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Mathematical analysis of a measles 
transmission dynamics model 
in Bangladesh with double dose 
vaccination
Md Abdul Kuddus1,2*, M. Mohiuddin3 & Azizur Rahman4

Although the availability of the measles vaccine, it is still epidemic in many countries globally, 
including Bangladesh. Eradication of measles needs to keep the basic reproduction number less than 
one (i.e. R

0
< 1) . This paper investigates a modified (SVEIR) measles compartmental model with 

double dose vaccination in Bangladesh to simulate the measles prevalence. We perform a dynamical 
analysis of the resulting system and find that the model contains two equilibrium points: a disease-
free equilibrium and an endemic equilibrium. The disease will be died out if the basic reproduction 
number is less than one (i.e. R

0
< 1) , and if greater than one (i.e. R

0
> 1) epidemic occurs. While 

using the Routh-Hurwitz criteria, the equilibria are found to be locally asymptotically stable under the 
former condition on R

0
 . The partial rank correlation coefficients (PRCCs), a global sensitivity analysis 

method is used to compute R
0
 and measles prevalence (I∗) with respect to the estimated and fitted 

model parameters. We found that the transmission rate (β) had the most significant influence on 
measles prevalence. Numerical simulations were carried out to commissions our analytical outcomes. 
These findings show that how progression rate, transmission rate and double dose vaccination rate 
affect the dynamics of measles prevalence. The information that we generate from this study may 
help government and public health professionals in making strategies to deal with the omissions of a 
measles outbreak and thus control and prevent an epidemic in Bangladesh.

Many people are being infected every year by serious respiratory infectious diseases, including measles. A sig-
nificant number of them die or suffer severe illness and life-long complications1–5. The annual reports on the 
estimated number of measles cases and measles caused deaths worldwide are announced by the World Health 
Organization (WHO) and UNICEF based on the reported data of the member countries. According to WHO 
and UNICEF statistics for 2017, the total measles cases and measles-related deaths were recorded at 7,585,900 
and 124,000, respectively. In 2018, there were about 9,769,400 recorded measles cases and 142,300 measles 
caused deaths6. The maximum cases were reported from Madagascar, Ukraine, Somalia and Liberia. Also, some 
developed countries, including the United Kingdom, Greece, Czechia, and Albania, lost the elimination status 
of measles in the latest year. Moreover, the United States counted the maximum number of cases, which was 
highest in 25 years, in 2018. In 2019, the maximum number of 207,500 people died due to measles, and the 
reported measles cases were 869,770 globally7. This year, Madagascar, Ukraine and Congo have reported the 
highest numbers of cases. Outbreaks are continuous in Angola, Cameroon, Kazakhstan, Chad, Nigeria, Thai-
land, Philippines, South Sudan and Sudan8. These continuous annually increments are indicating a matter of 
concerning issue in the world.

Measles is one of the most contagious respiratory infectious diseases caused by the measles virus that lives in 
an infected person’s nose and throat mucus. It is a virus of paramyxovirus family, genus morbilivirus, and this 
virus is found only in the human body among all animal species1,2. This virus can be spread directly from person 
to person through coughing and sneezing of the infected person. The clinical symptoms of measles are high fever, 
runny nose, cough, conjunctivitis, rhinitis, small white spots and a rash in the body of the infected people. This 
disease is more dangerous, especially for children under five years of age and adults older than 20 years of age. 
The complications including pneumonia, mouth ulcer, sinus and ear infections, diarrhea, malnutrition, blindness 
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and brain damage may occur due to measles3. There is no specific medicine for the treatment of infected people 
with measles. According to the complications of the patients, a specific treatment may be suggested. Patients may 
need complete bed rest, fluids, control of fever and pains, and antibiotics9. Now, the measles vaccine is available, 
which is effective and inexpensive, and it has been possible to remarkably reduce the number of people dying 
from measles through vaccination5. The measles, mumps, and rubella (MMR) vaccines efficacy is 95% for pre-
venting measles if the first dose is given to children at 12 months of age, and the efficacy increase to 99% after 
the second dose is given to children at greater than 12 months of age10.

Many countries and various public health organizations such as WHO, UNICEF, American Red Cross, Cent-
ers for Disease Control and Prevention (CDC), and United Nations Foundation have conducted tremendous 
efforts worldwide to fight against measles. These organizations launched the Measles and Rubella Initiative 
(MRI), a global partnership among these organizations to stop measles and rubella, in 2001 to reduce measles 
deaths globally by 90% by 2010 compared to 2000 estimates11. Presently, this partnership has taken the Measles 
and Rubella Strategic Framework 2021–2030 (MRSF 2021–2030) for a world free from measles and rubella12. 
However, despite being vaccine-preventable, measles is still a public health problem in many developing countries 
globally, especially in parts of Asia and Africa, because of low awareness, civil strife, vaccine hesitancy, lower 
immunization system and poor health infrastructures13.

In Bangladesh, one of the South East Asia Region (SEAR) countries, measles outbreaks occurred several 
times in different areas during 2000–2016. There were about 70,273 reported measles cases and 33,213 confirmed 
measles cases in Bangladesh during this period14. Although the Expanded Program of Immunization (EPI) 
was started in Bangladesh in 1979 to control and prevent measles15, the government adopted more initiatives 
like strengthening the surveillance system and introduction of the second dose of measles-containing vaccine 
(MCV2) in 2014 to eliminate measles from the country by 201816. Consequently, measles cases were reduced up 
to 84% over the last decades. However, the number of estimated measles cases has been increasing since 2016 
nationwide. Despite some existing challenges, Rohingya refugees is another challenge for the removal of measles 
from Bangladesh.

In recent decades, the research relating to measles in epidemiology has been one of the most important 
research fields to researchers. Many researchers have already proposed their ideas and accomplished their 
research mathematically, theoretically or experimentally, using different deterministic or compartmental mod-
els, to find the comparatively best ways for measles control and prevention, focusing on different areas of the 
world, for example, London17, Afghanistan18, Kenya19, Madagascar20, Ontario21, Cape Coast22, Italy23, Senegal23, 
Taiwan24 and China25,26. Moreover, Momoh et al.27 studied an SEIR deterministic epidemic model to investigate 
the impact of asymptomatic individuals at the latent period on measles dynamics. Adewale et al.28 developed a 
mathematical model to ascertain the effect of distance between infected and non-infected persons in control-
ling the measles virus transmission. They observed that the number of infected individuals decreases due to 
increases in distance between infected and susceptible persons. Also, two studies highlighted the efficiency of 
vaccination in controlling and prevention of measles transmission29,30. Garba et al.31 also studied a compartmental 
mathematical model to examine the effect of vaccination and treatment on measles dynamics. Beay4 proposed a 
SIQR epidemic model and accomplished the numerical analysis of the model to explore the effect of treatment 
and quarantine on measles dynamics. The study demonstrated that the combined application of quarantine and 
treatment is more effective to control and prevent measles. It also observed that the measles spread reduces due 
to the treatment and quarantine of infected individuals.

In this study, we develop a novel compartmental measles model to simulate the prevalence of measles estima-
tion in Bangladesh. We use the next-generation matrix method to determine the basic reproduction number of 
the system and found that this is an essential determinant for disease dynamics. To supplement and validate the 
analytic process, we use numerical techniques to solve the model equations and explore the epidemic trajectory 
for a range of possible parameters values and initial conditions. The local stability analyses of the disease-free 
and endemic equilibria are examined using the Routh-Hurwitz criteria. Following this, we perform a sensitivity 
analysis to investigate the model parameters that greatly influence measles prevalence. Finally, we investigate 
the impact of progression rate, transmission rate and double dose vaccinations on the dynamics of the measles 
outbreak.

Methods and materials
Model description.  We developed a compartmental transmission dynamics measles model between the 
following mutually exclusive compartments: susceptible individuals, S(t) ; those who have not yet infected with 
the disease but might become infected; first dose vaccinated individuals, V1(t) ; those who have received the first 
dose of vaccine; second dose vaccinated individuals, V2(t) ; those who have received the second dose of vaccine; 
Exposed individuals, E(t) ; representing those that are infected and have not yet developed active measles disease; 
Infected individuals, I(t) ; those who are infected and infectious; and Recovered individuals, R(t) ; those who 
were previously infected and successfully recovered. Individuals in the recovery class are neither infectious nor 
susceptible, including people in treatment, isolation, no longer contacting others or dead.

The total population size N(t) is assumed to be constant and well mixed:

To ensure the population size constant, we replace all deaths as newborns in the susceptible compartment. It 
includes death through natural causes, which occurs in all states at the constant per-capita rate µ , and measles-
related deaths, which occur at the constant per capita rate δ . Susceptible population (S) who receive the first dose 
of vaccine move to the vaccinated compartment at a rate η . The first dose of vaccinated population V1 moves to 
the susceptible compartment at a rate ρ , and the rest of the population moves to the second dose of vaccinated 

(1)N(t) = S(t)+ V1(t)+ V2(t)+ E(t)+ I(t)+ R(t).
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population V2 at a per-capita rate σ . The second dose of the vaccinated population also moves to the recovery 
compartment at a rate ω . Individuals in the S compartment may be infected with the measles virus at a rate 
� = βSI , where β is the transmission rate between infected and susceptible population. Then infected individuals 
move to the exposed compartment E . A proportion of the exposed population progress to the infected compart-
ment at a per-capita rate α . A proportion of the infected individuals move to the recovery compartment due to 
the treatment and natural recovery rate γ . The model flow diagram is presented in Fig. 1.

From those as mentioned above, the transmission dynamics of measles is given by the following compart-
mental system of nonlinear ordinary differential equations that describe the model:

The initial conditions of the system (2)–(7) are of the form.

It can be easily shown that the solution of the system (2)–(7) subject to the initial conditions (8) exists and 
is nonnegative for all t ≥ 0.

Given the non-negative initial conditions of the system (2)–(7), it is direct to show that each state variable 
remains non-negative. Summing Eqs. (2)–(7), we find that the total population, N(t) satisfies in the absence of 
death due to measles or if there are no infected individuals (i.e. I = 0)32, then we have

Integrating this equation, we find

Given the constant population size and positivity of solutions, it naturally follows that each states 
S, V1, V2, E, I, R are bounded.

(2)
dS

dt
= µN− βSI− ηS− µS+ ρV1,

(3)
dV1

dt
= ηS− ρV1 − σV1 − µV1,

(4)
dV2

dt
= σV1 − ωV2 − µV2,

(5)
dE

dt
= βSI− αE− µE,

(6)
dI

dt
= αE− γI− δI− µI,

(7)
dR

dt
= γI+ ωV2 − µR.

(8)S(0) ≥ 0, V1(0) ≥ 0, V2(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0.

dN

dt
=

dS

dt
+

dV1

dt
+

dV2

dt
+

dE

dt
+

dI

dt
+

dR

dt
= 0,

N(t) = Constant.

Figure 1.   Schematic diagram of measles model for Bangladesh measles setting.
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Note that Eqs. (2)–(6) are independent of the recovery population; hence if we only wish to track measles 
incidence and prevalence, we can focus our attention on the following system:

Given the positivity and boundedness of the system solutions, we find that the feasible region for Eqs. (9)–(13) 
given by.

where D is the positively invariant region for the system (9)–(13). Therefore, in this study, we consider 
Eqs. (9)–(13) in the set D.

Ethical approval.  This study is based on aggregated measles surveillance data in Bangladesh provided by 
the World Health Organization. No confidential information was included because mathematical analyses were 
performed at the aggregate level.

Results
Existence of equilibria.  Two types of equilibrium solutions appear in this system: the disease-free equi-
librium, which is reached when the basic reproduction number is less than one, i.e. R0 < 1 and the endemic 
equilibrium, which is reached when the basic reproduction number is greater than one, i.e. R0 > 1 . We discuss 
these in order below.

Disease‑free equilibrium point (X0).  In this section, we obtain the disease-free equilibrium point of the 
system (9)–(13) at which the epidemic is eliminated by applying E = I = 0 . Hence, the disease-free equilibrium 
point is given by

That describes the state in which there is no infection in the community, and the total population N is con-
stant at time t = 0.

Basic reproduction number (R
0
).  The basic reproduction number can be determined using the method 

of next-generation matrix33. The next-generation matrix is the production of matrices T and −�−1 where the 
matrix T represents the rate of infection transmission in E and I compartments and the matrix � describes all 
other transfer across the compartments. The matrices T and � are given as

The next-generation matrix is

The basic reproduction number is the Eigen-value of the largest magnitude of the next-generation matrix 
(K) . Hence the basic reproduction number is obtained as

(9)
dS

dt
= µN− βSI− ηS− µS+ ρV1,

(10)
dV1

dt
= ηS− ρV1 − σV1 − µV1,

(11)
dV2

dt
= σV1 − ωV2 − µV2,

(12)
dE

dt
= βSI− αE− µE,

(13)
dI

dt
= αE− γI− δI− µI.

(14)D =
{

(S, V1, V2, E, I) ∈ R
5
+ : S+ V1 + V2 + E+ I = N

}

.

X
0
=

(

S
0
, V

0
1, V

0
2, E

0
, I
0
)

=

(

µN(ρ+ σ+ µ)

(η+ µ)(ρ+ σ+ µ)− ρη
,

µηN

(η+ µ)(ρ+ σ+ µ)− ρη
,

µησN

(ω+ µ)((η+ µ)(ρ+ σ+ µ)− ρη)
, 0, 0

)

.

T =

(

0 βS0

0 0

)

and � =

(

−(α+ µ) 0
α −(γ+ δ+ µ)

)

.

K = T×
(

−�−1
)

=

(

0 βS0

0 0

)

×

(

1
(α+µ)

0
α

(α+µ)(γ+δ+µ)
1

(γ+δ+µ)

)

=

(

βS0α
(α+µ)(γ+δ+µ)

βS0

(γ+δ+µ)

0 0

)

.

R0 =
βS0α

(α+ µ)(γ+ δ+ µ)
=

αβµN(ρ+ σ+ µ)

(α+ µ)(γ+ δ+ µ)((η+ µ)(ρ+ σ+ µ)− ρη)
.
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Endemic equilibrium point (X∗).  The endemic equilibrium point of the system (9)–(13) is discovered by 
applying S  = V1  = V2  = E  = I  = 0 . Hence, the endemic equilibrium point is given by.

X∗
=

(

S∗, V∗
1 , V

∗
2 , E

∗, I∗
)

 where

Equation (15) shows that if R0 > 1 then the endemic equilibrium X∗(S∗, V∗
1 , V

∗
2 , E

∗, I∗) ∈ D.

Stability analysis.  To examining the stability of the equilibria of system (9)–(13), the following outcomes 
are proven:

Lemma 1  The disease-free equilibrium of the model is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof  We consider the Jacobian of the system (9)–(13) which is given by

which, at the infection-free equilibrium point, X0 , reduces to

Now we have to provide that all the eigenvalues of J
(

X0
)

 are negative. As the 3rd column indicates only the 
diagonal terms which form the one negative eigenvalue, −(ω+ µ) the other eigenvalues can be derived from 
the sub-matrix, J1(X0) formed by excluding the 3rd row and column of J

(

X0
)

 . Which gives

This matrix can be written in block form as

where, A1 =

(

−(η+ µ) ρ

η −(ρ+ σ+ µ)

)

 , A2 =

(

0 −βS0

0 0

)

 , A3 =

(

0 0
0 0

)

 and A4 =

(

−(α+ µ) βS0

α −(γ+ δ+ µ)

)

.

The characteristic equation of the two-by-two block matrix J1(X0) is

Since A3 =

(

0 0
0 0

)

 this reduces to

Now we can apply the Routh-Hurwitz criteria for stability to matrices A1 and A4 directly and independently. 
We require that the trace is negative and the determinant is positive for each matrix.

Now for A1 matrix

and

(15)



















































S∗ =
(α+µ)(γ+δ+µ)

αβ
,

V∗
1 =

η(α+µ)(γ+δ+µ)
αβ(ρ+δ+µ)

,

V∗
2 =

ση(α+µ)(γ+δ+µ)
αβ(ω+µ)(ρ+δ+µ)

,

E∗ =
(R0−1)(α+µ)(γ+δ+µ)2((η+µ)(ρ+σ+µ)−ρη)

α((α+µ)(γ+δ+µ))(ρ+σ+µ)
,

I∗ =
(R0−1)(α+µ)(γ+δ+µ)((η+µ)(ρ+σ+µ)−ρη)

((α+µ)(γ+δ+µ))(ρ+σ+µ)
.

J =











−(βI + η+ µ)
η
0

βI
0

ρ
−(ρ+ σ + µ)

σ

0

0

0

0

−(ω + µ)
0

0

0

0

0

−(α+ µ)
α

−βS
0

0

βS
−(γ+ δ + µ)











J
�

X0
�

=











−(η+ µ)
η
0
0
0

ρ
−(ρ+ σ + µ)

σ

0
0

0
0

−(ω + µ)
0
0

0
0
0

−(α+ µ)
α

−βS0

0
0
βS0

−(γ+ δ + µ)











.

J1(X
0) =







−(η+ µ)
η
0
0

ρ
−(ρ+ σ + µ)

0
0

0
0

−(α+ µ)
α

−βS0

0
βS0

−(γ+ δ + µ)






.

J1(X
0) =

(

A1 A2

A3 A4

)

det(A1 − �I)det((A4 − �I)− A3(A1 − �I)−1A2) = 0,

det(A1 − �I)det(A4 − �I) = 0.

trace(A1) = −(η+ µ)− (ρ+ σ+ µ) < 0,

det(A1) = (η+ µ)(ρ+ σ+ µ)− ρη = η(σ+ µ)+ µ(ρ+ σ+ µ) > 0.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16571  | https://doi.org/10.1038/s41598-021-95913-8

www.nature.com/scientificreports/

Again for A4 matrix

and

which we can rewrite as

Hence, the disease-free equilibrium X0 is locally asymptotically stable for R0 < 1 . If either R0 > 1 , at least one 
of the roots of the characteristic equation has a positive real part and X0 is unstable.

Lemma 2  The endemic equilibrium X∗ is locally asymptotically stable if R0 > 1.

Proof  We consider the Jacobian of the system (9)–(13) at X∗
= (S∗, V∗

1 , V
∗
2 , E

∗, I∗) which is given by

The 3rd column indicates only the diagonal terms which form the one negative eigenvalues,−(ω+ µ) , the 
other eigenvalues can be derived from the sub-matrix, J1(X∗) formed by excluding the 3rd rows and columns 
of J(X∗) . Which gives

The characteristics equation of J1(X∗)  is defined as,

where

trace(A4) = −(α+ µ)− (γ+ δ+ µ) < 0,

det(A4) = (α+ µ)(γ+ δ+ µ)− αβS0 = 1−
αβS0

(α+ µ)(γ+ δ+ µ)
> 0,

R0 < 1.

J(X∗) =











−(βI∗ + η+ µ)
η
0
βI∗

0

ρ
−(ρ+ σ + µ)

σ

0
0

0
0

−(ω + µ)
0
0

0
0
0

−(α+ µ)
α

−βS∗

0
0
βS∗

−(γ+ δ + µ)











.

J1
�

X∗
�

=







−(βI∗ + η+ µ)
η
βI∗

0

ρ
−(ρ+ σ + µ)

0
0

0
0

−(α+ µ)
α

−βS∗

0
βS∗

−(γ+ δ + µ)






.

∣

∣J1
(

X∗
)

− �I
∣

∣ = 0,

(16)

⇒

∣

∣

∣

∣

∣

∣

∣

−(βI∗ + η + µ+ �)

η

βI∗

0

ρ

−(ρ + σ + µ+ �)

0
0

0
0

−(α + µ+ �)

α

−βS∗

0
βS∗

−(γ + δ + µ+ �)

∣

∣

∣

∣

∣

∣

∣

= 0,

⇒ −
(

βI∗ + η+ µ+ �
)

∣

∣

∣

∣

∣

−(ρ+ σ+ µ+ �) 0 0
0 −(α + µ+ �) βS∗

0 α −(γ+ δ+ µ+ �)

∣

∣

∣

∣

∣

− ρ

∣

∣

∣

∣

∣

η 0 0
βI∗ −(α + µ+ �) βS∗

0 α −(γ+ δ+ µ+ �)

∣

∣

∣

∣

∣

+
(

βS∗
)

∣

∣

∣

∣

∣

η −(ρ+ σ+ µ+ �) 0
βI∗ 0 −(α + µ+ �)
0 0 α

∣

∣

∣

∣

∣

= 0,

⇒ �
4
+ a3�

3
+ a2�

2
+ a1� + a0 = 0.

a3 =
(

βI∗ + η+ µ
)

+ (ρ+ σ+ µ)+ (α+ µ)+ (γ+ δ+ µ),

a2 =
(

βI∗ + η+ µ
)

(ρ+ σ+ µ)+
(

βI∗ + η+ µ
)

(α+ µ)+ (ρ+ σ+ µ)(α+ µ)

+
(

βI∗ + η+ µ
)

(γ+ δ+ µ)+ (ρ+ σ+ µ)(γ+ δ+ µ)+ (α+ µ)(γ+ δ+ µ)

− ηρ− αβS∗,

=
(

βI∗ + η+ µ
)

(ρ+ σ+ µ)+
(

βI∗ + η+ µ
)

(α+ µ)+ (ρ+ σ+ µ)(α+ µ)

+
(

βI∗ + η+ µ
)

(γ+ δ+ µ)+ (ρ+ σ+ µ)(γ+ δ+ µ)+ (α+ µ)(γ+ δ+ µ)

− ηρ− (α+ µ)(γ+ δ+ µ),
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On simplify

and

From (17) it is easy to verify that
a3 > 0, a2 > 0, a1 > 0 and a0 > 0 if I∗ > 0 . From (15) it is also clear that I∗ is positive if R0 > 1.
Hence, by the Routh–Hurwitz stability criterion, the endemic equilibrium point X∗ is locally asymptotically 

stable for R0 > 1.

In order to verify the nature of the disease-free and endemic equilibrium analysis, we used Monte Carlo 
simulation34 to prove the conditions by calculating the real part of the eigenvalues of the Jacobian matrix of 
disease-free and endemic equilibriums. The simulation outcomes are presented in Figs. 2 and 3.

Figure 2 represented that the disease-free equilibrium is locally stable as all the five eigenvalues (real part) 
are negative (i.e. �1, �2, �3, �4, and �5 < 0) . Whilst Fig. 3 represented that the endemic equilibrium is unstable 
as two eigenvalues (real part) is positive (i.e. �4, �5 > 0).

Parameters estimation.  We estimated the measles model parameters from fitting different combinations 
of parameters in Eqs.  (2)–(7) to the actual number of measles cases in Bangladesh from 2000 to 201935. In 
order to parameterise measles model (2)–(7), we obtained some of the parameter values from the literature 
(see Table 1), rest of the parameters were estimated from data fitting (see Fig. 4). The estimation of parameters 
was carried out using the least-squared method, which minimises summation of the square errors given by 
∑

(

M
(

t, p
)

−Nactual

)2 subject to the measles model (2)–(7), where Nactual is the actual reported measles data, 
and M

(

t, p
)

 denotes the solution of the model corresponding to the number of measles cases over time t with 
the set of estimated parameters, denoted by p.

Estimation of basic reproduction number (R
0
).  The basic reproduction number is well-defined as the 

estimated number of secondary cases produced by a single infectious case presented into an exclusively suscepti-
ble population. The disease can spread in a population only if the basic reproduction number is greater than one. 
Our main objective here is to calculate the basic reproduction number (R0) of the measles model (2)–(7). Using 
the values α = 0.018, β = 7.45× 10−7, N = 163, 046, 161,µ =

1
70
, ρ = 0.6, σ = 0.93,

γ = 0.6, δ = 0.125, η = 0.94 , and substituting it into the basic reproduction number (R0) expression result in:

Hence, the basic reproduction number, R0 is approximately 1.44. It indicates that a single infected individual 
can spread the measles disease to 1 or 2 susceptible individuals.

Sensitivity analysis.  We perform the sensitivity of the model basic reproduction number (R0) and measles 
prevalence (I∗) to the model parameters using the Latin Hypercube Sampling (LHS) method with 10,000 runs 
per simulation. The LHS is a Monte Carlo stratified sampling technique that permits us to concurrently achieve 

⇒ a2 = ρ
(

βI∗ + µ
)

+
(

βI∗ + η+ µ
)

(σ + µ)+
(

βI∗ + η+ µ
)

(α+ µ)+ (ρ+ σ+ µ)(α+ µ)

+
(

βI∗ + η+ µ
)

(γ+ δ+ µ)+ (ρ+ σ+ µ)(γ+ δ+ µ),

a1 =
(

βI∗ + η+ µ
)

(ρ+ σ+ µ)(α+ µ)+
(

βI∗ + η+ µ
)

(ρ+ σ+ µ)(γ+ δ+ µ)

+
(

βI∗ + η+ µ
)

(α+ µ)(γ+ δ+ µ)+ (ρ+ σ+ µ)(α+ µ)(γ+ δ+ µ)

− (α+ µ)ηρ− (γ+ δ+ µ)ηρ− αβ
(

βI∗ + η+ µ
)

S∗ − αβ(ρ+ σ+ µ)S∗ + αβ2S∗I∗,

a1 = ρ
(

βI∗ + µ
)

(α+ µ)+
(

βI∗ + η+ µ
)

(σ+ µ)(α+ µ)+ ρ
(

βI∗ + µ
)

(γ+ δ+ µ)

+
(

βI∗ + η+ µ
)

(σ+ µ)(γ+ δ+ µ)+ β(α+ µ)(γ+ δ+ µ)I∗,

(17)

a0 =
(

βI∗ + η+ µ
)

(ρ+ σ+ µ)(α + µ)(γ+ δ+ µ)− (α + µ)(γ+ δ+ µ)ηρ

+ αβηρS∗ + αβ2(ρ+ σ+ µ)S∗I∗ − αβ
(

βI∗ + η+ µ
)

(ρ+ σ+ µ)S∗,

=
(

βI∗ + η+ µ
)

(ρ+ σ+ µ)(α + µ)(γ+ δ+ µ)− (α + µ)(γ+ δ+ µ)ηρ

+ (α + µ)(γ+ δ+ µ)ηρ + β(α + µ)(γ+ δ+ µ)(ρ+ σ+ µ)I∗

−
(

βI∗ + η+ µ
)

(ρ+ σ+ µ)(α + µ)(γ+ δ+ µ),

⇒ a0 = β(α + µ)(γ+ δ+ µ)(ρ+ σ+ µ)I∗.

R0 =
αβµN(ρ+ σ+ µ)

(α+ µ)(γ+ δ+ µ)((η+ µ)(ρ+ σ+ µ)− ρη)
,

=
0.018× 7.45× 10−7

×
1
70 × 163046161× (0.6+ 0.93+ 1

70 )

(0.018+ 1
70 )× (0.6+ 0.125+ 1

70 )
((

0.94+ 1
70

)

×
(

0.6+ 0.93+ 1
70

)

− 0.6× 0.94
) ,

≈ 1.44.
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an unbiased assessment of the model output for a particular set of input parameter values. We estimated the 
Partial Rank Correlation Coefficients (PRCCs): a global sensitivity analysis method using LHS of crucial output 
variables. We allowed a uniform distribution from 0 to 4 times the baseline value for each input parameter to 
explore the relationship between model output variable and parameters. The PRCCs for the basic reproduction 
number and measles prevalence in Figs. 5 and 6 have been produced using the expressions R0 and I∗ . Results 
show that parameters transmission rate (β) and progression rates (αandρ) have a positive correlation with the 
model outcomes R0 and I∗ , which means that decreasing these parameters values will reduce the prevalence of 
measles. On the other hand, parameters η, σ, γ and δ have a negative correlation with the model outcomes R0 
and I∗ , which indicates that increasing these parameters will decrease the prevalence of measles.

From the explicit formula for basic reproduction number R0 , the analytical expression for the sensitivity 
indices can be derived applying the method in36–39 to each of the parameters, e.g.

Using the parameter values in Table 1, we have the following values and the nature of their signs in Table 2.

γ
β
R0

=
∂R0

∂β
×

β

R0
.

Figure 2.   Numerical simulation for the infection-free equilibrium stability conditions and the real part 
distribution of the eigenvalues (�1, �2, �3, �4, �5) . (A1) depict that R0 < 1 always hold, and (A2) represents the 
related distribution of the real part of the eigenvalues for the disease-free conditions.
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Figure 3.   Numerical simulation for the endemic equilibrium stability conditions and the real part distribution 
of the eigenvalues (�1, �2, �3, �4, �5) . (B1) depicts that R0 > 1 always hold, and (B2) represents the related 
distribution of the real part of the eigenvalues for the endemic conditions.

Table 1.   Depiction and estimation of the measles model (2)–(7) parameters.

Parameters Description Estimated value References

N Total population in Bangladesh 163,046,161 40

µ Per-capita death rate 1
70

 per year 41

β Transmission rate 7.45× 10−7 Fitted

η First dose of vaccine rate 0.94 14

ρ Progression rate from V1 to S 0.6 32

σ Second dose of vaccine rate 0.93 14

ω Recovery rate due to the second dose of vaccine 0.8 32

α Progression rate from E to I 0.018 Fitted

δ Measles related death rate 0.125 32

γ Natural recovery rate 0.6 32
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In the sensitivity indices of R0 the most sensitive parameter is the transmission rate (β) of measles. Another 
significant parameter is the first dose of vaccination rate (η) . The least sensitive parameter is the measles related 
death rate (δ) . Hence, increasing (or decreasing) the transmission rate (β) of measles by 100% increases (or 
decreases) the basic reproduction number R0 by 100%. Similarly, increasing (or decreasing) the measles-related 
death rate (δ) by 100% decreases (or increases) R0 by 16.9%.

Numerical simulation.  In this section, we carry out detailed numerical simulations to support the analytic 
results and to assess the impact of model parameters, including progression rate, transmission rate and double 
dose vaccination. For illustration, we have chosen baseline parameter values consistent with measles infection 
and transmission (see Table 1). We found two equilibrium points following the analytical results: the disease-
free equilibrium (X0) and an endemic equilibrium (X∗) . We used different initial conditions for the exposed and 

Figure 4.   Cumulative number of confirmed measles cases from 2000 to 2019 (red dot) and the corresponding 
model best fit (solid blue curve) in Bangladesh.

Figure 5.   Correlation between basic reproduction number (R0) and the model parameters β, α, ρ, σ, γ, ηandδ.
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infected population and found that if the basic reproduction number less than one (i.e. R0 < 1) , then the disease-
free equilibrium is locally asymptotically stable. Furthermore, if R0 > 1 then measles persists in the population.

Figure 7 illustrates the stability of the disease-free equilibrium (i.e. whenR0 < 1) by depicting system tra-
jectories through the EvsI  plane originating from different initial conditions. In this case, measles disease dies 
out. Figure 8 shows the stability of the endemic equilibrium (i.e.whenR0 > 1) , and in this case, measles disease 
persists in the population.

Figures 9 and 10 show that the effect of progression rate and transmission rate on measles prevalence. From 
these figures, we observed that the burden of the measles prevalence increase if the progression and transmis-
sion rates increase, which means that those have a positive correlation with a measles outbreak. Figures 11 and 
12 show that the increases in first and second dose vaccination rates reduce the measles prevalence and reduce 
the risk of an outbreak.

Summary and conclusion
This paper has developed and analyzed a compartmental transmission dynamics measles model with double 
dose vaccination in Bangladesh. We have determined an analytic expression for the basic reproduction number 
using the next-generation matrix and found that the disease-free equilibrium is locally asymptotically stable if the 
basic reproduction number is less than one. We have also found that measles disease persists in the community 
if the basic reproduction number is greater than one. Sensitivity analysis has also been performed to explore the 
impact of model parameters and findings showed that the spread of the measles disease largely depends on the 
transmission rate. Therefore, effort should be made to minimize unnecessary transmission with measles infected 
individuals. However, if we treat early measles infected individuals, it will also reduce transmission from infected 
person to uninfected person. This study has also highlighted the significance of vaccination in controlling and 
preventing the spread of measles in the community of Bangladesh. Vaccination in a population is the best way 
to control an outbreak of measles. Numerical analysis has revealed that vaccination has a negative impact on the 
prevalence of measles. This finding indicates that the improvement in vaccination dose rate decreases the spread 
of measles. Therefore, to attain a high level of herd immunity for the disease, mass vaccination exercise should 
be encouraged to cover most of the population to prevent an outbreak of measles in Bangladesh.

Figure 6.   Correlation between measles prevalence (I∗) and the model parameters β, α, ρ, σ, γ, ηandδ.

Table 2.   Sensitivity indices of R0 to parameters for the model (2)–(7).

Parameter Description Sensitivity index (R0)

β Transmission rate + 1.000

α Progression rate from E to I + 0.443

ρ Progression rate from V1 to S + 0.373

η First dose of vaccine rate − 0.976

σ Second dose of vaccine rate − 0.373

γ Natural recovery rate − 0.812

δ Measles related death rate − 0.169
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Figure 7.   Infection-free equilibrium: R0 < 1 . In this case measles disease dies out (black dot). All parameter 
values assume their baseline values given in Table 1.

Figure 8.   Endemic equilibrium: R0 > 1 . In this case measles disease persist in the population (black dot). All 
parameter values assume their baseline values given in Table 1.
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Figure 9.   Impact of progression rate (α) on measles prevalence.

Figure 10.   Impact of transmission rate (β) on measles prevalence.
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Data availability
The datasets produced during the study are available from the corresponding author on reasonable request.
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