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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract. Since their introduction in constructive cryptographic ap-
plications, pairings over (hyper)elliptic curves are at the heart of an
ever increasing number of protocols. Software implementations being
rather slow, the study of hardware architectures became an active re-
search area. In this paper, we first study an accelerator for the ηT pairing
over F3[x]/(x97 + x12 + 2). Our architecture is based on a unified arith-
metic operator which performs addition, multiplication, and cubing over
F397 . This design methodology allows us to design a compact coprocessor
(1888 slices on a Virtex-II Pro 4 FPGA) which compares favorably with
other solutions described in the open literature. We then describe ways
to extend our approach to any characteristic and any extension field.

Keywords: ηT pairing, finite field arithmetic, elliptic curve, hardware accel-
erator, FPGA.

1 Introduction

Introduced in cryptography for code-breaking purpose [10, 21], the Weil and
Tate pairings are at the heart of an ever increasing number of protocols since
the work of Joux [16] who first discovered their constructive properties. The in-
terested reader should refer to the survey by Dutta, Barua, and Sarkar for further
details [8]. According to [13,19], when dealing with general curves providing com-
mon levels of security, the Tate pairing seems to be more efficient than the Weil
pairing. Let E be a supersingular1 elliptic curve over Fpm , where p is a prime
and m a positive integer, and let E(Fpm) denote the group of its points. Let

? This work was supported by the New Energy and Industrial Technology Development
Organization (NEDO), Japan.

1 See Theorem V.3.1 of [26] for a definition.
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` > 0 be an integer relatively prime to p. The embedding degree (or security mul-
tiplier) is the least positive integer k satisfying pkm ≡ 1 (mod `). Let E(Fpm)[`]
denote the `-torsion subgroup of E(Fpm), i.e. the set of elements P of E(Fpm)
that satisfy [`]P = O, where O is the point at infinity of the elliptic curve. Let
P ∈ E(Fpm)[`] and Q ∈ E(Fpkm)[`], let f`,P be a rational function on the curve
with divisor `(P )− `(O) (see [26] for an account on divisors), there exists a divi-
sor DQ equivalent to (Q)−(O), with a support disjoint from the support of f`,P .
Then the Tate pairing2 of order ` is the map e` : E(Fpm)[`]×E(Fpkm)[`]→ F∗pkm

defined by e`(P,Q) = f`,P (DQ)(p
km−1)/`. It satisfies the following properties:

– Non-degeneracy. For all P ∈ E(Fpm)[`] \ {O}, there is some point Q ∈
E(Fpkm)[`] such that e`(P,Q) 6= 1.

– Bilinearity. For all P, P1, P2 ∈ E(Fpm)[`] and Q, Q1, Q2 ∈ E(Fpkm)[`],
e`(P1+P2, Q) = e`(P1, Q)e`(P2, Q) and e`(P,Q1+Q2) = e`(P,Q1)e`(P,Q2).
Hence, for all P ∈ E(Fpm)[`] and Q ∈ E(Fpkm)[`], and for all a ∈ Z,
e`([a]P,Q) = e`(P, [a]Q) = e`(P,Q)a.

In [3], Barreto et al. proved that this pairing can be computed as e`(P,Q) =

f`,P (Q)
qk−1

` , where f`,P is evaluated on a point rather than on a divisor.
In this paper, we deal with the characteristic three case and consider Eb, a

supersingular elliptic curve over F3m : Eb : y2 = x3 − x + b, with b ∈ {−1, 1}.
According to [3], curves over fields of characteristic three often offer the best
possible ratio between security level and space requirements.

Different ways for computing the Tate pairing can be found in [3,9,11,20]. In
[2], Barreto et al. introduced the ηT pairing which extended and improved the
Duursma-Lee techniques [9]. To do it, they first need to consider the following
distortion map ψ : Eb(F3m)→ Eb(F36m) defined, for all R ∈ Eb(F3m) by ψ(R) =
ψ(xr, yr) = (−xr + ρ, yrσ), where σ and ρ belong to F36m and respectively
satisfy σ2 = −1 and ρ3 = ρ+ b (that concept of distortion map was introduced
in [28]). We define the modified Tate pairing ê by ê(P,Q) = e(P,ψ(Q)) for all
P, Q ∈ E(F3m)[`].

Moreover, following [17], we construct F36m as an extension of F3m using
the basis (1, σ, ρ, σρ, ρ2, σρ2), which is equivalent to considering the tower F3m ,
F32m ' F3m [y]/(y2+1) and F36m ' F32m [z]/(z3−z−b). Hence, the computations
over F36m are replaced by computations over F3m .

The ηT pairing is defined by ηT (P,Q) = fT,P (ψ(Q)), for some T ∈ Z and
for all P and Q ∈ E(F3m)[`]. To get a well-defined, non-degenerate, bilinear
pairing, a final exponentiation is required: namely ηT (P,Q)W in our case, where
W = (33m−1)(3m+1)(3m−b3m+1

2 +1). Moreover, the ηT pairing is related to the
modified Tate pairing by (ηT (P,Q)W )3T 2

= ê(P,Q)Z , where T = −b3m+1
2 − 1

and Z = −b3m+3
2 . If v denotes ηT (P,Q)W , the modified Tate pairing can be

computed as follows

ê(P,Q) = v−2 ·
(
v3(m+1)/2

· 3m√
v3(m−1)/2

)−b

.

2 We give here the definition from [3], slightly different from the initial one given
in [10].
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The algorithm given in [2] for computing the ηT pairing halves the number of
iterations used in the approach by Duursma and Lee [9] but has the drawback of
using inverse Frobenius maps. In [6] Beuchat et al. proposed a modified ηT pair-
ing algorithm in characteristic three that does not require any inverse Frobenius
map. Moreover, they designed a novel arithmetic operator implementing addi-
tion, cubing, and multiplication over F397 which performs in a fast and cheap way
the final exponentiation ηT (P,Q)W [5]. In this paper, we extend this approach
to the computation of the full ηT pairing (i.e. including the final exponentia-
tion). In Section 2, we present a compact implementation of the ηT pairing over
the field F397 . Then, we show in Section 3 that our approach can be generalized
to any characteristic p and degree-m irreducible polynomial f(x) over Fp. That
generalization is an interesting issue since larger extension degrees could proba-
bly be considered in a close future for guaranteeing the security of pairing-based
cryptosystems.

2 Calculation of the ηT Pairing in Characteristic Three

The bilinearity of ηT (P,Q)W ensures that:

ηT (P,Q)W =
3m

√√√√(ηT

([
3

m−1
2

]
P,Q

)3
m+1

2
)W

.

Beuchat et al. proposed an algorithm for the calculation of ηT (P,Q)3
(m+1)/2

in
characteristic three without any inverse Frobenius map [6]. Therefore, inexpen-
sive pre- and post-processing steps allow one to perform the original ηT pairing.
Recall that, for (xp, yp) ∈ E(F), [3](xp, yp) = (x9

p− b,−y9
p) (see for instance [3]).

Thus, the computation of
[
3(m−1)/2

]
P involves only 2m−2 cubings and (m−1)/2

additions over F3m . The 3m-th root over F36m is a straightforward operation re-
quiring only seven additions (or subtractions) over F3m (see for instance [6]). The
final exponentiation is carried out according to a novel algorithm introduced by
Shirase, Takagi, and Okamoto in [24]. This scheme involves additions, cubings,
multiplications, and a single inversion over F3m .

In this section we will consider the field F397 = F3[x]/(x97 +x12 +2) and the
curve y2 = x3−x+1 over F397 (i.e. b = 1; a straightforward adaptation makes it
possible to address the b = −1 case). This choice of parameters allows us to easily
compare our work against the many pairing accelerators for m = 97 described
in the open literature. Instead of embedding dedicated hardware to perform
the inversion over F397 according to the Extended Euclidean Algorithm (EEA),
Beuchat et al. [5] proposed an algorithm based on Fermat’s little theorem and on
Itoh and Tsujii’s work [15] for F397 . It involves 96 cubings and 9 multiplications.
Algorithm 1 summarizes the computation of the full pairing. It is worth noticing
that ηT (P,Q)W can be computed only by means of additions (or subtractions),
multiplications, and cubings over F397 . In the following, we describe the imple-
mentation of Algorithm 1 on a Virtex-II Pro 4 Field-Programmable Gate Array
(FPGA) and compare our pairing accelerator against results published by other
researchers.
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Algorithm 1 Computation of ηT (P,Q)W for b = 1 [6].
Input: P = (xp, yp) and Q = (xq, yq) ∈ E(F3m)[l]. The algorithm requires R0 and

R1 ∈ F36m , as well as r0 ∈ F3m and d ∈ F3 for intermediate computations.

Output: ηT (P, Q)(3
3m−1)(3m+1)(3m+1−3(m+1)/2).

1: for i = 0 to m−1
2
− 1 do

2: xp ← x9
p − 1; yp ← −y9

p;
3: end for
4: yp ← −yp; d← 1;
5: r0 ← xp + xq + d;
6: R0 ← −ypr0 + yqσ + ypρ;
7: R1 ← −r2

0 + ypyqσ − r0ρ− ρ2;
8: R0 ← (R0R1)

3;
9: for i = 0 to m−1

2
− 1 do

10: yp ← −yp; xq ← x9
q; yq ← y9

q ; d← (d− 1) mod 3;
11: r0 ← xp + xq + d;
12: R1 ← −r2

0 + ypyqσ − r0ρ− ρ2;
13: R0 ← (R0R1)

3;
14: end for
15: R0 ← R

(33m−1)(3m+1)(3m+1−3(m+1)/2)
0 ;

16: R0 ← 3m√
R0;

17: Return R0;

2.1 An Accelerator for the ηT Pairing Calculation

In [5] Beuchat et al. designed a unified arithmetic operator able to perform
addition, multiplication, and cubing over F3[x]/(f(x)), where f(x) = x97 +x12 +
2 [5]. The operator is based on the array multiplier architecture proposed by Shu,
Kwon, and Gaj in [25] (see [27] for an introduction to array multipliers). Since
such multipliers process D coefficients of an operand at each clock cycle, they
mainly consist of D Partial Product Generators (PPGs), a D-operand adder,
and an accumulator. Figure 1 illustrates the architecture of this operator for
D = 3; it is controlled by eleven bits labelled ci. Let a(x) and b(x) belong to
F3[x]/(f(x)). In order to compute a(x)× b(x), one has to load a(x) in the shift
register R0, and b(x) in registers R1 and R2. Multiplication is then carried out in
dm/De = d97/3e = 33 clock cycles. The first iteration computes p(x) = a96b(x)
(c4 = c6 = c7 = c8 = 1, c10 = 0). Then, we update p(x) as follows:

p(x)← x3p(x) mod f(x) + a3i+2x
2b(x) mod f(x) +

a3i+1xb(x) mod f(x) + a3ib(x),

where 31 ≥ i ≥ 0. Addition is somewhat more complex and we will use the toy
example proposed in [5] to illustrate how the operator works. Let us assume we
have to compute −a(x)+b(x). We respectively load a(x) and b(x) in registers R2
and R1 and define a control word stored in R0 so that d03i = 2, d03i+1 = 1, and
d03i+2 = 0. We will thus compute (2a(x)+ b(x)+0 ·a(x)) mod f(x) = (−a(x)+
b(x)) mod f(x). Beuchat et al. noticed that a(x)3 = ν0(x)+ν1(x)+ν2(x), where
ν0(x), ν1(x), and ν2(x) belong to F397 (see Appendix B). Thus, cubing requires
the addition of three operands as well as some wiring to compute the ci(x)’s. It
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suffices to load a(x) in registers R1 and R2. Depending on the control word stored
in R0, the operator returns a(x)3 or −a(x)3. In order to efficiently implement
successive cubings, a feedback mechanism allows one to load R1 and R2 with
the result of a cubing (multiplexers controlled by c0 and c2 on Figure 1).

4 c5
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1

0

1

0
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x

c6

m
od

 f
(x
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Fig. 1. Operator for addition, multiplication, and cubing over F3[x]/(x97 + x12 + 2)
introduced in [5]. Boxes with rounded corners involve only wiring.

Figure 2 describes the architecture of our ηT pairing coprocessor, which is
mainly based on the hardware accelerator for the final exponentiation introduced
in [5]. It consists of a single processing element (unified operator for addition,
multiplication, and cubing), registers implemented by means of a dual-port RAM
(six Virtex-II Pro SelectRAM+ blocks), and a control unit which consists of a
Finite State Machine (FSM) and an instruction memory (ROM). The main
difference with [5] lies in the control unit and the register file: in order to deal
with the computation of the ηT pairing, our coprocessor needs a slightly more
complex FSM as well as eight additional registers to store control words for
additions and cubings of the pairing calculation. Each instruction consists of
four fields: a control word which specifies the functionality of the processing
element, address and write enable signal for port B of the dual-port RAM,
address for port A of the dual-port RAM, and a counter which indicates how
many times the instruction must be repeated. This approach allows for instance
to execute the consecutive steps appearing in the multiplication over F397 with
a single instruction. Note that our implementation of the ηT pairing for m = 97
and D = 3 does not require the 26 values of the counter. It is therefore possible
to encode the required values with fewer bits in order to reduce the width of the
instructions.
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Since the implementation of the final exponentiation on such an architec-
ture has already been discussed in [5], we will focus here on the computation

of ηT

([
3(m−1)/2)

]
P,Q

)3(m+1)/2

. It is now well known that the tower field rep-
resentation and Karatsuba-Ofman’s algorithm allows one to replace a multi-
plication over F36m by 18 multiplications and 58 additions over F3m (see for
instance [5, 17]). Further optimizations are however possible in the case of the
ηT pairing calculation. Multiplying R0 = −ypr0 + yqσ + ypρ by R1 = −r20 +
ypyqσ−r0ρ−ρ2 involves for instance only 8 multiplications and 9 additions over
F3m (see Algorithm 4 in Appendix A for details). As pointed out by Bertoni et
al [4], the multiplication over F36m occurring in the main loop of the pairing
calculation (Algorithm 1) requires 13 multiplications over F3m .

7c8c9c10c11c12c13c14c15c16c17c18c19c20c21c22c23c24c31 c26c27c28c29c30 c25
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Fig. 2. Architecture of the ηT pairing accelerator.

The implementation of Algorithm 1 on this architecture takes 895 instruc-
tions3 which are executed in 32618 clock cycles. The inversion over F397 is per-
formed by means of 96 cubings and 9 multiplications over F397 [5]. Eighteen
control words, stored in the dual-port RAM, manage all additions and cubings
involved in the computation of the full pairing. Table 1 summarizes the op-
erations over F3m needed in the computation of ηT (P,Q)W . The last column
indicates the number of clock cycles during which only load/store operations are
performed. When m = 97, our coprocessor is for instance idle during 1704 clock
cycles (i.e. 5.2% of the total computation time).

3 229 instructions for the computation of ηT (3(m−1)/2P, Q)3
(m+1)/2

; 666 instructions
for the final exponentiation and the 3m-th root over F36m .
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Table 1. Operations over F3m involved in the computation of ηT (P, Q)W .

Additions Cubings Multiplications Inversion Idle

Point tripling m−1
2

2m− 2 – – 5

Pairing 25m− 6 5m + 1 15 · m−1
2

+ 8 – 14m− 4

Final exp. 477 3m + 3 78 1 344
3m√ 7 – – – 1

Total 51 · m−1
2

+ 503 10m + 2 15 · m−1
2

+ 86 1 14m + 346

2.2 Results and Comparisons

The architecture described by Figure 2 was captured in the VHDL language and
prototyped on a Xilinx Virtex-II Pro 4 device (XC2VP4-6FF672). Both synthe-
sis and place-and-route steps were performed with ISE WebPACK 8.2.03i. Our
processor requires 1888 slices and 6 memory blocks. Since a Virtex-II Pro 4 does
not have enough I/Os for parallel communications with a computer, the number
of slices reported here includes shift registers to receive/send data in a serial
fashion. The clock frequency of 147 MHz allows one to compute ηT (P,Q)W ac-
cording to Algorithm 1 in 222µs. Table 2 provides the reader with a comparison
against architectures proposed by other researchers for p = 3 and m = 97.

Grabher and Page designed a coprocessor dealing with arithmetic over F3m ,
which is controlled by a general purpose processor [12]. The ALU embeds an
adder, a subtracter, a multiplier (with D = 4), a cubing unit, and a cube root
operator based on the method highlighted by Barreto [1]. This architecture oc-
cupies 4481 slices and allows one to perform the Duursma-Lee algorithm and
its final exponentiation in 432.3µs. The main advantage is maybe that the con-
trol can be compiled using a re-targeted GCC tool-chain and other algorithms
should easily be implemented on this architecture. Our approach leads however
to a much simpler control unit and allows us to divide the number of slices by
2.3.

Another implementation of the Duursma-Lee algorithm was proposed by
Kerins et al. in [17]. It features a parallel multiplier over F36m based on
Karatsuba-Ofman’s scheme. Since the final exponentiation requires a general
multiplication over F36m , the authors can not take advantage of the optimiza-
tions described in this paper and in [4] for the pairing calculation. Therefore,
the hardware architecture consists of 18 multipliers and 6 cubing circuits over
F397 , along with, quoting [17], “a suitable amount of simpler F3m arithmetic
circuits for performing addition, subtraction, and negation”. Since the authors
claim that roughly 100% of available resources are required to implement their
pairing accelerator, the cost can be estimated to 55616 slices [25]. The approach
proposed in this paper reduces the area and the computation time by 29 and
3.8 respectively.

Beuchat et al. described a fast architecture for the computation of the ηT

pairing [6]. The authors introduced a novel multiplication algorithm over F36m

which takes advantage of the constant coefficients of R1. Thus, this design must
be supplemented with a coprocessor for final exponentiation and the full pairing



8 J.-L. Beuchat, N. Brisebarre, J. Detrey, and E. Okamoto

accelerator requires around 18000 LEs on a Cyclone II FPGA [5]. The compu-
tation of the pairing and the final exponentiation require 4849 and 4082 clock
cycles respectively. Since both steps are pipelined, we can consider that a new
result is returned after 4849 clock cycles if we perform a sufficient amount of
consecutive full ηT pairings. In order to compare our accelerator against this
architecture, we implemented it on an Altera Cyclone II EP2C35F672C6 FPGA
with Quartus II 6.0 Web Edition. Our design occupies 2846 LEs and the maxi-
mal clock frequency of 125 MHz allows one to compute a pairing in 261µs. The
architecture proposed in this paper is therefore 8 times slower, but 6.3 times
smaller. Note that the critical path is located in the control unit: the glue logic
generated by Quartus II to interconnect M4K memory blocks storing the in-
structions seems to slow the whole design down. It is possible to further pipeline
the control unit and to compute the full pairing in 222µs.

In order to study the trade-off between circuit area and calculation time of
the ηT pairing, Ronan et al. wrote a C program which automatically generates a
VHDL description of a coprocessor and its control unit according to the number
of multipliers over F3m to be included and the parameter D [23]. An architecture
embedding three multipliers processing D = 8 coefficients at each clock cycle
computes for instance a full pairing in 178µs. Though 1.25 times faster, this
design requires five times the amount of slices of our pairing accelerator. Our
approach offers a better compromise between area and calculation time.

Table 2. Comparisons against FPGA-based accelerators over F397 . The parameter D
refers to the number of coefficients processed at each clock cycle by a multiplier.

Grabher and Kerins Beuchat
Page [12] et al. [17] et al. [5, 6]

Algorithm Duursma-Lee Duursma-Lee ηT pairing

FPGA Virtex-II Pro 4 Virtex-II Pro 125 Cyclone II EP2C35

Multiplier(s) 1 (D = 4) 18 (D = 4) 9 (D = 3)

Area 4481 slices 55616 slices ∼ 18000 LEs

Clock cycles 59946 12866 4849

Clock frequency 150 MHz 15 MHz 149 MHz

Calculation time 432.3 µs 850 µs 33 µs

Ronan et al. [23]
Proposed

architecture

Algorithm ηT pairing ηT pairing ηT pairing

FPGA Virtex-II Pro 100 Virtex-II Pro 100 Virtex-II Pro 4

Multiplier(s) 3 (D = 8) 2 (D = 8) 1 (D = 3)

Area 10000 slices 7491 slices 1888 slices

Clock cycles 15113 17190 32618

Clock frequency 70.4 MHz 70.4 MHz 147 MHz

Calculation time 178 µs 203 µs 222 µs
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3 Arithmetic over Fpm

The unified operator for arithmetic over F3[x]/(x97 + x12 + 2) introduced in [5]
allowed us to design the smallest FPGA-based pairing accelerator in the open
literature. However, in order to guarantee the security of pairing-based cryp-
tosystems in a near future, larger extension degrees will probably have to be
considered, thus raising the question of designing such a unified operator for
other extension fields. We wrote a C++ program which automatically gener-
ates a synthesizable VHDL description of a unified operator according to the
characteristic and the irreducible polynomial f(x).

3.1 Addition, Multiplication, and Frobenius Map over Fpm

The architecture of the operators generated by our program is directly inspired
from the unified operator given in Figure 1 and can be adapted to any prime
characteristic p and any irreducible polynomial f(x) of degree m.

Addition over Fp[x]/(f(x)) is performed in the same way as in the operator
over F397 presented in [5]: the digits of the two operands are all added in parallel,
thus requiring m additions over Fp. In the current version of the generator, those
additions over Fp are implemented as simple look-up tables addressed by the bits
of the two operands, particularly suited for small values of p (typically p = 2
to 7). For higher characteristics, it will be necessary to resort to more complex
methods for modular addition [22].

Also as in the original operator, multiplication over Fp[x]/(f(x)) relies on a
parallel-serial algorithm, with D digits of the multiplier being processed at each
iteration. The generation of the partial products, which consists in multiplying
all the digits of the multiplicand with each digit of the multiplier, requires m
multiplications over Fp in parallel for each of the D partial products. Here also,
the multiplications over Fp are directly tabulated, as this is the best solution
for small characteristics. Once the D partial products are computed, the D − 1
most significant ones along with the accumulator are then multiplied by xk

(where k ranges from 1 to D) and reduced modulo f(x). After the modular
reductions, the D partial products and the accumulator are added thanks to a
binary tree of adders over Fpm . Consequently, in order to optimize the critical
path of this multioperand adder, one should choose a parameter D of the form
2n − 1 (typically D = 3, 7, 15 or 31).

Concerning the Frobenius map, which consists in raising the operand a(x) to
the pth power, our generator first computes the normal form of a(x)p mod f(x),
for a generic polynomial a(x), by reducing the following expression modulo f(x):

a(x)p mod f(x) =
m−1∑
i=0

ap
i x

ip mod f(x) =
m−1∑
i=0

aix
ip mod f(x).

This general expression of the Frobenius map can then be seen as a sum of
elements of Fpm . The coefficients of those polynomials are directly mapped to
the coefficients of the operand, possibly multiplied by a constant. As presented
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in [5], it is possible to reuse the partial product generation hardware of the mul-
tiplication in order to compute those polynomials, only some extra wiring being
required for the permutation of the coefficients. The sum of all the polynomials
can then be computed by the final multi-operand adder.

In order to decrease the number of partial products necessary to compute the
Frobenius map, a simple decomposition technique can be applied to share the
maximum amount of hardware between these partial products. In case this is
still not enough, a second technique can further pack the partial products, at the
expense of some additions over Fp. The intuition behind these two techniques is
given in a simple example in Appendix B.

3.2 Inverse Frobenius Map

Although the algorithm we present here for the ηT pairing over F3m does not re-
quire to compute any inverse Frobenius map (i.e. p

√
a(x)), some other algorithms

still rely on this function. To also support those algorithms, the generic unified
operator proposed in this paper is available in two flavors: namely either only ad-
dition, multiplication and Frobenius map as presented in the previous section,
or a four-in-one operator with extra hardware for the inverse Frobenius map.
This function is computed exactly in the same way as the Frobenius map: first,
the normal form of p

√
a(x) mod f(x) is obtained by solving the m-dimensional

linear system given by the equation
(

p
√
a(x)

)p

mod f(x) = a(x). The result is
then expressed as a sum of polynomials, each one being a permutation of the co-
efficients of the operand a(x) multiplied by a constant. Note that the reduction
techniques presented for the Frobenius map also apply in the case of the inverse
map.

3.3 Inversion over Fpm

Recall that, in the case of F397 [5], our pairing accelerator performs the inver-
sion required for the final exponentiation according to Fermat’s little theorem
and Itoh and Tsujii’s work [15] by means of 96 cubings and 9 multiplications.
Algorithm 2 describes a generalization of this method to any characteristic and
extension degree. Inversion over Fpm involves m− 1 Frobenius maps and

#MAlgo. 2 =

 blog2(m− 1)c+ wt(m− 1)− 1 if p = 2,
blog2(m− 1)c+ blog2(p− 1)c+ blog2(p− 2)c +

wt(m− 1) + wt(p− 1) + wt(p− 2)− 2 otherwise

multiplications over Fpm , where wt(k) denotes the Hamming weight of the binary
representation of the integer k. A unified operator with addition, multiplication,
and Frobenius allows one to implement this inversion algorithm.

At the price of a slightly more complex shift register (register R0 on Figure 1)
and another control bit, we can further reduce the calculation time. Let r =
(pm − 1)/(p − 1) and a ∈ F∗pm . Since (ar)p−1 = apm−1 = 1, ar belongs to Fp

and the multiplicative inverse of a is computed as ar−1(ar)−1 [14]. Algorithm 3
summarizes this scheme which is often applied for inversion in optimal extension
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Algorithm 2 Inversion over Fpm (1).
Input: A prime number p, a positive integer m, and a ∈ Fpm .
Output: a−1 ∈ Fpm .
1: k ← blog2(m− 1)c − 1; n← wt(m− 1); y0 ← a;
2: [b1, . . . , bn] ← finite increasing sequence of the exponents in the binary expansion

of m− 1 (i.e. m− 1 =
∑n

i=1 2bi);
3: for i = 0 to k do

4: zi ← yp2i

i ;
5: yi+1 ← ziyi;
6: end for
7: for i = n− 1 downto 1 do

8: zk+n−i ← yp2bi

k+n−i;
9: yk+n+1−i ← zk+n−iybi ;

10: end for
11: if p = 2 then
12: Return y2

k+n;
13: else
14: yk+n+1 ← yp−1

k+n;
15: yk+n+2 ← yp

k+n+1;
16: Return y0yk+n+2;
17: end if

fields [7]. Since the p-adic representation of r−1 is pm−1+. . .+p2+p we compute
s = ar−1 by means of m− 1 Frobenius maps and blog2(m− 1)c+ wt(m− 1)− 1
multiplications over Fp. Another multiplication over Fpm is required to get t =
as. The last step consists in computing the inverse of t ∈ Fp and to multiply all
coefficients of s by t−1 ∈ Fp. In characteristic three, this inversion is implemented
by means of two LUTs on a Virtex-II Pro FPGA. We load s = ar−1 in register
R2 and t = ar in R0. Since t belongs to Fp, we have ti = 0, ∀i 6= 0, and therefore
d03i+1=d03i+2 = 0. An additional multiplexer allows us to select d03i = t−1

0

and our operator returns st−1 = a−1. We can neglect this last operation and
estimate the cost of Algorithm 3 to m − 1 Frobenius maps and #MAlgo. 3 =
blog2(m− 1)c+ wt(m− 1) multiplications over Fpm .

Algorithm 3 Inversion over Fpm (2).
Input: A prime number p, a positive integer m, and a ∈ Fpm .
Output: a−1 ∈ Fpm .
1: r ← (pm − 1)/(p− 1);
2: s← ar−1;
3: t← as;
4: Return st−1;

Table 3 provides the reader with a comparison between Algorithm 2, Algo-
rithm 3, and the EEA. We assume that the accelerator embeds a single unified
operator and carries out the pairing calculation according to Algorithm 1. Recall
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that the EEA performs an inversion over F3m in 2m clock cycles [18]. Then, Ta-
ble 1, #MAlgo. 2, and #MAlgo. 3 allow us to find out the number of clock cycles
and to give examples for D = 3 and 7. Our results indicate that supplement-
ing our coprocessor with dedicated hardware for the EEA would only improve
performance by less than 1%. Furthermore, an EEA-based inversion over F397

occupies 2210 slices on a Virtex-II Pro FPGA [18] and would more than double
the area of the accelerator. Since the calculation of the ηT pairing requires a
single inversion over Fpm , Algorithm 3 does not significantly reduce the number
of clock cycles.

Table 3. Relationship between the choice of an inversion algorithm and the calculation
time of a full pairing.

(a) Arithmetic over F397 .

Inversion Clock cycles for the full pairing

Algorithm Cost General formula D = 3 D = 7

Algorithm 2 96 cubings, 9 mult. 5723 + 815 · d97/De 32618 17133

Algorithm 3 96 cubings, 8 mult. 5723 + 814 · d97/De 32585 17119

EEA 2 ·m = 194 clock cycles 5821 + 806 · d97/De 32419 17105

(b) Arithmetic over F3193 .

Inversion Clock cycles for the full pairing

Algorithm Cost General formula D = 3 D = 7

Algorithm 2 192 cubings, 10 mult. 10571 + 1536 · d193/De 110411 53579

Algorithm 3 192 cubings, 9 mult. 10571 + 1535 · d193/De 110346 53551

EEA 2 ·m = 386 clock cycles 10765 + 1526 · d193/De 109955 53493

3.4 Results

Our VHDL code generator as well as the general formulas from Table 3 allowed
us to estimate the cost of the full ηT pairing computation for several extension
fields. Table 4 summarizes these estimations. Note that the reported figures do
not take the control unit into account. However, this should not impact on the
critical path.

Table 4. Estimated area, frequency, and full pairing computation time for various
extension fields and values for the parameter D (Virtex-II Pro family).

Polynomial D = 3 D = 7

x97 + x12 + 2 [5] 1402 slices – 147 MHz – 222 µs 2189 slices – 117 MHz – 146 µs

x97 + x16 + 2 [1] 1392 slices – 151 MHz – 216 µs 2246 slices – 116 MHz – 148 µs

x193 + x64 + 2 [1] 2811 slices – 126 MHz – 877 µs 4450 slices – 108 MHz – 495 µs
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4 Conclusion

We proposed a compact implementation of the ηT pairing in characteristic three
over F3[x]/(x97 + x12 + 2). Our architecture is based on a unified arithmetic
operator which leads to the smallest circuit proposed in the open literature,
without impacting too severely on the performances. We also showed that our
approach can be generalized to any characteristic p and degree-m irreducible
polynomial f(x) over Fp. Moreover, our VHDL code generator allows one to
rapidly explore the trade-off between computation time and circuit resource
usage for a large set of architectural parameters (e.g. p, m, f(x)).

However, even though we now have automatic tools to generate unified opera-
tors, the main difficulty still lies in the scheduling of all the instructions required
for the ηT pairing calculation. The next step will therefore be to develop an
ad-hoc compiler for architectures based on such unified operators.
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23. R. Ronan, C. Ó hÉigeartaigh, C. Murphy, T. Kerins, and P. S. L. M. Barreto.
Hardware implementation of the ηT pairing in characteristic 3. Cryptology ePrint
Archive, Report 2006/371, 2006.

24. M. Shirase, T. Takagi, and E. Okamoto. Some efficient algorithms for the final
exponentiation of ηT pairing. Cryptology ePrint Archive, Report 2006/431, 2006.

25. C. Shu, S. Kwon, and K. Gaj. FPGA accelerated Tate pairing based cryptosystem
over binary fields. Cryptology ePrint Archive, Report 2006/179, 2006.

26. J. H. Silverman. The Arithmetic of Elliptic Curves. Number 106 in Graduate
Texts in Mathematics. Springer-Verlag, 1986.

27. L. Song and K. K. Parhi. Low energy digit-serial/parallel finite field multipliers.
Journal of VLSI Signal Processing, 19(2):149–166, July 1998.

28. E. R. Verheul. Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems. Journal of Cryptology, 17(4):277–296, 2004.

A Computation of the ηT Pairing

The first multiplication over F36m of the ηT pairing calculation (Algorithm 1)
requires only 8 multiplications over F3m . Let A = (a0, a1, a2, a3, a4, a5) ∈ F36m .
We have to compute a0 + a1σ + a2ρ + a3σρ + a4ρ

2 + a5σρ
2 = (−ypr0 + yqσ +
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ypρ)(−r20 + ypyqσ − r0ρ − ρ2). We assume here that b = 1. Since σ2 = 1 and
ρ3 = ρ+ 1, we obtain:

a0 = ypr
3
0 − ypy

2
q , a2 = −yp, a4 = 0,

a1 = −y2
pyqr0 − yqr

2
0, a3 = −yqr0 + y2

pyq, a5 = −yq.

This multiplication over F36m is carried out according to Algorithm 4 which
requires 8 multiplications and 9 additions over F3m . Note that the number of
additions may depend on the architecture of the coprocessor.

Algorithm 4 First multiplication of the ηT pairing calculation.
Input: R0 = −ypr0 + yqσ + ypρ and R1 = −r2

0 + ypyqσ − r0ρ− ρ2 ∈ F36m .
Output: A = R0R1 ∈ F36m .
1: e0 ← r0r0; e1 ← yqr0; e2 ← ypr0;
2: e3 ← e0e2; (e3 = ypr3

0)
3: e4 ← ypyq;
4: e5 ← e4yq; (e5 = ypy2

q)
5: e6 ← e4yp; (e5 = y2

pyq)
6: e7 ← −e2 + y9; (e7 = −ypr0 + yq)
7: e8 ← −e0 + e4; (e8 = −r2

0 + ypyq)
8: e9 ← e7e8; (e9 = (−ypr0 + yq)(−r2

0 + ypyq))
9: a1 ← e9 − e3 − e5; a0 ← e3 − e5 − yp;

10: a3 ← −e1 + e6; a2 ← −yp; a4 ← 0; a5 ← −yq;

B Techniques for Reducing Partial Products in the
Frobenius Map

For our unified operators to be able to compute Frobenius maps, we implement
this function as a sum of elements of Fpm . With p = 3 and f(x) = x97 +x12 +2,
we obtain a(x)p mod f(x) = µ0(x) + µ1(x) + µ2(x) + µ3(x), with

µ0(x) = a0 + a65x + a33x
2 + . . . + a96x

94 + a64x
95 + a32x

96,
µ1(x) = a89 + 0 + 0 + . . . + a88x

94 + 0 + 0,
µ2(x) = a93 + 0 + 0 + . . . + a92x

94 + 0 + 0,
µ3(x) = ( 0 + a61x + 0 + . . . + 0 + a60x

95 + 0 )× 2.

We can see that the Frobenius map in this extension field can be mapped as
the sum of four polynomials µ0(x) to µ3(x), the first three with the multiplicity
1 and the last one with the multiplicity 2. Directly implementing our unified
operator from this expression therefore would require at least D = 4. However,
as noticed by Beuchat et al. [5], for each degree i for which the coefficient for
xi in µ3(x) is not zero, the corresponding coefficients in µ1(x) and µ2(x) are
always null. Rewriting 2 as 1 + 1, we can then distribute µ3(x) and merge it to
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µ1(x) and µ2(x) to obtain the following expression, requiring only D = 3 partial
product generators: a(x)p mod f(x) = ν0(x) + ν1(x) + ν2(x), withν0(x) = a0 + a65x + a33x

2 + . . . + a96x
94 + a64x

95 + a32x
96,

ν1(x) = a89 + a61x + 0 + . . . + a88x
94 + a60x

95 + 0,
ν2(x) = a93 + a61x + 0 + . . . + a92x

94 + a60x
95 + 0.

This technique was fully automatized and implemented in our generator,
which can minimize the number of partial products necessary to compute Frobe-
nius maps in any extension field Fp[x]/(f(x)). However, in some cases where it is
not possible to decrease the number of required partial products to an acceptable
value, the generator can also insert adders over Fp in order to share each partial
product between several polynomials with the same multiplicity. For instance, in
our example, we can rewrite the expression of a(x)p mod f(x) with only D = 2
partial products as: a(x)p mod f(x) = π0(x) + π1(x), with{

π0(x) = ν0(x),
π1(x) = ν1(x) + ν2(x).

Similar techniques can also be applied to the inverse Frobenius map p
√
a(x).


