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Abstract: The need for production of all kinds of crops in high quantities and over the entire 
year makes the agricultural sector one of the major energy consumers. The optimization of this
consumption is essential to guarantee its sustainability. The implementation of greenhouses is a 
strategy that allows assurance of production needs and possesses large optimization potential for
the process. This article studies different greenhouse structures by computational simulation using
EnergyPlus and DesignBuilder. First, a comparison was performed between the computational 
results and the measured values from a greenhouse prototype at different operating conditions.
Overall, the comparison shows that the computational tool can provide a reasonable prediction of
the greenhouse thermal behavior, depending on the differences between the weather data modeled 
and observed. An outdoor air temperature difference of 16 ◦C can cause a difference of about 10 ◦C
between the air temperature predicted and measured inside the greenhouse. Subsequently, a selected 
set of case studies was developed in order to quantify their influence on the thermal performance of 
the greenhouse, namely: the greenhouse configuration and orientation; the variation of indoor air
renewal; changes to the characteristics of the roof; the effect of the thermal mass of the walls; and 
location of the greenhouse. The results show that a correct greenhouse orientation, together with
a polyethylene double cover with a 13 mm air layer, a granite wall of 40 cm thickness on the north 
wall, and variable airflow rate, may lead to a reduction of the greenhouse energy consumption by 
57%, if the greenhouse is located in Lisbon, or by 43%, if it is located in Ostersund, during the harsh- 
est months of the heating season.

Keywords: greenhouse thermal performance; numerical study; energy efficiency

1. Introduction

A greenhouse allows the creation of a controlled environment with proper microcli-
mate conditions required for crop growth, increasing crop production rates and quality [1].
Parameters such as indoor air temperature, soil temperature, relative humidity, light
intensity, and carbon dioxide concentration can be controlled using a greenhouse. As
greenhouses allow cultivation in areas where the natural conditions are unfavorable for
plant growth, they may avoid the need to transport vegetables and horticultural crops from
distant places [2]. Greenhouses are also being used worldwide for drying, with many ad-
vantages concerning the quality of the dry products when compared to traditional drying
methods. In this specific case, products are spread on the ground, exposing them directly to
solar radiation, with considerable losses due to dirt, dust, insects, microorganisms, animals,
and birds [3].

Parameters such as greenhouse shape, the materials used in its construction, orienta-
tion, and management systems can have a large impact on the greenhouse’s performance.
Therefore, optimizing greenhouses is truly important to ensure their contribution to the
sustainability of food production.
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The evolution of computational power allows numerical modeling to be used to study
these structures while also keeping cost and resource requirements low, when compared
with developing physical prototypes. Empirical evidence is, nevertheless, a requirement in
numerical modeling as a means to assess the reliability of the simulation results. Recent
studies show that various building characteristics can have a significant impact on the
energy required to keep the conditions inside a greenhouse suitable for crop growth.
An optimization procedure integrating a dynamic thermal model that was developed for
optimal design of solar greenhouses in different climate conditions revealed that an optimal
solar greenhouse can work passively 85% of the time over a year without additional energy
sources [4].

The shape of the roof of the greenhouse can reduce the heating demand by up to
4.2% [5]. East–west orientation can lower energy requirements of a greenhouse operating
year-round [6]. The usage of a greenhouse cover with higher insulating properties was
able, through computer simulations in EnergyPlus, to decrease energy consumption by
more than 30% [7]. Ansys Fluent simulations also demonstrated the benefits of carefully
selecting the greenhouse cover [8]. The various design characteristics of a greenhouse
that result in higher efficiency in the situation under study are not always applicable to
every other greenhouse that is being optimized, such as the orientation of the structure, the
optimal value of which varies with the latitude of the site where the greenhouse will be
implemented [9,10]

The microclimates that develop around and between the crop canopies require very
detailed modeling and, consequently, high computational power. However, there has been
success in replicating these thermal interactions in numerical models [11], with simulations
of microclimates being useful to optimize plant pot position and frequency of movement,
resulting in a reduction by 90% in microclimate formation and a 95% reduction in frequency
of pot movement [12]. To obtain numerical model results that better match the real-world
conditions experienced inside a greenhouse during crop development, it has been shown
that modeling not only the structural components of the greenhouse but also the crops
themselves is a valuable aspect of the simulation process [13,14].

While existing computer software has shown to be capable of assessing the thermal
behavior of a greenhouse, research has been done to develop tools that are capable of
outputting better results, with an application based on TRNSYS showing discrepancies of
50 kWh/m3 comparatively with traditional EnergyPlus simulations [15]. Mathematical
models that were developed for specific greenhouse assessment and subsequently solved
with the computer application MATLAB/Simulink have also demonstrated ability to
correctly estimate the thermal performance of a greenhouse [16].

In this paper, a computational model of an existing small-scale greenhouse was built
using the computer software EnergyPlus and DesignBuilder. The model was then simulated
under the same conditions that were applied to the physical greenhouse to evaluate the
reliability of the simulation results. Subsequently, a group of case studies was defined to
evaluate the impact of different design choices in the thermal behavior of the greenhouse.

2. Materials and Methods
2.1. Experimental Setup

The greenhouse under study is located in the city of Covilhã at the University of
Beira Interior Engineering Faculty campus in the center-east region of Portugal, having the
following GPS coordinates: 40◦16′43′′ N 7◦30′48′′ W.

The greenhouse has a rectangular base with a traditional gable roof, with exterior
dimensions of 2.0 m × 1.4 m × 2.1 m (length × width × height). Figure 1 shows in more
detail the supporting structure of the greenhouse and its dimensions.
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The supporting structure is made from fir wood, with cross-sectional dimensions of 
30 mm × 30 mm. The cover, which involves all sides of the greenhouse, is made of a com-
mercial polyethylene 215 μm in thickness commonly used for this kind of greenhouse. 
Figure 2 shows the greenhouse with the covering material assembled. 
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Figure 1. External dimensions of the greenhouse under study.

The supporting structure is made from fir wood, with cross-sectional dimensions
of 30 mm × 30 mm. The cover, which involves all sides of the greenhouse, is made of a
commercial polyethylene 215 µm in thickness commonly used for this kind of greenhouse.
Figure 2 shows the greenhouse with the covering material assembled.
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The greenhouse has two circular openings of 127 mm in diameter located in the
bottom-left corner of the south-facing wall and the top-right corner of the north-facing wall
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to allow natural or forced ventilation of the interior of the greenhouse. Figure 3 shows one
of these openings with a mechanical ventilator duct attached.
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Figure 3. Picture of one of the circular openings of the greenhouse with a ventilation duct attached.

The greenhouse location is surrounded by various buildings and a retaining wall that
are tall enough to influence its thermal performance by blocking sunlight during certain
periods of the day.

Temperature and relative humidity data acquisitions were performed by means of
two devices, the PCE-T 1200 temperature data logger, using T-type thermocouples (Omega
Engineering Inc., Norwalk, CT, USA) and the Lascar Electronics EL-USB-1-LCD portable
data logger. The accuracies of the temperature and relative humidity measurements were
±0.55 ◦C and 2.25%, respectively. In order to ensure stable thermal conditions inside the
greenhouse, it was necessary for some tests to use a heating device. The equipment used
was a ceramic fan heater with a digital thermostat and maximum power of 1800 W.

The experimental type A tests included natural and forced ventilation inside the
greenhouse. Some tests (type B) included a heating set-point temperature to ensure a
minimum value of the internal air temperature by using an auxiliary heater located in the
greenhouse. Type C tests included a low airflow rate inside the greenhouse with outside
fresh air but keeping the auxiliary air heater turned off. Table 1 lists the parameters of each
of the experimental tests. The experimental tests were each conducted over 24 h, and the
air temperature and relative humidity were recorded every 10 min. Additional details of
the experimental apparatus and experimental tests can be found in [17,18].

Table 1. Experimental test parameters necessary for model validation [17,18].

Tests Ventilation
Type

Airflow Rate
(ac/h)

Auxiliary
Heating

Heating
Set-Point (◦C)

A1 Natural - OFF -
A2 Forced 12.9 OFF -
A3 Forced 14.7 OFF -
A4 Natural - OFF -
B5 Natural - ON 12
B6 Natural - ON 20
B7 Forced 12.9 ON 18
C1 Forced 1.0 OFF -
C2 Forced 3.0 OFF -
C3 Forced 3.0 OFF -

2.2. Computational Model

The computer application EnergyPlus version 8.1 with graphical user interface De-
signBuilder version 3.4.041 was used to simulate the dynamic thermal behavior of the
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greenhouse model. This well-known computational tool was developed and applied mostly
for more traditional structures, such as residential, office, and commercial buildings [19–23].
However, it has been used successfully in simulating considerably different structures from
the aforementioned ones, such as data centers, outdoor telecommunications cabinets, or
greenhouses [19,24,25].

Figures 4 and 5 show the model of the greenhouse under study and its surrounding
structures in order to include the shadow effects on the greenhouse during certain periods
of the day.
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With the model’s geometry defined, the following step was to set the building ma-
terial’s characteristics in the model. As such, the extensive library of material templates
included with DesignBuilder was used for most of the greenhouse’s materials. For the
supporting wood structure, the template “Woods-fir, pine” was selected and modified to
have a thickness of 0.03 m. This template was applied to the “External walls”, “Pitched
roof (occupied)”, and “Internal partitions” sections of the model.

The floor of the greenhouse is made from the natural terrain found in the greenhouse’s
location, and so the template “Earth, common (0.5 m)” was chosen. Air infiltration was
considered in this model. Although no experimental data were available—as it is a small
greenhouse built with special care for research purposes and located in a place relatively
sheltered from the wind—an infiltration value of 0.2 ac/h (air chamber volume changes per
hour) was considered. The properties of the surrounding buildings are also relevant, and
so the “Project component block material” template was set for these structures. Table 2
summarizes the characteristics of the polyethylene cover, which were inputted manually,
with the thermal conductivity being sourced from the ISO 10456 standard and the other
necessary properties from Kempkes et al. [18].
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Table 2. Polyethylene cover properties used for the model.

Property Value

Thickness (mm) 0.215
Thermal conductivity (W/m·K) 0.330

Solar transmittance 0.800
Outdoor solar reflectance 0.170

Inside solar reflectance 0.170
Visible transmittance 0.850

Outdoor visible reflectance 0.120
Inside visible reflectance 0.120
Infra-red transmittance 0.000

Outdoor emissivity 0.700
Inside emissivity 0.700

A climatic data file containing the weather data of Covilhã was used [26] for simulation
purposes. This data file includes 2002 as the reference year. Furthermore, a “10 time steps
per hour” setting was adopted, and the outdoor ambient air temperature was used as
the criterion to determine which simulation day more closely matched the day of each
experimental test. Additional details of the greenhouse modeling can be found in [27].

3. Results

This section includes the comparison of the results of the computational tool with the
results obtained from a real greenhouse, followed by a detailed set of case studies.

3.1. Comparison with Experimental Data

Figure 6 shows the results of the simulation interval of 28 May at 17:00 to 29 May at
16:00 for the test A1, specifically the outdoor and indoor air temperatures of the greenhouse
for both the experimental and the simulated results.
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There was considered to be natural ventilation with an airflow of 0.2 ac/h without
auxiliary heating for the dynamic simulation of the greenhouse in test A1. The trend of the
indoor air temperature is similar in both numerical and experimental tests. However, the
numerical predictions are above the experimental values during the night period, showing
an air temperature difference between 7 ◦C and 10 ◦C. On the other hand, during the day
the temperature predicted for the indoor air of the greenhouse is almost always above the
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value measured experimentally, although the temperature of the outdoor air measured
at the site is higher than that considered for modeling purposes. It reached a maximum
difference of 6.5 ◦C early in the day.

The comparison results for the period between 29 May at 17:00 and 30 May at 16:00,
test B7, are given in Figure 7. This test includes an airflow rate of 12.9 ac/h and an auxiliary
air heater with a set-point of 18 ◦C. The comparison shows a similar trend of the numerical
and experimental indoor air temperature values. During the day, when the numerical
values of the outdoor air temperature are lower than the experimental ones, a similar
behavior is observed, but a temperature difference of about 10 ◦C is reached between
numerical and experimental results of the indoor air temperature. This trend arises from
the role of the airflow rate, which affects the indoor air temperature in both situations.
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Figure 7. Test B7 results for outdoor and indoor air temperatures.

Figure 8 shows comparison results for the period between 25 February at 17:00 and
26 February at 16:00, test C3. In this test, there was considered to be an airflow rate of
3 ac/h without auxiliary air heater. Again, a similar trend was found. The lower value of
the indoor air temperature is reached at about the same time, around 06:00. During the day,
the outdoor air temperature difference between the experimental and numerical models
reaches a maximum value of about 16 ◦C, resulting in lower values for the predictions of
the indoor air temperature by about 10 ◦C.
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Overall, the comparison results show that the computational tool can provide a
reasonable prediction of the indoor air temperature of the greenhouse. However, it must
pointed out that the climatic data files used in this simulation software could significantly
influence the quality of the results, as observed by other authors [28–30].

3.2. Case Studies

Taking advantage of the potential of the computational tool employed, a selection of
case studies was defined in order to understand and quantify the consequences for the
greenhouse thermal behavior resulting from the change of some individual characteristics
of its envelope. In all cases studies, the model equivalent to the experimental greenhouse is
always taken as the reference case.

3.2.1. Geometry and Orientation

The first group of case studies analyzes the thermal behavior of a greenhouse with
different overall dimensions while maintaining the same floor area and total height, when
applicable, as well as the impact of the greenhouse orientation.

Figure 9 shows the first case study, in which a greenhouse with a cross-sectional profile
of a quarter circle was adopted.
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Case study 2 implemented a cross-sectional profile of a semicircle, resulting in a
greenhouse with a considerably smaller internal volume, which can be seen in Figure 10.
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The third case study used a similar geometry to case study 2, where the geometry of
case study 2 was raised so that it had the same height at the highest point as the reference
greenhouse. Figure 11 shows the third case study configuration.
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The annual results of this group of case studies can be found in Figures 13 and 14,
which show, respectively, the indoor air temperature and relative humidity for the reference
greenhouse as well as for the four case studies. The outdoor air temperature is also shown
in both figures.
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The results show that the different configurations tested have a worse thermal perfor-
mance than the reference case. In the worst case, case study 3, the reduction in indoor air
temperature goes from around 5 ◦C in January to 8 ◦C in July. Changing the orientation
of the greenhouse—case study 4—makes it possible to slightly increase the indoor air
temperature by around 0.8 ◦C in January and reduce it in July by around 1 ◦C.

The annual air relative humidity results show a similar but symmetrical behavior
to that of the annual air temperature. The highest indoor air relative humidity of 64% is
obtained in case study 3, which is 11% above the reference case, in January. The mini-
mum air humidity value is obtained in August in the reference case with a value of 31%,
which is 8% below case study 3. It can be concluded that the reference case with the
orientation provided by case study 4 is the better choice in terms of greenhouse indoor air
temperature behavior.

3.2.2. Airflow Rate

The second group of case studies evaluates the effect of increasing the rate of the
renovation of the air inside the greenhouse by means of mechanical ventilation. The airflow
rate values simulated were 1 ac/h, 2 ac/h, 3 ac/h, 4 ac/h, and 5 ac/h for case studies 5
through 9, respectively. Figures 15 and 16 show the air temperature values and relative
humidity values, respectively, for the second group of case studies for the simulation day
of 15 January. The choice of this day is related to the fact that it is the most demanding in
terms of energy consumption to provide the interior heating of the greenhouse.

As shown in Figure 16, the relative humidity values show that the increase in airflow
rate resulted in a steady increase in relative humidity during the day as well as the night,
with an exception in the later hours of the night when the reference greenhouse’s relative
humidity was about 10% higher than any of the case studies as a result of a much lower
airflow rate. It should be mentioned that in a real greenhouse, the relative humidity of
the indoor air during the day would never be so low, due to the products breathing. The
results show that the variation of the airflow rate allows adjustment of the temperature
of the indoor air in the greenhouse, which, even on a winter day, can reach temperatures
close to 30 ◦C at certain times of the day. A more stable relative humidity is also achievable
by increasing the airflow rate.
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As expected, the results show that increasing the outdoor air input results in lower
temperatures during the day, reaching an air temperature difference of 6.5 ◦C between
the 0.2 ac/h case (reference case) and the 5 ac/h case (see Figure 15). The minimum air
temperature is obtained at 08:00 and varies between 2.2 ◦C and 2.9 ◦C, for the highest
and lowest airflow rate, respectively. During the night, there is a reduced impact of the
airflow rate on the variation of the temperature inside the greenhouse, due to the proximity
between the indoor and outdoor temperatures.

3.2.3. Greenhouse Cover

Two case studies were carried out to study the effect of the characteristics of the
greenhouse cover on its thermal performance. In case study 10, the greenhouse envelope is
made up of two polyethylene film separated by a 13 mm layer of air. In case study 11, three
polyethylene films are used instead of two but with the same thickness of air separation
between them.

The air temperatures inside the greenhouse for the different types of cover over the
year are given in Figure 17. The three-layer cover solution allows obtention of the highest
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temperature of the greenhouse’s indoor air throughout the year, surpassing the reference
case, which has a simple cover, by 3.5 ◦C in January and 7.3 ◦C in July. However, the
two-layer setup appears to be more cost-effective and does not excessively penalize the air
temperature reached, with a temperature reduction of just 1 ◦C in January.
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The relative air humidity results of case studies 10 and 11 are shown in Figure 18.
The two- and three-layer configurations are capable of significantly reducing the relative
humidity inside the greenhouse throughout the year, due to the higher air temperature
reached. These two case studies allow us to conclude that the quality of the greenhouse
cover also plays a relevant role in the thermal conditions reached inside the greenhouse.
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3.2.4. Outer-Facing Side Cover Emissivity

The fourth group of case studies focuses on the emissivity value of the outer-facing
side of the greenhouse cover. Case studies 12 through 15 change this parameter to 0.1, 0.3,
0.5, and 0.9, respectively. Figures 19 and 20 contain the temperature and relative humidity
results for these case studies.
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As expected, the difference of relative humidity inside the greenhouse between the
reference case and the lowest emissivity case decreased is 7.4% in January and 5.0% in July,
due to the correlation between air temperature and relative air humidity. See Figure 20 for
the variation of relative humidity during the year.

This group of case studies shows that by decreasing the emissivity value on the
outside of the polyethylene cover, there is an increase in the indoor air temperature of the
greenhouse, reaching 2.9 ◦C in January and 5 ◦C in July for an emissivity value of 0.1 in
relation to the reference case. This indoor air temperature increase is due to the reduction
in infrared radiation escaping from the interior through the cover.
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3.2.5. North-Facing Wall Material and Thickness

In order to evaluate the role of the thermal mass in the thermal performance of
the greenhouse, solid granite rock walls with 40 cm, 60 cm, and 100 cm thicknesses were
considered for the north-facing wall. The “grounded” boundary condition was also applied,
meaning the outer edge of the granite is in contact with ground terrain/soil instead of
outdoor ambient air.

The results of indoor air temperatures of the greenhouse for these case studies are
shown in Figures 21 and 22, respectively, for the middle days of January and July.
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Figure 22. Indoor air temperature on 15 July for different wall thicknesses.

The July values show that the wall thickness affects the obtained air temperatures,
with the minimum value, at 05:00, increasing from 21.4 ◦C to 23.7 ◦C when the wall
thickness increases from 40 to 100 cm. At 14:00, the maximum indoor air temperature
of the greenhouse shows a difference of 2 ◦C between the maximum and minimum wall
thicknesses but, in any case, below the temperature of 56.7 ◦C of the reference case at the
same time. In January, the thermal mass of the granite wall allows the minimum indoor air
temperature of the greenhouse, reached at 08:00, to be 3.6 ◦C above the reference greenhouse
and 6.3 ◦C above the outdoor temperature regardless of the thickness considered for the
wall. The maximum indoor air temperature reached at 15:00 is similar to the reference
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greenhouse’s value and is also unaffected by the thickness of the granite wall, remaining at
23.7 ◦C above the outdoor ambient temperature at that time.

Overall, the air temperature values show the ability of the high thermal inertia
of the large granite wall to act as a heat reservoir that releases heat during the colder
periods and absorbs heating during the hotter ones. However, it also shows that the
wall thickness should be balanced with a careful airflow rate to limit the maximum air
temperatures reached.

3.2.6. Geographical Location

The final group of case studies consists in simulating the reference greenhouse in
various locations of the globe so as to assess its performance and limitations in different
climates. Case studies 19 to 21 have the reference greenhouse set in Lisbon, Moscow,
Ostersund, and Riyadh, respectively. Figures 23 and 24 show the results of these case
studies for the day of 15 January, and Figures 25 and 26 contain the results for the day of
15 July.

As shown in Figure 24, the relative humidity values for 15 January demonstrate that
Moscow and Riyadh have a more constant relative humidity throughout the day, although
reaching relatively high and low values, respectively. Ostersund and Lisbon have a wider
range of values, with Lisbon having bigger oscillations but not surpassing the highest and
lowest values of all case studies.
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The temperature results in January show that the greenhouse mostly requires heat
extraction during the day when located in Lisbon and Riyadh in order to achieve an
adequate temperature for operation. When located in Moscow and Ostersund, constant
auxiliary heating is necessary to achieve an appropriate temperature in the greenhouse.
Thus, this greenhouse is better suited for warmer climates if winter operation is required.

The air temperature results for 15 July shown in Figure 25 allow us to conclude that
the greenhouse reaches very high temperatures in Lisbon and, especially, Riyadh, meaning
that constant heat extraction will be necessary to achieve adequate temperature levels for
any kind of crop development. Moscow’s and Ostersund’s temperature values show that
the greenhouse is very suitable for these locations, as it able to maintain a much more
constant and adequate temperature throughout the day.

As shown in Figure 26, the relative humidity values for case studies 19 to 21 show the
greenhouse, when located in Riyadh, having a very constant and low relative humidity
level, followed by Ostersund, where a larger range but average relative humidity values
are observed, and, lastly, with Lisbon and Moscow showing the largest oscillation as the
day progresses. This set of case studies shows that the reference greenhouse’s capabilities
depend not only on the location but also on the season. The reference greenhouse’s low
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insulation mean that additional energy sources will be necessary to provide more adequate
ambient conditions, particularly if the greenhouse is to be operated during the entire year.

3.2.7. Greenhouse Energy Consumption

In this last case study, an assessment of the energy consumption of the greenhouse
throughout the year was carried out after the introduction of the improvements recom-
mended in the previous subsections. Specifically, the greenhouse was reoriented by 90◦; a
double cover with 13 mm air layer was used; the emissivity of the inside cover was set to
0.3; a granite wall of 40 cm thickness on the north wall was included; and a variable airflow
rate, according to the schedule indicated in Figure 27, with a maximum value of 5 ac/h
was used. For the greenhouse indoor thermal conditions, a set-point of 21 ◦C was used,
suitable for the production of the most consumed vegetables [31].
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Additionally, for comparative purposes, a variable airflow rate schedule and temper-
ature set-point of 21 ◦C were also used in the reference greenhouse. Figure 28 illustrates
the results for two locations with very different characteristics: Lisbon and Ostersund.
While a greenhouse located in Ostersund requires an energy consumption of 691.5 kWh in
January, the same greenhouse located in Lisbon requires only 162.2 kWh to ensure the same
indoor thermal conditions. The result is about three times less. Regarding the reference
greenhouse, the changes introduced allowed the energy consumption for the month of
January to be reduced by 57% in Lisbon and 43% in Ostersund. Even in July, it was possible
to reduce the average energy consumption in Ostersund from 83.4 kWh to 28.9 kWh.
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4. Conclusions

The results obtained from the simulation model developed in this paper have shown
the effectiveness of EnergyPlus and DesignBuilder in assessing the thermal behavior of a
greenhouse, as the air temperature inside the greenhouse followed a similar overall pattern
when subject to approximately the same outside weather conditions. The case studies
showed that the reference case configuration presents better thermal behavior for the same
floor area. In the worst case, case study 3, the reduction in indoor air temperature goes
from around 5 ◦C in January to 8 ◦C in July. Additionally, the east–west orientation allows
a slight increase of the indoor air temperature by around 0.8 ◦C in January and reduction
in July by around 1 ◦C. The number of greenhouse air changes per hour affects the indoor
thermal conditions. The results for 15 January show that increasing the outdoor air input
results in lower temperatures during the day, reaching an air temperature difference of
6.5 ◦C between the 0.2 ac/h case (reference case) and the 5 ac/h case. During the night,
there is a reduced impact of the airflow rate on the variation of the temperature inside the
greenhouse, due to the proximity between the indoor and outdoor temperatures. Better
insulation, through lower emissivity covering material and usage of multiple layers of
covering material, is capable of greatly increasing the greenhouse’s solar energy absorption,
resulting in much lower heating demands in colder regions and during the winter season.
A three-layer cover solution of polyethylene film with an air gap of 13 mm allows obtaining
the highest temperature of the greenhouse indoor air throughout the year, surpassing the
reference case with a simple cover by 3.5 ◦C in January and 7.3 ◦C in July. The indoor air
temperature of the greenhouse increases as well, reaching 2.9 ◦C in January and 5 ◦C in
July, when the emissivity of the cover is reduced to 0.1 in relation to the reference case. The
usage of a granite north wall can result in a considerably more constant temperature inside
the greenhouse, due to its high thermal mass, although the sizing of this wall should be
balanced with a careful airflow rate to limit the maximum air temperatures reached. In
January, the minimum indoor air temperature of the greenhouse, reached at 08:00, is 3.6 ◦C
above the reference greenhouse and 6.3 ◦C above the outdoor temperature regardless of the
thickness considered for the wall. However, the July values show that the wall thickness
affects the minimum and maximum values of the indoor air temperatures by about 2 ◦C
when the wall thickness increases from 40 to 100 cm. If the aforementioned changes are
introduced together in the greenhouse, the results for two locations with very different
characteristics, Lisbon and Ostersund, show that a greenhouse located in Lisbon requires
about three times less energy consumption to achieve the same indoor thermal conditions
in January. Furthermore, the changes introduced allowed the energy consumption for the
month of January to be reduced by 57% in Lisbon and by 43% in Ostersund with respect to
the reference greenhouse.
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Varga, J.; et al. Good Agricultural Practices for greenhouse vegetable produtction in the South East European countries—Principles
for sustainable intensification of smallholder farms. FAO Plant Prod. Prot. Pap. 2017, 230, 271–413.

http://doi.org/10.1016/j.enbuild.2012.01.033

	Introduction 
	Materials and Methods 
	Experimental Setup 
	Computational Model 

	Results 
	Comparison with Experimental Data 
	Case Studies 
	Geometry and Orientation 
	Airflow Rate 
	Greenhouse Cover 
	Outer-Facing Side Cover Emissivity 
	North-Facing Wall Material and Thickness 
	Geographical Location 
	Greenhouse Energy Consumption 


	Conclusions 
	References



