly,

+ (7_}(3 + ae)z(Eu,- + me — Ef)2
+m, (v —az)(m, — Ey)}, (82)

where m, < E F<m,+ e?“x and the maximum kinetic
energy is

max __ 2E12/l (83)
T m,+2E,

For low energy transfers T < E,,

<1+ o(El)] (34)

The total cross section for scattering off free electrons
is [10]

do!) G?
( o ) — JFMe (1 + 4sin®0y, + 8sin*Oy)
(Free)

) G:m,E, [ _ 2E,
EF>ree) . (Ue - ae>2 '
87 m, + 2FE,
1 m3
Yo vapli- ¢
R R s
2m,E
(2 _ 2 el 85
(7 -at) (85

For v, scattering, the interchange s <> u in (3) is
equivalent to a, <> —a, in (82) and (85). The low T limit
is unaltered.

Energy spectra and total cross sections for v, and 7,
scattering by free electrons are given in Table I.

Results for v, (U,) scattering by H are given in Table II
(Table III), by He in Table IV (Table V), and by Ne in
Table VI (Table VII), respectively. The energy spectra and
cross sections are expressed as ratios
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TABLE L. Energy spectra (do) /dE ),

) of electrons resulting from scattering of incident neutrinos of energy

E,. by free electrons. The results, in units of 10~'% GeV~3, are given as a function of the kinetic energy ey of the

electron. Also shown are the integrated spectra o
antineutrinos are given in parentheses.

)
(Free)

in units of 107° GeV~2. Results for scattering of

er/er E, =5 (keV) E, =10 (keV) E, =20 (keV) E, =30 (keV)
0.0 2.6029(2.6029) 2.6029(2.6029) 2.6029(2.6029) 2.6029 (2.6029)
0.1 2.4553(2.4471) 2.4571(2.4411) 2.4607(2.4299) 2.4641 (2.4195)
0.2 2.3076(2.2912) 2.3114(2.2794) 2.3185(2.2571) 2.3252 (2.2367)
0.3 2.1599(2.1354) 2.1656(2.1177) 2.1764(2.0846) 2.1865 (2.0543)
0.4 2.0122(1.9796) 2.0198(1.9561) 2.0342(1.9124) 2.0478 (1.8725)
0.5 1.8645(1.8238) 1.8740(1.7946) 1.8921(1.7403) 1.9091 (1.6912)
0.6 1.7168(1.6681) 1.7283(1.6331) 1.7500(1.5686) 17705 (1.5104)
0.7 1.5692(1.5123) 1.5825(1.4717) 1.6080(1.3970) 1.6319 (1.3301)
0.8 1.4215(1.3566) 1.4368(1.3104) 1.4660(1.2258) 1.4934 (1.1504)
0.9 1.2738(1.2009) 1.2910(1.1491) 1.3239(1.0547) 13550 (0.9712)
1.0 1.1261(1.0452) 1.1453(0.9879) 1.1820(0.8840) 12166 (0.7925)
€r (eV) 95.969 376.65 1451.9 3152.4

(v)
a(l]:“ree)

0.31980(0.31590)

1.2483(1.2185)

4.7624(4.5434)

10.241(9.5600)

TABLE II.  Energy spectra do') /dE '+ of the ionization electrons from scattering of incident neutrinos of energy
E,, by hydrogen. The results are expressed as ratios to the spectra (do") |dE ) (Free) fOT scattering by free electrons
and are given as a function of the kinetic energy ¢, of the electron. Results are shown for a Coulombic final electron

and, in parentheses, for a free final electron. Also shown are the integrated spectra ¢(*) expressed as a ratio to the

integrated spectra o

v)
(Free)

for a free electron.

ep/ep™ E, =5 (keV) E, =10 (keV) E, =20 (keV) E, =30 (keV)
0.1 0.7780(0.8467) 0.9472(0.9776) 0.9880(0.9970) 0.9952 (0.9991)
0.2 0.7680(0.9169) 0.9465(0.9877) 0.9877(0.9976) 0.9953 (0.9994)
0.3 0.7482(0.9345) 0.9427(0.9890) 0.9870(0.9976) 0.9952 (0.9995)
0.4 0.7192(0.9354) 0.9368(0.9883) 0.9861(0.9976) 0.9945 (0.9991)
05 0.6795(0.9254) 0.9267(0.9857) 0.9849(0.9974) 0.9930 (0.9981)
0.6 0.6273(0.9033) 0.9074(0.9782) 0.9828(0.9968) 0.9906 (0.9961)
0.7 0.5624(0.8664) 0.8669(0.9574) 0.9773(0.9942) 0.9868 (0.9931)
0.8 0.4872(0.8125) 0.7819(0.9022) 0.9545(0.9796) 0.9780 (0.9864)
0.9 0.4075(0.7428) 0.6286(0.7797) 0.8376(0.8877) 0.9183 (0.9383)
1.0 0.3308(0.6630) 0.4256(0.5840) 0.4629(0.5367) 0.4643 (0.5122)
€nx (eV) 95.969 376.65 1451.9 31524

¥/ 62;;@) 0.6626(0.8696) 0.8811(0.9472) 0.9568(0.9741) 0.9729(0.9802)

do\) /dE,

R¥W(E;) = (86)

Z(dd(l/) /dEf) (Free) ,

) (v)
and o /Za(Free>,

scattering by Z free electrons. Also listed are results for
the case where the final continuum electron is treated as
free, for which the radial eigenfunctions normalized
according to (C9) are

to the corresponding quantities for

gKf,Ef (7’) . pfme \V Ef+merjlf(Pfr) (87)

frp, (1) Voo \ S Ep—merji (psr) ’
where S, =/l

The energy spectra of electrons resulting from the
scattering of neutrinos by free electrons are shown in
Fig. 1, and the energy spectra ratios for scattering of
neutrinos by H, He, and Ne are shown in Figs 2-4

respectively. Plots for scattering of antineutrinos differ
only very slightly from those for scattering by neutrinos
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TABLE III. Energy spectra do®/ dEj of the ionization electrons from scattering of incident antineutrinos of
energy £, by hydrogen. The results are expressed as ratios to the spectrum (do'®) | dE f)<Free) for scattering by free
electrons and are given as a function of the kinetic energy ¢ of the electron. Results are shown for a Coulombic final
electron and, in parentheses, for a free final electron. Also shown are the integrated spectra 6 expressed as a ratio

to the integrated spectra ¢

(®)
(Free

) for a free electron.

er/er E, =5 (keV) E, =10 (keV) E, =20 (keV) E, =30 (keV)
0.1 0.7690(0.8448) 0.9415(0.9768) 0.9855(0.9969) 0.9938 (0.9993)
0.2 0.7587(0.9148) 0.9401(0.9868) 0.9850(0.9977) 0.9940 (0.9999)
0.3 0.7389(0.9324) 0.9356(0.9879) 0.9840(0.9979) 0.9938 (1.000)

0.4 0.7105(0.9336) 0.9287(0.9870) 0.9827(0.9978) 0.9930 (1.000)

0.5 0.6720(0.9244) 0.9178(0.9841) 0.9807(0.9975) 0.9912 (0.9992)
0.6 0.6219(0.9043) 0.8985(0.9768) 0.9775(0.9965) 0.9882 (0.9972)
0.7 0.5599(0.8706) 0.8599(0.9576) 0.9578(0.9934) 0.9833 (0.9937)
0.8 0.4882(0.8213) 0.7804(0.9074) 0.9485(0.9795) 0.9731 (0.9862)
0.9 0.4123(0.7577) 0.6361(0.7943) 0.8416(0.8966) 0.9179 (0.9422)
1.0 0.3393(0.6852) 0.4415(0.6093) 0.4844(0.5693) 0.4880 (0.5399)
er (eV) 95.969 376.65 1451.9 3152.4

o /o), 0.6590(0.8717) 0.8794(0.9505) 0.9576(0.9779) 0.9749(0.9843)

TABLE IV. Energy spectra do) /dE ¢ of the ionization electrons from scattering of incident neutrinos of energy
E,, by helium. The results are expressed as ratios to the spectra 2(de") /dE ) (Free) fOr scattering by two free
electrons and are given as a function of the kinetic energy ¢ of the electron. Results are shown for a Coulombic final
electron and, in parentheses, for a free final electron. Also shown are the integrated spectra ¢(*) expressed as a ratio

to the integrated spectra 20

(v)
(Free

) for two free electrons.

ep/em E, =5 (keV) E, =10 (keV) E, =20 (keV) E, =30 (keV)
0.1 0.6179(0.7209) 0.9020(0.9444) 0.9778(0.9929) 0.9910 (0.9977)
0.2 0.5983(0.8258) 0.9000(0.9719) 0.9774(0.9951) 0.9910 (0.9983)
0.3 0.5705(0.8607) 0.8920(0.9766) 0.9761(0.9954) 0.9907 (0.9986)
0.4 0.5358(0.8692) 0.8787(0.9757) 0.9743(0.9952) 0.9902 (0.9987)
0.5 0.4952(0.8626) 0.8568(0.9697) 0.9715(0.9947) 0.9894 (0.9986)
0.6 0.4498(0.8444) 0.8200(0.9549) 0.9659(0.9929) 0.9879 (0.9982)
0.7 0.4015(0.8164) 0.7585(0.9222) 0.9512(0.9857) 0.9842 (0.9964)
0.8 0.3528(0.7801) 0.6627(0.8579) 0.9031(0.9549) 0.9680 (0.9861)
0.9 0.3062(0.7385) 0.5331(0.7511) 0.7513(0.8359) 0.8671 (0.9068)
1.0 0.2641(0.6953) 0.3904(0.6088) 0.4472(0.5492) 0.4607 (0.5268)
et (eV) 95.969 376.65 1451.9 31524
0.5019(0.7988) 0.8129(0.9235) 0.9343(0.9644) 0.9635(0.9769)

@)
O-<D)/6(ll;ree)

and are not shown. The energy spectra ratios for scattering
of 10, 20, and 30 keV neutrinos by H, He, and Ne become
constant at low kinetic energies and can safely be extrapo-
lated to lower kinetic energies by assuming the ratios are
constant.

The calculations involve a sum over k; with convergence
decreasing with increasing €. The choice |k/| <20 for
E, =5 keV, |k <30forE, =10 keV, and |x;| < 50 for
E, =20 keV, gave convergence of much better than
1 x 10~ for each energy spectrum. For the larger electron
kinetic energies at E, = 30 keV, the imposed practical
limit |k ;| < 50 gave convergence of better than 1 x 10~ for

€y < 1.5 keV in the spectrum but, for higher energies, the
convergence decreased to 1 x 1072 at €7, so the numbers
shown for the high energy end of the spectra are slight
underestimates. For Ne, this decrease in convergence to
below 1 x 107 only occurred for the Ly subshell.

It is evident in the calculated spectra that binding effects
increase strongly with atomic number, are greatest for low
E,, and, for each E,, most significant at the high electron
energy end of the spectrum. As expected, the binding
effects are less for a free final electron than for a Coulombic
final electron. For Ne, the binding effects were strongest for
the K shell. The K shell results also showed the greatest
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TABLE V. Energy spectra do'®/ dE of the ionization electrons from scattering of incident antineutrinos of energy
E,, by helium. The results are expressed as ratios to the spectrum 2(do'®)/ dEy) (Free) foT scattering by two free
electrons and are given as a function of the kinetic energy ¢ of the electron. Results are shown for a Coulombic final
electron and, in parentheses, for a free final electron. Also shown are the integrated spectra 6 expressed as a ratio

to the integrated spectra 20

(@)
(Free)

for two free electrons.

er/er E, =5 (keV) E, =10 (keV) E, =20 (keV) E, =30 (keV)
0.1 0.6070(0.7180) 0.8919(0.9427) 0.9729(0.9925) 0.9880 (0.9977)
0.2 0.5877(0.8226) 0.8889(0.9699) 0.9720(0.9949) 0.9879 (0.9987)
0.3 0.5608(0.8579) 0.8800(0.9744) 0.9700(0.9951) 0.9874 (0.9991)
0.4 0.5274(0.8673) 0.8659(0.9732) 0.9672(0.9947) 0.9864 (0.9994)
0.5 0.4885(0.8624) 0.8441(0.9674) 0.9630(0.9938) 0.9848 (0.9992)
0.6 0.4454(0.8469) 0.8090(0.9539) 0.9560(0.9914) 0.9821 (0.9984)
0.7 0.3997(0.8227) 0.7517(0.9249) 0.9408(0.9842) 0.9766 (0.9959)
0.8 0.3538(0.7917) 0.6629(0.8678) 0.8967(0.9571) 0.9600 (0.9856)
0.9 0.3102(0.7569) 0.5423(0.7717) 0.7597(0.8520) 0.8705 (0.9167)
1.0 0.2712(0.7224) 0.4074(0.6413) 0.4732(0.5848) 0.4906 (0.5637)
er (eV) 95.969 376.65 1451.9 3152.4

o /o), 0.4975(0.8008) 0.8091(0.9272) 0.9340(0.9696) 0.9649(0.9818)

TABLE VI. Energy spectra do*) /dE '+ of the ionization electrons from scattering of incident neutrinos of energy
E,. by neon. The results are expressed as ratios to the spectra 10(de") /dE ) (Free) TOT scattering by 10 free electrons

and are given as a function of the kinetic energy ¢, of the electron. Results are shown for a Coulombic final electron

and, in parentheses, for a free final electron. Also shown are the integrated spectra ¢(*) expressed as a ratio to the

integrated spectra 100

(v)
(Free)

for 10 free electrons.

G E, =5 (keV) E, = 10 (keV) E, =20 (keV) E, =30 (keV)
0.1 0.09921(0.2905) 0.2847(0.4001) 0.4694(0.5130) 0.5697 (0.5901)
0.2 0.09333(0.2971) 0.2783(0.4188) 0.4789(0.5533) 0.5793 (0.6365)
0.3 0.08777(0.2892) 0.2685(0.4277) 0.4818(0.5755) 0.5798 (0.6561)
0.4 0.08329(0.2760) 0.2554(0.4310) 0.4798(0.5882) 0.5757 (0.6641)
0.5 0.08068(0.2594) 0.2384(0.4283) 0.4720(0.5951) 0.5691 (0.6652)
0.6 0.08027(0.2411) 0.2164(0.4167) 0.4548(0.5967) 0.5597 (0.6617)
0.7 0.08149(0.2244) 0.1908(0.3922) 0.4225(0.5885) 0.5424 (0.6536)
0.8 0.08286(0.2131) 0.1696(0.3555) 0.3641(0.5543) 0.4997 (0.6314)
0.9 0.08277(0.2100) 0.1623(0.3235) 0.2773(0.4672) 0.3880 (0.5438)
1.0 0.08036(0.2161) 0.1578(0.3157) 0.2334(0.3973) 0.2720 (0.4043)
er (eV) 95.969 376.65 1451.9 31524
0.08732(0.2613) 0.2383(0.3998) 0.4375(0.5494) 0.5395(0.6220)

v )
ol )/O-(Free)

enhancement from the use of Coulombic final electron
states. To a lesser extent, this was also the case for the L;
subshell at the lower neutrino energies.

The sharp decrease in the spectra at the high energy end
is a consequence of the very small range of the g?
integration in (70) for this region. Since G, = E,, +
E,-E,.
EF*. Also, for this region, ¢ ~ E,, so that the high energy

E, and gy, = the range 2E, is minimized at
tail will increase as E,_increases.

The shape of the Coulombic and free final electron
energy spectra ratios R(Ey) differ slightly. The Coulombic
final electron spectra ratios are approximately constant over
the region just above e}‘i“ = 0.1€7** before decreasing, in

most cases, monotonically, whereas the free final electron
spectra ratios increase initially with €, to a small peak
before decreasing monotonically.

Existing calculations [10,11] model the scattering by a
bound electron as scattering from a free electron with
effective mass 1. The cross section obtained from (5) is

1 d’p,.
d (Atom) _ / I\ 2
o 4El,iE,' (2”)3 n;lim; (pei>|

x |F(vee™ = v,e”)Pd®) (p,,. p,,).  (88)

where the two-body phase space is
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TABLE VII. Energy spectra do(®/ dE; of the ionization electrons from scattering of incident antineutrinos of

energy £, by neon. The results are expressed as ratios to the spectrum 10(do'?) /dE f)(

Free

) for scattering by 10 free

electrons and are given as a function of the kinetic energy ¢ of the electron. Results are shown for a Coulombic final
electron and, in parentheses, for a free final electron. Also shown are the integrated spectra 6 expressed as a ratio
to the integrated spectra 1002;1%) for 10 free electrons.

er/em E, =5 (keV) E, =10 (keV) E, =20 (keV) E, =30 (keV)
0.1 0.09751(0.2881) 0.2780(0.3981) 0.4588(0.5100) 0.5539 (0.5865)
0.2 0.09183(0.2946) 0.2721(0.4169) 0.4686(0.5509) 0.5651 (0.6338)
0.3 0.08653(0.2870) 0.2630(0.4260) 0.4716(0.5747) 0.5675 (0.6553)
0.4 0.08230(0.2746) 0.2507(0.4299) 0.4700(0.5894) 0.5656 (0.6661)
0.5 0.07993(0.2592) 0.2349(0.4284) 0.4630(0.5987) 0.5611 (0.6711)
0.6 0.07975(0.2424) 0.2145(0.4191) 0.4479(0.6036) 0.5538 (0.6724)
0.7 0.08126(0.2274) 0.1909(0.3982) 0.4194(0.6005) 0.5397 (0.6705)
0.8 0.08310(0.2179) 0.1718(0.3667) 0.3669(0.5751) 0.5036 (0.6577)
0.9 0.08373(0.2171) 0.1664(0.3405) 0.2876(0.5015) 0.4033 (0.5863)
1.0 0.08234(0.2263) 0.1650(0.3406) 0.2509(0.4474) 0.3138 (0.4671)
ert (eV) 95.969 376.65 1451.9 31524
a(z)/ag)rw 0.08669(0.2586) 0.2366(0.4029) 0.4351(0.5558) 0.5375(0.6309)
' ol — O SRR
4 —_— - \\
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\ 1
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FIG. 1. Energy spectra (do*)/ dEf) ey [Eq. (82)], as a
function of electron kinetic energy ey, of electrons resulting
from scattering of neutrinos by free electrons. Results are shown
for scattering of 5 keV (solid line), 10 keV (dashed line), 20 keV
(dash-dotted line), and 30 keV (dotted line) incident neutrino
energies.

|
dO (pe,.py,) = o-———3

dt. &9
87 s — in? (89)
The ejected electron energy spectrum is then
do.(Atom) 1 d3Pe.
= / % an,-l,-zn,(pe,->|2
dEf 327[Ey‘E, (271')
1 dt
F(y,e” N ———. 90
<N = v )P e (90)

g (eV)

FIG. 2. Energy spectra ratios R")(E;) [Eq. (86)], as a function
of electron kinetic energy €y, of jonization electrons resulting
from scattering of neutrinos by ground state hydrogen. Results
are shown for scattering of 5 keV (solid line), 10 keV (dashed

line), 20 keV (dash-dotted line), and 30 keV (dotted line) incident
neutrino energies.

In the rest frame of the atom, with the incoming neutrino

along Oz and the outgoing electron lying in the Oxz
plane,

s =m*+2E, (E; - p, cos0, ) (91)
and

t=2E, (E; - pe, cos8, — E; — p, cos 0,.) (92)
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FIG. 3. Energy spectra ratios R¥)(E;) [Eq. (86)], as a function
of electron kinetic energy ey, of ionization electrons resulting
from scattering of neutrinos by ground state helium. Results are
shown for scattering of 5 keV (solid line), 10 keV (dashed line),
20 keV (dash-dotted line), and 30 keV (dotted line) incident
neutrino energies.
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FIG. 4. Energy spectra ratios R%)(E +) [Eq. (86)], as a function
of electron kinetic energy €y, of ionization electrons resulting
from scattering of neutrinos by ground state neon. Results are
shown for scattering of 5 keV (solid line), 10 keV (dashed line),
20 keV (dash-dotted line), and 30 keV (dotted line) incident
neutrino energies.

The collision kinematics restrict the range of E; to E](cz) <

E; < E;]) where [11] the limits E}l ) depend on p,..
The energy spectra ratios calculated by [11] have a
similar shape to the free final electron spectra ratios
calculated here in that the ratios increase initially to a
small peak before decreasing monotonically. The present
free final electron ratios, however, differ significantly in

magnitude to those of [11] and have a much smoother
energy dependence.
The integrated cross sections

E
o = / "dE;, —, (93)
E, ! dEf

where E; =m, and E, =m, +ef™, can be estimated
from the calculated energy spectra. As these spectra were
only calculated for E; > m, +0.1€j}‘a", we assume the
spectra at E; =m, are the same as at m, + 0.165}‘3".

This assumes the lower energy part of the spectrum is
flat. These integrated cross sections are given in the tables,

(®)

expressed as ratios to the integrated cross sections ZG<Fre o)

[Eq. (85)] for Z free electrons.

VI. SUMMARY AND CONCLUSIONS

The energy spectra do/dE; of the ionization electrons
produced in the scattering of electron neutrinos and
antineutrinos with energies 5, 10, 20 and 30 keV by atomic
electrons have been calculated for scattering by the ground
state systems H(1s), He(1s?), and Ne(1s%*25?2p®) where,
for He and Ne, the electrons are considered as independent
scattering centers. Results are also obtained for the inte-
grated cross sections.

The present calculations maintain the full collision
dynamics by formulating the scattering in configuration
space using the bound interaction picture, rather than the
usual formulation in the interaction picture in momentum
space as appropriate to scattering by free electrons. The
energy spectra are expressed as an integral over the
momentum transfer ¢ from the neutrino or antineutrino to
the atomic system. The integrand is the contraction of the
second rank neutrino tensor L®) [Eq. (32)] or antineutrino
tensor L) [Eq. (33)], and the second rank electron tensor
L) [Eq. (65)]. This electron tensor involves radial integrals
over Dirac central field radial eigenfunctions for the initial
bound electron and final continuum electron, together with a
spherical Bessel function arising from the momentum trans-
fer. Screened point-Coulomb radial eigenfunctions have
been used, with the continuum state eigenfunctions calcu-
lated by direct integration of the Dirac equations.

The calculated energy spectra have been expressed as
ratios to the energy spectra for scattering by free electrons.
Binding effects increase strongly with atomic number, are
largest for low E, and, for each E,, greatest at the high
electron energy end of the spectrum. The most extreme
effects of binding are for E, =5 keV scattering by Ne
where the ratios are less than 0.1. The energy spectra have
been calculated for both a Coulombic final electron state and
a free final electron state. The results indicate that the
binding effects from the continuum state of the final electron
are significant and can be comparable to those arising from
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the bound initial electron state. This especially occurs at the
high energy end of the spectra for scattering of 5 and 10 keV
neutrinos and antineutrinos. As the continuum radial eigen-
functions increase as r’/ until the point r ~ ||/ p; where
they become oscillatory (see Appendix C), the continuum
state for high E; and p;, contributes strongly at small
distances where the Coulomb interaction is significant.
All existing calculations assume a free final electron and
therefore under estimate the total binding effects.

The neutrino and antineutrino energy spectra are very
similar, with the small difference of <1% arising from the
(1,2) and (2,1) elements of the lepton tensor L®Pe n all
cases the free electron and bound electron energy spectra
for neutrino scattering are higher than those for antineu-
trinos, although the ratios at the high energy end of the
spectra do not reflect this.

The results for the Ne energy spectra show that binding
effects are still very significant at E, = 30 keV, the
integrated spectra ratios being <0.6. This suggests the
calculations should be extended to higher neutrino energies
for this element. However, this would require a substantial
increase in the maximum value of |k/| used as the
convergence is very slow at higher energies, which is not

|

1 v,We v,We v,Zv eZe eZe v, Zv,
Siz)e = —§/d4x1/d4x2T{£1€W () L5 () + L2 (1 ) L7 (x2) + L57 (x1) L7 (x2) }.

Using Wick’s theorem, the three time-ordered terms become

T{LEY () £ (1)) = (2 =

T{[Z?Z”“( L (xy)} = <4C(_)Sggw>2 We(x)r*(1 = ¥s)ve(x1)Z, (xl)Zﬂ(xz) e(x0)y (v, + a,ys)e(x,)]

T{LGZ () L7 (1)} = THLE ™ (1) L57 (1) } (1 > x2).

Here the contracted operators W (xl)W},_) (x,) and
I —|

Z,(x1)Zs(x,) are the W and Z gauge boson propagators
respectively, which we denote by iD’;‘ﬁ(xl ,Xp) withA = W,
Z. As x; and x, are dummy integration variables, the
interchanges in (A3) and (AS5) produce terms identical to
the original terms.

In order to identify the terms in (A3) and (A4) specific to
the scattering of electron neutrinos by electrons, the
neutrino and electron field operators are expanded in terms
of appropriate basis sets of states, with the coefficients
identified as the corresponding particle and antiparticle
creation and annihilation operators. For the neutrino field
we have the usual expansion in terms of neutrino u'*)(p)
and antineutrino »*)(p) plane wave spinors:

practical. As the results form a monotonic sequence for
increasing values of k;, a convergence acceleration tech-
nique such as the #-algorithm [29] may be beneficial.
The formalism and techniques developed in the present
calculations have assumed the atomic electrons for Z # 1 are
in a closed shell or subshell [see Eq. (54)]. They can be
readily applied to other closed shell or subshell atomic
systems provided these systems can be represented by
central field eigenfunctions. Only the calculation of the
radial integrals would require modification to deal with non-
Coulombic self-consistent relativistic radial eigenfunctions.

APPENDIX A: SCATTERING MATRIX

The second order S operator for the interaction (16)
between an electron-neutrino and an electron is

1
V=g [ [ e ). @n

where T is the time ordering operator. Of relevance tov, — e
scattering are the terms

(A2)

) (N7 ()7 (1 = 75)e() W ()W (1)e ()7 (1 = 75)ve (02)] + (31 <> x2)}

(A3)
(A4)
(AS)
ve(x) = 7 () + 47 (x), (A6)
where
(+) — 1 s —ip-x
0= 3 [ @z @b e (A7)
and
W (x) &p )di(p)ei”s. (A8
7 3 [Erprwdmer (9

The expansions for the conjugate field 7, = I/Iyo are
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7, (x) =7, (x) + 7,9 (x), (A9)
where
B = [ dpo e el
(27) T 2E,
(A10)
and

1 . .
3 —(s) f ipx
> /d Pog @ (R)bs(p)e.

1
(—)( ) -
v\ (x
(27)’ s—+1/2

(Al1)

In the above, b, (p) (d(p)) are the neutrino (antineutrino)
one-particle annihilation operators, and b} (p) (d!(p)) the
neutrino (antineutrino) one-particle creation operators, for
particles with momentum p and helicity s. Choosing the
normalization

<
—
M\
N7
~~

p)},()u(s)(p) = 2p05s'$51
p)}/ov(X)(p) = 2p053',5’

S]]
fnl
—

—~

(A12)

then the annihilation and creation operators satisfy

{by(p). b} (p'} = (22)32p°8, 5(p — P').

{d,(p).d\(p'} = (27)*2p°8, 5(p — P'). (A13)

For the electron field, however, the decomposition is in
terms of solutions ¢(x) of (15) for an electron in the
external field AV, Assuming the positive and negative
energy solutions q’)g,i)(x) form two distinct sets, each
separated from the zero energy by a finite interval, we
can make the expansion (E, > 0)

e(x) = e (x) + e (x), (A14)
where
€)=Y andh (x)eECL (ALS)
and
e (x) =Y cuph (x)er, (Al6)
Similarly, for the conjugate field,
e(x) = e (x) + e (x), (A17)

where

2 (x) = D e (x)e B (A18)
and
2 (x) = > ah (x)elE. (A19)

Here, n represents the set of quantum numbers, including
E,, specifying the states in the external field, a, (c,) are
annihilation operators for electrons with positive (nega-
tive) energies, and aZ (c;’;) are the corresponding creation
operators. If the external-field solutions are normalized
according to

<¢£l:/t)|¢z(1i)> = 5n/,m (AZO)
then these operators satisfy
{an’ ajﬂ} = {cn’ le’} = 5n’,n- (A21)
The relevant terms in (A3) are
TV (xy, %) = N[’/_e(q:)(xl)V{le(+)(xl)iDXVp’(xlvxz)
x 2 (0) Vv (1)), (A22)
where we have defined the vertex factor
—9
V= ——y*(1 —ys5). A23
S5 (1= (423)
From (A4), the terms are
T%(xy, %) = N[V_e@)(xl)ngsfi)(xl)il)gﬂ(xl,xz)
x ) () Vee™ (xy)], (A24)
where the vertex factors are
—g
Ve = (1 —vys), A25
B 4COS€W7/( 7s) (A25)
-9
Vie— 2 . A26
4 cos 9W 4 (Ue + aeyS) ( )

The upper (lower) signs on the neutrino field operators in
(A22) and (A24) refer to v, (v,) scattering.

Introducing the Fourier transform of the gauge boson
propagator

1 )
Dgﬁ(xlaXQ) = (2”)4/ d4kDgﬂ(k)ezk'(x|—xz)’ (A27)
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where

. ] ( _g)kak
lD‘;‘li(k) = —# |:gaﬂ ﬁ]\diﬁ} N (A28)

and substituting the expansions (A7), (A11), (A15) and (A19) for the field operators in (A18) allows the integrations over
dx, dx) and dk° to be performed, yielding the energy conservation condition 5(E,, + E, — E, — E}) and the S-operator for
W mediated v, scattering

SWw) — SZZ/CZS //dS /d3k4E/ E/ _|_Ey_En_EIIJ)/d3xl/d3xze—i(p’+k)»x,ei(p+k)~x2

Vl}’l&&

xn<s’><p'>va¢n /(x,)iDY (K. K@ (%) VAul) (p)N[b!, (p)a, b, (b)), (A29)

where k = E, — E,. The same substitutions into (A24) allows the integrations over d*x;, d*k and cl)c2 to be performed,
resulting in the S-operator for Z-mediated v, scattering

- SZZ/ ‘ / £p 4E’ 5(E, + E, ~E, ~ E,) / Pxyel0v) e

Vlil s,

xa<s’><p'>vz’u<s><p>zDZ (p = p)o.S )<x2>va¢n (x)N[bL(p')by(p)al,a,]. (A30)

Forming the S-matrix between the initial state

i) = bl,(p,,)ah,|Vac) (A31)
and the final state
) = bi,(p,,)an, |Vac) (A32)
gives
1 i e
Si ) =~ sy 0(Ef)) / &k / P, / P PN il 3
(27)
x a0 (p,, ) Vi (x1)iDY, (K. K)Bh (x2)VPul) (p,,) (A33)
and
S\ = —2ns(EL)) / &y PP 500 (p, YVeu) (p, )iDZy(p; = pp)d) (Xa)VERS (x5). (A34)
|
where . i
ng/i(k) = 372 Jop: (A36)
A

3(EY))=8(E, +E, —E,~E,). (A35)
and the integrations over d°k and d’x; in (A33)

Since the scattering occurs at low momentum transfers ~ can now be performed. Noting that My = Mz cos Oy
k* < M3, the gauge boson propagator, in the Feynman  and ¢*/(8M7%) = Gg/+/2, the S-matrix elements

gauge ¢ = 1, simplifies to become
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. ) a ( )
S;‘I’V’/) = 2ri \G/gé(EEC’;)) / d3xzel(Pu,—Puf)'Xz [l/t< ‘[>(I_)vf)7 (1 - }/5)¢”T (XZ)}
. R X [y (%) a(ve + acys)u)(p,,)]
Sy a _
e ) = [, (1 = 750 (p,)
X[y (%2)ra(1 = 75)ut (p,)]. (A37) X [ (%1)ale + acrs) i (%)) (A39)
and

we can combine the S-matrices for W- and Z- mediated

G scattering to give the result (20).

i) = —ai 72 O(Ef)) / Py @)
APPENDIX B: EXPLICIT EXPRESSIONS FOR

x [a®) (p, Are(l = 7s)u) (p,,)] ELECTRON SCATTERING TENSORS

[q’;n ; (xz)ya(y + ae75)¢( )(Xz)] (A38) Explicit expressions for the electron scattering tensors
Lé’f‘ve,L’Zf‘ae,LZfa(, and L/ajfye appearing in (65) are given
Using the Fierz transformation here. For the case (a, #) = (0,0), we have

LS, = I FPAY (1, 1, 1, 1) + B I RSO (1, 1, 1 1) + BIPRS00 1 1) + BT T AYO (1 1 1 1),

i fa f’ i fa i f7
LS, = I RSO (1, 1,1, 1) = BT IPASO (1 0. 1 1) = B IPADO (1 1 1y 1) + B RSO (1 1, 1 1),
L%, = il I A (1, 1 1y 1) = B HIASO (L 1 0y 0) + BT I AYO (1 1, 1y, 1) = 1 HPASO (1, 1, 1 1),
0.0 1795 799 20,0 9f* 1ff 30,0 * 0,0 * 0,0
Lo, = =il 1A (U 0 1y 1) + BV I AL 1 U 1) = 7 1A (0 0 0y 1) = B T ASO (1 1,1, 1)) (B

[
The other cases can be obtained through the substitutions  gives

' kk _ pkk _
Lyk, = L% [AY (1. 1, 13 1) — AS A (1), 1. 15, L) L%, = Lay, = 0. (B6)
Kk _ 700 1300 Tk k
Laja, = Lo, [Ay7 (L b, o Ly) = A5 (1 D 1 1) Hence all the diagonal elements of L;‘;.)((])/’” are real.
Luia, = Lo [A7" (1. 1. 15, 1y) eA" K. 13, 1)]
Kk _ 700 1500 Tk
Lajv, = Lo Ay (1 loo 1y, 1) = A7 (s 1. . 1) APPENDIX C: EVALUATION OF RADIAL
LY, = Ly A0 (1. 1. 1. 1) ~ A°"(ll,lz, b 1y)] MATRIX ELEMENTS
LY, = Lg,eob‘r%o( AR ( 1.1 15, 1)) The evalqation Qf the radial. matﬁx eleme.nts 45)
ok 00 1300 0 L requires the integration of the radial Dirac equations (38)
Ly, = Lo, [A7 (L 1, 13, 1y) = A (L 1, 13, 1) to obtain the continuum eigenfunction
Lgﬁ/e =LY (216 [A Ol s, 1) — AO k(ll’ b,13,14)].  (B2)
_ gKf,Ef(r)
. ny,Ef(r) = ’ (Cl)
Using the symmetry f K7y (r)
AEII 0 (L1, 1, 13, 1,) = AEII D (I3, 14, 1, L), (B3) and the subsequent integration over a product of the initial
bound state eigenfunction (71), this continuum eigenfunc-
and noting that the radial integrals are real, then tion, and the spherical Bessel function j !(gr). o
The continuum eigenfunctions are regular at the origin
L00 700 (B4) and asymptotic to standing waves. These solutions increase

as r// until the point r,~ [k/[/p where they become
oscillatory with approximately constant amplitude. As y
can be quite large, the smoothed functions [30,31]

AUy by, 1, L) = (1) TATA D (1,0, 1,h),  (BS) Ve, (r) = 1770y, (1), (C2)

and these terms cancel in (65). Similarly, the symmetry
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are integrated outwards from r = 0 until the first maximum
or minimum of Y, g (r) is reached. These smoothed

solutions satisfy

dy,(f’Ef(}")

dr (C3)

=a(r.yp) Ve, £, (1),
where

o= (e
TN~ (Ep=m,— V(1))

The starting values were obtained from a series expansion

about the origin
(+n)
-2 ()
n=0 b’l

where the coefficients a, and b, (n>1) satisfy the
recurrence relations

Ef+m,—V(r)
N ) )

ykf,Ef(r) (CS)

a, = [aZ(m, — Ef)a,_,
+ (me + Eg)(n+ vy — k)bt ]/n(2ys + n),
b, = —[aZ(me + Ef>bn—1

+ (Ef —m,)(n+ vrt Kf)an—l]/”(ZVf +n), (C6)
with ay and b, determined from
aZ
by = ao, Kk < 0), Cc7
o= (F5)a <0 @
and
aZ
= by, > 0). C8
% (K,. & yf) o (y=0. (C8)

As the differential equations (C3) are linear, the values
ap = 1(xy < 0)and by =1 (k; > 0) may be used as initial
conditions. However, the energy normalization condition

76908, e r =0 md(E ) (©9)

requires that the computed solutions be corrected by the
factors [31]

ay =2Ny\/E;+m,(2ps)'t{yscosn—ysinn},  (C10)

for k; < 0, and

bo = _2NfW/Ef — me(pr)Vf {]/j Sin?’] +yC057’]}, (Cll)

for ky > 0.

The differential equations (C3) were integrated using a
fifth-order Runge-Kutta method [32]. The rapid propaga-
tion of initial errors that arises from the r~' term in a(r, y;)
was controlled by the use of the series expansion for the
first 5|k/| points of the integration mesh [31]. The inte-
gration algorithm correctly reproduced the free field sol-
utions (87) for Z = 0 and the asymptotic forms

<9K,v,E,-(F)> B &< VE; +mecos(pyr+6y) )
VAL ~ \aps —/Ey—mgsin(psr+6¢) '
(C12)

for Z # 0, where the Coulombic phase is [23]

8 =ylog(2psr) —arg[U(y,; +iys)]| +n;—nys/2. (C13)

The radial integrals (45) have the form

T,(q) = / (Ar e jy(gr)ye, g, (Ndr,  (C14)

where f; =0, 1, and were evaluated using an upper limit
Feo = Xoo/A; With X, chosen to ensure rj;(gr) and y, g, (r)
had attained their oscillatory forms. This required the
condition

T > Max

\/1(z+1)’\/lf(lf+1), (AR (C15)
q Py Py

to be satisfied. Since g, = €7 + ¢;, then, for e, in the
range [11] (0.01-5.0) keV, the smallest value of ¢, occurs
for Hand is 4.6 x 107. Since p ~ \/2¢ for small €/, then
Pfmin~ 6.3 x 1073, Thus the condition on j,(gr) is the
most challenging to meet.
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