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Venoms are complex mixtures of toxic compounds delivered by bite or sting. In humans,
the consequences of envenomation range from self-limiting to lethal. Critical host defence
against envenomation comprises innate and adaptive immune strategies targeted
towards venom detection, neutralisation, detoxification, and symptom resolution. In
some instances, venoms mediate immune dysregulation that contributes to symptom
severity. This review details the involvement of immune cell subtypes and mediators,
particularly of the dermis, in host resistance and venom-induced immunopathology. We
further discuss established venom-associated immunopathology, including allergy and
systemic inflammation, and investigate Irukandji syndrome as a potential systemic
inflammatory response. Finally, this review characterises venom-derived compounds as
a source of immune modulating drugs for treatment of disease.

Keywords: venom, detoxification, innate immunity, adaptive immunity, immunopathology, Irukandji syndrome,
venom allergy, systemic inflammation
INTRODUCTION

Venoms are complex mixtures of proteins, peptides, biogenic amines, and salts produced by a diverse
range of animals for predation, protection, and competition (1–4). In humans, needle-like stinging
apparatuses inject venom compounds into dermal-epidermal junctions, capillary vessels, and skeletal
muscle fibres (5). The consequences of envenomation range from innocuous to lethal (6, 7).

As the initial site of venom’s interaction with the immune system, the dermis provides protection
through physical, chemical, and cellular defence mechanisms (8, 9). Prominent defenders in the
dermal immune network include keratinocytes, endothelial cells, and tissue-resident and infiltrating
immune cells for fast and non-specific responses (innate) and acquired long term protection
(adaptive) (8, 9). The primary role of these cells is host defence. However, venom-mediated immune
dysregulation can contribute to envenomation severity (10). Accordingly, this review discusses both
the protective and pathological responses of barrier cells and the immune system towards
venom compounds.
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INNATE RESPONSES TO ENVENOMATION

Defence against envenomation requires an acute response
achieved by the body’s innate immune system. Innate
mechanisms comprise barrier and cellular defences for
immediate but non-specific resistance to foreign bodies (such
as venom compounds), injuries, and pathogens. Physical barriers
(skin and mucosal membranes) and secretions (chemical
substances and enzymes) along with resident and infiltrating
immune cells provide readily available protection without
requiring prior exposure to the damaging compounds (11).
Instead, sentinel and scavenger cells express receptors that
sense evolutionarily conserved structures common to microbes,
cellular stress, and harmful substances (12).

A wide diversity of innate signalling receptor and response
types is responsible for efficient detection and neutralisation/
elimination of various host threats (12). The detection of danger
or stress signals initiates proinflammatory events. Broadly, these
include the production of cytokines and chemokines for immune
cell recruitment/activation, the release of antimicrobial peptides
that directly kill pathogens, the phagocytosis and destruction of
foreign particles and microbes, the generation of reactive oxygen
species (ROS), reactive oxygen intermediates, and reactive
nitrogen intermediates, and the release of enzymes with potent
protein degrading and microbicidal properties (11).

Regulated innate effector functions are also critical for tissue
repair and homeostasis (13). In addition, the presentation of
foreign macromolecules, required for the establishment of
acquired (adaptive) immune responses, is achieved by innate
antigen-presenting cells (APC), including dendritic cells (DCs),
monocytes (MNCs), and macrophages (MF) (11). Likewise,
plasma proteins, including those of the complement system
(an ancient protein defensive system), promote inflammation
or directly kill pathogens (14).

Detection of venom compounds by innate mechanisms
initiates inflammatory reactions critical to host protection,
venom detoxification, and ultimately the resolution of
symptoms (15, 16). Participation by the epidermis,
endothelium, neutrophils, MNCs, MFs, mast cells, and soluble
effector mediators increases host resistance to the damaging
events of bites and stings. Yet, as discussed below, many
venom constituents can augment the activity of these
components leading to venom-induced, immune-mediated
host damage.

Epidermis (Keratinocytes)
The epidermis, the outermost layer of the skin, comprises 95%
keratinocytes arranged in four layers (17). Tight junctions
formed by keratinocyte-derived proteins provide a physical
barrier from the external environment and structural support
for Langerhans cells (epidermal-resident DCs), melanocytes,
Merkel cells (tactile epithelial cells), and sensory neurons (18).
Keratinocytes serve important sentinel and proinflammatory
functions, where cross-talk between keratinocytes and cells of
the dermal-epidermal junction direct immune cell function and
maturation during both initial and late phases of inflammation
(19). Like cells of the immune system, keratinocytes express
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cytokine receptors and pattern-recognition receptors (PRRs),
enabling the detection of pathogen-, damage-, and venom-
associated molecular patterns (PAMPs, DAMPs, and VAMPS)
(20, 21). Activation of keratinocyte proinflammatory genes, such
as by venom compounds, initiates the synthesis and release of
cytokines, nitric oxide (NO), and alarmins, stimulating resident
immune cells and attracting immune cell infiltration (20, 21).

To counteract this defensive barrier, many animal venoms
contain matrix metalloproteinase (MMP) and L-Amino acid
oxidase (LAAO) enzymes (22–25). Venom-derived MMPs and
LAAOs can induce keratinocyte cell death by autophagy,
apoptosis, or necrosis (22–25). Proteolytic degradation of the
dermis facilitates access of venom-derived toxins to the
circulation, lymphatics, and target organs for prey/predator
immobilisation (22–25). In some instances, the induction of
apoptosis stimulates the overexpression of endogenous MMPs,
indirectly triggering tissue destruction (26). For example, brown
recluse spider (Loxosceles rufescens) bites cause significant
dermonecrotic effects, systemic inflammation, and potentially
death in children (26). Interestingly, the molecular mechanism
underpinning the initiation of cutaneous necrosis (a common
reaction in loxoscelism) involves keratinocyte-derived enzymes
(26). Induction of apoptosis by Loxosceles sphingomyelinase D,
the main component of Loxosceles venom, stimulates the
expression/activation of secreted and membrane-bound MMP-
2 and MMP-9 in keratinocyte cultures (26). It has been shown
that the augmented expression of MMPs has a role in the
necrotic skin lesions associated with L. rufescens envenoming
(26). Hence, tetracycline has shown protective effect against
venom-induced cell death by inhibiting the activation of MMP
proenzyme precursors and MMP enzymatic activity (26).

Endothelium
Throughout the vascular system, endothelial cells (ECs) line the
interior surface of blood and lymphatic vessels (27). Although
once considered bystanders in the inflammatory process, ECs
can dictate inflammatory responses under homeostatic and
pathophysiological settings (28). As a primary point of contact
for bloodborne pathogens and other host assaults, including
toxins, ECs play an important sentinel role (29–32). Expression
of numerous PRRs, including toll-like receptors (TLRs) and
receptors for tumour necrosis factor (TNF) and interleukin
(IL)-1b, enables the intravascular detection of harmful
compounds, the activation of proinflammatory genes, and the
alteration of the microenvironment (29–32). ECs also express
major histocompatibility complex (MHC) molecules, classes I
and II, and costimulatory molecules, such as the CD40 ligand
(CD40L) that allows intravascular antigen presentation and EC-
mediated activation of effector memory T cells (TEM) (33).
However, ECs principally modulate immune function by
directing leukocyte trafficking and distribution (34–36).
Leukocyte tethering, rolling, and extravasation occurs in
response to highly selective expression of cell adhesion
molecules (CAMs), such as intercellular adhesion molecule-1
(ICAM-1) and selectins, on the apical surface of ECs. CAMs are
essential for the homing and migration of immune cells towards
secondary lymphoid tissue and inflammatory foci (34–36). The
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powerful influence of ECs on immune function has led to
hypothesise that immune dysregulation, such as seen in
systemic inflammation, might be partially mediated by the
endothelium (37). As venom compounds from different species
can modulate EC function (described below), this may have
important implications in venom-induced systemic inflammation
or allergy.

Venom from different species can induce EC perturbations,
including distortions in cellular function, morphology,
cytoskeletal organisation, and cell viability (38–41). Collectively
these actions alter vascular permeability and blood vessel stability
(38–41). Additionally, snake and spider venoms are highly
proinflammatory in EC cultures, commonly provoking the
secretion of IL-6, IL-8, monocyte chemoattractant protein-1
(MCP-1/CCL2), and Regulated on Activation, Normal T Cell
Expressed and Secreted (RANTES/CCL5) (42). Together, these
events modify the extracellular environment and leukocyte
activity in local and systemic compartments, which may have
important implicat ions for the pathology of some
envenomations (41, 42). For instance, though neutrophil
depletion abrogates Loxosceles venom-induced necrotic lesions,
neutrophils are not a direct target of Loxosceles venom-derived
toxins (43). While neutrophils are likely the proximal cause of
inflammation and tissue destruction, direct exposure to venom
does not provoke this response (43). Instead, research has shown
that the venom contains EC agonists that elicit dysregulated
activation and cellular damage (43). Loxosceles venom strongly
stimulates EC-secretion of IL-8, a potent neutrophil
chemoattractant, and low-level surface expression of E-selectin
(43). Researchers have noticed an unusual activation response in
neutrophils to these venom-mediated proinflammatory signals
(43). Specifically, neutrophils adhere to venom-stimulated ECs
via selectin-mediated tethering in a time- and dose-dependent
manner, yet without transmigration (43). In culture, these
sequestered leukocytes rapidly increase intracellular Ca2+ levels
and release primary and secondary granules containing the lytic
enzymes responsible for tissue degradation (43). Accordingly,
the initiation of Loxosceles necrotic lesions appears to be
dependent upon toxin-mediated EC responses (43). These
findings, further to work by Paixão-Cavalcante and colleagues,
suggest a role for immune-targeted (in addition to toxin-
targeted) therapeutic strategies for envenomation (26).

Mononuclear Phagocytic System
MNCs and MFs form a crucial phagocytic component of innate
immunity. Both MNCs and MFs are highly migratory, enabling
tissue surveillance, antigen capture, and migration to draining
lymph nodes for antigen presentation to adaptive immune cells
(44, 45). As such, they function primarily as sentinel phagocytes
and regulators of immunity (46). MNCs and MFs secrete a wide
range of cytokines and chemokines that modulate immune cell
funct ion and are potent media tors of neutrophi l
recruitment (47).

Many animal venoms can modulate the metabolism and
function of MNCs and MFs. For example, Crotalus durissus
terrificus venom (CDTV) significantly inhibits the trafficking and
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phagocytic capacity of rat peritoneal-resident, thioglycollate‐
elicited, and Mycobacterium bovis strain bacille Calmette
Guérin (BCG)-activated MFs, without affecting cell viability at
2 h, 4 days, or 7 days post intraperitoneal administration (48). In
contrast to these immunosuppressive effects, CDTV can enhance
the production of hydrogen peroxide (H2O2) and NO from
phorbol 12-myristate 13-acetate-stimulated resident, elicited,
and activated MFs (48). Further, CDTV-treatment augments
cellular metabolism ex vivo. Extracted peritoneal cells showed
upregulated glucose and glutamine usage and increased maximal
activity of hexokinase, glucose‐6‐phosphate dehydrogenase,
citrate synthase, and phosphate‐dependent glutaminase (48).
These venom-mediated actions result in amplified MFs
candidacidal activity and decreased phagocytosis potential (48).

Comparably, venom from the pit viper, Bothrops alternatus
(BAV), stimulates increased production of superoxide anion
(O−

2 ) from isolated thioglycollate‐elicited MFs (49). Again,
BAV-treatment showed a limited impact on MF viability, as
evaluated by Trypan blue exclusion, and did not interfere with
MF’s adhesion or detachment capacity up to 100 µg/mL BAV
(49). Pretreatment with the protein kinase C inhibitor,
staurosporine (14 nM/mL), suppressed O−

2 production and
phagocytosis, suggesting the involvement of a PKC-dependent
signalling pathway (49). However, unlike CDTV, Setubal et al.
observed increased MF complement receptor (CR3)-mediated
phagocytosis fol lowing incubat ion with BAV (49).
Phagocytosis of serum-opsonised zymosan particles was
significantly higher in venom-stimulated MFs compared to
vehicle control (49). It was hypothesised that increased
phagocytic activity and excessive release of superoxide might
be involved in the local tissue destruction caused by
B. alternatus snakebite (49).

Studies using human MNCs have revealed the potent
proinflammatory properties of different venom compounds.
For example, venom from the Androctonus crassicauda
scorpion induces IL-12p40 mRNA expression and protein
secretion from purified MNCs (50). However, venom exposure
also produced concentration- and time-dependent cytotoxicity,
as evidenced by significant LDH release in MNC cultures (50).
Further examples include a C-type lectin (BjcuL) isolated from
Bothrops jararacussu snake venom that induces TNF production
from resting CD14+ cells without stimulating proliferation (51).
Phospholipase D from Loxosceles laeta spider venom promotes
MNCmigration in THP-1 cell cultures and cytokine release from
skin fibroblasts (52). Bothrops snake venoms provoke the release
of proinflammatory mediators, prostaglandin E2 (PGE2),
macrophage inflammatory protein 1-alpha (MIP-1a/CCL3),
and IL-1b, and induces activation of NF-kB in human MNCs
(53). Given the immunostimulatory role of MNCs and MFs on
immune function, these data demonstrate the capacity of venom
to induce systemic inflammatory responses.

Contrasting this research, Khemili et al. examined the
immunosuppressive potential of ion channel modulators from
scorpion venom using murine MFs (54). Voltage-gated
potassium channels (KV) play a crucial role in calcium
signalling and immune cell excitability (54). In the resting
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state, murine MFs predominantly express the KV1.5 subunit of
the KV1.5/KV1.3 heterotetrameric complex (54). Innate
activation, including LPS stimulation, induces KV1.3
overexpression (54). Using non-cytotoxic concentrations of
Androctonus australis hector (Aah) venom, the authors
observed a voltage-independent inhibition of KV current
amplitude in LPS-activated (M1) MFs (54). On the contrary,
venom perfusion did not significantly decrease KV current
amplitude in resting cells (54). These results suggest the
presence of an ion channel blocker with a higher affinity for
the KV1.3 subunit, abundant on the cell surface of activated MFs
(54). However, as indicated by the authors, the downstream
functional consequences of MF ion channel modulation requires
further examination (54).

Additional immunomodulatory functions, such as TLR
inhibition, have been identified using synthetic venom
components (55). TLR signalling is a critical element in innate
detection and MF activation (56). Many animal venoms contain
VAMPs that strongly provoke immune stimulation via TLR
engagement (56). Contrasting this, recombinant rhodostomin
(Rn), a snake venom-derived disintegrin, exhibits potent TLR2
inhibition against lipopeptide-stimulated THP-1 cells (55).
Incubation with Rn suppresses TNF, IL-1b, and IL-8 release
and IkB degradation from Pam3CysSerLys4-activated cells (a
TLR1/TLR2 agonist), in a dose-dependent manner (55). In THP-
1 cell cultures, Rn reverses the phosphorylation of focal adhesion
kinase downstream kinases, thereby inhibiting signal
transduction (55). In the caecal ligation and puncture (CLP)
model of sepsis, Rn significantly suppresses CLP-induced TNF,
IL-6, and MCP-1 production and reduces animal mortality (55).
Histology has also revealed that Rn significantly alleviates CLP-
induced tissue-damage (55). Studies such as these highlight
venom as a source of compounds for drug discovery.

Granulocytes (Neutrophils)
Neutrophils are the most abundant leukocyte, constituting 40-
75% of circulating white blood cells (WBC) (57). Derived from
pluripotent stem cells in the bone marrow, a segmented nucleus
of three to five lobes and the presence of secretory vesicles/
granules characterise mature cells (58). Although short-lived,
estimates range from hours to several days, they are the first
phagocyte recruited and mobilised from the bone marrow or
periphery to the infection/injury (59, 60). Upon arrival, these
granulocytes directly destroy pathogens, inactivate toxins, and
mount inflammatory responses through oxidative and non-
oxidative pathways (59, 60). Like other immune cells,
neutrophils are prolific producers of cytokines and chemokines
and can mount robust proinflammatory responses (61).

For non-infectious/sterile challenges, such as envenomation,
exocytosis of granules/secretory vesicles releases up to 700
defensive proteins into the extracellular milieu (58). These
proteins include defensins, serine proteases, neutrophil elastase,
proteinase 3, cathepsin G, cytokines, and chemokines, some of
which inactivate venom components through proteolytic
degradation (62). An additional neutrophil defensive strategy,
critical during envenomation, is the neutrophil extracellular trap
or “NET”. NET formation (NETosis) occurs through programmed
Frontiers in Immunology | www.frontiersin.org 4
self-destruction, whereby the release of nuclear DNA forms a sticky
“net” of extracellular fibres, containing the dissemination of toxins,
bacteria, and pathogens (63, 64). However, whether neutrophils
protect against or promote venom injury is disputed. Certainly, the
participation of neutrophils in venom-associated pathologies, such
as dermonecrosis, has been well documented (26, 43). Nevertheless,
neutrophilic functions, including toxin trapping and inactivation,
provide critical defence against systemic injury and death (65).
Additionally, neutrophil clearance of necrotic tissue is essential for
muscle regeneration following snakebite (16).

Snake venom, such as from Echis carinatus, induces NETosis
and ROS generation in a time- and dose-dependent manner in
animal models and cell cultures (65). While these neutrophilic-
defensive actions hinder venom’s systemic dissemination, dense
NET accumulation can block blood vessels, resulting in localised
tissue damage and impeding antivenom’s efficacy (65).
Unfortunately, though research shows that co-treatment with
DNase 1 prevents tail injury in E. carinatus experimentally
envenomed rodents, mortality is significantly higher among
these mice (65). Interestingly, follow-up work by Stackowicz et
al. determined that localised tissue damage is neutrophil
independent (66). Despite verifying that DNase-treatment does
indeed reduce tail injury at the expense of survival, the study
reported similar occurrences in both neutrophil-sufficient and
deficient settings (66). These data suggest that extracellular DNA
from multiple dying cell types, including neutrophils, mediate
capillary obstruction following envenomation.

Regardless of DNA source, toxin retention inhibits systemic
injury to the detriment of the localised compartments (66). NET
formation and capillary obstruction can lead to severe
consequences, such as amputation, which has devastating
implications for victims’ lives (67). Accordingly, there is an
urgent need for effective therapeutics that minimise tissue
necrosis and facilitate antivenom efficacy. However, given that
neutrophil participation is critical in tissue repair post-
envenomation, neutrophil-targeting therapies may be
counterproductive (16). Hence, further research is required.

Granulocytes (Mast Cells)
Mast cells (MCs) are long-lived, tissue-resident effector cells
derived from a myeloid lineage and matured under the
influence of stem cell factor and cytokines (68). MCs are
positioned near entry points of mucosal, epithelial, and sub-
endothelial connective tissue to provide innate defence and
perform a wide range of physiological functions that maintain
tissue homeostasis (68). MCs induce killing and assist in the
clearance of parasites and pathogens. For venom/toxin defence,
sequestering and neutralisation occur (69). Expression of
multiple PRRs on the cell surface enables rapid detection and
response to immune challenges, including venom toxins.
Activation of PRRs induces de novo synthesis of cytokines,
chemokines, and eicosanoids to attract and stimulate other
effector cells (70). A classic feature of MCs are weaponised
granules, containing preformed toxic inflammatory mediators,
including enzymes (tryptase, chymase, and carboxypeptidase
A3), amines (histamine and heparin), and cytokines (TNF).
MC activation, mediated by immunoglobulin E (IgE)-bound
May 2021 | Volume 12 | Article 661082
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FcϵRI, causes rapid degranulation potentially inducing a
systemic proinflammatory response (71, 72).

Despite the widely recognised role of MCs in allergy and
anaphylactic shock, animal models have provided evidence of
MCs’ protective function against envenomation (73, 74). As
reviewed by Galli et al., functional MCs enhance the survival
of mice challenged with sub-lethal doses of snake (Atractaspis
engaddensis; Daboia russelii), Gila monster (Heloderma
suspectum), European honey bee (Apis mellifera), and scorpion
(Leiurus quinquestriatus hebraeus; Centruroides exilicauda)
venoms (75). The significantly higher mortality among MC-
deficient mice has been attributed to the dysregulation of serine
proteases (carboxypeptidase A3 and mast cell protease 4), which
degrade peptides, and heparin and histamine (69, 75–77). In
healthy individuals, the release of heparin and histamine can
neutralise the effects of venom-derived toxins (69, 71). Adversely,
the release of these amines provokes dangerous allergic
symptoms in hypersensitive individuals, particularly in
response to Hymenopteran venom (the venom of bees, wasps,
and ants) (70).

Chemical Mediators
The immune network is vast and highly complex. Intercellular
communication across the network requires small soluble
protein effectors, known as cytokines (78). Cytokines
(interferons, interleukins, chemokines, and growth factors) are
secreted by cells to instruct and regulate the immune system’s
activity for protection against injury, infection, and disease (78).
Biological functions include cellular activation, proliferation,
differentiation, growth, and immune regulation (78). Further,
as chemoattractant proteins, chemokines exert their effects via
cell recruitment, migration, and adhesion (79). Like hormones,
cytokines have autocrine, paracrine, or endocrine functions for
localised or systemic effects (78). Broadly, they elicit either pro or
anti-inflammatory action (80, 81). The reality, of course, is more
complicated as many cytokines exhibit pleiotropic effects that are
dependent on cellular source, target receptor, and the stage of the
inflammatory process (80, 81). Additionally, immune cells adapt
to the overall profile of the cytokine milieu they encounter
(80, 81).

The expression and release of these potent chemical
mediators are tightly regulated (82, 83). Nevertheless, infection,
cancer, injury, disease (such as autoimmunity), and medical
interventions (including drugs and organ transplant) can
provoke dysregulation in cytokine levels resulting in
devastating pathophysiological effects. Unchecked, cytokines
and other proinflammatory mediators cause severe tissue
destruction, systemic pathology, multiple organ failure, and
potentially death (82, 83). Existing literature extensively
describes diverse pathophysiology induced by dysregulated
inflammatory mediators. These include cytokines (IL-1b, IL-6,
TNF, IFN-g, IL-10, IL-12, and GM-CSF) and chemokines (IL-8,
MCP-1, eotaxin/CCL11, IP-10/CXCL10, MDC/CCL22, MIP-1a,
and TARC/CCL17), as well as bradykinin, eicosanoids
(prostaglandins and leukotrienes), cyclooxygenases, NO, and
histamine (84). Dysregulation of these mediators is associated
with inflammatory and neuropathic pain (85, 86), tissue
Frontiers in Immunology | www.frontiersin.org 5
destruction (87), systemic inflammation (88–90), autoimmunity,
and allergic reactions (91). Unsurprisingly, the same proteins are
detected in the serum of victims of envenomation, where pain and
systemic injury occur (92, 93). Notably, similar secretion profiles are
also present in experimentally envenomed animals and cell cultures
(92). Additionally, venoms can have detrimental effects on platelet
function and components of the complement system (94, 95). In
particular, snake venoms can trigger critical pathologies, such as
venom-induced consumption, thrombocytopenia, and hemorrhage
(94, 95).

Cytokines and their respective receptors represent important
immunotherapeutic targets for numerous conditions (96).
Accordingly, it might seem plausible that targeting
proinflammatory cytokines, chemokines, and small molecules
(or their receptors) similarly represents novel therapeutic
avenues for certain envenomations. However, research in this
area is still in its infancy, and to date, studies have described both
beneficial and detrimental outcomes of immunosuppression
during experimental envenomation. For example, the detection
of snake and bee venom toxins by NOD-like receptor family,
pyrin domain-containing 3 (NLRP3) inflammasome, triggers
immune cell activation, potent IL-1b secretion, and neutrophil
influx (15). Interestingly, Palm and Medzhitov showed that
although inflammasome inhibition, such as seen in caspase-1-
deficient mice, successfully inhibited cytokine release and
leukocyte influx, it unexpectedly resulted in a higher
susceptibility of the mice to the noxious effects of venoms,
including mortality (15). Conversely, Zoccal et al. determined
that using a hexapeptide ligand for the MF scavenger receptor
(CD36) protected mice against a lethal dose of T. serrulatus
scorpion venom through decreased production of IL-1b, IL-6,
TNF, CCL3, and PGE2, and restrained lung inflammation (97).
While reduced IL-1b secretion and neutrophil influx was
observed in both models, together, these data demonstrate the
importance of innate immunodetection in the defence against
bites and stings.
Adaptive Responses to Envenomation
The immune system’s adaptive arm is predominantly comprised
of B cells and T cells. The primary effector function of B cells is
the generation of antibodies (immunoglobulins; Ig) for humoral
defence (98). T cell effector functions are produced by a range of
subsets, including cytotoxic (CD8+) T cells and helper (CD4+) T
cells (TH) cytotoxic (CD8+) and helper (CD4+) lymphocytes.
Cytotoxic CD8+ T cells protect against intracellular pathogens
and suppress infectious disease and tumour growth, while CD4+

T cells maintain homeostasis and shape proinflammatory and
regulatory immune responses (99).

Bites, stings, and intentional venom inoculation stimulate the
generation of venom protein-specific antibodies (100, 101).
Antibody-mediated neutralisation effectively counteracts
venom activity (102). However, a primary B cell response is
slow (requiring days to weeks to become fully active), while
defence against rapid venom action requires an immediate
response (103). As an alternative to host antibodies,
antivenom, produced in large mammals and purified for
May 2021 | Volume 12 | Article 661082
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medical purposes, can provide passive immunity to victims of
life-threatening envenomation (104–106).

The following provides a simplified overview of a primary
(thymus-dependent) humoral response towards envenomation.
Following bite or sting, APCs, such as DCs, MNCs and MFs,
capture and process venom proteins at the site of injury,
promoting maturation (100, 101). Matured APCs migrate to
secondary lymphoid tissue to present venom antigen to naïve TH

cells via membrane-bound peptide-MHC II protein complexes
(100, 101). In lymph nodes, engagement of a T cell receptor
(TCR) with cognate peptide-MHC molecule initiates TH

activation (signal 1) (107). Critical secondary signals, required
for complete T cell activation, are provided by APCs. APCs,
especially DCs, highly express ligands (including CD80 and
CD86) for T cell co-stimulatory molecules, such as CD28
(signal 2) (108). Next, APC-derived and circulating cytokines
(as well as autocrine IL-2) induce T cell proliferation and
differentiation (signal 3). For extracellular immune challenges,
such as envenomation, CD4+ T cells acquire a TH2 phenotype
with effector functions that include B cell activation (100, 101).

During a primary antibody response, B cells require multiple
stimulatory signals. The first occurs when a B cell receptor
(BCR) encounters its specific soluble or membrane-bound
epitope (100, 101). The internalised antigen is processed and
displayed on the B cell surface as a peptide-MHC complex for
TH presentation (100, 101). TCR binding triggers upregulation
of co-stimulatory ligands, such as CD40L, and the production
of proinflammatory cytokines, including IL-4 (107). CD40L
engagement with B cell CD40 mediates the recruitment of
intracellular adaptor proteins essential for propagating
downstream signalling (107). Additionally, cytokines secreted
by primed TH2 cells provide B cells with accessory stimulation
for the early (proliferation and clonal expansion) and later
(differentiation, antibody production, and isotype switching)
stages of B cell activation (109). Proliferating B cells form
germinal centres (GCs) where memory B and antibody-
secreting plasma cells develop. Here, B cells also undergo
somatic hypermutation and isotype switching (IgM and IgD
to IgG, IgE, or IgA) to generate high-affinity antibodies for
robust immune responses (110).

Yet, critical though they may be, adaptive responses can also
produce severe pathology (74). For example, IgE isotype
switching following venom challenge can, in a percentage of
hypersensitive individuals, lead to fatal allergic reactions
(discussed below) (74). In addition to allergy, dysregulation of
adaptive responses and loss of self-tolerance stimulate
destructive auto-reactivity (111). As such, lymphocytes (T cells
in particular) are a target for therapeutic modulation (111).
Serendipitously, venoms can contain ligands for T cell ion
channels and receptors, able to modulate immune function
with high specificity (described below) (112–121).
VENOM-INDUCED IMMUNOPATHOLOGY

Cell-specific venom-mediated immune dysregulation is
described above. The following sections discuss modes of
Frontiers in Immunology | www.frontiersin.org 6
immunopathology, including venom-induced allergic reaction
and systemic inflammation.

Venom Allergy
Despite a notorious reputation for venomous snakes, spiders,
and jellyfish, Australia’s largest proportion of venom-related
fatalities occur due to anaphylactic events (122). Reflecting a
global trend, honey bee (A. mellifera) stings are a significant
contributor to venom injury in Australia, representing 16.3% of
anaphylactic fatalities between 1997 and 2013 (123).

Venom from stinging Hymenopterans is commonly
associated with allergic reactions worldwide (123). While most
sting responses are localised and self-limiting, fatality can occur
due to immune-mediated respiratory and/or cardiovascular
failure (124). In these incidences, systemic reactions (SR) are
predominantly mediated by IgE-mechanisms; however, dose-
dependent IgE-independent responses are also possible (7).

Among venom-sensitised individuals, SR’s develop in 0.3% to
8.9% of cases (124, 125). Accordingly, Hymenopteran major
allergens (antigens that bind IgE in greater than 50% of venom-
sensitive individuals) have been well-characterised (7). For honey
bee venom, these hypersensitivity-inducing proteins include
phospholipase A2, hyaluronidase, acid phosphatase, and
dipeptidylpeptidase (124). In vespid venom (wasp and yellow
jacket), Antigen 5 and phospholipase A1 are the recognised
major allergens (124).

Classic IgE-mediated allergic disease begins with a
sensitisation process. Keratinocytes and resident immune cells
detect damage induced by noxious substances, such as venom-
derived compounds, stimulating the release of alarmins,
cytokines (IL-4, IL-5, and IL-13), and other proinflammatory
mediators required for antibody production (126, 127). DCs
capture and process antigen for presentation to naïve T cells in
draining lymph nodes, triggering events eventuating in plasma
cell IgE antibody production (126, 127). Elevated IgE is a normal
physiological response following a bite or sting and is not
necessarily predictive of disease (69, 75, 124). Nevertheless, in
some individuals, systemic IgE levels remain elevated longer
term and can trigger SR, including anaphylactic shock, after
multiple stings (7).

The symptoms of immediate (Type-1) allergic reactions occur
during secondary antigen challenges. When IgE encounters its
cognate antigen, crosslinking of FcϵR1 on MCs and basophils in
mucosal and epithelial tissues provoke activation and
degranulation (128–130). Preformed inflammatory mediators,
including histamine and proteases, are rapidly released from
granules into the extracellular environment (128–130).

Histamine is chiefly responsible for the clinical consequences
of Type-1 allergic reactions (131, 132). Histamine’s protective
functions include toxin binding and deactivation (69, 75). In
allergic disease, histamine (acting upon H1 and H2 receptors)
causes smooth muscle contraction, constriction of airways,
swelling of the epiglottis, and increased vascular permeability.
These events lead to dangerously low blood pressure, oedema
and potentia l ly death (131, 132) . Further to this ,
proinflammatory genes, stimulated during the initial phase,
induces de novo synthesis of the leukotrienes (particularly
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LTB4), cytokines, and chemokines responsible for the late phase
(or delayed-type) symptoms (133, 134). These mediators are
potent inducers of cell activation, migration, and the influx of
lymphocytes and neutrophils (128, 134). The incidence and severity
of biphasic anaphylaxis are highly variable, and fatalities can occur,
necessitating continued patient observation following the resolution
of initial symptoms (132, 133, 135).

The acute nature of fatal anaphylactic shock means death is
more likely to occur in the home (87% of cases) than in the
hospital (122, 123). Adrenaline autoinjectors (AAI) are an
essential first-line treatment; however, death may still occur
despite prompt administration (123, 136). Additional therapies
include H1 and H2 antihistamines to counter the pathophysiological
effects mediated through these receptors and critical supportive care
(137, 138). For individuals with verified IgE-mediated allergy,
venom immunotherapy (VIT) may generate a lifesaving tolerance
to known allergens (139).

The pathogenic role of MCs and IgE-mediated granule release
is well established (74). However, it has been postulated that
allergy may be a barrier function disease in which cellular
damage and perturbations of the epithelium and endothelium
induce excessive proinflammatory responses from the resident
immune cells (140). If this hypothesis is correct, the therapeutic
modulation of these cells may correct the imbalanced
proinflammatory response but this hypothesis has not been
investigated for venom-associated allergy.

Hypersensitivity to Marine Stings
In Australia, contact with venomous marine animals and plants
accounts for 9% of venom-related hospitalisations (122). The
phylum Cnidaria (classes Hydrozoa, Scyphozoa, and Cubozoa)
comprises approximately 10,000 jellyfish species distributed
throughout the world (138, 141). Of these, ~1% are medically
relevant (142). Jellyfish stings typically trigger local or large local
responses, manifesting as pain, swelling, and erythema, but are
usually not life-threatening (143, 144). However, severe delayed
cutaneous reaction, allergy, and anaphylactic shock can occur
(145–147).

It may not be surprising then that in 1902 the unexpected
discovery of anaphylaxis by physiologists Charles Richet and
Paul Portier involved marine venom from the Portuguese man-
of-war (Physalia physalis) and sea anemone (148, 149). When
attempting to immunize dogs against harmful venom effects,
Richet and Portier found that rather than confer protection
(phylaxis), a subsequent venom challenge resulted in death.
Although allergy was yet to be characterised, the experiments
recognised immune involvement and the term “anaphylaxis”
(against protection) was coined. This discovery later won Richet
the 1913 Nobel Prize in Physiology or Medicine (148, 149).

Jellyfish envenomation is the most common marine sting
type, impacting fishers, surfers, and sea bathers globally. An
estimated 150 million stings occur annually, with peak incidence
coinciding with blooming (or swarming) seasons during warmer
months (148). A characteristic feature of the phylum Cnidaria is
specialised stinging organelles, known as nematocysts. Located
within cnidocytes, nematocysts are explosive capsule organelles
containing coiled, barbed and threadlike tubules coated in
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venom (150). High-velocity capsule release, triggered by
physicochemical stimuli, causes inversion of tubules into
harpoon-like threads able to puncture and penetrate prey and
predators (151, 152). Through nematocysts, jellyfish venom,
containing pore-forming compounds, metalloproteases, serine
proteases, and phospholipases, is injected into the victim, causing
paralysis of prey and in humans dysregulation of immune
function, cardiac function, respiratory function, and potentially
fatal outcomes (153).

Although jellyfish venom can cause severe immediate-phase
and delayed-type allergic reactions, the causative allergens are
mostly unknown. Chironex yamaguchii is the box jellyfish
species responsible for 78% of reported stings in Japan (144).
Recently, the N-linked glycoprotein, CqTX-A (a hemolytic
toxin), was identified as a major allergen from this venom
(144). While the underlying mechanism has yet to be
elucidated, this finding has important implications as CqTX-A
shares significant sequence homology with other lethal pore-
forming jellyfish proteins, specifically, CfTX-1 and CfTX-2
(Chironex fleckeri), CrTX-A (Carybdea rastoni), CaTX-A
(Carybdea alata) and CqTX-A (Chiropsalmus quadrigatus
Haeckel) (154–157).

For Hydrozoa (which includes Portuguese man-of-war),
Scyphozoa (true jellyfish), and Cubozoa (box jellyfish),
nematocysts are located on the tentacles, oral arms, and in
some instances, the bell of the jellyfish (158, 159). Contact with
tentacles can result in inoculation from potentially millions of
nematocysts (160). Application of acetic acid and careful
removal of tentacles from the victim’s skin prevents the further
discharge of unfired nematocysts but does not deactivate the
already injected toxins (161). Once stung, venom distribution
occurs via capillaries and the lymphatic system to target organs,
while the barbed tubules remain embedded in the skin until
clearance (149, 160). Tubules are allergenic scaffolds comprising
carbohydrates, proteins, chitin, and mini-collagen (148, 149,
162–164). As such, it has been suggested that impaired
clearance, especially of chitin, may contribute to more severe
outcomes of envenomation and hypersensitivity (149).

Beyond stings, there are recently described cases of severe
allergic reactions to edible jellyfish consumption (147). It has also
been reported that jellyfish stings, particularly among surfers,
lead to sensitisation of foods containing gamma-glutamic acid,
such as fermented soybean (165, 166). Collectively, these data
highlight the antigenic properties within jellyfish nematocysts
and tissue, in addition to their venom-derived destructive potential.
Systemic Inflammation
Systemic inflammation, including cytokine release syndrome
(CRS), is a life-threatening immune condition triggered in
response to endotoxemia, severe viral infections (including
influenza), and immunotherapies (167–169). Clinical
manifestations can include fever, nausea, tachycardia, dyspnea,
headache, muscle and joint pain, and in severe cases,
neurotoxicity, pulmonary oedema, respiratory failure, and
death (167). Certain envenomations can similarly provoke a
systemic inflammatory response, most notably is scorpionism (10).
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Scorpion envenomation is another leading cause of venom-
associated morbidity and mortality, affecting more than one
million individuals per annum (6). Although most stings
produce only local symptoms (81% of cases), envenoming by
dangerous species can initiate a surge of endogenous
neurotransmitters, adrenaline and noradrenaline, resulting in
an autonomic storm and severe systemic effects (6, 10).
Additionally, venom-derived toxins induce spontaneous
acetylcholine (Ach) release from peripheral nerves, responsible
for the life-threatening cardiac dysfunction seen in severe cases
(170). Interestingly, these mediators are also implicated in the
box jellyfish pathology, Irukandji syndrome (171).

Along with intense acute pain and distress, severe scorpion
envenoming (grade III stings) produces complex pathophysiology
in victims (172). Like CRS, symptoms can include respiratory
distress, cardiac dysfunction, pulmonary oedema, multiple organ
failure, and potentially death, especially among children and the
elderly (173). These clinical consequences are principally
mediated by neurotoxic peptides, able to cause hyperexcitability
of the autonomic nervous system through Na+, K+, Ca+ or Cl− ion
channel modulation (172). Ion channel modulation is also
implicated in the development of pulmonary oedema, a
symptom present in many fatal sting cases (174). Research led
by Comellas et al. observed decreased lung fluid clearance in
Tityus serrulatus envenomed rats, postulating venom-induced
impairment of Na+/K+

− ATPase in alveolar epithelial cells as the
mechanism (174).

Beyond neurotoxic effect, the immune network plays a role in
significant scorpion envenomations (175). Immune participation
in SR is multifactorial, involving direct antigenic activation and
indirect stimulation via the neuroendocrine-immune axis (176).
In addition to neurotransmitters, stings induce a rapid release of
proinflammatory mediators. Elevated IFN-g, IL-1b, IL-6, IL-8,
IL-10, and TNF have been detected in the plasma of sting
patients and animal models of scorpionism (10). Scorpion
venom also provokes hypersensitivity mediators, particularly
histamine (177). Blockade of the histamine H1 receptor has
shown to be protective in Androctonus australis hector
envenomed mice (177). Specifically, pretreatment with
hydroxyzine (H1 receptor antagonist) reduced immune cell
infiltrate and oedema in the brain and spinal cord and
diminished levels of circulating proinflammatory cytokines
(177). Further, scorpion toxins activate components of the
complement sys t em, inc lud ing the genera t ion of
anaphylatoxins, which are potent chemotactic proteins (10). As
further evidence of immunological involvement, heightened
dermal reactions are reported in individuals predisposed to
scorpion venom, such as seen in delayed-type hypersensitivity
reactions (10).

For direct immunological activation, the most extensively
studied species is the Brazilian scorpion, T. serrulatus (10).
Whole T. serrulatus venom (TsV) and select purified toxins are
potent stimulators of innate immune cells, including MFs (56).
In vitro assays have revealed that surface receptors TLR2, TLR4,
CD14, and CD36 recognise TsV compounds, triggering cellular
activation and production of cytokines and lipid mediators (56).
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Engagement of CD14 and co-receptor TLR4 promotes NF-kB
and AP-1 signalling pathways and transcription of potent
proinflammatory genes, including IL-1b (10). Consequently,
TsV stimulates cytokine release from innate immune cells in a
time- and dose-dependent manner, independent from cytotoxic
effect (10). In addition, NF-kB signalling regulates
cyclooxygenase-2 (COX-2) expression and the secretion of
eicosanoid, PGE2 (178). PGE2 is a lipid mediator with
pleiotropic roles in the initiation and resolution of
inflammation, particularly inflammatory pain (179). Among its
diverse biological functions, PGE2 activates IL-1b, MCP-1, and
IL-6 pathways via prostaglandin EP4 receptor signalling (179).
Accordingly, IL-1b and its receptor (IL-1R) are strongly
suppressed by EP4 antagonism (179). IL-1b and IL-1R are
potential therapeutic targets for multiple inflammatory
diseases, including scorpion envenomation (180). As such,
inhibition of the COX-2/PGE2/EP4 pathway has shown a
cardiopulmonary protective effect in envenomed mice (97, 170).

The eicosanoid leukotriene B4 (LTB4) is also upregulated in
cell culture and animal plasma following treatment with whole
TsV or purified toxins (178). A study by Zoccal et al.
demonstrated that activation of the class B scavenger receptor,
CD36, directs eicosanoid metabolism towards LTB4 via a 5-
lipoxygenase (5-LOX)/peroxisome proliferator-activated
receptor gamma (PPAR-g) pathway, opposing the events of
TLR and CD14 receptor signalling (97). CD14 and TLR4
appear to be critical for TsV-induced cytokine and eicosanoid
secretion (180). Further work by Zoccal and colleagues showed
that CD14-/- mice fail to produce significant levels of PGE2 or IL-
1b post-TsV envenomation (180). In addition, CD36obl/obl mice
secrete increased levels of PGE2 and IL-1b post-TsV
envenomation but do not produce LTB4 (180). Critically, LTB4
synthesis suppresses IL-1b maturation and secretion and the
associated animal mortality (178). CD36, therefore, represents a
novel therapeutic target for severe scorpion envenomation (180).

Mouse models of TsV envenomation produce autonomic
dysfunction that is similar to clinically observed symptoms
(170). A lethal inoculation of TsV induces sweating, ocular and
nasal secretions, lethargy, and convulsions in mice, preceding
cardiovascular disturbances and death (170). Observed
hyperglycemia and neutrophilia are also consistent with sting
patients (170). The neurotransmitters adrenaline and ACh,
responsible for sympathetic and parasympathetic symptoms,
respectively, are elevated in peripheral blood as well as in
cardiac tissue in response to TsV (170). Treatment with
atropine, a muscarinic receptor antagonist, but not
propranolol, prevented venom-induced cardiovascular
alterations, which are a leading cause of death in severe
scorpionism (170). Curiously, despite showing systemic
elevation of adrenaline, the study did not investigate the effect
of an alpha-adrenergic blocking agent, such as prazosin (170).

In parallel to excessive ACh, lethal TsV envenomation
stimulates the systemic and cardiac secretion of PGE2 and IL-
1b. Reis et al. have recently proposed IL-1R as a neuro-immune
link responsible for innate heart inflammation and TsV-induced
heart failure (170). Research by their group demonstrated that
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TsV co-administered with PGE2 enhanced IL-1b and ACh
release from cardio fibroblasts, an effect which was blocked by
an EP receptor antagonist. In contrast, IL-1R silencing repressed
PGE2, IL-1b and ACh levels and rescued mice from fatal TsV
administration (170). As such, the study determined that PGE2
amplifies IL-1b release, which upon binding IL-1R potentiates
upregulation of PGE2 and PGE2-dependent ACh release post
TsV envenomation (170).

Existing scorpion sting management comprises specific
antiserum and symptomatic treatment, such as pain and low
dose anti-inflammatory medications (6). Grade III stings and
stings in children younger than 15 require intensive care (6).
Polymorphism within scorpion venom-derived proteins is
geographically varied, impeding the manufacture of a
standardised antivenom (6). Variability in toxin immunogenicity
further limits the usefulness and cost-effectiveness of antivenom
production (6). Accordingly, some experts challenge the use of
antiserum therapy due to insufficient neutralising capacity and the
additional shock risk associated with poorly purified serum (6, 181).

Recently, success has been reported using novel immune-
based therapies in animal models of TsV envenomation. In 2019,
Zoccal et al. showed that the experimental peptide, EP80317 (a
CD36 ligand), protected C57BL/6 mice against a lethal dose of
TsV (97). Indeed, the therapeutic administration of EP80317 at
0.5 h and 2 h post-envenomation provided complete protection
against a lethal dose of venom. Lymphocytes and neutrophils in
the bronchoalveolar lavage fluid were significantly lower in the
treatment group than venom alone. Accordingly, cAMP
concentrations and proinflammatory cytokines (IL-1b, IL-6,
TNF, and CCL3) were also considerably decreased (97).

Although promising, the estimated time and cost of
developing a new drug and bringing it to market is 10 – 15
years and hundreds of millions of dollars (182). Conversely, drug
repurposing circumvents the requirement for lengthy and
expensive preclinical development. A recent in vivo study from
the same group found that therapeutic administration with high
dose dexamethasone (DEX) (5 mg/kg) improved TsV-induced
cardiac dysfunction and reduced mortality after a fatal venom
dose (170). The study showed that early treatment (15 min and
1 h post-inoculation) strongly suppressed PGE2 and IL-1b
release in tissues, abrogating systemic ACh and IL1R-
mediated/ACh-induced cardiac dysfunction (170).

In reviewing the effects of jellyfish venom on the immune
system, Tibballs et al. highlighted similarities between the clinical
features of Irukandji syndrome and scorpion envenomation
(149). While the mechanisms underpinning the pathology of
Irukandji syndrome have remained unresolved for decades, they
may likewise involve both autonomic and inflammatory
pathways. If so, immune-based therapies may also prove
beneficial in severe box jellyfish envenomation and warrant
further investigation.

Irukandji Syndrome
While most jellyfish stings do not require medical attention,
several species found in tropical waters constitute a public health
threat (141). In Australia, the box jellyfish Chironex fleckeri and
Frontiers in Immunology | www.frontiersin.org 9
Carukia barnesi are of particular medical relevance. A high C.
fleckeri venom dose can cause rapid and fatal cardiac arrest (183).
In contrast, the smaller box jellyfish, C. barnesi, induces an
extremely painful systemic pathology known as Irukandji
syndrome (IS) (184–186).

C. barnesi was the first confirmed causative agent of IS after
its namesake, Dr Jack Barnes, famously subjected himself, his
nine-year-old son, and a local lifeguard to intentional
envenoming in 1961 (187). Yet, due in part to the elusive
nature of this highly venomous jellyfish, research over the
years has failed to unravel the mechanisms behind the
distinctive syndromic illness (184, 188). C. barnesi are small
and transparent, with the medusal bell measuring ~20 mm wide
(Figure 1) (184, 189). As with other carybdeids, C. barnesi have a
single tentacle per pedalium (184, 189). Both bell and tentacles
are covered with nematocysts, comprising distinct venom
composition (190).

A retrospective case study of 128 marine sting presentations
to Cairns Base Hospital revealed a wide variation of symptom
severity among individuals (186). Of the 39 patients with skin
scrapings consistent with C. barnesi nematocysts, some
experienced only minor symptoms, while in others,
envenomation proved fatal (186). Typically, an IS presentation
includes a mild local reaction followed by a characteristic
incubation period of five to 60 min before the onset of
systemic effects (Figure 2) (191, 192). Pain in the abdomen,
chest, lower back, limbs, and joints, is severe, often intractable to
opioids and accompanied by extreme distress and agitation (193,
194). In parallel, the manifestation of tachycardia, hypertension,
diaphoresis, dyspnea, and in some instances, priapism may occur
(193, 194). In severe cases, life-threatening complications, such
as cardiomyopathy and cardiogenic shock, can arise (193). Due
to the significant cardiac dysfunction associated with C. barnesi
envenomation, cardiogenic pulmonary oedema may develop
(195, 196). Tragically, venom-induced intracerebral hemorrhage
resulted in the death of two individuals in 2002 (192, 197).

An “Irukandji” antivenom is unavailable, and, as C. barnesi is
only one of several causative species, an antivenom is unlikely to
be produced (198). Therefore, treatment of severe envenomation
is heavily reliant upon opioid-based pain management and
symptomatic supportive care, with a mean expected hospital
stay of 1.6 days (186). The clinical manifestations of IS have been
attributed to excessive catecholamine release, such as seen in
pheochromocytoma, scorpionism, or funnel-web spider
envenomation (149, 198, 199). As such, IS has been described
as “a painful hypercatecholaminergic condition” (193).
Accordingly, individuals at particular risk of fatal outcomes are
those with pre-existing cardiovascular pathologies, potentially
making the use of alpha/beta-adrenergic blocking agents
prohibitive (200).

Supporting this hypothesis, adrenaline and noradrenaline
have been transiently detected in the plasma of C. barnesi
experimentally envenomed piglets (200). Peak catecholamine
release was observed 10 min post intravenous (IV) venom
administration, coinciding with the onset of systemic and
pulmonary hypertension and tachycardia (200). Plasma
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catecholamines remained elevated in envenomed animals until
60 min but declined to non-significant levels within 2 h (200).
Pretreatment with 1 µmol/L tetrodotoxin (TTX) attenuated
tachycardia responses from rat and guinea-pig isolated right
atria but did not significantly alter venom-induced contraction of
rat mesenteric small arteries (200). These data suggest the
presence of a presynaptic neuronal voltage-gated sodium
channel agonist within the venom, as well as the presence of a
TTX-insensitive vasoconstrictor (149, 198–200). While a
physiological stress response towards IV administration of any
toxin may similarly stimulate adrenaline and noradrenaline
release, the authors reported the uniqueness of the reaction
compared to other box jellyfish venom (200).

Research by Ramasamy et al. found pretreatment with
prazosin (50 µg/kg) partially reduced tachycardia in C. barnesi
envenomed rats, further supporting the role of endogenous
catecholamines in the pathogenesis of IS (198). However, the
residual pulse pressure observed in the study suggested the
contribution of factors besides catecholamines (198). Furthermore,
the result was not reproduced byWinkel et al. with 0.3 µM prazosin
pretreatment, possibly due to dose- or time-dependent factors that
were not clearly stated in either study (198, 200). Unfortunately, as
both cardiovascular studies required the use of anesthetised animals,
euthanised after 2 h, the critical evaluation of later time points was
not possible (198). Yet, in sting victims, symptoms can remain for
days, potentially requiring intensive care (186).
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Regardless, in line with these findings, current clinical
guidelines recommend magnesium sulphate (MgSO4) therapy
to attenuate pain and suppress excessive catecholamine release in
severe IS (201). Its success in doing so has generated divided
opinions (202). The results of a randomised trial completed in
2012, and reviewed in 2017, were unable to confirm the ability of
MgSO4 infusion to reduce opioid requirement (202, 203). Both
studies reported varied success from the 39 patients, ultimately
showing no significant benefit from MgSO4 therapy (202, 203).

Akin to scorpion envenomation, the symptoms of IS cannot
be wholly attributed to sympathetic hyperstimulation (10). Also
akin to scorpionism, generalised IS symptoms resemble those of
CRS. Interestingly, MgSO4 potently suppresses MNC-mediated
cytokine production following TLR stimulation (204). MgSO4

increases IkBa levels in MNCs, thereby decreasing NF-kB
nuclear translocation and its activity (204). Accordingly, the
ability of MgSO4 to inhibit pain in some sting patients could in
part be due to a dampened immune response, although this
theory has not been investigated.

Presently, neither catecholamines nor inflammatory
mediators have been measured in C. barnesi sting patients.
Recently, a study by Staedtke et al. proposed an intriguing link
between “cytokine storm” and “catecholamine storm” in
systemic inflammatory response syndrome (SIRS) and capillary
leak syndrome, which may apply to venom-induced systemic
inflammation (205, 206). This study showed that adrenaline
FIGURE 1 | Image of Carukia barnesi jellyfish. Images showing (A) close up and (B) relative size of adult C. barnesi jellyfish. Prof Jamie Seymour pictured. Photos
were taken by (A) Jamie Seymour (JCU, Cairns, Australia) and (B) Rachael Ryan (JCU, Cairns, Australia).
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contributes to the positive feed-forward cytokine dysregulation
seen in CRS (206). Encouragingly, the blockade of a1-adrenergic
receptors (also expressed on immune cells) or the inhibition of
tyrosine hydroxylase (required for catecholamine biosynthesis)
by prazosin or metyrosine hindered the self-amplifying
proinflammatory loop in vitro and in vivo (206).

Specifically, CRS, induced by humanised CD19 CAR-T cells
in mice engrafted with a leukemia cell line, caused excessive
levels of adrenaline, noradrenaline, and myeloid-derived
cytokines (IL-6, KC, MCP-1, and TNF) in the plasma of
animals with high tumour burdens (206). Consequently, higher
mortality was observed among these mice. In contrast,
pretreatment with metyrosine or prazosin lowered circulating
catecholamines and cytokines, improving survival (206). In
mouse peritoneal MFs, LPS-stimulation induced the release of
catecholamines and proinflammatory cytokines, IL-6, KC, MCP-
1, and TNF (206). Cytokine and catecholamine secretion was
markedly enhanced in LPS/adrenaline co-cultures (206).
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Conversely, reduced MF catecholamine production
significantly reduced IL-6, KC, MCP-1, and TNF levels (206).
Although this model is unrelated to envenomation, it suggests
that immune stimuli, such as venom-induced TLR activation,
initiates a proinflammatory response that is enhanced by the
presence of catecholamines. The dual stimulatory signals create a
positive feed-forward loop, resulting in cytokine amplification.
Collectively, these studies suggest a therapeutic potential of
prazosin for severe IS, except where contraindicated, and
warrant the investigation of plasma cytokines in sting patients.

However, while such research supports the therapeutic
inhibition of catecholamines in envenomation, understanding
their possible protective function has not been investigated. For
example, it is known that catecholamine release promotes
alveolar fluid clearance (174). In scorpionism, a rapid
catecholamine surge following a dangerous sting is reasoned to
increase alveolar fluid reabsorption, protecting the lungs from
venom-induced flooding (174). Therefore, the resolution of the
FIGURE 2 | Local response to C. barnesi envenomation. Image showing a typical dermal reaction on the arm following a sting from a C. barnesi jellyfish. The red
marker indicates the sting site. Photo by Jamie Seymour (JCU, Cairns, Australia).
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surge may decrease the ability of the lungs to clear venom-
induced oedema, ultimately progressing toward fatal pulmonary
oedema (174). Accordingly, animal models of IS should
thoroughly scrutinise both the benefits and limitations of
these mediators.

Finally, given the immune system’s propensity toward hyper-
responsiveness and allergic reaction to jellyfish venom, the
overlap in IS and CRS generalised symptoms, and the recently
described link between CRS and catecholamine storm, immune
involvement in the pathology is plausible. Nevertheless, to date,
no C. barnesi immunology-based research has been published.
THE IMMUNOSUPPRESSIVE POTENTIAL
OF VENOM-DERIVED MOLECULES

Despite the health burden of human envenomation, venom-
immune interactions have been exploited in traditional medicine
for centuries (207). More recently, research groups throughout
the world have demonstrated the in vitro and in vivo efficacy of
whole venom and venom-derived compounds in ameliorating a
wide range of autoimmune symptoms (112, 208–211).

Presently, the most promising drug leads belong to the class
of ion channel modulators. Ion channels, particularly calcium-
activated and voltage-gated potassium channels, are attractive
therapeutic targets for autoimmune diseases. Firstly, ion
channels, such as the Shaker-related voltage-gated KV1.3 and C
A2+
− � dependent KCa3.1, regulate Ca2+ signalling in activated

immune cells, allowing cell depolarisation and maintenance of
membrane potential. Intracellular Ca2+ levels dictate T cell
activation, proliferation, metabolism and cytokine production
(212). Secondly, unique ion channel dimers are differentially
expressed in various tissues, including immune cell subsets,
permitting cell type and subset-specific blockade (213, 214).
For example, activated effector memory T cells (TEM), B cells
and MFs, known mediators in the pathogenesis of various
autoimmune diseases, preferentially upregulate KV1.3 (215–
217). In contrast, naïve (Tn) and central memory cells (TCM)
express KCa3.1 ion channels, allowing for channel-specific
inhibition (218). Finally, inhibition of Ca2+ influx via ion
channel blockade allows targeted and reversible immune
modulation, rather than complete T cell suppression, as
induced by T cell Ca2+ modulating drugs, including calcineurin
inhibitors and steroids.

Venom from snakes, spiders, scorpions, cone snails, and sea
anemones comprise a diverse range of peptide and small
molecule ion channel blockers that exhibit selectivity at
picomolar concentrations (219). Blockade of lymphocyte ion
channels using venom-derived compounds has therapeutic
effects in animal models of rheumatoid arthritis (RA), asthma,
multiple sclerosis (MS), delayed-type hypersensitivity, and
allograft rejection (113, 208, 219–224). Notably, a selective
peptide blocker, Stichodactyla helianthus toxin (ShK), from sea
anemone venom, and anuroctoxin, a peptidyl toxin isolated from
Buthus sindicus scorpion venom, have been shown to specifically
target KV1.3 channels with high affinity, preventing Ca2+ influx
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and thereby inhibiting TEM activation, proliferation and cytokine
production (113, 115, 225–227).

Structural studies centred on the selectivity of peptide ion
channel blockers have revealed that specificity is due to single
amino acid effects rather than en bloc backbone structure (228).
Thus, venom-derived peptides may act as promising drug
scaffolds, notably because disulphide bonds encode robust
biological stability (229). This has important implications for
drug development, as synthetic manipulation may improve drug
activity or remove toxicity from the natural peptide blueprint.
For example, ShK(L5), a synthetic analog of ShK, contains an N-
terminal L-phosphotyrosine extension and shows higher
selectivity than the native peptide for KV1.3 channels over the
neuronal ion channel KV1.1 (113).

Aside from ion channel blockade, venom-derived
components have demonstrated potent in vitro and in vivo
anti-inflammatory activity through the cholinergic anti-
inflammatory pathway via an alpha7 nicotinic acetylcholine
receptor antagonist (114). Venom-derived peptides, such as the
a-neurotoxin from the Thailand cobra, are potent nicotinic
receptor antagonists (218). In a rodent RA model, Cobratoxin-
treatment reduced expression of the pro-inflammatory cytokines
IL-1b, IL-2, and TNFa, resulting in decreased paw sensitivity
and joint destruction (230).

Other neurotoxins, such as the principal toxin (NTX) from
Naja atra venom (NNAV), have shown therapeutic effects in
animal models of adjunctive arthritis, RA, Systemic Lupus
Erythematosus (SLE), and nephropathy (209, 211).
Additionally, NTX-treatment prolonged skin allograft
survival in rats and inhibited cell-mediated immune
responses in a dose-dependent manner through decreased
Th1-type cytokines (IL-2 and IFN-g). Although low NTX
concentrations were cytotoxic, heat-treatment reduced NTX
toxicity without reducing its immunosuppressive activity (211).
In another study, orally administered NTX suppressed murine
T cell proliferation, specifically Th17 and CD8+ T cell activity,
increasing NK cell and B cell proliferation in a dose-dependent
manner (209).

Venom from the honey bee has been used for centuries in
traditional medicine to treat chronic inflammatory diseases due
to its reported anti-inflammatory activity (207). Investigations
into the mechanism of action of honey bee venom and its major
components, melittin and phospholipase A2, have confirmed a
protective effect in animal models of asthma and RA (207, 231).
The polarisation of T cells towards a Th2 phenotype is associated
with allergies and chronic inflammatory diseases (232). An
essential driving factor in lineage determination is cytokine
expression. It has been shown that melittin inhibits LPS-
induced inflammation by binding to the C- terminus of the
NF-kB p50 subunit, thus preventing translocation into the
nucleus and transcription of pro-inflammatory cytokines,
including TNF (233–235). Moreover, treatment with whole
honey bee venom polarised T cells towards a Th1 phenotype
by inducing T-bet and IFN-g in CD4+ T cells (210). Conversely,
PLA2, an enzyme found within the venom of multiple species,
including the western honey bee, can hydrolyze membrane
May 2021 | Volume 12 | Article 661082
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FIGURE 3 | Immunological responses to envenomation. Diagram summarizing the protective and pathological responses of the host’s immune system towards
venom compounds. Created with BioRender.com.
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phospholipids and induce Th2 cytokine responses through the
activation of ST2, a component of the IL-33 receptor on innate
immune cells (236).

Other known venom immune modulators include tick
salivary protein (Salp) 15 from Ixodes scapularis and spermine.
Salp15 binds the CD4 co-receptor, MHC-II, inhibiting TCR
ligation and T cell activation by misaligning CD4 with the
TCR complex (237). Spermine, an acylpolyamine found in
snake and spider venom, suppresses mitogen-induced
activation and proliferation of PBMCs by inhibiting LAF-1
protein expression, involved in RNA remodelling (238).

Collectively, these studies highlight the potential of venom-
derived molecules to modulate immune cells as unmodified
venom-derived compounds or as scaffolds for drug
development. Venom-derived compounds induce immune
suppression using diverse modes of action. Thus, screening
venom for its immunosuppressive and immune-activating
potential may result in new immunomodulatory drugs and the
discovery of new biological pathways.
CONCLUSION

Conferring protection against venom’s potentially lethal
action requires rapid immune recognition and response.
Extensive research focuses on the degree to which immune
responses themselves contribute to the severi ty of
envenomation (Figure 3). However, there is disagreement
regarding whether the body’s defensive reactions are helpful
or harmful. Perhaps the most significant cause of division lies
in the difficulty of distinguishing the actual venom-induced
symptoms from immune-induced pathology. The classic
inflammation markers (heat, pain, redness, swelling, and loss
of function) are typical biological responses to envenomation
across many species. Therefore, determining which symptoms
Frontiers in Immunology | www.frontiersin.org 14
are treatable using immunological approaches requires
further research.

Nevertheless, venom’s ability to modulate immune activity
has two therapeutic implications. Firstly, continued research
could inform improved treatment strategies for fatal bites and
stings. Secondly, as venom is a rich source of specific and potent
biomodulators, exploring venom-immune interactions may lead
to discovering novel pathways/receptors or the development of
venom-derived immunomodulatory drugs.
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