Received: 5 April 2021

Revised: 29 August 2021

Accepted: 12 October 2021

DOI: 10.1111/raq.12627

REVIEW

REVIEWS IN Aquaculture

Recent developments in male fertility evaluation, sperm
cryopreservation and artificial fertilisation, and their potential
application to decapod crustacean aquaculture

Jon Irish Legaspi Aquino'+?

1Gamete and Embryology (GAME)
Laboratory, College of Public Health,
Medical & Veterinary Sciences, James
Cook University, Townsville, Queensland,
Australia

2Centre for Sustainable Tropical Fisheries
and Aquaculture, College of Science and
Engineering, James Cook University,
Townsville, Queensland, Australia

SAustralian Crayfish Hatchery, Townsville,
Queensland, Australia

Correspondence

Damien B.B.P. Paris, Gamete and
Embryology (GAME) Laboratory, Centre
for Sustainable Tropical Fisheries and
Aquaculture, College of Public Health,
Medical & Veterinary Sciences, James
Cook University, Townsville, QLD 4811,
Australia.

Email: damien.paris@jcu.edu.au

Funding information

Postgraduate Research Scholarship,
James Cook University (JCUPRS); PhD
Top-up Scholarship, Cooperative Research
Centre for Developing Northern Australia
- part of the Australian Government’s
Cooperative Research Centre Program

| Lisa Elliott® | Chaoshu Zeng?® | Damien B.B.P. Paris’?

Abstract

To maximise productivity, a better understanding of the underlying causes of sub-
fertility that lead to inferior offspring and high mortality is imperative. In decapod
crustaceans, most research has focused on female reproductive performance, with
little attention given to male fertility. Paternal genetic contribution is critical to both
successful embryonic and post-embryonic development. Assessment of sperm qual-
ity can be a direct method to determine male subfertility in decapods. Sperm qual-
ity parameters such as sperm concentration and morphology have traditionally been
used to determine male reproductive performance, but these procedures are time-
consuming and can only assess a limited number of sperm cells and males. Alternative
diagnostic biomarkers used widely in humans and other mammals could be adapted to
decapod crustaceans and may be more indicative of sperm fertilisation competence
and male reproductive performance. These predictive biomarkers use fluorescent
cellular dyes and high-throughput flow cytometry or computer-assisted sperm mi-
croscopic analysis to evaluate sperm viability, mitochondrial function, acrosome reac-
tion and DNA fragmentation. This review examines current and advanced biomarkers
to evaluate sperm quality and further explores state-of-the-art procedures of sperm
cryopreservation (conventional vs. vitrification techniques) and artificial fertilisation
in decapod crustaceans. Sperm freezing coupled with artificial fertilisation in deca-
pods permits the long-term storage, controlled timing and selection of individuals for
reproduction. Collectively, these tools can be applied to commercial broodstock man-
agement to improve productivity and accelerate selective breeding in the crustacean

aquaculture industry.
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1 | INTRODUCTION

More than 50% of the world's seafood products presently come
from aquaculture®; with crustaceans making up the bulk of seafood
produced that typically command high values in the global market.!?
Production of crustaceans through aquaculture has been increasing
over the past decades® and by 2018, total global aquaculture produc-
tion reached 9.4 million tonnes and was valued at US$ 69.3 billion.

Reproductive efficiency in crustacean aquaculture is generally
focused on the performance of female broodstock, with little atten-
tion given to male fertility.® However, several reports have shown
that sperm quality, as well as spermatophore formation, could af-
fect reproductive efficiency in decapod crustaceans.**® Hence,
screening male broodstock for fertility is critical to achieving high
fertilisation rates and yielding good quality offspring. Such screening
can detect the presence of sub- or infertile male broodstock in the
hatchery, which may reduce production efficiency and raise opera-
tional costs.*

A direct way to determine male fertility is to evaluate sperm
quality.***? Sperm quality refers to the capacity of spermatozoa to
fertilise eggs successfully and yield normal embryos.13’14 Evaluation
of sperm quality in crustaceans to date is limited to conventional
methods that include light microscopy for sperm concentration and
morphometry, as well as measurement of gonad and spermatophore
weights.?>?! Predictive biomarkers developed for assessing sperm
quality in vertebrates such as plasma membrane integrity, acrosome
reaction, mitochondrial function and DNA fragmentation, can be
modified and applied to invertebrates.?? Meanwhile, traditional pa-
rameters, such as sperm concentration and morphometry, can also
be analysed using advanced diagnostic tools including Computer-
Assisted Sperm Analysis (CASA) and/or flow cytometry, which can
produce highly accurate and fast results 131422-24

In parallel to the development of advance assessment tools for
sperm quality, freezing of gametes, particularly spermatozoa, is a sig-
nificant step to advance the aquaculture industry.?>?® Sperm cryo-
preservation technology paves the way for controlling the timing
of reproduction and enables the genetic diversity of broodstock to
be maintained in frozen banks. Conservation of genetics from wild
stocks is a critical component of breeding programmes in aquacul-
ture, preventing potential loss of genetic diversity (and hence fitness)
through under representation of founders over multiple generations
of captive breeding.26 Moreover, cryopreservation of spermatozoa
in liquid nitrogen (LN,) for extended periods of time guarantees
year-round supply of high-quality spermatozoa with minimal effort
and space, thereby reducing hatchery costs required for male brood-
stock maintenance, as well as facilitating selective breeding.zs*27

In crustacean aquaculture, animals often only reach sexual ma-
turity and reproduce in captivity when conditions are favourable.
Moreover, captive males and females of some species do not mature
and reproduce synchronously.?®?? With intensification of aquacul-
ture, interest in controlling crustacean reproduction using assisted
breeding techniques, such as artificial fertilisation, has gained im-
petus.?>?® Artificial fertilisation involves the manual collection

and handling of spermatozoa (in a way that maintains their qual-
ity) in order to fertilise eggs in vivo or in vitro with maximum effi-
ciency.28 Gametes can be collected from superior broodstock with
high-quality phenotypic traits and used in artificial fertilisation
during a precisely controlled time window as compared to natural
mating that could take several hours to days.?® By so doing, the ge-
netic selection for high-quality offspring can also be maximised, es-
pecially in commercial production.

In reproduction, the contribution of intact sperm DNA to the
embryo is critical to ensure healthy development of offspring.3°-32
Until recently, male fertility has been assessed microscopically using
traditional sperm quality parameters, such as sperm morphology and
sperm concentration (using a counting chamber). However, these
methods can be time-consuming and can only evaluate a limited
number of sperm cells and males.?* Even spermatozoa in high con-
centration that look morphologically normal according to traditional
assessment methods, may not be capable of fertilising eggs.3-3:33-35
As such, successful reproduction also entails high fertilisation com-
petence, which can be more precisely evaluated through assessment
of intracellular organelle functions, such as sperm plasma membrane
integrity, mitochondrial function, acrosome reaction and DNA
fragmentation.

Given that the fertility of male decapod crustaceans has re-
ceived little attention, to date, no comprehensive review currently
exists that specifically focusses on the evaluation, cryopreservation
and artificial fertilisation of spermatozoa for these highly import-
ant aquacultural species. A recent review by Beirdo et al. (2019)
included a broad range of aquatic species such as finfish, bivalve
molluscs, marine mammals and only penaeid shrimp represented
decapod crustaceans.?® Moreover, that review only focussed on
current techniques for sperm collection, storage and artificial in-
semination.?® This review hence attempts to fill the gap by focusing
on recent advances for evaluating sperm quality to determine male
fertility that could potentially be applied to decapod crustaceans, in-
cluding those advanced techniques developed for mammals, as well
as the current state of sperm cryopreservation and artificial fertili-
sation techniques and their implications for crustacean aquaculture.
The development and optimisation of such fertility and assisted re-
productive techniques may improve productivity in the crustacean
aquaculture industry by early diagnosis of infertility and acceleration
of selective breeding.

2 | COLLECTION AND EVALUATION
OF SPERM QUALITY IN DECAPOD
CRUSTACEANS

In general, the male reproductive system of crustaceans consists of
testes and vas deferens (VD) that connect to external openings called
gonophores; an elevated genital papillae in some species or an ex-
truding copulatory structure in others.36%7 Spermatogenesis in the
decapod testis begins with the proliferation of spermatogonia and
subsequent meiosis yielding primary then secondary spermatocytes
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that eventually differentiate into spermatids. Through the process of
spermiogenesis, spermatids develop into mature spermatozoa that
are then transported to the vas deferens where they are gradually
coated with 1-3 spermatophore layers during transit.®”%8 The sper-
matophore itself is a complex structure comprised of sperm-filled
tubes coated with layers of a protective gelatinous matrix.%? During
copulation, spermatophores are extruded by the male through
the paired gonophores located at the base of the walking legs and
deposited inside the sex organ or attached to the ventral surface
of the female, which may store it for a prolonged period prior to
fertilisation.?8:3?

As such, in order to obtain spermatozoa to evaluate their quality,
extraction of a spermatophore from the male reproductive tract is
necessary.?® Most knowledge in this regard is derived from econom-
ically important decapod crustaceans targeted for aquaculture. Not
surprisingly, however, current sperm handling protocols vary greatly
from one species to another.?®

2.1 | Spermatophore extraction and
semen extenders

Commonly, spermatophore extraction involves anaesthetising adult
males at 10°C for 15-20 min and weighing them before using one
of the following three methods to collect spermatophores. The first
and most commonly adopted method involves post-mortem dis-
section of the reproductive tract, particularly the vas deferens, to
expose the spermatophore; whose size, colour and consistency are
examined macroscopically. For freshwater crayfish, often at leasta 1
cm section of the distal vas deferens (DVD) is cut, and then placed in
1 mL of physiological saline solution, especially formulated for crus-
taceans.>*¢ This is similar in size transmitted to the female during
copulation in freshwater r:r:ay1’ish.15'“”20’21 The two other methods
of spermatophore collection, that is, manual extrusion and elec-
troejaculation, are non-lethal, hence have the benefit of avoiding
killing valuable male broodstock.?®4° Manual extrusion, commonly
used in sexually mature male penaeids, can be performed by apply-
ing gentle pressure with the thumb and index finger laterally around
the coxas of the fifth pair of walking legs of the male. 2840 Frequent
manual extrusion may cause inflammation of genitals and deposition
of melanin (melanisation); triggered by the presence of haemocytes
embedded around the connective tissue of the genitals.*! Moreover,
the reproductive tract can be damaged by melanisation of gono-
phores and sperm quality reduced if manual extrusion is performed
incorrectly or too frequently.41

Electroejaculation can be an alternative method to stimulate
extrusion of spermatophores from the gonophore of mature male
decapods, including freshwater crayfish, freshwater prawn and lob-
sters. Electroejaculation is done by placing two electrodes at the
base of the sternal keel near the coxa of the fifth walking legs of the
male.*>"** In the freshwater crayfish, Cherax destructor, an AC vari-
able transformer delivered a maximum 55 V stimulus through a pair
of electrodes at maximum of 10 s pulses between 40 and 60 Hz to the
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male to induce muscle contractions, which led to discharge of sper-
matophores.*®*? While manual extrusion may be a more straight-
forward procedure, its success depends on the experience and skill
of the handler as well as species. For example, manual extrusion is
generally ineffective on hard-shelled crustaceans, such as freshwa-
ter crayfish and marine lobsters, for which electroejaculation may
be the only non-lethal alternative.*#2434% By contrast, the intensity
of electrical stimulation can be precisely controlled for electroejac-
ulation, often leading to more consistent results.*424345 The pro-
cedure of electroejaculation is believed to cause relatively limited
discomfort to animals as long as low currents are used. Moreover,
it is also considered safe and repeatable provided that animals are
handled carefully and allowed sufficient time to recover between
extractions.*** Further methods include manual removal of sper-
matophores from the spermatheca, genitals or sternum of copulated

74649 and Table 1 summarises

female crustaceans using tweezers,
these various methods of spermatophore extraction reported in
literature.

Preparation of a single-cell suspension of spermatozoa is often a
pre-requisite for sperm quality evaluation. In decapod crustaceans,
a single-cell suspension of spermatozoa can be achieved mechan-
ically by gentle homogenisation of the spermatophore using a tis-
sue grinder, or by vigorous repeated pipetting in a semen extender
solution to disrupt the walls of the spermatophore.*>>°-52 Extracted
sperm cells are then filtered to remove any debris and pelleted by
centrifugation at 200-500x g for 5 min. Spermatozoa are able to
survive a series of resuspension and centrifugation steps during
the washing process.50 Spermatozoa can also be extracted from

the spermatophore by chemical treatments such as trypsin®>>*

or
pronase digestion55 at 4°C for a period of time prior to mechanical
homogenisation in semen extender. However, one must be careful
with such treatments since pronase is known to induce acrosome
reaction in spermatozoa, which should be avoided to prolong short-
term sperm storage.>®

Once spermatophores are extruded, they are often held in a
semen extender solution prior to sperm quality assessment.%>¢
Semen extender is typically a physiological saline solution made of
salts and sugars, which is added to seminal fluid to prolong sperm
viability after collection of extruded spermatozoa.lo'57 One critical
factor for a good semen extender is its ability to prevent functional
activation during collection, handling and storage of spermato-
20a.2%3758 |t should also provide an isotonic environment for sper-
matozoa with good pH buffering capacity, and include nutrients and
sugars necessary for sperm cell survival, as well as antioxidants to
control reactive oxygen species and antibacterial substances to fight
bacterial proliferation.”®>’

While long-term cryopreservation of spermatozoa is discussed
further in Section 3, short-term storage of both spermatophore or
spermatozoa help enhance reproductive management at the hatch-
ery by allowing more time to complete sperm quality assessments,
and adding more flexibility to carry out breeding programmes, spe-

7,8,60

cifically for artificial insemination, where spermatozoa need to

be maintained in vitro for a short period prior to the insemination
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AQUINO ET AL.

procedure.’® By developing an optimised semen extender, the num-
ber of females inseminated per male can be maximised, and time
window to execute artificial insemination can be increased.

In Penaeus shrimp, a species-specific artificial semen ex-
tender solution was developed for whiteleg shrimp consisting of
2.125gL ™" NaCl,0.110 g L' KCI,0.052 g L' H,BO,, 0.019 g L™* NaOH
and 0.484 g L! MgSO,-7H,0 with 20 pL of antibiotic/antimycotic
(10,000 U Penicillin, 10 mg Streptomycin, 25 ug Amphotericin B) at
pH 7.4. This extender reportedly facilitated >60% fertilisation rate
following artificial insemination.° Whiteleg shrimp spermatophores
stored in this extender can be maintained for up to 26 h at 14°C with
92 + 15% spermatozoa showing normal morphology.61 For decapods,
Ca?*- free saline is normally recommended as a semen extender
during sperm cryopreservation since the absence of calcium pre-
vents the initiation of the acrosome reaction in spermatozoa.f”’ﬂ'62
Ca?*- free saline is composed of 21.63 g L™ NaCl, 1.12 g L™* KCl,
0.53 g L'" H;BO,, 0.19 g L'* NaOH, 4.93 g L'* MgSO,-7H,0 at pH
7.5.2 A list of different semen extender solutions and sperm quality
assessments for crustaceans is shown in Table 1, and they include
physiological saline for freshwater crustaceans; filtered natural or
artificial seawater, or mineral oil for marine crustaceans. Meanwhile,
Ca?*- free saline or Ringer's and phosphate buffered saline solutions
have been used for both marine and freshwater crustaceans.

2.2 | Advanced tools for sperm quality evaluation
The ultimate measures of male fertility in crustaceans are fertilisa-
tion and hatching rates. However, these measures take time to prop-
erly confirm, require the simultaneous availability of eggs to conduct
the tests, and can also be significantly affected by female factors
such as egg/embryo quality and culture conditions, which may yield
variable results. Thus, assessment of male fertility by direct evalua-
tion of sperm quality is a more feasible alternative since it can rap-
idly and objectively detect deleterious effects caused by poor male
health, nutrition, husbandry, genetics or other factors.®®

2.21 | Sperm number, morphology and
membrane integrity

Once the spermatophoreis collected and is allowed to soften in phys-
iological saline for crustaceans, a single-cell suspension of spermato-
zoa can be prepared by gentle agitation, which then permits sperm
number to be quantified.15’16’20'21'5"”“’4 Generally, greater numbers
of spermatozoa are associated with greater reproductive capac-
ity among males of most species.®>¢%%57%7 |n freshwater crayfish,
sperm number is determined using a Neubauer haemocytometer
and is typically expressed as the number of sperm/DVD section. In
male redclaw weighing 70-110 g, sperm concentration ranges from
108 to 107 sperm/1 cm DVD section.?>1¢ Typically, decapod sperma-
tozoa are non-motile and without flagella.?”3%8%? Their spermato-
zoa are generally composed of a main body enclosing a decondensed
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nucleus, a highly complex acrosome in the anterior region, and no
discernible midpiece (compare to mammalian sperm). From the main
body, different numbers of stellate processes that project outside
arise, but almost in a species-specific manner.??%” Thus, assessing
sperm quality using simple light microscopy is difficult because dis-
tinct morphological features are Iacking.24 Moreover, sperm motility,
which is a good biomarker to assess competitive swimming ability
to fertilise eggs during spawning in finfish and other species, can-
not be used for these crustaceans.?* As such, researchers tended to
use higher magnification microscopy such as transmission electron
microscopy (TEM) and scanning electron microscopy (SEM) to study

decapod sperm morphology, 86872

which is time-consuming, costly,
and limited to low numbers of cells and individuals that can be evalu-
ated. Thus, the need to more rapidly assess decapod spermatozoa
has stimulated the adoption of newer methods.?>?*

Abnormal sperm morphology can also be an indicator of infer-
tility or aberrant spermatogenesis.*>°27374 |n decapod crustaceans,
live spermatozoa can be examined by light microscopy for sperm ab-
normalities such as deformed or missing heads, twisted or missing
spikes, and distorted main bodies.'>°%7% However, the absence of
distinct morphological structures in mature decapod spermatozoa,
such as a lack of flagella or few or absent mitochondria, makes the
rapid assessment of normal vs. abnormal morphology by light mi-
croscopy more difficult.?+%8%?

Given the limitations mentioned above, alternative approaches
have been considered such as evaluating the integrity of the plasma
membrane to assess sperm viability.75'80 For sperm viability in deca-
pod crustacean, spermatozoa are typically stained with conventional
(Trypan blue or eosin-nigrosin) or fluorescent (propidium iodide, PI)
exclusion dyes in Ca®*- free saline (pH 7.4) to examine the integrity
of the cell's plasma membrane to determine the proportion of live
(unstained) vs. dead (stained) spermatozoa.??°27381-83 The pres-
ence of calcium in semen extenders can trigger the acrosome re-
action.8478¢ Thus, Ca®*- free saline is generally used as the semen
extender in most sperm viability studies because the absence of
calcium prevents the acrosome reaction and subsequent rupture of
the sperm plasma membrane.”"¢? Cells treated with conventional
stains require light microscopy to manually detect and count dead
cells; which can be labour intensive, permitting typically only ~200
cells per individual to be examined.?*°?%7 By contrast, treating cells
with structure-specific fluorescent stains, enables the rapid analysis
of more than 20,000 cells per individual to be examined in a matter
of minutes using high-throughput flow cytometry.8”-%°

When using flow cytometry, spermatozoa are often counter-
stained with carboxyfluorescein diacetate (CFDA), SYBR®—14, or
Hoechst 33342.889192 CFDA binds to esterases, which stains live
spermatozoa with intact cell membranes fluorescent green; while
SYBR®-14 and Hoechst 33342 bind to nucleic acids, which stains
the nucleus of live spermatozoa green and blue respectively.”??% By
contrast, Pl binds to nucleic acids but can only penetrate cells that
have ruptured membranes, causing the nucleus of dead spermatozoa
to stain fluorescent red.”™%% In crustaceans, fluorescent dyes cou-

pled with flow cytometry showed 33%-89% post-thaw viability in
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whiteleg shrimp spermatozoa after exposure to different cryopres-
ervation protocols.?***?# In freshwater crabs, Pl staining and flow
cytometry showed that sperm plasma membranes were significantly
damaged (17%-20% dead spermatozoa) when exposed to high con-
centrations of lead.” These results show that fluorescent stains
coupled with flow cytometry represent a sensitive tool for assessing

sperm cell viability in decapod crustaceans.

2.2.2 | Acrosome reaction

The acrosome reaction (AR) of spermatozoa involves the fusion of
the outer acrosomal membrane with the overlying sperm plasma
membrane causing a release of digestive enzymes that permits a
spermatozoon to penetrate the outer membrane of the egg, and
by so doing deliver paternal genetic material into the egg that is
required for successful fertilisation.”® AR in decapod spermatozoa
involves molecular and morphological changes to the acrosomal
vesicle, and the introduction of subacrosomal and nuclear materials
into the egg.”” AR is a reliable predictive biomarker of sperm qual-
ity especially for non-motile spermatozoa often found in decapod
crustaceans.”®’® However, infertile males can have damaged/absent
acrosomes thereby preventing such spermatozoa from fertilising
eggs. In addition, various external stressors during semen processing
and/or freezing can induce damage to the acrosome membrane or
can provoke a premature acrosome reaction, leading to misleading
infertility diagnoses that need to be carefully controlled.??100

AR has been well studied in decapod crustaceans including crabs,
lobsters and Penaeid shrimp.48:4%:53.96:98.101.102 gyiafly the AR can be
induced by suspending spermatozoa in physiological saline that has
been used to incubate eggs in vitro (ie egg water; EW). Alternately,
AR can be observed naturally at the time of oviposition of a copu-
lated female, which involves immediate collection of eggs and sper-
matozoa from the female's seminal receptacle.*’

For decapod sperm, the capability to undergo AR is considered
as a good biomarker of normal acrosome functionality.”'%° The AR
in decapods can be induced in several ways, including exposure to
egg water, calcium ionophore, alkalinisation, high concentrations
of ions, and cold shock.48:86.76:98.104 Egg water, which is commonly
used for AR induction in vitro,*>1% typically contains vitelline en-
velope (VE), the external layer of eggs, cortical rods (CRs; egg jelly
material located in egg surface crypts), and some thelycal (T) sub-
stances.*%105-107 Egg water has approximately a 4:1 protein to car-
bohydrate ratio and contains trypsin-like enzymes, which are natural
inducers that play a crucial role during the second stage of AR in
decapods.’®>1%¢ Calcium ionophore A23187 can also induce the
AR in decapod spermatozoa by increasing calcium influx into the
cells.84197 |n the freshwater Chinese mitten crab (Eriocheir sinensis),
AR reportedly can be induced by egg water, seawater, CaCl, solu-
tion or low temperature.’°®%? |n addition, cryopreservation can
also trigger AR in spermatozoa of E. sinensis’® by directly promoting
membrane fusion of the acrosomal cap, or by destruction of AR in-

hibiting and activation of AR promoting proteins.”®1%°

Presently, efforts to quantify acrosome reaction in decapod
crustaceans involve counting of acrosome-reacted vs. normal intact
spermatozoa based on their morphological appearance using light
microscopy.”*?¢ However, this requires considerable familiarity with
acrosome morphology and the mechanism of AR for the decapod
species of interest.*?7477111 Moreover, some decapods (infraorder
Caridea) appear to lack acrosome-like structures precluding the
evaluation of the AR in these species.!'! By contrast, acrosome-
specific biostaining techniques using fluorescein isothiocyanate
(FITC)-conjugated Arachis hypogaea (peanut) lectin (FITC-PNA) can
be employed to analyse the acrosome reaction across multiple deca-
pod groups. The PNA lectin is specific for terminal -galactose moi-
eties and so will bind to the acrosome in acrosome-reacted sperm,

22,112

fluoresce green, and can be quantified via fluorescent micros-

copy or flow cytometry without the need to understand species-

specific acrosome morphologies.!*3"11%

2.2.3 | Mitochondrial function

An array of fluorescent dyes can be used as biomarkers for other
specific sperm functions. Mitochondria are the source of ATP pro-
duction in most eukaryotic cells, which is the basic unit of energy
used to power their function.!'® Several dyes have been employed
to assess mitochondrial membrane integrity and functionality. For
example, mitochondrial stain, MitoTracker-Red CMXRos (M-7512)
has been used to stain functional mitochondria fluorescent red in
viable cells with dye accumulation due to mitochondrial membrane
potential.?? However, the most common combination of dyes used
in aquaculture species is dual staining using rhodamine 123 (R123)
and Pl. Spermatozoa with intact plasma membrane and functional
mitochondria take up R123 and fluoresce green, while Pl stains
the nucleus of dead cells with damaged membranes fluorescent
red.®817 |n aquaculture, the R123/PI staining method coupled with
flow cytometry has been used to evaluate mitochondrial function in
both marine invertebrates'® and finfish.8%11%12° The mitochondrial
stain carbocyanine fluorescent probe, 5,5',6,6'-tetrachloro-1,1'3,3'-
tetrathylbenzimidazolyl-carbocyanine iodide (JC-1) is another wide-
spread fluorochrome used to assessed changes in mitochondrial
membrane potential in mammalian sperm.*?1712% JC-1 can distinguish
between spermatozoa with high versus low functional mitochon-
dria.8” JC-1 stained spermatozoa fluoresce green when mitochon-
drial functional is low; fluoresce orange/green when mitochondrial
function is high; and fluoresce red when mitochondrial function
is extremely high‘87’124’126 The protonophore, carbonyl cyanide
3-chlorophenylhydrazone (CCCP) impedes mitochondrial function
by uncoupling oxidative phosphorylation, and has been employed as
a positive control for various cell types stained with JC-1 including

126127 and finfish!?®

both marine invertebrates spermatozoa.
Presently, there are no reports documenting mitochondrial func-

tion in decapod crustaceans. This may be related to the observa-

tion that mitochondria in mature decapod spermatozoa appear to

be degenerate, transformed, non-christate, non-functional or even
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absent in some species.?”’111127 |y some decapods, such as fresh-
water crayfish, few mitochondria have been observed to be asso-
ciated with the membrane lamellae t:omplex.“’g'69 Mitochondria in
this taxonomic group do not generate energy, but Anderson and
Ellis (1967) have reported that the membrane lamellae complex is re-
sponsible for ATP production in mature spermatozoa of crayfish.”* In
the Danube crayfish (Astacus leptodactylus), the membrane lamellae
complex was also reported to separate from the cell after discharge
of spermatozoa from the spermatophore.80 Given spermatozoa of
most species of decapods are immotile, and few studies have re-
ported functional mitochondria, the role of sperm mitochondria in
male fertility may be relatively limited compared to fish and mamma-
lian counterparts. However, the above assays may still help facilitate
a greater understanding of the function of the membrane lamel-
lae complex as energy source and the role (if any) of mitochondria

during fertilisation in mature spermatozoa of decapod crustaceans.

2.2.4 | Sperm DNA fragmentation
Sperm DNA plays a crucial role in facilitating normal embryo devel-
opment and live birth.*3°"132 As such, DNA is highly condensed and
efficiently packed in spermatozoa to avoid damage during transport
to the site of fertilisation.?3**%% Sperm DNA is wrapped around his-
tone proteins, which during spermatogenesis, are gradually replaced
by highly basic protamines that facilitate greater condensation.*3-133
During this process, transcription and translational of sperm DNA
ceases. Moreover, during condensation, double-stranded DNA in-
curs torsional stress resulting in nicks and breaks along the DNA
strand.’®2133 Failure to repair these nicks and breaks combined with
the cumulative effect of reduced protamination could lead to DNA
damage, 131134

Interestingly, decapod spermatozoa are composed of a main body
that envelops a decondensed nucleus of chromatin fibres,6®12%13>
where histones are relatively low to nil and protamines are com-
pletely absent.*13571%7 Spermatozoa with poor chromatin packag-
ing and low protamine content are susceptible to oxidative stress
(imbalance between oxidation and reduction reactions).'*® Such
a decondensed nucleus, composed of diffuse and heterogeneous
chromatin fibres in decapod crustacean spermatozoa, can be highly
susceptible to DNA damage.’®*14% The reactive oxygen species
(ROS) generated by oxidative stress are an intrinsic source of sperm
DNA damage.'®®!*! Oxidative stress is caused by insufficient anti-
oxidants to neutralise free radicals generated during spermatogen-
esis. ROS attack spermatozoa during spermatogenesis by activating
endonucleases or caspases that cause DNA damage. Caspases are
enzymes directly involved in the DNA fragmentation and cell death
process.*®8 In contrast to egg cells, spermatozoa lack the ability to
prevent and repair DNA damage induced by environmental stress-
ors 137140142 Oyidative stress can also result in lipid peroxidation,
protein alterations, and sperm apoptosis, which further compromise
the paternal DNA contributed to the developing embryo. 132138143144

Increased DNA damage in decapod spermatozoa has been reported
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95,140,145 and en-

when exposed to pollutants, such as heavy metals,
vironmental stressors, including low temperature*® and extremities
in pH.147

Recently in vertebrates, supplementation of antioxidants either
in the diet or semen extender reduces the effects of oxidative stress
on sperm DNA integrity; mitigating the effect of ROS.70:132148-150
For example, the use of antioxidants such as a-tocopherol and ascor-
bic acid in sperm freezing medium reduced lipid peroxidation and
increase fertilisation rate (80%-90%) in cryopreserved spermatozoa
of Atlantic salmon.**® Alternatively, antioxidant supplementation of
boar diets resulted in a 55% reduction in sperm DNA damage in-
duced by heat-stress.”®'* To date, the use of antioxidants to im-
prove sperm quality in decapod crustaceans, has not been reported,
warranting further investigation.

Sperm DNA damage is considered as a crucial indicator of male
infertility,151 Spermatozoa with DNA damage may look healthy when
using traditional measures of assessing sperm quality and can still
fertilise oocytes.3%313%-35 However, the structural damage in DNA
can lead to abnormalities in pronuclear formation, activation of key
embryonic genes and early embryo development.***>2 During em-
bryo development, the first 2-cell divisions are primarily controlled
by maternal reserves of proteins and enzymes accumulated in the
egg, but these need to be replenished by activation of the embryonic
genome (containing both maternal and paternal DNA) from around
the 4-cell stage in most species.'> High levels of sperm DNA damage
caninduce delayed embryo cleavage, abnormal embryo morphology,
and lower rates of blastocyst formation and implantation.130'154’156

DNA damage has been reported to occur in the spermatozoa of
both vertebrates and invertebrates, including crustaceans.3%142157
For example, in whiteleg shrimp, sperm DNA damage was thought
to be the cause of low to zero hatching rates after artificial insemi-
nation, despite good rates of egg fertilisation.3* Chinese freshwater
crabs (Sinopotamon henanense) exposed to higher concentrations
of various heavy metals exhibited poor sperm quality with a high
proportion of DNA fragmentation.”>°81%7 Although conventional
sperm analyses such as sperm counting and spermatophore weight
can be used to characterise sperm quality, molecular assays such as
sperm DNA fragmentation (SDF) analysis, can provide insight into the
developmental competence of embryos fertilised by a male's sperm,
and hence, a more accurate measure of fecundity.”®131149151 Thyg,
development of sperm DNA damage assays for decapod crustaceans
could identify putative causes of poor juvenile production yields in
commercial crustacean aquaculture.

Several assays have been developed to directly or indirectly
measure sperm DNA damage, including traditional staining meth-
ods, toluidine blue staining, sperm chromatin structure assay (SCSA),
sperm chromatin dispersion (SCD) or Halosperm test, terminal de-
oxynucleotidyl transferase dUTP nick-end labelling (TUNEL), and
the Comet assay.'®® However, given their different mechanisms
for detecting DNA damage, the results from each test are unique
and not comparable.9°’131'16° Given that sperm DNA damage can
increase significantly after prolonged storage or incubation during

161

sample preparation, " spermatozoa should be fixed shortly after
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collection and then either: (i) smeared, air-dried and stained on glass
slides before analysis by light/fluorescent microscopy, or (ii) washed,
permeabilised and stained before analysis by flow t:ytometry.161

Toluidine blue staining is used to evaluate damage to the nuclear
chromatin structure of spermatozoa and is visualised by light micros-
copy.133162 Using toluidine blue, sperm heads with high chromatin
integrity stain blue, while sperm heads with damaged chromatin
stain purple.'®? By contrast, chromomysin A3 (CMA3) dye prefer-
entially binds to spermatozoa with protamine deficiency, indicating
that DNA is poorly packed or damaged.'®1%* As a result, faint yel-
low CMAS dye staining indicates spermatozoa with normal or high
protamination, whereas bright yellow staining indicates protamine
deficiency associated with high DNA damage.*é41¢°

The sperm chromatin structure assay (SCSA) is commonly used
to detect sperm DNA damage in vertebrates.®”1%% |t is an indirect
assay in which DNA is denatured by heat or acid treatment causing
single-stranded DNA breaks followed by AO staining.X*® AO binds
to intact double-stranded DNA or denatured ssDNA to exhibit in-
tense green or red fluorescence, respectively; which can be further
assessed through a flow cytometer.'331%¢ This assay can evaluate
both fresh and frozen samples with high repeatability with less inter-
and intra-sample variability.133134167168 Lowever so far, there is no
report on the use of SCSA in fish or crustaceans.?®

Sperm chromatin dispersion (SCD) or Halosperm test is another
indirect assay to evaluate sperm DNA damage. For SCD assay, sper-
matozoa are embedded in agarose on a slide and their DNA dena-
tured with an acid solution to yield halos or dispersed chromatin
due to relaxed DNA, which can then be visualised by fluorescent
microscopy.*®® Spermatozoa with fragmented DNA produce small or
no halos of dispersed DNA, while spermatozoa with intact DNA pro-
duce medium to large halos of DNA.**7"Y71 |n the black tiger prawn,
this assay found greater sperm DNA fragmentation in domestic
vs. wild-caught individuals (6.8 + 4.5% vs. 3.3 + 1.5%; n = 10).**’
Thus, the SCD test could be a reliable predictive biomarker to as-
sess male fertility for broodstock management in saltwater prawn
aquaculture.r®’

The comet assay, an alkaline version of single-cell gel electro-
phoresis, is a test in which spermatozoa are embedded in agarose
on a slide, lysed with detergent to release DNA, then subjected to
electrophoresis before DNA is stained by SYBR Green | for visualisa-
tion using fluorescent microscopy.'®” During electrophoresis, small
fragmented DNA strands migrate through the agarose away from
the nucleus and are visualised as a ‘comet-like’ tail, while larger intact
DNA remains compact in the sperm head. The length of migration
of the tail and the intensity of fluorescent green staining is directly
proportional to the amount of DNA damage within each spermato-
zoon.}”2 While the comet assay can detect many types of DNA frag-
mentation, it is effective for fresh samples and requires only a few
cells per analysis.r®74 The Comet assay has been used to evaluate
DNA fragmentation in crustacean spermatozoa. In black tiger prawn,
a two-tail comet assay was performed to qualitatively validate sperm
nuclear morphologies and % SDF determined using the SCD test.**”
Erraud et al. (2018) utilised the comet assay to determine declines in

sperm quality among palaemonid prawns exposed to contamination;
subsequently recommending its use as a potential predictive marker
for in situ biomonitoring surveys.142

While the comet assay relies on fluorescent microscopy and
only works for fresh samples, TUNEL assay can utilise either fluo-
rescent microscopy or flow cytometry on fresh, fixed or cryopre-
served samples.’** TUNEL is a direct assay that targets DNA strand
breaks by incorporating fluorescein isothiocyanate (FITC) conju-
gated 2'-deoxyuridine 5'-triphosphates (dUTPs) to the 3’hydroxyl
(OH) breaks of single-stranded and double-stranded DNA. As such,
the nucleus of DNA-damaged cells fluoresce green. Either PI or
Hoechst 33342 dyes can be used as a nucleic acid counterstain and
fluoresce red or blue respectively.'®¥”> TUNEL has been used in a
limited number of crustacean studies to assess DNA fragmentation,
for example, DNA damage caused by viral diseases in black tiger
prawn,' 768 during the immune response of Marsupenaeus japoni-
cus,”? and during neurogenesis of Homarus americanus.*8°

In cryopreserved boar, human, mouse, and fish spermatozoa,
DNA damage and alterations in downstream expression of specific
genes involved in embryo development have been observed.31:181-184
Sperm DNA is sensitive to external stressors such as radiation, tox-
ins or temperature during spermiogenesis causing oxidative stress-
induced genomic lesions.®2185 Recently, sperm DNA integrity has
been evaluated by examining genomic stability and expression of
growth related genes during embryonic development.*®? Several
modern technologies such as microarray analysis, quantitative real-
time PCR analysis (QRT-PCR), next-generation sequencing (NGS)
and bioinformatics have been used to assess variation in sperm
genomic DNA and gene expression in aquatic vertebrates such
as finfish.311%218¢ Although the use of these more recent genetic
technologies has not been documented in decapod crustaceans, the
investigation of sperm DNA damage and downstream alteration of
gene expression during early and late embryo development could be
of value, particularly to burrowing decapods that may be exposed to
heavy metals or toxins in sediment of aquaculture ponds or in their
natural habitat.

Development of sperm quality assays aids the selection of high-
quality male broodstock and allows for production of genetically su-
perior offspring via both natural and artificial breeding programmes.
Such diagnostic tools could also be used to assess post-thaw sperm
quality during the development of cryopreservation and artificial
fertilisation protocols for decapod crustaceans. A summary of tra-
ditional and advanced biomarkers of sperm quality and conditions
that may improve male reproduction management is illustrated in

Figure 1.

3 | SPERM CRYOPRESERVATION

Cryopreservation of crustacean sperm can facilitate the preser-
vation and collection of high-quality male genetic material. This
method permits frozen-thawed spermatozoa to be readily available
to fertilise eggs whenever they are released, thus allowing powerful
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FIGURE 1 Traditional and advanced predictive biomarkers of sperm quality and conditions that may contribute to improved male

reproductive performance

control of the timing of reproduction.?® In addition, frozen sperma-
tozoa can serve as a safe backup in situations where it is difficult
to obtain fresh spermatophores or there is insufficient number of
spermatozoa available for downstream applications like artificial
fertilisation.'®” Finally, sperm freezing can preserve the germplasm
of valuable genetic lines of founder/wild-caught individuals indefi-
nitely, thereby permitting sustainable production of high-quality
offspring over time.?¢°%8” Moreover, maintaining a sperm bank of
high-quality males is more economic and efficient than maintaining
significant numbers of male broodstock. Given these advantages, it
is not surprising that sperm cryopreservation protocols have been
established in some decapod crustaceans, primarily in marine shrimp
(Table 2).

3.1 | Cryoprotectants
Cryopreservation employs low temperature to stop biochemical
reactions and preserve living cells and tissues structurally intact.
However, if not performed properly, freezing can damage cells via
two distinct processes: ice crystal formation and concentrated sol-
ute effects.'®® Freezing injury is caused by ice crystals that mechani-
cally pierce or tear apart the cells and intracellular structures. 187190
Solute effects, which include chemical and osmotic gradients cre-
ated by concentrated salts in the residual unfrozen liquid between
ice crystals, cause cell injury through dehydration. Preferential
freezing of water over solutes results in concentration of solutes/
salts (a hypertonic state) inside the cell. This hyperosmotic stress can
lead to shrinkage and eventually cell death. 170191

Cryoprotectants (antifreeze agents) are water soluble chemicals
that decrease the melting point of water, and are commonly used

to avoid cell injury caused by freezing. > Absence of cryopro-
tectants generally results in freezing of the entire water content in-
side the cell during cryopreservation, causing cell damage.’®8192 |n
order for a cryoprotectant to be effective and biologically compati-
ble to living cells or tissues, it must possess following properties: (i)
high soluble in water even at low temperature; (i) capable of freely
penetrating the cell membrane (except for non-penetrating cryo-
protectants); and (iii) little or no toxicity at concentrations needed
for cryopreservation.m'193 Common cryoprotective agents include
ethylene glycol, dimethyl sulfoxide (DMSOQ), glycerol and propylene
glycol, and typically have a working concentration of 5%-15% in car-

rier solutions.18818%.192:194

Cryoprotectants can be cell permeating or non-permeating.1?%1%2
Permeating cryoprotectants are typically of small molecular weight
(<100 Daltons) that facilitates easier penetration of cell membranes,
making them osmotically inactive since they disperse equally in
both extra- and intracellular spaces. This helps minimise the effect
of excessive dehydration and ice crystal formation in cells during
the freezing process.'?1? Permeating cryoprotectants include
DMSO, glycerol, ethylene glycol, methyl-formamide and dimethyl-
formamide.?%172 By contrast, non-permeating cryoprotectants,
such as polyethylene glycol and polyvinylpyrrolidone, have larger
molecular weights that prevent them from passing through the cell
membrane.'?12 These polymers are added to freezing solutions to
also inhibit ice crystal formation. At the same concentration, non-
permeating cryoprotectants are generally less toxic than the perme-
ating ones, 1681927194

Use of cryoprotectants to freeze crustacean spermatozoa has
been reported in several studies (Table 2). To date, ethylene glycol,
dimethyl sulfoxide (DMSO), glycerol, glycine, MgCl,, methanol, soy
lecithin and trehalose have been the main cryoprotectants used
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TABLE 2 Room temperature and chilled storage, long-term cryopreservation and vitrification of spermatophore and spermatozoa in

decapod crustaceans

Species
Freshwater crab

Eriocheir sinensis

Freshwater prawn

Macrobrachium
rosenbergii

Macrobrachium
rosenbergii

Macrobrachium
rosenbergii

Macrobrachium
rosenbergii

Macrobrachium
acanthurus

Marine crab

Scylla serrata

Semen collection
method

Manual extrusion

Manual removal from
female’s sternum

Manual removal from
female’s sternum

Electroejaculation

Electroejaculation

Electroejaculation

Post-mortem
dissection

Preserved tissue/cells

Spermatophore

Spermatophore

Spermatophore

Spermatophore

Sperm

Spermatophore

Spermatophore,
seminal plasma

Holding solution/cryoprotectant/
cooling vessel

Precooled (4°C) Ca®*-free artificial
seawater + 5% DMSO &
10% glycerol in cryovials

Artificial seawater + 42%-50%
Ringer’s solution in 50 ml vials

Artificial seawater + 42%-50%
Ringer’s solution in 50 ml vials

20% Ethylene glycol added
dropwise to a 2ml cryovial with a
spermatophore.

Sterile-filtered pond water + 10%
DMSO + 10% propylene glycol

Distilled water + 10% & 20% glycerol
or 10% methanol in 2 ml plastic
microtubes

Phosphate buffer (25 ml of 0.4 M
NaCl/0.1 M glycine, 4 ml of
0.028 M NaH,P0O,/0.072 M
Na,HPO, + cryoprotectants
glycerol & DMSO + trehalose
combination) in 0.5 ml semen
straws

Equilibration time/dilution
ratio

Not determined

Not determined

Room temp for 30 min;
dilution ratio not
mentioned

Room temp for 15 min;
dilution ratio not
mentioned

Room temp for 30 min;
dilution ratio not
mentioned

25°C for 10 min; dilution

ration not mentioned

4°C for 16 h;
1 seminal plasma:4 diluent
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Freezing rate & duration

-1°C min™* from room temp
to -80°C; Plunged directly
into -196°C

Room temperature (20-25°C)
for 17 h & 2°C for 4 days

10 min in LN, vapour then
-196°C for 20 days

For -20°C cryopreservation:
immediate storage at
-20°C. For -196°C
cryopreservation:
equilibration at room
temp for 15 min then
cooled to -70°C at -1.5 to
-2.5°C min"! in a cooling
container filled with 95%
ethanol. Dry-ice cubes
(1-2 cm®) were slowly
dropped in the 95%
ethanol. At -70°C, vials
were exposed to LN,
vapour (=110 to -130°C)
for 1-2 min before being
plunged directly into LN,
for 350 days

-1.5°C min™* cooling rate
between 27 & -39°C then
stored in LN, for 90 days

-2°C min%; equilibration time
not mentioned

-79 & -196°C for 30 days;
straws were exposed to
LN, vapour for 1 h then
immersed & stored at
-196°Cin LN,. For -79°C,
straws were exposed to
CO, for 1 h, & placed
directly to dry ice

Thawing conditions  Evaluation technique

37°C for 3 min Light microscopy

Artificial fertilisation
(attached to female
sternum using
«-cyanoacrylate
glue), fertilisation &
hatching rates

Not mentioned

30°C; time not
mentioned

Artificial fertilisation,
fertilisation &
hatching rates

30°C for 5 min Sperm viability via
Trypan blue staining
& fertilisation; light

microscopy

35°C for 1 min Eosin-nigrosin staining,
light, electron &
phase contrast

microscopy

30°C for 4 min Eosin-nigrosin staining,

light microscopy

Room temp; thawing
duration not
mentioned

Eosin-nigrosin staining
for sperm viability

Results

AR in spermatozoa is promoted by
cryopreservation

Room temperature incubation resulted
in 100% fertilisation & hatching
success rates basing on the number
of spermatophores fertilising eggs
successfully (n = 2)

Chilled incubation of spermatophores
resulted to 72.7% fertilisation & hatching
success rates basing on the number
of spermatophores fertilising eggs
successfully (n = 11)

100% females had fertilised eggs, all of which
hatched

10 or 20% glycerol or ethylene glycol at
-20°C can store spermatophore for
10 days (80%-90% sperm viability).
For longer cryopreservation (150 days),
20% ethylene glycol at -196°C is
suitable (80%-90% sperm viability) with
fertilisation rates of >60%

Cryopreserved spermatophores: 50.4 + 1.9%
sperm viability. Cryopreserved sperm:
28.3 + 2.2% acrosome reactivity
compared to 85.3 + 2.5% in fresh
spermatophores

Cold storage for up to 3 days: 35.3% sperm
viability & 60%-73% sperm viability using
the cryoprotectants

Cooling rate at -2°C min™* resulted to 21.8%
sperm viability

Sperm viability at =79°C:
glycerol =93.2 + 1.0%
DMSO-trehalose = 93.0 + 1.2%
Sperm viability at -196°C:
glycerol = 95.3 + 1.4%
DMSO-trehalose = 94.2 + 0.0%
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TABLE 2 (Continued)

Species

Scylla serrata

Portunus
trituberculatus

Charybdis japonica

Charybdis japonica

Scylla tranquebarica

Marine lobster

Homarus americanus

Panulirus polyphagus

Marine shrimp

Litopenaeus
vannamei

Fenneropenaeus
indicus

AQUINO ET AL.

Semen collection
method

Post-mortem
dissection

Post-mortem
dissection

Post-mortem
dissection

Manual removal
from female’s
spermatheca

Post-mortem
dissection

Electroejaculation;
Spermatophores
cut in seawater
& sperm mass
extruded to form
sperm suspension

Post-mortem
dissection

Post-mortem
dissection;
Manual extrusion

Electroejaculation

Preserved tissue/cells

Spermatophore,
sperm

Sperm

Sperm

Sperm

Sperm

Sperm suspension

Sperm

Vas deferens

Sperm

Holding solution/cryoprotectant/
cooling vessel

Ca?*-free artificial seawater
(FASW) + dropwise addition
of glycerol (to 12.5%) in 0.5 ml

straws sealed by polyvinyl alcohol

Ca?*-free saline + DMSO (percent
not mentioned)

Not mentioned + 15% DMSO in
cryovials

Sperm released from sperm mass
using glass tissue grinder into
Ca**-free saline + 15% DMSO
in cryovials

Ca?*-free saline + 10% glycine in
microcentrifuge tube

Filtered seawater with 3-5 ml
paraffin oil (Fisher, Saybolt
viscosity 125/135) in Fisher
culture tube

Ca%*-free saline + 10% glycine in
2 ml cryovials

Filtered seawater or Ca?*-free saline
without cryoprotectant in 5 ml
plastic vessel

Filtered seawater (30
ppt) + Cryoprotectants:

(@) 5% DMSO + 5% glycerol

(b) 5% DMSO + 0.25 M trehalose in
5 ml cryovials

Equilibration time/dilution
ratio

15°C for 10 min; dilution
ratio not mentioned

Not mentioned

Not mentioned

Equilibration time not
mentioned; 1 sperm
mass:2 buffer

Room temp (25°C) for
60 min; 1 sperm
suspension:3
cryoprotectant

Not mentioned

Room temp (25°C) for
5 min; 1 spermatozoa:3
extenders

15°Cfor36 h

5 min at room temp,
equal volume of
cryoprotectant
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Freezing rate & duration

Programmed controlled-
rate freezing at
-5°C min™* from different
initial physiological
temperatures (30, 23, &
15°C) to various subzero
temperatures (-30 to
-50°C) & subsequent
storage at -196°C with
cryoprotectants

Not mentioned

Not mentioned

Not mentioned

Not mentioned

4-7°C for 289 days

15 min at each of 25, 20, 16,
4,2,-4,-20,-80, -150,
and -196°C for 6 h

Not mentioned

Room temp to -35°C at -1°C

Thawing conditions

55°Cfor 10-15s

Not mentioned

Not mentioned

Not mentioned

Not mentioned

Not mentioned

26°C for 30 s

Not mentioned

20°C; thawing
duration not

min'1, then LN, vapour for
5 min before plunging into
LN, for 60 days

mentioned

Evaluation technique

Artificial induction of
acrosome reaction;
hypo/hyperosmotic
sensitivity tests
for membrane
integrity; trypan
blue & eosin-
nigrosin staining;
light microscopy

Calcium ionophore
A23187 treatment

Light microscopy

Na-benzol-DL-arginine-
pnitroanilide
(BAPNA) substrate
method for
acrosin activity,
eosin B-staining,
microscopy,
SDS-PAGE

Eosin-nigrosin staining,
light microscopy

Light & electron
microscopy (EM)

Eosin-nigrosin staining,
light microscopy

Phase-contrast
microscopy

Egg water-induced
acrosome reaction;
sperm viability

Results

DMSO, ethylene glycol & glycerol offered
cryoprotection at 5%-12.5% v/v. Post-
thaw sperm viability highest (52%)
in 12.5% glycerol at a cooling rate of
-5°C min"%; 1% pronase releases sperm
from spermatophores but can induce
acrosome reaction thus mechanical
shearing employed throughout
experiments

Best preservation at 4°C

83.8% sperm viability after 24 h preservation
& 73.8% after 1 year preservation in
LN,. 25 min pre-freezing incubation was
appropriate for sperm cryopreservation

3 days cryopreservation at -196°C
with 80.9 + 1.0% sperm viability &
83.6 + 1.7 plU x 107 acrosin activity

Cryoprotectant: 10% glycine + extender
yielded 84.8 + 1.0% sperm viability

Bacterial growth after >289 days at 4-7°C

Sperm morphology using light microscopy.
High-quality spermatozoa recovered after
chilled storage <289 days

Highest sperm viability in 10% glycine at
91.9 + 2.0% (5 min at room temperature
equilibration time), 91.3 + 2.6% (6 h at
-20°C) & 75.9 + 10.8% (6 h at -80°C).

Best thawing at 26°C for 30 s with
76.1 + 7.8% sperm viability

Seawater or Ca®*-free saline useful for
preparation & storage of gonadal tissue
for gross morphology up to 36 h at 15°C

Sperm viability after 36 h at 15°C was
65.2 + 21.6% (seawater) & 51.0 + 6.8%
(Ca%*-free saline)

Sperm viability assessed morphologically;
observing abnormal sperm

70%-80% sperm viability after freezing at
-35°C & -196°C
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TABLE 2 (Continued)

Species

Litopenaeus
vannamei

Penaeus monodon

Penaeus monodon

Litopenaeus
vannamei

Penaeus monodon

Penaeus monodon

Litopenaeus
vannamei

Penaeus merguiensis

AQUINO ET AL.

Semen collection
method

Manual extrusion

Manual extrusion

Manual extrusion

Manual extrusion

Manual extrusion

Manual extrusion

Manual extrusion

Manual extrusion

Preserved tissue/cells

Spermatophore,
spermatic mass,
sperm suspension

Spermatophore

Spermatophore

Spermatophore

Spermatophore

Spermatophore

Spermatophore

Spermatophore

Holding solution/cryoprotectant/
cooling vessel

Sterile sea water (SSW; 35
ppt) + 10% methanol or glycerol
or 5% ethylene glycol in 0.5 ml
French straws sealed with
Polyvinyl alcohol

Mineral oil as extender with 0.1%
penicillin-streptomycin without
cryoprotectant in closed
Eppendorf tubes (opened for
10 min every 7 days for oxygen
transfer)

Ca?*-free 0.9% saline + 5% DMSO in
cryovials

Mineral oil with 0.1% penicillin-
streptomycin without
cryoprotectant in sterile
Eppendorf tubes

Ca?*-free saline + 5% DMSO in
cryovials

Ca%*-free saline + 5% DMSO in
cryovials

Ca?*-free saline + 5% DMSO in
cryovials

Ca**-free saline + 15% MgCl, in
cryovials

Equilibration time/dilution
ratio

60 min for spermatophore &
spermatic mass; 15 min
sperm suspension; 1
sperm mass:10 SSW

Not mentioned

Spermatophore first in Ca%*-
free saline for 5 min,
then transferred to
cryoprotectant solution
for 30 min

Not mentioned

30 min at 25°C; dilution
ratio not mentioned

30 min; dilution ratio not
mentioned

25°C for 30 min

25°C for 15 min; dilution
ratio not mentioned
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Freezing rate & duration

-0.5°C min™* from room
temperature to -32°C,
then immersed in LN, for
3 days. Manual seeding
done at -6°C

2-4°C for 8 days

Two-step freezing rate
used: firstly ~15°C min™*
from 25 to -10°C, then
-2°C min™* from -10 to
-80°C using a controlled
rate freezer. Thereafter
cryovials plunged in LN,
for48 h

2-4°C for 35 days

One-step cooling rate at
-2°C min"! between 25 &
-80°C then storage in LN,
for 60 days

One-step cooling rate at
-2°C min™* between 25 &
-80°C then storage in LN,
for 210 days

-2°C min™* from room
temperature to -80°C,
maintained for 2 min, then
plunged in LN, for 70 days

10 min at each of 25, 20, 16,
4,2,-4,-20,-80, -150°C
for 90 days

Thawing conditions

25°C for 40 s for
spermatophores,
20°Cfor10s
suspended
in0.2M
sucrose + SSW
for sperm cells

Not mentioned

30°C for 2 min

Not mentioned

30°C for 2 min

37°C for 2 min with
cryovials wiped
with 70% EtOH

30°C for 2 min

27°C for 2 min

Evaluation technique

Light microscopy;
flow cytometry
(DNA staining with
propidium iodine)

Eosin-nigrosin staining;
light microscopy

Tissue weights;
fertilisation; light
microscopy

Eosin-nigrosin staining;
light microscopy

Eosin-nigrosin staining;
light microscopy;
fertilisation rate

Bacterial assays over
time

Flow cytometry; eosin-
nigrosin staining;
light microscopy

Eosin-nigrosin staining;
light microscopy;
fertilisation rate

Results

Sperm viability after 2 h in vitro:

SSW + 10% glycerol = 86.2 + 4.5%

SSW + 10% methanol = 85.6 + 3.6%

SSW + 5% ethylene glycol = 88.8 + 1.1%

Untreated SSW (control) = 87.0 + 6.0%

Sperm viability after 3 days: 61.6% using 10%
methanol as cryoprotectant

58.3 + 2.9% viable sperm in mineral oil with
0.1% penicillin-streptomycin

Fertilisation rate: 88.3 + 0.9%

Hatching rate: 87.6 + 1.2%

Frozen-thawed spermatophore has
79.7 + 0.4% sperm viability with
79.9 + 3.7% fertilisation rate &
87.8 + 0.4% hatching rate

Sperm viability (69.5 + 3.9%) significantly
higher (p < 0.05) among spermatophores
preserved in mineral oil with 0.1%
antibiotic compared with those preserved
in mineral oil only (57.7 + 3.4%)

Spermatophores cryopreserved for
<60-62 days:

sperm viability: 87.3 + 4.1%, fertilisation
rate: 71.6%-72.2%, hatching rate:
63.6%-64.1%

Long-term storage of spermatophores:

sperm viability: 53.3 + 4.3% (after 90 days),
46.7 + 4.2% (120 days), <40% (210 days)

One-step cooling rate at =2°C min™? resulted
in 93.3 + 2.7% sperm viability

Cryopreservation of spermatophores
eliminated pathogenic bacteria during
long-term storage in LN,

Highest sperm viability of 34.4 + 3.4% using
this protocol followed by 33.3 + 3.9% at
-1°C min™? freezing rate

Long-term cryopreservation: 30 min
equilibration at 25°C in 5% DMSO yielded
49.5 + 8.3% sperm viability in equilibrated
sample, 44.3 + 6.6% viability in samples
frozen 1 day, & 33.0%-37.0% viability
after 10, 20, 30, 40, 50, 60 & 70 days

Spermatophore cryopreserved with good
sperm viability (55.4 + 0.3%), fertilisation
(64.1 + 2.1%) & hatching (62.5 + 1.5%)
rates

Equilibrium time in MgCl, yielded
88.2 + 7.3% viable sperm
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TABLE 2 (Continued)

Semen collection

Species method Preserved tissue/cells

Litopenaeus Manual extrusion Sperm
vannamei

Litopenaeus schmitti ~ Post-mortem Sperm mass

dissection

Litopenaeus Manual extrusion Sperm
vannamei

Litopenaeus Manual extrusion Sperm
vannamei

Litopenaeus Manual extrusion Spermatophore
vannamei

Penaeus monodon Electroejaculation Sperm

Fenneropenaeus Manual extrusion Sperm
indicus

either alone or in combination with concentrations ranging from
5 to 20%.3%1701%5 These cryoprotectants were mixed with car-
rier solutions such as filtered fresh or seawater, Ringer's solution,
or phosphate buffered and Ca®* - free saline. Spermatophores or
spermatozoa usually were equilibrated with cryoprotectants for
5-60 min, at a ratio of 1:2, 1:3 or 1:4 spermatic mass to freezing

solution, depending on species (see Table 2).

3.2 | Room temperature and chilled storage of
crustacean spermatozoa

The spermatophore, spermatic mass or spermatozoa of crustaceans
have been held at room temperature (20-25°C), chilled (2-4°C) or
cryopreserved in liquid nitrogen (-196°C).”1%¥¢ For short-term

Holding solution/cryoprotectant/ Equilibration time/dilution
cooling vessel ratio

Hank’s balanced salt
solution + antibiotic/antimycotic
without cryoprotectants in
microtubes

23°C for 12 h; 1:4 dilution

10 min; dilution ratio not
mentioned

Ca%*-free saline + 5 % glycerol in
cryovials

30 min; dilution ratio not
mentioned

Sterile seawater; Activation: Freezing
solution (5% egg yolk & 0.2 M
sucrose) + 5% DMSO or ethylene
glycol in cryovials

Ca?*-free saline + 30%
methanol + 0.4 M trehalose + 2%
soy lecithin in microtubes

25°C for 10 min; dilution
ratio not mentioned

Ca%*-free saline + 0.4 M
trehalose + 2% soy lecithin in
microtubes

25°C for 10 min; dilution
ratio not mentioned

Ca%*-free saline + 5% DMSO in
cryovials

Room temp for 30 min;
dilution ratio not
mentioned

Ca**-free saline + 5% DMSO + 5%
MeOH + 10% egg yolk as
co-cryoprotectant & 0.25 M
trehalose in cryovials

Room temp for 30 min;
dilution ratio not
mentioned

storage of decapod spermatozoa, most studies reported good
sperm viability in the absence of cryoprotectant. Short-term stor-
age (4-17 h) of spermatophores at room temperature in Ringer's or
Ca?*- free saline without cryoprotectant maintained greater than
50% sperm viability, fertilisation and hatching rates in both fresh-
water prawn (Macrobrachium rosenbergii)’ or Pacific white shrimp
(L. vannamei) respectively‘10 Spermatophores from black tiger
prawn and Pacific white prawn kept at 2-4°C in mineral oil with
0.1% penicillin-streptomycin but no cryoprotectant exhibited 60%
sperm viability and 80% fertilisation and hatching rates after for
35-42 days.lcﬁ'198 Moreover, clawed lobster (Homarus americanus)
spermatophores preserved for up to 289 days in paraffin oil without
cryoprotectant at 4-7°C maintained normal morphology as deter-
mined by both phase-contrast and electron microscopy.199 However,
storage for 3 days or longer at 2°C in distilled water containing 10%
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Freezing rate & duration Thawing conditions

23°Cfor4h Not mentioned

Two-step freezing protocol: 20°Cfor10s
25 to -6°C at -2°C min?,

then -6 to -32°C at

-0.5°C min™}, then sperm

mass immersed in LN, for

15 days

Not mentioned 25°Cfor40s

Evaluation technique

Fertilisation rate

Eosin-nigrosin staining
& light microscopy

Eosin-nigrosin staining
& light microscopy,
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Results References

92.0% viable sperm using modified artificial [10]
extenders with 60.4% female successfully
spawned

5% glycerol yielded 17.2 + 0.8% viable sperm  [285]
after 30 days. Two-step freezing protocol
achieved 42.9 + 0.6% viable sperm after

15 daysin LN,

Short-term storage yielded 20%-40% sperm [94]
viability after 30 days in LN,

flow cytometry

1 ml Ca®*-free
saline; duration

Room temperature (25°C)

for 10 min then vitrified fluorescent

Eosin-nigrosin staining,

30% methanol for 120 min yielded [195]

79.5 + 1.3% sperm viability.

directly in LN, not mentioned microscopy Trehalose + soy lecithin is an effective
extracellular cryoprotectant for
vitrification yielding 88.0 + 1.6% sperm
viability after 120 days
Vitrified directly in LN, for 36°C for 1 min Light & fluorescent 91.8 + 3.0% sperm viability using [34]
150 days microscopy cryoprotectant with 73.0 + 2.6%

25°C to -10°C at -15°C min’?,
then -10 to -80°C at
-2°C min_l, after which
cryovials plunged into LN,
for 180 days

28°C for 2 min
chromatin

(SCDt)

-0.5°C min™* between 4°C
& -80°C, hold for 5 min
before storage in LN, for
45 days

30°C for 1 min

fluorescent
microscopy

glycerol led to low viability (35%) in giant freshwater prawn sper-
matozoa, which was attributed to the toxicity of the cryoprotect-
ant.’® These reports suggest that the use of cryoprotectants may
be inappropriate for short-term storage of crustacean sperm above

0°C, due their toxic effect on metabolically active cells.?®°

3.3 | Long-term cryopreservation

Using liquid nitrogen, spermatophores and spermatozoa of crus-
taceans have been reported to be preserved for between 90
and 180 days depending on the species and cryoprotectant
employed.157’201’203 Unlike vertebrate spermatozoa, sperm viabil-
ity across several species of crustaceans appears to decline signifi-
cantly beyond 180 days of storage.”*?° For crustaceans, the rate of

Comet assay, sperm

dispersion test

Eosin-nigrosin staining;
light microscopy;
HOST & DNA
integrity analyses;

fertilisation rate but 0.0% hatching rate in
all treatments

(1) % SDF was strongly correlated between [157]

SCDt & two-tailed comet assays (Pearson
r=0.989; p =0.01)

(2) % SDF did not increase due to mechanical
stress induced by vortexing (p = 0.76)

(3) % SDF was higher in domesticated
(6.8 + 4.5%) than wild (3.3 + 1.5%) male
broodstock (p < 0.001)

Sperm viability was 83.8 + 2.5% after one- [81]
step slow freezing of spermatophores in
5% DMSO + 5% MeOH. Sperm quality
was great at a freezing rate of -0.5°C
min~! with 53.9 + 4.9% sperm viability,
45.6 + 4.2% HOST & 58.1 + 1.7% DNA
integrity

cooling spermatozoa prior to freezing varies depending on species
and generally ranges from -5 to -2.5°C min?, typically resulting in
greater than 50% viable spermatozoa (see Table 2). In most cases,
frozen spermatophores or spermatozoa can be thawed at 20-30°C
for 30 s to 5 min depending on the species (see Table 2). In giant
freshwater prawn, the best cooling rates for spermatozoa report-
edly range from -1.5 to -2.5°C mint using either 10% DMSO, 10%
propylene glycol,?°? 10% glycerol or 20% ethylene glycol as cryopro-
tectants.?%® Their spermatozoa were subsequently best thawed in a
30-35°C water bath for 1-5 min.>?°22%% These procedures resulted
in the cryopreservation of spermatozoa at -196°C for 90-150 days
with more than 50% sperm viability.2°2%% The most frequently used
cryoprotectant for penaeid shrimp sperm cryopreservation is 5%
DMSO using either one- or two-step freezing rates. One-step freez-
ing normally uses a rate of -2°C min~! between 25 and -80°C before
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storing in liquid nitrogen (LNZ).”04 Two-step freezing involves low-
ering of temperature at -15°C min~* from 25 to -10°C, then at -2°C
min™! from -10 to -80°C. Thereafter, cryovials are plunged in LN,
at -196°C.81%7 Frozen spermatozoa are thawed in a 27-30°C water
bath for 2 min.8%157:201.204 ysing these procedures, more than 50%
sperm viability can be achieved following 90-180 days of cryo-
preservation.®?157201.204 | giant mud crab (Scylla serrata), sperma-
tozoa can be cryopreserved in LN, using 15% glycerol or 5% DMSO
and 0.25 M trehalose as cryoprotectants for up to 30 days with more
than 90% sperm viability.205 In another study, giant mud crab sper-
matozoa exhibited 50% viability after 8 h frozen in LN, at a cooling
rate of -5°C min™* using 12.5% glycerol as the cryoprotectant, and
thawing in a 55°C water bath for 10-15 s.5° In mud spiny lobster
(Panulirus polyphagus), spermatozoa exhibited up to 80% viability
after 24 h cryopreservation using 10% glycine as cryoprotectant and
a freezing rate of 15 min at each of 8 graded temperatures (25, 20,
16,4, 2, -4, -20, -80 and -150°C), followed by immediate storage in
LN,, and thawing at 26°C for 30 5.2%¢

Post-thaw sperm quality is usually evaluated by measuring
their fertilisation and hatching rates in crustaceans.®®%2%% |n giant
freshwater prawn, spermatophores equilibrated in freshwater for
15-30 min after thawing were attached to the female's sternum
using a-cyanoacrylate as a glue, resulting in successful fertilisation
and hatching (though the authors did not report the rates.® In black
tiger prawn, two studies reported 70%-89% fertilisation rates and
63%-88% hatching rates after artificial fertilisation using cryopre-
served spermatophores.&9 In summary, both short- and long-term
storage of sperm at room temperature, by chilling or cryopreser-
vation in liquid nitrogen has been reported and appear relatively
successful in different taxonomic groups of crustaceans, includ-
ing freshwater prawn and marine shrimp, crabs, and marine lob-
sters 6~9157197-199,201-204,206,207 Njeyertheless, further work in this
area to optimise freezing protocols for other decapod crustaceans

is required.

3.4 | Sperm vitrification
An alternative to conventional sperm cryopreservation is the rapid
freezing of spermatozoa by a process known as vitrification. This
process, through an extreme increase in viscosity during freezing,
causes solidification of liquid into an amorphous or glassy state at
low temperature to avoid inducing ice formation and crystallisa-
tion.18%192.208 |t freezing of viscous solution occurs rapidly, the su-
percooled liquid retains its physical liquid properties until it reaches
its glass-state transition temperature. Rapid freezing below this tem-
perature, maintains the disorderly organisation of the solution's mol-
ecules but its physical properties remain rigidly solid. In this state,
molecules are locked in place as if the liquid were frozen in time,
resulting in a ‘solid liquid’ known as ‘glass’.?%?

For the vitrification process, cells need to be exposed to a high
concentration of cryoprotectant solution early. Rapid cooling al-
lows the entire volume of a cell to change to a glassy solid state

(vitrifying), devoid of freezing.189'192'193'208’210 In decapods, white-
leg shrimp spermatozoa were equilibrated for 10 min at room tem-
perature (25°C) in several different cryoprotectant solutions: (i)
Ca?*- free saline +0.4 M trehalose (base solution), (i) base solution
+30% methanol (MeOH), (iii) base solution +30% MeOH +1% soy
lecithin, (iv) base solution +30% MeOH +2% soy lecithin, (v) base
solution +1% soy lecithin and (vi) base solution +2% soy lecithin,
before plunging them directly into LN, (-196°C).*> Results showed
that trehalose alone (base solution; 90.1 + 2.4% sperm viability) or
trehalose +2% lecithin (91.1 + 3.9% sperm viability) were effective
extracellular cryoprotectants for vitrification after 120 days storage
in LN,.'° In a subsequent study, whiteleg shrimp spermatozoa ex-
ceeded 90% viability after 150 days in LN, using 0.4 M trehalose
+2% lecithin as the cryoprotectants.®* However, artificial fertilisa-
tion with thawed spermatozoa preserved by this method resulted
in extremely poor to zero hatching rates, suggesting that the vitrifi-
cation process may have induced high rates of sperm DNA damage
(but this remains to be determined -emphasising the need to de-
velop sperm DNA damage assays for crustaceans). Clearly, applica-
tion of conventional slow-freezing or vitrification techniques to the
aquaculture industry would revolutionise the maintenance of male
broodstock genetics in sperm banks and by so doing, significantly
reduce operational expenses associated with broodstock manage-
ment. Coupled with the development of successful techniques to
efficiently reinfuse these genetics back into broodstock females via
procedures such as artificial fertilisation, such advanced reproduc-
tive technologies could provide better control of reproduction and
selective breeding of valuable genetic lines of economically import-
ant decapod crustaceans.

4 | NATURAL AND ARTIFICIAL
FERTILISATION IN DECAPOD
CRUSTACEANS

Understanding the physiological changes to gametes during the pro-
cess of fertilisation in decapod crustaceans is essential for improving
hatchery management, selective breeding and other reproductive
strategies. Changes in sperm physiology and mating behaviour are
particularly well documented in freshwater crayfish,3'98’211 there-
fore, the subsequent description will primarily focus on this group of
decapod crustaceans. During mating, the thick muscle of the distal
vas deferens contracts and a segment of the sperm cord (a continu-
ous cord containing spermatozoa surrounded by primary and sec-
ondary secretions) is squeezed through the gonophores and ejected
by the appendices masculinae. The internal sperm cord is fragmented
upon extrusion releasing an individual spermatophore unit. Only one
spermatophore is transferred to a female's sternum at a time and
forms a sticky opalescent mass within 10 min post-extrusion. By 1 h
post-extrusion, the spermatophore begins to harden, and completely
solidifies within 24 h. At this point, the female crayfish has already
separated from the male and extends her pleon, folds her abdomen
and expands her uropods to create a temporary brood chamber. Eggs
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are visible within the chamber and some are already attached to the
pleopod setae, with all eggs firmly attached after 48 h. Hydration
of the attached spermatophore occurs 24-48 h post-mating; con-
firmed by increased swelling and coiling of the sperm cord thereby
increasing its size.%* After 72 h, the spermatophore softens and be-
tween 72 and 96 h post-mating, many sections of the sperm cord
begin to coalesce. Fissures are observed in the matrix of the sec-
ondary spermatophore layer from 48 h, which increase further after
72-120 h post-mating. Ultimately, the spermatophore disintegrates
completely between 96 and 120 h.®* After mating, the female re-
leases a secretion from her glair glands that dissolves the wall of
the spermatophore, allowing her to smear spermatozoa across her
ventral abdomen before egg release. Glair secretions are sufficient
to firmly hold spermatozoa and prevent them being washed away,
until fertilisation is t:omplete.80 The female regulates the timing of
sperm release by breaking open the primary spermatophore layer
and drawing spermatozoa into her brood chamber to facilitate fer-
tilisation.®#?*? The spermatophore is completely ruptured after
egg release and attachment to the pleopods, enabling the female
to manipulate spermatozoa into her brood chamber to complete
external fertilisation.®* The female brood chamber is maintained to
incubate fertilised eggs for up to 5-7 days post-oviposition. After
this time, her abdomen is extended to gently ventilate the visibly
fertilised eggs using her swimming legs.®* Time of natural mating and
egg-laying differs across decapod crustaceans depending on water
temperature but this can be controlled artificially by manipulating

temperature and photoperiod.m'214

4.1 | Spermatophore structure and function

Across decapod crustaceans, the spermatophore varies morpho-
logically and can be classified into three general types. The first type
forms a small round or ellipsoid shape usually found in brachyuran
crabs (eg blue-swimmer crabs and giant mud crabs). This type of
spermatophore is suspended in seminal fluid and deposited in the
female spermatheca during true copulation. In brachyuran crabs,
spermatophores degenerate after copulation and lose their protec-
tive function, only serving to keep spermatozoa together during
transfer to the female prior to internal fertilisation.%” The second
type is the pedunculated spermatophore usually found in anomu-
ran crabs (eg hermit crabs, mole crabs and sand crabs). This type of
spermatophore forms a stalk or peduncle that is fixed onto the ven-
tral sternum of the female during copulation, where it remains for
an extended period until the female mechanically manipulates it for
external fertilisation.®? The third type of spermatophore, produced
by most macrurans (eg crayfish and lobsters), contains spermatozoa
enclosed within a sperm cord surrounded by one or more layers of
protective gelatinous matrix. This type of spermatophore is also
produced by penaeid shrimps but with accessory structures such
as attachment wings‘39 Generally, this type of spermatophore is de-
posited on the ventral sternum of female crayfish and lobsters or
inserted in the thelycum (sex organ) of female penaeid shrimp as well
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as homarid and nephrosis lobsters.?? In freshwater crayfish, sper-
matophores harden upon exposure to water. This hardening pro-
tects spermatozoa from physical damage brought by environmental
stressors, thereby enhancing sperm viability.6#8%782%5 Hardening
of the secondary spermatophore layer is caused by enzymatic re-
actions associated with calcification of chitin complexes. Moreover,
highly acidic mucopolysaccharides (containing chondroitin sulphate
and hyaluronic acid) contribute to the calcification and antimicro-
bial activity of the spermatophore. Chondroitin sulphate aids desic-
cation of spermatophores by providing elasticity and resistance to
compression.>?8%2%6 Calcium-related proteins such as sarcoplasmic
calcium-binding protein, crustacean calcium-binding protein 23,
ryanodine receptor, and troponin C2 have been identified in the
spermatophore of freshwater crayfish and are suspected to be re-

sponsible for calcification during hardenin,g.go’(”g'zn'219

4.2 | Natural fertilisation

Spermatozoa encased by a spermatophore are unable to fertilise,
only after chemical ‘activation’ do they acquire the capacity to fer-
tilise; a process that is time-dependent.”o*221 These morphological
and molecular changes are known as sperm capacitation.8078:219.222
Sperm capacitation in crustaceans occurs either inside seminal re-
ceptacles such as the thelycum in Penaeid shrimp, or on the ven-
tral portion of the female, such as in freshwater crayfish,3%78:223.224
During the process, both spermatophores and spermatozoa alter
their morphology. In freshwater crayfish for example, the release of
glair gland secretions by the female to dissolves the hard wall of the
spermatophore is known to initiate sperm capacitation prior to ferti-
lisation.® Changes to the spermatozoon occur primarily in the extra-
cellular capsule, plasma membrane and subacrosomal zone after the
spermatophore is dissolved. During capacitation, the extracellular
capsule swells and space appears between the spermatozoa and the
capsule. The anterior portion of the acrosome changes from a single-
to a multi-layered structure and the plasma membrane wrinkles, thus
increasing the wrapping of membrane around the acrosomal apical
cap.go’g’8 After capacitation, the acrosome reaction involves morpho-
logical and molecular changes to the acrosomal vesicle and discharge
of subacrosomal and nuclear material into the egg.so’(’m8 The sub-
acrosomal zone detaches from the main acrosome, losing electron
density, and membranous lamellae separate from the free sperma-
tozoon. Electron-dense material, that wrap the filaments in the in-
nermost portion of the acrosome pre- and post-mating, are released
from the spermatozoon (Figure 2).8% The discharge of subacrosomal
contents is aided by its morphological alteration during the process.
The subacrosomal zone is calcified, thus increasing its ability to punc-
ture the egg membranes in order to successfully transfer nuclear ma-
terial into the egg.”®?' Discharge of the inner nuclear material occurs
simultaneously with the acrosome filaments, forming a droplet or fil-
ament structure in the anterior portion of the spermatozoon.go’%’218
After discharge of the nuclear material, the extracellular capsule,
membranous lamellae and plasma membrane are eliminated. Nuclear
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material at this time is less condensed than in spermatozoa at earlier

In other decapod crustaceans such as black tiger prawn (P. mono-
stages.”®?Y Transfer of nuclear material inside the egg activates an don) and pink prawn (F. paulensis) that have a closed thelycum, ca-
instantaneous electrical block to protect the egg from polyspermy
- fertilisation by multiple spermatozoa.zzs’228

pacitated spermatozoa have a more electron-dense acrosome and
subacrosomal zone and less condensed nucleus.??2%0 Similar to
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FIGURE 2 Electron (transmission and scanning) micrographs of the spermatophore wall and released spermatozoa in narrow-clawed
crayfish (A. leptodactylus). (a) dissolving wall of the spermatophore with distorted granules (arrowheads) and areas where female glair
secretions have penetrated (arrows); (b) exposed anterior acrosome secreting its contents in numerous droplets; (c) sagittal close-up showing
acrosomal secretion with electron-dense vesicles at the inner surface of the acrosome being discharged extracellularly (d) a spermatozoon
released from the extracellular capsule with nuclear radial arms and acrosomal complex clearly visible; (e) discharge of filaments from the
anterior portion of the acrosome causing a cavity; (f) sagittal section of a spermatozoon extruding filaments and electron-dense material
from the apical zone of the acrosome leaving a withdrawn subacrosomal zone; (g) close-up of electron-dense material being expelled via the
apical zone; (h) cross-section of remaining acrosome layers and subacrosome zone after release of electron-dense materials; (i) boundary
between subacrosome zone and nucleus (arrowheads). A, acrosome; Ac, acrosome complex; AM, acrosomal membrane; AZ, apical zone; EC,
extracellular capsule; Fi, filaments; IL, inner acrosome layer; ML, middle acrosome layer; N, nucleus; PM, residual plasma membrane; RA,

radial arms; SA, subacrosomal zone®°

sperm capacitation in mammals, changes in protein composition of
the plasma membrane and increasing protein tyrosine phosphor-
ylation have been observed.?®%231 After the acrosome reaction,
the apical cap becomes less concave.???2% |n decapods with open
thelycum such as the whiteleg shrimp (L. vannamei), copulation is
accomplished by attaching the male spermatophore onto the sur-
face of the thelycum 4-6 h before spawning. After attachment,
ultrastructural changes associated with sperm capacitation involve
the formation of a filamentous meshwork between sperm nucleus
and hemispherical cap.??>2%2 Most reports describing the acrosome
reaction in shrimp spermatozoa are based on artificial induction by
egg water in vitro and, as such, are not as specific as in vivo acrosome
reaction reported in freshwater crayfish.197223232 |5 plack tiger
shrimp, a mature spermatozoon consists of three major regions: an-
terior, middle, and posterior. An acrosomal spike is visible on the
anterior region while the posterior region contains the nucleus and
forms the main body of the spermatozoon. The subacrosomal mate-
rials occur in the middle region. During egg water-induced acrosome
reaction in vitro, the acrosome loses its spike (termed depolymerisa-
tion) followed by acrosomal exocytosis of nuclear materials.%10>233
Upon sperm contact with the vitelline egg envelope during natural
fertilisation, the acrosomal spike also degenerates, and an electron-
dense spherical mass is formed.**1% The spherical mass draws the
nuclear material into the egg's cytoplasm during sperm entry.49

In crabs, acrosome reaction occurs simultaneously with sperm
penetration into the oocyte membrane.’*®> Once the acrosome
reaction is complete, a fertilisation cone is formed at the site of
sperm-egg contact. Between the acrosome tubule and the fertilisa-
tion cone, bell-shaped corpuscles are observed that are believed to
release a binding-like substance to stimulate sperm-egg membrane
fusion.?*3234 Since sperm morphology varies across different spe-
cies of decapod crustaceans, our general understanding of the pro-
cess of natural fertilisation is still largely inadequate. In particular,
the molecular mechanisms underlying sperm capacitation, acrosome
reaction and fertilisation of eggs requires further research, that will
ultimately improve our ability to develop successful artificial fertili-
sation techniques.

4.3 | Artificial fertilisation

In traditional aquaculture of economically important crusta-
ceans, animals might only reach sexual maturity and reproduce in

captivity when conditions are favourable such as the black tiger
prawn. Moreover, males and females of some aquaculture species
may not mature and reproduce simultaneously in captivity.?*> With
intensification of aquaculture, interest in controlling crustacean
reproduction using assisted breeding techniques has gained great
impetus.25’28 With such techniques, gametes can be collected from
superior broodstock with high-quality phenotypic traits and used for
artificial fertilisation during a precisely controlled time window,?%°
ensuring genetic selection for high-quality offspring can be maxim-
ised for commercial production.

Artificial fertilisation (AF) in crustaceans involves either the
introduction of sperm extruded from the male into the female
sex organ for internal fertilisers, or adhesion of the spermato-
phore near the ventral gonophores of the female for external
fertilisers.?®®> AF is a means of reproductive control that allows
fertilisation to occur anytime, which should dramatically speed
up selective breeding programmes while dramatically reducing
the cost.?%> Due to unique differences in reproductive physiology,
fertilisation and hatching rates after AF varies in each species of
decapod.?®233 Although previous studies reported high spawning
rates, they yielded few or no embryos.®'® Despite not yet being
widely employed, the external nature of fertilisation in many
decapods, makes them ideal candidates for AF, which has been
attempted and reported in a number of species. For example, for
freshwater prawn AF, spermatophores were extruded by post-

% manual extrusion,® electroejaculation,***

mortem dissection,?®
or direct removal from the female's sternum or seminal recepta-
cles post-copulation.®” Generally, both fresh and cryopreserved
spermatophore can be utilised for artificial fertilisation.?8:203
Female freshwater prawns were fertilised artificially using a re-
tainer tube with their ventral side facing the operator.®”2%¢ AF
efficiency was evaluated through sperm counts, fertilisation and
hatching rates of eggs, and was highly successful in laboratory ex-
periments in freshwater prawn and penaeid shrimp.”282% Using
AF, 75%-100% female freshwater prawns had fertilised eggs with
90%-100% hatching rates using either fresh or cryopreserved
spermatophores.®” In one study, fertilising capacity was de-
termined by evaluating the survival rate of developing embryos
5 days after spawning, as well as estimating the rate of effective
spermatophores (spermatophores that yield normal hatching of
fertilised embryos) after adhesion.?%® High embryo survival rates
(75%-90%) were observed using cryopreserved spermatophores

stored in LN, for 30-100 days.?%® Moreover, high male fecundity
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after AF appeared directly proportional to sperm concentration
in a given spermatophore, demonstrating the direct link between
sperm quality and egg fertilisation and hatching rates. By contrast,
in narrow-clawed freshwater crayfish, freshly electroejaculated
spermatophore with 80% sperm viability failed to fertilise eggs
nor produce offspring, suggesting that electroejaculated sper-
matophores in this study may have contained significantly fewer
spermatozoa to participate in fertilisation.'® Furthermore, white-
leg shrimp spermatozoa with >90% viability after spermatophore
vitrification achieved >70% fertilisation rates but had low to no
hatching after artificial fertilisation.®* The inability of these em-
bryos to survive until hatching was thought to be caused by fer-
tilisation with vitrification-induced DNA-damaged spermatozoa,
but this claim remains to be validated.®* These above preliminary
studies offer hope for the commercial development of AF in se-
lected decapods, while for others greater understanding of the
underlying mechanism and timing of gamete interaction during
fertilisation is required before sperm cryopreservation and AF can

be of benefit to their commercial aquaculture.

[ Collection of broodstock from the wild & disinfection ]

.

Maintenance of healthy
decapod crustaceans in
optimized & controlled
environment for
reproduction

Spermatophore

collection &
sperm
extraction

Sperm quality diagnostic
tools to assess male
fertility

N ity

5 | CONCLUSIONS
This review highlights several alternative biomarkers of male fertil-
ity, including plasma membrane integrity, mitochondrial function,
acrosome reaction, and DNA fragmentation in spermatozoa, which
are likely to be of value but are still in their infancy of application in
decapod crustaceans. Functional measurement of these intracellular
sperm organelles have been demonstrated as reliable indicators of
sperm fertilisation competence. The use of fluorescent cellular dyes
coupled with high-throughput flow cytometry enables rapid and ac-
curate analysis of large numbers of freshly stained spermatozoa per
animal in a short period of time. Optimisation of these technologies at
the species-specific level in decapod crustaceans are clearly required;
although standardisation of protocols at the genus level would accel-
erate their uptake and so should be given high priority.

Application of conventional sperm cryopreservation or vit-
rification techniques to crustacean aquaculture would rev-
olutionise the maintenance of male broodstock genetics in

Sperm Banks, and by so doing, significantly reduce operational

Selection of high-quality, fecund
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broodstock; avoid inbreeding, by
monitoring relatedness records,
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FIGURE 3 Application of advanced reproductive tools to improve sustainable production of economically important decapod

crustaceans in aquaculture
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expenses associated with broodstock management. Coupled
with techniques to reinfuse these genetics back into broodstock
females via procedures such as artificial fertilisation, these ad-
vanced reproductive technologies will provide better control of
reproduction and selective breeding of valuable genetic lines of
decapod crustaceans.

Advanced reproductive tools to assess male fertility can be fur-
ther used as sensitive biomarkers to improve sperm handling proce-
dures, broodstock husbandry and nutrition. Successful application
of these advanced diagnostic tools to decapods could help identify
the impact male broodstock with low sperm quality may have on
poor offspring yield or survival, particularly in the case of low sperm
quality caused by factors such as DNA damage that is undetect-
able by traditional methods, thereby allowing breeders to make in-
formed decisions about which males to discard in their broodstock.
Males identified with high-quality spermatozoa can be retained for
natural breeding or their spermatozoa used for downstream cryo-
preservation and artificial fertilisation. In turn, improving overall
reproductive performance, productivity and cost-efficient man-
agement in the hatchery. In addition, formulation of broodstock
diet and adjustment of environmental conditions to optimise male
reproductive performance can be achieved through evaluation of
sperm quality with the application of advanced diagnostic tools
specific for decapods. Production of decapod crustaceans can be
substantially improved by careful selection of broodstock males at
each successive generation based on both physical (eg absence of
body damage, appropriate size at sexual maturity, body pigmenta-
tion, complete appendages, disease resistance, growth and moult-
ing rates) and reproductive (sperm quality) traits (Figure 3). These
technologies can help breeders make better decisions about brood-
stock management leading to greater numbers of superior progeny,
thus accelerating both commercial crustacean aquaculture produc-

tion and stock enhancement programmes.
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