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Resumo

A tese presente tem por objetivo estudar e comparar três modelos com energia escura fantasma,
onde cada um induz um cenário cosmológico extremo de extinção do Universo. Escolhemos
identificar esses três modelos como: modelo A, modelo B e modelo C, enquanto as extinções
cósmicas correspondentes são conhecidas como Big Rip (BR), Litlle Rip (LR) e Little Sibling of the
Big Rip (LS), respetivamente. Encaramos o BR como uma verdadeira singularidade, uma vez que
esta acontece ao fim de um intervalo de tempo cósmico finito, enquanto identificamos o LR e
LS como acontecimentos abruptos, porque estes ocorrem ao fim de intervalo de tempo cósmico
que tende para infinito. Contudo, é reconhecido que em tais acontecimentos abruptos, mais
cedo ou mais tarde, todas as estruturas ligadas serão inevitavelmente destruídas e, portanto, o
Universo iria confrontar‐se com uma destruição total num intervalo de tempo cósmico finito.

Numa primeira abordagem ao assunto da tese, considerámos a fenomenologia das soluções de
fundo e as perturbações de primeira ordem cosmológicas para os modelos de energia escura
fantasma acima mencionados. Adicionalmente, usámos o largamente conhecido modelo ΛCDM
como padrão em relação ao qual se estimam os desvios dos modelos considerados. Uma vez
que o conteúdo de energia escura está presente, evitamos o surgimento das instabilidades as‐
sociadas através da decomposição da pressão da energia escura nas contribuições adiabáticas e
não adiabáticas. Calculamos, através de métodos numéricos, a evolução das quantidades per‐
turbadas para um Universo contendo radiação, matéria e energia escura. Estes cálculos são
feitos assumindo um ponto de partida bem no interior da era dominada pela radiação até ao
futuro longínquo. Subsequentemente, prevemos o espetro de potência atual e a taxa de cresci‐
mento fσ8

para cada modelo. Tais quantidades observáveis são, então, comparadas com os
dados observacionais correntes de modo a encontrar indícios que nos permitiriam distinguir os
diversos modelos na época atual. Por forma a completar o estudo, impusemos constrangimentos
observacionais aos modelos de energia escura fantasma com o ΛCDM para obter um conjunto
consistente de parâmetros. Por um lado, descobrimos que embora o ΛCDM se ajuste melhor às
observações, os modelos aqui considerados seguem de muito perto esse bom ajuste do modelo
padrão. Por outro lado, descobrimos que estes modelo genuínos de energia escura fantasma in‐
duzem uma inversão de sinal do potencial gravítico para fatores de escala muito grandes. Este
facto pode ser interpretado como a força da gravidade se tornar efetivamente repulsiva num
futuro distante. Finalmente, estudámos os efeitos de variar a velocidade efetiva do som da
energia escura nas perturbações.

Numa segunda abordagem, partimos do princípio que é expectável que os efeitos quânticos
se tornem importantes quando o Universo se aproxima de uma singularidade cósmica futura,
o que se afigura o destino certo nos modelos considerados anteriormente. Infelizmente, não
dispomos ainda de uma teoria quântica da gravidade consistente para completar a nossa visão
sobre os acontecimentos mais dramáticos no fim da vida do Universo. É esperado que com a
ajuda de uma teoria tão fundamental, como a teoria quântica do campo gravítico, os cenários
singulares previstos na Relatividade Geral sejam naturalmente evitados. Assim, abordámos o
problema da remoção das singularidades cosmológicas adotando uma abordagem quântica. A
quantização é implementada através da equação de Wheeler‐DeWitt e a imposição da condição
fronteira de DeWitt, isto é, considerando que a função de onda se anula perto da singularidade.
Analisámos cada modelo considerando várias ordens dos fatores na construção dos observáveis
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na equação de Wheeler‐DeWitt, resolvendo‐a para vários conteúdos da energia escura dados por
(i), um fluido perfeito, e (ii), um campo escalar. Adicionalmente, considerámos estes modelos
no contexto da teoria de gravidade modificada Eddington‐inspired‐Born‐Infeld e aplicámos a
abordagem quântica, acima descrita, para remover as singularidades clássicas.

Deste modo, esta tese é dividida em duas partes principais, uma clássica, onde descrevemos
as soluções de fundo e as perturbações desse fundo para os três modelos genuínos de energia
escura fantasma e, uma segunda parte onde estudamos a remoção quântica das singularidades
resultantes destes modelos.

Dado que a UBI permite que se apresente uma tese que inclua uma introdução, um conjunto
de capítulos baseados em trabalhos publicados durante o Doutoramento e as conclusões, nós
seguimos principalmente esse formato.

Palavras‐chave

Universo tardio, energia escura, teoria da gravitação modificada, teorias de Palatini, pertur‐
bações cosmológicas, cosmologia quântica, dados de observação.
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Abstract

The present thesis is aimed to disclose three genuine phantom Dark Energy (DE) models where
each of them induce a particular cosmic doomsday. We have named these models as model
A, model B and model C, while the corresponding induced cosmic events are known as Big Rip
(BR), Little Rip (LR) and Little Sibling of the Big Rip (LS), respectively. We regard a BR as a
true singularity since it takes place at a finite cosmic time, while we have coined LR and LS as
abrupt events, since they occur at infinite cosmic time. Nevertheless, it is well known that in
such abrupt events sooner or later all the bound structures would unavoidably torn away, and
therefore, the Universe would face a total destruction at a finite cosmic time.

On the one side, we have addressed the background phenomenology and the first order cosmo‐
logical perturbations for the phantom DE models above mentioned. In addition, we have made
use of the widely known ΛCDM model as a guideline to measure deviations among the models.
Given that a DE content is present, we avoid the associated instabilities at the perturbative
level by applying the method of DE pressure decomposition in its adiabatic and non‐adiabatic
contributions. We compute, by means of numerical methods, the evolution of the perturbed
quantities for a Universe filled with radiation, matter and DE. Such computations are carried
from well inside the radiation dominated era to the far future. Then, we predict the current
matter power spectrum and fσ8

growth rate for each model. The latter mentioned observable
quantity is compared with the current observational data in order to find footprints that could
allow us to distinguish between the mentioned models. For the sake of completeness, we have
fitted observationally these phantom DE models together with ΛCDM in order to constrain the
parameters characterising the models. On the one hand, we have found that despite that ΛCDM
still gives the best fit, it is closely followed by the models studied in the present thesis. On
the other hand, we have found that these genuine phantom models induce a sign switch of the
gravitational potential at very large scale factors. This fact could be understood as gravity be‐
coming effectively repulsive in the far future. Finally, we have studied the effects of DE speed
of sound on the perturbations.

On the other side, it is expected that quantum effects will become important when the Universe
approaches a future cosmic singularity, which is the case of those events addressed in the present
thesis. Unfortunately, we have not yet a consistent theory of quantum gravity to deal with the
most dramatic effects that would take place at the end of the Universe. It is expected that such
a fundamental quantum theory of gravity will naturally avoid those singularities present in the
classical theory of General Relativity (GR). We have rather addressed the issue of cosmological
singularity avoidance within the context of a quantum approach. The quantisation is carried via
Wheeler‐DeWitt (WDW) equation and imposing the DeWitt (DW) boundary condition, i.e. the
wave function vanishes close to the singularity. We have analysed each model by considering
different factor orderings and solving the WDW equation for a DE content given by (i), a perfect
fluid, and (ii), a scalar field. In addition, we have addressed these phantom models in the
context of the Eddington‐inspired‐Born‐Infeld (EiBI) modified theory of gravity and applied the
same quantisation methods above mentioned to analyse the avoidance of singularities from a
quantum point of view.

Therefore, this thesis is divided in two main parts, a classical part, where we present the back‐
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ground and perturbations of three genuine phantom models, and a second part, where we ad‐
dress the avoidance of singularities induced by such models from a quantum point of view.

Given that UBI allows to present the thesis as an introduction, a set of chapters based on the
published works during the PhD and the conclusions, we have followed mainly this format.

Keywords

The late‐universe, dark energy, modified gravity, Palatini theories, cosmological perturbations,
quantum Cosmology, observational data.
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Chapter 1. Introduction

1

Introduction

All my life through, the new sights of Nature made me rejoice like a child
– Marie Curie

1.1 The classical Universe

Cosmology has experimented a significant progress since its boost with Einstein’s GR in 1915.
The first evidences that endorse the reliability of GR, for instance, explained the anomaly of the
mercury’s perihelium precession and the apparent position of stars during a solar eclipse [1].
A century later, the gravitational waves predicted by GR were measured for the first time as a
result of an extraordinary collaboration work, which probed the shortest distance ever measured
[2]. Certainly, the technological development of the last century has played an important role
on the improvement of the observational aspect of Cosmology. During this time, some of the
hiding features of the current Universe were revealed. Let us mention briefly those that have
changed completely the initial knowledge we had of the cosmos.

1.1.1 A brief history of cosmology: from the first revelations to the current
knowledge

In 1929 Hubble computed the current expansion rate of the Universe by using the redshift of
the Cepheid star cluster [3]. He also computed the redshift of the star‐light coming from other
astronomical objects, identifying them as galaxies and regarding the milky way as just another
common galaxy in the vast Universe [4]. The electromagnetic Doppler effect was the clearest
evidence of a dynamical Universe rather than a static one, contrary to the most widely accepted
idea on the scientific community including Einstein believes. In fact, the cosmological constant
introduced by Einstein was motivated to counteract the natural gravitational attraction of stan‐
dard matter, i.e. matter that fulfill the strong energy condition ρ + p > 0, ρ + 3p > 0, where
ρ stands for the energy density and p for the pressure. In 1922 the soviet scientist Alexan‐
der Friedmann solved the Einstein equations for a homogeneous and isotropic Universe filled
with standard matter pointing out an expanding Universe for open and flat spatial curvature
while for closed geometry the Universe is finite and recollapses after reaching a maximum size.
Meanwhile, the Belgium scientist Georges Lemaître was already working on the theory of “the
primeval atom”, where the notion of a very hot and dense early Universe was introduced for the
first time [5]. This idea is considered the precursor of the Big Bang theory. The theory continued
along the path laid by Friedmann while it was observationally supported by the existence of the
Cosmic Microwave Background (CMB) radiation, first detected by Penzias and Wilson in 1965 [6].
Such radiation corresponds to a black body emission at 2.625 K at present, while small fluctua‐
tions reaching up to ten thousandth ±10−3 K. In 1933 Fritz Zwicky proposed, for the first time,
the existence of Dark Matter (DM) between galaxies [7], however, the clearest evidences were
not found till the late 70’s when Vera Rubin observed the rapid rotation curves of galaxies [8].
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Subsequent observations, based on gravitational lensing, pointed to the presence of an exotic
matter that do not interacts with radiation as usual baryonic matter does, altough it contributes
to the universal energy budget as ordinary matter [7–9]. Finally, in 1998, observations of su‐
pernova type Ia pointed out that the Universe is currently experiencing a phase of accelerated
expansion [10–12], corroborated by further observations as the Wilkinson Microwave Anisotropy
Prove (WMAP) and Baryon Acoustic Oscillations (BAO) [13–17]. The energy source responsible for
such speed up is still unknown, which is the reason for coining it DE. Indeed, it represents roughly
70% of the total energy budget of the Universe. The remaining 30% corresponds mainly to the
contribution of matter wherein only a tiny 5% corresponds to baryonic matter. The contribution
of radiation could be neglected at present since it corresponds to an insignificant 0.008% [15].

According to what was just exposed above, in the most optimistic perspective, we barely know
from a fundamental point of view 5% of the total composition of the Universe. However, it
can be said that we are lucky for living in particular conditions, where the horizon covers large
distances giving us the possibility to “watch” the evolution of the Universe from the distant past
to the present epoch. The current expansion rate is set to be roughly H0 ∼ 70 Km Mpc−1s−1.
This value establishes, at the present time, the size of the observable part of the Universe as
a ball with a 95 giga light years diameter, holding inside up to the last scattering surface and
further. This value is crucial, at first, because the observations of very distant galaxies give us
a photography of the past scenarios, but secondly, because a detailed view of the CMB grant
us the opportunity to draw a chronology of the different stages faced by the Universe from the
very early epochs.

The age of the Universe is roughly 14 Gyr. The radiation dominated epoch finished after the first
0.3 Myr years and, since then, after the decoupling the thermal radiation started to travel freely
with almost no interaction with matter. The matter dominated epoch covers almost the rest of
the Universe existence until recently, where a new stage has started with the DE domination
epoch, characterised by a late‐time acceleration. In addition, considering small fluctuations in
the CMB radiation and applying the Galilean principle, we can assume the Universe as isotropic
and homogeneous on large scale. In fact, the Universe becomes effectively homogeneous at
scales larger than 100 Mpc [18].

1.1.2 The fate of the Universe: future cosmic events

Our understanding of the Universe has improved significantly, but in turn, each discovery brings
more questions to be addressed. Probably, solving the mysterious dark side of the Universe (the
origins of DE and DM) has become one of the most important open problems in modern cosmology
and in theoretical physics in general. While the fundamental nature of radiation and baryonic
matter is well known, the ”hidden sides” of DM and DE are still open questions.

How DE works is not clear. Fortunately, we are not blind at this aspect; it is possible to infer
its behaviour by analysing the history of the expansion of the Universe. Some theories consider
DE as an hypothetical fluid with negative pressure called “quintessence” [19–21]. The Equation
of State (EoS) parameter of DE (the ratio between the pressure and the energy density of the
DE fluid), wd, could be constant or time dependent but it must be smaller than −1/3 in order
to induce acceleration. Assuming an EoS parameter constant and equal to −1 is equivalent to
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incorporate into the gravitational action the widely known cosmological constant. Surprisingly,
such paradigm, known as ΛCDM (which incorporate as well the DM contribution) is the model
that better fits the observations [13–15, 18]. However, from a theoretical point of view it has
some problems as: (i) the so called cosmological constant problem; the mismatch between the
large vacuum energy density predicted by particle physics in comparison with the observed one.
Such a difference reaches up to 120 orders of magnitude and it can be considered nowadays as
the worst prediction ever made in physics. (ii), the coincidence problem; why DM and DE are
almost of the same order and are currently dominating the expansion of the Universe.

An interesting way to avoid the aforementioned hurdle is by invoking the so called “k‐essence”
model, which consist in incorporating a non‐canonical correction to the kinetic term of the
scalar field [22–26]. This produces a scenario where the EoS parameter could stay below −1.
Therefore, the null energy condition, 0 ≤ ρ+p, would not be satisfied. The scenarios described
by such an energy condition are known as phantom models. Surprisingly, they represent an
excellent option among the paradigms deviating from the widely analysed ΛCDM model since
the best fits of the EoS parameter of DE give values close but less to −1 [13–15, 18].

The discovery of an accelerated Universe has pointed out the possibility of a future doomsday
not characterised by a gravitational collapse but by a Universal Rip. The acceleration is so
strong that the Universe could face a cosmological singularity in the far future, i.e. some of
the cosmological parameters, as the energy density, for instance, are expected to blow up. The
Big Bang is probably the most well known cosmological singularity, it takes place in the early
Universe where the Hubble parameter and its cosmic time derivatives blow up when the size of
the Universe is too small in the initial stage of its evolution. With the advent of DE, the future
expansion of the Universe could be different from a Big Crunch. For example, let us addreess
first the asymptotic evolution of one of the hottest model in the market, ΛCDM. On that case,
the curvature of Universe would reach a constant non vanishing value in the future. While
getting colder and colder when heading to such an asymptotic state [27]. Within this scenario,
despite the fact that objects are progressively far away from each other, the Universe would be
asymptotically de Sitter (dS). Consequently, hypothetical future observations will detect a CMB
radiation corresponding to a black body emission below the current temperature. In addition,
their comoving Hubble horizon (1/aH) will be smaller than the horizon holding us at present.
Note that this is the predicted scenario as long as the the DE EoS parameter fulfils wd = −1

everywhere and at any time. However, the smallest variation on the EoS of DE from that value
can induce a wide range of very different types of cosmological singularities or abrupt events.
Within this context, from now on we will call such an event a “true curvature singularity”, when
the event happens at a finite cosmic time from the present. On the other hand, we will call it
an “abrupt event”, when such an event happens at an infinite cosmic time.

Despite the fact that, in an abrupt event, the singularity occurs at an infinite cosmic time, all the
bound structures are unavoidably destroyed at a finite cosmic time [28]. As a simple example,
one could imagine first our galaxy being teared apart from the local group, then, at some point,
the dissociation of the solar system would follow and at the end the decomposition of atoms
would take place. The following is a list of some well known curvature future singularities and
abrupt eventsi:

iIt is well known that in such kind of abrupt events, quantum effects are expected to become important
and, therefore, it will be necessary to implement a well motivated quantum treatment. We will address
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• Big Rip (BR): In this kind of singularity the scale factor, the Hubble rate and its higher orders
cosmic time derivatives blow up at a finite cosmic time [28–35]. For example, in these
models, an effective DE EoS constant parameter below w < −1 leads the Universe towards
this kind of doomsday. The name Big Rip was first coined by Caldwell in [28] and it has
been extensively studied in [36–40] where several authors have analysed differents setups
of DE (See [36–38, 40, 41] and the extensive list of references therein). The quantum realm
for this singularity was first addressed in [42] and later on studied in detail in [43, 44].

• Big Freeze (BF): In this type of singularity the Hubble rate and its cosmic time derivatives
diverge not only at a finite cosmic time but at a finite scale factor as well. Indeed, the
energy density and the pressure blow up at such an event. The model that induces this
kind of singularity was first suggested in [45, 46] where the DE component is driven by
a phantom Generalised Chaplying Gas (GCG). In [47] the authors study the casuistic and
analyse the different final abrupt events depending on the parameters choice. The name
of BF was coined in the work [46]. In ref [48], the authors address the corresponding
quantum analysis and singularity avoidance.

• Sudden singularity (SS): In this kind of singularity the scale factor and the Hubble rate
remain finite while the higher cosmic time derivatives of the Hubble rate diverge at finite
cosmic time. It was obtained, for example, in the late time acceleration assisted by a
tachyonic scalar field [49] or in interacting models in [50]. The DE component can be
described by standard type GCG, as in the case of the previously mentioned BF singularity.
However, we can have two scenarios depending on the nature of the matter considered.
On the one hand, and in in contrast with the BF singularity, if a phantom type matter
is present it induces a past singularity also known as big démarrage [48, 51] where the
acceleration evolve very fast from negative to positive values. On the other hand, if
a standard type matter is considered, it leads the Universe to a future singularity also
known as a big brake because the deceleration blows up, i.e. the Universe moves from a
positive accelerated stage to an infinitely negative acceleration [49, 52]. In fact, it was
studied before BF singularity [53–55] while quantum studies were addressed first in [56]
and later on in [48, 51, 57].

• Type IV (IV): In this type of singularity, the scale factor, the Hubble rate and its first cosmic
time derivative remain constant while the higher cosmic time derivatives of the Hubble
rate blow up at finite cosmic time [47, 58, 59]. It was first analysed in [47] where the
authors analyse a particular model that, depending upon the value of the parameters,
give rise to a rich variety of future singularities, including the previously aforementioned
singularities. Moreover, for a type IV to occur in a GCG it is necessary to restrict the
value of a particular parameter [60] in such a way that despite the curvature is finite,
its derivatives might not be well defined (See [61] and the extensive list of references
therein). This class of singularity is also present in modified theories of gravity [62]. In
addition, the quantum realm for this particular cosmic event was analysed in [63] where
the authors address the quantisation within the framework of the WDW equation.

• Little Rip (LR): In this abrupt event the scale factor, the Hubble rate and its cosmic time
derivatives blow up at an infinite cosmic time. It could be understood as the soft version
of the BR since it is reached at an infinite cosmic time. Despite the this abrupt event takes
place at an infinite cosmic time, all the bound structures will be unavoidably ripped apart

this issue in detail later on.
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Singularity t a H Ḣ Ḧ V (ϕ) Tip Kro
BR tbr ∞ ∞ ∞ ∞ eαϕ S S
BF tbf abf ∞ ∞ ∞ ϕγ1 W S
SS tss ass Hss ∞ ∞ ϕγ2 W W
IV tiv aiv Hiv Ḣiv ∞ ϕγ3 W W
LR ∞ ∞ ∞ ∞ ∞ ϕ4 W W
LS ∞ ∞ ∞ Ḣls 0 ϕ2 W W

Table 1.1: Table with the most well known DE singularities and their diverging parameters. The first column
denotes the singularities or abrupt events. The second set of columns denotes the diverging parameters
where t, a, H, Ḣ and Ḧ are, respectively; the cosmic time, the scale factor, the Hubble rate and the first
and second cosmic time derivatives of the Hubble rate. The third column corresponds to the expression
for the dominant term of the potential when mapping the fluid into a phantom scalar field nearby the
singularity. Note that the factor α is positive. The γ factors are real numbers with the following conditions:
γ1, γ2 < −2, and γ3 ̸= 2(p − 1)/(p + 1) where p is an integer. The last couple of columns point out the
classification depending upon Tipler (Tip) or Krolak (Kro) criteria, where S stands for strong and W for
weak.

at a finite cosmic time. It was first discovered in [64] as a result of applying quadratic
corrections into the Lagrangian and later on rediscovered in a brane‐world model [65], and
applied as a DE model in [66] where the name of “Little Rip” was coined by Frampton et
al. Subsequently, it was studied in [67] where the authors reproduce a LR by considering
bulk viscosity and in [68] as a modified f(R) theory of gravity.

• Little Sibling of the Big Rip (LSBR): In this class of abrupt event the scale factor and the
Hubble parameter blow up at an infinite cosmic time while the first cosmic time deriva‐
tive of the Hubble rate remains constant. It is even smoother than the above mentioned
LR abrupt event. It was first introduced in [69] where the authors include a detailed
study about the fate of different bound structures. Finally, the quantum avoidance was
addressed in [70, 71].

Aside from the above mentioned singularities and abrupt events, the so called w singularities
and Q singularities have been found. In the former case, the EoS parameter blows up at a finite
cosmic time and scale factor while the Hubble rate vanishes and its cosmic time derivative stands
finite. It is worth to mention that this class of events could be found as well on the so called Type
IV singularity. The second branch of singularities are only found in models where different kind of
components interact with each other, where in addition, the resulting interacting term, usually
denoted by Q, blows up. As has been pointed out in [61], within both subset of singularities
aside from the singularities present at the background level, instabilities could appear at the
perturbative level leading to a dramatic growth of DE perturbations or giving rise to a speed of
sound above the speed of light.

Looking at the above classification the reader could figure out a hierarchy which would be based
on the number of the diverging parameters and more precisely, on the order of the diverging
cosmic time derivative of the Hubble rate. In this sense, the BR is at the top while a type IV
singularity stands at the bottom. In the case of the LR and LSBR abrupt events, it is conceiv‐
able that as they occur at an infinite cosmic time, they are softer than those true singularities
happening at a finite cosmic time. The third column of table 1.1 shows the dominant term of
the potential when mapping the fluid into a phantom scalar field. First of all, we remind that
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singularities like a BF, SS and type IV, can be achieved with a GCG model where the induced
singularity depends on the particular value of the chosen parameters [60]. As can be seen, the
effective potential for a BR singularity corresponds to an exponential potential while the rest of
the singularities and abrupt events are mapped to a power law potential, where the latter, char‐
acterises the class of singularity. At first glance, it is clear that once again, the BR singularity
is the stronger singularity, however, the rest of the singularities and abrupt events do not show
the same hierarchy visualised in the examples before. Nonetheless, there is not a particular way
to classify such cosmological singularities [46, 47, 61, 72–74]. While we have established the
diverging parameters as the basis for classifying those doomsdays, in the literature one could
find often such events classified as “strong” or “weak” depending upon the Tipler or Krolak
criteria [75, 76]. The strength of a singularity is determined by taking into account the tidal
forces on a volume element falling on a geodesic near the singularity. On the one hand, Tipler
criteria establishes that a singularity is strong if the volume element vanishes when the singu‐
larity occurs [75]. Therefore, only the BR singularity is strong while the rest of singularities and
abrupt events are considered weak. On the other hand, Krolak criteria says that a singularity
is strong if the proper time derivative of the volume element is negative when approaching the
singularity [76]. A detailed analysis (done, for example, in [61, 77, 78]) shows that not only
BR but BF type singularities are regarded as strong as well. The mismatch is due to the fact
that the Tipler criteria are more restrictive since it is applied to the volume element. After all,
both classifications points out that the BR drives the Universe to the most dramatic doomsday
while the other cosmological events are weaker (with the exception of the BF depending on the
chosen criteria). We consider that a classification of the cosmological events depending on the
divergence of the Hubble parameter could be more intuitive.

It is worthy to point out some of the interesting fact about the phantom nature of those models
inducing abrupt events. On the one hand, singularities as BF, SS and Type IV can be achieved
with phantom or standard models [46–48]. On the other hand, the BR, LR and LSBR are genuinely
phantom, i.e. they only occur in models where phantommatter is present. There is an exception
in the case of the LSBR where it was found in a model with a three‐form field [71, 79].

1.1.3 Describing the current speed up: parametric models

A further approach to explain the late‐time acceleration consists on the so called parametric
models [80–83], where the relevant cosmological quantities are parametrised through a dynami‐
cal variable around a particular value, usually, the present time. They were designed to analyse
the dynamics at low orders of some of the most relevant cosmological quantities. As it is the
case of the DE EoS parameter, where the variation of the cosmological constant is questioned.
For instance, on the well known Chevallier‐Polarski‐Linder (CPL) model the DE EoS parameter is
parametrised as an arbitrary function of the scale factor (or equivalently the redshift) [80, 81].
In the same way, other models have been suggested with more intricate functions as it is the
case of the models introduced in [84, 85] or using logarithmic and power law functions as in the
works [86, 87].

Parametric models have been widely studied given their viability to describe DE phenomenol‐
ogy. The new phase entered by the Universe is understood as a recent phenomena where the
parametrisation is usually expanded around the vicinity of the present time (as we mentioned
before) and often with a standard and a phantom fluid. Those models contain a set of param‐
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eters that should be fitted to observational data. Moreover, different parametrisations could
return very similar footprints resulting in the impossibility to distinguish models beyond the
statistics, which often, could lead us to ambiguities due to eventual coincidences. In this sense,
it is worth to mention those parametrisations dealing with future cosmic singularities [85, 88–
91] where an extended parametrisation is carried such that it encompasses a wide span in time
ranging from the future singularity to the present and matching the past edge with the matter
domination era. It is expected that those models which are more restrictive when fitting them
to data to be in turn more reliable since they avoid possible numeric coincidences on fitting.
Nevertheless, this thesis does not focus on parametrised models since they go beyond the scope
of the present work.

1.1.4 From background to perturbations

Although ΛCDM is the model that better fits the observations there is no reason to exclude
other models that could describe suitably the current speed up. Given that the observations
slightly support a Universe driven by a phantom type of DE rather than a standard one, we felt
encouraged to study in deep those pure phantom paradigms. So the motivation of this work
lays on focusing on genuine phantom models, studying in detail the induced doomsdays (the BR
singularity and the LR and LSBR abrupt events). These phantom models could be understood as
deviations of the ΛCDM paradigm and therefore, good candidates to describe appropriately the
late time acceleration.

A useful tool, to check the validity of the models, consists on the computation of the pertur‐
bations. The perturbations can be visualised as the small fluctuations on the CMB temperature
that grow as the Universe expands. The hottest regions evolve leading to large concentrations
of matter, as well as galaxy clusters, while the coldest regions end up in vast voids.

Following the Helmholtz theorem, the space‐time perturbations can be decomposed into scalar,
vector, and tensor perturbations where in total, there are ten perturbations (four scalars, two‐
component purelly rotational two vector fields, and a two‐component traceless spatially sym‐
metric tensor field). Gauge fixing can significantly simplify the problem by removing four de‐
grees of freedom, where each one is generated by the coordinate transformations in the chosen
basis. In the perturbation theory it is often used the Newtonian gauge (also known as the longi‐
tudinal gauge or shear free gauge [23, 92]) and the comoving Newtonian gauge which are closely
related via time‐time transformations. The suitable choice of a Newtonian gauge provides two
vanishing scalars and a vanishing vector field leaving the problem with only six degrees of free‐
dom (two scalars, a two‐components vector field and a two‐components tensor field). Vectorial
contributions are present at the lowest orders of cosmological perturbations but it is well known
that they vanish in the early Universe and cannot be produced during the inflationary era at the
first order of the cosmological perturbations [23, 92]. Tensorial perturbations correspond to
gravitational waves, so their contribution is negligible as well. Therefore, the remaining two
scalars are the main contribution to the inhomogeneities at first order in the cosmological per‐
turbations. Such scalars, known as Bardeen potentials, arise as the gravitational source on the
Newtonian limit. As stated before, an observer in the Newtonian frame is blind against the
expansion while the peculiar velocity of the objects moving around (or velocity field, if a fluid
description is preferred) transforms like a pure rotational vector field. The assumption of a
vanishing anisotropic stress tensors on the local energy momentum tensor leads to the equality
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between Bardeen potentials, leaving just one Bardeen potential as the single degree of freedom
at the first order approach. This potential is usually named as the gravitational potential since
it coincides with Newtonian gravity which satisfies the Poisson equation [23, 92].

Depending on the evolution of the chosen model, the distribution of matter could be different
in such a way that the imprints left are distinguishable. The obtained results are compared with
the observational data where statistical methods tell us how close is the prediction from the
observed Universe. Therefore, the flourishing new models dealing with the late‐time accelera‐
tion brings, in turn, the mandatory work of constraining the model parameters and a detailed
analysis of the perturbations. Nevertheless, while the perturbations of the models inducing a BR
have been extensively studied, this is not the case of the models inducing a LR or a LSBR. A BR
inducing model could simply be achieved assuming a DE fluid with an effective EoS parameter
constant and below −1. Several observational fits have been made within this setup, as is the
case of the so called wCDM models [18].

Beside the background parameters, the induced perturbations can be used in order to get the
best values for the parameters of the model. In addition, the initial conditions is often a dis‐
cussed issue. What is known is that most models present a very low dependence with respect to
the initial conditions, this fact could be a hint of the existence of attractors which, independetly
of the choice of the initial conditions, drive the Universe towards the same stage at present time
[24, 47, 93–98]. There are several approaches to describe the perturbations in a DE dominated
regime. For example, the DE perturbations can be neglected since they are very small in com‐
parison with matter induced inhomogeneities [88–91]. The strategy consists in computing the
observable quantities as for example, the matter power spectrum and the growth rate. This
pair provide useful data about the distribution of matter. Unfortunately, in most of the cases
the imprints of different DE models on such observables are insignificant. Consequently, im‐
portant efforts have been made to improve the accuracy of the observations, particularly, on
scrutinising the DE sector as it is the case of the upcoming Euclid mission [99, 100].

Special emphasis has been put into constraining the EoS parameter of DE because, at the end,
it determines the dynamics of the unknown energy source responsible of the recent speed up.
Nevertheless, in addition to the EoS parameter, there is another important parameter that plays
a key role on the perturbation dynamics: The squared speed of sound, c̃2s , which is defined as the
variation of the pressure over the variation of the energy density, c̃2s = δp/δρ. For fluids, with
a negative EoS parameter, it is recommendable to decompose the pressure on its adiabatic and
non‐adiabatic contributions [16, 101], giving rise to a couple of new parameters known as the
adiabatic squared speed of sound, c2a, and the rest‐frame squared speed of sound, c2s. While the
first one is defined as c2a = p′/ρ′ (as far the EoS is well defined), when computing perturbations,
the c2s parameter is regarded as a free parameter which can take any real value from 0 to 1. In
a scalar field interpretation, it is often set equal to one [16, 101]. However, one of the most
striking problems when dealing with the squared speed of sound lays on defining a well behaved
function. By definition, the squared speed of sound diverge at the phantom crossing. We recall
that for a single scalar field it is impossible to describe at the same time standard and phantom
matter. Moreover, when describing a mixture of standard and phantom matters the effective
squared speed of sound corresponding to the mixture blows up when the total EoS parameter
crosses the phantom barrier, that is, when the EoS parameter pass over the phantom bisection,
wtot = −1 [21, 59, 102, 103]. In fact, the aforementioned Euclid mission is aimed to measure
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these parameters precisely in order to get an accurate view of the dark sector [99, 100, 104].

The strategy followed in our perturbation analysis consists into describing a Universe filled with
radiation, matter and a DE fluid with a well defined EoS parameter from the radiation dominated
epoch to the far future. The motivation of imposing a DE existence at small scales, even if its
presence is completely negligible, is supported by the need of fixing the initial conditions when
computing the cosmological perturbations of the model. The adiabatic conditions are presumed
to be satisfied at the beginning, i.e. far enough to be at a completely radiation dominated era
but detached from the early inflationary agesii.

Bearing in mind that each separated component introduces two independent variables; the
matter density contrast and the peculiar velocity of the corresponding fluid, we therefore build
a set of six dynamical equations coming from the conservation equations. This means that the
problem needs up to six initial conditions. We assume adiabatic conditions between the different
components [23, 92]. These conditions, together with some approximations, conform the set of
equations establishing the initial values of the different components. Using numerical methods,
we estimate the matter power spectrum and the fσ8 growth rate. The results are confronted
with the observations, more precisely with the results for the ΛCDM model, as a guidance,
whereby deviations with respect to other models are obtained [105–107].

1.1.5 Beyond Einstein’s GR: modified theories of gravity

The possibility of modifying Einstein’s GR at large scales is attractive from a theoretical point of
view provided that it can explain the late‐time acceleration as it can explain the early inflation‐
ary era through Starobinsky model [108]. Some of the aforementioned cosmological singularities
have been found on modified gravity models as is the case of the BR in [109–111] LR in [68, 112–
116] and the LSBR in [117].

However, at present time, the description of the current Universe concerning small scales, GR
has shown to be the best approach (without any modification). Since the birth of cosmology with
Einstein’s GR, several tests have been performed in order to check the reliability of the theory.
During decades, different experiments have shown the solidity of GR improving the results and
increasing the accuracy more and more. Currently, GR has passed successfully several tests with
a significant accuracy at scales up to the solar system [118–120].

Faced with the robustness of the theory, there is no choice unless to conclude that in case of
existing a deviation from GR at present cosmic time, it should be at very large scales. One could
expect that in the upcoming years GR will be proved to be correct at larger scales. In this sense,
we will consider GR as a fundamental law that governs the nature of the cosmos, while modified
theories of gravity, although interesting from the point of view that they could explain the late‐
time acceleration, have not been verified fully and they constitute a set of approaches only
relevant at very large scales. Therefore, we will focus on the original GR theory regarding most
of modified theories of gravity outside the scope of this thesis. Nevertheless, some approaches

iiIn the very early epochs, let us say, like the inflationary era, some of the most dramatic effects should
be taken into account as could be for example, quantum effects and particle creation. We stand far away
from such a phase of the Universe but inside enough a radiation dominated epoch where the chosen initial
conditions are imposed.
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like the so called EiBI theory will be handled later on, mostly, motivated to address the quantum
realm.

Regarding the classical scope of the EiBI theory, this approach is based first, on Eddington sug‐
gestion of a functional where the connection is the main gravitational field [121]. As a result
of this theory, an alternative metric emerges, the so called “auxiliary metric”. The vacuum
solutions are equivalent to those obtained from the Hilbert‐Einstein action [122]. Second in
the EiBI gravity, a Born‐Infeld like structure Lagrangian is suggested [123, 124]. In this way, for
small values of the Ricci scalar the Einstein’s functional is recovered while for large values of the
Ricci scalar the action approaches Eddington’s action [122]. Despite the success of Eddington’s
approach, the theory is incomplete since it does not include the matter fields [122]. In most of
the approaches a minimal coupling is considered, however, there have been several suggestions
for a metric matter coupling beside the minimal way [125–127]. The theory presents interesting
features. On the one hand, the merging auxiliary metric could absorb the singularities arising
in the true metric, in such a way that those abrupt events prevalent in GR could be avoided in a
natural way. The issue of cosmological singularities on a EiBI context have been deeply studied
in [128–131], where the authors address the quantum analysis close to some of the most known
singularities. On the other hand, within this approach some of the solutions point to a minimum
size of the Universe, which plays an important role in introducing bouncing solutions on the EiBI
context [132, 133].

The perturbations induced within the framework of the EiBI theory were analysed in detail
in [134–137]. In addition, it has been recently shown that the singularities on the auxiliary
metrics are related with instabilities on the true metric at the perturbative level [138]. However,
quantum effects might smooth those instabilities [139]. In addition, it has been shown that
some of the models can be observationally constrained and tested at solar system scales or in
the vicinity of compact stars [135, 136, 140–146].

1.2 The quantum Universe

Paying attention to the efforts done to shed some light on the dark sector of the Universe one
could figure out the scientific significance, and not least, the possible technological develop‐
ment behind the mysterious essence that drives the cosmos. The discovery of an accelerated
Universe, and the novel questions related with it, has become the problem of the century. For
sure those that will solve this problem will write a new chapter in history, opening the doors for
the entire Humanity to a new age of scientific progress. This does not mean however, that all
questions will be answered. It is widely assumed that a phantom dominated Universe will most
likely face a singularity or an abrupt event, where all the bound structures will unavoidably
ripped apart at a finite future cosmic time. Sooner or later, all the Universe as we know it will
end in a cosmic doomsday. This scenario could lead to a second quantum era, understanding the
first quantum era as the scenario in which a singularity launched the Universe at the beginning,
i.e. The Big Bang. It is clear that future singularities tell us about the end of the Universe rather
than its origin. In both singular events, quantum effects are expected to dominate the dynamics
and therefore, a classical description would not be enough to describe suitably such a Universe.

While we have so far focused on a classical approach to describe an accelerated Universe,
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a quantum point of view will be brought into the discussion. The discovery of an accelerated
Universe and, in turn, the possibility of an open range of future singularities implies the need of a
Quantum Cosmology (QC) theory more imperative than ever. The main motivation in considering
a quantum point of view consists on solving, or at least alleviate, the singularities present in
GR. The hope is that a consistent theory of QC should, in principle, avoid such abrupt events by
means of quantum phenomena.

1.2.1 Quantum cosmology: from the classical scope to the quantum realm

The idea of handling the Universe as a whole is inspiring from a quantum point of view. If it
is possible to apply quantum mechanics (QM) to every system with a well defined Hamiltonian,
it should be possible to apply QM to the whole Universe as well, provided of course, by a well
defined Hilbert space wherein the wave functions, Ψn, represent the eigenvectors with their
corresponding eigenvalues, En, that set the energy levels. The problem looks simple at first
glance but nowadays represents one the most difficult hurdle to deal with. One main difficulty
consists on how to address the variable of time. In GR the time is just a metric variable, as it
could be, for example, the position. However, in QM theory the position is an operator while
time is regarded as an external and absolute variable on which all the rest of the observables
depend. Hence, the question on how to deal with time is an important question that demands
a suitable answer. In order to give an appropriate approach to this inquiry many attempts have
been carried [147–150]. However, so far there is not a fully consistent quantum theory of gravity.
Therefore, it will be amazing to setup a robust quantum theory that unify all the forces in the
Universe. It would be, at the end, the theory of everything, the philosopher’s stone enabling us
to understand how the whole Universe works from the microscopic realm to the global scope.
That is the reason for searching stubbornly such a physical theory.

As already mentioned, we have not yet a suitable approach to handle appropriately cosmology
according to QM, that is, we did not find yet the correct principles to address in a consistent
way the framework of QC. However, there are some approaches that give us some hints on how
to proceed [151–153]. Nowadays, there are three important approaches to tackle GR within a
quantum scope: (i) string theory, (ii) loop quantum cosmology and (iii) WDW equation. The first
approach considers the point like particles as vibrating strings [154–164]. The second approach
suggests a space‐time metric chained by a spin network at microscopic scales (up to the Planck
length) [165–175]. The third one promotes the Hamiltonian constraints through metric variables,
where time is just taken as a metric variable as in GR [176–183].

1.2.2 The quantum approach: the WDW equation

The objective of this thesis is to work on the third approach, i.e. WDW equation. The WDW
equation is the cosmological analogous to the Schrödinger equation in QM. It was first suggested
by Bryce DeWitt in 1967 as an approach for quantising gravity on the basis of a canonical formu‐
lation of gravity [176] and inspired on the quantisation techniques of Hamiltonian dynamics by
Paul Dirac [184]. The Hamiltonian and momentum constraints play an essential role here. First,
the Hamiltonian is obtained starting from the Lagrangian by the usual Legendre transformations
of classical mechanics. The Lagrangian in turn, comes from a physically motivated action within
a particular theory. The transition from classical to quantum realm consists in promoting the
conjugate momenta as operators acting on a set of wave functions, where the latter are the
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solutions to the WDW equation. The dynamics is obtained by means of a vanishing Hamilto‐
nian [151, 152, 176] and ultimately, the choice of a factor ordering completely determines the
shape of the wave function. There is not a single way to address the later procedure and one
has the free choice to adopt a particular ordering. Hence, the investigated models should be
taken with caution since they lead to different results depending on the chosen ordering, so we
should understand those methods more as a reliable approach rather than a consistent theory.
In this sense, it is often preferred the Laplace‐Beltrami (LB) operator, for the reason that it
leads to a kinetic term invariant under transformations of the configuration space as it is the
case of Srchödinger equation in QM [151]. Finally, the DW boundary condition is imposed, which
requires that the wave function should vanish at singular regions (as it is the case of an infinite
potential wall on QM) [151, 152].

As an initial example, the first action to be addressed would be the Hilbert‐Einstein action.
Taking a FLRW metric background, one could deduce that the scale factor is the only degree
of freedom. The underlying interpretation is that the scale factor plays the role of time, so it
indirectly suggests at least, a second degree of freedom. For example, incorporating different
scalar fields enrich the variables of the phase space dimension where the wave function spreads,
together with the subsequent quantum phenomena as for example, tunnelling effects across
classically forbidden regions. Therefore,the WDW equation could be understood as a canonical
approach to quantum gravity rather than a closed physical theory. So one could figure out that
we are dealing with a rather simple description by means of a toy model. Nevertheless and not
by accident, as a first approach it is shown to be successful enough to avoid those singularities
arising in several DE models and modified theories of gravity. Therefore, those results can be
interpreted as valuable hints of singularity avoidance within a possible framework of QC theory
instead as a proof in itself.

In the present thesis, we have followed the quantum analysis based on WDW equation for a
FLRW Universe and applied over those purely phantom‐matter induced singularities (read Big
Rip, Little Rip and Little Sibling of the Big Rip). The target consists in achieving a solution which
also fulfils with the DW boundary conditions, that is, the wave function vanishes when reaching
the abrupt event. For those descriptions involving more variables than the scale factor as the
single degree of freedom (for example by incorporating a scalar field), a Born‐Oppenheimer (BO)
approximation simplifies quite the total differential equation. At the beginning, this approxi‐
mation was motivated to solve multi‐atomic systems like molecules. Its cosmological analogous
has shown to be valid by neglecting the back reaction of the matter fields on the gravitational
part [185], that is, the matter fields change faster than the gravitational fields do, so the for‐
mer ones are considered as the fast degrees of freedom while the latter are regarded as slow
degrees of freedom [151, 185–187].

More generally, given an action with an appropriate boundary term, the Lagrangian and the con‐
jugate momenta (together with the Hamiltonian) are completely defined. So the WDW equation
could be applied to any system with a well defined action or at least, with a consistent Hamil‐
tonian. On this sense some modified theories of gravity have gained some attention, like the so
called EiBI gravity.

The EiBI theory has shown to be an interesting alternative that has gained a lot of attention on
the last decade. Rather than its origin and modifications, we have mainly focused on the quan‐
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tum analysis of those abrupt events induced by genuine phantom models within the framework
of WDW equation [188, 189]. In addition, we have contemplated tensorial instabilities in [139],
where our quantum analysis suggest that those instabilities are removed. In this part of the
thesis, we have analysed in deep the models which respond to genuinely phantom paradigms
i.e. a phantom type of matter is present.

1.3 Outline of the present thesis

The thesis is divided in two main parts. First, the classical part, where the subject of cos‐
mological perturbations is addressed. Second, the quantum part, where the avoidance of DE
singularities is tackled. Therefore the outline of this work runs as follows: On the one hand,
the classical part holds the chapters 2‐6. In chapter 2, we present the background of three
genuine phantom models, coined as model A, model B and model C. In addition, we introduce
the first order linear perturbations and the computational methods used in the present thesis
to calculate the perturbations. In chapter 3, we present the results of the perturbations for
the three phantom models together with the predicted observational quantities as the matter
power spectrum and the fσ8 growth rate. We compare the DE models and try to find footprints
that could allow us to distinguish between them. In addition, we compute the perturbations for
the widely accepted ΛCDM model as well, in order to use it as a standard model to measure the
deviations of the DE models. In chapter 4, we constrain observationally the model parameters
of those phantom DE models using, by consistency, the same dataset. Here, we compute the
relevant parameters involved in the ΛCDM paradigm as well, in order to use it as a comparison
model. We not only predict the matter power spectrum and the fσ8 growth rate but go be‐
yond via the measure of the relative deviations of the perturbation quantities with respect to
ΛCDM. In chapter 5, we compare two DE model with a constant EoS parameter: barely deviating
from the ΛCDM model, one corresponds to a standard fluid while the other is a phantom fluid.
Motivated by the previous works, we focus on the far future where the gravitational potential
could switches the sign depending if a standard or a phantom model is chosen. In chapter 6, we
compute all the perturbation variables when varying the effective speed of sound parameter,
c2sd, from 0 to 1. In order to find the footprints induced by different models with varying c2sd
parameter, we compute the deviations with respect to c2sd = 1 of the main observational quan‐
tities as the matter power spectrum and the fσ8 growth rate. As in the previous chapter, we
focus on the far future and study how the c2sd parameter affects the gravitational potential sign
switch.

On the other hand, the quantum part holds the chapters 7‐13. In chapter 7, we introduce the
WDW equation and derive the quantum Hamiltonian considering a DE fluid driven by i) a perfect
fluid and ii) by a scalar field. In chapter 8, we study the Holographic Ricci DE (HRDE) model,
which it is effectively described by a DE content with a constant EoS parameter below −1 and
therefore, induces a BR singularity. Then, by means of the WDW equation we get the wave
function fulfilling the DW boundary condition. In chapter 9, we not only study the classical be‐
haviour of a DE scalar field leading the Universe to a LR abrupt event, but we study the quantum
avoidance in the context of the WDW equation. We have made use of the BO approximation
and obtained the solution to the total wave function. We have found vanishing solutions at the
vicinity of the LR abrupt event, fulfilling in this way the DW boundary condition. In chapter 10,
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we proceed in the same way as in the previous chapters and try to find a wave function of the
Universe vanishing at the vicinity of the LS abrupt event. Here, we represent the DE content
by i) a perfect fluid and ii) by a scalar field. In addition, we have made use of different factor
orderings and obtained the resulting wave function. In chapter 11, we start from the action
suggested by the EiBI theory, which considers the connection and the metric separated fields.
The DE content is described by two type of models leading the Universe to the abrupt events
of LR and LS. We apply a quantum geometrodynamical approach by performing an appropriate
Hamiltonian, where the latter is derived from the Lagrangian by the well known Legendre trans‐
formations. Then, we study in the context of WDW equation the quantum avoidance of such
abrupt events, i.e. the fulfillment of the DW boundary condition, by considering two differ‐
ent factor orderings. In addition, we compute the expected value of the auxiliary scale factor
proving the avoidance of the LR and LS abrupt events. In chapter 12, we follow the path of the
previous work but in this case, we consider a more fundamental degree of freedom correspond‐
ing to a phantom scalar field which, in turn, induces a BR singularity at large scales. In addition,
we include an analysis of the constraints of the system. Once again, the quantisation is done
in the context of the WDW equation where the conjugate momenta acts like operators over the
wave function via a factor ordering choice. On the other hand, we make use of some approxima‐
tions like the BO approximation. In chapter 13, like in the previous works, we perform a study
of the quantum avoidance in the context of WDW equation and within the EiBI theory. However,
in contrast to the previous chapters, we focus on the Big Bang primordial singularity rather than
on future ones. We study the cases of a Universe filled by a perfect fluid or a scalar field, where
in addition, we take into account the branch of solutions for a negative coupling constant, κ.
Once we get the wave function, we check if the DW boundary condition is satisfied. This will
ensure that the tensorial instabilities are prevented from a quantum point of view. Finally, in
chapter 14, we present our main conclusions. In addition, to complete the thesis, we include
the appendix A, where we get the full expression for the statefinders parameters, appendix B,
where we show detailed calculations of the perturbations, and appendix C, where we perform
the main approximations and their corresponding justification carried in the quantum part of
the present thesis.
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2

Background models and first order perturbations

No one is dumb who is curious. The people who don’t ask questions remain clueless
throughout their lives

– Neil deGrasse Tyson

2.1 introduction

Cosmology has made a long way on the last years with the impressive amount of observations
and theoretical advancements. Yet, it still faces many challenging questions like the fundamen‐
tal cause of the recent acceleration of the Universe, which was found with SNeIa observations
almost twenty years ago [10, 11], and afterwards confirmed by several types of cosmological
and astrophysical observations (see for example [13] for a recent account on this issue). The
simplest approach which is in agreement with the current observations is to assume a cosmo‐
logical constant that started recently to dominate the late‐time energy density budget of the
Universe [14]. But then the issues of why is it so tiny? and why this cosmological constant has
begun to be important only right now? have to be addressed as well (see for example: [190–
193]). Another, equally important, issue is what happens if the cosmological constant is not
quite constant? This has led to a great interest in exploring other possible scenarios to explain
the late‐time acceleration of the cosmos by invoking either an additional matter component
in the Universe, which we name DE [22, 23, 194], or by modifying appropriately the laws of
gravity (for a recent account on this issue see, for example, [195, 196] and the extensive list of
references provided therein).

We will focus on the third question: what happens if the cosmological constant is not quite
constant? More precisely, we will address this question on the framework of the cosmological
perturbations and for some DE models whose equations of state; i.e., the ratio between its
pressure and its energy density, deviate slightly from the one corresponding to a cosmological
constanti. Before proceeding let us remind the following well known fact: if the EoS parameter
of DE deviates from −1, the Universe fate might be quite different from the one corresponding
to an empty de Sitter Universe. In particular, if the EoS parameter of DE is smaller than −1, i.e.,
DE is apparently (at least from an effective point of view) not fulfilling the null energy condition,
several future singularities or abrupt events might correspond to the cosmic doomsday of the
Universe. Amazingly, some of these models are in accordance with current data [85].

On the other hand, the theory of cosmological perturbations is a cornerstone of nowadays cos‐
mology. It provides us with a theoretical framework which allows us to determine, for example,
the CMB predicted from an early inflationary era or compute the matter power spectrum and
the growth rate of matter in order to make a comparison with the observational results. In

iThis chapter corresponds mainly to our publication [105]
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addition, it allows us to compute the evolution and possible clustering of DE perturbations and
investigate their effect on the growth of DM. Even though no perturbations of DE have so far
been detected, and are in fact absent in the ΛCDM model, the existence of a great number of
experiments aiming to probe the physics of the late‐Universe, like the DE Survey [197] and the
Euclid mission [100], suggests that a thorough study and characterisation of such effects can be
proven to be important to understand the nature of this mysterious fluid that drives the accel‐
eration of the Universe. With this mindset, on this work we analyse the perturbative effects of
phantom DE models ii and look for observational fingerprints that could be used as a mean to
favour or disregard such models.

There are three genuinely phantom DE fates; i.e., which happens if and only if a phantom DE
component is present: BR [28–35], LR [47, 55, 59, 64–67, 201] and LS [47, 55, 59, 64–67, 201].

We will consider three models which share in common the fact that in the (far) future all the
structures in the Universe would be ripped apart in a finite cosmic time [66, 69]. The classical
singular asymptotic behaviour of these DE models has led us to a quantum cosmological analysis
of these setups [42, 44, 70, 202, 203]. In these works, it was concluded that once the Universe
enters in a genuinely quantum phase; i.e., where coherence and entanglement effects are
important, the Universe would evade a doomsday à la rip. This applies even to the smoother
version of these singular behaviours corresponding to a LS [202] (see also [48, 51, 57, 63, 204]).

We will as well present the equations that describe the cosmological perturbations of these
models. the numerical results will be shown in the next chapter.

2.2 Background models

In this section, we briefly review the different models that, at the background level, lead to
distinct future cosmological abrupt events: (i) BR, (ii) LR and (iii) LS. For each of these models,
we begin by presenting an EoS for DE that can originate such genuinely phantom abrupt events
in the future, while ensuring that the background evolution follows closely that of ΛCDM until
the present time. These models should be interpreted as an effective description of a more
fundamental field, therefore, even though at the background level they might be defined by a
barotropic fluid, the same should not be assumed at the perturbative level. In fact, as we will
discuss below, in order to avoid non‐physical instabilities we will explicitly break the adiabaticity
of the DE perturbations. Bearing in mind, from now on, the approach that we will follow, we
next describe the effective background models that we will contemplate.

Let us consider a homogeneous and isotropic Universe described by the Friedmann‐Lemaître‐
Robertson‐Walker (FLRW) metric:

ds2 = −dt2 + a2 (t)

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

]
, (2.1)

where a(t) is the scale factor and k = −1, 0, 1 for open, flat and closed spatial geometry,
respectively. We will focus on the spatially flat case (k = 0), for which the Friedmann and

iiThere are some promising phantom DE models [198, 199] which are free from ghosts and gradient
instabilities (see also [200]).
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Raychaudhuri equations read

H2 =
8πG

3
ρ , (2.2)

Ḣ = −4πG (ρ+ p) . (2.3)

Here, H is the Hubble parameter, a dot represents a derivative with respect to the cosmic time,
t, G is the cosmological constant and ρ and p are the total energy density and pressure of all the
matter content of the Universe. In this work, and as we will focus on the late‐Universe we will
consider the Universe to be filled by radiation, dust (cold DM and baryons), and DE. As such, we
can decompose ρ and p as

ρ = ρr + ρm + ρd and p = pr + pm + pd , (2.4)

where ρr, ρm, and ρd correspond to the energy density of radiation, matter (cold DM and baryons)
and DE. Similarly, pr, pm, and pd are the pressure of radiation (pr = 1/3ρr), matter (pm = 0),
and DE (pd = wdρd). We will not take into account interactions between the individual matter
components. Consequently, each fluid A = r,m,d verifies the usual conservation equation:

ρ̇A + 3H (ρA + pA) = 0 . (2.5)

For latter convenience, we define the fractional energy density of the individual mater compo‐
nents as

Ωr =
ρr
ρ
, Ωm =

ρm
ρ
, Ωd =

ρd
ρ
, (2.6)

and the individual parameters of EoS

wr =
pr
ρr

=
1

3
, wm =

pm
ρm

= 0 , wd =
pd
ρd
. (2.7)

The DE parameter of EoS, wd, will be fixed later for each individual model. From (2.4) and (2.6)
we can obtain the total parameter of EoS, w, from the individual wA as:

w ≡ p

ρ
= Ωrwr +Ωmwm +Ωdwd . (2.8)

We have considered the case of a spatially flat Universe in agreement with observations [15].
We assume that each component is independently conserved as shown in (2.5). In consequence,
the Friedman equation can be written as

H2 = H2
0

[
Ωr0a

−3(1+wr) +Ωm0a
−3(1+wm) +Ωd0fj (a)

]
(2.9)

where H is the Hubble parameter, a is the scale factor and the parameters Ωi0 (i=r,m,d) are the
current fractional energy densities of the components. The subindex 0 denotes the values at
present time. From now on, we will adopt a0 = 1. In order to avoid repetitions on the notation,
the scale factor will be denoted simply by a. While the EoS parameters for radiation (wr = 1/3)
and matter (wm = 0) are constant, it can be scale dependent in the case of DE. The contribution
of DE to the total energy budget can be expressed by means of the dimensionless function fj (a),
where the subindex j refers to the selected model (j=A,B,C).
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The set of parameters corresponding to each models are fixed, mainly, by using Planck data
[13, 15]. The necessary parameters to totally describe the background models are: The current
fractional energy densities of radiation and matter, Ωr0 and Ωm0; the current Hubble parameter,
H0. While to get the perturbations we need: The root mean square mass fluctuations amplitude
in spheres of size 8 h−1Mpc, σ8; the amplitude of the scalar for single field inflation, As, and the
spectral index, ns. In different works the criteria for fixing these model parameters is a little
bit different, and therefore, the numerical value of those parameters is slightly different in the
subsequent works. However, as the selected parameters are not very different, the expected
differences are so small that we expect no large deviations on the perturbations.

We understand that the difference between background models mostly lie on the fj (a) function,
while we expect to find footprints of different DE models, (i) at present, in such a way that it
could be useful to distinguish between different DE models, and (ii), in the far future, where
such a deviation between DE models becomes larger and arises some features of each particular
DE model.

2.2.1 BR singularity: model A

A BR singularity [28–35] can be induced by a perfect fluid whose EoS parameter, wd, is constant
and smaller than −1:

pd = wdρd, (2.10)

Solving the conservation equation we get the expression for the corresponding fA (a) function in
(2.9)

fA (a) = a−3(1+wd). (2.11)

Finally, the asymptotic evolution of the scale factor is

a (t) ∼
[
3

2
|1 + wd|H0

√
Ωd0 (ts − t)

] 2
3(1+wdA)

(2.12)

where ts corresponds to the time where the singularity would take place. In this kind of future
singularity, the scale factor, the Hubble parameter and its cosmic time derivatives blow up at a
finite cosmic time t = ts.

2.2.2 LR abrupt event: model B

The case of a LR [47, 55, 59, 64–67, 201] can be caused by a perfect fluid whose EoS fulfils
[47, 55]

pd = −ρd − B√ρd, (2.13)

where B is a positive constant whose dimensions are those of an inverse squared length. This
model can be understood as a deviation of the widely known ΛCDM paradigm. Notice that for
a vanishing parameter B the ΛCDM model is recovered. Solving the conservation equation, we
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get the corresponding fB (a) function for model B [64, 201],

fB (a) =

[
1 +

3

2

√
ΩB

Ωd0
ln (a)

]2
, (2.14)

where B is reabsorbed in the dimensionless parameter ΩB ≡
[
(8πG) /

(
3H2

0

)]
B2. This class of

abrupt event suffers from all the divergences present in a BR singularity but driven at an infinite
cosmic time. Therefore, we consider a LR less harming than a BR. Finally, the asymptotic future
evolution of the scale factor can be written as [66]

a (t) ∼ exp

[
exp

(
3

2

√
ΩBH0t

)]
. (2.15)

In this kind of abrupt event, the scale factor, the Hubble parameter and its cosmic time deriva‐
tives blow up at an infinite cosmic time.

2.2.3 LS abrupt event: model C

The LS can be induced by a perfect fluid whose EoS deviates from that of a cosmological constant
as [69, 71, 205]

pd = −ρd −
C
3
, (2.16)

where C is a positive constant. The smaller is C, the closer is model C to ΛCDM. Solving the
conservation equation we get the corresponding expression of fC (a) for this model [69],

fC (a) = 1 +
ΩC

Ωd0
ln (a) , (2.17)

where C is a positive constant and whose dimensions are length to the fourth power. It can
be absorbed in the new parameter ΩC ≡

[
(8πG) /

(
3H2

0

)]
C. Model C induces the abrupt event

known as LS. In this type of abrupt event, the scale factor and the Hubble parameter blow up
at infinite cosmic time. However, the cosmic time derivative of the Hubble parameter remains
constant. We regard the LS as the less harming abrupt event among those induced by phantom
scenarios. Finally, the future asymptotic growth of the scale factor with respect to the cosmic
time can be written as [69]

a (t) ∼ exp

(
1

4
ΩCH

2
0 t

2

)
. (2.18)

2.2.4 Comparing these models

Aside from the definition of the BR, LR and LS given in the introduction, a few words are in
order to compare the models we analyse in this thesis from a background point of view. All the
models presented above can be seen as a deviation from ΛCDM which can be recovered by setting
wd = −1 on the first model, B = 0 on the second model and C = 0 on the third model. Despite
this apparent similarity with ΛCDM, they are characterised by a DE EoS satisfying w < −1, so
they correspond to phantom models whose end state is drastically different from the de Sitter
behaviour of a cosmological constant dominated Universe. In all these cases, the Universe is not
only accelerating but super accelerating asymptotically. This fact leads the universe unavoidably
to unzip itself; i.e., all the bound structures within it will be destroyed. As can be seen from the
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asymptotic expansion of the scale factor a(t) in (2.15), the BR is a true singularity as it would
take place at a finite cosmic time from now. In addition, the geodesics cannot be extended
beyond that point [53]. On the other hand, the LR is more virulent than the LS as can be seen
from (2.15) and (2.18), although both of them would happen at an infinite time from now.

In a FLRW background a phantom perfect fluid can in principle be described through a phantom
scalar field, i.e., a minimally coupled scalar field with the opposite sign for its kinetic term
[30]. In particular, this statement applies to the models we are considering. While a detailed
study of this equivalence is not the purpose of this manuscript, in the Appendix B.7, we briefly
explore the phantom scalar field model that could describe the phantom models (A), (B) and
(C).

We will next analyse the behaviour of these models within the standard framework for the cos‐
mological perturbations. As a first approach and in the rest of the work, we will disregard any
anisotropic stress tensor and consider that the DE perturbations are non‐adiabatic. As we will
show, the second supposition is crucial to get a right description of the matter power spectrum.
In addition, and as a matter of simplicity, the non‐abiabaticity will be described within a phe‐
nomenological approach rather than in a more fundamental scope able to describe unequivocally
and realistically the speed of sound. This issue is discussed in Section 2.3.3.

2.3 Linear cosmological perturbations

In this section, we review the theory of linear perturbations for multi‐fluid components. We
choose the Newtonian gauge and work with the corresponding gauge invariant perturbation
quantities. For a FLRW Universe, the perturbed line element is [92, 206]

ds2 = a2
[
− (1 + 2Φ) dη2 + (1− 2Ψ) δijdx

idxj
]
, (2.19)

where η is the comoving time, dη = (1/a)dt, a latin index denote purely spatial coordinates,
and Ψ(η, xi) and Φ(η, xi) are the gauge invariant Bardeen potentials [207]. The transformation
rule ˙{ } = (1/a){ }′, where a prime represents a derivative with respect to the conformal time,
allows us to write H and Ḣ in terms of the conformal Hubble parameter, H ≡ a′/a, and its
derivative, H′, as

H =
1

a
H , Ḣ =

1

a2
(
H′ −H2

)
. (2.20)

Drawing from the line element (B.2), the inverse of the metric tensor can be obtained applying a
Taylor expansion up to first order. Once we define the Christoffel symbols, we can compute the
perturbation of the Ricci tensor, δRµν, and of the curvature scalar, δR, in order to obtain the
perturbed Einstein tensor δGµν ≡ δRµν − 1

2δ
µ
ν δR. In addition, the perturbed Einstein equations

read

δGµ
ν = 8πGδTµ

ν , (2.21)

where δTµ
ν is the linear perturbation of the total energy momentum tensor. The individual
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components of (2.21) can be written as [92, 206]

3H (Ψ′ +ΦH)−∇2Ψ = 4πGa2δT 0
0 ,

− (Ψ′ +HΦ),i = 4πGa2δT 0
i ,

Ψ′′ + 2H (Φ′ + 2Ψ′) + 2Φ
(
2H′ +H2

)
Φ+

2

3
∇2 (Φ−Ψ) =

4πG

3
a2δT i

i ,

(Φ−Ψ),ij = 8πGa2δT i
j , (i ̸= j) .

(2.22)

The δTµ
ν on the right hand side (rhs) of (2.21) is the sum of the perturbations of the energy

momentum tensor of radiation, δTµ
r ν, non‐relativistic matter (cold DM and baryons), δTµ

m ν, and
DE, δTµ

d ν. For each fluid, we can write the individual components of δTµ
Aν (A = r,m,d) as

δT 0
A 0 =− δρA ,

δT i
A 0 =− (p+ ρ) ∂ivA ,

δT 0
A i =(p+ ρ) ∂ivA ,

δT i
A j = δpA δij +Πi

A j ,

(2.23)

where δρA, δpA, vA, and Πi
A j are, respectively, the perturbation of the energy density, the

perturbation of the pressure, the peculiar velocity potential and the anisotropic stress tensor of
the fluid A. As a first approximation, we consider that none of the fluids introduce anisotropies
at the linear level of scalar perturbations. Therefore, from this point onward we will set Πi

A j =

0. From (2.22), we find that this implies the equality of the metric potentials Ψ = Φ. Replacing
this equality and (2.23) in the first three equations of (2.22), we obtain [92, 206]

3H (HΨ+Ψ′)−∇2Ψ = −4πGa2δρ ,

∇2 (HΨ+Ψ′) = −4πGa2 (ρ+ p)∇2v ,

Ψ′′ + 3HΨ′ +Ψ
(
2H′ +H2

)
= 4πGa2δp ,

(2.24)

where we have introduced the total energy density perturbation, δρ, total pressure perturba‐
tion, δp, and total velocity potential, v. These can be written in terms of the individual fluid
variables in (2.23) through the relations

δρ =
∑
A

δρA , δp =
∑
A

δpA , v =
∑

A
1+wA

1+w ΩAvA . (2.25)

Following [16, 101], we decompose the pressure perturbation asiii

δpA = c2sAδρA − 3H (1 + wA)
(
c2sA − c2aA

)
ρAvA , (2.26)

where

c2sA =
δpA
δρA

∣∣∣∣
r.f.

, c2aA =
p′A
ρ′A

, (2.27)

are, respectively, the effective squared speed of sound, defined in the rest frame (r.f.), of the
fluid and the adiabatic speed of sound. In the following analysis, we will replace the energy
density perturbation δρA by the fractional energy density perturbation δA = δρA/ρA. The total

iiiThe re‐derivation of this expression is presented in the Appendix B.5.
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perturbation δ can be obtained from (2.25) and reads

δ =
∑
A

ρA
ρ
δA =

∑
A

ΩAδA . (2.28)

The perturbed conservation equations of the energy‐momentum tensor for each fluid read:

∇µδT
µ
Aν + δΓµ

µαT
α
Aν − δΓα

µνT
µ
Aα = 0 , (2.29)

where δΓα
µν is the perturbation of the Christoffel symbol and Tα

Aν is the background value of
the energy momentum tensor. Using (2.23), (2.26), (2.27), and (2.28), we can compute the
temporal and spatial components of (2.29) and obtain the evolution equations for the fractional
energy density perturbation δA and the velocity potential vA

δ′A = 3H
(
wA − c2sA

)
δA + (1 + wA)

[
9H2

(
c2sA − c2aA

)
−∇2

]
vA + 3 (1 + wA)Ψ

′ ,

v′A =
(
3c2sA − 1

)
HvA − c2sA

1 + wA
δA −Ψ .

(2.30)

In summary, from the perturbed Einstein equation, we obtain (B.40) which relate the metric
perturbations to the total perturbed matter quantities. On the other hand, from the perturbed
conservation equations we obtain (2.30) which dictate the dynamics for the individual energy
density and velocity perturbations. In order to study the evolution of the linear perturbations,
we conveniently apply a Fourier transformation, where we decompose a given function ψ(η,x)
into its Fourier components ψk(η) as

ψ(η,x) =
1

(2π)
3/2

∫
e−ik·xψk(η) d

3k . (2.31)

Therefore, for practical purposes, we make the substitution ∇2 → −k2 in all the evolution
equations. On the other hand for our numerical calculations, we will apply the following change
of variable:

x ≡ ln (a) , {}′ = {}x H , {}′′ = {}xx H
2 + {}x H

′ , (2.32)

where the subscript x denotes a derivative with respect to x. By applying the Fourier decom‐
position (B.47) and the transformation (B.51) to the sets of equations (B.40) and (2.30), we
obtain the evolution equations for each mode of the energy density and velocity perturbations
of radiation, dust and DE

(δr)x =
4

3

(
k2

H
vr + 3Ψx

)
,

(vr)x = − 1

H

(
1

4
δr +Ψ

)
,

(δm)x =

(
k2

H
vm + 3Ψx

)
,

(vm)x = −
(
vm +

Ψ

H

)
,

(δd)x = (1 + wd)

{[
k2

H
+ 9H

(
c2sd − c2ad

)]
vd + 3Ψx

}
+ 3

(
wd − c2sd

)
δd ,

(vd)x = − 1

H

(
c2sd

1 + wd
δd +Ψ

)
+
(
3c2sd − 1

)
vd .

(2.33)
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and for the metric potential

Ψx +Ψ

(
1 +

k2

3H2

)
= −1

2
δ ,

Ψx +Ψ = −3

2
Hv (1 + w) ,

Ψxx +

[
3− 1

2
(1 + 3w)

]
Ψx − 3wΨ =

3

2

δp

ρ
.

(2.34)

2.3.1 Initial conditions

Once the system of equations of the perturbed quantities is defined, we need to impose proper
initial conditions in order to compute the cosmological evolution of the perturbations (cf. for
example [208, 209] for a detailed discussion on the initial conditions on DE models). For this
goal, we will take into account the following considerations. First, we assume that at an ini‐
tial moment, z ∼ 106 (which roughly corresponds to xini ∼ −14), the Universe is completely
dominated by radiation, so that all relevant quantities of the total matter fluid are those of a
perfect fluid with p = ρ/3. Secondly, we note that at such moment the wave‐length of all the
relevant modes is small when compared with the comoving Hubble parameter (k ≪ H), i.e.
they are outside the horizon. With these two approximations, we can combine the first and
third equations of (2.34) and obtain a closed evolution equation for the metric potential in the
asymptotic past [23]

Ψxx + 3Ψx ≈ 0 . (2.35)

The dominant solution of this equation is a constant solution Ψini = Ψ(xini)
iv. Applying this result

to the set of equations (2.34), we find that initially

Ψini ≈ −1

2
δini ,

Ψini ≈ −2Hinivini .

(2.36)

Assuming initial adiabatic conditions, we can relate the initial values of the individual fluid
perturbed variables to the total perturbation in (B.61) through [23, 208, 209]

δr
1 + wr

=
δm

1 + wm
=

δd
1 + wd

=
δ

1 + w
. (2.37)

This allows us to write the initial values of δA in terms of δini as

3

4
δr,ini = δm,ini =

δd,ini
1 + wd,ini

≈ 3

4
δini , (2.38)

By imposing the adiabatic condition (B.63) between two fluids A and B on the comoving gauge,
we obtain

δA,ini − 3Hini (1 + wA,ini) vA,ini

1 + wA,ini
=
δB,ini − 3Hini (1 + wB,ini) vB,ini

1 + wB,ini
, (2.39)

ivFor the rest of this section we will denote by Xini the value of a quantity X evaluated at x = xini.
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which then leads to the initial values of the peculiar velocities:

vr,ini = vm,ini = vd,ini ≈
δini
4Hini

. (2.40)

We note that the conditions (B.64) and (B.66) coincide with the ones presented in [208] in the
absence of neutrinos. Making use of the linearity of (2.33) and (2.34), we can first compute the
evolution of the perturbation quantities using the initial conditions (B.61), (B.64) and (B.66) for
Ψini = 1 (which implies δini = −2) and then multiply all the solutions obtained by the physical
value of δphys(k), which we will take from the Planck observational fit to single field inflation
[14]:

δphys(k) =
8π

3

√
2As

(
k

kpivot

)ns−1
2

k−
3
2 . (2.41)

Here, As and ns are defined as the amplitude and spectral index of the primordial inflationary
power spectrum corresponding to a previously selected pivot scale kpivot = 0.05 Mpc−1. We will
consider As = 2.143× 10−9, and ns = 0.9681 in accordance with Planck observational data [14].

2.3.2 Matter power spectrum and the growth rate

The matter power spectrum describes how galaxies are distributed along the Universe and pro‐
vides us with a method to compare theoretical predictions with the observational data. In
the next chapter, we will compute the linear matter power spectrum for each model studied
in section 2.2 and we will try to detect deviations from the predictions of ΛCDM. The whole
framework presented in this chapter provide us the necessary tools to obtain the aimed results.
Notice, however, that the correct definition of the matter power spectrum uses the fractional
energy density perturbation in the comoving gauge [210, 211], while the analysis carried out in
this work has been done in the Newtonian gauge. Using the variables employed in the previous
sections, we can resolve this gauge difference by expressing the matter power spectrum as

Pδ̂m
=
∣∣∣δ(com)

m

∣∣∣2 = |δm − 3Hvm|2 . (2.42)

Another method we will use to constrain the models presented in Section 2.2 is based in com‐
puting the growth rate of the matter perturbations for the different models. By definition, the
growth rate of the matter perturbations is given by the formula [88]

f ≡ d (ln δm)

d (ln a)
. (2.43)

For DM‐DE models that closely mimic ΛCDM, it was found that the growth rate at late‐time can
be approximated reasonably well by the formula [19, 212, 213]

f ≃ Ωγ
m , (2.44)

where γ ≃ 0.55 for ΛCDM. The next to leading order of (2.44) can be found in [18].

In this thesis, instead of using any approximated parametrisation, we opt to calculate the evolu‐
tion of the growth rate f for each DE model using the full (2.33)‐(2.34) and compare the results
with observations. We note, however, that in most cases, the observational data refers not to
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the growth rate f directly, but to the combination fσ8, where σ8 is the root mean square mass
fluctuation amplitude in spheres of size 8h−1Mpc which is used to normalise the matter power
spectrum. This combination has the advantage that it avoids the degeneracy in the parame‐
ter space regarding σ8 and the linear bias, b, between the perturbations of DM and density of
galaxies [214]. We calculate the temporal evolution of σ8 by the formula [215]

σ8 (z, kσ8
) = σ8 (0, kσ8

)
δm (z, kσ8

)

δm (0, kσ8
)
, (2.45)

where kσ8
= 0.125 h Mpc−1 is the wave‐length of the mode corresponding to distances of

8 h−1Mpc. For each of the DE models considered in this work, we will calculate the evolu‐
tion of fσ8 using the numerical solutions of (2.33)‐(2.34) and the relations (2.43) and (2.45).
For all the models we use σ8(0, kσ8

) = 0.820 [18] as the present day value of σ8. We compare
the results obtained with the available observational data [214, 216–230] to check whether the
predictions of the models are within the observational constraints. Since at the background
level these models are very similar to ΛCDM till the present time, we expect that the deviations
from ΛCDM in the evolution of the growth rate to be small.

2.3.3 The speed of sound of DE

So far, in this thesis we have described all the individual matter components as perfect fluids
with a barotropic equations of state pA(ρA). Since a barotropic fluid is adiabatic, its effective
and adiabatic squared speeds of sound are the same (cf. (2.27)). While for radiation and matter
such a representation works well, for fluids with negative EoS, in particular for fluids playing
the role of DE, there might be some problems if the squared speed of sound becomes negative,
as this would lead to instabilities at the perturbative level. As a matter of extra‐clarification we
discuss in the Appendix B.6 how instabilities at the linear level in perturbations arise in fluids
with a negative adiabatic squared speed of sound. It is therefore necessary to take into account
additional considerations for the DE fluid. To avoid this problem we note that the EoS presented
in the previous section are effective descriptions of some unknown fundamental field. As such,
the barotropic nature of the models at the background level is not necessarily inherited by the
cosmological perturbations. Bearing this in mind, we fix the effective squared speed of sound
of DE, as defined in (2.27), to unity, i.e., in (2.33) we set c2sd = 1, while c2ad is given by (2.27).
We next show the expressions for the adiabatic speed of sound corresponding to the the models
A, B and C, respectively.

A c2a = wd ,

B c2a = −

(
1 +

1

2

B
ρ
1/2
d

)
,

C c2a = −1 .

(2.46)

This strategy can be encountered in several works in the literature [16, 101, 231] and in cosmo‐
logical codes such as CAMB [232] and CLASS [233] in particular when interpreting the DE fluid
as Quintessence. Here, we would like to point out that our choice of c2sd = 1 is purely phe‐
nomenological rather than deduced from a realistic theoretical grounded model. Nevertheless,
as discussed in the Appendix B.7, this choice for c2sd extends to first order in perturbations the
possibility of mapping the phantom DE fluid to a phantom scalar field.
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On the next chapter, we will solve numerically the cosmological perturbations of the three
models presented in this chapter.

2.3.4 Summary

In the present thesis, we have followed the strategy shown in this chapter to compute the
perturbations. In summary, we first define a background for DE components. The latter should
be a well defined function in the full interval in which we pretend to compute the perturbations.
This interval ranges from well inside the radiation dominated epoch till the far future. We
assume that radiation, matter (Baryonic and DM) and DE are conserved separately. The model
parameters are fixed using different constraint methods. In order to avoid instabilities on the DE
sector, we follow the method of DE pressure decomposition on its adiabatic and non‐adiabatic
contributions [16, 101]. Then, we use the Fourier transforms in order to separate the spatial
dependence and get a dynamical set of first order differential equations. Finally, in order to fix
the initial conditions we impose the adiabatic condition in the early Universe where we assume
a Universe completely dominated by radiation.
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3

Perturbations in a genuine phantom Universe

I feel at home in the entire world, wherever there are clouds and birds and human
tears

– Rosa Luxemburg

3.1 Introduction

In this thesis, we will analyse the cosmological perturbations of DE models that induce a BR,
LR or LSi. While the background analysis of the phantom DE scenario has been widely analysed,
this has not been the case of its cosmological perturbations [88–90, 103, 234]. In [88–90] a
kinematical approach was assumed, i.e., a dependence of the scale factor as a function of the
cosmic time was considered for FLRW Universes with future singularities at a finite cosmic time.
Within this setup and using approximated equations for the growth of the perturbations at late‐
time, the authors obtained the DM and DE perturbations [89]. Furthermore, in [88, 90], DE
perturbations are disregarded and only the growth rate of matter perturbations is calculated.
In this chapter, we will rather assume a dynamical model, i.e., we assume a given EoS for DE.
This is the approach employed in Ref [234], where the future behaviour of the linear scalar
perturbations is presented for a type of model that, depending on the value of the parameters,
can lead to a BR or a BF singularity [46]. In our analysis, we use the full theory of linear
perturbation to study how the perturbations of DM and DE, as well as, the gravitational potential
evolve for a range of different scales. Our numerical integrations start from well inside the
radiation era and continue till the far future. In fact, in order to see the behaviour of the
phantom DE models, we extend our numerical calculations till the Universe is roughly e12 times
larger than at present, i.e., roughly z ∼ −1. In the perturbative analysis carried out we (i)
disregard any anisotropic stress tensor, (ii) consider the DE perturbations to be non‐adiabatic
and (iii) describe this non‐adiabaticity within a phenomenological approach for the speed of
sound. On the other hand, we disregard the contribution of neutrinos as a first approach where
we do not use a more advanced Boltzman code such as CAMB [232] or CLASS [233].

The chapter is organised as follows: In Sect. 3.2 we briefly present the method to obtain a
numerical value for the model parameters and some other relevant quantities as for instance,
the Hubble parameter and the amplitude and spectral indexes. In Sect. 3.3 we present the
numerical results for the models introduced in Sect. 2.2 (where we have made use of the equa‐
tions and initial conditions presented in Sect. 2.3). We show show the evolution of different
perturbed quantities related to DM and DE. We present as well the matter power spectrum for
the different models. We equally constrain these models using several measurements of the
growth rate function, more precisely fσ8. Finally, in Sect. 3.4, we present our conclusions.

iThis chapter corresponds mainly to our publication [105]
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3.2 method for the model parameter fixing

For the BR model, we fix the free parameters of the model to the best fit in accordance with
Planck data for wCDM model [18]: wd = −1.019, Ωm0 = 0.306 and H0 = 68.1 km Mpc−1s−1

(please, cf. page 687 of [14, 18]). For our later numerical calculations and as a guideline
we fix the same values for current Hubble parameter and matter fractional energy density.
However, the value of the parameterΩB andΩC are chosen such that at the start of our numerical
calculations the corresponding EoS parameters is equal to the one given by the model A, i.e.
wC (aini) = wB (aini)) = wA. This equality implies that initially the DE perturbations δd of the
three models are also equal if the condition (B.64) is imposed. On the other hand, the values
for the amplitude and espectral index are set to be As = 2.143 × 10−9, and ns = 0.9681 in
accordance with Planck observational data [14].

3.3 Results

In this section, we present and discuss the results obtained for the evolution of the cosmological
perturbations in the three models discussed in Sec 2.2 that contain distinct future cosmological
abrupt events: BR (model A), LR (model B) and LS (model C). For each of these models, the
evolution of the matter perturbations δm, vm, δr, vr, δd, and vd was obtained by numerically
integrating the set of (2.33) after substituting Ψ and Ψx given in (2.34). After carrying this
numerical integration, the gravitational potential Ψ and its derivative Ψx can be obtained from
the first two equations in (2.34). The integration was performed since an initial moment deep
inside the radiation epoch (z ∼ 106), when all the relevant modes are outside the horizon, and till
a point in the distant future (z ∼ −0.99). At the initial moment, the values of the variables were
fixed according to (B.64), (B.66) and (2.41). In addition, for each model this integration was
repeated for 200 different modes with wave‐numbers ranging from kmin ∼ 3.3 × 10−4h Mpc−1,
which corresponds to the mode that is exiting the Hubble horizon at the present time, to a
kmax ∼ 3.0 × 10−1h Mpc−1. Notice that for k ≳ kmax the validity of the linear perturbation
theory breaks down as non‐linear effects start to become dominant in the evolution of the
perturbations. In fact, kmax should be at most 2.0 × 10−1h Mpc−1. On the plots we included
the higher value kmax ∼ 3.0 × 10−1h Mpc−1 to amplify visually the effect and evolution on the
largest modes. As we mention in section 2.2, the cosmological parameters Ωm0 and H0 for all
the three models studied were taken from the recent Planck mission [14]. While the value of wd

for the model (i) was fixed according to the Planck data for wCDM model [18], the parameter
ΩB of model B and the parameter ΩC of model C were fixed so that in all models the variable δd
has the same value at the initial momentii. As such, the results of this section should be viewed
as a first step in obtaining a description of the evolution of the cosmological perturbations in
phantom DE models. A more realistic picture of the imprints of each model will be explored in a
next chapter where a fit of the parameters of the models will be performed using the available
cosmological data.

In figure 3.1, we illustrate the evolution of the cosmological perturbations, since the initial
moment and till a point in the future evolution of the Universe. The two top panels show
the evolution (top‐left) of the fractional energy densities of DM, δm, and (top‐right) of the
gravitational potential, Ψ, which has been normalised with respect to its initial value, Ψini,

iiThis implies that initially all the models have the same value for the DE EoS.
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Figure 3.1: The top panels of this figure show the evolution of (top‐left) the matter perturbation, δm,
and (top‐right) the gravitational potential, Ψ, the latter being normalised to its initial value Ψini, for
different modes k. All the three models considered present an almost identical behaviour that makes
them indistinguishable from ΛCDM (such is the case that although we have plotted the results of k3/2 |δm|
and Ψ/Ψini for ΛCDM, we cannot distinguish those results from the others). The bottom panel shows
the evolution of the perturbation of DE, δd, for the same modes. Here, the differences between the three
models become more noticeable, in particular in the amplitude of the perturbations. In all panels the solid
lines correspond to the model (i), the dotted lines to the model B and the dot‐dashed lines to the model
C. Each colour represents a different mode: k = 3.33 × 10−4h Mpc−1 (purple), k = 7.93 × 10−4h Mpc−1

(dark blue), k = 3.50×10−3h Mpc−1 (light blue), k = 1.54×10−2h Mpc−1 (green), k = 6.80×10−2h Mpc−1

(orange), k = 0.30h Mpc−1 (red). All perturbations are represented versus x = log(a/a0) which varies from
values well inside the radiation era (x = −13.81) till the far future (x = 12). The value x = 0 corresponds
to the present time. The dashed vertical line corresponds to the radiation‐matter equality while the solid
vertical line represents the equality between DE and matter.

while the bottom panel shows the evolution of the fractional energy densities of DE, δd. In
each panel we identify the results of the model A using solid lines, the results of the model
B using dotted lines and the results of the model C using dot‐dashed lines. For each of these
quantities, we plot the results for 6 different wave‐numbers: k = 3.33× 10−4h Mpc−1 (purple),
k = 7.93×10−4h Mpc−1 (dark blue), k = 3.50×10−3h Mpc−1 (light blue), k = 1.54×10−2h Mpc−1

(green), k = 6.80 × 10−2h Mpc−1 (orange), and k = 0.30h Mpc−1 (red). In terms of evolution,
we can distinguish three different behaviours, according to the range of the wave‐numbers:
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Figure 3.2: This Figure shows the evolution of the gravitational potential Ψ for the model A on the top‐
panel, for the model B on the middle panel, and for the model C on the bottom panel for the same modes
k shown in 3.1. Positive (negative) values of Ψ are indicated with solid (dashed) lines. On all panels the
corresponding behaviour in ΛCDM model is indicated by a dotted line. While within a ΛCDM model the
gravitational potential decays exponentially with positive values of x until the asymptotic future, in the
phantom DE models A, B and C Ψ approaches constant negative negative value in the future. The change
in sign of Ψ is scale and model dependent ‐ for a given model it happens first for the larger scales (smaller
k) and for the same mode it happens first for the model A, then for the model B and then for the model C.

• large k: 0.30 hMpc−1 (red) and 6.80× 10−2hMpc−1 (orange).

• medium k: 1.54× 10−2 hMpc−1 (green) and 3.50× 10−3hMpc−1 (light blue).

• small k: 7.93× 10−3 hMpc−1 (dark blue) and 3.33× 10−4 hMpc−1 (purple).

The top‐left panel of figure 3.1 shows that the evolution of the matter perturbations for the dif‐
ferent models and for ΛCDM presents an almost identical behaviour. During the initial radiation
dominated epoch, each individual mode remains constant until it enters the Hubble horizon. Af‐
ter this point, the gravitational collapse leads to the growth of δm, which becomes exponential
in x during the matter era (we have used however a logarithmic scale for k3/2δ ). Once the DE
starts to become dominant, the growth of the matter perturbations slows down as δm seems to
converge to a constant value in the asymptotic future. Notice that since the modes with larger
k enter the horizon at earlier time, they correspond to the curves with higher values of δm in
figure 3.1.

The top‐right panel of figure 3.1 presents the evolution of the gravitational potential Ψ. As
in the case of δm, the overlap between the three models studied and ΛCDM is almost perfect
and any differences until the present time are virtually undetectable. For all the ranges of
k considered the perturbations start with a constant value at the radiation dominated epoch,
reach a second plateau during the matter dominated era and start decaying when DE starts to
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dominate. Nevertheless, we can identify some qualitative differences in the evolution of Ψ until
the present time, depending on the range of k:

• large k: These modes enter the Horizon during the radiation dominated era. Around the
time of horizon crossing they start to decay and can present oscillations before the moment
of radiation‐matter equality. Then, during the matter dominated era the oscillations are
suppressed and the perturbations reach a constant value till DE gains importance.

• medium k: The gravitational potential remains constant during the radiation dominated
epoch, decays around the radiation‐matter equality and reaches a second plateau in the
matter dominated era. The decay observed in the transition between the two epochs is
scale dependent and affects mostly the modes with higher wave‐number.

• small k: As in the previous case, the modes corresponding to the smallest wave‐numbers
show a constant behaviour during the radiation dominated and the matter dominated
epochs and a decay around the radiation‐matter equality. Here, however, the decay is
scale independent and for all the modes the amplitude of Ψ/Ψini during the matter era is
9/10 of its initial value, as follows from theoretical prediction in the limit k → 0 [23].

Around the matter‐DE equality, we find that for all modes the amplitude of the gravitational
potential starts to decay rapidly. However, after some 5 e‐folds of expansion into the future, the
top‐right panel of figure 3.1 seems to indicate that the value of the modes of the gravitational
potential stabilises at a negative value. In order to have a clearer picture of this behaviour, we
plot in figure 3.2 the evolution of |Ψ/Ψini| in logarithmic scale from x = 0 to x = 12 for: top
panel ‐ model A; middle panel ‐ model B; and bottom panel ‐ model C. Here, we see that after
an initial period of exponential decay, eventually the value of Ψ changes sign and then evolves
towards a negative constant (negative values of Ψ are indicated a dashed line). This behaviour
is in clear contrast with the evolution in the ΛCDM model, indicated by dotted lines, where
we see that the exponentially decay with respect to x continues asymptotically. Although not
depicted here, it was found that for quintessence models with constant w > −1 the gravitational
potential also evolves towards a constant but with a positive asymptotic value. Therefore, this
change in sign of the gravitational potential appears as a clear indicator of a phantom evolution.
Notice however that this only happens in the far future and cannot be observed at the present
time. From figure 3.2 it can also be seen that this effect is scale dependent, for the same model
the change in sign happens first for the larger scales and only later for the smaller ones, and
model dependent, for the same value of k the change in sign happens first for the model A, then
for the model B and finally for the model C.

In order to understand the effects described above, we note that once the DE dominated era be‐
gins and the modes start to exit the horizon again, the gravitational potential is initially sourced
by the matter perturbations and DE perturbations. Therefore, the first equation in (2.34) can
be written as

Ψx +Ψ

(
1 +

k2

3H2

)
= − 1

2 (Ωmδm +Ωdδd) . (3.1)

If the rhs of (3.1) evolves asymptotically to a negative constant, then the potential stabilises at
a negative value. On the other hand, if the potential is to cross the Ψ = 0 value and stabilise at
a positive value than the the rhs of (3.1) needs to evolve towards a positive constant in the far
future. We now recall that Ωm is decreasing exponentially with x while Ωd is approaching unity,
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and that is due to the adiabatic conditions 2.37 (see the (B.64) for a detailed calculation and
approximations) imposed at the beginning of the integration, δm is positive‐valued while for a
phantom fluid δd is negative‐valued. Thus, the changing of sign of the gravitational potential
can happen in a phantom DE model after the equality

|Ωmδm| = |Ωdδd| , (3.2)

is reached. From figure 3.1 we observe that when δm and δd become constant after matter‐DE
equality, |δm| is larger for the modes with larger k while δd larger for the modes with smaller k.
Therefore, the modes corresponding to smaller scales are the ones that see the change in the
sign of Ψ first. On the other hand, for the model A the ratio Ωm/Ωd decays faster than for the
models B and C, while decaying faster for the model B than for the model C. Therefore, for the
same value of k the equality (3.2) is reached first for model A, then for model B and finally for
model C, as seen in figure 3.2.

The bottom panel of figure 3.1, we present the evolution of the fractional energy density of
DE for different wave‐numbers. In contrast with the perturbations of DM, here we observe
some differences between the three models. First, we note that while the initial value of δd,ini
is the same for all the models, at the present time for the models B and C δd appears to be
systematically suppressed on all the scales with regards to the model A. This suppression can be
understood by the evolution of δd deep inside the radiation dominated and the matter dominated
epochs. For model A we observe in figure 3.1 that all the modes present a constant plateau in
these periods. in contrast, in the models B and C we find that similar plateaus exist in these
periods but with a negative tilt, meaning that the amplitude of δd is continuously decreasing
until the present time. This effect seems to be tied to how strong is the variation of wd during
these periods since the model C, which is the one that more rapidly converges to wd ≈ −1 is
the one that sees a stronger suppression of the DE perturbations.

Similarly to what happens with the DM perturbations, we can characterise the qualitative evo‐
lution of δd in terms of the range of the wave‐number of the mode:

• large k: These modes are the first to enter the horizon during the radiation epoch. While
initially their amplitude decreases slowly, after the horizon crossing they suffer a fast
decay and we observe a damped oscillatory behaviour till the radiation‐matter equality.
At this point the modes present a second plateau and that lasts until the end of the matter
era. Once DE starts to dominate they start to decay rapidly once more.

• medium k: In this range, the modes present a behaviour of transition. While they enter the
horizon only in the matter era, and therefore present no early oscillations, we still observe
the existence of a plateau during the matter dominated era. The length of the plateau
depends on the horizon crossing time ‐ for the modes with smaller k the amplitude does
not have time to stabilise before the DE dominated epoch. At this point, the amplitude
starts to decay but, much like what happens for modes in the small k range, it stabilises
once the accelerated expansion shrinks the Hubble radius and leads the modes to exit the
horizon.

• small k: These modes are outside of the horizon for most of their evolution and there‐
fore present little to no variation in amplitude till close to the present time, when they
enter the horizon. At this point we observe a difference in behaviour, with the modes
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with smallest wave‐numbers being amplified during the initial stages of the DE dominated
epoch, while the largest modes in this range present a slight decay. Once the DE fluid
completely dominates, however, the modes exit the horizon and their amplitude stabilises
once more.

Despite all the differences in behaviour and amplitude between distinct modes, we always find
that the amplitude of DE perturbations is extremely small when compared to DM. This validates
the usual assumption of a DE smooth fluid.

P
[

h
−
3
M
p
c
3
]

lo
g
1
0

|P
−
P
Λ
C
D

M
|

P
Λ
C
D

M

k
[

h Mpc−1
]

k
[

h Mpc−1
]

Figure 3.3: The lhs panel shows the almost perfect superposition of the matter power spectra, Pδm , of
the models A, B and C with the matter power spectrum of ΛCDM. For clarity of the plot, we did not plot
the case of ΛCDM as it overlaps perfectly with the other three curves. The rhs panel shows the relative
deviation of each model in comparison with ΛCDM. In both panels, the red solid curve corresponds to the
model A, the blue dotted curve corresponds to the model B and the black dot‐dashed curve corresponds
to the model C. The dashed vertical line denotes the mode that crossed the horizon at the moment of the
radiation‐matter equality. All the models present a small enhancement (≲ 1%) of the amplitude of Pδm .
This effect is increasingly suppressed for large scales but seems to become scale invariant for modes that
are already inside the horizon during the radiation‐matter equality. The model that induces a BR singularity
shows the highest enhancement in the power spectrum while the model that induces a LS abrupt event
presents the smallest deviation respect to the ΛCDM model.

In addition, on the left hand side (lhs) of figure 3.3, we compare theoretical matter power
spectrum, Pδm, for each of the models considered in this work with the one predicted by ΛCDM.
For all the cases, we find an almost perfect superposition of the spectra. This reflects the close
resemblance in terms of evolution of all the models up to the present time and suggests that
observables like the matter power spectrum may not be able to distinguish DE models that do
not differ significantly from ΛCDM till today. In each panel we identify the results of model
A using solid lines, the results of model B using dotted lines and the results of model C using
dot‐dashed lines.

In order to be able to make a comparison between the results of the models A, B and C, we have
proceeded to plot on the rhs panel of Figure 3.3 the relative difference in the magnitude of the
matter power spectrum with respect to the ΛCDM model. For all the models we find a small
enhancement (≲ 1%) in the amplitude of the matter power spectrum that is practically constant
for modes that are outside of the horizon at the moment of the radiation‐matter equality. At
the large‐scale end of the spectrum, we find that this enhancement becomes increasingly small.
This effect seems to be related to how much the model in question deviates from ΛCDM until
the present time: model A which is the one that deviates the most from ΛCDM is the one that
sees a stronger enhancement, while model C is the one that more closely resembles ΛCDM and
sees the faintest effect. These results are in conformity with figure 6 of [30] where it is shown
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that in wCDM the suppression of the growth of the matter perturbations becomes smaller as
(1 + wd) becomes more and more negative.
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Figure 3.4: The lhs panel of this figure shows the evolution of fσ8 in terms of the redshift against the
available data points indicated in Table 4.5. The red solid curve corresponds to the model A, the blue
dotted curve corresponds to the model B and the black dot‐dashed curve corresponds to the model C. For
clarity of the plot, we did not plot the case of ΛCDM as it overlaps with the other three curves. The rhs
panel shows the relative deviation of fσ8 with respect to ΛCDM. It can be shown that for the models there
is a small enhancement of fσ8 (≲ 0.4%), which starts to decrease rapidly after the matter‐DE equality
(z ∼ 0.3 − 0.4). The model that induces a BR singularity shows the highest enhancement in the power
spectrum while the model that induces a LS abrupt event presents the smallest deviation respect to the
ΛCDM model.

Finally, we present in figure 3.4 the evolution of fσ8 (lhs panel) and the relative deviation of
fσ8 with respect to ΛCDM (rhs panel) for the three models studied and for a redshift within
the range z ∈ (0, 1.4). In each panel we identify the results of the model A using solid lines,
the results of the model B using dotted lines and the results of the model C using dot‐dashed
lines. We find that all models are within the error bars for almost all the points (cf. Table
3.2). Nevertheless, there seems to be some tension between the theoretical predictions and
the observational data, as the fσ8 curves are systematically above most of the data points for
redshifts up to z ∼ 0.8. This tension between the theoretical predictions based on CMB data –
higher values of Ωm and σ8 – and the local redshift distortion measurements – lower values of
Ωm and σ8 – is already found in ΛCDM and is not a special feature of the models studied in this
work. A more detailed discussion on this topic can be found in [235, 236].

On the rhs panel of figure 3.4, which presents the relative deviation of each model with regards
to ΛCDM, we find the same tendency as in the case of the matter power spectrum in figure 3.3:
there is an enhancement of fσ8 for all models (≲ 0.4%) that seems to be more intense the more
the model deviates from ΛCDM, i.e., the effects are more intense for the model A, followed by
the model B and finally for the model C. These results are in conformity with the increase in
the growth of the matter perturbations in a phantom scenario shown in figure 6 of [30]. After
the matter‐DE equality at z ∼ 0.3− 0.4, this effect starts to vanish rapidly, with the deviations
from ΛCDM being ≲ 0.08% around the present time. This behaviour seems to be associated to
the fact that in all models δm becomes constant at late‐time, when DE completely dominates
the energy budget of the Universe.

By simply looking at the plot on the lhs of figure 3.4, we can clearly see that the three considered
models fit pretty well the observations. We can try to understand which of these three models
fits better the observational data. For this we would need to make a fitting of the background
models which is far beyond the current work. Therefore, we will simply “extrapolate” the
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Model Nfp χ2

ΛCDM 2 0 1.094 1.010
A 3 0 1.202 1.063
B 3 0 1.185 1.048
C 3 0 1.176 1.040

Table 3.1: This table shows the reduced χ2 for different values of Nfp. The lhs (rhs) column within the Nfp

column corresponds to the lhs (rhs) column within the χ2 column.

definition of the reduced χ2:

χ2 =
1

N −Nfp

N∑
i

[fobs (zi)− fth (zi)]
2

σ2
i

. (3.3)

Here, fobs (zi) and fth (zi) are, respectively, the observational and theoretical growth rates at
redshift zi, while σi is the corresponding error for each measurement and N the total number
of observations while Nfp is the number of fitted parameters. We will work out these numbers
for Nfp = 3 as our model has, or Nfp = 0 as we did not fit any of them. Likewise, we will do
it for the ΛCDM model. Our results are shown in table 3.1. These results seem to suggest that
although all the models considered in this work provide a good fit to the observational data,
this fit tends to become worse as the background evolution deviates more from ΛCDM.

3.4 Conclusions

In this chapter, we analyse the cosmological perturbations within the framework of GR, taking
into full account the presence of DE at the perturbative level. The DE component is described
by three different models, where each one of them behaves almost as ΛCDM model at present
but induces a unique doomsday scenario in the future: model A leads to a BR; model B leads to
a LR; model C leads to a LS. At late time, the parameter of EoS of DE for each of these models is
very close to but slightly smaller than −1, thus corresponding to a phantom‐like behaviour of DE.
Despite the small variations of the parameter of the EoS for the three models, the asymptotic
behaviour of the Universe is quite different from the one in ΛCDM, with the unavoidable rip of
all the structure in the Universe no matter the interaction that bound them.

The cosmological parameters of the models are fixed as follows: the value of H0 and Ωm,0 in all
the models, as well as of wd in model A were fixed using the best fit in the Planck data [18].
For the models B and C we fix the respective parameters ΩB and ΩC so that the amplitude of
the DE energy density perturbations is the same for all models in the distant past. This choice
of parameters was made so as to better understand the relative effects of each model on the
evolution of the perturbations. In addition, we fix the effective squared speed of sound of the
DE fluid, defined as δpd/δρd in the rest frame of the fluid, to unity. This choice was made to
remove potential instabilities in the dark sector that would lead the DE perturbations to quickly
violate observational constraints. An improved analysis would incorporate in the calculations
an observationally constrained value for all the parameters , obtained by constraining the ho‐
mogeneous and isotropic evolution of the model using standard candles like SNeIa. This will be
done on the next chapter.
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z fσ8 Survey Ref.

0.02 0.36 ±0.04 [216]

0.067 0.423±0.055 6dF Galaxy Survey [217]

0.15 0.49 ±0.15 SDSS DR7 MGS [218]

0.17 0.51 ±0.06 2dF Galaxy Redshift Survey [214,
219]

0.22 0.42 ±0.07 WiggleZ Dark Energy Survey [220]

0.25 0.351±0.058 SDSS II LRG [221]

0.3 0.407±0.055 SDSS I/II LRG + SDSS III BOSS CMASS [222]

0.32 0.394±0.062 SDSS III BOSS DR12 LOWZ [223]

0.35 0.440±0.05 SDSS DR5 LRG [214,
224]

0.37 0.460±0.038 SDSS II LRG [221]

0.38 0.430±0.054 SDSS III BOSS DR12 [230]

0.4 0.419±0.041 SDSS I/II LRG + SDSS III BOSS CMASS [222]

0.41 0.45 ±0.04 WiggleZ Dark Energy Survey [220]

0.44 0.413±0.080
WiggleZ Dark Energy Survey +
Alcock‐Paczynski distortion [225]

0.5 0.427±0.043 SDSS I/II LRG + SDSS III BOSS CMASS [222]

0.51 0.452±0.057 SDSS III BOSS DR12 [230]

0.57 0.444±0.038 SDSS III BOSS DR12 CMASS [223]

0.59 0.488±0.06 SDSS III BOSS DR12 CMASS [226]

0.60 0.43 ±0.04 WiggleZ Dark Energy Survey [220]

0.6 0.433±0.067 SDSS I/II LRG + SDSS III BOSS CMASS [222]

0.60 0.390±0.063
WiggleZ Dark Energy Survey +
Alcock‐Paczynski distortion [225]

0.61 0.457±0.052 SDSS III BOSS DR12 [230]

0.73 0.437±0.072
WiggleZ Dark Energy Survey +
Alcock‐Paczynski distortion [225]

0.77 0.490±0.18 VIMOS‐VLT Deep Survey [214,
227]

0.78 0.38 ±0.04 WiggleZ Dark Energy Survey [220]

0.8 0.470±0.08 VIMOS Public Extragalactic Redshift Survey [228]

1.36 0.482±0.116 FastSound [229]

Table 3.2: This table shows the available observational data points for fσ8 at different redshifts, which
are plotted in figure 3.4. For each data point we present, in order, the value of the effective redshift,
the value of fσ8 and respective error, the corresponding survey, and the reference from which the values
were taken.

For each of the models studied, we analyse the evolution of the linear cosmological pertur‐
bations in absence of an anisotropic stress tensor and considering non‐adiabatic contributions
for the DE perturbations. In particular, we compute numerically the evolution of the matter
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density contrast for the DM and DE components, together with the evolution of the gravitational
potential. The integrations are performed from well inside the radiation era till the far future.
The outcome, which we present in figure 3.1, shows that in all the models there is a very similar
behaviour in the evolution of the perturbations. The largest difference until the present time
seems to lie in the magnitude of DE perturbations: even though the initial value of δd is the same
in all the models, we find that the more the background model resembles ΛCDM, the smaller
δd is at the present time. This effect is observed for all the scales. On the other hand, our
numerical results indicate that in the future, when the perturbations of DE are the only sources
of the gravitational potential, a change of the sign of Ψ occurs on a scale‐dependent order: it
starts at large scales and progressively affects the smaller ones. We also find that this effect is
model dependent, in the sense that it happens first in the model A, which leads the Universe
to a BR singularity, then in model B which leads to a LR abrupt event, while in model C which
leads to a less virulent LS abrupt event, this effect happens later. We interpret this result as a
change in the behaviour of gravity, which in the far future becomes repulsive and starts to rip
structures apart, an effect that was already discussed in previous works [66, 69] on the same
kind of phantom DE‐fuelled abrupt events.

Using the results of the numerical integrations, we obtain for each model theoretical prediction
for the matter power spectrum, as observed today, and the late‐time evolution of the observable
combination fσ8. In all three models the deviations to the results of ΛCDM are within the ≲ 1%

margin for the matter power spectrum (cf. figure 3.3), and within the ≲ 0.3% margin for fσ8
(cf. figure 3.4). Comparing the results of the three models we find that the deviations to ΛCDM,
are stronger for the model A that leads the Universe to a BR and weaker in the model C that
leads the Universe to a LS, while the model B that induces a LR in the future has an intermediate
behaviour. This suggests that these effects become more noticeable the more the background
model deviates from ΛCDM at the present time.

We compare the evolution of fσ8 for low reshift (z ≲ 1.4) with the latest observations and
find that, for all the models, the curve of fσ8 is within the error bars for most data points. We
quantify the deviation from the observations by calculating the corresponding reduced χ2, which
allows us to make a preliminary comparison of the results for the three models. We find that all
models are only slightly worse that ΛCDM at fitting the observational data. Here, we note that
we do not perform a true statistical comparison of our models with observations, in particular we
do not take into account the difference in number of parameters of the models. Nevertheless,
since the three models analysed in this work have the same number of free parameters, the
reduced χ2 allows us to state that model A provides the worse fit, while model B seems to be
of the three models analysed the one that best fits the observational data. We thus conclude
that although the ΛCDM model gives the best fit to the observations, we cannot exclude other
models like the ones analysed in this thesis.

In general, the results of this paper suggest the possibility of finding imprints of a phantom DE
which can be in agreement with the current observations. Nevertheless, the effects are small
and a further examination is necessary to find an indication that could more clearly differentiate
each model. We also stress that since we did not make an observational fit of these models (from
a homogeneous and isotropic point of view), all our results should be taken as a guideline for a
more accurate study that we hope to carry in the future.
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While the classical cosmological pertubations of these models at first order are well defined,
as we have shown, there are still some fundamental and intrinsic problems related to phantom
DE models. In fact, as discussed in [31, 237, 238], when a particle‐physics description of the
phantom DE is attempted, some instabilities may rise in theory due to higher order effects.
In all three models presented in this work, this kind of effects can potentially become more
problematic as the Universe evolves into one of the cosmological events considered, as the
energy density becomes increasingly high. Though a thorough examination of these effects and
the compatibility of the phantom DE models with a particle physics description is outside the
scope of this thesis, we will take this question into account in a future study.
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4

Constraining observationally the phantom DE
models

Science, for me, gives a partial explanation for life. In so far as it goes, it is based on
fact, experience and experiment

– Rosalind Franklin

4.1 introduction

It is well known that the expansion of our Universe is accelerating. This fact was observation‐
ally supported firstly in 1998 by the measurements of supernova type Ia (SNIa) [10, 11] and
then, corroborated by measurements of the Cosmic Microwave Background (CMB) and Baryonic
Acoustic Oscillations (BAO) [13]. On the other hand, the history of the expansion reveals that
the transition to an accelerated state happened recently [14, 15]. The origin of the matter
that induces the current speed up of the Universe is still unknown and it is usually dubbed DE
[23, 194]. In addition, the contribution of DE to the total energy density of the Universe is
roughly 70% [13, 14], so the hidden source that causes the current acceleration of the Universe
covers a significant portion of the total energy budget. We do not know much about the fun‐
damental cause of DE. However, there are phenomenological models that can describe suitably
the current expansion of the Universe. Amazingly, the cosmological constant suggested by Ein‐
stein, in principle, to get a static Universe, becomes nowadays the paradigm that better fits
the observational data. The model, which also takes into account the contribution of DM was
coined as ΛCDM. This model is characterised by having an Equation of State (EoS) parameter for
DE which is constant and equal to −1, in such a way that the asymptotic evolution leads to a
de Sitter Universe. Despite that the ΛCDM model gives the best observational fit, there is no
reason to exclude other models that could describe as well suitably the current acceleration,
as those that we will address in the present thesisi. In addition, the ΛCDM model suffers from
some fine tuning problems.

It can be said that the problem has become the problem of the century for cosmologist. The urge
to reveal this intriguing fact has motivated a vast amount of works trying to explain the recent
speed up of the Universe. In this way, several models that can induce a positive acceleration
have been suggested. We can classify them in two groups: (i) quintessence models which are
those that preserve the null energy condition, i.e. 0 ≤ ρ + p, in such a way that the EoS
parameter is always larger than −1. (ii) phantom models where the null energy condition is
violated and the EoS parameter can go below −1 [33, 239, 240]. Surprisingly, phantom models
are not excluded, but even seem to be favoured by observations [15, 30, 85, 241–243].

On the other hand, the discovery of an accelerated Universe has opened the door to theorise
about an infinity of possible doomsdays, where the universal acceleration is so powerful that

iThis chapter corresponds mainly to our publication [107]
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the Universe ends ripping itself in a dramatic state. Those events are named and classified as
singularities or abrupt events depending if they occur at a finite or an infinite cosmic time,
respectively. In particular, we will focus on three genuine phantom models, where each of them
induce a specific doomsday known as BR [28–35, 244], LR [47, 55, 59, 64–67, 201, 245] and LS
[69, 71, 205]. While a BR is a true singularity, we highlight that a LR and a LS are abrupt events.
However, in all these models the bound structures will be ripped apart unavoidably sooner or
later. In this scenario, the energy density could increase up to the Planck scale, where quantum
effects are expected to be important. This has lead to carry a quantum analysis close to the
cosmological singularities/abrupt events, where the classical singularity could be avoided in the
quantum realm [42, 44, 48, 51, 57, 63, 70, 110, 188, 189, 202–204, 246–248] (see the recent
review [61]). In this work, we allude to the models that induce these events as model A, B
and C, respectively. In particular, the model A is actually the model known as wCDM, where
its EoS parameter is constant and less than −1. The corresponding model parameters were
observationally constrained in [14, 15, 18]. On the other hand, the model B was constrained in
[66], where the authors fit observationally the model parameters and compute when different
bound structures are destroyed. However, the model C has not been observationally constrained
so far. All these models need to be compared and fitted with the available observational data.
In addition, the cosmological perturbations have been a useful tool for cosmologist in this task,
for example, they predict the matter distribution that can be compared with the observations.
The predicted observables within the cosmological perturbations theory have been widely used
to test several models of DE, as well as DE‐DM interacting models and f(R) modified gravity.

In the models studied in [88–91], it is assumed a dependence of the scale factor with cosmic
time. In [88] the authors disregard DE perturbations and the predicted evolution of the growth
rate is compared with observations. In [89, 90], DE and DM perturbations are considered. These
models are suitable to describe the Universe from the matter dominated epoch till the present
time. In addition, most of them predict future singularities or abrupt events. In [234] the
authors compute the matter and DE perturbations and fit the results with the observational
data. In [103] a mixture of phantom and standard fluids is studied in order to analyse the
instabilities arisen at the perturbative level. Some instabilities merge when dealing with a
negative EoS parameter of DE fluids. To avoid such instabilities, in [16, 101] the authors suggest
a decomposition of the pressure in its adiabatic and non adiabatic contributions. In [105] this
method is applied and initial conditions are imposed at the radiation dominated epoch. On the
other hand, in [249] the authors analyse the effects of non adiabaticity on the growth rate for
several DE models and compute the observable fσ8.

There are other interesting models of DE that have been studied within the framework of cosmo‐
logical perturbations. In [250] the authors obtain the growth rate in the framework of a scale
invariant theory. The initial conditions are set at a matter dominated epoch and they com‐
pute the resulting perturbations for a range of different backgrounds. The DE‐DM interacting
models are useful to describe a transition to an accelerated Universe [251–253]. In [251] the
authors focus on computing the anisotropies of the CMB and find a particular footprints of the
model studied. In [252], models arising from the scalar‐fluid theories with a derivative coupling
are analysed. The authors compute the perturbations and predict particular footprints on the
growth rate. On the other hand, in [253] the authors study the perturbations for a model where
a DM superfluid is assumed to be responsible of the current acceleration. Such superfluid con‐
sists on a combination of the ground and excited states of DM. The obtained expansion history
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and growth rate are compared with that given by ΛCDM.

A large class of modified gravity models have been studied. For example, in [196, 254] the
authors consider different f(R) models with a non vanishing anisotropic stress tensor. The
impact of the EoS parameter in several perturbation variables is studied and the predicted
anisotropies on CMB are faced against observations. In [255] the authors not only constrain
observationally the background model but also compute the resulting perturbation variables
such as the Bardeen potentials and fσ8.

On the other hand, the cosmological perturbations are useful to constrain further observationally
DE models. For example, in [91] the scale dependent DE perturbations are studied for different
DE models where some future singularities are involved. The authors find the possibility to
distinguish different DE models in the oncoming missions as DESI, Euclid, and WFirst‐2.4. In
[256] the authors constrain observationally a DE scalar field representation in the so called
bound DE model.

The most considered observational probes of DE are SNIa, BAO and CMB. SNIa describe the ex‐
pansion history of the Universe by means of luminosity distances. BAO have been also developed
and provides a direct measurement of the Hubble expansion, H(z), and the angular diameter
distance. CMB provides distance priors which are a strong constraint on DE. In order to avoid de‐
generacy in the observational data, a tighter constraints on the model parameters are obtained
by combining all of SNIa, CMB, BAO and measurement ofH(z), i.e. the Hubble expansion. In ad‐
dition, since the observational data are obtained from independent cosmological probes, their
total likelihood is the product of each separate likelihoods.

In this chapter, we focus in two goals. The first one consists on constraining observationally the
parameters that characterise the models A, B and C using, for consistency, the same samples
of data. Indeed, We compare and classify these models with respect to the ΛCDM and test
their consistency to the observational data. In order to obtain the best fit parameters, their
mean values and their uncertainties, we confront our DE models by means of a Markov Chain
Monte Carlo (MCMC) [255] method to the observational data. We use the Pantheon compila‐
tion of SNIa dataset [257], the Planck 2018 distance priors of CMB [15, 258], the BAO dataii

including (6dFGS+SDSS+BOSS‐LOWZ+BOSS‐CMASS+WiggleZ+BOSS‐DR12) [260–264] and measure‐
ments of the Hubble rate [260, 265–271]. For the second goal, we will use the previous best
fit parameters to compute the first order linear perturbations and analyse the distribution of
matter during the different cosmological epochs. The aim is to analyse the footprints that these
models could leave on the distribution of galaxies. Indeed, we compute the predicted matter
power spectrum and the evolution of fσ8 quantity at low redshift. This fσ8 evolution is faced
against a second and independent set of observations (matter power spectrum and fσ8 data
set). For consistency, aside from the models A, B and C, we compute as well the results for the
ΛCDM setup, which we use as a pattern to compare with the other three models.

The chapter is organised as follows: In section 4.2, we discuss the details of the different data.
In section 4.3, we show the obtained results for the model parameters with their confidence
levels and contourplots. In section 4.4, we compute the evolution of the perturbation variables

iiThe authors of [259] have regrouped in a chronological order 30 BAO non correlated data points.
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and the predicted matter power spectrum and fσ8. Finally, in section 4.5, we discuss our main
conclusions.

4.2 Data description

4.2.1 SNIa data

We have used the Pantheon compilation as a SNIa dataset, they are made of 1048 spectroscop‐
ically confirmed Type Ia Supernovae distributed in the redshift interval 0.01 < z < 2.26 [257].
The Pantheon sample is the largest compilation up to date and consists of a different supernovae
surveys, including SDSS, SNLS, various low‐z samples and some high‐z samples from HST. The
distance modulus for supernovae is given by,

µth = 5 log10
dL
Mpc

+ 25, (4.1)

where dL = (c/H0)DL is the luminosity distance, H0 is the Hubble constant, c is the speed of
light,

DL = (1 + zhel)

∫ zCMB

0

dz

E(z)
, (4.2)

where zhel is the heliocentric redshift and zCMB is the CMB frame redshift, E(z) = H(z)/H0 is
the normalised Friedmann equation which encodes DE models.

The observed apparent magnitude for the Pantheon compilation is given by mobs = µobs +M

[257], where µobs is the observed distance modulus and M is the absolute magnitude. To esti‐
mate the cosmological parameters, we compute the chi‐square, χ2. For SNIa, χ2

SN is constructed
as

χ2
SN = (µobs − µth)

T.C−1
Pantheon.(µobs − µth), (4.3)

where (µobs − µth) is the difference vector between the model expectations and the observed
magnitudes, where CPantheon is the covariance matrix of Pantheon data which is given by the
sum of a statistical part and systematic part CPantheon = Cstat + Csys. In order to get rid of
the nuisance parameterM, we perform an analytical marginalisation over it, by defining a new
chi‐square [272]

χ2
SN = A+ ln

C

2π
− B2

C
, (4.4)

where A = (µobs − µth)
T.C−1

Pantheon.(µobs − µth), B = (µobs − µth)
T.C−1

Pantheon.1 and C =

1T.C−1
Pantheon.1 being 1 the 1048×1048 identity matrix.

4.2.2 CMB data

The power spectrum of CMB affects crucially the physics, from the decoupling epoch till today.
These effects are mainly quantified by the acoustic scale la and the shift parameter R given by
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[17]

R ≡
√

ΩmH2
0 (1 + zCMB)DA(zCMB), (4.5)

la ≡ (1 + zCMB)
πDA(zCMB)

rs(zCMB)
. (4.6)

where zCMB is the redshift at the decoupling epoch, DA(zCMB) is the angular diameter distance
of photons in a flat FLRW Universe expressed as

DA(z) =
1

H0(1 + z)

∫ z

0

dz′

E(z′)
, (4.7)

and rs(z) is the comoving sound horizon given by

rs(z) =
1

H0

∫ a

0

da′

a′E(a′)
√

3(1 + R̄b)a′
, (4.8)

where a = (1 + z)−1 is the conversion rule from the redshift to the scale factor and Rb =

31500Ωbh
2(TCMB/2.7K)−4, with TCMB = 2.275K [273]. The redshift at decoupling is given by the

fitting formula [274]

zCMB = 1048[1 + 0.00124(Ωbh
2)−0.738][1 + g1(Ωmh

2)g2 ], (4.9)

where

g1 =
0.0783(Ωbh

2)−0.238

1 + 39.5(Ωbh2)0.763
, (4.10)

and

g2 =
0.56

1 + 21.1(Ωbh2)1.81
. (4.11)

The CMB covariance matrix is given by [258]

CCMB = 10−8 ×

 1598.9554 17112.007 −36.311179

17112.007 811208.45 −494.79813

−36.311179 −494.79813 2.1242182

 . (4.12)

Finally, the CMB contribution to the total χ2 is

χ2
CMB = XT

CMB.C
−1
CMB.XCMB, (4.13)

where XCMB is the CMB parameters vector based on Planck 2018 release, as derived by [258]

XCMB =

 R− 1.74963

la − 301.80845

Ωbh
2 − 0.02237

 . (4.14)
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4.2.3 BAO data

The baryon acoustic oscillation is an important observational data currently used to constrain
the cosmological parameters more efficiently in combination with other probes such as the CMB.
The information taken from the BAO peaks present in the matter power spectrum can be used to
determine the Hubble parameterH(z) and the angular diameter distanceDA(z) which allows us
to calculate DE parameters. The combination of the angular‐diameter distance and the Hubble
parameter, DV (z), is given by [275]

DV (z) ≡
[
(1 + z)2D2

A(z)
z

H(z)

]1/3
, (4.15)

where the redshift at the drag epoch, zd, is given by the fitting formula [276]

zd =
1291(Ωmh

2)0.251

1 + 0.659(Ωmh2)0.828
[1 + b1(Ωbh

2)b2 ], (4.16)

where

b1 = 0.313(Ωmh
2)−0.419[1 + 0.607(Ωmh

2)0.674], (4.17)

and

b2 = 0.238(Ωmh
2)0.223. (4.18)

To infer the cosmological parameters, BAO data can be used as constraints beside other surveys
such as SNIa and CMB, in general the χ2 statistics is used for that purpose, and BAO contribution
takes the from

χ2
BAO = XT

BAO.C
−1
BAO.XBAO, (4.19)

where XBAO is the difference vector between theoretical predictions (the third column of the
tabe 4.1 ) and observational measurements (the fourth column of the same table) and CBAO is
the covariance matrix given for the correlated data.

We should mention that WiggleZ and BOSS‐DR12 data are correlated, and their covariance ma‐
trices are given respectively [263, 264]

CWiggleZ = 10−4 ×

 2.17898878 −1.11633321 0.46982851

1.70712004 −0.71847155

1.65283175

 , (4.20)

CBOSS‐DR12 =



624.707 23.729 325.332 8.34963 157.386 3.57778

5.60873 11.6429 2.33996 6.39263 0.968056

905.777 29.3392 515.271 14.1013

5.42327 16.1422 2.85334

1375.12 40.4327

6.25936


. (4.21)
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BAO name z BAO expression BAO measurement σBAO rfids Ref

6dFGS 0.106 rs
DV

0.327 0.015 − [261]

SDSS DR7 MGS 0.15 DV
rfid
s
rs

4.47 0.16 148.69 [262]

BOSS‐LOWZ 0.32 DV
rfid
s
rs

8.47 0.17 149.28 [260]

BOSS‐CMASS 0.57 DV
rfid
s
rs

13.77 0.13 149.28 [260]

WiggleZ
0.44 1716 83

0.60 DV
rfid
s
rs

2221 101 148.6 [263]

0.73 2516 86

0.38 DA(1 + z)
rfid
s
rs

1512.39 25.00

BOSS‐DR12
H

rfid
s
rs

81.2087 2.3683

0.51 DA(1 + z)
rfid
s
rs

1975.22 30.10 147.78 [264]

H
rfid
s
rs

90.9029 2.3288

0.61 DA(1 + z)
rfid
s
rs

2306.68 37.08

H
rfid
s
rs

98.9647 2.5019

Table 4.1: Summary of the Baryon Acoustic Oscillations data used in the current work.

The total χ2
BAO can be expressed as:

χ2
BAO = χ2

6dFGS + χ2
SDSS + χ2

BOSS‐LOWZ +

χ2
BOSS‐CMASS + χ2

WiggleZ + χ2
BOSS‐DR12. (4.22)

4.2.4 The H(z) measurements

In our analysis we have induced the Hubble expansion rate data to have a tighter constraints on
our DE models, in general the H(z) data can be derived either by the clustering of galaxies and
quasars by measuring the BAO in the radial direction [277] or by the differential age method by
expressing the Hubble parameter as

H (z) = − 1

(1 + z)

dz

dt
(4.23)

and inferring dz/dt from∆z/∆t [278], where∆z and∆t are respectively the redshift difference
and the age difference between two passively evolving galaxies. In the current analysis we used
a compilation of 36 data points of the Hubble parameter shown in table 4.2 where each data
point is given with its corresponding reference. While the Hubble parameter data points are not
correlated, the χ2

H(z) function can be written as

χ2
H(z) =

36∑
i=1

[
Hobs,i −H(zi)

σH,i

]2
, (4.24)

where Hobs,i is the observational value of the Hubble parameter given for each redshift zi in the
table 4.2 and H(z) is the theoretical prediction of the Hubble parameter.
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z H(z) σH Ref. z H(z) σH Ref.

0.07 69.0 19.6 [265] 0.48 97.0 62.0 [266]

0.09 69.0 12.0 [266] 0.57 96.8 3.4 [260]

0.12 68.6 26.2 [265] 0.593 104.0 13.0 [267]

0.17 83.0 8.0 [266] 0.60 87.9 6.1 [266]

0.179 75.0 4.0 [267] 0.68 92.0 8.0 [267]

0.199 75.0 5.0 [267] 0.73 97.3 7.0 [266]

0.2 72.9 29.6 [265] 0.781 105.0 12.0 [267]

0.27 77.01 14.0 [266] 0.875 125.0 17.0 [267]

0.28 88.8 36.6 [265] 0.88 90.0 40.0 [266]

0.35 82.7 8.4 [268] 0.9 117.0 23.0 [266]

0.352 83.0 14.0 [267] 1.037 154.0 20.0 [267]

0.3802 83.0 13.5 [270] 1.3 168.0 17.0 [266]

0.4 95.0 17.0 [266] 1.363 160.0 33.6 [269]

0.4004 77.0 10.2 [270] 1.43 177.0 18.0 [266]

0.4247 87.1 11.2 [270] 1.53 140.0 14.0 [266]

0.44 82.6 7.8 [225] 1.75 202.0 40.0 [266]

0.44497 92.8 12.9 [270] 1.965 186.5 50.4 [269]

0.4783 80.9 9.0 [270] 2.34 222.0 7.0 [271]

Table 4.2: This table shows the measurements of the Hubble expansion.H(z) data used in the current
analysis are in the unit of km s−1 Mpc−1.

Finally, the χ2
tot is the sum of all the χ2 previously defined:

χ2
tot = χ2

SN + χ2
CMB + χ2

BAO + χ2
H(z). (4.25)

4.3 background results

In this section, we present the obtained results for the observational fit. The figure 4.1, 4.2
and 4.3 show the contour plots of the model parameters corresponding to the model A, B and
C, respectively. The numerical results are all gathered in Table 4.3.

The criteria methods used in the literature to compare between models are mainly the χred
min

and the corrected Akaike Information Criterion (AICc) defined as [279–281]

AICc = −2 lnLmax + 2Np +
2Np(Np + 1)

Nd −Np − 1
, (4.26)

where Np denotes the number of parameters and Nd denotes the number of data. In the case
of Gaussian errors, χ2

min = −2 lnLmax and

AICc = χ2
min + 2Np +

2Np(Np + 1)

Nd −Np − 1
. (4.27)
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Model Par Best fit Mean χ2
tot χ2

tot
red

AICc ∆AICc

ΛCDM
Ωm 0.318349+0.00248001

−0.00248001 0.31834+0.00248987
−0.00248987 1047.42 0.957422 1053.441953 0

h 0.69814+0.0480814
−0.0480814 0.698602+0.0481787

−0.0481787

Ωbh
2 0.022218+0.000120872

−0.000120872 0.0222202+0.000122619
−0.000122619

A
Ωm 0.317173+0.00318473

−0.00318473 0.317327+0.0031808
−0.0031808 1047.51 0.958380 1055.54663 2.104677

wd −1.02758+0.0240102
−0.0240102 −1.02874+0.0239306

−0.0239306

h 0.691013+0.0507771
−0.0507771 0.691523+0.0507536

−0.0507536

Ωbh
2 0.0221218+0.000170789

−0.000170789 0.022123+0.000170538
−0.000170538

B
Ωm 0.317198+0.00276851

−0.00276851 0.317705+0.00280131
−0.00280131 1047.53 0.958398 1055.56663 2.124677

ΩB 0.000445721+0.000416159
−0.000416159 0.000763824+0.000416359

−0.000416359

h 0.694604+0.0494111
−0.0494111 0.688584+0.0493315

−0.0493315

Ωbh
2 0.0221295+0.000130585

−0.000130585 0.0221028+0.000132755
−0.000132755

C
Ωm 0.317115+0.00253975

−0.00253975 0.316144+0.00253899
−0.00253899 1047.56 0.958426 1055.59663 2.154677

ΩC 0.0500261+0.0130141
−0.0130141 0.0299424+0.0133398

−0.0133398

h 0.695705+0.0481201
−0.0481201 0.701962+0.0481465

−0.0481465

Ωbh
2 0.022138+0.000121724

−0.000121724 0.0221928+0.000121811
−0.000121811

Table 4.3: Summary of the best fit and the mean values of the cosmological parameters.
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Figure 4.1: These figures correspond to 1σ and 2σ confidence contours obtained from SNIa+CMB+BAO+H(z)
data for the model A.
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Figure 4.2: These figures correspond to 1σ and 2σ confidence contours obtained from SNIa+CMB+BAO+H(z)
data for the model B.
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Figure 4.3: These figures correspond to 1σ and 2σ confidence contours obtained from SNIa+CMB+BAO+H(z)
data for the model C.
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In practice, we do not care about AICc value itself in model comparisons. Actually we are
interested to calculate the ∆AICc between models, i.e, ∆AICc = AICc,model −AICc,min. The
model with a minimal value of AICc is more favoured by data and it is chosen as a reference
model. Roughly speaking, the models with 0 < ∆AICc < 2 have substantial support, those with
4 < ∆AICc < 7 have considerably less support, and models with ∆AICc > 10 have essentially no
support, with respect to the reference model. Finally, ΛCDM model is also favoured by the χred

min

selection.

In table 4.3, we show the best fit and the mean values of the parameters. The free parameter
vectors when assuming a flat Universe for ΛCDM, A, B, and C models are respectively θΛCDM =

(Ωm, h,Ωbh
2), θA = (Ωm, ωd, h,Ωbh

2), θB = (Ωm,ΩB, h,Ωbh
2) and θC = (Ωm,ΩC, h,Ωbh

2). The
χ2
tot and χ

2
tot

red are also given in the same table. In order to study the statistical significance of
our constraints, we compute AICc and ∆AICc with Nd = 1097, Np = 3 for ΛCDM and Np = 4

for the rest of the models. The values of ∆AICc are 2.104677, 2.124677 and 2.154677 for the
models A, B and C respectively, and are given for the purpose of models comparison. Given that
all the ∆AICc values are close to ∼ 2, it makes the three models A, B and C competitive and
supported by the data. But still the strongly favoured model is the ΛCDM.

4.4 Perturbation Results

Before tackling the cosmological perturbations of the models introduced in chapter 2, we show
how the EoS parameter evolves in time for the models A, B and C. The reason for highlighting
wd for these models, is the important role they play for the initial condition of DE perturbations
(cf. (3.20) and (3.21) of [105]).

In order to get figure 4.4, we use the best fit parameters values obtained in section 8.45 which
are shown in table 4.3. In this figure, the black line corresponds to ΛCDM, the red line to model
A; i.e. a constant EoS and smaller than −1, and leading to a BR, the green line to model B; i.e.
the one leading to a LR, and the purple line to model C; i.e. the one leading to a LS.

We next show our results for the evolution of the cosmological perturbations of radiation, DM
and DE. We have computed these perturbations for six relevant modes which run from roughly
a mode corresponding to the current Hubble horizon k1 = 3.33× 10−4h Mpc−1 to the largest
mode where the linear regime is still valid, k6 = 0.1 h Mpc−1. The six modes are equidistant in
a logarithmic scale as follows

kj = k1

(
k6
k1

) j−1
5

, (4.28)

where i runs from 1 to 6. Therefore, the numerical value of the six modes are

k1 = 3.33× 10−4h Mpc−1, k4 = 1.02× 10−2h Mpc−1, (4.29)

k2 = 1.04× 10−4h Mpc−1, k5 = 3.19× 10−2h Mpc−1, (4.30)

k3 = 3.26× 10−3h Mpc−1, k6 = 1.00× 10−1h Mpc−1. (4.31)

As mentioned on the previous section, the evolution of the perturbations are computed from
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w
d

x

Figure 4.4: This figure shows the evolution of the EoS parameter of DE, wd, versus x ≡ ln (a) for the model
parameters given by the best fit in table 4.3. The model A corresponds with the red line describing a
constant EoS. The model B is represented by the green line while the model C is shown in purple. The
ΛCDM model is presented as a black line at wd = −1.

well inside the radiation dominated epoch, xi = −13.8, till the distant future, xf = 13, where
the DE completely dominates the dynamics of the Universe. We consider xf large enough to
detect relative deviations between the studied models. We next present the main results.
The left panel of figure 4.5 shows the evolution of the matter density contrast of models A,
B and C together with ΛCDM. As can be seen, there is no significant deviation since all the
modes show almost identical evolution. As expected, the matter density contrast of each mode
grows linearly when the mode enters the horizon and reaches it maximum value when DE starts
dominating.

The right panel of figure 4.5 shows the evolution of the gravitational potential, Ψ, divided by
its initial value, Ψ∗. The results of the models A, B, C and ΛCDM are plotted together in the
figure. Once again, the overlap is almost perfect, except for the small deviations presented by
all the modes at very large scales, we will discuss this feature later on.
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Figure 4.5: The left panel of this figure shows the evolution of the mater density contrast while the right
panel shows the evolution of the gravitational potential divided by its initial value. Both panels show a
perfect overlapping of the results corresponding to the models A, B, C and ΛCDM. The results corresponding
to a given mode are represented by a particular color as follows: k1 (purple), k2 (dark blue), k3 (light blue),
k4 (green), k5 (orange) and k6 (red).
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The left panel of figure 4.6 shows the predicted current matter power spectrum of models A,
B, C and ΛCDM. The black curve corresponds to the ΛCDM model while the models A, B and C
are shown overlapped in a single red curve. The overlap is almost perfect being impossible to
distinguish any footprints between these models and ΛCDM. In general, the main behaviour is
in accordance with that found in the literature and gives a suitable description of the current
matter power spectrum.

The right panel of figure 4.6 shows the evolution of fσ8. The results of the models A, B and
C are overlapped and appear as purple curve, while the results corresponding to ΛCDM are in
black. There are no significant deviations between models A, B and C. However, there is some
deviation with regards to ΛCDM for z ∼ 0.3 to z ∼ 0.6. This result implies that fσ8 is larger for
phantom DE models as compared with ΛCDM. This result is in agreement with [105, 106].

As can be seen from figures 4.5 and 4.6, it is very difficult to distinguish the models A, B and C as
no significant deviation is observed on the matter density contrast and gravitational potential.
In view of this, we find convenient to compute relative deviations with respect to ΛCDM.
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Figure 4.6: The left panel of this figure shows the matter power spectrum when using the model parameters
given table 4.3. The result corresponding to the models A, B and C are shown overlapped in red, while the
black color corresponds to the ΛCDM model. As can be seen, both results are almost indistinguishable. On
the other hand, the right panel of this figure shows the evolution of the fσ8. The evolution corresponding
to the ΛCDM model is shown in black color, while the results given by the models A, B and C are gathered
in a single purple curve.

The left panel of figure 4.7 shows the relative difference for the models A, B and C with respect
to ΛCDM of the matter power spectrum. As can be seen, all the models show a very similar be‐
haviour. The deviation is positive for all the modes, reaching a maximum at k ≃ 5×10−3h Mpc−1

where the largest deviation is around a 2%. The right panel of Figure 4.7 shows the relative dif‐
ference of fσ8 for the models A, B and C with respect to ΛCDM. Such deviations show a maximum
at z ≃ 0.5 with a value around 0.5%. The deviation of fσ8 with respect to ΛCDM is positive for
all the redshift range except for the lowest values. In fact, a transition to a negative difference
is observed around redshift z ≃ 0.05 . This later deviation increases as we approach the present.
Once again, we obtain very similar plots when comparing the results obtained for the models A,
B and C. We find that the largest deviations correspond to the model A and the smallest one to
the model C.

Figure 4.8 shows the evolution of DE density contrast, where each panel corresponds to a given
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Figure 4.7: The left and right panels of this figure show the relative deviation of the matter power spectrum
and fσ8 with respect toΛCDM, respectively. The colors red, green and purple have been used to plot results
corresponding to the models A, B and C, respectively. Both plots are drawn in a logarithmic scale, where
the dashed line is used to denote negative values and the solid line to denote positive values.

mode. As the perturbations of DE into the ΛCDM model vanishes, we do not compare them with
the result of our models. The initial values of the perturbations δd are not significantly affected
for different modes, i.e. k. However, they depend on the specific model because the EoS of DE is
model dependent, in particular at x = xi where we start our numerical integrations. Moreover,
given that the EoS parameter for the model C is closer to −1 and it shows the highest density
contrast for DE at earlier time (cf. (B.64)). The model A presents the opposite behaviour, while
the model B shows an intermediate behaviour. This hierarchical behaviour is inverted in the
future, where δd gets larger values for the model A and smaller values for the model C. This
transition occurs at very low redshifts which brings difficulties in distinguishing the different DE
models analysed.
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Figure 4.8: This figure shows the DE density contrast for the models A (red), B (green) and C (purple).
Each panel corresponds to a specific wave‐number k.

We have seen that the difference between models are very small. However, we know very well
that each model induces a different and unique abrupt event in the far future. Therefore,
we have focused on the evolution of the gravitational potential at very large scale factors.
Figure 4.9 shows the evolution of the gravitational potential, Ψ, from the present cosmic time
to the far future for different modes. As can be seen, at present the gravitational potential of
all the models are very close to ΛCDM. However, at some point in the future, the gravitational
potential flips its sign and evolves towards a constant negative value. Within these asymptotic
evolutions, model A introduces the highest deviation while model C introduces the smallest one.
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Figure 4.9: This figure shows the evolution of the gravitational potential, Ψ, divided by its initial value,
Ψ⋆. As done in the previous figures, each panel corresponds to a given value of wave‐number while each
color represents a particular model (model A red, model B green and model C purple). The dashed lines
denote negative values while solid lines represent positive values. The black dashed lines correspond to
the ΛCDM model.

The flip on the sign of Ψ occurs sooner in the model A, then in the model B and finally in the
model C, independently of the mode. On the other hand, the smallest is the mode the sooner
occurs the sign flip on the gravitational potential.

Finally, and based on the best parameters of table 4.3, we have computed the reduced χ2 for
the fσ8 analysis in order to have a numerical value that could quantify the difference between
models. Note that we do not run a different chain taking into account such fσ8 data. We rather
perform a simple analysis in order to get some preliminary results involving background and
perturbative observations. Here, we have used the “Gold 2017” data [282]. This data provides
a set of the latest measurements of fσ8 valuesiii (ranging from a redshift z ∼ 0 to z ∼ 1.4) where
all samples are considered as independent. The obtained results are shown in table 4.4. As can
be seen, the model A is the model that more deviates from ΛCDM, followed by the model B and
finally by the model C. The best value is still given by the ΛCDM model, however, among the
studied phantom models in this work, the model C is observationally preferred. We notice that
the background classification of the models A, B and C, table 4.3, is not in agreement with that
based on the measurement of fσ8. In a future work, we will carry a full Monte Carlo Markov
Chain which takes into account the background and the perturbative quantities.

Model Event χ2

ΛCDM De Sitter 1.13498
A BR 1.16163
B LR 1.15919
C LS 1.15680

Table 4.4: This table presents the values of the reduced χ2 for each model. These results have been
obtained using a data collection of independent survey known as “Gold 2017” growth dataset, which values
are shown in table 4.5.

Figure 4.10 shows the evolution of fσ8. The ΛCDM model is plotted in black dashed line while

iiiAn extension of the Gold 2017 compilation is given by [283].
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z fσ8 Survey Ref.

0.02 0.314±0.048 2MASS [284]

0.02 0.398±0.065 SNIa + IRAS [285]

0.02 0.428±0.046 6dF Galaxy Survey + SNIa [286]

0.10 0.370±0.130 SDSS‐veloc [287]

0.15 0.49 ±0.15 SDSS DR7 MGS [218]

0.17 0.51 ±0.06 2dF Galaxy Redshift Survey [214,
219]

0.18 0.360±0.090 GAMA [288]

0.25 0.351±0.058 SDSS II LRG [221]

0.32 0.384±0.095 BOSS LOWZ [289]

0.37 0.460±0.038 SDSS II LRG [221]

0.38 0.440±0.060 GAMA [288]

0.44 0.413±0.080
WiggleZ Dark Energy Survey +
Alcock‐Paczynski distortion [225]

0.59 0.488±0.06 SDSS III BOSS DR12 CMASS [226]

0.60 0.390±0.063
WiggleZ Dark Energy Survey +
Alcock‐Paczynski distortion [225]

0.60 0.550±0.120 Vipers PDR‐2 [290]

0.73 0.437±0.072
WiggleZ Dark Energy Survey +
Alcock‐Paczynski distortion [225]

0.86 0.400±0.110 Vipers PDR‐2 [290]

1.40 0.482±0.116 FastSound [229]

Table 4.5: This table shows fσ8 measurements from independent surveys. The first column denotes the
redshift while in the second column the corresponding value of fσ8 and its error. In the third column, we
show the name of survey and in the final column the reference.

models A, B and C are plotted in red.

4.5 Conclusions

In this chapter we have analysed three genuine phantom models. We call those models as A,
B and C, where each of them induces a particular future cosmological event known as a BR, a
LR and a LS, respectively. These models are characterised by having a particular EoS, which
can be understood as deviations from the widely accepted ΛCDM model and therefore, suitable
models to describe the current Universe. We use SNIa, CMB, BAO and H(z) data and the Markov
Chain Monte Carlo method to estimate the cosmological parameters of models A, B and C. We
remark that the model C has not been constrained previously. In the case of the model A,
the corresponding model parameter consists on the EoS parameter of DE. This value has been
observationally constrained, for example, in [14, 18], where the result given, wd = −1.019, is
very close to the one we have found, wd = −1.02758. Similarly, the result obtained for the
model B is of the same order of magnitude to that found in [66] where the relative difference
is less than a 6%, this can be understood as an indicative of the reliability of the obtained
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Figure 4.10: This figure shows the evolution of the predicted fσ8 observable versus the redshift, z. The
results given by the models A, B and C are plotted in red color where the overlap is almost perfect. The
result given by the ΛCDM model is plotted in black dashed line. We have included the survey data given
in table 4.5 with the corresponding error.

results. In addition, we have computed the results of the ΛCDM model as well, in order to make
a comparison with the models A, B and C.

Once we have fitted observationally the parameters of the models, we have computed numer‐
ically linear cosmological perturbations since the radiation dominated epoch. Therefore, we
have not only considered perturbations of DM and DE but also those of radiation. The numer‐
ical calculations have been performed till the far future. In particular, we have obtained the
density contrast of DM and DE and evaluated as well the matter power spectrum of DM and
the corresponding evolution of fσ8. We have as well computed the evolution of the Bardeen
gravitational potential. We have confirmed that indeed in phantom DE models, it is expected
that the Bardeen gravitational potential will flip its sign in the future [105, 106]. This is in
accordance with the fact that all the structures will be destroyed in phantom DE models.

Using the values of the best fit (shown in the third column of table 4.3), the matter power
spectrum given by models A, B and C are so similar that it is almost impossible to distinguish
them. Something similar happens when comparing the results of fσ8. In order to give an account
of small differences, we compute the relative deviation with respect to ΛCDM and found that
the largest differences are around a 2% for the matter power spectrum and fσ8. The models
show a very similar phenomenology till the present time and future cosmic times. We notice
that there are no significant differences that could allow us to find a characteristic footprint of
each model with enough accuracy.

In view of this, we compare the predicted fσ8 evolution against the observational data and
compute the reduced χ2. We conclude that the ΛCDM model gives the best fit. The models A,
B and C have similar behaviour with respect to the ΛCDM. When performing the χ2 analysis at
fσ8 level, what we found is that the model C is the one which less deviates from ΛCDM while
the model A is the one with larger deviations. However, this is not enough to conclude that the
model C is observationally preferred. We conclude as well that there is a disagreement between
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the background and the perturbation analysis. This discordance will be a subject of a future
work.
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5

What if gravity becomes really repulsive in the
future?

We know what we are, but know not what we may be

– William Shakespeare

5.1 Introduction

Hubble’s discovery was crucial for our understanding of the Universe. He showed that the Uni‐
verse was evolving and not static as it was believed at that time [3]. His discovery was based
on observing that the spectrum of far away galaxies was red‐shifted which implied that those
galaxies were moving away from us. He even measured the galaxies radial outward veloci‐
ties and realised that it followed a rule: (i) the velocities were proportional to the distances
at which the galaxies were located from us and (ii) the proportionality factor was a constant,
the Hubble constant. About 70 years later, two independent teams [11, 12] realised that by
measuring further objects, SNeIa, the Hubble constant was not quite constant as was already
expected. The issue was that the deviation from the constancy was not on the anticipated di‐
rection. It was no longer enough to invoke only matter to explain those observations. A new
component had to be invoked adjectivated dark, as it interacts as far as we know only gravi‐
tationally, and named energy. This component started recently fuelling a second inflationary
era of the visible Universe. Of course, all these observations, and subsequent ones, are telling
us how gravity behaves at cosmological scales through the kinematic expansion of our Universe
[14, 197, 217, 219, 220, 230].

This kinematic description is linked to the dynamical expansion through the gravitational laws of
Einstein theory. To a very good approximation, we can assume that our Universe is homogeneous
and isotropic on large scales and it is filled with matter (standard and dark) and DE, where their
relative fractional energy densities are Ωm = 0.309 and Ωd = 0.691, respectively, at present. In
addition, the current Hubble parameter is of the order of H0 = 67.74 km s−1 Mpc−1. We have
fixed those values by using the latest Planck data [14] but please notice that our conclusions
in this chapteri are unaltered by choosing other values for these physical quantities. In what
refers to EoS parameter, w, to be constant; i.e. we will be considering wCDM model as a natural
candidate to describe our Universe. As it is well known (i) for w < −1 the Universe would face
a BR singularity [28–30], i.e., the Universe would unzip itself in a finite time from now, (ii) for
w = −1 the Universe would be asymptotically de Sitter and finally (iii) if w > −1 the Universe
would be asymptotically flat locally; i.e. the scalar curvature and the Ricci tensor would vanish
for large scale factors. As we next show this pattern is shown as well on the behaviour of the
gravitational potential.

iThis chapter corresponds mainly to our publication [106]
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The chapter is organised as follows: in section 5.2, we review briefly the models to be consid‐
ered and compare them using a cosmographic/statefinder analysis. In section 5.3, we present
the cosmological perturbations of the models focusing on the asymptotic behaviour of the grav‐
itational potential. Finally, in section 5.4, we conclude. In the A.1, we include some formulas
useful to section 5.2.

5.2 Background Approach

In this work, we adopt three different values for w: {−0.99, −1, −1.01}, in order to obtain three
qualitatively different types of late‐time behaviour for DE: quintessence (w ≳ −1), cosmological
constant (w = −1) and phantom behaviour (w ≲ −1). In a cosmographic approach [196, 291–
293], the scale factor is Taylor expanded around its present day value a0 := a(t0) as

a (t)

a0
= 1 +

∞∑
n=1

An (t0)

n!
[H0 (t− t0)]

n
. (5.1)

Here, H0 is the present day value of the Hubble rate H := ȧ/a, where a dot represents a
derivative with respect to the cosmic time, and the cosmographic parameters An are defined
as An := a(n)/(aHn), n ∈ N, where a(n) is the nth‐derivative of the scale factor with respect
to the cosmic timeii. Based on the cosmographic expansion (5.1), the statefinder hierarchy
was developed as a tool to distinguish different DE models [294–297]. In fact, the statefinder
parameters are defined as specific combinations of the cosmographic parameters:

S
(1)
3 = A3 , (5.2)

S
(1)
4 = A4 + 3 (1−A2) , (5.3)

S
(1)
5 = A5 − 2 (4− 3A2) (1−A2) , (5.4)

such that, by construction, S(1)
n |ΛCDM = 1, i.e., the statefinder hierarchy defines a null diagnostic

for the ΛCDM model [296]. It is also convenient to introduce the statefinder parameter s defined
in [294] as

s =
1− S

(1)
3

3
(
A2 +

1
2

) . (5.5)

For the case of a wCDM model with a radiation component, such as the models considered in
this chapter, we present in A.1 the full expressions of the statefinder parameters as functions
of the scale factor a/a0 and the cosmological parameters {Ωi,0, w}. In the limit a → +∞ the
expressions found reduce to

S
(1)
3 |wCDM = 1 +

9

2
w (1 + w) , (5.6)

S
(1)
4 |wCDM = 1− 9

4
w (1 + w) (7 + 9w) , (5.7)

S
(1)
5 |wCDM = 1 +

9

4
w (1 + w)

(
41 + 87w + 54w2

)
, (5.8)

s|wCDM = 1 + w . (5.9)

iiThe parameters A2, A3, A4, A5 are also known as the deceleration parameter q = −A2, the jerk
j = A3, the snap s = A4 and the lerk l = A5, respectively [291].
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We thus find that asw deviates from the nominal value−1 the asymptotic values of the statefinder
parameters S(1)

i run away from unity. In fact, for small deviations ∆w := |w + 1| ≪ 1 the
statefinder parameters depend linearly on ∆w and we find that S(1)

n < 1 for quintessence mod‐
els and S(1)

n > 1 in the case of phantom behaviour. On the other hand, it can be shown that
asymptotically s vanishes for ΛCDM, and it gets negative for w < −1 and positive for−1 < w. We
have assumed on all our conclusions the presence of radiation no matter its tiniest contribution.
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Figure 5.1: This figure shows the trajectory of the three models considered in this work in the planes
{S(1)

3 , s}, {S(1)
3 , S

(1)
4 } and {S(1)

3 , S
(1)
5 } that characterise the statefinder hierarchy. The coloured points

indicate the asymptotic values of the statefinder parameters as presented in (5.6)–(5.8). The dependence
of these points on the deviation of w from the ΛCDM value −1 is illustrated by the dashed lines. The black
stars indicate the present day values of the statefinder parameters for each of the models.

On figure 5.1, we present the evolution of the statefinder hierarchy {S(1)
3 , s} (top panel),
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{S(1)
3 , S

(1)
4 } (middle panel) and {S(1)

3 , S
(1)
5 } (bottom panel) for the three models considered:

w = −0.99 (blue), w = −1 (green) and w = −1.01 (red). When the Universe is dominated
by radiation and matter the three models are indistinguishable and can be seen following the
same straight line trajectory in the planes {S(1)

3 , s}, {S(1)
3 , S

(1)
4 } and {S(1)

3 , S
(1)
5 }. However, as

DE starts to dominate at late‐time the differences between the three models become appar‐
ent. The trajectory {S(1)

3 , s} evolves towards the point ( 1, 0) for the ΛCDM model, then for a
quintessence model that trajectory evolves towards the second quadrant in the plane {S(1)

3 , s} ,
i.e. S

(1)
3 < 1 and 0 < s, and, finally, for a phantom scenario the trajectory {S(1)

3 , s} heads
towards the fourth quadrant , i.e. 1 < S

(1)
3 and s < 0. For the second group of trajectories(

{S(1)
3 , S

(1)
4 } and {S(1)

3 , S
(1)
5 }

)
, while the trajectories of the model with w = −1 evolve towards

the point ( 1, 1) that characterises ΛCDM, in the quintessence model the trajectories evolve to‐
wards the third quadrant in both panels (S(1)

n < 1 for n = 3, 4, 5). In contrast, for the model with
phantom behaviour the trajectories evolve towards the first quadrant in the planes {S(1)

3 , S
(1)
4 }

and {S(1)
3 , S

(1)
5 } characterised by S(1)

n > 1 for n = 3, 4, 5. Finally, by looking at figure 5.1, it
seems that the pair {S(1)

3 , S
(1)
5 } are better to distinguish the model with w < −1 from −1 < w.

5.3 Cosmological Perturbations: from gravity to DM and DE

In order to tackle the cosmological perturbations of a perfect fluid with a negative and constant
EoS some care has to be taken into account [105]. In fact, unless non‐adiabatic perturbations
are taken into account a blow up on the cosmological perturbations quickly appears even at
scales we have already observed. Please notice that this is so even for non‐phantom fluids, i.e.,
for w ≥ −1. This will be our first assumption and therefore non‐adiabatic perturbations will be
considered. The non‐adiabaticity implies the existence of two distinctive speed of sounds for
the DE fluid: (i) its quadratic adiabatic speed of sound c2a = w (in our case) and (ii) its effective
quadratic speed of sound, c2s, whose deviation from c2a = w measures the non‐adiabaticity in the
evolution of the fluid [101]. For simplicity, we will set the latter to one which fits perfectly the
case of a scalar field, no matter if it is a canonical scalar field of standard or phantom natureiii.
In addition, we will solve the gravitational equations describing the cosmological perturbations
at first order using the same methodology we presented in [105]. The initial conditions are fully
fixed by the Planck observational fit to single inflation [14] as follows from equations (2.41) and
(B.61):

The behaviour of the gravitational potential and the perturbations is shown in the top panel
of figure 5.2 for a given scale. We choose as an example k = 10−3 Mpc−1. As it must be,
the gravitational potential is constant during the matter era and start decreasing as soon as DE
goes on stage. This behaviour is independent of the considered DE model. However, shortly
afterwards; i.e., in our near future, the gravitational potential will depend on the specifically
chosen EoS for DE. In fact, (i) it will decrease until reaching a positive non‐vanishing value at
infinity for w > −1, (ii) it will vanish asymptotically for w = −1 and amazingly (iii) it will vanish
and become negative forw < −1!!! This is in full agreement with the fact that close to the BR the
different structures in our Universe will be destroyed no matter their sizes or bounding energies.

iiiAs long as the speed of sound c2s is not too close to zero and w ≃ −1, the value of c2s will not affect
so much the perturbations of DM. A full discussion on the effect of the speed of sound of DE on the
perturbations of the late Universe can be found in [16, 209, 298]. Therefore, our choice c2s = 1 is not
crucial in our study, it was taken just for simplicity and because it is common to use it in codes like CAMB
and CLASS though there is no fundamental reason for such a choice.
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Figure 5.2: The evolution of the Fourier mode of the gravitational potential Φk (top panel), the DM pertur‐
bation δm (middle panels) and the DE perturbation (bottom panel), from the matter era to the far future
for the mode k = 10−3 Mpc−1 and for three DE models: (blue) w = −0.99, (green) w = −1 and (red)
w = −1.01. For the quintessence model (blue) the gravitational potential evolves towards a constant in
the far future without changing sign, while for ΛCDM (green) Φk vanishes asymptotically. In the phantom
model (red), Φk also evolves towards a constant in the far future but a change of sign occurs roughly at
log10 a/a0 ≃ 2.33, corresponding to 8.84×1010 years in the future. A dashed line indicates negative values
of Φk.

When could the gravitational potential vanishes and flip its sign? Of course, the answer is model
and scale dependent [105]. For the model we have considered, the gravitational potential for
the mode k = 10−3 Mpc−1 will vanish in 8.84× 1010 years from the present time or equivalently
when the Universe is roughly 213 times its current size. Furthermore, numerical results show
that the smaller the scale that is considered (larger k) the later the gravitational potential will
flip sign [105].

In addition to the gravitational potential, we present in the second and third panels of figure 5.2
the behaviour of the density contrast of DM. We observe that the growth of the linear perturba‐
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tions is very similar in all models, with differences of ≲ 0.2% with regards to ΛCDM. However,
when comparing the phantom DE model with ΛCDM we find that until the present time there is
an excess in the growth of the linear perturbations of DM in the phantom DE case. In the case
of quintessence the opposite behaviour is observed: until the present time δm is smaller in the
quintessence case when compared with ΛCDM. This effect, which depends on the qualitative
behaviour of DE, was first noted in [30]. Surprisingly, these deviations peak around the present
time and their sign reverses in the near future. On the bottom panel of figure 5.2 we present
the evolution of δDE for the different models. Of course, for the ΛCDM case the perturbations
remain at 0 as the cosmological constant does not cluster. In good agreement with observations,
for the quintessence and phantom DE models we find that the DE perturbations remain small,
with small variations of the initial value, throughout the whole evolution of the Universe.
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Figure 5.3: (Top panel) evolution of fσ8 for low red‐shift z ∈ (0, 1.4) for three DE models: (blue) w =

−0.99, (green) w = −1 and (red) w = −1.01. White circles and vertical bars indicate the available
data points and corresponding error bars (cf. Table I of [105]). (Bottom panel) evolution of the relative
differences of fσ8 for each model with regards to ΛCDM (w = −1). ∆fσ8 is positive in the phantom case
and negative in the quintessence case. For all the models, it was considered that σ8 evolves linearly with
δm and that σ8 = 0.816 at the present time [14].

Finally, and most importantly, all these models are in full agreement with observations. In
figure 5.3, we show the evolution of the observable fσ8 for the three models mentioned above.
This combination of f, the relative growth of the linear matter perturbations, and σ8, the
root‐mean‐square mass fluctuation in spheres with radius 8 h−1Mpc, was proposed in [214] as a
discriminant for different models of late‐time acceleration that is independent of local galaxy
density bias. On the top‐panel of figure 5.3, we contrast the fσ8 curves of the three models
with the available observational data (cf. Table I of [105]). All the three curves, which are
practically indistinguishable at the naked eye, are within the error bars of nearly all the points.
On the bottom panel of figure 5.3, we present the relative difference, ∆fσ8, of the results of
each model with regards to ΛCDM.iv Despite the small values found in terms of amplitudes, the
behaviour observed suggests that the sign of ∆fσ8 can distinguish between a phantom (positive
∆fσ8) and a quintessence model (negative ∆fσ8). As a consequence of this difference in sign,
the growth of the linear matter perturbations is stronger in a phantom scenario as opposed to

iv∆fσ(model)
8 (%) := 100[(fσ(model)

8 )/(fσΛCDM
8 )− 1].
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ΛCDM and quintessence. This is in full agreement with the results presented in [30] where the
decay of the growth suppression factor of the linear matter perturbations is found to be faster
in quintessence models and slower in phantom models.

5.4 Concluding remarks

Summarising, what we have shown is that after all gravity might behave the other way around
in the future and rather than the apple falling from the tree, the apple may fly from the earth
surface to the branches of the tree, if DE is repulsive enough, as could already be indicated by
current observationsv.

To illustrate these observations, we have considered three models where DE is characterised by
a constant parameter of EoS w with values w = −0.99,−1,−1.01. After comparing the present
and future behaviour at the background level by using a statefinder approach, as illustrated
in figure 5.1, we have considered the cosmological perturbations of these models. We have
shown that for models with w < −1 the gravitational potential changes its sign in the future
(cf. figure 5.2). We have as well analysed the behaviour of the DM and DE perturbations as
shown for example in figure 5.2. Finally, we have proven that no matter the future behaviour
of the gravitational potential depicted in figure 5.2, the three models discussed above are in
full agreement with the latest observations of fσ8 (cf. figure 5.3).

Before concluding, we would like to remind that on this work, we have considered the existence
of phantom matter, however it might be possible that Nature presents rather a phantom‐like
behaviour as happens in brane world‐models [244, 300] where no BR takes place and where the
perturbations can be stable. In addition, even the presence of phantom matter might not be
a problem at a cosmological quantum level where the BR or other kind of singularities can be
washed away [42, 48, 51].

vRepulsive gravity could happen as well if the effective gravitational constant changes sign. This could
happen, for example, in scalar‐tensor theories, in particular, for a non‐minimally coupled scalar field [299].
However, an anisotropic curvature singularity arises generically at the moment of this transition.
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6

The Speed of sound in phantom DE models

We have peered into a new world and have seen that it is more mysterious and more
complex than we had imagined. Still more mysteries of the Universe remain hidden.
Their discovery awaits the adventurous scientists of the future. I like it this way

– Vera Rubin

6.1 Introduction

During the last two decades Cosmology has experienced a great improvement in the theoretical
and observational scopes. The discovery of an accelerated Universe, a fact supported by several
observations [10, 11], has developed a flourishing of new ideas that deal with the intriguing
speed up. The simplest explanation consists into invoking a new component in the Universe
named DE as the responsible of the current acceleration [23]. Among the vast amount of DE
models, those where the null energy condition is violated are coined as phantom [28, 30, 33,
239]. In these class of models, the DE EoS parameter stays always below −1. Despite some
energy conditions are not satisfied, phantom DE models seem to be favoured by observations
[15].

It is known that most phantom DE models predict future singularities. As we have already
mentioned in the introduction chapter, we focus on three genuine phantom modelsi where each
of them induce a particular future doomsday known as BR, LR, and LS ( see [28–35], [47, 55, 59,
64–67, 201], [69, 71, 205] for a detailed description of the respective model). We recall that
no matters if a true singularity or an abrupt event takes place, all the bound structures in the
Universe are torn away and destroyed.

All the models mentioned above can be understood as alternatives from the widely accepted
ΛCDM paradigm, and therefore, good models to describe suitably the current Universe. An
appropriate fitting of the parameters involved will made these models indistinguishable among
them at the background level. Therefore, it becomes necessary to address the cosmological
perturbations.

Observables as for example, the matter power spectrum and the growth rate provide useful data
about the distribution of matter. Unfortunately, in most of the cases the imprints of different
DE models on such observables are insignificant. Therefore, important efforts have been made
to improve the accuracy of the observations, particularly, focusing on scrutinising the DE sector
as it is the case of Euclid mission [99, 100].

The squared speed of sound parameter, c̃2s, is another important variable that plays a key role
on cosmological perturbations. It is well known that DE models with a negative c̃2s parameter

iThis chapter is based on a work in progress to be submitted soon.
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induce instabilities at the perturbation level. To avoid those instabilities, in [16, 101] the au‐
thors consider a non‐adiabatic contribution on the pressure perturbations. This method lead to
separate the adiabatic speed of sound, ca; which depends on the EoS, and the effective speed
of sound, cs; which is regarded as a free parameterii. For example, in [301] the authors analyse
the implications of a varying effective speed of sound parameter on the matter perturbations.
In [302], the authors consider a DE model with a constant EoS parameter and estimate the cor‐
rections on the growth index when ranging c2s. On the other hand, in [303] it is considered a
DE model with an affine EoS. Then, the results obtained when fixing c2s = 0 and c2s = 1 are
compared. A further analysis on the effective speed of sound parameter is performed in [209],
where the authors consider the contribution of matter (Baryonic and DM), photons and neutrinos
to get, for example, a probability distribution for the c2s value. In [304], a new class of DM‐DE
interacting models is identified. The authors study the implications of a varying effective speed
of sound on the CMB and the matter power spectrum. An interesting model with viscosity pa‐
rameter is suggested in [305], where the effects of such viscosity on the CMB and matter power
spectrum are compared against the effects that a non‐vanishing effective speed of sound could
induce.

Several models have been observationally constrained in order to fit a value for c2s. For example,
in [16, 298] the authors use the temperature fluctuations of the CMB dataset to set the value of
the speed of sound. In [306] the authors study the structure formation and constrain a CPL model
with a free effective speed of sound parameter. In view of the upcoming Euclid mission, several
works forecast the necessary accuracy in order to discriminate between different DE models.
For instance, in [104] the authors compute the sensitivity of the photometric and spectroscopic
surveys for measuring the speed of sound and viscosity parameters.

In this chapter, we consider a Universe filled with radiation, matter and DE components, where
the latter is described by three different phantom models. We address the scalar cosmological
perturbations following the method of pressure decomposition for DE [16, 101]. We set the
initial conditions as done in [105, 196] where the physical value of the total matter density
contrast, δphys.(k), for a single field inflation is taken from Planck data 2018 [18]. After imposing
adiabatical conditions for scales larger than the horizon at the beginning, the physical value of
δphys.(k) is the last condition needed to ultimately fix all the initial numerical values. We analyse
the phenomenological effects of changing the effective speed of sound on the perturbations. In
addition, we compute the relative differences on observables by evaluating the matter power
spectrum and fσ8 growth rate. Finally, we study the behaviour of the gravitational potential on
large scales.

The chapter is organised as follows, In section 6.2 we present the obtained results and in sec‐
tion 6.3, we present the main conclusions.

6.2 Results: The effect of the speed of sound

In the following, we present the results obtained for the cosmological perturbations evolution
and for the three models addressed in this thesis. We remind that in order to set the model pa‐

iiIn the case of a scalar field representation, the effective speed of sound parameter coincides with
unity, i.e. c2s = 1 (c.f please [16, 101] for a detailed explanation).
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rameters we have used those obtained in our work [107]. We compute the evolution of the mat‐
ter density contrast and peculiar velocities, from well inside the radiation dominated epochiii,
a ∼ 2.65×10−6, till the far future, a ∼ 1.62×105. We perform the integrations for the following
six particular modes

• small k (large distances): k1 = 3.33× 10−4h Mpc−1 and k2 = 1.04× 10−4h Mpc−1.

• medium k (intermediate distances): k3 = 3.26×10−3h Mpc−1 and k4 = 1.02×10−2h Mpc−1.

• large k (short distances): k5 = 3.19× 10−2h Mpc−1 and k6 = 1.00× 10−1h Mpc−1.

The minimum mode, k1, coincides with the current Hubble horizon, i.e. no smaller mode can
be detected. On the other hand, we consider as maximum mode, k6, where the linear approxi‐
mation breaks down and the non‐linear contributions become important.

6.2.1 Matter power spectrum and fσ8

We have computed the current matter power spectrum and the growth rate fσ8, testing the
effective squared speed of sound from 0 to 1 in steps of 0.2. In this process, the numerical
integration was repeated for 200 modes ranged from k1 to k6.
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Figure 6.1: The left panel of this figure represents the matter power spectrum while the right panel shows
the evolution of fσ8 in terms of the redshift z. All models with different values of c2sd give an almost
identical result, so the curves appear completely overlapped and their differences are negligible.

Figure 6.1 shows the current matter power spectrum and the evolution of fσ8 predicted by the
models. These results are in agreement with observations but does not allow to distinguish any
deviation for different models. In addition, the effects of a varying speed of sound turn out to
be almost undetectable since the results appear totally overlapped. Therefore, in order to give
an account of the contrast, we compute the relative deviation with respect to c2sd = 1.

As it is shown in the left column of figure 6.2, the relative differences (with respect to c2sd = 1)
on the matter power spectrum are negative for the smallest modes and positive for the largest
ones. The transition occurs in a narrow interval around the wave number k ∼ 1.8×10−3h Mpc−1.
The separation obtained for a vanishing speed of sound parameter is remarkable. First, looking
at small modes, the deviations are constant, the larger is the deviation from c2sd = 1 the larger
is such a constant. Secondly, looking at the large modes, the deviation is constant for vanishing
c2sd parameters while such deviation vanishes for non vanishing c2sd parameters.

iiiThe scale factor for this epoch represents a moment in the early Universe where its energy content
consists in 1% of matter against 99% of radiation.
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Figure 6.2: This figure presents the relative deviation with respect to the result given when c2sd = 1. The
top, middle and bottom panels correspond with the models A, B and C, respectively. The left panels show
the results for the matter power spectrum as a function of the mode. The right panels show the results
for fσ8 in terms of redshift, z. Different values of c2sd are coloured as; c2sd = 0 (black), c2sd = 0.2 (red),
c2sd = 0.4 (orange), c2sd = 0.6 (purple) and c2sd = 0.8 (blue). The plots are represented in a logarithmic
scale, in such a way that dashed lines corresponds with negative values while solid lines represents positive
values.

Something similar happen for fσ8 results. As it is shown on the right column of figure 6.2,
the relative difference for a vanishing effective speed of sound parameter show an important
separation with respect to the results given for a non‐vanishing c2sd parameter. Conversely, the
deviation is positive for the smallest redshifts and negative for the largest ones. The transition
occurs at z ∼ 0.85 for a vanishing c2sd and at z ∼ 1 for non‐vanishing c2sd. Such transition point is
slightly affected depending which DE model is considered. In addition, contrary to what happens
for the matter power spectrum, in fσ8 the deviations goes to a constant for both large and small
modes. As expected, such a constant is larger the larger is the deviation from c2sd = 1.

The largest deviations are of the order 10−3 in both, the matter power spectrum and fσ8 evo‐
lution. So we conclude that no significant footprints appear on the matter distribution when
changing the effective speed of sound. In fact, the most relevant effects of a varying effective
speed of sound are clearly manifested in the DE sector.
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6.2.2 DE perturbations

Figure 6.3 shows the evolution of the matter density contrast of DE for different models and
ranges of c2sd. We remind that due to the phantom nature of DE models, the adiabatic condition
imposed at the early Universe implies that the DE perturbations are negative [105, 106].
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Figure 6.3: This figure shows the evolution of DE density contrast for different models and different values
of c2sd. The panels of the first, second and third row correspond with the model A, B and C, respectively. The
panels of the first, second and third columns correspond, respectively, to the values of the squared speed
of sound c2sd = 0, c2sd = 0.2 and c2sd = 1. The plot is drawn as a function of x = ln (a) which goes from well
inside the radiation dominated epoch, x⋆ = −12.84, to the far future, x = 12. Each colour corresponds to
a particular value of the wave‐number k: k1 = 3.33×10−4h Mpc−1 (purple), k2 = 1.04×10−4h Mpc−1 (dark
blue), k3 = 3.26× 10−3h Mpc−1 (light blue), k4 = 1.02× 10−2h Mpc−1 (green), k5 = 3.19× 10−2h Mpc−1

(orange) and k6 = 1.00× 10−1h Mpc−1 (red).

Figure 6.3 shows the evolution of DE density contrast for different models and values of c2sd. We
realise that the effect of varying c2sd is minimal for values larger than 0.2, i.e., inside the interval
[0.2, 1]. Hence, we just show the results for c2sd = 0, c2sd = 0.2 and c2sd = 1. As can be seen in
the first column of Figure 6.3 (i.e. for a vanishing c2sd parameter), once the modes enters the
horizon, the perturbations increase up to three orders of magnitude in the case of the largest
mode and around two orders of magnitude for the medium size modes. All the growing modes
reach a maximum at present time and decay during the DE domination era. That is; once the
modes enters the horizon they grow, and then, when they exit the horizon, the perturbations
decay evolving towards a negative constantiv. This is not the case of the smallest modes, we
should bear in mind that such small modes have recently entered the horizon and are the first
exiting it, so the smallest modes do not experience important deviations.

ivWe remind that phantom DE perturbations are considered to be negative at the beginning of the
numerical integration, as it is the case of the gravitational potential. On the other hand, standard matter
perturbations are considered to be positive.
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For a c2sd = 0.2, the growth of DE perturbations is strongly suppressed in the matter domination
era. During this epoch, the largest modes (k5 and k6) decay and reach a plateau while the
medium sized modes (k3 and k4) experience a small growth. When DE starts dominating, the
perturbations decrease up to three orders of magnitude for the largest modes and one order
of magnitude for the medium sized modes. The smallest modes (k1 and k2) do not show to be
significantly affected.

For a value of c2sd = 1, the resulting plot is very similar to the one when c2sd = 0.2. The main
difference consists on the total suppression of the growing perturbations during the matter
dominated epoch. Once again, the perturbations decay when the corresponding mode enters
the horizon and evolve to a negative constant after exiting the horizon.

In summary, DE perturbation are strongly affected near vanishing values of c2sd parameter and
mostly, for large modes. On the contrary, small modes do not show significant deviations. We
should bear in mind that due to the change of the acceleration of the Universe (from a negative
to a positive acceleration stage) the smallest modes are the last entering the horizon and the
first exiting it, therefore, such modes have not enough time to be significantly affected.

On the other hand, it is possible to find important deviations between the different models,
mostly, in the early Universe where radiation dominates over the other components. We set
the initial value of DE matter density contrast, δ⋆d (where the script ⋆ denotes the initial value)
through the adiabatic conditions written in (2.37) [23]. Taking into account that we have used
in all the models the same value of the current radiation fractional energy, Ωr0, and that the
current matter fractional energy is almost the same in the three paradigms analysed, Ωm0 ≃ 0.3,
it is worthy to point out the next approximation relating the initial DE perturbations of the
different models

δ⋆d,A
1 + w⋆

d,A
≃

δ⋆d,B
1 + w⋆

d,B
≃

δ⋆d,C
1 + w⋆

d,C
. (6.1)

Given the model parameters used in this chapter [107], the EoS parameters at the beginning
(deep inside the radiation era) read

w⋆
d,A = −1.027, w⋆

d,B = −1.050, w⋆
d,C = −1.320. (6.2)

Therefore, the relation of the initial DE perturbation between the different models is roughly

12δ⋆d,A ≃ 13
2 δ

⋆
d,B ≃ δ⋆d,C. (6.3)

As can be seen the larger is the deviation from −1 of the initial EoS parameter, the larger is the
initial DE density contrast. This explains the large initial amplitude for model C. Similarly, in
the case of model B it can be observed a weak decay, while in model A, on the contrary, it is
almost constant. Despite the large deviation given by these DE models in the early Universe,
the amplitudes are strongly suppressed during the late‐radiation dominated epoch and matter
domination era, in such a way that different models predict very similar results at present time,
and therefore, no significant deviations should be expected at a future cosmic time.
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6.2.3 Evolution of the gravitational potential

Aside from DE perturbations, we found some deviations on the evolution of the gravitational
potential. We remind that in our phantom models the gravitational potential evolves asymp‐
totically to a positive constant, which is not the case of a ΛCDM or standard DE models, where
the gravitational potential evolves towards a vanishing or a negative constant [106]. Since no
relevant differences are observed for the different models, we just present the results corre‐
sponding to model A. The left panel of figure 6.4 shows the gravitational potential evolution for
a vanishing effective speed of sound parameter. As can be seen, at a particular scale factor the
gravitational potential flips the sign. We can notice that the gravitational potential evolution is
almost unaffected by changing c2sd from the early time till present. However, in the far future
some differences merge.

The left panel of figure 6.4 shows the evolution of the gravitational potential, Ψ, divided by its
initial value, Ψ⋆ for the six relevant modes previously chosen. As can be seen, the gravitational
potential almost vanishes for the largest modes, while it evolves to a positive constant for small
modes. We remind once again that the gravitational potential is negative at the beginning of
the computations, which confers the attractive nature of gravity. Therefore, a positive sign on
the gravitational potentials is understood as a repulsive effect.

The right panel of figure 6.4 shows the asymptotic value of the gravitational potential divide
by the initial value, Ψ⋆. The plot is done to highlight how such a constant is affected by the
different values of the modes and c2sd parameter. As can be seen, for large modes the gravita‐
tional potential vanishes with independence of the chosen c2sd parameter, while for the smallest
modes such a constant is set to be around −0.065. Bear in mind that the initial value of the
gravitational potential is negative while asymptotically it approximates to the constant Ψfin,
which is a positive value.
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Figure 6.4: The left panel of the above figure presents the evolution of the gravitational potential divided
by its initial value, Ψ⋆. These results corresponds to model A and choosing a vanishing effective speed of
sound c2sd = 0. The vertical dashed line corresponds to radiation‐matter equality, x ∼ −8.24, while the
solid gray vertical line denotes the matter‐DE equality, x ∼ −0.27. The range and the numerical value
of the modes for different colours are the same as those used in figure 6.3. The right panel shows the
asymptotic value of the gravitational potential in terms of log(k) for five different values of the effective
speed of sound parameter: c2sd = 0 (black), c2sd = 0.2 (red), c2sd = 0.4 (orange), c2sd = 0.6 (purple), c2sd = 0.8

(blue) and c2sd = 1 (gray).

We find interesting to focus on the evolution of the gravitational potential in the far future,
mainly, where it flips its sign. For instance, figure 6.5 shows the evolution of the gravitational
potential from the present time till the distant future. As can be seen, for a vanishing effective
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Figure 6.5: This figure presents the evolution of the gravitational potential, Ψ, with respect to its initial
value, Ψ⋆, in a logarithmic scale and from the present to the far future. The solid lines represent the
positive values while the dashed lines represent negative values. We apply the same criteria as the ones
used in figure 6.3 to represent the different modes. The coloured vertical lines represent the moment of
horizon exit for the corresponding mode.

speed of sound parameter the gravitational potential flip of sign occurs, for all the modes, at
the same time (x ∼ 3). In addition, such flip occurs before some of the modes have exited
the horizon. This is not the case of a non‐vanishing c2sd parameter (second and third column of
figure 6.5, for c2sd = 0.2 and c2sd = 1, respectively). As can be seen, the smallest modes switch
the sign earlier than the largest modes do, however, all the relevant modes have exited the
horizon when those flips occur. In addition, we found that that the more abrupt is the cosmic
event induced by the model, the sooner occurs the sign flip. This difference is more pronounced
the larger are the k modes and c2sd values.

With the aim to better understand the asymptotic evolution of the metric perturbation, we
solve the second order differential equation for the gravitational potential. By incorporating
the decomposition of the pressurev in (2.34) we get

Ψxx +
1

2

[
5− 3w + 6c2ad

]
Ψx +

[
3
(
c2ad − w

)
+
c2sdk

2

H2

]
Ψ = 0 (6.4)

Let us consider a constant EoS parameter where vi c2ad = wd. Therefore, in a phantom DE
dominated Universe the Eq (6.4) can be approximated as vii

Ψxx +
1

2
(5 + 3wd)Ψx +

(
c2sdk

2

Ωd0k
2
0

)
e(3wd+1)x Ψ = 0, (6.5)

vsee B.5) for detailed calculations on decomposing the DE pressure in its adiabatic and non‐adiabatic
contributions.

viThe differential equations for models B and C are not the same. However, after solving by numerical
analysis these cases, we have not found significant deviations

viiIn the case of the models B and C, this assumption is not correct since the differential equation (6.4)
is different. However, we do not observe significant changes between the results given by the different
models. So we focus on model A since its differential equation becomes analytically solvable.
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whose solutions are given by

Ψ[c2sd=0] = C1 +
C2

β
e−βx, (6.6)

Ψ[c2sd ̸=0] = e−
β
2 x
{
D1Jν

[
A (k) e−γx

]
−D2Yν

[
A (k) e−γx

]}
, (6.7)

∼ D1

Γ (ν + 1)

[
A (k)

2

]ν
+
D2Γ (−ν)

π

[
A (k)

2

]−ν

e−βx for 0 ≪ x, (6.8)

where Jν and Yν are the first kind Bessel functions with order ν, Γ is the Gamma function, while
C1, C2, D1 and D2 are integration constants. The remaining parameters are defined as

β ≡ 1

2
(5 + 3wd) , γ ≡ −1

2
(1 + 3wd) , ν ≡ − β

2γ
, A (k) ≡ 1

γ

√
c2sd
Ωd0

k

k0
(6.9)

Since Ψ is linear, a particular solution multiplied by a constant factor is still a solution. There‐
fore, the total result can be written as

Ψtot (x) = Ψ (x)F (k, csd) , (6.10)

where F (k, csd) can be fixed (with an appropriate choice for C1, and D1) by analysing the
asymptotic behaviour of the gravitational potential shown on the right panel plot of figure 6.4.

As can be seen, the asymptotic behaviour for large scale factors given in viii Eq (6.8), coincides
with the solution for a vanishing c2sd, Eq (6.6). However, instead of having just the constants
terms C1, and C2, the solutions for non‐vanishing c2sd ̸= 0 parameter keep some information of
the modes through the function A(k) and modulated by the constantsD1, andD2. Note that the
dominant solution for x→ ∞ is constant as long as the coefficient β is positive, i.e. −5/3 < wd

which is indeed our case.

Finally, in order to obtain the point where the gravitational potential flip of sign occurs, we just
solve Ψ = 0 for the couple of equations (6.6) and (6.7). Therefore, we get

xcrit = − 1

β
ln [−α1β] , (6.11)

xflip = − 1

β
ln [α2 sin (πν)] +

1

γ
ln

1
2

√
c2sd
Ωd0

+
1

γ
ln

[
k

k0

]
. (6.12)

where we have defined a proportionality between the integration constants, i.e. C1/C2 ≡ α1

and D1/D2 ≡ α2. Given that C1, D1 < 0 and 0 < C2, D2, α1 and α2 are negative constants.

On the one hand, xcrit is the lower value for which the gravitational potential can switch its
sign and corresponds to a vanishing effective speed of sound parameter. Bear in mind that
the differential equation (6.5) remains invariant by choosing different k and c2sd as long as the
product k2c2sd is fixed. Therefore, the solution for the limit k → 0 corresponds to the solution for
a vanishing c2sd. On the other hand, for non‐vanishing values of the product k2c2sd, the moment
at which the gravitational potential flips its sign is given by (6.12) (which is valid as long as

viiiNotice that the coefficient γ is positive, therefore, the argument of Bessel function vanishes when
x → ∞. We have obtained the expression for small arguments making use of (9.1.7) and (9.1.9) of
reference [307])
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xcrit < xflip).

Therefore, we could define a second horizon whose size is the distance where the gravitational
potential becomes positive. In addition, we notice that such a second horizon changes with
time as fast as the true horizon does, i.e. ln (k/k0) ∼ γx. So this could be understood as two
horizons, the true one; i.e. that enclose the observable Universe, and a second one; i.e. where
the gravitational potential becomes positive, keeping the relative distance as constant at the
far future.

x
fl
ip

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0
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2

4

6

8

log10 (k)

Figure 6.6: This figure shows the moment where the gravitational potential switches its sign, xflip, in terms
of log10 (k). Each curve corresponds to a given value of the speed of sound parameter; c2sd = 0 (solid black),
c2sd = 0.2 (red), c2sd = 0.4 (orange), c2sd = 0.6 (purple),c2sd = 0.8 (blue) and c2sd = 1 (gray). The red dashed
curve corresponds to c2sd = 2.09× 10−3 while the black‐dotted line represent the value of x where modes
exit the horizon.

Figure 6.6 shows a plot of xflip vs log10 (k). Since no relevant differences are found between
models, we again only present the result given for the model A. We should keep in mind that
the differential equation that lead to the analytical solution will be different instead we choose
model B or C. However, at a perturbation level all the models give similar numerical solutions.

As it is shown in Figure 6.6, for a vanishing c2sd parameter (solid black line) the flip of sign
occurs at the same time for all the modes. The plots given by non‐vanishing c2sd parameters
(coloured solid lines) becomes parallel, at large modes, with respect to the horizon exiting line
(black dotted line). This means that there is an upper bound on c2sd that will ensure sign‐flipped
modes inside the horizon, while values larger than such an upper bound would stand beyond
the observable Universe. We have estimated such an upper bound roughly to be the order of
c2sd ≲ 2× 10−3 (represented by the red dotted curve).

6.3 Conclusions

In this work, we have analysed the cosmological perturbations of three genuine phantom DE
models with a varying effective speed of sound parameter. These models, named in the present
thesis as model A, B and C, induce a particular future event known as BR, LR and LS, respectively.
In these future events the Universe reach a scenario where all the bound structures are ripped
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apart. We have addressed the computation of the linear cosmological perturbations following
the method of decomposing the DE pressure perturbation in its adiabatic and non adiabatic
contributions [16, 101], which leaves a dynamical set of equations free of instabilities. In this
way, the effective speed of sound parameter of DE, c2sd, is regarded as a free parameter.

We have considered a Universe filled with radiation, matter and DE, where the latter is described
by the aforementioned models. We have computed the perturbations since the radiation dom‐
inated epoch, (aini ∼ 2.6 × 10−6), till a far future (afin ∼ 1.6 × 105), where the DE completely
dominates. On the one hand, the model parameters where fixed by using the observational con‐
straints obtained in [107]. On the other hand, the physical values as the initial conditions for a
single field inflation, spectral amplitude and spectral index were fixed using Planck data [18].
Then, we obtain the predicted current matter power spectrum and evolution of fσ8 growth
rate. Finally, we study the effect of changing c2sd from 0 to 1.

We find that different values of the c2sd parameter does not affect significantly the matter
perturbations. Consequently, the matter power spectrum and fσ8 evolution do not show any
relevant footprint. However, we have found interesting footprints in the DE density contrast
when changing c2sd. Those changes are amplified when c2sd is set very small. Despite the different
three models are almost indistinguishable at present, there are significant deviations in the
early Universe, which strongly depend on the initial EoS parameter of DE due to the adiabatic
conditions imposed at the beginning (see (6.1) and (6.3)).

We conclude that the possibility of a vanishing speed of sound parameter does not seem to be
favoured by two reasons: (i) the DE density contrast grows too much during the matter dom‐
inated epoch, and this would lead to a DE clustering, something that has not been detected
so far, (ii) the gravitational potential sign flip occurs at the same time for all the modes, such
unexpected and sudden event does not seem physical. This is not the case of a non‐vanishing ef‐
fective speed of sound parameter, where the Bardeen potential becomes progressively negative
from very large distances to smaller ones. Such distances decrease with time as fast as the hori‐
zon does. Therefore, there is a particular value of c2sd where the gravitational potential switches
the sign precisely at the horizon. We have found that this value is close to c2sd ∼ 2 × 10−3. We
stress that the effect of a gravitational potential sign flip occurs due to the negative sign of DE
perturbations.

Despite the fact that the DE perturbations have not been observed so far, we strongly believe
that they hide revealing footprints that could allow us to distinguish different DE models if ever
detected. We hope that upcoming missions such as Euclid will provide crucial information about
the dark sector of the Universe, granting us a useful tool to favouring or discriminating among
DE models as those addressed in the present thesis.
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7

WDW equation in QC

If you wish to make an apple pie from scratch, you must first invent the Universe

– Carl Sagan

7.1 introduction

The WDW equation can be introduced in the canonical quantisation of gravity in the so called
quantum geometrodynamics approach. From the Einstein–Hilbert gravitational action func‐
tional, the Einstein (Euler–Lagrange) equations can be obtained and used to deduce the Hamil‐
tonian equations describing the dynamical evolution. It turns out that this is a constrained dy‐
namical system, in which the constraints correspond to the invariance of the model with respect
to space‐time diffeomorphisms. There are two types of constraints: the momenta constraints
(space diffeomorphisms) and the Hamiltonian constraint (time diffeomorphisms) [151, 152]. The
canonical formulation of general relativity leads to four local constraints. If quantisation is per‐
formed in the Dirac sense, they turn into the WDW equation and the quantum diffeomorphism
constraints [151]. Therefore, the WDW equation can be understood as the analogous to the
Schrödinger equation in QM where the Universe is taken as a whole; i.e. as the full system to
be analysed [151, 152]. In order to deduce the WDW equation, the first step is to obtain the
classical Hamiltonian from the usual Hilbert‐Einstein action (in our case we restrict to a FLRW
metric). Then the quantum operators are introduced according to the canonical quantisation
procedure leading to the WDW equation [151, 152]. The gravitational action depends upon the
chosen metric, in particular for a FLRW space‐time, the Hilbert‐Einstein action is given by

SHE =
1

16πG

[∫
d4x

√
−g (R− 2Λ)− 2

∫
d3x

√
−hK

]
. (7.1)

The second term on the right hand side of the previous equation contains the extrinsic curvature
K and is a compulsory boundary term to have a well‐defined variational problem. The extrinsic
curvature and its trace read [151, 152]

Kab =
1

2N

∂hab
∂t

, (7.2)

K = Kabh
ab, (7.3)

where N(t) is the lapse function and hab is the induced spatial metric [151, 152]

hab = a2 (t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ

)
. (7.4)

The Lambda function introduced in the action corresponds to Λ = 8πGρ; i.e. the matter La‐
grangian of the Universe is described by Λ(a). From the Hilbert‐Einstein action, we obtain the
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following Lagrangian density (after performing an integral)

L = N

[
3π

4G

(
−aȧ

2

N2
+ ka− Λ(a)

a3

3

)]
. (7.5)

Defining the momentum pa as

pa ≡ ∂L

∂ȧ
= − 3π

2G

(
aȧ

N

)
, (7.6)

we get the Hamiltonian corresponding to the action (7.1)

H = N

[
− G

3π

p2a
a

+
π

4G
Λ (a) a3

]
, (7.7)

where pa is the canonical momentum corresponding to the scale factor. Notice that the canonical
momentum associated with the lapse function does not appear because it corresponds to a
primary constraint [152]. Therefore, the scale factor is the only variable in this particular
cosmological problem. The curvature term is reabsorbed in the Λ(a) function which can be
understood as an effective potential. Depending on the features of the model inducing the
abrupt event, such a potential is described, in general, by a growing function of the scale
factor, for example: by a power law, by an exponential function or by a product of both.

A perfect fluid description, where the scale factor is the single degree of freedom, shows inter‐
esting features and have been analised in the present thesis, but it turns out that it describes a
simple one dimensional problem where the roles of the scale factor and time are not very clear.
By mapping the fluid to a scalar field adds an additional variable, in consequence, the wave
function can be spread over a larger number of variable while the scale factor could be under‐
stood as playing the role of time. Choosing, in addition, a perfect fluid and a set of minimally
coupled scalar fields, the total action consisting of the Einstein‐Hilbert action and the matter
action reduces to [42, 44, 51, 70, 151, 152]

S =

∫
L dt, L =

V0

2π

[
− 3π

4GN
ȧ2a− 2π2Na3

(
ρ− 1

2N2

∑
i

liϕ̇i
2
+ V (ϕ1, ..ϕn)

)]
, (7.8)

The energy density ρ could represents a mixture of those perfect fluids while ϕi represents the
scalar field where l = 1, (−1) for a standard (phantom) scalar field. The constant V0 stands for
the volume of the three‐dimensional spatial sections for a = 1. As we are dealing with spatially
flat sections, it is implicitly assumed that we either choose a torus compactification with the
correct volume or we leave the volume open, that is, choose a reference volume V0

i. We can
work out both options without loss of generality. Bear in mind that this choice leads only to a
constant factor multiplying the Lagrangian and, therefore, will not affect the results presented
below, after all, the Hamiltonian is obtained from a Legendre transformation and the classical
constraint H = 0 becomes after quantisation [151, 152]

ĤΨ = 0. (7.9)

This equation enables an appropriate quantum approach where the wave function of the Uni‐

iFor non‐vanishing spatial curvature, the total action can be written as [151, 152], S =
3π
4G

∫ [
−ȧ2a+ ka

]
dt− π2

∫
a3

[
ϕ̇2 + 2V (ϕ)

]
dt, where the lapse function is taken as unity, N = 1.
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verse Ψ depends on the degrees of freedom used to describe the physical system under study,
that is, the configuration space. We will address quantisation by means of: (i) a single degree
of freedom corresponding to the scale factor, where the matter content is given by a perfect
fluid (with a known EoS corresponding to the chosen model (see chapter 2), and (ii) two de‐
grees of freedom corresponding to the scale factor and a scalar field (which portrays the matter
content).

In the first approach, the scale factor is the only independent variable. This is certainly a
very simple model, but it is interesting enough to study the behavior of the wave function near
the singularities. In the absence of a full quantum gravity framework it is, of course, an open
question what the correct criterion of singularity avoidance is. A useful heuristic criterion is
the one introduced by DeWitt in 1967 [176] ; it states that the wave function should vanish
at the place of the classical singularity. This criterion was successfully applied to a variety of
cosmological models, see [151, 152, 308] and [44, 48, 63, 70, 309].

In the second approach, an approximation describing the matter content by a scalar field yields
a suitable framework with an additional degree of freedom. We move from the classical trajec‐
tory, ϕ = ϕ (a), to the corresponding quantum analog where the wave function is defined over
the configuration space (a, ϕ). In this way, the quantum nature arises and gains significance
close to the singularity, once the quantum effects become important. Here, again, the DW
criterion is useful as a heuristic device.

7.2 Quantisation procedures: Factor ordering

The passage to the quantum description is done by promoting all the degrees of freedom and
canonically conjugate momenta to operators acting on some Hilbert space. The usual approach
is to consider the so called minisuperspace, the space of all 3‐dimensional totally symmetric
(FLRW) metrics and all matter‐energy configurations. It is analogous to the configuration space
in the classical analysis. The wave function of the Universe (in the Schrödinger representation)
will live on this space and each point on it represents a FLRW Universe with a certain value of
the scale factor and certain well defined values for all the matter‐energy degrees of freedom.
The WDW equation governs precisely the distribution of the wave function in this (quantum)
configuration space. It corresponds to the Hamiltonian constraint (time diffeomorphism invari‐
ance) previously mentioned, where the Hamiltonian operator acting on the wave function gives
zero. In fact, the classical Hamiltonian constraint H = 0 corresponds to the Friedmann equa‐
tion. Therefore, time is absent in this quantum description and the wave function in the Born
interpretation is expected to provide a stationary probability (amplitude) distribution in min‐
isuperspace [151]. As mentioned in the introduction, in the canonical quantisation procedure
we have to take into account that there are different “factor‐orderings” in obtaining the WDW
equation.

A reasonable model is one in which the decoherence of the general superposition of quantum
states is absent in those regions of minisuperspace corresponding to a classically behaving Uni‐
verse [151]. This requirement is analogous to the correspondence principle in usual QM where
the classical regime is re‐obtained for large quantum numbers. Here, coherence presupposes
the possibility for confined wave packet solutions, effectively reproducing the classical tra‐
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jectory in configuration space. However, in the vicinity of classical singularities, where the
quantum cosmology can have important non‐classical effects, decoherence might be present
and the quantum results can differ from the classical description [42]. Therefore, for any FLRW
model with singularities (or abrupt events such as the LR and the LS), one should check if the
distribution of the wave function in minisuperspace is such that these (classical) cosmic events
can be effectively avoided with the quantum approach. That is, it is necessary to check the
DW boundary condition verifying whether among the obtained solutions exists a wave function
which effectively vanishes at the vicinity of the abrupt event. Unfortunately, we have not yet
a complete quantum theory and there is some inconsistency as the factor ordering choice, i.e.
different factor orderings lead to different wave function of the Universe. Therefore, every
result is taken rigorously as a hint rather than a proof of singularity avoidance.

One of the factor ordering chosen in the present work is the corresponding to the covariant
generalisation of the LB operator. This method has the attribute of waranting a kinetic term
invariant under phase‐space transformations as it happens with the Schrödinger equation in QM
[151]. The corresponding WDW equation Ĥψ(α, ϕ) = 0, for flat spatial geometry is [42]

ℏ2

2

[
κ2

6

∂2

∂α2
+

∂2

∂ϕ2

]
ψ(α, ϕ) + a60e

6αV (ϕ)ψ(α, ϕ) = 0, (7.10)

where α ≡ ln (a/a0), κ2 ≡ 8πG and V (ϕ) represents the potential of the scalar field. Bear in
mind that the above quantisation in terms of LB operator corresponds to the minusuperspace
of variables considering both metric and the scalar field. In the case of a single degree of
freedom the term p2a/a in the classical Hamiltonian given in (7.7) becomes in the quantum
version something proportional to ∂2/∂u2, where u ≡ (3/2)a3/2.

On the other hand, some others factors orderings are considered in the present work. Bear in
mind that the classical Hamiltonian results in a vanishing outcome, so it is always possible to
multiply by an arbitrary functionii. In general, this function could depend on both variable, the
scale factor and the scalar field. For simplicity, we assume that such a function depends only
on the scale factor. The goal is to see that our results do not depend on the factor ordering.

Then, once the factor ordering is selected, it comes the diagonalisation of the operator. This
step is performed by a change of the gravitational variable, usually the scale factor or a function
of it. This becomes a differential equation in a double derivative over the new gravitational
variable, as well as, over the scalar field if it is present, and plus an effective potential. The
latter is a product of separated functions depending on the gravitational variable and the scalar
field for those cases where two variables are involved. The resulting differential equation could
be difficult to solve, therefore, we apply some methods as the well known BO approximation
(see C.3 in the appendix for a detailed analysis).

When solving the WDW equation some comments are in order. The quantum description based
on the WDW equation will be limited to a subset of the minisuperspace corresponding to DE
dominance, (ρtot ≈ ρde = ρ in (2.2)). In the second place, α and ϕ are not independent clas‐
sically. Naively, this could seem to imply that to check the fulfilment of the DW criterium we

iiOf course, as long as such a function is not divided by zero, which would imply an indetermination to
be solved.
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should search for solutions ψ(α, ϕ) that decay along that line ϕ = ϕclass(α), ψ(α, ϕclass(α)) → 0,
when the scale factor goes to infinity. Nevertheless, when the energy density approaches a
certain quantum gravity threshold, the quantum effects should become important breaking the
classical constraint ϕ = ϕclass(α). Indeed, although the potential is classically obtained, α and
ϕ are independent in the quantum description. Therefore, we must investigate the evolution
of the wave function ψ(α, ϕ) for α → ∞ and arbitrary values of ϕ. Finally, for a compatible
link between the quantum solutions and the classical behaviour, far from the quantum effects
dominance, the wave function should be described by wave‐packets centered in each point of
the classical trajectory ϕ = ϕclass(α) [151]. We will not consider this issue in the present work.

7.3 WDW equation in EiBI theories

The WDW equation derived in the previous section comes from the fundamental action which
consists on the Hilbert‐Einstein action minimally coupled to a matter field. Then, we move from
the classical to the quantum real by promoting the Hamiltonian constraints and the conjugate
momenta as operators acting over the wave function. Therefore, this step is always doable as
far as it exists a physically motivated Hamiltonian. So, in order to analyse the possible factor
orderings that changes the resulting wave function, we go beyond and ask what if the action
that leads to the classical Hamiltonian is different? One of the most appealing suggestion is the
EiBI modified gravity. On the one hand, it has shown to be effective to address the issue of cos‐
mological singularities. The merging of an auxiliary (or equivalent) space‐time metric “absorbs”
the physical singularity leading to a harmless scenario. On the other hand, it is interesting from
the application of the WDW equation, since it could provide an original Hamiltonian giving rise to
different mechanics deviated from those addressed in the previous sections, where our starting
point to obtain the WDW equation lied on the usual Hilbert‐Einstein action.

The EiBI theory is inspired on the Eddington’s functional [121], where the connection is consid‐
ered as the main field. We will focus on the EiBI action proposed in [122]

SEiBI =
2

κ

∫
d4x
[√

|gµν + κRµν(Γ)| − λ
√
−g
]
+ Sm(g), (7.11)

where |gµν + κRµν | is the determinant of the tensor gµν + κRµν. From now on, we assume
8πG = c = 1.

The theory is assumed to contain only the symmetric part of the Ricci tensor R(µν) and the
curvature is constructed by the affine connection Γ, which is independent of gµν. Within this
setup, the theory respects the projective gauge symmetry and the torsion field, if it exists,
can be removed by simply choosing a gauge. On the other hand, the dimensionless constant
λ quantifies the effective cosmological constant at the low curvature limit. Moreover, on the
action (7.11) |gµν + κR(µν)| stands for the absolute value of the determinant of the rank two
tensor gµν + κR(µν). Finally, κ characterises the theory and has inverse dimensions to that of
a cosmological constant. In addition, this parameter is assumed to be positive to avoid the
imaginary effective sound speed instabilities usually associated with a negativeiii κ [142].

iiiHowever, within the quantum study we will perform later on in the chapter 13 both cases, < κ and
κ < 0, will be considered.
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The EiBI theory is equivalent to GR in vacuum, while it could deviate from GR when matter
fields are included. In the early Universe, the theory has been shown to be free of the big
bang singularity. Furthermore, it should be stressed that the equations of motion of the theory
contain derivatives of the metric up to only second order because of the Palatini structure of
the theory. To be more precise, one can define an auxiliary metric λqµν = gµν + κR(µν) such
that qµν is compatible with the connection. One of the two field equations relates algebraically
the matter field with the two metrics, and the other equation corresponds to a second order
differential equation of qµν. It can be seen that when the curvature vanishes, the two metrics
are identical up to a constant conformal rescaling, rendering the equivalence of the EiBI theory
and GR in the zero curvature regime.

Considering a homogeneous and isotropic spacetime which can be described by the following
metric ansatz:

ds2g = −N(t)2dt2 + a(t)2δijdx
idxj , ds2q = −M(t)2dt2 + b(t)2δijdx

idxj , (7.12)

where N(t) and a(t) are the lapse function and the scale factor of the physical metric gµν, while
M(t) and b(t) are the lapse function and the scale factor of the auxiliary metric qµν. In this
metric ansatz, these four quantities can be expressed as functions of the cosmic time t and
their evolutions in time are determined by the Euler‐Lagrange equations of motion. The field
equations are obtained by varying (7.11) with respect to gµν and the connection Γ. Therefore,
in a flat, homogeneous and isotropic (FLRW) Universe filled with a perfect fluid. The Friedmann
equations of the physical metric gµν and of the auxiliary metric compatible with Γ are [130]

κH2 =
8

3

[
ρ̄+ 3p̄− 2 + 2

√
(1 + ρ̄)(1− p̄)3

]
× (1 + ρ̄)(1− p̄)2

[(1− p̄)(4 + ρ̄− 3p̄) + 3dp̄
dρ̄ (1 + ρ̄)(ρ̄+ p̄)]2

, (7.13)

and

κH2
q = κ

(1
b

db

dt̃

)2
=

1

3
+

ρ̄+ 3p̄− 2

6
√
(1 + ρ̄)(1− p̄)3

, (7.14)

whereiv ρ̄ ≡ κρ and p̄ ≡ κp. On the above equations a and b are the scale factor of the physical
and auxiliary metrics, respectively. t̃ is a rescaled time such that the auxiliary metric can be
written in a FLRW form.

The deduction of the WDW equation of the EiBI model is based on the construction of a classical
Hamiltonian that is promoted to a quantum operator. As shown in [203], this can be achieved
more straightforwardly by considering an alternative action which is dynamically equivalent to

ivNotice that we are dealing with Palatini type of models which are also known as affine models. On these
types of theories (c.f. the action (7.11)) there is a metric gµν and a connection Γwhich does not correspond
to the Christoffel symbols of the metric. However, it is always possible to define a metric compatible with
that connection [310] and this is the metric that we are referring to as the auxiliary metric. The same
applies to the action (7.15) where we denote the auxiliary metric as qµν and the physical metric gµν. This
is the standard and usual nomenclature in Palatini/affine theories.
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the EiBI action (7.11):

Sa = λ

∫
d4x

√
−q
[
R(q)− 2λ

κ
+

1

κ

(
qαβgαβ − 2

√
g

q

)]
+ Sm(g). (7.15)

On the above action (7.15), the fundamental variables are gµν and the auxiliary metric qµν.
It can be proven that the equations of motion derived from the original action (7.11) can be
obtained unambiguously by varying the action (7.15) with respect to gµν and qµν. In [126] it has
been shown that the field equations obtained by varying the action (7.15) with respect to gµν
and the auxiliary metric qµν are the same to those derived from the action (7.11).

We will use this alternative action (7.15) to deduce the classical Hamiltonian and the corre‐
sponding WDW equation in the EiBI gravity. It turns out that the construction of the WDW
equation is much more straightforward because of the absence of the square root structure of
the curvature present in the original action (7.11). For the sake of later convenience, we use
the following changes of variables

X ≡ N

M
, Y ≡ a

b
, (7.16)

to replace N and a withX and Y , respectively. Using the alternative action (7.15) and assuming
that the matter sector is described by a perfect fluid with energy density ρ and pressure p, the
reduced Lagrangian associated with the action (7.15) can be written as

L = λMb3

[
− 6ḃ2

M2b2
− 2λ

κ
+

1

κ

(
X2 + 3Y 2 − 2XY 3

)]
− 2ρ [(bY )]Mb3XY 3 , (7.17)

where ρ is a function of a where the relation a = bY has been imposed, i.e., ρ = ρ(bY ). In
the present work, the energy density will be fixed by the selected DE model. Note that for
large scale factors DE dominates the dynamics of the Universe, in such a way that the Universe
is considered to be filled by a single DE component neglecting the contribution of the matter
content.

According to the definition of conjugate momenta, we have three primary constraints:

pX =
∂L
∂Ẋ

∼ 0 , pY =
∂L
∂Ẏ

∼ 0 , pM =
∂L
∂Ṁ

∼ 0 , (7.18)

where ∼ denotes a weak equality, i.e., an equality on the constraint surface. The total Hamil‐
tonian is defined as follows

HT = M

[
− p2b
24λb

+
2λ2b3

κ
− λ

κ
b3X2 − 3λ

κ
b3Y 2 +

2XY 3b3

κ
(λ+ κρ)

]
+λXpX + λY pY + λMpM , (7.19)

where pb is the conjugate momentum of the phase space variable b. In the last few terms, λX,
λY , and λM are Lagrange multipliers associated with each primary constraint. Note that the
primary constraints are obtained directly from the definition of the conjugate momenta. These
constraints should be satisfied throughout time and this would lead to the so called secondary
constraints. To derive these secondary constraints requires the use of the equations of motion:
ṗM = [pM ,HT ] ∼ 0, ṗX = [pX ,HT ] ∼ 0, and ṗY = [pY ,HT ] ∼ 0. We call these requirements con‐
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sistent conditions of the corresponding constraints and the consistent conditions of the primary
constraints lead to the following secondary constraints [311, 312]:

CX ≡ λX − Y 3(λ+ κρ) ∼ 0, (7.20)

CY ≡ 3λ− 3XY (λ+ κρ)−XY 2bκρ′ ∼ 0, (7.21)

CM ≡ p2b
24λb

− 2λ2b3

κ
+
λ

κ
b3X2 +

3λ

κ
b3Y 2 − 2XY 3b3

κ
(λ+ κρ) ∼ 0. (7.22)

The prime denotes the derivative with respect to a = bY . Furthermore, it can be shown that
the total Hamiltonian is a constraint of the system:

HT = −MCM + λXpX + λY pY + λMpM ∼ 0. (7.23)

Because the Poisson brackets of the total Hamiltonian with all the constraints should vanish
weakly by definition, HT is a first class constraint and we will use it to construct the modified
WDW equation.

This system has six independent constraints: pX, pY , pM , CX, CY , and CM . After calculating
their Poisson brackets with each other, we find that except for pM , which is a first class con‐
straint, the other five constraints are second class [311, 312]. The existence of the first class
constraint pM implies a gauge degree of freedom in the system and one can add a gauge fixing
condition into the system to make the constraint second class. An appropriate choice of the
gauge fixing condition is M = constant and after fixing the gauge, the conservation in time of
this gauge fixing condition, i.e., [M,HT ] = 0, implies λM = 0.

Within the EiBI framework, the scale factor plays the role of a parameter while the true variable
corresponds to the auxiliary scale factor denoted by b. As done in the previous section, the
content given by a perfect fluid can be mapped to a scalar field, in such a way that the system
has a further degree of freedom. The resulting reduced Lagrangian constructed from the action,
Sa = v0

∫
dtL, can be rewritten as

L = λMb3
[
− 6ḃ2

M2b2
− 2λ

κ
+

1

κ

(N2

M2
+ 3

a2

b2
− 2

Na3

Mb3

)]
+Na3

(
l
ϕ̇2

N2
− 2V (ϕ)

)
, (7.24)

where v0 corresponds to the spatial volume after a proper compactification for spatially flat
sections. On the above equation l = ±1 denotes the ordinary scalar field (+1) and phantom
scalar field (−1), respectively. After applying the change of variables (7.16) in (7.11), the
Lagrangian then becomes

L = λMb3
[
− 6ḃ2

M2b2
− 2λ

κ
+

1

κ
(X2 + 3Y 2 − 2XY 3)

]
+MXb3Y 3

(
l

ϕ̇2

M2X2
− 2V (ϕ)

)
. (7.25)

The conjugate momenta of this system are

pb = − 12λb
M ḃ , pϕ = 2b3Y 3

MX lϕ̇ , (7.26)

pX = 0 , pY = 0 , pM = 0 . (7.27)

It can be seen that the variables Ẋ, Ẏ , and Ṁ cannot be inverted to be functions of canonical
variables and their conjugate momenta, so the system is a constrained system and it has the
same three primary constraints as given in (7.18) [312]. Provided the existence of the primary
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constraints, the corresponding Hamiltonian for a content described by a scalar field is defined
as follows [312]

HT = − M
24λbp

2
b +

MX
4b3Y 3 lp

2
ϕ − λMb3

κ (X2 + 3Y 2 − 2XY 3 − 2λ) (7.28)

+2MXb3Y 3V (ϕ) + λMpM + λXpX + λY pY .

Therefore, the secondary constraints when describing the content by scalar field read as follows
[139]

CX ≡ λX

Y 3
− λ− κ

( lp2ϕ
8b6Y 6

+ V (ϕ)
)
∼ 0 , (7.29)

CY ≡ λ

XY
− λ+ κ

( lp2ϕ
8b6Y 6

− V (ϕ)
)
∼ 0 , (7.30)

CM ≡ p2b
24λb

− X

4b3Y 3
lp2ϕ +

λb3

κ
(X2 + 3Y 2 − 2XY 3 − 2λ)− 2Xb3Y 3V (ϕ) ∼ 0 . (7.31)

Moreover, the consistent conditions of these secondary constraints do not generate new con‐
straints anymore. Once again, we have six constraints in this system, where pM is a first class
constraint, i.e. its Poisson brackets with other constraints are zero weakly, while pX, pY , CX,
CY and CM are second class constraints because they have at least one non‐vanishing Poisson
bracket with the other constraints on shell. Therefore, mapping the perfect fluid into a scalar
field does not change the underlying feature of the first and second class constraints and the
Hamiltonian is within both descriptions a first class constraint since it can be written as a linear
combination of the constraints as follows

HT = −MCM + λMpM + λXpX + λY pY , (7.32)

and therefore, its Poisson brackets with all the constraints vanish weakly by definition. In
the following subsection, we will use the Hamiltonian to write down the WDW equation, i.e.,
ĤT |Ψ⟩ = 0.

7.3.1 Quantisation with Dirac brackets

The system that we are dealing with contains several second class constraints. According to
[312], it was suggested that to quantise such a system, one needs to use the Dirac bracket, in‐
stead of the Poisson bracket, to define the commutation relations and promote the phase space
functions to quantum operators. The Dirac bracket is basically constructed by calculating the
Poisson brackets among all independent second class constraints of the system. The notion of
independent second class constraints means that one cannot obtain any other first class con‐
straints by taking linear combinations of these second class constraints. The independent second
class constraints in our system (after choosing the gauge) are χi = {M, pM , pX , pY , CX , CY }.
Note that the Hamiltonian (7.32) is a first class constraint and it can be written as a linear
combination containing CM . That is the reason why we have excluded CM when defining χi.

The Dirac bracket of two phase space functions F and G is defined by [312]

[F,G]D = [F,G]− [F, χi]∆ij [χj , G], (7.33)

We remind that the existence of the matrix ∆ij is proven in Dirac’s lecture [312] while Poisson
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bracket is defined as

[F,G] =
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi
,

(7.34)

where qi are the variables and pi their conjugate momenta and ∆ij is a matrix satisfying

∆ij [χj , χk] = δik, (7.35)

where the repeating suffices denote the summation. According to [312], the second class con‐
straints can be treated as zero operators after promoting them to quantum operators as long as
the Dirac brackets are used to construct the commutation relations:

[F̂ , Ĝ] = iℏ[F,G]D, (F=F̂ , G=Ĝ). (7.36)

This is due to the fact that the Dirac brackets of the constraints χi with any phase space func‐
tion vanish strongly (they vanish without inserting any constraint). Considering a perfect fluid
description, the Dirac brackets between the fundamental variables take the forms

[b, pb]D = [b, pb] = 1,

[b,X]D = 0,

[b, Y ]D = 0,

[X,Y ]D = 0,

[X, pb]D = f1(X,Y, b) = f1(b),

[Y, pb]D = f2(X,Y, b) = f2(b), (7.37)

where f1 and f2 are two non‐vanishing functions. Notice that f1 and f2 can be written as
functions of b because it is legitimate to insert the constraints CX and CY to replace X and
Y with b when calculating the Dirac brackets. One of the important properties of the Dirac
bracket is that the Dirac bracket of a second class constraint with any phase space function is
zero strongly, i.e., [χi, G]D = 0. This means that after promoting the phase space functions to
quantum operators via the Dirac bracket, the second class constraints χi can be treated as zero
operators and the Hamiltonian can be significantly simplified. Therefore, when describing the
content by a scalar field and considering the constraints CX and CY , the Hamiltonian operator
ĤT only contains b̂, p̂b, ϕ̂, and p̂ϕ. The Dirac brackets of the fundamental variables corresponding
to these operators are

[b, ϕ]D = [b, pϕ]D = [ϕ, pb]D = [pb, pϕ]D = 0,

[b, pb]D = [ϕ, pϕ]D = 1. (7.38)

This means that the standard commutation relations are still valid. In the next analysis done in
the present thesis (see chapters 11, 12 and 13) we will make use of the second class constraints
χi to derive an explicit form of the WDW equation.
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7.4 conclusions

In the current chapter we have disclosed the method used to move from the classical description
to the quantum realm. Such a quantisation is carried via the WDW equation, where the classical
Hamiltonian is derived from the fundamental action given by: (i) the Hilbert‐Einstein action, and
(ii), within the context of EiBI theory. That is, we consider the Eddington’s functional provided
with a Born‐Infeld like structure. On the other hand, the DE content could be given by: (i) a
perfect fluid, and (ii), a phantom scalar field. The conjugate momenta of the metric and scalar
field are promoted as operators acting on a wave function. Such a function, in principle, should
be defined within a Hilbert space with well defined eigenvalues and eigenfunctions. However,
as aforementioned, we have not yet a fundamental theory of gravity that allows a particular way
to perform the transitions from classical GR to its quantum analogous. This becomes obvious
when dealing with different factor orderings. However, different approaches have shown to
be viable in order to avoid the cosmological singularities prevalent in the classical theory of
gravity. That is, the obtained wave function effectively vanishes when approaching cosmic to
the doomsday. We stress that this result is not meant as a proof of singularity avoidance in
QC, it should be rather understood as a hint of singularity avoidance. If a fundamental theory
able to handle QM and GR simultaneously exists, it should, in principle, avoid those singularities
present in the classical theory. In such a way that the subsequent wave functions obtained by
different approaches are just the results of a more fundamental theory holding all the underlying
approaches as those performed in the present thesis.
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8

The BR singularity in a HRDE model

To the dumb question ”Why me?” the cosmos barely bothers to return the reply: Why
not?

– Christopher‐Hitchens

8.1 Introduction

The late‐time observed acceleration of the Universe has promoted several scenarios that try
to describe this recent speed up of the Universe. In fact, it is well known that a Universe
filled only with matter and radiation (for open, flat or closed spatial geometries) cannot ex‐
pand with positive acceleration. Therefore, it is necessary to find other mechanisms/matters
that could explain this feature. The simplest phenomenological approach consists in invoking
another kind of energy density responsible for the current acceleration of the Universe which is
usually dubbed DE being the cosmological constant the simplest option [23]. The common way
to describe DE is via its equation of state (EoS) parameter, which is usually denoted by ωd. This
cosmological parameter is the ratio between the pressure and the energy density of DE. It can
be constant or time‐dependent. By definition, DE EoS must fulfil ωd < −1/3 at late‐time to be
able to describe the current speed up of the Universe. In fact, observations suggest ωd ≈ −1 at
present (see for example [14]).

Within the above framework, the ΛCDM model is the best fit to the observational data [14]. This
model assumes besides ordinary matter, the presence of non‐baryonic matter corresponding to
DM and a cosmological constant Λ. In fact, the EoS of Λ is just ωΛ = −1 and remains unchanged in
time [313]. In this Universe, the expansion is accelerated at late‐time reaching an infinite scale
factor in an infinite cosmic time where the Universe geometry is described by a de Sitter space‐
time. Planck latest results when combined with other cosmological measurements provides
ωd ≈ −1.006 ± 0.045 for a DE constant equation of state [14]. Even though this value is very
close to minus one, a slight deviation from it is crucial for the asymptotic future behaviour
of the Universe. In fact, if ωΛ is slightly larger than ‐1, the Universe will continue expanding
eternally, but if this value is slightly smaller than ‐1, and no matter how tiny is such a deviation,
the Universe could end up in a doomsday. For example, it could happen that the energy density
becomes infinite at a finite cosmic time [28–30, 32, 45–47, 59, 60].

Although the ΛCDM model gives the best observational fit to explain our current Universe, there
are other ways that have gained great attention [23]. One of them is the holographic DE scenario
[40, 314] which is inspired on the holographic principle rooted in quantum gravity. We next
explaini briefly the ideas behind the HRDE.

iThis chapter corresponds mainly to our publication [44]
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As it is well known, the entropy of a given closed system with finite volume L3 has an upper
bound which is not proportional to its volume, but to its surface area, L2 [315, 316]. On the
other hand, for an effective quantum field theory with a given ultra‐violet (UV) cutoff,MUV, the
entropy of the same system is scaled as L3M3

UV. Therefore, there is always a scale or a length
where the quantum field theory with UV cutoff is expected to fail. This will happen for large
volumes or lengths. To overcome this problem a link between UV and infrared (IR) cutoffs was
proposed in [317]:

L3M4
UV ≲ LM2

p . (8.1)

This proposal ensures the validity of the quantum field theory within this regime. When the
inequality is saturated, we can define an energy density which is inversely proportional to the
square of the characteristic length of the system. Applying these ideas to the universe give rise
to the holographic DE scenario [40].

Now, the next task would be to find a suitable holographic energy density able to speed up
the current Universe. This issue has been tackled in different works. For example, taking as
a characteristic length the inverse of the Hubble parameter, lH = H−1, it was found that the
effective EoS for DE is equal to zero and therefore is not a suitable proposal to describe the
current Universe because it would imply an eternally decelerating Universe [40]. Later on, the
particle horizon was suggested as a characteristic length for the universe within the holographic
approach lPH = a

∫ t

0
dt/a [318]. In this case, it turns out that the effective EoS is larger than ‐1/3,

therefore this choice is equally unsuitable to describe our present Universe [40, 318]. Contrary
to the previous proposals, the future event horizon lEH = a

∫ tf
t
dt/a is phenomelogically viable

as it fits the current observations [40, 319], however, it has a drawback with causality; the
future event horizon should not affect the current or past physical evolution of our Universe
[320]. There is a further possibility to define an holographic DE model which consists in taking
as the square of the length characterising the Universe, the inverse of the Ricci scalar curvature
[321]. This model was named the Holographic Ricci Dark Energy scenario (HRDE) for further
generalization of the holographic DE model see [39, 102, 322–325].

While the HRDE is suitable to describe the current acceleration of the universe as shown in [321,
326–329], it might induce a BR singularity [321]; i.e., the scale factor, the Hubble parameter and
its first cosmic time derivate blow up in a finite future cosmological time [28–30]. This model
has been observationally constrained in [330]. For more updated observational constraints on
the HRDE we refer to [329], where even interaction between DM and the HRDE is considered,
and again, a BR is favoured observationally.

When the Universe approach the BR regime, we expect quantum effects to be important, there‐
fore, it is necessary to do a quantum analysis. The field of cosmological singularities has been
extensively studied in quantum cosmology [151, 152] (see [204] for a review on this topic).
Quantum Cosmology consists in applying the quantum theory to the Universe as a whole [331].
A consistent theory of quantum gravity should in principle avoid the classical singularities preva‐
lent in the classical theory of general relativity [42, 48, 51]. Indeed, it has been shown that in
some specific models, most DE related singularities can be avoided in the analogous quantum
version [42, 48, 51, 63].
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In the present chapter, we address the quantisation of the HRDE model. We use the WDW
formalism for a homogenous, isotropic and spatially flat universe. The solutions to the WDW
equation must obey the DW boundary conditions [151, 152], which implies that the wave function
of the Universe has to vanish close to the singularities, ensuring that the classical singularity is
avoided through the quantisation procedure. We extend our analysis to the primordial Universe
where a Big Bang is expected to take place from a classical point of view and where again a
quantum analysis is required.

The chapter is outlined as follows. In the next section, we make a brief review of the HRDE
model. In section III, we present the WDW equation for a standard fluid and present the solutions
for the HRDE model. Finally, in section IV we discuss the overall conclusions. In the appendix
C.1, we include a brief explanation of the WKB method that was used to solve the WDW equation
for some periods of the expansion of the Universe.

8.2 The HRDE: a short review

We start reviewing the HRDE model. The Universe on its largest scale can be described by a
FLRW Universe. On the other hand, we consider an energy density proportional to the Ricci
scalar, i.e. [321]

ρR = 6β̃

(
Ḣ + 2H2 +

k

a2

)
, (8.2)

where β̃ is a proportionality constant and dot stands for derivates with respect to the cosmic
time t. Defining a dimensionless quantity β ≡ 16πGβ̃, and solving the Friedmann equation, the
expression for the Ricci DE density is found to be [321]

ρR =
3H2

0

8πG

[(
β

2− β

)
Ωm0

(
a

a0

)−3

+Ωp0

(
a

a0

)−2(2− 1
β )
]
, (8.3)

where Ωp0 is an integration constant which will quantify the effective amount of DE in the HRDE
model [321]. Notice that the presence of radiation and spatial curvature in the Universe do not
modify the previous result. The Ricci DE has one part that behaves as matter and another part
which depends on the value of β and plays the role of DE. The asymptotic future behaviour of
the Universe depends on the values acquired by β, more precisely:

1. If 1 < β , the cosmic acceleration is negative. We disregard this case as it cannot describe
the present Universe.

2. If 1/2 < β < 1, the Universe enters in an accelerating state when the HRDE dominates.
The Universe is asymptotically flat in the future.

3. If β = 1/2 , the model is equivalent to the existence of a cosmological constant plus the
matter contributions. We will disregard this case as it reduces to ΛCDM model.

4. If 0 < β < 1/2, the Universe not only enters in an accelerated state, but also super
accelerates (Ḣ > 0) in the future hitting a BR; i.e. the Universe hit a singularity at a finite
cosmic time.
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The observational constraints of the HRDE model favour the last case, i.e 0 < β < 1/2 [329, 330],
so the Universe would reach a future singularity in a finite time. In this framework, classical
Einstein theory is no longer valid and it is necessary to make a quantum treatment.

8.3 Quantisation of the HRDE

For a HRDE model we follow the one dimensional description where the action (7.1) leads to
the Lagrangian given in Eq (7.5). Therefore, the total matter content is absorbed in the Λ(a)

function which reads

Λ (a) = 3H2
0

[
Ωr0

(
a

a0

)−4

+

(
2

2− β

)
Ωm0

(
a

a0

)−3

+Ωk0

(
a

a0

)−2

+Ωp0

(
a

a0

)−2(2− 1
β )
]
. (8.4)

Here, Ωk0 is the dimensionless energy density parameter for curvature at present. On the other
hand, we follow the quantisation procedure where the term p2a/a generates the operator

p2a
a

= −ℏ2
[
a−

1
2 ∂a

] [
a−

1
2 ∂a

]
, (8.5)

in the quantum framework where we have choosen a factor ordering corresponding to the covari‐
ant generalization of the LB operator [151] (for alternative choices see for example [332–334]).
It is useful to apply the following change of variable to remove the first order derivate from the
quantum Hamiltonian operator

x =

(
a

a0

) 3
2

. (8.6)

Therefore, the quantum Hamiltonian operator can be written as

Ĥ = N

{
3Gℏ2

4πa30
∂2x +

3πH2
0a

3
0

4G

[
Ωr0x

− 2
3 +

(
2

2− β

)
Ωm0 +Ωk0x

2
3 +Ωp0x

− 2
3 (1−

2
β )
]}

. (8.7)

As the variation of the Hamiltonian with respect to the lapse function N produces the Hamil‐
tonian constraint, the WDW equation reads ĤΨ(x) = 0. We will take the case of a spatially
flat universe (Ωk0 = 0) for simplicity and in accordance with the current observations [14].
Therefore the WDW equation reduces to{

∂2x + γ

[
Ωr0x

− 2
3 +

(
2

2− β

)
Ωm0 +Ωp0x

− 2
3 (1−

2
β )
]}

Ψ(x) = 0, (8.8)

where we have introduced the following dimensionless constant:

γ ≡
(
πH0a

3
0/Gℏ

)2
. (8.9)

Due to the complexity of the equation (8.8), we will divide the evolution of the Universe thereof
in three regimes corresponding to the domination eras of radiation, matter and DE, respectively.
The first one, has an exact solution, for the others two cases we will make a WKB approximation
(up to first order). In the radiation dominated era the WDW is{

∂2x + γΩr0x
− 2

3

}
Ψ(x) = 0, (8.10)
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whose exact solution reads [307]

Ψ1 (x) = (Ωr0γ)
3
8
√
x

[
C1J 3

4

(
3

2

√
Ωr0γx

2
3

)
+ C2Y 3

4

(
3

2

√
Ωr0γx

2
3

)]
, (8.11)

where C1 and C2 are constants. The functions J3/4 and Y3/4 correspond to the first and second
kind Bessel functions of order 3/4, respectively. We choose C2 = 0 to ensure that the wave
function vanishes when a → 0, according with the DW boundary condition [151, 330]. For the
matter dominated era the WDW is

{
∂2x + γg2 (x)

}
Ψ(x) = 0, (8.12)

where the function g2(x) is defined as

g2 (x) =

[
Ωr0x

− 2
3 +

(
2

2− β

)
Ωm0

]
. (8.13)

The first order WKB solution gives

Ψ2 (x) ≈ [−γg2 (x)]−
1
4

[
α1e

ih2(x) + α2e
−ih2(x)

]
, (8.14)

where α1 and α2 are constants and the function h2(x) is given by

h2 (x) =

√
γ

(
2

2− β

)
Ωm0

[
x

2
3 +

(
2− β

2

)
Ωr0

Ωm0

] 3
2

. (8.15)

Finally, during the DE dominated era the WDW is

{
∂2x + γg3 (x)

}
Ψ(x) = 0, (8.16)

where the function g3(x) is defined as

g3 (x) =

[(
2

2− β

)
Ωm0 +Ωp0x

s

]
. (8.17)

The first order WKB approximation gives the solution

Ψ3 (x) ≈ [−γg3 (x)]−
1
4

[
δ1e

ih3(x) + δ2e
−ih3(x)

]
, (8.18)

where δ1 and δ2 are constants. The function h3(x) reads

h3 (x) =

√
γ

2 + s
x

{
2
√
g3 (x) + s

√(
2

2− β

)
Ωm0 2F 1

[
1

2
,
1

s
; 1 +

1

s
;

(
β − 2

2

)
Ωp0

Ωm0
xs
]}

, (8.19)

where s ≡ −2/3(1 − 2/β). Notice that (i) the hypergeometric function defined in (8.19) is not
well defined as a series but it is well defined as an integral [307] and (ii) the parameter s is
positive, in fact it is larger than 2 for 0 < β < 1/2. The function h3(x) is always real, on the
other hand, the function g3(x) is positive and an increasing function of x; in fact, it blows up
for large values of x. Therefore, the wave‐function (8.18) which corresponds to an Universe
dominated by DE vanishes at large scales and the DW condition is fullfilled authomatically for
Ψ3.
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Now, it is necessary to connect continuously the solutions among them. Taking the arbitrary
constant C1 = 1 (for convenience, this election will not modify the fundamental behaviour of
the wave function), the conditions for a smooth wave‐function give the values of α1, α2, δ1, δ2.
These conditions are just the continuity conditions of the wave function and its first derivate
on a first connecting point (x1) and on a second connecting point (x2), which can be read as

Ψ1 (x1) = Ψ2 (x1) ,Ψ1′ (x1) = Ψ2′ (x1) ,Ψ2 (x2) = Ψ3 (x2) ,Ψ2′ (x2) = Ψ3′ (x2) , (8.20)

where prime stands for a derivative with respect to x.

We choose the first connecting point (x1) in which the matter component is subdominant with
respect to the radiation component (for example ρm ∼ 10−4ρr), the second connecting point
(x2) is just where the radiation and the phantom contribution in equation (8.8) are subdominant
with respect to DM (for example when they are equal). The connecting points then read

x1 = 10−6

[(
2

2− β

)
Ωm0

Ωr0

]− 3
2

, (8.21)

x2 =

(
Ωr0

Ωp0

) 3β
4

. (8.22)

Using the Cramer method to solve the algebraic system, the constants α1, α2, δ1, δ2 can be written
as follows

α1 = −1

2
[−γg2 (x1)]

3
4

∣∣∣∣∣ y1 a12

y2 a22

∣∣∣∣∣ , (8.23)

α2 = −1

2
[−γg2 (x1)]

3
4

∣∣∣∣∣ a11 y1

a21 y2

∣∣∣∣∣ , (8.24)

δ1 = −1

2
[−γg3 (x2)]

3
4

∣∣∣∣∣ z1 b12

z2 b22

∣∣∣∣∣ , (8.25)

δ2 = −1

2
[−γg3 (x2)]

3
4

∣∣∣∣∣ b11 z1

b21 z2

∣∣∣∣∣ , (8.26)

where we define

a11 ≡ [−γg2 (x1)]−
1
4 eih2(x1), (8.27)

a12 ≡ [−γg2 (x1)]−
1
4 e−ih2(x1), (8.28)

a21 ≡

{
−γ

− 1
4

4
[−g2 (x1)]−

5
4

(
2

3
Ωr0x

− 5
3

1

)
− i [γg2 (x1)]

− 1
2

}
eih2(x1), (8.29)
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a22 ≡

{
−γ

− 1
4

4
[−g2 (x1)]−

5
4

(
2

3
Ωr0x

− 5
3

1

)
+ i [γg2 (x1)]

− 1
2

}
e−ih2(x1), (8.30)

y1 ≡ (Ωr0γ)
3
8
√
x1J 3

4

(
3

2

√
Ωr0γx

2
3
1

)
, (8.31)

y2 ≡ (Ωr0γ)
3
8

1

2
√
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[
J 3
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√
Ωr0γx

2
3
1
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− 2 (Ωr0γ)

1
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− 1
3

1 J 7
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(
3

2

√
Ωr0γx

2
3
1

)
+ 1

]
, (8.32)

b11 ≡ [−γg3 (x2)]−
1
4 eih3(x2), (8.33)

b12 ≡ [−γg3 (x2)]−
1
4 e−ih3(x2), (8.34)

b21 ≡

{
γ−

1
4

4
[−g3 (x2)]−

5
4
(
sΩp0x

s−1
2

)
− i [γg3 (x2)]

− 1
2

}
eih3(x2), (8.35)

b22 ≡

{
γ−

1
4

4
[−g3 (x2)]−

5
4
(
sΩp0x

s−1
2

)
+ i [γg3 (x2)]

− 1
2

}
e−ih3(x2), (8.36)

z1 ≡ [−γg2 (x2)]−
1
4

[
α1e

ih2(x2) + α2e
−ih2(x2)

]
, (8.37)

z2 ≡ α1

{
−γ

− 1
4

4
[−g2 (x2)]−

5
4

(
2

3
Ωr0x

− 5
3

2

)
− i [γg2 (x2)]

− 1
2

}
eih2(x2) (8.38)

−α2

{
γ−

1
4

4
[−g2 (x2)]−

5
4

(
2

3
Ωr0x

− 5
3

2

)
+ i [γg2 (x2)]

− 1
2

}
e−ih2(x2). (8.39)

With the aim to show a numerical result, we use the constraints β = 0.3823, Ωr0 = 8·10−5,Ωm0 =

0.2927,Ωp0 = 0.6380 in accordance with the best fit of the current Universe within the HRDE
model [330]. Therefore, the connecting points are

x1 = 3.287 · 10−12, x2 = 0.07608, (8.40)

and the constants can be written as

α1 = uα + vαi, (8.41)

α2 = vα + uαi, (8.42)

δ1 = uδ + vδi, (8.43)

δ2 = vδ + uδi. (8.44)

We next show an example of these constants. We choose γ = 1020, sufficiently large to ensure
the validity of the WKB approximation for the connecting first point; i.e. well inside the radi‐
ation dominated epoch where matter is subdominant. Notice that if the WKB approximation is
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fulfilled for the first connecting point it is well defined for the second connecting point. Then
we obtain q(x1) = 0.035 (see (C.7)). Finally, using the above introduced constraints and for the
selected γ we find:

uα = 80274.39, (8.45)

vα = −288039.58, (8.46)

uδ = −298682.24, (8.47)

vδ = 14131.34. (8.48)

In principle, γ is much larger, in fact, taking a0 = 1 gives the value γ = 8.072·1087. If in addition,
we take into account the whole number of e‐folds since the radiation dominated epoch, the
parameter γ would be much larger. We choose the previous value of γ; i.e. γ = 1020, to be able
to get numerically the values of the constants defined in (8.41).

8.4 Conclusions and outlook

The HRDE is a suitable proposal to describe the late Universe. The best fit of the model provides
a value for the proportionality constant β inside the interval 0 < β < 1/2 [330]. This means that
the Universe is not only accelerating but will also face a future BR singularity. This classical
singularity is analysed within a quantum treatment where the quantisation is realised in the
framework of the WDW equation for a flat FLRW universe and imposing the DW boundary con‐
dition. We have shown that the BR singularity as a consequence of the phantom like behaviour
of the HRDE could be avoidable and would be harmless within the quantum approach used in
this work. This might not be the case within a classical approach [335]. The DW condition can
be regarded as a guidance in the nowadays incomplete theory of quantum cosmology. In fact,
the disappearance of the probability distribution at singularities should arise in the theory in
a natural way as a dynamical consequence of some other requirements, such as the normaliz‐
ability of the wave function, and should not be postulated. Given that we lack of a complete
and consistent quantum gravity theory, we will stick to the DW condition as our guidance for
singularity avoidance.

Despite the quantum analysis presented in this work about the avoidance of the Big Bang and
BR singularities, this fact cannot be interpreted as an exact and thorough evidence of singular‐
ities avoidance in quantum cosmology, but rather an indication that a consistent and complete
quantum theory of gravity should be free of these singularities.

To solve the WDW equation we carry two types of approximations: (i) we divide the evolution of
the universe in three different epoch corresponding to radiation, matter and DE dominance as
explained in the previous section, (ii) for the last two periods we use a WKB approximation where
it is enough to go to first order in the WKB approximation to ensure the DW boundary condition
for large scale factors where the wave function is asymptotically decreasing and vanishing.

During the radiation dominated epoch, we obtain the exact wave function, fulfilling the DW
condition, which can be matched with the WKB approximation for the second period (mat‐
ter+radiation). The larger is the value of γ, defined in (8.9), the sooner, i.e. for smaller
scale factors, we can carry the matching between the two wave functions. In fact, the asymp‐
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totic behaviour of the wave function during the radiation dominated epoch matches smoothly
and naturally with the WKB approximated solution corresponding to the matter and radiation
epochs.

The quantisation is necessary to describe the Universe close to singularities. However, outside
of these singularities the Universe can be described classically. In this regime, the square of the
modulus of the wave function can be interpreted as the classical probability density distribution.
We can see this clearly when the value of γ is very large and therefore, the wave function
carries out a significant number of oscillations within a short interval of the chosen variable. In
fact, these oscillations are modulated by the classical probability density distribution, which is
defined as the time average of the scale factor.

In an analogy with the classical picture, a slight deviation of the resulted wave function from the
classical probability density distribution is expected. This is due to the performed first type of
approximation, which disregards the contribution of DE for small scales and the contribution of
radiation for large scales. Therefore, this deviation is more significant in the matter dominated
epoch.

Next, we would like to stress that our model has only one degree of freedom described through
the scale factor which in fact can play the role of the classical time. On the other hand, gravity
is a reparametrisation invariant theory with first class constraints. Therefore, there is always a
gauge fixing condition which reduces the number of physical variables and in our case we would
be left without any degree of freedom after the gauge fixing. However, our current work can be
regraded as a first approach in quantising the HRDE model, in fact a toy model, and we expect
to present in a different work a more elaborated scenario for the quantisation of the HRDE with
two physical variables and a genuine degree of freedom [70, 188, 189, 202]. In fact, to get at
least one degree of freedom with physical meaning, we can map the matter content given by
a perfect fluid to one or more scalar fields that could mimic the different components of the
universe. This method was carried out for example in [57] for a minimally coupled scalar field
or a tachyon scalar field.

In addition, we have been mainly focussing on the wave function of the universe while in fact
the important thing is the probabilistic interpretation of it. This requires the definition of a
Hilbert space with a proper scalar product and measure. In the interesting review [181], this
non trivial problem is discussed and several potential solutions are presented while in [183, 204]
those procedures are applied to different cosmological models. We hope to implement those
methods for the HRDE in a future work.

The aforementioned interpretation has some conceptual drawbacks: first, this picture corre‐
sponds with the description of an “external observer”, who lives in a reality outside from the
quantum system under study. This is certainly not the case for a cosmological system where
the observer is part of the system [181]. In fact, we would need to apply a quantum theory of
closed systems or the many‐worlds interpretation of QM to our universe but this is beyond the
scope of our current work (see [181] for more details on this subject).

We have restricted our analysis to a homogeneous and isotropic configuration. However, it is well
known that the inhomogeneities and anisotropies can be quite important close to singularities,
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for example through the creation of particle and gravitons (see for example [52, 336]). We leave
this interesting issue for a future work.
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9

Classical and quantum cosmology of the LR abrupt
event

The universe we observe has precisely the properties we should expect if there is, at
bottom, no design, no purpose, no evil, no good, nothing but blind, pitiless indiffer‐
ence

– Richard Dawkins

9.1 introduction

One of the most challenging problems in theoretical physics is the formulation of a consistent
quantum theory of gravity [151, 152]. Such a theory is needed not only for conceptual reasons,
but also for understanding the origin of the Universe and the structure of black holes. In this
chapteri, we shall deal with quantum cosmology, that is, the application of quantum theory
to the Universe as a whole. For this purpose, we shall use the conservative framework called
quantum geometrodynamics, with the WDW equation as its central equation. This framework
is straightforwardly obtained by constructing quantum wave equations from which the Einstein
equations can be recovered in the semiclassical (WKB) limit [337].

Besides these fundamental issues, we also encounter the problem to explaining the observed
acceleration of the Universe. Phenomenologically, this is done by adding an ingredient called
DE [23]. Some of the models describing DE predict the occurrence of singularities beyond big
bang (or big crunch), occurring for example in the finite future. Aside from DE singularities,
there are also DE abrupt events like the LR [47, 55, 59, 64–67, 201]. We name them abrupt
events rather than singularities because they occur at an infinite future cosmic time. Some of
these models are in accordance with current data [85]. Since the presence of singularities and
abrupt events in a theoretical framework is an indication of its breakdown, we expect quantum
effects to be important there, too. A central question is then whether those future singularities
and abrupt events can be avoided in quantum cosmology or not [308]. This question will be also
addressed (and answered) for the models discussed in this chapter. Naively, we would expect
that at cosmological scales quantum effects are important only in the early Universe, that is, on
time scales of the order of the Planck time, tP, and for distances related to the Planck length
lP. This naive belief is based on the fact that quantum theory is usually important for small
systems such as atoms or molecules. Assuming the universality of the superposition principle,
quantum effects can occur at any scale, whenever decoherence is negligible. This can happen
even for the Universe as a whole, for example, in the case of a classically recollapsing Universe
[338], or in cases where singularities or abrupt events are present in the classical theory, as is
the case here.

iThis chapter corresponds mainly to our publication [202]
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Before proceeding further, we should clarify that among all DE singularities and abrupt events,
only three of them are intrinsic to phantom DE, that is, within a relativistic model they hap‐
pen if and only if suitable phantom matter is present. These are the BR, the LR, and the LS.
Consequently, if we want to address the question: can quantum cosmology smoothen or avoid
divergent behaviors caused by phantom matter, we need to quantise models that induce in
the classical picture a BR, a LR, or a LS. These questions have been partially addressed in the
quantum theory of cosmological models with a BR [42, 44] or a LS [70]. In this paper, we will
complete the answer to these questions by quantising a classical model for the LR.

This chapter is organised as follows In section 9.2 and for later convenience, we introduce as
well a scalar field suitable to describe the nowadays late‐time acceleration of the universe and
are simultaneously able to induce a LR asymptotically in the presence and absence of DM. In
Section 9.3, we present and solve the WDW equation for the model B. Here, the DE is described
by a perfect fluid and we have made use of two different factor orderings. In Section 9.4 we
address the same model B but with a DE content mapped to a scalar field. We assume a variable
separation ansatz and apply some approximations to get a separable differential equation. We
show in all the analysed cases the existence of solutions to the WDW equation that avoid the
LR. Finally, in 9.5 we present our conclusions. In addition, a detailed analysis for the WKB
approximation performed in this chapter can be found in C.1.2, in which we prove the validity
of the approximations used in section 9.3. Finally, in the appendix section C.5, the Symanzik
scaling behavior is presented as an alternative method to analyse the scalar field eigenstates.

9.2 The LR as induced by a scalar field

For later convenience, we map the perfect fluid with EoS (2.13) to a scalar field, ϕ. As the
constant B must be positive to induce a LR, the mapping to a scalar field entails a phantom
character for the field. Consequently, we can write the kinetic energy and potential of the
scalar field as

ϕ̇2 = −(ρ+ p), (9.1)

V =
1

2
(ρ− p) . (9.2)

Making use of (2.13) and (2.14) in (9.1), we get

ϕ̇2 = Bρ
1
2

d =

∣∣∣∣3B2

2
ln

(
a

a0

)
+ B√ρd0

∣∣∣∣ . (9.3)

Introducing the new variable

x ≡ ln

(
a

a0

)
, (9.4)

we can express ϕ̇ as

ϕ̇ =
dϕ

dx
H. (9.5)

We now treat in separate subsections the cases without and with DM.
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9.2.1 Disregarding DM

Using (9.3) and (2.2), we can write

dϕ =
ϕ̇

H
dx = ±

√
3

κ

(
ΩB

Ωd0

) 1
4 dx∣∣∣ 32√ ΩB

Ωd0
x+ 1

∣∣∣ 12 , (9.6)

where κ2 ≡ 8πG and ΩB ≡
(
Bκ/

√
3H0

)2 ≡ ρB/ρc. The latter denotes a critical energy density
fraction which is related with the model parameter B and quantifies the deviation of a DE model
based on (2.13) from the standard ΛCDM model, that is, the smaller is ΩB, the closer we are
to the ΛCDM model. Notice that the expression (9.6) is only valid asymptotically, for we have
disregarded the contribution of DM which will red‐shift quickly in the future and thus become
negligible compared to DE. Finally, from integrating (9.6) we find (for ΩB ̸= 0)

ϕ(x) = ± 4√
3κ

(
Ωd0

ΩB

) 1
4

∣∣∣∣∣32
√

ΩB

Ωd0
x+ 1

∣∣∣∣∣
1
2

sign

(
3

2

√
ΩB

Ωd0
x+ 1

)
. (9.7)

We have chosen the integrations constants, ϕ∗ and x∗ such that

ϕ∗ = ± 4√
3κ

(
Ωd0

ΩB

) 1
4

∣∣∣∣∣32
√

ΩB

Ωd0
x∗ + 1

∣∣∣∣∣
1
2

sign

(
3

2

√
ΩB

Ωd0
x∗ + 1

)
. (9.8)

In addition, we have selected x∗ to be large enough to ensure the validity of the approximation
made in (9.6); that is, we are far enough in the future such that the DM component can be
ignored in the Friedmann equation. For practical purpose, we select x∗ = 1.17, where the
matter energy density is two orders of magnitude smaller than the DE density. Therefore, x∗ is
large enough for the Universe to be in an almost total DE domination phase. This numerical value
is not crucial for this subsection, but it has to be fixed in the next subsection where numerical
calculations are required and therefore a fixed value of x∗ is needed. In addition, our results
do not change by imposing larger values of x∗. Finally, the function sign (x) is the sign function,
that is

sign (x) =


−1 if x < 0

0 if x = 0

1 if x > 0

. (9.9)

As mentioned before, the EoS shown in (2.13) describes a deviation from the standard ΛCDM
model through the parameter A. Therefore, for a vanishing parameter A, the expected classical
trajectory, ϕ (x), is characterised by a constant, i.e. dϕ = 0. This result can be recovered by
taking the limit ΩB → 0 in (9.6), however, after the integration done in (9.7) the outcome is not
well defined for the limit ΩB → 0 (notice that ϕ∗ could blows up in this case). To get a suitable
expression for small values of ΩB, we perform a Taylor expansion up to first order of the general
integral of (9.6), which reads

ϕ(x)− ϕ̃∗ ≃ ±
√
3

κ

(
ΩB

Ωd0

) 1
4

(x− x̃∗) , (9.10)
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where in this case, we have chosen ϕ̃∗ and x̃∗ in such way that:

ϕ̃∗ = ±
√
3

κ

(
ΩB

Ωd0

) 1
4

x̃∗. (9.11)

This result will be used later to determine the potential V (ϕ). In the LR not only the scale
factor gets very large, but also the scalar field ϕ, see figure 9.1. From now on we will focus on
this regime.

(

κ
/
√

3
)

φ

x− xc

Figure 9.1: Plot of the scalar field, ϕ, versus x ≡ ln(a/a0) where xc = −2
√
Ωd0/3

√
ΩB. This plot is valid

for ΩB ̸= 0 since xc is not well defined for a vanishing ΩB, i.e. a vanishing B. The solution (9.7) gives two
branches, one above ϕ = 0 (blue color) and another below ϕ = 0 (red color) The dashed curve describes
a realm where the neglected DM contribution is important, while the solid lines describes a regime where
we assume a complete DE domination. We disregard the solutions for x < xc as our approximation breaks
down there. Therefore, only the solid lines are physically relevant for our purpose.

For the case ofΩB ̸= 0, since the function (9.7) is invertible, we can consequently write x = x(ϕ),

x =
κ2

8
ϕ2 − 2

3

√
Ωd0

ΩB
, for 0 <

3

2

√
ΩB

Ωd0
x+ 1, (9.12)

x = −κ
2

8
ϕ2 − 2

3

√
Ωd0

ΩB
, for

3

2

√
ΩB

Ωd0
x+ 1 < 0. (9.13)

Once we have the relation between the potential and the energy density, (9.2), we can write
the potential in terms of x, that is

V (x) = ρd0

[
3

2

√
ΩB

Ωd0
x+ 1

]2
+

3H2
0

2κ2

√
Ωd0ΩB

∣∣∣∣∣32
√

ΩB

Ωd0
x+ 1

∣∣∣∣∣ . (9.14)

As can be seen, for a vanishing ΩB, the potential becomes constant as expected within the ΛCDM
paradigm, i.e. V = ρd0. Using (9.12) in the later expression, the potential shows a quadratic
dependence on the scalar field:

V (ϕ) = b1ϕ
4 + b2ϕ

2, (9.15)

where the constants b1 and b2 are defined as

b1 ≡ 27

256
κ2H2

0ΩB, b2 ≡ 9

32
H2

0ΩB. (9.16)
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On the one hand, notice that b1 has physical dimension of an inverse mass times length (and is
thus dimensionless in natural units where ℏ = 1 and c = 1), while b2 has dimension of an inverse
length squared (mass squared in natural units). As was mentioned above, (9.7) does not take
into account the contribution of DM; therefore, the result shown in figure 9.1 is only valid for
very large values of the scale factor.

On the other hand, for a vanishing parameter A the potential given in (9.15) cannot show the
expected constant value. This is not surprising as (9.15) was deduced using (9.7) which is not
valid for A = 0. To recover this solution it is necessary to replace in (9.14) the expression
obtained in (9.10) for small values of ΩB. In fact, on that case, we obtain

V (ϕ) ≃ ρd0

[√
3κ

2

(
ΩB

Ωd0

) 1
4

ϕ+ 1

]2
+

3H2
0

2κ2

√
Ωd0ΩB

∣∣∣∣∣
√
3κ

2

(
ΩB

Ωd0

) 1
4

ϕ+ 1

∣∣∣∣∣ . (9.17)

As can be seen from the previous expression when A→ 0, V (ϕ) approaches a constant; i.e. the
model in this case behaves as ΛCDM.

9.2.2 Including DM

Just for completeness and to get an accurate solution also for small values of x (but still large
enough to be in a matter domination epoch after the radiation dominated epoch), it is necessary
to incorporate the DM contribution to the energy density budget of the Universe. Following the
same approach we used before, (9.5) can be written as

dϕ = ± ϕ̇

H
dx =

{
|pd (x) + ρd (x)|

H2

} 1
2

dx. (9.18)

The contribution of DM is here included in the Hubble parameter. The equation for ϕ (x) is now
given by

ϕ(x) = ±
√
3

κ

∫
x

x∗


√
ΩBΩd0

∣∣∣ 32√ ΩB
Ωd0

x+ 1
∣∣∣

Ωm0e−3x +Ωd0

(
3
2

√
ΩB
Ωd0

x+ 1
)2


1
2

dx+ ϕ∗. (9.19)

The integral in (9.19) cannot be solved analytically; therefore, we have performed a numerical
integration in which the integration constant ϕ∗ was fixed as after (9.7) to the value imposed in
(9.8). In this way, we ensure that the approximated model and the numerical solution are equal
at the point x∗ as long as x∗ is large enough. For practical purpose, we select x∗ = 1.17, where
the matter energy density is two orders of magnitude smaller than the DE density. Therefore,
x∗ is large enough for the Universe to be in an almost total DE domination phase. Figure 9.17
shows ϕ(x).

Once we have obtained the solution for the scalar field, we get the numerical solution for the
potential V (ϕ), which also takes into account the DM contribution. We compare the obtained
potential with the approximated potential (which neglects DM) in figure 9.3.

Because DM is completely negligible at late times, the quantum analysis of the LR is unaffected
by it. We will thus neglect DM from now on.
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(

κ
/
√

3
)

φ

x

Figure 9.2: Plot of the rescaled scalar field,
(
κ/

√
3
)
ϕ, versus x, the logarithmic scale factor. The solution

(9.19) has two branches which we have drawn as dashed linesin bottom (red) and upper (blue) panels.
These lines take into account DM contribution. The solid blue and red lines correspond to the solution
(9.7) where DM is neglected. All the plots have been obtained for x∗ = 1.17. For practical purpose, we see
that for values larger than x = 0.42 (i.e. the energy density of DM is 10 times smaller than that of DE), the
difference between the two solutions (inclusion of DM and exclusion of DM) is almost negligible. For values
of x smaller than x = 0.42, the approximated solution starts to show a relevant deviation from the exact
solution and we have drawn in this case the approximated solution as a curve with crosses. In addition,
we have fixed the other constants as H0 = 70.1 km s−1Mpc−1, Ωm0 = 0.274, and Bκ = 3.46 · 10−3Gyr−1

according to the best fit obtained in [66].
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Figure 9.3: Plot of the dimensionless potential,
(
κ/3H2

0

)
V , versus the absolute value of the scaled scalar

field,
(
κ/

√
3
)
|ϕ|. The dashed curve takes into account the presence of DM, while the solid line neglects

it. In consistency with the other plots, we take x∗ = 1.17. The deviation becomes significant when(
κ/

√
3
)
|ϕ| < 7.45 (drawn as thin curve with crosses), that is, x < 0.42, corresponding to the energy

density of DM being 10 times smaller than that of DE.
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9.3 WDW equation with a perfect fluid

In this subsection, we will implement the quantisation in the simplest way, which consists in
describing the matter content as a perfect fluid with a given EoS. Therefore, the energy density
can be written in terms of the scale factor, which is the single variable within this analysis. The
Lagrangian for this model reads [44, 151, 152, 333]

L = − 3π

4GN
ȧ2a− 2Nπ2a3ρ (a) . (9.20)

The conjugate momentum is

πa ≡ ∂L
∂ȧ

= − 3π

2G
Naȧ, (9.21)

and the Hamiltonian reads

H = −N G

3π

π2
a

a
+ 2π2Na3ρ (a) . (9.22)

For the sake of simplicity, we introduce the new constants

η ≡ πa30H0

Gℏ
, b ≡ 3

2

√
ΩB

6Ωd0
. (9.23)

The exact form of the WDW equation depends on the chosen factor ordering. We shall employ
two different such orderings in order to study its influence.

9.3.1 First quantisation procedure: aĤ(a, π̂a)ψ(a) = 0

We choose here [42]

π̂2
a = −ℏ2∂2a. (9.24)

Employing this in the quantum version of (10.5) and multiplying the result by
[
3πa/Gℏ2N

]
, we

get

3π

Gℏ2
a

N
Ĥ = ∂2a +

6π3

ℏ2G
a4ρ

(
a

a0

)
. (9.25)

In order to get a dimensionless WDW equation, we will rescale the scale factor and its partial
derivative as

u ≡ a

a0
, ∂2u ≡ a20∂

2
a. (9.26)

After carrying the change of variable introduced above and using (2.14) for the energy density,
the WDW equation (7.9) can be written as{

∂2u +

(
3

2
η

)2

Ωd0u
4
[
1 +

√
6b ln (u)

]2}
Ψ1 (u) = 0, (9.27)
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where we have used the definitions given in (9.23). The approximated WKB solution up to first
order reads (see, for example, the method used in [44, 70, 339] and Appendix A)

Ψ1(u) ≈ Ω
− 1

4

d0

√
2

3η

1

u

[
1 +

√
6b ln(u)

]− 1
2
{
D1e

i 3η
2 S0(u) +D2e

−i 3η
2 S0(u)

}
, (9.28)

where D1 and D2 are constants and

S0 (u) =
√
Ωd0

∫ u

u1

y2
[
1 +

√
6b ln (y)

]
dy

=

√
Ωd0

3
u3
{
1 +

√
6b

[
ln (u)− 1

3

]}
−

√
Ωd0

3
u31

{
1 +

√
6b

[
ln (u1)−

1

3

]}
.

(9.29)

In addition, u1 is a large enough constant to ensure not only a positive value of the above
integral, but also to guarantee that the system is well inside the DE domination regime, that
is, ln (u1) ≫ −1/(b

√
6). Note that in the quantum treatment, we disregard the contribution

of DM by assuming a single component through which the energy density is expressed. This is
in full agreement with the fact that by the time the classical abrupt event is approached, DM
contribution is negligible, see section 9.2.2.

From the inspection of (9.28), we see that the wave function vanishes for large values of u.
This is exactly the region where in the classical model the LR takes place. The DW criterion is
fulfilled, and the LR is avoided. It is interesting to note that this criterion is here equivalent to
the boundary condition that Ψ1 → 0 for a → ∞ in analogy with the boundary condition usually
imposed on the Schrödinger equation for bounded systems.

9.3.2 Second quantisation procedure (LB factor ordering): Ĥ(a, π̂a)ψ(a) = 0

This quantisation procedure is based on the LB operator which is the covariant generalisation
of the Laplacian operator in minisuperspace [151]. The corresponding operator is different
depending on the involved degrees of freedom. For the case of a single component described
by a perfect fluid, it is written as (cf. for example [44])

π̂2
a

a
= −ℏ2

[
a−

1
2
d

da

] [
a−

1
2
d

da

]
. (9.30)

To diagonalise the operator, we suggest the following change of variable

z ≡
(
a

a0

) 3
2

,
π̂2
a

a
= −9

4

ℏ2

a30

d2

dz2
. (9.31)

Using this operator in the quantum version of (7.7) and multiplying by
[
4πa30/3Gℏ2N

]
, we get

the following dimensionless expression,

4πa30
3Gℏ2N

Ĥ = ∂2z +
8π3a60
3Gℏ2

z2ρ (z) . (9.32)

Using (2.13) for the energy density, the fundamental WDW equation given in (7.9) reduces to∂2z + η2Ωd0z
2

[
1 +

√
8

3
b ln (z)

]2Ψ2 (z) = 0, (9.33)
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where the constants η and b are defined in (9.23). The approximated WKB solution up to first
order reads (see, for example, [44, 339]; for a summary, see also Appendix A)

Ψ2(a) ≈ Ω
− 1

4

d0

√
1

η
z−

1
2

[
1 +

√
8

3
b ln(z)

]− 1
2 {

C1e
iηQ0(z) + C2e

−iηQ0(z)
}
, (9.34)

where C1 and C2 are constants and

Q0 (z) =
√
Ωd0

∫ z

z1

y

[
1 +

√
8

3
b ln (y)

]
dy,

=

√
Ωd0

2
z2

{
1 +

√
8

3
b

[
ln (z)− 1

2

]}
−

√
Ωd0

2
z21

{
1 +

√
8

3
b

[
ln (z1)−

1

2

]}
.

(9.35)

Like in the first quantisation procedure, we assume that z1 is large enough to ensure a positive
value of the above integral; in fact, it corresponds to the same scale factor u1 that we used in
the previous quantisation.

As can be seen, the wave function vanishes for large values of z, where the LR takes place.
Therefore, the DW criterion is again fulfilled; this can be seen as an indication that our results
do not depend on the chosen factor ordering.

Before concluding, we would like to highlight that both WKB solutions at first order can be
related by

|Ψ1 (u)|2

|Ψ2 (z)|2
=
du

dz
, where z = u

3
2 , (9.36)

where the equalities D1 = C1 and D2 = C2 have been assumed. At zero order, the two WKB
solutions coincide as (3/2)S0 (u) = Q0 (z).

9.4 WDW equation with a phantom scalar field

For a system with a single (phantom) scalar field and a given potential, the quantum Hamiltonian
is written as [42, 51, 70, 151, 152]

Ĥ = Na−3
0 e−3x

{
ℏ2

4π2

[
κ2

6
∂2x + ∂2ϕ

]
+ 2π2a60e

6xV (ϕ)

}
. (9.37)

Close to the LR we can approximate the potential as V (ϕ) ≃ b1ϕ
4. Since ĤΨ(x, ϕ) = 0, we have{

ℏ2

4π2

[
κ2

6
∂2x + ∂2ϕ

]
+ σe6xϕ4

}
Ψ(x, ϕ) = 0, (9.38)

where we have gathered all parameters in a single one called σ which readsii

σ ≡ 2π2a60b1 =
27

128
π2a60κ

2H2
0ΩB. (9.39)

iiThis WDW equation can be solved following the method introduced in [35‐37] and, in particular, in‐
voking the Symanzik scaling law. We briefly summarise this method in Appendix. We thank the referee of
our paper [202] for pointing out this method to us.
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We next apply the following change of variables:

ϕ = r (z)φ, x = z, (9.40)

where r = r(z) is a function that only depends on the new variable z. Consequently, we have

∂2ϕ =r−2∂2φ,

∂2x =

(
r′

r

)2 [
φ2∂2φ + φ∂φ

]
− 2

r′

r
φ∂φ∂z +

[(
r′

r

)2

− r′′

r

]
φ∂φ + ∂2z ,

(9.41)

where primes stands for derivatives with respect to z. Applying this change of variable and
multiplying (9.38) by r2, we get{

ℏ2κ2

24π2
r2

[(
r′

r

)2 [
φ2∂2φ + φ∂φ

]
− 2

r′

r
φ∂φ∂z +

[(
r′

r

)2

− r′′

r

]
φ∂φ + ∂2z

]

+
ℏ2

4π2
∂2φ + σe6zr6φ4Ψ(z, φ) = 0.

(9.42)

Now, we choose r (z) = e−z with the aim to leave the potential term with a single dependence
on the variable φ.{

ℏ2κ2

24π2
e−2z

[
φ2∂2φ + φ∂φ + 2φ∂φ∂z + ∂2z

]
+

ℏ2

4π2
∂2φ + σφ4

}
Ψ(z, φ) = 0. (9.43)

We next assume that in (9.43) some terms can be neglected under the presumption

ℏ2κ2

24π2
e−2z

[
φ2∂2φ + φ∂φ + 2φ∂φ∂z

]
Ψ(z, φ) ≪ ℏ2κ2

24π2
e−2z∂2zΨ(z, φ),

ℏ2

4π2
∂2φΨ(z, φ),

ℏ2κ2

24π2
e−2z

[
φ2∂2φ + φ∂φ + 2φ∂φ∂z

]
Ψ(z, φ) ≪ σφ4Ψ(z, φ),

(9.44)

for large values of z and φ which is the regime where we want to solve the partial differential
equation (9.43). This approximation must be justified after obtaining the solutions for Ψ(z, φ)

(see appendix C.4 for details). As can be seen, after disregarding these elements in (9.43)
we have two terms whereby each of them depends on a single variable. Therefore, we can
employ a separation ansatz, and the wave function can be written as a sum over products of
two functions,

Ψ(z, φ) =
∑
k

Uk (φ)Ck (z) qk, (9.45)

where qk denotes the amplitude for each solution and k is a constant related to the “energy”
of the system which characterises the states described through the functions Ck (z) and Uk (φ).
These functions, in turn, are the solutions of the following differential equations{

ℏ2κ2

24π2
∂2z + ke2z

}
Ck(z) = 0, (9.46)

{
ℏ2

4π2
∂2φ + σφ4 − k

}
Uk(φ) = 0. (9.47)
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Equation (9.47) corresponds to the inverted anharmonic oscillator in QM; see, for example,
[340]. For Ck(z), we get exact solutions corresponding to Bessel functions with vanishing order:

• For k > 0

Ck(z) = Ck1J0

[
2π

ℏκ
√
6k ez

]
+ Ck2Y0

[
2π

ℏκ
√
6k ez

]
, (9.48)

• For k < 0

Ck(z) = C̃k1I0

[
2π

ℏκ
√
6|k| ez

]
+ C̃k2K0

[
2π

ℏκ
√

6|k| ez
]
, (9.49)

where Ck1, Ck2 C̃k1 and C̃k2 are constants. Since the functions I0(z) diverge for z → ∞ [307],
we choose C̃k1 = 0 to ensure that the wave function vanishes close to the LR. For large values
of z, we then get

• For k > 0

Ck(z) ∼
[
ℏ2κ2

6π4k

] 1
4

e−
z
2

[
Ck1 cos

(
2π

ℏκ
√
6|k| ez − π

4

)
+ Ck2 sin

(
2π

ℏκ
√

6|k| ez − π

4

)]
, (9.50)

• For k < 0

Ck(z) ∼ C̃k2

[
ℏ2κ2

96k

] 1
4

e−
z
2 . (9.51)

The second order differential equation for Uk(φ) is more difficult to solve. Disregarding the
constant term k in (9.47), which is equivalent to finding the solution for k = 0, it can be written
as (see the appendix A)iii

U(φ) =
√
φ

{
U1J 1

6

[
2π

√
σ

3ℏ
φ3

]
+ U2J− 1

6

[
2π

√
σ

3ℏ
φ3

]}
, (9.52)

where U1 and U2 are integration constants. For large values of φ, we have

U(φ) ∼
√

6ℏ
2π2σ

1
2

1

φ

{
U1 cos

(
2π

√
σ

3ℏ
φ3 − π

3

)
+ U2 sin

(
2π

√
σ

3ℏ
φ3 − π

3

)}
, (9.53)

and the wave function vanishes asymptotically. It is worth notice that for small values of the
argument (2π

√
σ/3ℏ)φ3 in (9.53) we have

U(φ) ∼ U1

(
π
√
σ

3ℏ

) 1
6 φ

Γ
(
7
6

) − U2

(
π
√
σ

3ℏ

)− 1
6 Γ

(
1
6

)
π

. (9.54)

This limit seems to correspond to a regime where σ (which is proportional to the parameter ΩB,
i.e. quadratic in A2) is small enough to ensure infinitesimal values of the argument in (9.52)
even for large values of φ. It turns out that the term proportional to U2 in (9.54) is not well
defined when σ or A vanishes. This might indicate that the wave function for the ΛCDM universe
is not well defined. However, this is not the case because when σ or A approaches zero V (ϕ)

should be the one given in (9.17) rather than we used and defined in (9.15). In addition, the

iiiNaively, we expect k to be irrelevant close to the LR where φ gets very large values; see below for a
rigorous justification of this observation.
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solution (9.54) was obtained after disregarding the term k in (9.47) which cannot be ignored in
the case of small σφ4.

After performing the approximation (k ≪ [4π2σ/ℏ2]φ4) in (9.47), we can find an exact solution,
but in return, we lose the information of k in Uk(φ). A simple way to obtain an approximated
wave function keeping the contribution of k is via the WKB approximation, the expression for
the approximated wave function up to first order is given by

U(φ) ≃
[
4π2

ℏ2
(
σφ4 − k

)]− 1
4 {

Uk1e
iS0(φ) + Uk2e

−iS0(φ)
}
, (9.55)

where Uk1 and Uk2 are constants and

S0(φ) =
2π

ℏ

∫ φ

φ1

√
σy4 − k dy , (9.56)

where φ1 is large enough to ensure a purely real solution even for positive values of k (0 <

σφ4
1 − k). The latter integral can be expressed as follows (see pages 128 and 129 of [341])

• for 0 < k∫ φ

φ1

√
σy4 − k dy =

2π

3ℏ

{
y
(
σy4 − k

) 1
2 −

√
2
k

3
2

σ
1
4

F

[
arccos

(
k

1
4

σ
1
4 y

)
,
1√
2

]}∣∣∣∣∣
φ

φ1

, (9.57)

• for k < 0∫ φ

φ1

√
σy4 − k dy =

2π

3ℏ

{
y
(
σy4 + |k|

) 1
2 +

|k|
3
2

σ
1
4

F

[
arccos

(√
|k| −

√
σy2√

|k|+
√
σy2

)
,
1√
2

]}∣∣∣∣∣
φ

φ1

,(9.58)

where the function F [h(y), d] is an elliptic integral of the first kind with argument h(y) and
elliptic modulus d. Note that for k = 0 we recover the asymptotic solution given by the Bessel
functions (9.52). For large values of φ the performed WKB approximation and the found Bessel
functions has the same asymptotic behavior, in this limit, no matter what is the value of k.
Therefore, for very large values of φ we can write

Ψ(z, φ) ≃ U (φ)
∑
k

Ck (z) qk, (9.59)

In any case, the resulting wave function has two oscillatory terms modulated by a function which
goes to zero for large values. Returning to the initial variables, for z → ∞ and φ → ∞ limits
the wave function decrease as

Ψ(x, ϕ) ∼
[
ϕe

3
2x
]−1

. (9.60)

Therefore, the wave function vanishes close to the LR, fulfilling the DW boundary condition.

9.5 Conclusions

A central issue in any theory of quantum gravity is the avoidance of classical singularities. At the
present state of the field, this cannot be done in any sense close to the rigour of the classical
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singularity theorems. The hope is thus to get some insight from suitable models for which
concrete results can be obtained. As a heuristic sufficient (though not necessary) criterion
of singularity avoidance, one can employ the DW criterion of vanishing wave function. The
applicability of this criterion has already been studied for a wide class of classical singularities.
In the present chapter, we have completed the discussion by studying the situation of the LR,
which is strictly speaking not a singularity, like it is the case of a BR, but an abrupt event, though
it shares some features with it. We have studied the two situations of a perfect fluid and of
a phantom scalar field, the first being a phenomenological, the second a more fundamental
dynamical model. A phantom field (field with negative kinetic energy) is needed in order to
implement the EoS leading to a LR. We have found that the DW criterion can indeed be applied
in both cases and that the LR can thus be avoided. We should emphasise that models such as
these, although looking purely academic at first glance, are supported by data [85]. If indeed
true, the future of the Universe would end in a full quantum era (without classical observers),
in full analogy to its quantum beginning.

Some words about the applicability of the DW criterion (cf. (6.31) in [176]) are in order. It
is based on the heuristic extrapolation of the quantum mechanical probability interpretation
(based on the Schrödinger inner product) to quantum cosmology. But since the WDW equation
is of hyperbolic nature (with and without matter), and thus resembles a Klein‐Gordon equation,
one might think that a Klein‐Gordon inner product would be more appropriate. This is, however,
not the case, because it was proven that one cannot separate positive and negative frequencies
in the WDW equation, and thus one is faced with the problem of negative probabilites; see,
for example, [151], Sec. 5.2.2 for a discussion and references. This problem can perhaps be
avoided by going to “third quantisation”, but this is a framework different from the present
one. Our point of view here is that an inner product of the Schrödinger type can be used in
quantum cosmology, even if the situation in the full theory is uncleariv and even if this poses
the danger of not allowing normalisable solutions. At least in the models hitherto considered,
this inner product can be implemented and the DW criterion can be applied.

In this chapter, we have restricted ourselves to the minisuperspace approximation. The real
Universe is, however, not homogeneous, so one possible extension of our work is the inclusion
of (scalar and tensor) perturbations and solving the WDW equation near and at the region of
the LR. The full quantum state then describes an entanglement between the minisuperspace
part and the perturbations. Tracing out the perturbation part from the full state leads to a
density matrix ρ for the minisuperspace part. If the interaction with the perturbations leads to
a suppression of the off‐diagonal elements in ρ, one can interpret this as an effective quantum‐
to‐classical transition or decoherence for the background. Decoherence in quantum cosmology
was discussed in detail for many situations; see, for example, [342] and the references therein.
One might expect that close to the LR region, decoherence stops and quantum interferences
become important, enabling the DW criterion to be fulfilled there, as discussed in this chapter.
Genuine quantum effects have also shown to be important near the turning point of a classically
recollapsing universe [338]. We hope to address these and other issues in future publications.

ivThe formalism of full loop quantum gravity, for example, employs a Schrödinger inner product.
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The Quantum realm of the LS abrupt event

Knowledge and error flow from the same mental sources; only success can tell one
from the other

– Ernst Mach

10.1 Introduction

From the early thinkers that devoted their reasoning to the nature of motion and the related
conceptions of space and time, to modern theories of gravitation, geometry has always been an
essential aspect of the epistemological bridge between observations and theory. General rela‐
tivity (GR) opened the door for a dynamical role of space‐time geometry in physics. GR was the
main theoretical foundation for the development of relativistic astrophysics and modern cosmol‐
ogy. Accordingly, the evolution of black hole research inspired the formulation of the singularity
theorems of Hawking and Penrose [343] (together with the cosmic censorship conjecture, ex‐
cluding the possibility of naked singularities [344]). These efforts contemplated past and future
singularities. The first, associated with the Big Bang, were supposed to obey the Weyl curva‐
ture hypothesis, following thermodynamical motivations [344], whereas future singularities in
that time were of two types: astrophysical (gravitational collapse of a star into a black hole)
and cosmological (big crunch scenarios). On the other hand, the remarkable evolution of re‐
search in cosmology, both theoretically and observationally, led to the most accepted paradigm
of (ΛCDM) cosmology (with inflation), which still contains the unresolved puzzles of DM and DE
[25, 193, 313, 345–347]. The empirical data supporting a present accelerated expansion (see for
example [14]), motivated the re‐appearance of the cosmological constant [190, 193, 313, 346].
Nevertheless, the absence for a corresponding physical theory (or an inconsistency with the
quantum field predictions for the vacuum energy) remains. Moreover, a constant DE density
gives the so called coincidence problem, i.e. the same order of magnitude at present time for
the DM and DE densities. These issues inspired alternative descriptions. Dynamical DE models
based on scalar fields were widely investigated and the research is still active.

From the point of view of physical ontologyi, the ideal study would follow from a fundamental
theory describing the form of the equation of state for a DE fluid, based on the understanding of
its origin and constituents. In fact, different cosmological evolutions can be explored depending
on the nature of the energy‐momentum tensor and on the equation of state (satisfying or trans‐
gressing some energy conditions). Until the present date, the nature of DE remains unclear,
therefore cosmologists have been somewhat limited to testing different equations of state (and
different potentials for the hypothetical scalar fields), and compute the resulting cosmic dy‐
namics. In this context, dynamical DE models based on scalar fields have many applications.
Some models try to unify DM and DE as in the case of the generalised Chaplygin gas [20, 41, 348]

iThis chapter corresponds mainly to our publication [70]
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and also early‐time and late‐time acceleration, see for example [102]. Other models assume
an interaction between the DM and DE components (see [349] and [350] for recent observa‐
tional constraints). But most importantly, was the discovery that dynamical DE models known
as phantom energy (which might have a negative kinetic term) could give rise to a new type
of singularity, the BR [28–35], in which the scale factor, the Hubble parameter and its cosmic
time derivative diverge in a finite cosmic time. It was the beginning of the study of late‐time
or future singularities, or more generally, of cosmic singularities related to DE. Other types of
singularities were discovered such as, Sudden singularity [47, 49, 54, 54], BF [45–47, 47, 60],
type IV [45–47, 47, 58, 60, 62, 351], LR[55, 64–67, 201] and the recently investigated LS [69].

Future cosmic singularities or abrupt events are fascinating new areas of cosmology. Can these
events be absent when the classical theory is quantised? Some works have applied the meth‐
ods of quantum cosmology to the classical models leading to these DE related singularities
[42–44, 48, 51, 52, 63, 247, 351–353]. In fact, dynamical DE models based on scalar fields
(quintessence or phantom) provide a very interesting and suitable scenario to explore the quan‐
tum gravity challenge. Accordingly, in quantum cosmology the restriction to an isotropic and
homogeneous Universe, simplifies substantially the general theory. The approach is done in
the line of quantum geometrodynamics where a canonical quantisation of gravity (metric func‐
tions and conjugate momenta) is performed [151, 152]. The main purpose is to solve the WDW
equation and apply appropriate boundary conditions, in order to get the wave function of the
Universe [151, 152, 179]. In [42] it was shown that after solving the WDW equation with phan‐
tom DE with a corresponding exponential potential, the quantum effects dominate the region
of the classical BR singularity, where classically the scale factor, the Hubble rate and it cosmic
time derivative blow up at a finite future cosmic time. These authors found wave packets solu‐
tions that follow the classical trajectory and disperse in the genuinely quantum region. These
quantum effects occur at large scales and since the solutions are regular the BR singularity is
considered to be effectively avoided in the quantum analysis. The quantum cosmology of the
classical Big Brake singularity was analysed in [51]. This is a type of Sudden future singular‐
ity where the Hubble rate reaches zero and the deceleration approaches infinity leading to an
abrupt brake of the expansionii. It was found that under reasonable assumptions, the DW cri‐
terium is satisfied, i.e. the wave function vanishes in the region of the classical singularity.
The Big Démarrage, another kind of Sudden singularity, and the BF , the later can be seen as
a BR happening at a finite scale factor, were also investigated in the quantum approach based
on the WDW equation [48]. These singularities can result from a DE fluid with an appropriate
generalised Chaplygin gas equation of state [60]. In the last mentioned cases (including type IV
singularity), the DW criterium for singularity avoidance is satisfied, pointing to a possible avoid‐
ance of the singularities [48, 51, 63]. An essential result from all these works is that singularity
avoidance in quantum cosmology necessarily predict quantum effects at scales much larger than
the Planck length.

The heart of quantum cosmology is to apply the quantum theory to the Universe as a whole.
This contrasts with the approach in which there is a classical theory with quantum effects (cor‐
rections) in certain phases of the evolution. Therefore, quantum cosmology must be based on

iiIn fact, a Sudden singularity occurs at a finite scale factor where the Hubble rate is finite but its cosmic
time derivative diverges. Depending on the parameters of the equation of state, this singularity can happen
in the future as a Big Brake [51] or in the past. This second case, it what we named the Big Démarrage, it
results from a phantom fluid leading to a cosmic expansion that starts with infinite acceleration [48].
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a quantum theory of gravity. Three major promising approaches are String theory, Loop Quan‐
tum Gravity and Quantum Geometrodynamics, where the last two are different developments of
Canonical Quantum Gravity [151, 152]. Independently of the correct theory of quantum gravity,
the quantum cosmology based on the WDW equation should remain valid at least on energies
below the Planck scale (if not on all scales) [151]. The two main challenges of quantum cosmol‐
ogy consist in i) finding a description of the dynamical evolution and ii) in finding the quantum
state of the Universe with the appropriate initial or boundary conditions. These issues are in‐
terrelated although we do not have a robust theory for the boundary conditions or the initial
quantum state [151, 152, 179]. Nevertheless, the WDW equation is crucial for the topic of
boundary conditions in quantum cosmology. A relevant feature of the WDW equation is the fact
that, for usual scalar fields, it is locally hyperbolic (taking the form of a wave equation) such
that it has a well posed initial value problem. This fact is related to the indefinite sign of the
kinetic term, which is directly linked to the attractive nature of gravity for usual matter [151].
The presence of a phantom field changes the structure of this equation, for example, if there is
“phantom dominance”, the WDW equation becomes elliptic (or parabolic), which changes the
imposition of the boundary conditions. This is of extreme relevance since while the solutions
of hyperbolic equations are “wave‐like”, a perturbation of the initial (or boundary) data of an
elliptic (or parabolic) equation is felt “at once” by essentially all points in the domain. Another
important aspect is related to the problem of time: the WDW equation is independent of an
external time parameter. On the other hand, the origin of the arrow of time can in principle be
related to the structure of this equation [42, 151].

In summary, the quantum cosmology of DE models leading to classical singularities, is showing
very clearly that quantum effects are predicted at scales much larger than the Planck length
and that it is possible to find solutions to the WDW equation that could effectively avoid the
classical singularity. Many open questions remain, such as the appropriate boundary conditions,
the classical‐quantum correspondence, the problem of time and the interpretation of the wave
function.

In this chapter, we apply the methods of quantum cosmology to the LS [69]. The quantisation
of the classical model presented in [69] will be carried within the geometrodynamical approach
given by WDW equation. We consider the case where the LS is induced by a perfect fluid, in
which the scale factor is the single degree of freedom, and also the case where the LS is in‐
duced by a scalar field with phantom character; therefore in a cosmological model with two
degrees of freedom. In the canonical quantisation we have [â, π̂a] ̸= 0, where π̂a is the canoni‐
cally conjugate momentum of the scale factor a, therefore in principle one can choose different
“factor‐ordering” in the derivation of the WDW equation [151]. Accordingly, for the case with
a perfect fluid we will solve the WDW equation within a WKB approximation, for two different
factor ordering choices. For the phantom scalar field case, we solve the WDW equation within
the LB factor‐ordering [151], with two degrees of freedom: the scale factor and a scalar field,
which classically describe the geometry and the matter content respectively. The solutions are
obtained using a Born–Oppenheimer (BO) approximation. In all the approaches, we impose the
DW condition and find that it can be verified which might be an indication that the classical LS
event can be avoided in the quantum description. As will be pointed in the conclusions, the DW
condition on the wave function might not be sufficient to guarantee that all the relevant quanti‐
ties which diverge in the classical model become finite in the quantum description. One should
compute the corresponding expectation values and/or probability amplitudes of the physically
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relevant quantities to have a complete analysis. In this work, we simply check if the DW condi‐
tion can be verified. The calculation of the expectation values and the probability amplitudes
requires further investigation since it is intimately linked to various open questions in quan‐
tum cosmology regarding the Hilbert space structure of the solutions and the classical‐quantum
correspondence.

The structure of the chapter is as follows: in section 10.2, we review the basic aspects of the
classical model analysed in [69] and introduce a phantom scalar field which could induce a clas‐
sical LS. Section 10.3 includes the quantum analysis for the case of a perfect fluid where the
scale factor is the only degree of freedom; i.e. the LS is induced by a perfect fluid which can
be fully determined through the scale factor which equally defines the geometry. We review
the WDW equation, find its solutions using the WKB approximation and verify the DW condition
using two different factor ordering. In section 10.4 we solve the WDW equation for the phantom
scalar field case, using a BO approximation and evaluate the asymptotic behaviour of the corre‐
sponding solutions to see if the DW condition can be satisfied. Finally, in section V we present
the conclusions. Three appendixes are also included: Appendix A contains some mathematical
details of the WKB approximation used in section 10.3 and also the validity of this method. Some
detailed calculations related to the Parabolic Cylinder functions appearing in section 10.4 are
relegated to appendix C.3. Finally, in appendix C.3.1 we present the conditions for the validity
of the BO approximation used in section 10.4.

10.2 The LS event driven by a scalar field

The dynamics of the perfect fluid previously described in 2.2.3 can be represented by a scalar
field with a phantom character as given by Eqs (9.1) and (9.2). Using the equation of state
(2.16) we get

dϕ

da
= ±

√
C
3

1

aH(a)
, V (a) = Λ +

C
6

[
1 + 6 ln

(
a

a0

)]
, (10.1)

and considering the (asymptotic) Friedmann equation (2.2), we get two sets of general solutions
for the classical trajectory in configuration space:

ϕ(a) = ± 1√
2πG

√
Λ

C
+ ln

(
a

a0

)
+ ϕ1, (10.2)

where ϕ1 is an integration constant fixed as

ϕ1 = ϕ(a0)∓
1√
2πG

√
Λ

C
. (10.3)

The evolution of the scalar field in terms of α = ln
(

a
a0

)
is depicted in Fig. 10.1. Finally, equation

(10.2) can be inverted and through (10.1) we get a uni‐parametric family of quadratic potentials
V (ϕ)

V (ϕ) =
C
6
+ 2πCG (ϕ− ϕ1)

2
, (10.4)

which is shown in Fig. 10.2.
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Figure 10.1: Plot of the scalar field versus the logarithmic scale factor, α = ln(a/a0), as given by the
expression (10.2). The LS is located at large values of α.
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Figure 10.2: Plot of the potential (10.4). The small vertical line close to the origin corresponds to the
initial value ϕ1. The abrupt LS happens at large values as shown by the black arrows. The circles indicated
schematically the occurrence of the LS.

10.3 WDW equation with a perfect fluid ‐ WKB approximation

We start by considering the simplest case within the WDW equation where the matter content is
given by a perfect fluid with a given equation of state, therefore whose energy density is speci‐
fied by the scale factor. The scale factor a is then the only canonical variable, in consequence,
the corresponding constraint H = 0 is given by

− G

3π

π2
a

a
− 3π

4G
ka+ 2π2a3ρ = 0. (10.5)

This equation can be simplified, yielding precisely the Friedmann equation (2.2). As for the
quantum model, depending on the factor ordering, we will get different equations. We will
verify if the DW condition [151, 152], i.e the vanishing of the wave function when the scale
factor goes to infinity for a ρ can be satisfied and if it depends on the factor ordering choice.

117



Chapter 10. The Quantum realm of the LS abrupt event

10.3.1 First quantisation procedure (aĤ(a, π̂a)ψ(a) = 0)

The simplest way to obtain the WDW equation with the scale factor as the single degree of
freedom is to multiply the Hamiltonian constraint, (10.5), by a and make the substitution πa →
π̂a = −iℏ d

da . The corresponding WDW equation is[
ℏ2
G

3π

d2

da2
+ V (a)

]
ψ(a) = 0, (10.6)

where

V (a) = − 3π

4G
ka2 + 2π2a4ρ(a). (10.7)

For the case of a DE fluid obeying the equation of state (2.16), the wave function of the Universe
obeys the following differential equation{

ℏ2
G

3π

d2

da2
− 3π

4G
ka2 + 2π2a4

[
Λ + C ln

(
a

a0

)]}
ψ(a) = 0, (10.8)

and for k = 0, it reduces to{
d2

da2
+

6π3

ℏ2G
a4
[
Λ + C ln

(
a

a0

)]}
ψ(a) = 0. (10.9)

We perform the following changes to achieve a dimensionless WDW equation,

u ≡ a

a0
, ΩΛ ≡ 8πG

3H2
0

Λ, ΩC ≡ 8πG

3H2
0

C, η ≡ πa30H0

Gℏ
. (10.10)

Therefore, the equation (10.9) becomes{
d2

du2
+

(
3

2
η

)2

u4 [ΩΛ +ΩC ln(u)]

}
ψ(u) = 0. (10.11)

Using the WKB (Wentzel, Kramers, Brillouin) approximation method at first order, which is
enough to ensure that the DW condition is satisfied; i.e. Ψ(u) vanishes for u → ∞, the wave
function of the Universe can be described by [44, 339]

ψ(u) ≈
√

2

3η

1

u2
[ΩΛ +ΩC ln(u)]

− 1
4

{
C1e

iS0(u) + C2e
−iS0(u)

}
, (10.12)

where C1 and C2 are constants and the function S0(u) can be written according to (C.17) as

S0(u) ≈ η
u3

2
[ΩΛ +ΩC ln(u)]

1
2 . (10.13)

10.3.2 Second quantisation procedure (Ĥ(a, π̂a)ψ(a) = 0) LB factor ordering

The LB factor ordering is perhaps better motivated for two or higher dimensional WDW equa‐
tions; i.e. with two or more physical degrees of freedom, since it is based on a covariant
generalisation of the Laplacian operator in minisuperspace [151]. The starting point for the LB
factor ordering for the case of a perfect fluid specified by the scale factor is to consider the
wave equation obtained from the classical Hamiltonian constraint, (10.5), without multiplying
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by a (c.f. also, for example, [44]). Therefore,[
− G

3π

π̂2
a

a
+ 2π2a3ρ

]
ψ(a) = 0, (10.14)

here we are already restricting the analysis to a flat geometry (k = 0). Introducing the change
of variable

x ≡
(
a

a0

) 3
2

, (10.15)

such that

π̂2
a

a
= −ℏ2

[
a−

1
2
d

da

] [
a−

1
2
d

da

]
= −9

4

ℏ2

a30

d2

dx2
, (10.16)

the expression (10.14) can be rewritten as[
d2

dx2
+ Ṽ (x)

]
ψ(a) = 0. (10.17)

Using the definitions of the parameters realised in (10.10), the effective potential Ṽ (x) is the
following

Ṽ (x) ≡ η2x2
[
ΩΛ +

2

3
ΩA ln(x)

]
. (10.18)

The general solution in the WKB, first order approximation, in this case also verifies the DW
condition

ψ(x) ≈ 1
√
η

{
x2
[
ΩΛ +

2

3
ΩA ln(x)

]}− 1
4 {

C̃1e
iS̃0(x) + C̃2e

−iS̃0(x)
}
, (10.19)

where C̃1 and C̃2 are constants and the function S̃0(x) can be written according to (C.17) as

S̃0(x) ≈ η
x2

2
[ΩΛ +ΩA ln(x)]

1
2 . (10.20)

10.4 Quantum study with a phantom scalar field: The BO ap‐

proximation

In this section, we study the quantum behaviour of the LS using an approach based on considering
a phantom scalar field. We consider the Born–Oppenheimer (BO) approximation for the the WDW
equation and, as in the previous section, we check the fulfilment of the DW criterium as an
indication of singularity avoidance.

To solve the WDW equation (7.10) we will now adopt the BO approximation which considers that
the wave function can be factorised into two parts, corresponding to the geometric and matter
parts. This is

ψk(α, ϕ) = φk(α, ϕ)Ck(α). (10.21)
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The matter part φ(α, ϕ) is assumed to satisfy the hypothesis of adiabatic dependence with the
scale factor, such that the terms containing its derivatives with respect to α can be neglected.
The consideration of the BO ansatz (10.21) in the WDW equation (7.10) leads to two differential
equations, one for the geometric part of the wave function and the other for the matter part.
Those are

ℏ2

2

∂2φk(α, ϕ)

∂ϕ2
+
[
a60e

6αV (ϕ)− Ek(α)
]
φk(α, ϕ) = 0, (10.22)

κ2

6

∂2Ck(α)

∂α2
+ k2(α)Ck(α) = 0, (10.23)

where k2(α) ≡ 2
ℏ2Ek(α). In this approximation, the matter part of the wave function has no

backreaction in the geometric part. The two equations become decoupled and the matter part
has only an indirect influence on the geometric part through the eigenvalues Ek(α). The validity
of this Born‐Oppenheimer approximation is discussed in appendix C.3.

10.4.1 Solving the matter part

Substituting the potential given by (10.4), in the matter part of the WDW equation, (10.22), we
obtain

ℏ2

2

∂2φk(α, ϕ)

∂ϕ2
+

{
a60e

6α

[
C
6
+ 2πGC (ϕ− ϕ1)

2

]
− Ek(α)

}
φk(α, ϕ) = 0. (10.24)

This equation is not analogous to the quantum harmonic oscillator but is similar to a repulsor
instead. This is a consequence of considering a phantom scalar field and rather than a usual
(quintessence) scalar field. Therefore, the spectrum is continuous in this case and we can
consider that Ek(α) = Ek and k2(α) ≡ k2 are continuous parameters independent of α, where
k is not restricted to real values. The solutions of (10.24) are (see appendix C.2 for details)

φ
(1,2)
k (α, ϕ) =W (β, ±z) , (10.25)

φ
(3)
k (α, ϕ) = K−1/2W (β, z) + iK1/2W (β, −z) , (10.26)

and

φ
(4)
k (α, ϕ) = K−1/2W (β, z)− iK1/2W (β, −z) , (10.27)

where W (β, z) is a parabolic cylinder function [307], K =
√
1 + e2πβ − eπβ,

β = − 1

2ℏ(πG)1/2

[
C1/2a30e

3α

6
− Ek

C1/2a30e
3α

]
, (10.28)

and

z =
2a

3/2
0 e3α/2(πGA)1/4

ℏ1/2
(ϕ− ϕ1). (10.29)
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Thus, the matter part of the wave function is a combination of these solutions [307]

φk(α, ϕ) = c1φ
(1)
k (α, ϕ) + c2φ

(2)
k (α, ϕ) + c3φ

(3)
k (α, ϕ) + c4φ

(4)
k (α, ϕ), (10.30)

with ci’s constants. As we are dealing with a second order differential equation only at most
two of the previous functions are linearly independent.

As shown in appendix C.2, in the limit α→ ∞ these parabolic cylinder functions go as

W (β, z) ∼ e−3α/4 cos(e3α), (10.31)

and

W (β, −z) ∼ e−3α/4 sin(e3α). (10.32)

Therefore, the matter part of the wave function tend to zero when α → ∞ for arbitrary ci’s.
This imply that the DW condition is satisfied if the geometric part of the wave function stays
finite in this limit.

10.4.2 Solutions to the geometric part

The solutions of equation (10.23) are oscillatory for Ek > 0,

Ck(α) = a1e
i

√
12Ek
κℏ α + a2e

−i

√
12Ek
κℏ α, (10.33)

and have an exponential behaviour for Ek < 0

Ck(α) = b1e

√
12|Ek|
κℏ α + b2e

−
√

12|Ek|
κℏ α, (10.34)

where a1, a2, b1, b2 are constants. Therefore, to make sure that DW criterion for singularity
avoidance is fulfilled we impose b1 = 0.

10.5 Conclusions and Outlook

The main purpose of the present work was to analyse the behaviour of the Universe when ap‐
proaching a LS [69] within the framework of quantum cosmology [151, 152]. We have obtained
the WDW equation in the context of quantum geometrodynamics for two cases: i) a perfect fluid
with the equation of state (2.16) and ii) a dominant scalar field of phantom character whose
potential is given in (10.4). We applied the DW criterium for singularity avoidance, namely
the condition that the wave function should vanish in the region of the classical singularity. In
the first case, the DW condition is satisfied, independently of the two factor ordering consid‐
ered. This can easily be verified by the solutions obtained in the WKB approximation (10.12)
and (10.19). For two degrees of freedom, we have also shown that it is possible to find solutions
obeying the DW condition for any fixed value of the phantom field ϕ or even along the classical
trajectory, c.f. the expressions (13.42), (10.26), and (10.27). These results might point to a
possible resolution of the LS in the quantum description.
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For the scalar field case, we used a BO approximation leading to two separate equations, one for
the geometric part of the wave function and the other for the matter part. In this approximation,
the matter part of the wave function has no backreaction in the geometric part. The two
equations become decoupled and the matter part has only an indirect influence on the geometric
part through the eigenvalues Ek. The solutions for the geometric part can be divergent (which
we disregard) and convergent exponentials or oscillatory for Ek < 0 or Ek > 0, respectively.
Due to the phantom character of the scalar field, the equation for the matter part is analogous
to a quantum harmonic repulsor. The solutions of this equation are Parabolic Cylinder functions
[307]. As it is shown in appendix C.2 in detail, these solutions vanish in the limit of arbitrarily
large scale factor. Therefore, the DW condition is asymptotically satisfied.

The fundamental starting point for the classical model with the LS is the equation of state
(2.16), slightly different from that of a cosmological constant. For the case of a perfect fluid,
this relation, which is implicit in the energy density, is directly inserted in the WDW equation
in the matter component. Since in this case the matter component has no implicit degrees of
freedom, one can say that the traces of the LS equation of state are fully encapsulated in the
geometric part of the WDW. On the other hand, for the phantom scalar field case, the WDW is
two‐dimensional and the LS signature can be inserted on the phantom part via the scalar field
potential.

As mentioned in the introduction, the issue of boundary or initial conditions for the wave func‐
tion is of extreme relevance in quantum cosmology and it still is in some sense an open question
[151, 152]. The no‐boundary wave function, the Tunnelling wave functions, were essentially
motivated by the application of quantum cosmology to the very early Universe (see [179] and
references therein). The no‐boundary proposal was in some sense unique since it tried to bring
together the dynamics and the problem of the initial state. Nevertheless, so far there is no uni‐
fied theory of boundary conditions and dynamics from which that relation can be derived [179].
A more general suggestion, the one we used in this work, was first given by Bryce DeWitt, in
what has been named the DW condition. It is a general condition imposed on the wave function
saying that it should be zero in the regions corresponding to the classical singularities. Again, at
the present moment there is no fundamental proof based on quantum gravity that the solutions
to the WDW equation should obey this condition [179]. If this is found then one could say that
the theory excludes the (geometric) singularity problems without any ambiguity.

For genuinely quantum regions, the correspondence between the classical and quantum predic‐
tions should in principle break down and these are expected to occur at the vicinity of classical
singularities. Now, as pointed in the introduction, one way for this to happen is to get wave
packets solutions (following the classical trajectory) that become smeared out in the classical
singularity region, effectively avoiding it [42, 151] and another way is to have a decaying wave
function in those regions, satisfying the DW condition [151]. The DW condition, taken as a cri‐
terium to avoid the classical singularities is based on the existence of square integral functions,
and therefore on a consistent probability interpretation for the wave function. Accordingly the
probability amplitudes for wave packets should vanish in the limit when the variables (of the rep‐
resentation) go to infinity. The problem is the fact that these square integral functions require
an appropriate Hilbert space and it is not obvious that this can always be done in the quantum
cosmology based on the WDW equation (c.f. for example the references [57, 181, 183, 204] for
cases where this is doable).
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The LS is an event happening in the limit when the scale factor goes to infinity, leading to the
divergence of the Ricci parameter, the Hubble parameter and of course the dominant DE density.
Can we avoid, with the quantum treatment, the region of configuration space corresponding to
the divergent scale factor? As mentioned, in this chapter we tried to impose the DW condition
on the solutions to the WDW equation in order to achieve this goal. What about the other
quantities mentioned: how to compute them in the quantum geometrodynamics approach? In
the quantum description, cosmological quantities such as the scale factor, the Hubble parameter
(and its derivatives), or the Ricci curvature are represented by operators. Therefore, in principle
if we have a normalised wave function in minisuperspace we can evaluate the expectation
values and probability densities for these observables. Again, we emphasise the fact that the
interpretation of the results for the expectation values in the quantum cosmology based on
the WDW equation depends crucially on a consistent probability interpretation for the wave
function and therefore on a minisuperspace with a proper Hilbert space nature, which remains
an open question. Strictly speaking, the DW condition on the wave function is not sufficient to
guarantee that all the relevant quantities which diverge in the classical model become finite
in the quantum description. One should compute the corresponding expectation values and/or
probability amplitudes to have a complete analysis. In this chapter, we simply checked if the DW
condition could be verified. The calculation of expectation values and probability amplitudes
requires further investigation since it is intimately linked to various open questions in quantum
cosmology regarding a Hilbert space structure and the classical‐quantum correspondence.

Nevertheless, it can be shown for the case with the scale factor as the single degree of free‐
dom, for solutions (10.12) and (10.19) obtained in the WKB method, that the energy density
expectation value is finite. If the effective Friedmann equation, obtained by replacing the clas‐
sical quantities by the corresponding expectation values, remains valid, it would then imply
that the Hubble rate expectation value is also finite in the quantum description. Nevertheless,
this is not completely clear and requires further investigation, first of all because the calcu‐
lation of the expectation value of the Hubble parameter depends on the factor ordering and
second, because this effective Friedmann equation might be only valid for the classical regime.
In fact, the standard quantum cosmology implied here, based on the WDW equation, is strictly
speaking a canonical quantisation of the classical theory of GR. In the genuine quantum regions
mentioned the classical gravitational theory of GR is expected to break and we might need a
different theory of quantum gravity, although as it was mentioned in the introduction, many
results regarding the WDW analysis of late time cosmology are expected to hold [42]. Does
the (effective) Friedman equation < ψ

∣∣∣Ĥ2(â, π̂a)
∣∣∣ψ >= 8πG

3 < ψ |ρ̂(â)|ψ >, using the solution
to the WDW equation, correspond exactly to the classical one? If not, is there any region in
minisuperspace in which it is valid, in accordance with the correspondence principle? Notice
that the above expression contrasts with the semi‐classical approach in which no quantisation
is done in the geometric side of the Einstein equations, Rµν − 1

2gµνR = κ2 < Ψ
∣∣∣T̂µν∣∣∣Ψ > (c.f.

for example [354]). Historically this approach has been comparatively more explored, in which
the energy momentum is replaced by the expectation value computed from the quantum state
describing the matter, where Ψ is the wave function representing the degrees of freedom of
some quantum field theory in the fixed background of curved space‐time. These issues regard‐
ing the calculation of cosmological quantities in the quantum description and their relation to
the classical model require further investigation.
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Regarding the topic of future cosmic singularities, there are many open questions. First of all,
what kind of observational predictions could distinguish between the different models with late‐
time acceleration and DE related singularities? Another interesting aspect implicit at least in
some of these models is the possibility of matter‐energy transgressing most or even all of the
classical energy conditions. This lead to the idea that these conditions can be refined through
semi‐classical or purely quantum arguments [355–357]. A new door on the physics of phase tran‐
sitions might be open if these non‐linear quantum energy conditions (and their interpretations)
are profoundly explored.

124



Chapter 11. Doomsdays in a modified theory of gravity

11

Doomsdays in a modified theory of gravity

If you know you are on the right track, if you have this inner knowledge, then nobody
can turn you off… no matter what they say

– Barbara McClintock

11.1 Introduction

The scrutiny of extensions on GR is a well motivated topic in cosmology. Some phenomena,
such as the current accelerating expansion of the Universe or gravitational singularities like the
big bang, would presage extensions of GR in the infra‐red as well as in the ultra‐violet limits.
Among these extensions, the EiBI theory [122], which is constructed on a Palatini formalism, is
an appealing model in the sense that it is inspired by the Born‐Infeld electrodynamics [123] and
the big bang singularity can be removed through a regular stage with a finite physical curvature
[122]. Various important issues of the EiBI theory have been addressed such as cosmological solu‐
tions [126, 129–133, 358], compact objects [125, 127, 140, 144–146], cosmological perturbations
[134–136], parameter constraints [141–143], and the quantisation of the theory [203, 359]. How‐
ever, some possible drawbacks of the theory were discovered in [128]. Finally, some interesting
generalisations of the theory were proposed in [360–363].

As is known, the cause of the late time accelerating expansion of the Universe can be resorted
to phantom DE, which violates the null energy condition (at least from a phenomenological point
of view) while remains consistent with observations so far. Nonetheless, the phantom energy
may induce more cosmological singularities in GR (curvature singularities). In particular there
are three kinds of behaviors intrinsic to phantom models, which can be characterised by the
behaviors of the scale factor a, the Hubble rate H = ȧ/a, and its cosmic derivatives Ḣ near
the singular points: (a) The BR happens at a finite cosmic time t when a → ∞, H → ∞, and
Ḣ → ∞ [28–35, 44, 364], (b) the LR happens at t → ∞ when a → ∞, H → ∞ and Ḣ → ∞
[47, 55, 59, 64–67, 201, 202], (c) the LS happens at t → ∞ when a → ∞, H → ∞, while
Ḣ → constant [69, 70, 205]. All these three scenarios would lead to the Universe to rip itself
as all the structures in the Universe would be destroyed no matter what kind of binding energy
is involved.

Interestingly, even though the EiBI theory can cure the big bang, in [129, 130] it was found that
the BR and LR are unavoidable in the EiBI setup, hinting that the EiBI theory is still not complete
and some quantum treatments near these singular events may be necessary. In this chapteri,
we will extend the investigations in [203] where we showed that the BR in the EiBI phantom
model is expected to be cured in the context of quantum geometrodynamics. We will carry an
analysis to encompass the rest of truly phantom DE abrupt events; i.e. the LR and LS.

iThis chapter corresponds mainly to our publication [188]
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11.2 The EiBI model: The LR and LS

In GR, the LR and LS can be driven (separately) by two phantom energy models as follows [66, 69]

pLR = −ρLR −ALR
√
ρLR , pLS = −ρLS −ALS , (11.1)

where ALR and ALS are positive constants. Therefore,

ρLR

ρ0
=

(3ALR

2
√
ρ0

ln(a/a0) + 1
)2
, (11.2)

ρLS = 3ALS ln(a/a0) + ρ0 , (11.3)

where we take ρLR = ρLS = ρ0 when a = a0 [66, 69]. The abrupt events happen at an infinite
future where a and ρ diverge. Inserting these phantom energy contents into the EiBI model,
i.e., equations (7.13) and (7.14), and considering the large a limit (for ρ given in (11.3)), we
have

κH2 ≈ ρ̄

3
→ ∞ , κH2

q ≈ 1

3
, (11.4)

and

Ḣ ≈

ALR

2

√
ρLR , LR

ALS

2 , LS
(11.5)

for these two phantom energy models. Therefore, the LR and LS of the physical metric are
unavoidable within the EiBI model while the auxiliary metric behaves as a dS phase at late time.

11.2.1 Quantisation of the system

The system described by the Lagrangian L is a constrained system. The conjugate momenta can
be obtained as follows:

pb ≡ ∂L
∂ḃ

= − 12λbḃ
M , (11.6)

pX ≡ ∂L
∂Ẋ

= 0, (11.7)

pY ≡ ∂L
∂Ẏ

= 0, (11.8)

pM ≡ ∂L
∂Ṁ

= 0. (11.9)

Therefore, the system has the same three primary constraints as expressed in (7.18) in section
7.3, i.e. pX ∼ 0, pY ∼ 0, pM ∼ 0 [311, 312]. Therefore, the secondary constraints coincide with
those given in (7.20), (7.21), and (7.22). In consequence, the total Hamiltonian is a first class
constraint of the system since the Poisson bracket of the total Hamiltonian with any constraint
vanishes weakly by definition [311, 312]

HT = −MCM + λXpX + λY pY + λMpM ∼ 0. (11.10)

We remind that in this chapter we will focus on solving the WDW equation for a system when the
DE content is described by a perfect fluid. Therefore, the auxiliary scale factor, b, is the true
dynamical variable where the scale factor, a, plays the role of a parameter (it has no kinetic
term). To construct the WDW equation, we impose the first class constraint HT as a restriction
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on the Hilbert space where the wave function of the Universe |Ψ⟩ is defined, ĤT |Ψ⟩ = 0. The hat
denotes the operator. The remaining constraints χi = {M, pM , pX , pY , CX , CY } are all second
class constraints and we need to consider the Dirac brackets to construct the commutation
relations and promote the phase space functions to operators [312]. Note that CM can be used
to construct the first class constraint HT , i.e., (11.10), so it is excluded from the set χi.

We follow the method introduced in section 7.3.1. Making use of the Dirac brackets defined by
the set of equations (7.37) and selecting the XY b basis, we could define

⟨XY b|b̂|Ψ⟩ =b⟨XY b|Ψ⟩,

⟨XY b|X̂|Ψ⟩ =X⟨XY b|Ψ⟩,

⟨XY b|Ŷ |Ψ⟩ =Y ⟨XY b|Ψ⟩,

⟨XY b|p̂b|Ψ⟩ =− iℏ
∂

∂b
⟨XY b|Ψ⟩

= −f1
∂

∂X
⟨XY b|Ψ⟩ − f2

∂

∂Y
⟨XY b|Ψ⟩,

(11.11)

it can be shown that the resulting commutation relations satisfy (7.36) and (7.37). Furthermore,
the momentum operator p̂b can be written as

⟨ξζb|p̂b|Ψ⟩ = −iℏ ∂
∂b

⟨ξζb|Ψ⟩, (11.12)

after an appropriate redefinition of the wave functions: ⟨XY b| → ⟨ξ(X,Y, b), ζ(X,Y, b), b|.
Therefore, in the new ξζb basis, the modified WDW equation ⟨ξζb|ĤT |Ψ⟩ = 0 can be written as

−1

24λ
⟨ξζb| p̂b

2

b
|Ψ⟩+ V (b)⟨ξζb|Ψ⟩ = 0, (11.13)

where the term containing p̂b2 is determined by (11.12) and its explicit form depends on the
factor orderings. Note that the eigenvalues X and Y can be written as functions of b according
to the constraints CX and CY , hence it leads to the potential V (b) as follows

V (b) =
2λ2b3

κ
+
λ

κ
b3X(b)2 − 3λ

κ
b3Y (b)2. (11.14)

11.2.2 WDW equation: factor ordering 1

In order to prove that our results are independent of the factor ordering, we make two choices
of it. First, we consider ⟨ξζb|b3ĤT |Ψ⟩ = 0 and choose the following factor ordering:

b2p̂b
2 = −ℏ2

(
b
∂

∂b

)(
b
∂

∂b

)
= −ℏ2

( ∂
∂x

)( ∂
∂x

)
, (11.15)

where x = ln(
√
λb). Near the LR singular event, the energy density ρ behaves as ρ ∝ (ln a)2.

On that regime, the dependence between the auxiliary scale factor b and a is b ∝ a ln a. On
the other hand, near the LS event the energy density behaves as ρ ∝ ln a and b behaves as
b ∝ a

√
ln a. For both cases, the WDW equation can be written as

( d2
dx2

+
48

κℏ2
e6x
)
Ψ(x) = 0, (11.16)
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when x and a go to infinity. Note that we have replaced the partial derivatives with ordinary
derivatives and Ψ(x) ≡ ⟨ξζb|Ψ⟩. The wave function reads [307]

Ψ(x) = C1J0(A1e3x) + C2Y0(A1e3x), (11.17)

and consequently when x→ ∞, its asymptotic behavior reads [307]

Ψ(x) ≈
√

2

πA1
e−3x/2

[
C1 cos

(
A1e3x − π

4

)
+ C2 sin

(
A1e3x − π

4

)]
, (11.18)

where

A1 ≡ 4√
3κℏ2

. (11.19)

Here Jν(x) and Yν(x) are Bessel function of the first kind and second kind, respectively. It can
be seen that the wave function vanishes when a and x go to infinity.

11.2.3 WDW equation: factor ordering 2

From the WDW equation (11.13), we can as well derive a quantum Hamiltonian by choosing
another factor ordering

p̂b
2

b
= −ℏ2

( 1√
b

∂

∂b

)( 1√
b

∂

∂b

)
. (11.20)

Before proceeding further, we highlight that this quantisation is based on the LB operator which
is the Laplacian operator in minisuperspace [151]. This operator depends on the number of
degrees of freedom involved. For the case of a single degree of freedom, it can be written as in
(11.20). Under this factor ordering and after introducing a new variable y ≡ (

√
λb)3/2, in both

cases (LR and LS) the WDW equation can be written as

( d2
dy2

+
64

3κℏ2
y2
)
Ψ(y) = 0, (11.21)

when a and y approach infinity. The solution of the previous equation reads [307]

Ψ(y) = C1
√
yJ1/4(A1y

2) + C2
√
yY1/4(A1y

2), (11.22)

and when y → ∞, therefore, [307]

Ψ(y) ≈
√

2

πA1y

[
C1 cos

(
A1y

2 − 3π

8

)
+ C2 sin

(
A1y

2 − 3π

8

)]
. (11.23)

Consequently, the wave functions approach zero when a goes to infinity. According to the DW
criterium for singularity avoidance [176], the LR and LS is expected to be avoided independently
of the factor orderings considered in this work.

11.2.4 Expected values

We have shown that the DW criterium of singularity avoidance is fulfilled hinting that the Uni‐
verse would escape the LR and LS in the EiBI model once the quantum effects are important.
We next estimate the expected value of the scale factor of the Universe a by estimating the
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expected value of b. The reason we have to resort to the expected value of b rather than a is
that in the classical theory [126] that we have quantised the dynamics is only endowed to the
scale factor b. We remind at this regard that when approaching the LR and LS, b ∝ a ln a and
b ∝ a

√
ln a, respectively, at least within the classical framework. Therefore if the expected

value of b, which we will denote as b, is finite, then we expect that the expected value of a;
i.e. a would be finite as well. Therefore, non of the cosmological and geometrical divergences
present at the LR and LS would take place.

We next present a rough estimation for an upper limit of b for the two quantisation procedures
presented on the previous subsection.

• Factor ordering I:

The expected value of b at late‐time can be estimated as follows:

b =

∫ ∞

x1

Ψ∗ (x)
ex√
λ
Ψ(x) dx, (11.24)

where x1 is large enough to ensure the validity of the approximated potential in (11.16).
In this limit, we can use the asymptotic behavior for the wave function c.f. (11.18). Then,
it can be shown that the approximated value of b is bounded as∫ ∞

x1

Ψ∗ (x)
ex√
λ
Ψ(x) dx <

|C1|2 + |C2|2

πA1

√
λ

e−2x1 . (11.25)

Therefore, we can conclude that b has an upper finite limit. Consequently, the LR and LS
are avoided.

• Factor ordering II:

In this case the expected value of b can be written as

b =

∫ ∞

y1

Ψ∗ (y)
y

2
3

√
λ
Ψ(y) f (y) dy, (11.26)

where y1 is large enough to ensure the validity of the approximated potential in (11.21).
In addition, we have introduced a phenomenological weight f (y) such that the norm of
the wave function is well defined and finite for large y [57, 181, 183]. In fact, we could
as well choose f (y) = y−α with 2/3 < α. After some simple algebra, we obtain

b <
2
(
|C1|2 + |C2|2

)
πA1

√
λ

∫ ∞

y1

y−
1
3 f (y) . (11.27)

Consequently, we get

b <
2
(
|C1|2 + |C2|2

)
πA1

√
λ (α− 2/3)

y
2
3−α
1 . (11.28)

Once again, we reach the conclusion that b is finite. Therefore, the LR and LS are avoided.
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11.3 Conclusions

Singularities seem inevitable in most theories of gravity. It is therefore natural to ask whether by
including quantum effects would the singularities be removed. In the case of the EiBI scenario,
while the big bang singularity can be removed, the intrinsic phantom DE doomsdays remain
inevitable [130]. We solved the modified WDW equation of the EiBI model for a homogeneous
and isotropic Universe whose matter content corresponds to two kinds of perfect fluid. Those
fluids within a classical Universe would unavoidably induce LR or LS. We show that within the
quantum approach we invoked, the DW criterion is fulfilled and it leads toward the potential
avoidance of the LR and LS. Our conclusion appears unaffected by the choice of factor ordering.
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12

Quantum cosmology of EiBI gravity fed by a scalar
field: the BR event

Science is organised knowledge. Wisdom is organised life

– Immanuel Kant

12.1 Introduction

It is well known that Einstein’s GR predicts the existence of spacetime singularities in several
physical configurations. In [343, 365, 366], it has been proven that spacetime singularities,
which are accompanied with an abrupt termination of timelike (lightlike) geodesics, exist as
long as the matter fields satisfy the strong (null) energy condition. This is the definition of
spacetime singularity based on the notion of the geodesic incompleteness. In this regard, the
attractive forces between matter fields ensure the convergence of the geodesic congruence.
At a certain spacetime point, the geodesics cannot be further extended and this is where the
spacetime singularity is formally defined. For instance, GR predicts the existence of black hole
singularities as well as the big bang singularity at the very beginning of the Universe.

Moreover, one should be aware that spacetime singularities are not restricted to small scales,
they could in fact exist at large scales as well. In order to explain the late time accelerating
expansion of the Universe, one may consider a Universe filled with some kinds of DE violating
not only the strong energy condition, but also the null energy condition. This particular DE is
called phantom DE and it could result in several cosmic curvature singularities in the future of
the Universe [47]. The most famous cosmic singularity associated with phantom DE is the BR
singularity [22, 28–35, 41, 46]. The size as well as the curvature of the Universe diverge at
the singularity and in a finite cosmic time. Before the Universe reaches the singularity where
the spacetime would be destroyed, all bound structures would be ripped asunder by the strong
Hubble flow. In addition to the BR singularity, there exist several cosmic singularities and abrupt
events that can be driven by phantom DE [54, 59, 60, 62, 65–67, 69].

In order to ameliorate the aforementioned spacetime singularities, one may resort to some
quantum effects expected near the classical singularitiesi. One of the promising approaches
to address this issue is based on the quantum geometrodynamics in which the WDW equation
describes the quantum state of the Universe as a whole [151]. The WDW equation in GR is
derived from the Hamiltonian constraint defined by Einstein equation. If the solution to the
WDW equation satisfies the DW boundary condition [176], that is, it vanishes at the configuration
corresponding to the classical singularity, one may claim that the singularity is then expected
to be avoidable when quantum effects are taken into account. Following this direction, it has
been shown in [42, 110] that the BR singularity in GR can be removed by quantum effects. The

iThis chapter corresponds mainly to our publication [189]
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quantum behaviors of other cosmological singularities, such as the SS [51], the BF singularity
[48], the type IV singularity [63], the LR [202], and the LS [70], have also been discussed in
the literature. It should be noticed that in some particular cases as shown in [57, 181, 183],
a vanishing wave function at the classical singularity does not imply a vanishing probability
because the measure used to define the probability diverges in those cases.

On the other hand, one can also address the spacetime singularities from a somewhat phe‐
nomenological point of view. Since a well‐constructed and complete quantum theory of gravity
is still lacking, one can consider some extended theories of gravity which not only reduce to
GR in some proper limits, but also ameliorate spacetime singularities to some extent [367].
These theories of gravity can also be regarded as effective theories of an unknown quantum
theory of gravity under some cutoff energy scales. Within this scope an interesting theory is the
Eddington‐inspired‐Born‐Infeld (EiBI) gravity [122]. This theory contains higher order correction
terms of curvature as compared with GR and it removes the big bang singularity [132, 358, 368].
In addition, the EiBI cosmology [126, 133–136, 369], the astrophysical configurations [127, 144–
146, 370–374], constraints of the parameters in the theory [141–143, 375, 376], and some gen‐
eralisations of the EiBI theory [137, 360–363, 377–380] have been widely investigated in the
literature (see [381] for a nice review of the EiBI gravity).

Even though the big bang singularity can be avoided in the EiBI theory, in our previous works [129,
130] we have shown that the BR singularity still exists in the classical theory. It is then natural to
ask whether the BR singularity in the EiBI theory can be alleviated by quantum effects. In [203,
246], we considered a quantum geometrodynamical approach to address this issue by modeling
the phantom DE as a perfect fluid. We have proven the existence of wave functions satisfying the
DW boundary condition near the configuration of the BR and have therefore shown the possibility
that the singularity can be avoided by quantum effects. In addition, some future abrupt events
driven by phantom DE, such as the LR and the LS, have also been found avoidable under quantum
effects in the EiBI model [188]. For another quantum treatment for the EiBI gravity, we refer to
the scrutiny about the quantum tunneling effects of the singular instanton [359] and the regular
instanton [382]. One of the important results is the formation of a Lorentzian wormhole during
bubble materialisation shown in [382].

In this chapterii, we consider a more general matter content than the phantom perfect fluid
to study the quantum avoidance of the BR singularity within the EiBI model. Specifically, we
introduce a proper degree of freedom related to the matter sector described by a (phantom)
scalar field ϕ minimally coupled to EiBI gravity to see whether a wave function satisfying the
DW condition is attainable. In a homogeneous and isotropic Universe, there are two dynamical
degrees of freedom in the system, one from the geometry side and the other from the matter
side. We will start obtaining, for the first time, a consistent WDW equation for a Universe filled
with a minimally coupled scalar field within the EiBI setup. We will prove that under a suitable
BO approximation, a wave function satisfying the DW condition can be obtained. Therefore, the
BR singularity is expected to be avoided by quantum effects.

This chapter is outlined as follows. In section 12.2, we concisely review the classical EiBI phan‐
tom model and exhibit how a BR singularity would occur by adding a phantom scalar field with

iiThis chapter corresponds mainly to our publication [189]
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a proper potential. In section 12.3, we construct the modified WDW equation by considering an
alternative action in Einstein frame. The model corresponds to a constrained system and a thor‐
ough Hamiltonian analysis as well as the quantisation with the Dirac brackets are performed.
In section 12.4, we solve the WDW equation by applying a BO approximation and show that the
BR singularity is hinted to be avoided according to the DW criterion. We finally present our
conclusions in section 12.5.

12.2 The EiBI model with a phantom scalar field: the BR singu‐

larity

In [129, 130], we have demonstrated that in the EiBI gravity, if the Universe is dominated by
a phantom DE with a constant EoS parameter, w < −1, the Universe would end up at a BR
singularity. In fact, making use of equation (7.13) the asymptotic behavior of the Hubble rate
(defined through the physical metric) near the singularity can be expressed as

1

N2
H2 ≡ 1

N2

( ȧ
a

)2
≈

4
√

|w|3
3(3w + 1)2

ρ0a
−3(1+w), (12.1)

when a goes to infinity, where ρ0 is the energy density of the phantom DE at present time. The
dot denotes the cosmic time derivative. Therefore, H blows up which can be shown to be at
finite cosmic time form now. Besides, the cosmic time derivative of H diverges as well when
approaching the BR.

If the phantom DE considered in this setup is governed by a phantom scalar field ϕ and its
potential V (ϕ), the energy density and pressure of this phantom scalar field can be written asiii

ρϕ = − ϕ̇2

2N2 + V (ϕ) , (12.2)

pϕ = − ϕ̇2

2N2 − V (ϕ) . (12.3)

When the Universe is approaching the BR singularity, the energy density and pressure can be
approximated as ρϕ ≈ ρ0a

−3(1+w) and pϕ ≈ wρ0a
−3(1+w). Combining (12.1), (12.2) and (12.3),

one can obtain the asymptotic form of the scalar field as a function of a:

ϕ(a) = ±
√

3|w + 1|(3w + 1)2

4
√

|w|3
ln a, (12.4)

and the scalar field potential

V (ϕ) = AeB|ϕ|, (12.5)

where

A =
ρ0
2
(1− w) , B =

√
12|w + 1|

√
|w|3

(3w + 1)2
. (12.6)

iiiWe will not consider DM on our approach because its effect is negligible in the asymptotic regime when
the BR singularity is reached. Furthermore, we will only consider the case where κ is positive because of
the instability problems usually present if κ < 0 [142, 143].
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It can be seen that the BR singularity is accompanied by a divergence of the scalar field, i.e.,
|ϕ| → ∞ and its potential.

12.3 The WDW equation with a scalar field

As mentioned previously in section 7.3.1, we can use the second class constraints χi to simplify
the Hamiltonian then derive the WDW equation. If we combine the constraints (7.29) and (7.30),
we have

λ
( X
Y 3

+
1

XY

)
= 2
(
λ+ κV (ϕ)

)
. (12.7)

After inserting this equation into (7.29), the Hamiltonian HT can be simplified as follows

HT =M
(
− p2b

24λb
+
X

Y 3

lp2ϕ
4b3

+
2λb3

κ
(λ− Y 2)

)
+ λXpX + λY pY . (12.8)

Note that λM = 0 after the gauge fixing. Next, we will use the asymptotic behaviors of the
constraints (7.29) and (7.30) near the singularity to replace X and Y in (12.8). Near the BR
singularity, (7.29) and (7.30) can be approximated as (l = −1 for a phantom scalar field)

X

Y 3
≈ κ

λ
ρ0a

−3(1+w) ≈ c1V (ϕ), (12.9)

and

Y 2 ≈ λa3(1+w)√
|w|κρ0

≈ c2
V (ϕ)

, (12.10)

where c1 and c2 are two positive constants defined as

c1 ≡ 2κ

(1 + |w|)λ
, c2 ≡ (

√
|w|c1)−1. (12.11)

Note that along the classical trajectory, we have V (ϕ(a)) ≈ Aa−3(1+w) when approaching the
singularity. The Hamiltonian can be written as

HT =M
[
− p2b

24λb
− c1V (ϕ)

p2ϕ
4b3

+
2λb3

κ

(
λ− c2

V (ϕ)

)]
+ λXpX + λY pY , (12.12)

where the potential V (ϕ) is given by (13.34).

We construct the WDW equation as follows

⟨bϕ|b3ĤT |Ψ⟩ = 0, (12.13)

and choose, for simplicity, the following factor ordering

b2p̂2b = −ℏ2
(
b ∂
∂b

)(
b ∂
∂b

)
= −ℏ2

(
∂
∂x

)(
∂
∂x

)
, (12.14)

eB|ϕ|p̂2ϕ = −ℏ2
(
eB|ϕ|/2 ∂

∂ϕ

)(
eB|ϕ|/2 ∂

∂ϕ

)
= −ℏ2

(
∂
∂ϕ̃

)(
∂
∂ϕ̃

)
. (12.15)
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Note that we have defined two new variables

x = ln (
√
λb) , ϕ̃ = ∓ 2

B
e−

B
2 |ϕ|, (12.16)

where the minus (plus) sign in ϕ̃ corresponds to a positive (negative) ϕ. Note as well that ϕ̃→ 0

when |ϕ| → ∞, i.e., close to the BR singularity (on the classical trajectory, the relation between
the two scale factors a and b is given in the footnote iv). Finally, the WDW equation becomes[

ℏ2

24
∂2x +

ℏ2

4
κρ0∂

2
ϕ̃
+

2e6x

κ

(
1− c3ϕ̃

2
)]

Ψ(x, ϕ̃) = 0, (12.17)

where

c3 ≡ f(w)

κρ0
and f(w) ≡ 3|w(w + 1)|

(3w + 1)2
. (12.18)

The absence of pX and pY is due to the fact that they can be treated as zero operators at the
quantum level.

12.4 The fulfillment of the DW condition

To solve the WDW equation (13.30), we apply a BO approximation. This method gives an ap‐
proximated solution where the total wave function can be written as

Ψ(x, ϕ̃) =
∑
k

Ck(x)φk(x, ϕ̃). (12.19)

The BO approximation is valid as far as the derivatives of φk(x, ϕ̃) with respect to x are negligible
[see appendix C.3]. Within this assumption, the WDW equation given in (13.30) can be separated
into the following two differential equations:[

ℏ2

24∂
2
x + 2e6x

κ − Ek

]
Ck(x) = 0, (12.20)[

ℏ2

4 κρ0∂
2
ϕ̃
− 2c3

κ e6xϕ̃2 + Ek

]
φk(x, ϕ̃) = 0, (12.21)

where Ck(x) is the solution to the gravitational part and φk(x, ϕ̃) is the solution to the matter
part. The decoupling constant between Ck(x) and φk(x, ϕ̃) is represented by the parameter Ek.
We remind that the validity of the BO approximation should be justified once the solutions to
the previous differential equations are obtained (we address this issue in the appendix C.3).

Let us start with the gravitational part. The solutions to the differential equation (12.20) are
given by (cf. Eq 9.1.54 of [307])

Ck(x) = F1Jµ
[
αe3x

]
+ F2Yµ

[
αe3x

]
, (12.22)

where F1 and F2 are constants. On the other hand, Jµ
[
αe3x

]
and Yµ

[
αe3x

]
are respectively,

the first and the second kind Bessel functions of order µ and argument αe3x. The values of the
parameters µ and α are

µ ≡ 2
√
6Ek

3ℏ
, α ≡ 4

√
3

3ℏκ 1
2

. (12.23)
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The asymptotic expressions for large arguments are given by (cf. Eqs. 9.2.1 and 9.2.2 of [307])

Jµ
[
αe3x

]
≈
√

2

πα
e−

3
2x cos

[
αe3x − π

4
(2µ+ 1)

]
, (12.24)

Yµ
[
αe3x

]
≈
√

2

πα
e−

3
2x sin

[
αe3x − π

4
(2µ+ 1)

]
. (12.25)

As can be seen, both kinds of Bessel functions vanish at large scale factors. As the total wave
function is a product of the gravitational and matter part solutions (cf (12.19)), it is possible to
ensure the compliance of the DW boundary condition for an arbitrary ϕ̃ as long as the matter
part solution is bounded with respect to the metric variable x when x gets very large.

Let us solve the differential equation corresponding to the matter part. Notice that (12.21)
is the analogous to a Schrödinger equation for a harmonic oscillator. However, in the present
case, there are some remarkable differences: i) Due to the phantom nature of the scalar field,
the sign in the kinetic operator is switched, i.e., it becomes positive, while the potential is
negative. However, the relative sign between them is the same. ii) The field ϕ̃ can be positive
or negative when reaching the BR at |ϕ̃| → 0. The solutions to (12.21) can be written as (cf.
[383] chapters 16.5 and 16.51, pp .347‐348)

φk(x, ϕ̃) = C1Dν

[
r(x)ϕ̃

]
+ C2D−ν−1

[
ir(x)ϕ̃

]
, (12.26)

where C1 and C2 are constants andDν [r(x)ϕ̃] represents the parabolic cylinder function of order
ν and argument r(x)ϕ̃. The order and the argument of the parabolic cylinder function depend
on the scale factor of the auxiliary metric through the variable x. Moreover, the parameter ν
and the function r(x) can be written as

ν = ± κ
1
2Ek√

2f(w)ℏ
e−3x − 1

2
, (12.27)

r(x) = βe
3
2x, where β ≡

[
32f(w)

ℏ2ρ20κ3

] 1
4

. (12.28)

The DW condition is applied close to the singularity, i.e. at very large values of the scale
factoriv a. Therefore, we focus on the limit x→ ∞. We will first consider the region where the
argument r(x)ϕ̃ is large. The reason of this priority is based on the classical trajectory. In fact,
the classical trajectory is defined as

ϕ̃(x) = ∓ 2

B

[√
|w|κρ0

]−h(w)
2

eh(w)x where h(w) = −3(w + 1)

3w + 1
. (12.29)

Since the value of the EoS parameter is smaller than −1, the value of the exponent h(w) is
therefore negative. As expected, the classical limit of ϕ̃(x) tends to zero at large scale factors.

ivRecall that at the vicinity of the classical configuration corresponding to a BR singularity, the auxiliary
scale factor b (or x) diverges because it can be related to the scale factor a via (12.10)

Y 2 =
a2

b2
≈ c2

V (ϕ)
, =⇒ c2b

2 ≈ a2V (ϕ) → ∞ ,

when a → ∞ and V (ϕ) → ∞.
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Furthermore, the argument r(x)ϕ̃ diverges classically since we have

r(x)ϕ̃ ≈ exp

{[
3

2
+ h(w)

]
x

}
= exp

[(
3w

3w + 1

)
x

]
, (12.30)

and 3w/(3w + 1) is positive for w < −1. Hence, we will first focus on analysing the asymptotic
behavior of (12.26) at large arguments, i.e., r(x)ϕ̃≫ 1. This also corresponds to a region in the
parameter space where the metric variable x is very large and ϕ̃ is non‐vanishing. Under this
assumption, the order of the parabolic cylinder functions goes as ν → −1/2 while the argument
diverges, i.e. r(x)ϕ̃ → ∞. Therefore, the asymptotic behaviors of the solutions to the matter
part read [383]

D− 1
2

[
r(x)ϕ̃

]
≈ e−

[r(x)ϕ̃]2

4

[
r(x)ϕ̃

]− 1
2

, (12.31)

D− 1
2

[
ir(x)ϕ̃

]
≈ e

[r(x)ϕ̃]2

4

[
r(x)ϕ̃

]− 1
2

. (12.32)

As the solution in (12.32) diverges very fast with respect to x, we select C2 = 0 in order to ensure
the compliance of the DW boundary condition. In addition, notice that for an order ν = −1/2,
the dependence on the decoupling constant Ek disappears and the solution to the matter part
simply reads

φk(x, ϕ̃) =
C1√
βe

3
2xϕ̃

exp

[
−β

2e3xϕ̃2

4

]
. (12.33)

Finally, the total wave function can be written as

Ψk(x, ϕ̃) = Ck(x)φk(x, ϕ̃) =
{
C̃1Jµ

[
αe3x

]
+ C̃2Yµ

[
αe3x

]}
Dν

[
r(x)ϕ̃

]
, (12.34)

where C̃1 and C̃2 are constants and the asymptotic expression reads

Ψk(x, ϕ̃) ≈
√

2

παβϕ̃
exp

[
−9

4
x− β2

4
(e3xϕ̃2)

]
×
{
C̃1 cos

[
αe3x − π

4
(2µ+ 1)

]
+ C̃2 sin

[
αe3x − π

4
(2µ+ 1)

]}
.

(12.35)

As we have found vanishing solutions at large scale factors for both the gravitational and the
matter parts, we can conclude that the total wave function vanishes at large scale factors and
thus fulfills the DW boundary condition.

On the other hand, we bear in mind that at the quantum level the classical relation ϕ̃(x) given in
(12.29) is meaningless and it just describes a curve where we expect to find confined the wave
packet when approaching the semi‐classical regime. There are regions in the parameter space,
far away from the classical trajectory, where ϕ̃ is small enough in such a way that the argument
r(x)ϕ̃ vanishes. For a vanishing argument r(x)ϕ̃, the solution to the matter part given in (12.26)
tends to a finite constant [307]. However, the total wave function is a product of the matter and
the gravitational solutions, where the latter vanishes at large scale factors. Therefore, once
the divergent solution on the matter part, (12.32), has been eliminated, it can be proven that
for an arbitrary ϕ̃ the total wave function vanishes at large scale factors.
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12.5 conclusion

In this chapter, we have analysed the quantum avoidance of the BR singularity in the EiBI phan‐
tom model by using a quantum geometrodynamical approach. A complementary scrutiny has
been carried out in our previous works [188, 203, 246] in which the phantom DE was described
by a perfect fluid for the sake of simplicity. In this chapter, we consider a more general case in
which the phantom DE is described by a phantom scalar field ϕ which adds an additional degree
of freedom aside from the geometrical degree of freedom described by the scale factor of the
Universe.

In the quantum geometrodynamics, the WDW equation plays a very important role since it essen‐
tially describes the quantum behavior of the whole Universe including the accompanied matter
constituents. In order to obtain the WDW equation of this system, a correct and self‐consistent
Hamiltonian should be constructed at the classical level. One of the difficulties in the analysis of
the model is from the affine structure of the EiBI theory since there are several additional aux‐
iliary fields appearing in the system as compared with the GR case. However, in the end these
additional auxiliary fields turn out to be reducible because of the corresponding second class
constraints. We have identified all the first class and second class constraints in the system.
More explicitly, one of the first class constraints pM actually corresponds to a gauge degree of
freedom and it can be fixed by adding an additional constraint. The other first class constraint
is, not surprisingly, the Hamiltonian and it has been used to construct the WDW equation. The
existence of second class constraints requires a more careful treatment. In practice, one needs
to use the Dirac bracket to promote the canonical variables of a system with second class con‐
straints to quantum operators. It turns out that the WDW equation can be significantly simplified
and it becomes a second order partial differential equation with two dynamical variables x and
ϕ̃, as shown in (13.30).

To solve the WDW equation, obtained for the first time here for a minimally coupled scalar field
in the EiBI theory of gravity, we impose a BO approximation on the wave function in the sense
that the wave function can be decomposed into a gravitational part and a matter part. In the
configuration where the classical BR singularity is approached (large value of the scale factor
x), we have proven that there exist solutions whose total wave function always satisfies the DW
boundary condition, no matter how the scalar field degree of freedom behaves. Therefore, the
wave function vanishes near the configuration corresponding to the classical BR singularity and
the BR singularity is thus hinted to be avoidable by quantum effects.
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13

Eddington‐inspired‐Born‐Infeld tensorial
instabilities neutralized in a quantum approach

Life is really simple, but we insist on making it complicated

– Confucius

13.1 Introduction

It is commonly recognised that Einstein’s GR, though very successful in describing our Universe,
nonetheless suffers from several fundamental puzzles. On the very early stage of the Universe
where the energy scale and the curvature scale were huge, say, close to the Planck scale,
a purely classical description of gravity based on GR would not be sufficient. Actually, it is
expected that a fundamental quantum theory of gravity is necessary such that some pathologies
of GR at high energy scales can be resolved, such as the non‐renormalizability of the theory
and the issue regarding spacetime singularities. Whereas, it is still not clear so far how such a
fundamental quantum gravity theory should be built in a self‐consistent way. The development
of a complete quantum theory of gravity is still an open question and it is certainly one of the
most active research directions in modern theoretical physicsi.

From a more conservative point of view, to escape from the aforementioned theoretical swamp,
one may resort to other modified theories beyond GR and regard them as effective theories of
the unknown quantum theory of gravity [367]. It is likely that such extended theories of gravity,
even presumably not complete, are already able to ameliorate the UV problems in GR. Among
the plethora of extended theories of gravity, the Eddington‐inspired‐Born‐Infeld gravity (EiBI)
proposed in [122] is appealing in several theoretical aspects. First, it reduces exactly to GR
in vacuum and deviates from it when matter fields are included. Second, due to the square
root structure in the gravitational action, the curvature scale and the energy scale seem to be
bounded from above and the big bang singularity is naturally avoided in the EiBI gravity. Third,
the theory is simple in the sense that it only contains one free additional parameter, the Born‐
Infeld constant κ compared with GR. Fourth, it is free of ghost instabilities because the theory
is constructed through the Palatini rather than the metric variational principle. Actually, the
idea of including the Born‐Infeld structure into the gravitational theory was proposed in [124].
However, the theory is built with the metric variational principle and it has ghost because of
the higher order derivative terms in the field equations. The EiBI theory, on the contrary,
is formulated via the Palatini variational principle. The field equations only contain second
order derivatives and therefore no ghost is present in the theory. The applications and several
properties of the EiBI gravity have been studied widely in the literature [126, 127, 129, 130, 132–
138, 141–146, 358, 360–363, 368–379, 384, 385]. Some attempts to quantise the EiBI gravity
have been proposed in [188, 189, 203, 246, 359, 382]. See also [381] for a nice review on the

iThis chapter corresponds mainly to our publication [139]
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EiBI gravity and other interesting Born‐Infeld inspired theories of gravity. A further motivation
to consider the EiBI theory is that the Born‐Infeld type of theories, of which EiBI gravity is a
subclass, have intrinsic Noether symmetries as shown in [386]. This is not surprising as the
same happens in other modified theories of gravity [387]. For an interesting review on Noether
symmetry, please see [388].

In this chapter, we will highlight an important issue regarding the viability of the EiBI theory.
In the EiBI gravity, the big bang singularity in the physical metric is avoided by hiding the di‐
vergences of quantities in the second spacetime structure defined by the affine connection.
The physical metric gµν is non‐singular while the other metric, which we will call the auxiliary
metric qµν later, turns out to be singular. Since the matter field is assumed to be coupled
only to the physical metric, the singularity in the auxiliary metric seems to be unharmful for
a physical observer. However, it has been proven in [134, 135] that the metric perturbations,
especially the tensor perturbations, are actually unstable for the non‐singular solutions in the
EiBI gravity, jeopardising the validity of the theory. A more careful analysis in [138] reveals that
the propagation of gravitational waves does see the structure of the auxiliary metric and it is
the singularity in the auxiliary metric that gives rise to the linear instabilities of the theory. It
should be noted that the problem of tensor instabilities mentioned above can be ameliorated
for a positive Born‐Infeld coupling constant if a time‐dependent EoS parameter is considered
[132].

In order to resolve this problem, we will suggest a quantum treatment to the EiBI gravity in
the framework of quantum geometrodynamics. In this approach, the construction of the WDW
equation is crucial since the WDW equation describes the quantum evolution of the Universe
as a whole [151]. The derivation of the WDW equation stems from a self‐consistent classical
Hamiltonian, which and all the phase space functions are then promoted to quantum operators.
The Hamiltonian, being a first class constraint of the system, turns out to be a restriction on
the Hilbert space which is exactly the WDW equation. The strategy is to see whether the wave
function would vanish near the configuration of the singularity in the auxiliary metric, satisfying
the DW boundary condition [176]. If the answer is yes, it is then expected that the singularity can
be avoided in the quantum world and the linear instabilities, which result from this singularity,
can be naturally resolved. For the sake of completeness, we will consider two kinds of matter
descriptions, one is the perfect fluid description and the other is the scalar field description. For
the perfect fluid description, the matter field is governed by a perfect fluid with a constant EoS
parameter. The system contains only one degree of freedom corresponding to the scale factor
of the metric. As for the scalar field description, a scalar field degree of freedom is included
into the system and the WDW equation turns out to be a partial differential equation with two
independent variables. For each description and each non‐singular solution, we will solve the
corresponding WDW equation and we will exhibit that the DW condition can always be satisfied,
indicating the resolution of the singularity in the auxiliary metric as well as the instabilities via
quantum effects.

This chapter is outlined as follows. In section 13.2, we briefly review the non‐singular cosmo‐
logical solutions in the EiBI gravity, depending on different signs of the Born‐Infeld parameter
κ. We will also exhibit how the tensor instabilities are related to the singularity of the auxiliary
metric. In section 13.3, we use the perfect fluid description and derive the WDW equations of
the non‐singular solutions with regard the physical metric for each sign of κ. The WDW equations
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κ Physical metric gµν Auxiliary metric qµν

Positive Loitering effects Big Bang singularity
Negative Bounce Big Bang singularity

Table 13.1: This table summarises how the EiBI theory of gravity cures the big bang singularity in a radiation
dominated Universe. If κ > 0, the big bang singularity in the physical metric is replaced with a loitering
stage in which the Universe gets its minimum size in the infinite past. If κ < 0, the physical metric is
described by a bouncing scenario in the past. However, there is still a big bang singularity in the auxiliary
metric for both cases.

within the scalar field description are obtained in section 13.4. After deriving the WDW equa‐
tion, we will obtain the wave function and see whether the solution satisfies the DW boundary
condition near the singularity of the auxiliary metric. For the perfect fluid description and the
scalar field description, the WDW equations will be solved, respectively, in sections 13.5 and
13.6. We finally conclude in section 13.7.

13.2 The classical Universe: big bang in the auxiliary metric

We start by considering EiBI gravity formulated by the action given in (7.11). It is well known
that the EiBI gravity reduces to Einstein GR when matter fields are absent. However, the theory
could have significant differences from GR when, say, the curvature and the energy density of
the matter field take large values. Essentially, that is how the big bang singularity is removed
in the EiBI gravity. The existence of the affine structure and its corresponding auxiliary metric
actually plays a crucial role in the avoidance of singularities. The divergences of the physical
metric at the singularity are transferred to the auxiliary spacetime, leaving the physical metric
gµν non‐singular. Since the matter field only sees the spacetime structure of the physical metric,
the hidden singularity in the auxiliary metric seems unharmful for physical observers. Depending
on the sign of the parameter κ, the big bang singularity can be replaced with a bouncing solution
in the physical metric when κ < 0, or can be replaced with a loitering stage in which the Universe
acquires its minimum size in the asymptotic past when κ > 0. Table 13.1 briefly summarises
how the EiBI gravity cures the big bang singularity in the physical metric, and also points out
the singularity appearing in the auxiliary metric.

In the following subsections, we will briefly review how the big bang singularity is avoided in
the EiBI gravity with different signs of κ, and we shall point out the fact that the big bang
singularity actually migrates to the auxiliary spacetime, i.e., the curvature invariants defined
by the auxiliary metric diverge and the scale factor of the auxiliary metric is zero. We will
illustrate it by considering a homogeneous and isotropic Universe filled with a perfect fluid
with a constant and positive EoS parameter, w > 0. Then, we will mention how the instability
issues in the physical metric arise alongside the auxiliary singularity, which motivates us for the
quantum analysis in this work.

13.2.1 The big bang singularity in the auxiliary metric with κ < 0

If the Universe is dominated by a perfect fluid with energy density ρ and pressure p = wρ, the
equations of motion obtained from varying the action with respect to gµν relate algebraically
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the two metrics to the matter sector as follows

λX

Y 3
= λ+ κρ ,

λ

XY
= λ− κp = λ− κwρ . (13.1)

From the above equations (13.1), one can see that when κ < 0 the energy density of the perfect
fluid ρ is bounded from above by

λ+ κρ ≥ 0 , =⇒ |κ|ρ ≤ λ . (13.2)

Since the energy density ρ ∝ a−3(1+w) is bounded from above, the physical scale factor has a
minimum value am1 satisfying ρ (am1) = λ/|κ|. The Hubble rate defined by the physical metric
H ≡ ȧ/a, where the dot denotes the derivative with respect to t, reads [358]

H2 ≈ 8N2 (a− am1)

3|κ|am1
, (13.3)

when a → am1. By assuming a constant lapse function N, it can be proven that the big bang
singularity in the physical metric is replaced with a bouncing solution in the sense that (13.3)
can be integrated to get a − am1 ∝ t2. To study the behavior of the auxiliary metric when
a→ am1, we rewrite (13.1) as follows

λ2

Y 4
= (λ+ κρ) (λ− κwρ) ,

X4

λ2
=

λ+ κρ

(λ− κwρ)
3 . (13.4)

When ρ→ λ/|κ| and a→ am1, (13.4) can be written as

b =
a

Y
≈ am1 (1 + w)

1/4

λ1/4
(λ+ κρ)

1/4 → 0 , X =
N

M
≈ b

am1 (1 + w)
→ 0 . (13.5)

Therefore, at the bounce where a = am1, the auxiliary scale factor b vanishes. On the other
hand, the scalar curvature defined by the auxiliary metric is given by

R[q] ≡ qµνR(µν) =
1

κ

(
4λ−X2 − 3Y 2

)
. (13.6)

When a = am1, it can be seen that R[q] diverges because Y → ∞. Also, by suitably choosing
the lapse functions, it can be shown that this divergence happens at a finite time t. Therefore,
there is a big bang singularity in the auxiliary metric when b = 0.

13.2.2 The big bang singularity in the auxiliary metric with κ > 0

If κ is positive, the big bang singularity in the physical metric is again avoided in the EiBI gravity
but in a different manner. In this case, according to (13.1), the energy density of the perfect
fluid ρ is bounded from above by

λ− κwρ ≥ 0 , =⇒ κρ ≤ λ

w
. (13.7)

Therefore, the physical scale factor has a minimum value am2 satisfying ρ (am2) = λ/ (wκ). The
Hubble rate defined by the physical metric can be approximated as [358]

H2 ≈ 8N2 (a− am2)
2

3κa2m2

, (13.8)
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when a→ am2. By assuming a constant lapse functionN, the expression (13.8) can be integrated
to get a−am2 ∝ et. It can be seen that the scale factor a takes its minimum value when t→ −∞.
The big bang singularity in the physical metric is thus avoided.

Regarding the asymptotic behavior of the auxiliary metric when a → am2, we use (13.4) and
consider the limit where ρ→ λ/ (wκ) to get

b ≈ am2 (1 + w)
1/4

(wλ)
1/4

(λ− κwρ)
1/4 → 0 , X ≈ (1 + w) a3m2

wb3
→ ∞ . (13.9)

Therefore, the auxiliary scale factor b vanishes and it can be shown that the auxiliary curvature
diverges when b → 0. Also, by suitably choosing the lapse functions, it can be proven that this
divergence happens at a finite time t. Therefore, there is a big bang singularity in the auxiliary
metric.

13.2.3 The instability of linear perturbations

In the EiBI gravity, the big bang singularity in the physical metric can be avoided in the sense
that the matter field is minimally coupled with the physical metric, hence the physical observers
can only see the geometry of that metric, which is free of the big bang singularity. However,
non‐singular behaviors of the physical metric in the EiBI gravity are still problematic because of
the tensor instabilities. Actually, it has been proven in [138] that these tensor instabilities are
highly related to the singular behaviors of the auxiliary metric. In other words, the propagation
of gravitational waves would be affected by the geometry of the auxiliary metric. The tensor
instabilities in the EiBI gravity were firstly found in [134]. In addition, the instabilities of scalar
mode and vector mode perturbations have been discovered in [135]. In this subsection, we
will briefly review the tensor instabilities of the non‐singular solutions in the EiBI gravity and it
will become clear that these instabilities are indeed related to the singularity in the auxiliary
metric.

Considering the tensor perturbations of the metrics such that the perturbed metrics are δgij =
a2hij and δqij = b2γij, it has been proven in [389] that in the absence of any anisotropic stress,
the transverse‐traceless tensor perturbations of the two metrics are equivalent, that is, hij =

γij. The evolution of the tensor perturbation is described by the following equation [134, 135,
137, 138]:

ḧij +

(
3ḃ

b
− Ṁ

M

)
ḣij −

M2

b2
∇2hij

= ḧij +

(
3H − 3Ẏ

Y
− Ṅ

N
+
Ẋ

X

)
ḣij −

N2Y 2

X2a2
∇2hij = 0 .

(13.10)

It can be seen that the propagation of the tensor mode is able to see the geometry of the auxiliary
metric. When κ < 0, by using (13.3) and (13.5), it can be proven that the coefficient of the
friction term in (13.10), that is, the 3ḃ/b− Ṁ/M term, is proportional to 1/b2 when b→ 0. The
coefficient of the last term, i.e., M2/b2, is proportional to 1/b4 in the same limit. Therefore,
these two terms diverge and the tensor perturbation is severely unstable at the physical bounce.
On the other hand, for a positive κ, the coefficients of both the friction term and the last term
are proportional to b4 when b → 0. In this regard, the tensor mode behaves linearly in time.
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Therefore, when approaching the loitering stage at t → −∞, the tensor mode grows linearly
backward in time and it diverges in the asymptotic past.

As can be seen above and according to the results in [138], the instabilities of the tensor per‐
turbations in the EiBI gravity indeed result from the divergence of the auxiliary metric. Even
though the physical observers can only see the non‐singular metric, the linear instabilities still
jeopardise the validity of the theory. This motivates us to study whether the hidden singularity
in the auxiliary metric can be resolved by including some sorts of quantum effects and we will
address this issue in the following sections.

13.3 The WDW equation: perfect fluid

As mentioned in the previous section, the instability of linear perturbations in the EiBI gravity is
highly associated with the divergences appearing in the auxiliary metric. Therefore, as long as
such a singularity can be ameliorated by quantum effects, the instability problems can be natu‐
rally resolved. To address this issue, we shall consider a quantum geometrodynamical approach
in which the WDW equation plays a central role. To derive the WDW equation, one is supposed to
start with the correct classical Hamiltonian HT , which gives the classical equations of motion,
and then promote the Hamiltonian to a quantum operator: HT → ĤT . In this regard, it can be
proven that the Hamiltonian stands for a first class constraint, indicating that it corresponds to
a restriction on the Hilbert space, more precisely, ĤT |ψ⟩ = 0.

As we have done in the previous chapter, we use the action (7.15) which corresponds to the
original EiBI action (7.11) transformed into its Einstein frame via a Legendre transformation [126,
381]. Therefore, for a system where the matter sector is described by means of a perfect fluid,
the Lagrangian is given by (7.17) while the Hamiltonian, which represents a primary constraint
of the system, it is given by (11.10). We remind that as in the previous chapter, there are six
constraints, pM , pX, pY , CM , CX and CY (cf. (7.18)‐(7.22) ), where only pM is first class
constraint while the others are second class.

In [246], a thorough constraint analysis of this system has been carried out. Similarly, we have
prceded in the same way in chapter 11. In the previous chapter 12, an improved investigation
has been done in which the matter sector is assumed to be a scalar field rather than a perfect
fluid. As expected, the Hamiltonian itself is a first class constraint and at the quantum level,
it would be treated as a restriction on the Hilbert space, giving rise to the WDW equation. In
addition, the equations of motion (13.1), which relate algebraically the metrics and the energy‐
momentum tensor, are exactly the secondary constraints of the system and they are second
class constraints. In the presence of second class constraints, one has to resort to the Dirac
brackets to promote the phase space functions to quantum operators [312]. By doing so, the
second class constraints can be directly regarded as zero operators and the WDW equation can
be significantly simplified.

In contrast as we did in chapter 11, we choose a basis ⟨b| rather than ⟨XY b| to write down the
WDW equation ⟨b|ĤT |ψ⟩ = 0 as follows

−1

24λ
⟨b| p̂

2
b

b
|ψ⟩+ V (b)⟨b|ψ⟩ = 0 , (13.11)
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where the potential is the same given in (11.14). Note that the variables X and Y can be
expressed as functions of b by imposing the second class constraints given by (13.1) in this
model (see also (3.9) and (3.10) in [246]). Therefore, the potential V (b) can be expressed as
follows

V (b) =
2λ2b3

κ
+
λ

κ
b3X2(b)− 3λ

κ
b3Y 2(b) . (13.12)

13.3.1 The WDW equation for κ < 0

In the perfect fluid description, the differential equation (13.11) and the potential (13.12) stands
for a general expression of the WDW equation of the EiBI gravity. The explicit expression ofX(b)

and Y (b) are given by the constraints (13.1) and they depend on the cosmological solutions under
consideration. In this subsection, we focus on the approximated cosmological solutions of the
bouncing scenario for a negative κ, which has been discussed in subsection 13.2.1. In this case,
we insert the approximated behaviors (13.5) to the potential V (b) and the potential can be
approximated as

V (b) = −2λ2b3

|κ|
− λb5

|κ|a2m1 (1 + w)
2 +

3λa2m1b

|κ|
, (13.13)

when b→ 0. It can be also seen that when b→ 0, the last term on the right hand side dominates.
We choose the following factor ordering

p̂2b
b

= −ℏ2
(

1√
b

∂

∂b

)(
1√
b

∂

∂b

)
(13.14)

and introduce a new variable

y = (c1b)
3/2

, where c41 =
a2m1λ

2

|κ|ℏ2
. (13.15)

The WDW equation when b→ 0 (y → 0) can be written as(
d2

dy2
+ 32y

2
3

)
ψ(y) = 0 . (13.16)

Note that only the last term on the right hand side of (13.13) is considered because it dominates
the potential when b→ 0.

13.3.2 The WDW equation for κ > 0

In this subsection, we shall derive the approximatedWDW equation when b→ 0 in the EiBI gravity
with a positive κ. In this case, we insert the asymptotic equations (13.9) into the potential
(13.12), and the potential can be approximated as

V (b) =
2λ2b3

κ
+
λ (1 + w)

2
a6m2

κw2b3
− 3λa2m2b

κ
. (13.17)

It can be seen that when b→ 0, the second term on the right hand side dominates. To proceed,
we choose the same factor ordering as given in (13.14), and introduce a new variable

z = b3/2 . (13.18)
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The WDW equation when b→ 0 (z → 0) can be written as(
d2

dz2
+
c2
z2

)
ψ(z) = 0 , (13.19)

where c2 is a positive constant and it is defined as

c2 =
32λ2 (1 + w)

2
a6m2

3κℏ2w2
. (13.20)

Note that only the second term on the right hand side of (13.17) is considered since it dominates
the potential when b→ 0.

13.4 The WDW equation: scalar field

In the previous section, we have derived the WDW equations near the singularity of the auxiliary
metric by using a perfect fluid description. The quantum system has only one degree of freedom
in the sense that the WDW equation turns out to be an ordinary differential equation of a single
variable, the scale factor b. However, the assumption of the perfect fluid description is just
for convenience and may not be complete to describe the quantum evolution of the Universe
in a satisfactory manner. For the sake of completeness, in this section we will introduce an
additional degree of freedom, the scalar field ϕminimally coupled to the EiBI gravity, to describe
the matter sector of the gravitational system. In the classical regime, it is well‐known that the
properties of a perfect fluid, including its EoS and evolution, can be described by a scalar field
when a corresponding potential V (ϕ) is chosen. In the quantum regime, on the other hand,
the two degrees of freedom from the geometrical sector and from the matter sector do not
necessarily relate to each other as in the classical regime. In this regard, the WDW equation
becomes a partial differential equation of two variables b and ϕ. To have a more complete
picture of the quantum behavior of the Universe near the singularity, we will solve the wave
function and investigate how the wave function evolves in the two dimensional (b, ϕ) space.
We shall mention that in [189], the quantum avoidance of the big rip singularity in the EiBI
gravity has been studied by solving the WDW equation with two degrees of freedom, one from
the geometrical sector and the other is the phantom scalar field from the matter sector.

Considering a homogeneous and isotropic metric and assuming a scalar field minimally coupled
to the gravity sector, the reduced Lagrangian is given in (7.25) while the corresponding Hamil‐
tonian, obtained by making use of the conjugate momenta defined in (7.26) and (7.26), it is
given in (7.29).

The complete constraint analysis of this system has been carried out in chapter 7. It turns out
that the Hamiltonian is again a first class constraint as expected and it becomes a restriction in
the Hilbert space at the quantum level. pM is another first class constraint and it corresponds to
a gauge degree of freedomwhich can be fixed by assuming the lapse functionM to be a constant.
It should be stressed that in the EiBI theory, there are two additional second class constraints
which correspond to two algebraic relations in the theory. In the perfect fluid description, these
second class constraints are given by (13.1). In the scalar field description, on the other hand,
these constraints are also given by (13.1) but one has to substitute the energy density and the
pressure by their scalar field counterparts, ρϕ and pϕ, respectively. The explicit expressions of
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these second class constraints are given in (7.29) and (7.30). Essentially, once we introduce the
Dirac brackets to promote the phase space functions to quantum operators, the second class
constraints can be regarded as zero operators [312]. As a result, the total Hamiltonian can be
significantly simplified [189]

HT =M

(
− p2b
24λb

+
X

Y 3

p2ϕ
4b3

+
2λb3

κ

(
λ− Y 2

))
+ λXpX + λY pY . (13.21)

Note that at the quantum level, the last two terms can be omitted since pX and pY are also
second class constraints. We shall emphasise that (13.21) is still not the final expression of the
WDW equation that we are going to study. The final expression of the WDW equation is expected
to be a partial differential equation of b and ϕ. After inserting pX ∼ 0 and pY ∼ 0, there remain
two variables X and Y in (13.21). Technically, we have to use again the second class constraints
to relate these two variables to the phase space variables b, pb, ϕ, and pϕ. It can be expected
that these relations would depend on the cosmological models under consideration and also on
the scalar field potential that we choose in the model. Different choices of the cosmological
solutions and potentials certainly change the expressions of the second class constraints, hence
change the quantisation of the system and also the expression of the WDW equation. In the
following two subsections, we will first consider the cosmological solution near the singularity
of the auxiliary metric for a negative κ and rewrite the WDW equation as a partial differential
equation from which the wave function can be solved. A similar study for a positive κ will be
presented in the subsection 13.4.2.

13.4.1 The WDW equation for κ < 0

The energy density, ρϕ, and its pressure, pϕ, can be described by a scalar field ϕ and its potential
V (ϕ) as given in (12.2) and (12.3). Note that we have used a lower index ϕ to highlight that
the energy density and the pressure are described through the dynamics of a scalar field. For
the EiBI gravity with a negative κ, the physical Hubble rate near the bounce a → am1 (b → 0)

is approximated as in (13.3). On the other hand, the conservation of the energy‐momentum
tensor implies that the energy density and the pressure, if expressed as a function of the scale
factor a, read ρϕ ≈ ρ0a

−3(1+w) and pϕ ≈ wρ0a
−3(1+w), respectively, where ρ0 is an integration

constant and w stands for the EoS defined by w ≡ pϕ/ρϕ. Using the approximated Hubble rate
(13.3) and (12.2)‐(12.3), we obtain the asymptotic expression of the scalar field as a function
of the scale factor a near the bounce:

ϕ (δa) = ϕ0 + 2A
√
δa , (13.22)

where δa ≡ a− am1 and

A ≡

√
3|κ|ρ0 (1 + w) a

−3(1+w)−1
m1

8
=

√
3λ (1 + w)

8am1
. (13.23)

On the above equations, ϕ0 is an integration constant and it is the value of the scalar field when
δa = 0. Furthermore, using again (12.2) and (12.3), the scalar field potential can be expressed
with the EoS parameter w and it approaches a constant

V (ϕ) ≈ λ

2|κ|
(1− w) , (13.24)
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when δa→ 0.

Now, we shall rewrite the WDW equation (13.21) in such a way that it only contains the phase
space variables b, ϕ, and their conjugate momenta. According to (13.5), we get the following
approximated equations:

X

Y 3
≈ b4

(1 + w) a4m1

, Y 2 ≈ a2m1

b2
, (13.25)

when b→ 0. Using (13.25), the Hamiltonian can be written as

HT =M

[
− p2b
24λb

+
b

4 (1 + w) a4m1

p2ϕ − 2λb3

|κ|

(
λ− a2m1

b2

)]
+ λXpX + λY pY . (13.26)

We would like to stress again that if we use the Dirac brackets to promote the phase space
functions to quantum operators, the second class constraints can be treated as zero operators.
That is why we can use (13.25) to simplify the WDW equation. Actually, the second class con‐
straints that correspond to the above substitutions are secondary constraints, which are also
the equations of motion of the theory, i.e., (13.4). More strictly speaking, one should first use
the Dirac brackets to promote the phase space functions to quantum operators, obtaining the
Hamiltonian operator ĤT . Then one regards the second class constraints as zero quantum oper‐
ators and make the substitutions mentioned above. In the aforementioned procedures, it looks
like we are doing it the other way around, that is, making substitutions at the classical level
then promoting the phase space functions to operators. In either case, the final expression of
the WDW equation is the same. Therefore, we will use the Hamiltonian (13.26) to construct the
WDW equation.

After promoting the phase space functions to quantum operators and simplifying the Hamiltonian
operator with the second class constraints, we construct the WDW equation as follows

⟨bϕ| ĤT

b
|ψ⟩ = 0 , (13.27)

and choose the following factor ordering(
p̂b
b

)2

= −ℏ2
(
1

b

∂

∂b

)(
1

b

∂

∂b

)
= −ℏ2

(
∂

∂x

)(
∂

∂x

)
,

p̂2ϕ = −ℏ2
(
∂

∂ϕ

)(
∂

∂ϕ

)
. (13.28)

Note that we have defined a new variable

x =
b2

2
, (13.29)

to label the scale factor of the auxiliary metric. Finally, the WDW equation becomes[
ℏ2

24λ
∂2x − ℏ2

4 (1 + w) a4m1

∂2ϕ − 4λx

|κ|

(
λ− a2m1

2x

)]
ψ(x, ϕ) = 0 . (13.30)

Near the singularity (x → 0) of the auxiliary metric, the WDW equation (13.30) can be further
approximated as [

ℏ2

24λ
∂2x − ℏ2

4 (1 + w) a4m1

∂2ϕ +
2λ

|κ|
a2m1

]
ψ(x, ϕ) = 0 . (13.31)
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In the next section, we will solve this equation (13.31) to get the asymptotic behavior of the
wave function ψ(x, ϕ) near the singularity (x→ 0, ϕ→ ϕ0) with a negative κ.

13.4.2 The WDW equation for κ > 0

As shown explicitly in section 13.2, the EiBI theory of gravity with a positive κ resolves the
big bang singularity quite differently as compared with the situation for a negative κ. When
κ > 0, the asymptotic behavior of the physical Hubble function is given by (13.8) when the
physical scale factor approaches its minimum value a→ am2 (b→ 0). Note that this happens at
t→ −∞ for a constant lapse function N. If the density and pressure of the fluid are related via
a constant EoS parameter effectively, that is, pϕ = wρϕ, their relations with the physical scale
factor can be obtained from the conservation equation: ρϕ ≈ ρ0a

−3(1+w) and pϕ ≈ wρ0a
−3(1+w).

Combining (13.8), (12.2) and (12.3), we obtain the asymptotic expression of the scalar field as
a function of δa ≡ a− am2 as follows

ϕ(δa) =
√
B ln δa , (13.32)

where

B ≡ 3κρ0 (1 + w) a
−3(1+w)
m2

8
=

3λ (1 + w)

8w
. (13.33)

It can be seen that ϕ → −∞ when δa and b vanish. The scalar field potential approaches a
constant when a→ am2 and its value depends on the EoS parameter w:

V (ϕ) ≈ λ

2κw
(1− w) . (13.34)

Similar to what we have done in the previous subsection, we have to express X/Y 3 and Y 2 in
(13.21) in terms of b, ϕ, and their conjugate momenta. To do this, we use (13.9) to get

X

Y 3
≈ 1 + w

w
, Y 2 ≈ a2m2

b2
. (13.35)

Substituting (13.35) into the Hamiltonian, we obtain

HT =M

[
− p2b
24λb

+

(
1 + w

4w

)
p2ϕ
b3

+
2λb3

κ

(
λ− a2m2

b2

)]
+ λXpX + λY pY . (13.36)

To proceed, we use the following factor ordering:

⟨bϕ|b3ĤT |ψ⟩ = 0 , (13.37)

and

b2p̂2b = −ℏ2
(
b ∂
∂b

) (
b ∂
∂b

)
= −ℏ2

(
∂
∂z

) (
∂
∂z

)
, (13.38)

p̂2ϕ = −ℏ2
(

∂
∂ϕ

)(
∂
∂ϕ

)
. (13.39)

Note that we have defined a new variable

z = ln b , (13.40)
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and it can be seen that z → −∞ when b→ 0. Finally, the WDW equation can be expressed as[
ℏ2

24λ
∂2z − (1 + w) ℏ2

4w
∂2ϕ − 2λa2m2e

4z

κ

]
ψ(z, ϕ) = 0 . (13.41)

13.5 The wave functions in the perfect fluid description

In the previous sections, we have obtained the asymptotic expressions of the WDW equation
near the singularity (b→ 0) of the auxiliary metric or equivalently the physical connection. For
a negative κ, we have derived the WDW equations (13.16) and (13.31), by assuming that the
matter field is governed by a perfect fluid and a scalar field, respectively. On the other hand,
for a positive κ, the corresponding WDW equations with a perfect fluid and a scalar field have
been obtained in (13.19) and (13.41), respectively. We will solve the wave functions for all these
WDW equations and see whether the wave functions satisfy the DW boundary condition, i.e.,
the wave functions vanish, near the configuration of the singularity of the auxiliary metric. Let
us first consider the cases in which the matter field is described by a perfect fluid and solve the
WDW equations (13.16) and (13.19).

13.5.1 The κ < 0 case

When the matter content is governed by a perfect fluid, the WDW equation for a negative κ that
we will take into account is given by (13.16). The general solution can be written as a linear
combination of two independent solutions as follows

ψ (y) = y
1
2

[
C1J 3

8

(
3
√
2y

4
3

)
+ C2Y 3

8

(
3
√
2y

4
3

)]
, (13.42)

where C1 and C2 are constants. The functions Jν [f (y)] and Yν [f (y)] are Bessel functions of first
kind and second kind, respectively, with order ν = 3/8 and argument f (y) = 3

√
2y

4
3 . Near the

singularity, i.e., y → 0, the two independent solutions can be approximated as follows [307]:

y
1
2 J 3

8

(
3
√
2y

4
3

)
≈ 33/8

23/16Γ
(
11
8

)y , y
1
2Y 3

8

(
3
√
2y

4
3

)
≈ −

23/16Γ
(
3
8

)
33/8π

. (13.43)

It can be seen that when y → 0, the solution
√
y J3/8 [f (y)] vanishes, while the other solution

√
y Y3/8 [f (y)] approaches a non‐zero constant. Therefore, the wave function (13.42) satisfies

the DW condition near the singularity as long as one assumes C2 = 0.

13.5.2 The κ > 0 case

On the other hand, the WDW equation for a positive κ within the perfect fluid description is
given by (13.19). Depending on the value of the parameter c2, which is positive (see (13.20)),
the general solution can be categorised as follows

ψ (z) = z
1
2

(
D̃1z

1
2

√
1−4c2 + D̃2z

− 1
2

√
1−4c2

)
, if 0 < c2 <

1
4 , (13.44)

ψ (z) = z
1
2

(
D̄1 + D̄2 ln z

)
, if c2 = 1

4 , (13.45)

ψ (z) = z
1
2

(
D1z

i
2

√
|1−4c2| +D2z

− i
2

√
|1−4c2|

)
, if c2 >

1
4 , (13.46)
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where D1, D2, D̃1, D̃2, D̄1, and D̄2 are integration constants. Next, we will consider different
values of c2 and investigate whether the wave function is able to satisfy the DW boundary
condition near the singularity where z → 0.

• If 0 < c2 < 1/4, the general solution of the wave function is given by (13.44). It can be
shown that for each independent solution, the variable z has a positive power. Therefore,
the general solution vanishes when z → 0, satisfying the DW condition at the singularity.

• If c2 = 1/4, the general solution is given by (13.45) and the DW condition at z → 0 is
unambiguously satisfied due to the factor

√
z.

• If c2 > 1/4, the general solution is given by (13.46) and the power of z is complex. In con‐
sequence, the wave function acquires an oscillating behavior described by the imaginary
part of the power of z. However, the modulus of the wave function behaves as |ψ| ≈

√
z.

Therefore, when z → 0, the modulus of the wave function vanishes and the DW condition
is fulfilled.

Consequently, in a perfect fluid description and when κ > 0, the wave function always satisfies
the DW condition at the singularity of the auxiliary metric.

13.6 The wave functions in the scalar field description

For the scalar field description, the asymptotic expressions of the WDW equations near the
singularity are given by (13.31) and (13.41), corresponding to a negative and a positive value
of κ, respectively. The WDW equations are partial differential equations with two independent
variables. We will prove that even in these general cases in which one more degree of freedom
is included into the system, the DW boundary condition can still be satisfied near the singularity
of the auxiliary metric.

13.6.1 The κ < 0 case

The WDW equation in the scalar field description with a negative κ is given by the partial dif‐
ferential (13.31). The general solution to (13.31) can be obtained by using the separation of
variables such that the total wave function can be decomposed as a series of products of two
single variable functions

ψ (x, ϕ) =
∑
k

Ck (x)φk (ϕ) , (13.47)

where Ck (x) and φk (ϕ) are the solutions to the following two ordinary differential equations(
ℏ2

24λ
∂2x +

2λ

|κ|
a2m1 − k

)
Ck (x) = 0 ,

[
− ℏ2

4 (1 + w) a4m1

∂2ϕ + k

]
φk (ϕ) = 0 , (13.48)

and k corresponds to the decoupling constant. The above ordinary differential equations (13.48)
can be solved to get the solution of the gravitational part Ck (x)

Ck (x) =

{
E1,k exp

[√
24λ

ℏ2

(
k − 2λ

|κ|
a2m1

)
x

]
+ E2,k exp

[
−

√
24λ

ℏ2

(
k − 2λ

|κ|
a2m1

)
x

]}
, (13.49)
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and the solution of the matter part φk (ϕ)

φk (ϕ) =

{
F1,k exp

[
2a2m1

√
(1 + w) k

ℏ
ϕ

]
+ F2,k exp

[
−
2a2m1

√
(1 + w) k

ℏ
ϕ

]}
. (13.50)

It should be stressed that near the singularity of the auxiliary metric, the scalar field approaches
a constant and the auxiliary scale factor vanishes, i.e., ϕ→ ϕ0 and x→ 0. Therefore, the matter
part of the wave function φk (ϕ) is well‐defined and the gravitational part tends to a constant
value E1,k+E2,k. Since the total wave function is constructed by the product of Ck and φk, the
DW boundary condition can be satisfied as long as one requires E1,k = −E2,k.

13.6.2 The κ > 0 case

For a positive value of κ, the asymptotic expression of the WDW equation in the scalar field
description near the singularity of the auxiliary metric is given by (13.41). Again, the partial
differential equation can be solved by using the separation of variables. The total wave function
can be decomposed as a series of products of the solutions corresponding to the gravitational
part and matter part:

ψ (z, ϕ) =
∑
m

Qm (z) ξm (ϕ) , (13.51)

where Qm (z) and ξm (ϕ) are, respectively, the gravitational and matter part of the wave func‐
tion. In this regard, the WDW equation (13.41) can be decoupled into two ordinary differential
equations as follows(

ℏ2

24λ
∂2z − 2λa2m2e

4z

κ
−m

)
Qm (x) = 0 ,

[
− (1 + w) ℏ2

4w
∂2ϕ +m

]
ξm (ϕ) = 0 , (13.52)

where m is the value of the decoupling constant. The general solution to the gravitational part
can be written in terms of the modified Bessel functions Iµ [g (z)] and Kµ [g (z)] as follows [307]:

Qm (z) = G1,mIµ [g (z)] +G2,mKµ [g (z)] , (13.53)

where G1,m and G2,m are integration constants. The order µ and the argument g (z) of the
modified Bessel functions can be explicitly expressed as

µ =
√
6λm
ℏ , (13.54)

g (z) =

√
12λ2a2

m2

ℏ2κ e2z . (13.55)

On the other hand, the solution of the matter part can be solved as follows

ξm (ϕ) =

{
H1,m exp

[
2

ℏ

√
wm

(1 + w)
ϕ

]
+H2,m exp

[
−2

ℏ

√
wm

(1 + w)
ϕ

]}
, (13.56)

where H1,m and H2,m are integration constants. Note that the scalar field ϕ → −∞ near the
singularity of the auxiliary metric.

To further proceed, we assume that the decoupling constantm is a real number. This assumption
is fully physical asm has dimension of energy. Under this assumption, the order µ acquires either
a non‐negative real value when m ≥ 0, or a purely imaginary value when m < 0. Depending on
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the value of m, the asymptotic expressions of the modified Bessel functions at small arguments
(z → −∞ and g(z) → 0) are given as follows [307]

Iµ [g (z)] ≈
1

Γ (µ+ 1)

[
g (z)

2

]µ
when µ ̸= −1,−2,−3, ... , (13.57)

Kµ [g (z)] ≈
Γ (µ)

2

[
g (z)

2

]−µ

when µ is real and positive , (13.58)

Kµ [g (z)] ≈ − ln [g (z)] when µ = 0 , (13.59)

Kµ [g (z)] ≈ −
[

π

ν sinh (πν)

] 1
2

sin

[
ν ln

(
g(z)

2

)]
when µ = iν is purely imaginary , (13.60)

where Γ (α) stands for the Gamma function. In the following, we will investigate the behaviors
of the total wave function for different values of the decoupling constant m.

• If m < 0, the matter part of the wave function (13.56) turns out to be a plane wave
solution whose oscillating amplitude is constant. As for the gravitational part, the order
µ becomes imaginary, and therefore according to (13.57) and (13.60), the modified Bessel
functions Iµ [g (z)] and Kµ [g (z)] are both rapidly oscillating functions with a non‐zero
constant modulus. In consequence, for m < 0 the total wave function does not vanish at
the singularity and the DW condition cannot be satisfied.

• If m = 0, the solution to the matter part is given by

ξ0 (ϕ) = H̃1,0 + H̃2,0ϕ , (13.61)

where H̃1,0 and H̃2,0 are integration constants. On the other hand, the asymptotic expres‐
sions of the modified Bessel functions with a zero order are given by (13.57) and (13.59).
Obviously, as z → −∞ and ϕ→ −∞, we get I0 (0) → 1, K0 (0) → ∞, and ξ0 (−∞) → ±∞.
Therefore, the DW condition cannot be satisfied.

• If m > 0, the matter part of the wave function turns out to be exponential functions. If
we assume H2,m = 0, the growing part of the solution when ϕ → −∞ is removed. On
the other hand, the order µ of the modified Bessel functions in the gravitational part is
a positive and real number. In this case, it can be seen from (13.57) and (13.58) that
the modified Bessel function Iµ [g (z)] vanishes when g(z) → 0, while Kµ [g (z)] diverges.
Consequently, one has to further choose G2,m = 0 in order to ensure the DW condition
near the singularity of the auxiliary metric.

In summary, we have found that if m ≤ 0, it is impossible to obtain a wave function satisfying
the DW boundary condition at the singularity of the auxiliary metric. In fact, one is supposed
to impose an additional condition on the decoupling constant, i.e., m > 0, such that the DW
condition is able to be satisfied.

13.7 Conclusions

In the context of the EiBI gravity, it has been shown that the propagation of gravitational waves
would be affected by the geometry of the auxiliary metric, which is compatible with the affine
connection of the theory. Therefore, even though the big bang singularity can be resolved, the
singularity is present in the auxiliary metric and it has an important consequence on the behavior
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of the linear perturbations. The linear perturbations, including the tensor modes, turn out to
be unstable in the non‐singular solutions within the EiBI theory. In this chapter, we consider the
quantum geometrodynamical approach in the context of the EiBI gravity. Note that the Born‐
Infeld type of theories seem to have intrinsic Noether symmetries as shown recently in [386].
This also supports the choice of the EiBI action in this chapter. Our motivation is to see whether
or not the singularity in the auxiliary metric can be ameliorated by quantum effects. It turns
out the answer is yes and therefore, the linear instabilities of the physical metric, which are
associated with the singular behavior of the auxiliary metric, would be resolved by the same
token.

For the sake of completeness, we have considered two descriptions regarding the matter sector
of the theory. In the perfect fluid description, the matter field is governed by a perfect fluid
with a positive and constant EoS parameter. In the homogeneous and isotropic Universe, the
system is characterised by a single variable b, the scale factor of the auxiliary metric. In the
second description, that is, the scalar field description, we introduce a scalar field degree of
freedom to incorporate the matter sector which, in the classical level, describes the evolution
of the corresponding perfect fluid in the perfect fluid description. In this setup, the system
contains two canonical degrees of freedom, the scale factor b and the scalar field ϕ, spanning
a two dimensional configuration space.

In the framework of quantum geometrodynamical approach, the building block is the WDW equa‐
tion describing the quantum evolution of the Universe as a whole. Essentially, we start with
the alternative EiBI action in the Einstein frame and derive the classical Hamiltonian for both
descriptions mentioned above. The Hamiltonian constraint, which is a first class constraint, is
regarded as a restriction on the Hilbert space and the WDW equation is derived by promoting
all phase space functions to quantum operators. The commutation relations are constructed by
using the Dirac brackets which are necessary for a system containing second class constraints.
We have derived the asymptotic expressions of the WDW equations for the two matter descrip‐
tions, and for positive and negative values of the Born‐Infeld parameter κ. For a negative value
of κ, the physical metric bounces in the past at the classical level. The asymptotic expressions
of the WDW equations near the bounce are given by (13.16) and (13.31), for the perfect fluid
and the scalar field descriptions, respectively. For a positive value of κ, the physical metric
acquires its minimum scale factor in the asymptotic past (the loitering effect). The approxi‐
mated WDW equations are given by (13.19) and (13.41), for the perfect fluid and the scalar field
descriptions, respectively.

After deriving the WDW equations, we have studied the quantum behavior of the Universe by
solving the wave function as a solution to the WDW equations. We have found that for each WDW
equation under consideration, wave functions which satisfy the DW boundary conditions at the
singularity of the auxiliary metric can always be obtained. Therefore, the hidden singularity in
the auxiliary metric is expected to be avoided at the quantum level and the linear instabilities
are not harmful in the quantum world.
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Conclusions and outlook

Don’t let it end like this. Tell them I said something
– Pancho Villa

Conclusions

Dark energy (DE), together with dark matter(DM), represent the most intriguing open problems
in the current stage of modern cosmology. Surprisingly, both components represent the major
part of the Universe’s energy budget, being DE dominant at present. While the existence of DM
was postulated in the first half of the XX century, the discovery of DE is relatively recent. That is
why, over the last two decades the problem about the nature of DE has gained much attention.
The unexpected discovery of the speed up of the Universe has brought the flourishing of new
research fields, as it is the case of future cosmological singularities. The future of the Universe
is still an enigma, the smallest deviation from the standard cosmological model ΛCDM could
induce a range of different cosmic doomsdays.

In this thesis, we have studied in deep three genuine phantom models, coined as model A, model
B and model C. The backgrounds described by these paradigms stand as interesting alternatives
to the widely known ΛCDM model. Model A includes a deviation from ΛCDM in the fact that the
EoS parameter stays constant but below −1. Model B also differs from ΛCDM by adding a term
proportional to the root square of the energy density to the EoS parameter, while in model C
the proposed modification consists simply in adding a constant. Therefore, the ΛCDM model is
recovered in model A by taking the limit w → −1 in (2.10), while in models B and C we retrieve
ΛCDM by taking the limits B → 0 in (2.13) and C → 0 in (2.16), respectively. We recall that,
despite inducing small differences in the background at present, each of these models induce a
particular future abrupt event. Among the three possible final fates under study in the present
thesis, the BR (induced in model A) is the the strongest event. In addition, the divergence of the
cosmological functions, as for instance, the energy density or the Hubble rate, occur at a finite
cosmic time, this is why we regard BR as a true singularity. On the other hand, we regard the LR
and LS as abrupt events (induced by the models B and C, respectively), since the divergence of
the cosmological functions occurs at infinite cosmic time. Despite the LS and LR abrupt events
are smoother than a BR, an effective cosmic doomsday would take place at a finite cosmic time,
since the total destruction of bound structures will occur inevitably sooner or later.

The study comprised in this thesis is separated into two parts: (i) the classical part, where we
describe DE by means of a perfect fluid in a classical FLRW Universe, and (ii), the quantum part,
where we deal with singularity avoidance by adopting a quantum approach.

In the classical part, we address the perturbations and forecast mainly the current matter power
spectrum and growth rate of matter perturbations for different models. These observables,
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compared with the available data, allow us to better describe the current speed up of the Uni‐
verse and, in consequence, the phenomenon known as DE. In addition, we have performed an
observational fit with its corresponding statistical analysis obtaining constraints on the param‐
eters characterising the models. These parameters describe the backgrounds of the DE models
under study, including as well the ΛCDM model which is used as a guideline, given its consistent
results. The main conclusion reached, when comparing the outputs of the genuine phantom
models considered here with the current observational data is that, despite ΛCDM still provides
good results, the models analysed also fit the data such that it is very difficult to distinguish
between them, even when computing relative differences. The main departures between this
thesis’s models and ΛCDM have been computed up to the relative differences in such a way that,
at present, the results are too small to be measured beyond present observational data statis‐
tical errors. Notwithstanding, the models addressed in the present thesis describe consistently
the current speed up of the Universe.

In summary, we have analysed in detail the deviations of three genuine phantom models looking
for the imprints characterising each paradigm. We can presume to be able to distinguish the
phenomenology of every model at the background level, however, at present time and with
the current dataset, it is hard to favour a particular model over the others at a perturbative
level. By performing a statistical analysis, we found that ΛCDM model still gives the best fit.
Among the studied models, we have found that at a background level, the model A is the one
that better fits the observations closely followed by the models B and C, respectively. However,
when performing the cosmological perturbations with the constraints obtained after fitting the
background, what we have found is that those that less differ from ΛCDM fit more conveniently
the data. Therefore, at a perturvative level, the model C is the one that better fits observations
followed by model B and finally by model A. Not by accident, the LS abrupt event (induced by
model C), is considered the less harming scenario while the BR (induced by model A), is by far,
the strongest phantom singularity. In between, the behaviour found in model B shows always
intermediate results. All these findings are in accordance with the fact that the EoS parameter,
measured by different observations, slightly favours a phantom Universe, w < −1, rather than
a non‐phantom one, w ≥ −1 [18].

In addition, we have computed the perturbations for the three models changing the c2sd param‐
eter from 0 to 1. We found that the most important effects, concerning the perturbations to
the background, occur in the DE sector. The smaller is the c2sd value, the larger is the cluster‐
ing of DE. Vanishing values of c2sd parameter predict a DE clustering located in the recent past
not yet observed, so we exclude this possibility. On the one hand, for values in the interval
0.2 < c2sd < 1, perturbations in the DE sector forecast a lower clustering reconcilable with ob‐
servations. On the other hand, we have not found important differences, comparing to previous
works, when c2sd = 1. We conclude that perturbations in the DE sector slightly affect the growth
of matter perturbations, in consequence, the different DE models studied here barely induce
detectable footprints on the growth of matter structures.

Despite the fact that, at present, the models exhibit a high similarity and no important differ‐
ences are found, every model drives a particular cosmic event in the future, and therefore, some
footprints at very large scale factors could be expected. Moreover, there is a remarkable issue
to point out: The sign switch of the gravitational potential. This effect is induced mainly by the
phantom nature of the DE content. First, the presence of DE is considered almost negligible,

156



Chapter 14. Conclusions and outlook

at the radiation dominated era, when we impose initial adiabatic conditions (2.37). As opposed
to standard DE models, the sign of the phantom DE density contrast is fixed negative while the
rest of the components contribute with a positive matter density contrast. Initially, the grav‐
itational potential keep its attractive nature, however, when DE totally overtake the Universe
energy budget, the gravitational potential switches its sign. We recall that the magnitudes we
mention relate to their Fourier transforms, and therefore, we consider that the gravitational
potential is repulsive from a particular distance onwards. We have found that this event will
happen earlier in models where the induced singularity is stronger and vice versa. In addition,
the value of the effective speed of sound parameter could strongly affect such an event. For
vanishing c2sd parameter, the sign switch occurs for all the modes at the same cosmic time.
For non‐vanishing values, the smallest modes; i.e. small k, feel the effect before the larger
ones (see figure 6.5). As expected, the repulsive effect happens progressively, firstly, at large
lengths and then, for shorter distances.

Whether this effect will be physically observable by future observers depends on the size of the
horizon when the gravitational potential switches the sign. At distances larger than the horizon,
it will be theoretically undetectable. On the contrary, if the gravitational potential switch occurs
before the horizon exit, far objects will look like under the influence of a repulsive gravitational
effect. We emphasise that these conclusions depend on the conditions assumed in the present
work. Those conditions involve some approximations at the radiation dominated epoch and the
adiabatic conditions that ultimately fix the signs of the different perturbations components.

We could visualise this effect as another horizon, which would be defined at the distance where
the gravitational potential becomes positive. This horizon moves from infinitely large lengths to
shorter distances. If we compare the growth of this horizon with the comoving Hubble horizon,
what we find is that the distance between both horizons is asymptotically constant (see figure
6.6). On the one hand, for a vanishing parameter c2sd, the repulsive effect would be observable
since it would be manifested at shorter distances than the comoving Hubble horizon. On the
other hand, for large enough values of c2sd, the repulsive effect would be nonphysical since it
would manifest at distances that stand outside the comoving Hubble horizon. Therefore, we
conclude that there must be an intermediate value of c2sd where both horizons coincide and
move as a single one, we find such a particular value around c2sd ≃ 2.1× 10−3.

The observational value of parameter c2s is still uncertain and hopefully will be fixed by more
accurate data, as it is expected from the forthcoming Euclid mission, conceived to measure other
quantities as for example, a non‐vanishing DE fluid viscosity parameter [104]. The upcoming
missions will provide useful data allowing to unravel the DE sector. A range of new results for
DE models could arise upon a detailed analysis of the perturbations speed and its key role with
respect to the matter growth and DE clustering. For example, a future project could consist in
considering a multi DE fluid where the pressure of each new component should be splitted into
adiabatic and non‐adiabatic contributions. In addition, a time dependent parameter c2s could
also be an interesting idea to address, in this sense, extra conditions could be imposed and
compared with more accurate future observations.

As mentioned above, a better observational fit will allow to seriously consider or neglect differ‐
ent DE models. Consequently, we could get a clearer picture of what will be the ultimate fate
of our Universe. Furthermore, we could have a better understanding of the hypothetical rip of
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all the bound structures in the Universe. However, this would not mean that all the features of
the final doomsday would be classical. It is expected that quantum effects should determine
the last phases of the Universe if a doomsday is approached, as they did at its very early stages,
deep inside the inflationary era. Therefore, we are dealing with the most dramatic features of
a potential second quantum era of the Universe. For the sake of completeness, the second part
of the present thesis is aimed to address the issue of cosmological singularities by means of QM.

Despite the fact that we lack a consistent gravitational quantum theory to address this issue,
we can pursue some approaches that could give us some hints about the quantum avoidance of
singularities and abrupt events afflicting the classical theory of GR. In particular, in the current
thesis, we have focused on the WDW equation, which consists in quantising the metric variables
throughout space‐time diffeomorphism constraints such that after obtaining the solution to the
differential equation, i.e. the wave function of the Universe, the latter should vanish at the
singularity vicinity. This requirement is known as the DW boundary condition and, in this thesis,
it is used as the main quantum argument to avoid classical singularities.

We have obtained the WDW equation from the fundamental Hilbert‐Einstein action minimally
coupled with a matter field. Such a matter content is described, (i) by a perfect fluid, and (ii),
by a scalar field. In addition, we have applied different factor orderings. Notice that we have
followed the same methodology to quantise GR but within the EiBI context as well. That is, we
have considered another starting point: The action inspired by the Eddington’s functional en‐
dowed with a Born‐Infeld like structure. Since at classical level, the emerging auxiliary metric
could assimilate the divergences present in the physical metric, this possibility gives an inter‐
esting option to address the issue of cosmological singularities. We should bear in mind that
within an EiBI quantum context, the true dynamical variable is the auxiliary metric while the
scale factor of the physical metric plays the role of a parameter. However, the divergence in
the auxiliary metric is still present and we deal with it by means of WDW equation and checking,
once again, the fulfillment of DW boundary condition. For example, we have studied the LR and
LS abrupt events obtained in a scenario with a perfect fluid. Here, we have computed the ex‐
pected value of the auxiliary scale factor near the abrupt event for different factor orderings.
For the sake of completeness, we have also addressed a BR singularity driven by a scalar field.

In addition, we have addressed as well the Big Bang primordial singularity in the context of
EiBI theory, where the matter content is played by a perfect fluid or a scalar field. In this
situation, we have analysed the cases for a positive and a negative EiBI constant parameter, κ,
that characterises the theory. As mentioned above, within the EiBI approach the divergences in
the physical metric move to the auxiliary metric, so the EiBI theory by itself could alleviate the
classical singularities present in GR. However, those divergences could affect the tensor sector
inducing instabilities on, for example, the gravitational waves production. The goal consisted in
avoiding those divergences from the auxiliary metric by means of a suitable quantum approach.
In such a way that the vanishing of the total wave function close to the Big Bang singularity will
ensure the mitigation of tensor instabilities.

When the content is given by a scalar field, the system is extended with a second degree of free‐
dom. Therefore, we should consider a wave function spreading over a two‐dimensional variable
space defined by both the auxiliary metric and the scalar field. Often, we have made use of
the BO approximation. The BO approximation, in principle was suggested to compute the total
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wave function of molecules, where the back‐reaction of the electrons over the protons is negli‐
gible due to the large mass difference. Its cosmological analogue would consists on avoiding the
back‐reaction of the matter over the gravitational part. Consequently, the total wave function
becomes the product of two separated wave functions. The solution of the gravitational part
only depends on the metric variable, while the solution of the matter part is a two dimensional
wave function. In this sense, the DW condition is considered satisfied if the total wave function
vanishes at the vicinity of the singular event. We have shown that, in all the cases analysed in
the present thesis, the WDW equation provides a vanishing solutions near the singularity. That
is, there is a wave function that fulfills the DW boundary condition and, therefore, the criteria
for singularity avoidance is satisfied.

As already stressed, we do not have a fully consistent quantum theory of gravity. This fact
becomes evident when selecting a factor ordering since we lack a particular choice dictated by
a self‐consistent method compatible with such a gravitational quantum theory. Different factor
orderings recover the same classical picture of the Universe by taking the limit ℏ → 0. In the
current thesis, we have followed different factor orderings to check whether the same cosmic
event can be alleviated through quantum effects. In all the cases studied, the obtained wave
function contemplates, at least, a vanishing solution at large scale factors where the cosmic
doomsday takes place. The existence of a vanishing solution ensures the singularity avoidance
in a quantum realm, nevertheless, this fact should be taken with precaution and understood as
a hint of singularity avoidance rather than a prove in itself.

In this sense, an interesting question that arises is: is it possible that all the factor orderings
result in a vanishing solution of the wave function? or using the opposite inquiry, is there a
particular factor ordering where the wave function only produces non‐vanishing solutions?. If
the answer to the later one is yes, we will be facing a case where it would be impossible to
fullfill the DW boundary condition, and therefore, dealing with a situation where the quantum
avoidance via the WDW equation is not valid, or where the factor ordering selected is not the
correct one. It should be interesting to analyse those family of factor orderings and correspond‐
ing wave functions where the DW boundary condition is always fulfilled and identify those ones
where such a condition is unavoidably broken.

In order to understand which factor ordering is the true one in such a quantum theory, we should
take a look at the quantum effects, that actually have not yet been detected due to our techno‐
logical and engineering capabilities limits. Taking into account the lack of observational data in
this context, one could ask What kind of measurable observable could be induced by quantum
effects? If they exist, they could give us some hints about what kind of factor orderings are the
corrects ones, reducing the vast number of options to a few ones. An interesting alternative
could be computing quantum perturbations, where as a first approach, we would consider that
DE quantum perturbations ignore the quantum perturbations of matter. We hope to address this
issue in the near future.

Finally, the models studied in the present thesis could be understood as deviations from the
standard ΛCDM model, and therefore, good candidates to describe suitably the current speed up
of the Universe. Despite some models are slightly favoured by current observations, we have not
yet enough evidences to clearly point out to a favorite cosmological paradigm. Therefore, we
can not forecast clearly about a particular future cosmic doomsday. Every kind of event deserves
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to be studied in detail, mostly, when all scenarios are currently on the table. If the Universe
would face a future cosmic abrupt event, we could ensure that under the WDW approach, we
can always find a wave function compatible with DW boundary condition, and therefore, it
could be interpreted as singularity avoidance from the quantum point of view. Unfortunately,
we have not yet a consistent quantum theory of gravity. It constitutes nowadays the holy grail
of theoretical physics. The WDW equation, used in the present thesis, is just a useful tool to
approach results that could capture some aspects of a fundamental quantum theory of gravity.

Not by accident, the hunger for acknowledge has pushed the scientific development not only in
the observational context but in the theoretical one as well. On the one hand, future missions
are encouraged to scrutinise the dark sector being currently Euclid one of the most popular.
These efforts will be recognised by the vast amount of data likely useful to detect new hints in
the mysterious nature of DE. On the other hand, several interesting ideas have been proposed in
theoretical physics. As it is the case of modified theories of gravity inspired by the EiBI theory,
considered in this thesis. In the end, our endeavor is to uncover the correct path to a consistent
theoretical description.

Despite the Universe could look more dark than ever, we will continue shedding light, up to the
last corner. From the vast kingdom of the emptiness to the smallest (or not so small) quantum
scales. Hopefully, fast enough to reveal the hidden essence of the cosmos before the ruthless
doomsday catches us.
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Appendix A

Statefinder parameters

A.1 Statefinder parameters in wCDM

For a wCDM model with a radiation component the statefinder parameters defined in (5.2), (5.3)
, (5.4) and (5.5) read
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Due to the Friedmann constraint 1 = Ωr,0 + Ωm,0 + Ωd,0 we can eliminate one of the fractional
energy density parameters. It can be checked that for the ΛCDM model, where Ωr,0 = 0 and
w = −1 the previous expressions reduce to S(1)

n = 1 and s = 0.
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Appendix B

Cosmological perturbations

In this appendix we disclose the main methods followed to describe a classical Universe. The
mathematical content involves the analysis of the perturbations addressed in the present the‐
sis, (i) theoretical calculation of the perturbed quantities up to first order, (ii) computation
of the matter power spectrum and fσ8

, and (iii) decomposition of the pressure in its adiabatic
and non‐adabatic contributions. In addition, we obtain the scalar field potential when map‐
ping the models studied in the present thesis to a a scalar field and present the corresponding
cosmological perturbations.

B.1 Perturbed equations for a single fluid

B.1.1 The Newtonian gauge

We start by considering the FLRW spacetime metric,

ds2 = −dt2 + a2(t)dx2, (B.1)

where a(t) is the scale factor with t being the cosmic time, x is three dimensional space vector.
The curvature perturbation ζ (t, x) in the comoving gauge is defined by the perturbation of the
spatial part of the metric. We will consider just first order scalar perturbations. We will start by
convenience using the Newtonian or longitudinal gauge. Therefore, the perturbed line element
is written as [23, 92]

ds2 = a2
[
− (1 + 2Ψ) dη2 + (1 + 2Φ) δijdx

idxj
]
, (B.2)

where Ψ and Φ are scalars functions which describe the deviation from the background metric
and can depend on time and space, since we are dealing with perturbations, they are regarded
as small quantities, i.e. Ψ,Φ ≪ 1. As usual, η is the conformal time. Note that from now on,
we will refer the time derivatives as

dt = a dη , ∂t =
1

a
∂η or {}· = 1

a
{}′ . (B.3)

Therefore,

H =
1

a
H , Ḣ =

1

a2
(
H′ −H2

)
(B.4)

where H is the Hubble parameter and H is the conformal Hubble parameter. The dot stands
for derivatives respect to the cosmic time while prime stands for derivatives respect to the
conformal time. Starting from the line element, (B.2), we will write the metric tensor and its
inverse, via

gµνg
µν = I. (B.5)
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where we will apply the taylor expansion up to first order, more generally:

(1 + α)
−1 ≈ 1− α+O

(
α2
)
. (B.6)

Therefore, the metric and its inverse can be written as

gµν = a2

[
− (1 + 2Ψ) 0

0 (1 + 2Φ)

]
, gµν = a−2

[
− (1− 2Ψ) 0

0 (1− 2Φ)

]
, (B.7)

where this metric is the sum of the background metric and perturbed one. From now on, we
will use a bar over the background quantity to distinguish it from the total quantity, writing the
perturbed quantity preceded by δ.

gµν = gµν + δgµν . (B.8)

Therefore, the perturbed and background metric can be written as [23, 92]

δgµν = a2

[
−2Ψ 0

0 2Φ

]
, δgµν = a−2

[
2Ψ 0

0 −2Φ

]
, (B.9)

gµν = a2ηµν , gµν = a−2ηµν where ηνµ = ηνµ =

[
−1 0

0 1

]
. (B.10)

Once we have the perturbed metric, the first step consists in writing the Christoffel symbols.
Then, we will obtain the Ricci tensor and its scalar following by the Einstein tensor. Finally,
we will equal the energy‐momentum tensor to the Einstein tensor. Although we are interested
in perturbations, we will conserve the background expressions for all these quantities because
they will be necessary for further calculations.

B.1.2 Christoffel symbols

Now, we will proceed to calculate the Christoffel symbols, which are defined as follows

Γµ
νλ =

1

2
gµα (∂λgαν + ∂νgαλ − ∂αgµλ) , (B.11)

whose perturbation can be written as

δΓµ
νλ =

1

2
δgµα

(
∂λgαν + ∂νgαλ − ∂αgµλ

)
+

1

2
gµα (∂λδgαν + ∂νδgαλ − ∂αδgµλ) . (B.12)

We write the background quantities instead of the unperturbed quantities in order to avoid the
second order approximations which are neglected. As the perturbed metric remains diagonal,
those Christoffel symbols with three different indexes vanishes. These are the non vanishing
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terms [23]:
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where we have made use of Latin characters to refer to spatial indexes and the subscript 0 for
time indexes. The bar stands for background quantities.

B.1.3 Ricci curvature tensor and scalar

The Ricci tensor is written in terms of Christoffel symbols as follows

Rµν = ∂αΓ
α
µν − ∂νΓ

α
µα + Γα

µνΓ
β
αβ − Γα

µβΓ
β
αν , (B.14)

while the perturbed Ricci tensor is written as
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Using the latter equation and the definitions for Christoffel symbols defined in (B.13) we get
[23, 92]

δR00 = ∇2Ψ− 3Φ′′ + 3H (Ψ′ − Φ′) , R00 = −3H′.
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(B.16)

To raise the indexes we cannot contract directly with the metric tensor, we should depart from
the unperturbed definition and contract with the metric tensor to latter calculate the pertur‐
bation, so

Rµ
ν = gαµRαν , δRµ

ν = δgαµRαν + gαµδRαν . (B.17)

Therefore, the perturbed and background Ricci tensor with an index up and one down can be
written as [23, 92]
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Finally the Ricci scalar and its perturbation are defined as

R = gµνRµν , δR = δgµνRµν + gµνδRµν , (B.19)

where the result for the Ricci scalar (perturbed and background) is
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(B.20)

B.1.4 Einstein tensor

The following step consists on obtaining the perturbation for the Einstein tensor, we will start
from the general definition and then we will compute the perturbation,

Gµν = Rµν − 1

2
gµνR , δGµν = δRµν − 1

2

(
δgµνR+ gµνδR

)
. (B.21)

Combining the latter equation with the equations defined in (B.16) we get [23, 92]
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Similarly to what was done in equation (B.17) we rise the index in the following way:

Gµ
ν = gαµGαν , δGµ

ν = δgαµGαν + gαµδGαν . (B.23)

Finally, we get the following equations [23, 92]
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0 = 2a−2

[
∇2Φ+ 3H (ΨH− Φ′)

]
, G

0

0 = −3a−2H.

δGi
0 = 2a−2 [HΨ− Φ′],i , G

i

0 = 0.

δG0
i = −2a−2 [HΨ− Φ′],i , G

0

i = 0.

δGi
j = a−2

[
−Φ′′ +∇2 (Φ + Ψ) + 2H (Ψ′ − 2Φ′)

+2Ψ
(
2H′ +H2

)]
δij − a−2 [Ψ + Φ],ij , G

i

j = −2a−2
(
2H′ +H2

)
δij .

(B.24)

B.1.5 Energy‐momentum tensor

The general expression for the energy momentum tensor can be written as

Tµ
ν = (ρ+ p)uµuν + pδµν . (B.25)

Perturbing the above equation equation we get [23, 92]

δTµ
ν = (δρ+ δp)uµuν + (ρ+ p) (δuµuν + uµδuν) + δpδµν . (B.26)

We will calculate the perturbations for the four‐velocity vector, uµ, uν, to obtain the perturbed
energy momentum tensor. In the background, due to the isotropy the four velocity only contain
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a single non‐vanishing term which corresponds to the time axis,

uµ =
1

a
(1, 0) , uµ = a (−1, 0) , (B.27)

while the perturbed quantities up to first order read

δuµ =
1

a

(
−Ψ, vi

)
, δuµ = a (−Ψ, vi) . (B.28)

We can get the result for the perturbed energy momentum tensor replacing the equations (B.27)
and (B.28) into (B.26). Therefore,

δT 0
0 = −δρ , T

0

0 = −ρ.

δT i
0 = − (p+ ρ) vi , T

i

0 = 0.

δT 0
i = (p+ ρ) vi , T

0

i = 0.

δT i
j = δpδij , T

i

j = pδij .

(B.29)

In the same way, the perturbed metric fulfills the conservation equation

T
µ

ν;µ = 0 therefore, δTµ
ν;µ = 0. (B.30)

The covariant derivation of the energy momentum tensor reads

Tµ
ν;µ = ∂µT

µ
ν − Γα

νβT
β
α + Γα

βαT
β
ν , (B.31)

and its perturbation leads to [23, 92]

δTµ
ν;µ = ∂µδT

µ
ν − δΓα

νβT
β

α − Γ
α

νβδT
β
α + δΓα

βαT
β

ν + Γ
α

βαδT
β
ν . (B.32)

We will separate the above expression into time and spatial components, i.e. ν = 0 and ν = i,
[23, 92]

(δρ)
′
+ 3H (δρ+ δp) + (ρ+ p)

(
∇iv

i + 3Φ′) = 0, (B.33)

4H (ρ+ p) vi +
[
(ρ+ p) vi

]
+ δp,i + (ρ+ p)Ψ,i = 0. (B.34)

We will use the next definitions in order to simplify the latter equations:

δ =
δρ

ρ
, θ = ∇iv

i. (B.35)

Therefore, the equations (B.33) and (B.34) can be written as [23, 92]

δ′ + 3H
(
δp

δρ
− p

ρ

)
δ +

(
1 +

p

ρ

)
(θ + 3Φ′) = 0, (B.36)

4H (ρ+ p) θ + [(ρ+ p) θ]
′
+∇2 [δp+ (ρ+ p)Ψ] = 0, (B.37)

where we have applied the divergence over the equation (B.34).
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B.1.6 Equation of evolution for perturbed quantities

Einstein tensor is proportional to the energy momentum tensor. Therefore, Einstein tensor and
its perturbation satisfy

Gµ
ν = 8πGTµ

ν , δGµ
ν = 8πGδTµ

ν . (B.38)

We combine the equations (B.29) and (B.24) to get [23]

∇2Φ+ 3H (HΨ− Φ′) = −4πGa2δρ,

[HΨ− Φ′],i = −4πGa2 (ρ+ p) vi,[
−2Φ′′ +∇2 (Ψ + Φ) + 2H (Ψ′ − 2Φ′)

+2Ψ
(
2H′ +H2

)]
δij − (Ψ + Φ),ij = 8πGδpδij .

(B.39)

As we have assumed a vanishing shear stress tensor, i.e., the non‐diagonal elements of the spatial
part (those with diferent latin indexes) in the energy momentum tensor vanish, therefore, we
obtain (Ψ + Φ),ij = 0. Replacing this equivalence, Ψ = −Φ, in the set of equations (B.39) we
finally have [23]

∇2Φ− 3H (HΦ+ Φ′) = −4πGa2δρ,

−∇2 (HΦ+ Φ′) = −4πGa2 (ρ+ p) θ,

Φ′′ + 3HΦ′ +Φ
(
2H′ +H2

)
= −4πGa2δp,

(B.40)

where we have applied the divergence for the second equation using the definition given in
equation (B.35). Finally, combining the first and third expressions of the latter set of equations
(B.40), we can obtain an equation for Φ alone [23]

Φ′′ + 3H
(
1 + c2s

)
Φ′ +

[
3H2

(
c2s − w

)
− c2s∇2

]
Φ = 0, (B.41)

where we have made use of the following relations

w ≡ p

ρ
, c2s ≡ δp

δρ
, H′ = −1

2
(1 + 3w) . (B.42)

On the same way, we can use the first and second equation of (B.40) to obtain the so called
Poisson equation [23]:

∇2Φ = −4πGa2ρ [δ − 3H (1 + w) v] , (B.43)

where we have replaced the relation θ = ∇2v, where v is the velocity potential. Therefore, we
can define the total matter variable, δ∗m, as [23]

δ∗m = δ − 3H (1 + w) v. (B.44)

In a similar way to what we have done for the gravitational part, we can find an equation for δ∗m
alone by combining the equations (B.36) and (B.41) together with the relations given in equation
(B.42),

δ∗′′m +H
(
1 + 3c2s − 6w

)
δ∗′m −

[
3

2
H
(
1− 6c2s − 3w2 + 8w

)
+ c2s∇2

]
δ∗m = 0, (B.45)
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where we have employed the following extra useful relations

w′ ≡ −3H (1 + w)
(
c2s − w

)
,
ρ′

ρ
≡ −3H (1 + w) ,

ρ′′

ρ
≡ 3H2 (1 + w)

[
3

2
(1 + w) + c2s

]
. (B.46)

B.2 Perturbed equations in Fourier space

As we will proceed later on, in order to get a suitable set of equations to compare with the
observational data it is convenient to apply the Fourier transform to the set of equations (B.39)
and (B.40). Bear in mind that observational data for matter power spectrum is given in terms
of k modes, where k is the corresponding wave number of a length. By definition, the Fourier
transform of some quantity, let us say, ψk(x, η), is related with the original function, ψ(x, η), as

ψ(x, η) =
V

(2π)
3

∫
eik·rψk(x, η) d

3k, (B.47)

while the inverse transform is written as

ψk(x, η) =
1

V

∫
e−ik·rψ(x, η) d3x. (B.48)

Each perturbation variable can be written as the sum of plane waves, since the equations are
linear, each mode have the same equation with a different wave number k. Therefore, for
practical purposes, we can replace each perturbed variable by

ψ(x, η) → eik·rψk(η), ∇2ψ(x, η) → −k2eik·rψk(η), (B.49)

where those quantities with a Laplace operator are simply transformed by replacing −k2 times
the Fourier transform. We will use this transform, for example, with the velocity fields. There‐
fore the quantity θ can be written as [23, 92]

θ = ∇iv
i = ∇2v , ∇2v → −k2eik·rvk. (B.50)

On the one hand, from now on we will incorporate Fourier transform for all the equations, where
we will drop the subindex k for notation convenience. On the other hand, we will apply the
following change of variable:

N ≡ ln (a) , dN =
da

a
, {}′ = {}N H , {}′′ = {}NN H2 + {}N H′, (B.51)

where the subscript N denotes the derivative over the variable N. Using the set of relations
written in this subsection, we will rewrite the equations of perturbations for a multi fluid system.

B.3 Perturbed equations for two fluids

Once we have the evolution equations of the perturbation in the case of a single fluid model,
we will follow addressing the task for a system with more than a one fluid. On the one hand,
we will assume that the fluids are conserved separately, therefore, equations (B.33) and (B.34)
which are obtained from the conservation equation can be handled independently. On the other
hand, we should be careful with those equations involving the perturbed quantity Φ, which is
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related with the total contribution of the different fluids.

Let us define some quantities that relate the total and partial contribution for each fluid. we
will use a and b subscripts to denote two arbitrary fluids, while for the total contribution we
will use a notation without subscripts.

ρ = ρa + ρb , Ωa =
ρa
ρ
, Ωb =

ρb
ρ
,

w = Ωawa +Ωbwb,

θ =
1

1 + w
[(1 + wa)ωaθa + (1 + wb)ωbθb] ,

δ = Ωaδa +Ωbδb , δa =
δρa
ρa

, δb =
δρb
ρb
,

(B.52)

where Ωa,b describes the energy density fraction for each fluid. The w and θ quantities (without
subscripts) represent the effective EoS parameter and the divergence of velocity field, respec‐
tively. The equations of conservation for each fluid lead to the following set of equations [23]:

δ′a + 3H
(
c2sa − wa

)
δa =− (1 + wa) (θ + 3Φ′) ,

θ′a + [H (1− 3wa) + w′
a] θa =−∇2

[
c2sa

1 + wa
δa − Φ

]
,

δ′b + 3H
(
c2sb − wb

)
δb =− (1 + wb) (θ + 3Φ′) ,

θ′b + [H (1− 3wb) + w′
b] θb =−∇2

[
c2sb

1 + wb
δb − Φ

]
,

(B.53)

while the equations for the gravitational potential, Φ, related with the above equations read
[23]

∇2Φ− 3H (HΦ+ Φ′) = −4πGa2ρδ,

−∇2 (HΦ+ Φ′) = −4πGa2 (1 + w) ρθ,

Φ′′ + 3HΦ′ +Φ
(
2H′ +H2

)
= −4πGa2c2sρδ.

(B.54)

B.3.1 Perturbed equations for radiation and matter

We will start choosing the contents of radiation and matter, using the subscripts r and m, re‐
spectively. The corresponding values for independent EoS parameters, (c2sr = wr = 1/3 for
radiation and c2sm = wm = 0 for matter), will be incorporated. In addition, we will use the
following Friedmann equation that allow us to simplify the equation for the gravitational scalar
perturbation,

ρ =
3a2H2

8πG
(B.55)

Therefore, the equations for the gravitational perturbation can be rewritten as follows [23]

ΦN +Φ

(
1 +

k2

3H2

)
=

1

2
δ,

ΦN +Φ =
3

2
Hv (1 + w) ,

ΦNN +

[
3− 1

2
(1 + 3w)

]
ΦN − 3wΦ = −3

2
c2sδ.

(B.56)
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In the same way that we have done previously, combining the first and third equation in (B.56)
we can get an equation for Φ alone [23]

ΦNN +

[
3
(
1 + c2s

)
− 1

2
(1 + 3w)

]
ΦN +

[
3
(
c2s − w

)
+
c2sk

2

H2

]
Φ = 0. (B.57)

Finally, the equations for matter perturbations and velocities are [23, 92]

δm,N =

[
k2

H
vm + 3ΨN

]
, δr,N =

4

3

[
k2

H
vr + 3ΨN

]
,

vm,N = −
[
vm + 3

Ψ

H

]
, vr,N = − 1

H

[
δr
4

+ Ψ

]
,

(B.58)

where the effective EoS parameter, w, and the total contribution for velocity and matter per‐
turbations read

w =
Ωr

3
, v =

1

1 + w

(
4

3
Ωrvr +Ωmvm

)
, δ = Ωrδr +Ωmδm. (B.59)

The set of equations obtained in this section describe a fluid mixture of radiation and matter.
However, it is easy to incorporate more fluids by considering, for example, a DE fluid with a
well defined EoS. In the present thesis, we have incorporated the DE fluid by considering a third
component in the mixture with a EoS parameter that always stands below −1. Bear in mind
that for each a new fluid incorporated the set of dynamical equation (B.58) is broaden with two
more equations, giving rise to the set of equations (2.33). Therefore, there will be two more
initial conditions to be fixed.

B.3.2 Initial conditions

Once the dynamical equation system is defined, it only remains to fix the initial conditions. In
the present thesis, we have fixed the initial conditions in the early Universe deep inside the
radiation dominated era. Within this scenario, the presence of DE and matter is regardlessi and
we could apply some approximations. One of them is that all the relevant modes considered at
present are small comparing with the comoving Hubble parameter at the radiation dominated
epoch, i.e k ≪ H(N) where N → −∞. For example, neglecting the term k/H in (B.57) we
have [23]

ΦNN +

[
3
(
1 + c2s

)
− 1

2
(1 + 3w)

]
ΦN ≈ 0. (B.60)

Therefore Φ = constant is a solution. Applying this result to the equation set (B.56), we get
[23]

Φ ≈ 1

2
δ,

Φ ≈ 3

2
Hv (1 + w) .

(B.61)

This means that the total matter perturbation, δ, and the quantity Hv (1 + w), are constant at
the beginning, i.e. when N → −∞. On the other hand, during the radiation dominated epoch,
the contribution of the other fluids can be disregarded, i.e. Ωr ≈ 1. Therefore, the effective

iHowever, we will consider a very small portion of matter and DE since they are necessary at the time
to impose adiabatic condition as we will see later on.
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EoS, the total matter density contrast and velocity can be approximated as

w ≈ wr =
1

3
, v ≈ vr , δ ≈ δr. (B.62)

Finally, the imposition of adiabatic condition at the beginning leads to [23]

δm
1 + wm

=
δr

1 + wr
=

δ

1 + w
. (B.63)

If a third fluid is considered, which is indeed the case of the present thesis with a DE content,
the adiabatic condition is written as (2.37). Note that in order to have a complete set of initial
condition, still remains to impose the initial value of δ. However, for a linear set of dynamical
system, the total solution is a linear combination of independent solutions. We have made
use of this property writing all the initial conditions proportional to the initial total matter
perturbation, δ. Therefore,

δm (N∗) ≈
3

4
δr (N∗) ≈

3

4
δ (N∗) , (B.64)

where N∗ denotes the initial value. On the other hand, the adiabatic condition is also valid for
the total matter density contrast (see (B.44)), therefore, it follows from the gauge difference
[92] that

δm (N∗)− 3Hvm (N∗)

1 + wm
=
δr (N∗)− 3Hvr (N∗)

1 + wr
. (B.65)

Finally, using the equations (B.64) and (B.65) we obtain

vm (N∗) = vm (N∗) ≈
δ

3H (1 + w)
, (B.66)

where we have made use of the approximation given in (B.61). Once we have the initial condi‐
tions for each perturbation variable, we solve the system for Φ(N∗) = 1 (that means δ (N∗) = 2)
and then, multiply all solutions by the physical value of δ (N∗) which is given by the observa‐
tional fit. The same methodology could be applied if a third fluid were involved, as it is the
case of the present thesis where the initial conditions for a mixture with three fluids give rise
to the set of initial conditions given in section 2.3.1

B.4 Two point correlation function

The two point correlation function is a mathematical tool used in statistics to quantify the
fluctuations. In cosmology it is often applied to describe the distribution of galaxies, in this
sense, the total matter density contrast is the quantity usually used. The two point correlation
function, ξζ (x), by definition is written as ii

ξζ (r) =
1

V

∫
V

ζ∗ (x) ζ (x+ r) d3x, (B.67)

where the script ∗ denotes the complex conjugate and ζ (x+ r) is the value of ζ at the position
x+r. In other words, it can be said that the correlation function is a tool to know how much is a
function similar with itself. For example, the correlation function of a an amount that remains

iiAs we will see later on, ζ will coincide with the total matter density contrast, δ.
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constant is always equal to one. It is very useful to use the Fourier transform leading to

ζ (k) =
A

V

∫
e−ik·xζ (x) d3x,

ζ (x) = BV

∫
eik·xζ (k) d3k,

(B.68)

where AB = 1/ (2π)
3. Therefore, it is the usual to choice A = 1 and B = 1/ (2π)

3. On the other
hand, it can be defined the Dirac delta as

δD (k) = AB

∫
e−ik·xd3x. (B.69)

Applying the Fourier transform on both elements inside the integral (B.67), we get

ξζ (r) = B2V

∫
V

∫
e−ik·xζ∗ (k) d3k

∫
eik̃·(x+r)ζ (k′) d3k′,

ξζ (r) = B2V

∫ ∫
ζ∗ (k) ζ (k′) d3kd3k′

∫
V

ei(k
′−k)·x d3x,

(B.70)

where the last integral term in rhs of (B.70) is proportional to the Dirac delta centered in k′,
that is

δD (k− k′) = AB

∫
ei(k

′−k)d3x. (B.71)

Making use of the Dirac delta we obtain

ξζ (r) =
BV

A

∫
|ζ (k)|2 eik·rd3k. (B.72)

Just for notation convenience, we will define

Pζ (k) ≡
1

A
|ζ (k)|2 (B.73)

ξζ (r) ≡ BV

∫
Pζ (k) e

ik·rd3k. (B.74)

If we assume a homogeneous and isotropic Universe at large scales, there is not dependence on
the direction, only the distances are important. In order to perform the integral (B.74), we will
chose the axis such that the direction of r coincides with that of the z axis, in such a way that

d3k = k2 sin θk dk dθk dφk , k · r = k r cos θk, (B.75)

therefore, the integral (B.70) is written as

ξζ (r) = BV

∫ ∞

0

∫ π

0

∫ 2π

0

Pζ (k) e
ikr cos θkk2 sin θk dk dθk dφk. (B.76)

Integrating (B.76) over the solid angle we get

ξζ (r) = 4πBV

∫ ∞

0

Pζ (k)
k

r
sin kr dk. (B.77)
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This expression can be rewritten as

ξζ (r) = V

∫ ∞

0

∆2
ζ (k)

sin kr

kr
d [ln k] , where ∆2

ζ (k) = 4πBk3Pζ (k) (B.78)

B.4.1 Matter power spectrum

We have fixed the initial conditions on a regime where the radiation totally dominates over the
the other components in such a way that all the relevant modes lie outside the horizon. For
practical purposes, it is often used the primordial power spectrum, ∆2

ζ, instead of the power
spectrum, Pζ. These two functions are related as follows (see the previous section B.4)

∆2
ζ =

k3

2π2
|ζ|2 , (B.79)

The quantity usually used to set the initial conditions is the comoving curvature perturbation,
R = −(Φ+vH). The observational fit for the curvature perturbation coincides with the following
empirical formula

∆2
R = As (k∗)

(
k

k∗

)ns(k∗)−1

, (B.80)

where the quantities As and ns depend on the value for the chosen pivot wave‐number k∗.
Equating the observational results (B.80) with the theoretical one (B.79), we can get a suitable
value for the curvature perturbation within a radiation dominated era (see (B.61)) which can be
approximated to the total matter perturbation, i.e. R ≈ δ. Therefore,

|δ| ≈ 4π

3

√
2As k

− 3
2

(
k

k∗

)ns−1
2

. (B.81)

B.4.2 Physical value of the initial total matter density contrast

Once the set of dynamical equation is defined and the set of the initial conditions is fixed, the
initial values of all the perturbation variables are proportional to the initial total matter density
contrast, δ⋆. Therefore, it remains only to fix the physical value of δ⋆. This value is fixed
through the Planck data for a single field inflation which can be written as [13, 15]

δ⋆ =
4π

3

√
2As

[
k

kpivot

]ns−1
2

k−
3
2 , (B.82)

where the pivot wave‐number is kpivot = 0.05 Mpc−1. In addition, As and ns are the amplitude
and the spectral index, respectively. We have used different values of As and ns corresponding
with the latest data of Planck missions available at the time of publishing the works [13, 15].

B.5 Decomposition of a non‐adiabatic pressure

We first consider a gauge transformation from the rest frame to the Newtonian gauge. There‐
fore, the physical quantities in both gauges are related as [16, 92, 101]

δpℓ = δpℓ|r.f. − p′ℓδη , δρℓ = δρℓ|r.f. − ρ′ℓδη , (vℓ +B) = (vℓ +B)|r.f. + δη, (B.83)
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where ℓ stands for a given DE fluid, subscript r.f denotes the rest frame and no subscript refers
to the Newtonian gauge. In the rest frame, vℓr.f. = 0 and Br.f. = 0, while in the Newtonian gauge
it is set B = 0. Therefore, this implies vℓ = δη. On the other hand, we consider that the total
pressure perturbation is given by its adiabatic and non‐adiabatic contributions,

δpℓ = δpℓad + δpℓnad, (B.84)

where by definition, δpℓad = c2aℓδρℓ is the adiabatic part. We compute the gauge difference
on both sides of the equality (B.84) using the equations (B.83). First, we deduce that the non
adiabatic part is gauge invariant, i.e. δpℓnad = δpℓnad|r.f.. Therefore, we get

δpℓnad =
(
c2sℓ − c2aℓ

)
δρℓ|r.f. , δpℓ = c2sℓδρℓ +

(
c2sℓ − c2aℓ

)
ρ′ℓδη. (B.85)

Finally, making use of the conservation equation, ρ′ℓ = −3H (1 + wℓ) ρℓ, the non‐adiabatic con‐
tribution and the total pressure perturbation can be written as [16, 101, 231]

δpℓnad =
(
c2sℓ − c2aℓ

)
[δρℓ − 3H (1 + wℓ) ρℓvℓ] ,

δpℓ = c2sℓδρℓ +
(
c2aℓ − c2sℓ

)
3H (1 + wℓ) ρℓvℓ.

(B.86)

B.6 Classical perturbations for a Universe containing an adia‐

batic fluid with a negative speed of sound

On the following appendix, we remind why a Universe filled with a DE fluid with a negative
speed of sound, like it is the case of a phantom fluid with a constant EoS parameter, the linear
perturbations of DE blow up. We begin by recalling the evolution equations (2.30) for the pair
δA and vA in Fourier space:

δ′A = 3H
(
wA − c2sA

)
δA + (1 + wA)

[
9H2

(
c2sA − c2aA

)
+ k2

]
vA + 3 (1 + wA)Ψ

′ ,

v′A =
(
3c2sA − 1

)
HvA − c2sA

1 + wA
δA −Ψ .

(B.87)

We can combine these equations into a single second order inhomogeneous differential equation
for δA by differentiating (B.87) and then using (B.87) and (B.87) to eliminate vA and v′A

δ′′A +

[(
1− 6wA + 3c2aA

)
−

H
(
c2sA − c2aA

)′
+ 2H′ (c2sA − c2aA

)
H2 (c2sA − c2aA) +

k2

9

]
Hδ′A

− 3

[
H′ (wA − c2sA

)
+H

(
wA − c2sA

)′
+H2 (1− 3wA)

(
wA − c2sA

)
+ 3H2wA

(
c2aA − c2sA

)
+H2

(
c2sA − wA

) H (c2sA − c2aA
)′
+ 2H′ (c2sA − c2aA

)
H2 (c2sA − c2aA) +

k2

9

− k2

3
c2sA

]
δA

= 3 (1 + wA)

{
Ψ′′ +

[(
1− 3c2sA

)
−

H
(
c2sA − c2aA

)′
+ 2H′ (c2sA − c2aA

)
H2 (c2sA − c2aA) +

k2

9

]
HΨ′

−
[
3H2

(
c2sA − c2aA

)
+
k2

3

]
Ψ

}
.

(B.88)
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This is a wave equation with a variable damping term, λA, and mass, mA, and with an external
source, SA:

δ′′A + λAδ
′
A +m2

AδA = SA , (B.89)

where

λA =

[(
1− 6wA + 3c2aA

)
−

H
(
c2sA − c2aA

)′
+ 2H′ (c2sA − c2aA

)
H2 (c2sA − c2aA) +

k2

9

]
H, (B.90)

m2
A = k2c2sA − 3

[
H′ (wA − c2sA

)
+H

(
wA − c2sA

)′
+H2 (1− 3wA)

(
wA − c2sA

)
+ 3H2wA

(
c2aA − c2sA

)
+H2

(
c2sA − wA

) H (c2sA − c2aA
)′
+ 2H′ (c2sA − c2aA

)
H2 (c2sA − c2aA) +

k2

9

]
,

(B.91)

SA = 3 (1 + wA)

{
Ψ′′ +

[(
1− 3c2sA

)
−

H
(
c2sA − c2aA

)′
+ 2H′ (c2sA − c2aA

)
H2 (c2sA − c2aA) +

k2

9

]
HΨ′

−
[
3H2

(
c2sA − c2aA

)
+
k2

3

]
Ψ.

(B.92)

To leading order in k2, we have m2
A ≃ k2c2sA. Therefore, for sufficiently large k, the mass be‐

comes imaginary if c2sA < 0 and the solutions of the homogeneous equation comprise a decaying
and a growing mode, with the latter leading to the instabilities. As such, barotropic fluids with
negative adiabatic squared speed of sound, for which c2sA = c2aA, are stricken by instabilities at
the linear level in perturbations. The growth of δA can be particularly intense during the matter
era, when most relevant modes are inside the Hubble horizon, i.e., k2 ≫ H2, and Ψ ∼ const.

B.7 Mapping to a phantom scalar field

The phantom scalar field, which was first introduced in [30] as a way of obtaining an EoS param‐
eter with w < −1, can be seen as a minimally coupled scalar field with the sign of the kinetic
term in the Lagrangian switched, i.e.: iii

Lφ =
1

2
gµν∂uφ∂νφ− V (φ) . (B.93)

In this sense, the phantom scalar field can be viewed as a particular case of the K‐essence
models with K = −X [24]. The change of sign in the Lagrangian with regards to the usual
scalar field is propagated to the energy density and pressure, which for the phantom field case
in a FLRW background are given by the expressions:

ρφ = −1

2
φ̇2 + V (φ) ,

pφ = −1

2
φ̇2 − V (φ) .

(B.94)

iiiHere, we remind the reader that on this work we employ the metric signature (− + ++). This is the
reason that the sign of the kinetic term in the Lagrangian does not coincide with the one in [30], which
uses the signature (+ − −−).
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Likewise, the term of the equation of motion of the field that depends on the derivative of the
potential suffers a change of sign:

φ̈+ 3Hφ̇− dV

dφ
= 0 . (B.95)

From equations (B.94) we find that for positive valued potentials the parameter of EoS of the
phantom scalar field, wφ = pφ/ρφ, can evolve dynamically in the interval (−∞, −1], while from
the equation of motion (B.95) we find that the field tends to climb the potential towards a state
of higher energy [30].

In Section 2.2, we have reviewed three phantom DE models that lead to abrupt events in the
future: model A leads to a BR; model B leads to a LR; model C leads to a LS. At the background
level, these models can be mapped to a phantom scalar field through the identifications

φ̇2 = − (1 + wd) ρd ,

V (φ) =
1

2
(1− wd) ρd .

(B.96)

Once the background evolution is imposed, the shape of the potential can be found by integrating
the first equation of (B.96)

φ(t)− φ(t∗) =

∫ t∗

t

dt̃
√
− (1 + wd) ρd , (B.97)

inverting the expression obtained to find ρ(φ) and finally plugging the result in the second
equation of (B.96) we get V (φ). For the three models at hand, we can solve (B.97) analytically
well inside the DE dominated regime, i.e., for t ≥ t∗ we have H2 ≈ (κ2/3)ρd, obtaining for each
case the potential [42, 70, 202, 390, 391]

Model A, V (φ) = ρd,∗
1− wd

2
exp

[√
−3(1 + wd)κ (φ− φ∗)

]
;

Model B, V (φ) = ρd,∗


[
1 +

3

4

(
Ωlr

Ωd,∗

)1/4

κ (φ− φ∗)

]2
+

1

2

(
Ωlr

Ωd,∗

)1/2


×

[
1 +

3

4

(
Ωlr

Ωd,∗

)1/4

κ (φ− φ∗)

]2
;

Model C, V (φ) = ρd,∗


[
1 +

1

2

(
Ωlsbr

Ωd,∗

)1/2

κ (φ− φ∗)

]2
+

1

6

(
Ωlsbr

Ωd,∗

)1/2
 .

(B.98)

We now look at the evolution of the linear scalar perturbations of such models. In the phantom
scalar field description, the evolution of the perturbation δφ in the Newtonian gauge is given
by [30, 392]

δφ′′ + 2Hδφ′ +

(
k2 − a2

d2V

dφ2

)
δφ = 2a2

dV

dφ
Φ+ φ′ (Φ′ − 3Ψ′) . (B.99)

As long as the squared mass term k2−a2d2V/dφ2 is positive, then the perturbation δφ is free of
instabilities [30]. However, for the three models considered in this work, the second derivative
of the potential is always positive; in fact, from (B.98) we find that for the models (i) and (ii)
d2V/dφ2 goes to infinity as the field climbs the potential, while for the model (iii) it is a positive

179



Appendix B

constant. Therefore, in all cases as the Universe expands the effective mass of the perturbation
δφ becomes imaginary and the unstable regime sets in.

As discussed above, for the three models considered in this work there is an instability at the
perturbative level that leads δφ to extremely large values in the far future, as the Universe
evolves towards a cosmological singularity or abrupt event. However, as we will see next, if we
describe the linear perturbations of the scalar field from an hydrodynamical point of view, this
instability is not displayed for δφ = δρφ/ρφ or for the gravitational potential Ψ. Let us begin
by reviewing the perturbations of the energy density, pressure and the peculiar velocity of the
phantom scalar, which in the Newtonian gauge read

δρφ = − 1

a2
φ′ (δφ′ − φ′Φ

)
+
dV

dφ
δφ ,

δpφ = − 1

a2
φ′ (δφ′ − φ′Φ

)
− dV

dφ
δφ ,

vφ = −δφ
φ′ .

(B.100)

From these equations we find that

δpφ = δρφ − 2
dV

dφ
δφ = δρφ + 2

dV

dφ
φ′vφ , (B.101)

Since the adiabatic squared speed of sound is c2aφ = ṗφ/ρ̇φ = 1− 2a2/(3Hφ′)(dV/dφ) a compar‐
ison of (B.101) with (2.26) leads to the conclusion that at the perturbative level the phantom
scalar field corresponds to a non‐adiabatic fluid with effective speed of sound c2sφ = 1. The
same result can be reached by using the definitions (2.27) and (B.100) and noting that in the
rest frame of the field δφ = 0.

To show that the divergence of δφ does not necessarily translate into a divergence of δφ, we now
look at the evolution of the gravitational potential Ψ. Since at late‐time the contribution of
matter and radiation to the potential is suppressed by the factors Ωm and Ωr, respectively, then
we can assume that in the future the potential is generated only by the DE perturbations. By
combining (B.40), (B.95), (B.100) and (B.101) and changing from η‐derivatives to x‐derivatives
iv, we arrive at the following evolution equation for each Fourier mode

Ψxx +

(
2 +

H′

H2
− 2

φ′′

Hφ′

)
Ψx + 2

(
H′

H2
− φ′′

Hφ′ +
k2

H2

)
Ψ = 0 . (B.102)

At this point, we note that H′/H2 = −(1 + 3w)/2 and φ′′/(Hφ′) = −(1 + 3c2aφ)/2 and that the
term in k2 can be dropped, since in a phantom dominated (or in general in an inflating) Universe
all the modes end up outside of the Hubble horizon. We can then approximate (B.102) as:

Ψxx +
1

2

[
2 + 3

(
1 + c2aφ

)
+ 3

(
c2aφ − wφ

)]
Ψx + 3

(
c2aφ − wφ

)
Ψ ≈ 0 . (B.103)

Therefore, there is no instability at the level of the gravitational potential as long as the mass
term in the previous equation is positive. To check whether or not this is the case in the models
at hand, we use the relation c2a = w + ρ(w′/ρ′) and recall that for model (i) w′

φ = 0 while
for models (ii) and (iii) wφ is approaching −1 from below and ρφ grows continuously as the

ivWe remind the reader that by definition x = log(a/a0).
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Universe expands. Thus we find that in all three cases Ψ remains bounded and slowly varying
with x. Finally, from the perturbed Einstein equations (2.34), we conclude that δφ = −2Ψ is
also bounded at late‐time. This is the behaviour in the far future that we find in figures 3.1 and
3.2.
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Appendix C

Detailed calculations for the quantum part

In this appendix we show a detailed calculation of the main approximations used in the present
thesis when solving the WDW equation. On the one hand, the WKB approximation up to the first
order is carried several times for a one dimensional differential equation. On the other hand, the
BO approximation is carried when dealing with a phantom scalar field. These two approximation
engross the methods for obtaining a suitable solution to the WDW equation. Finally, we show
detailed calculations of the solutions to the differential equation (9.38) within the context of
the Symanzik scaling law.

C.1 The WKB approximation

We next review briefly the WKB method for second order differential equation[
d2

dy2
+ Veff (y)

]
ψ(y) = 0 , (C.1)

where y is defined such that it is a dimensionless degree of freedom and where the effective
potential can be written as

Veff (y) = η̃2g(y) . (C.2)

Moreover, η̃ is a dimensionless parameter related with the constants of the system. The zero
order WKB approximation reads

ψ0(y) ≈ B1e
iS0(y) +B2e

−iS0(y), (C.3)

where B1 and B2 are constants and

S0(y) = η̃

∫ y

y1

√
g(y)dy. (C.4)

On the other hand, the general expression for the WKB approximated solution up to first order,
reads [339]

ψI(y) ≈
[
−η̃2g (y)

]− 1
4

[
B1e

iS0(y) +B2e
−iS0(y)

]
, (C.5)

Note that the first order WKB approximation is a product of the function η̃−
1
2 g (y)

− 1
4 and the zero

order WKB approximation, which is just a sinusoidal function, ψ0(y) ≈ B1e
iS0(y)+B2e

−iS0(y). As
can be seen, the first order WKB approximation just modulates the zero order WKB approxima‐
tion.
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C.1.1 Validity of the WKB approximation

The zero order WKB approximation, given by (C.3), is valid as far the following inequality is
fulfilled [334, 339]

1

η̃

∣∣∣∣ ġ(y)g
3
2 (y)

∣∣∣∣≪ 1. (C.6)

For example, the WKB approximation for a constant potential returns the exact solution since
the inequality (C.6) is fully fulfilled. On the contrary, the approximation is not valid when the
effective potential (C.2) vanishes since the output of (C.6) returns very large values. On the
other hand, the WKB approximation up to the first order, given by (C.5), is valid as long as the
inequality

1

η̃2

∣∣∣∣5ġ2(y)− 4g̈(y)g(y)

16g3(y)

∣∣∣∣≪ 1, (C.7)

is fulfilled [44, 339]. When the left hand side of (C.7) goes to zero we can be sure that the
behavior of the exact solution in this regime matches almost perfectly with the WKB approxi‐
mation.

C.1.2 Justification for the WKB approximation

We have used the WKB approximation several times to solve the second order differential equa‐
tion as that given in (C.1). For example, in (8.14) the WKB approximation is justified due to
the large values of the parameter η̃2 in the region where the approximation was applied. Then,
in (8.18) the WKB approximation is justified since the effective potential of DE as given in Eq
(8.17) returns a vanishing value at very large scale factors when replacing it in (C.7).

Furthermore, the approximations used in section 9.3 for the first and the second quantisation
procedures, corresponds to an effective potential whose general shape reads

Veff (y) ≡ η̃ yn [1 + γ ln (y)] , (C.8)

where for each quantisation procedure we have that:

• First quantisation procedure:

η̃ =
2

3

√
Ωd0η , n = 2 , γ =

√
6b. (C.9)

• Second quantisation procedure:

η̃ =
√
Ωd0η , n = 1 , γ =

√
8

3
b. (C.10)

The necessary condition for the approximation to be valid reads∣∣∣∣{n2 (9− 4n) +
4γn (1− 6n− 2γ)

[1 + γ ln (y)]

+
γ2 (36− 32n− 16γ)

[1 + γ ln (y)]
2

}
1

16yn+2 [1 + γ ln (y)]
2

∣∣∣∣∣ 1

η̃2
≪ 1.

(C.11)
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Finally, in the approximations used in section 10.3 only the parameters s, b and η̃ depend on the
factor ordering:

1. For the first quantisation procedure used in section 10.3, we use the operator aĤ(a, π̂a).
Then, the parameters above are written as follows

s = 2, b = ΩA, η̃ =
3πa30H0

2Gℏ
. (C.12)

2. For the second factor ordering choice, which corresponds to the operator Ĥ(a, π̂a), the
parameters are written as

s = 1, b =
2

3
ΩA, η̃ =

πa30H0

Gℏ
. (C.13)

The integral in (C.4) is given by

S0(y) ≡
∫ y

y1

η̃ys [ΩΛ + b ln(y)]
1
2 dy, (C.14)

after performing an integral by parts we get

S0(y) = η̃
ys+1

s+ 1
[ΩΛ + b ln(y)]

1
2

∣∣∣∣y
y1

−
∫ y

y1

η̃
bys

2 (s+ 1)
[ΩΛ + b ln(y)]

− 1
2 dy. (C.15)

The integral of the second term can be done defining an auxiliary variable t = i
√

s+1
b [ΩΛ + b ln(y)].

This leads to

S0(y) = η̃
ys+1

s+ 1
[ΩΛ + b ln(y)]

1
2 − η̃

√
πbe−

ΩΛ
b (s+1)

2 (s+ 1)
3
2

{
erfi

[(
s+ 1

b

) 1
2 √

ΩΛ + b ln(y)

]}

−η̃ y
s+1
1

s+ 1
[ΩΛ + b ln(y1)]

1
2 + η̃

√
πbe−

ΩΛ
b (s+1)

2 (s+ 1)
3
2

{
erfi

[(
s+ 1

b

) 1
2 √

ΩΛ + b ln(y1)

]}
,

(C.16)

where y1 is an arbitrary integration constant such that a1 (corresponding to y1) is larger than a0.
The function erfi(z) is the “imaginary error function”, which is related with the error function
(the expression 7.1.1 of page 297 in [307]) through erfi(z) = −ierf(iz). The second term on
the rhs in (C.16) is much smaller than the first term for large values of y (as it can be noted
considering the expression 7.1.23 of page 298 in [307]), and the third and four terms can, of
course, be dismissed in this limit. Therefore, we can neglect it for big values of y.

S0(y) ≈ η̃
ys+1

s+ 1
[ΩΛ + b ln(y)]

1
2 . (C.17)

The approximation (C.17) is then applied in equations (10.13) and (10.19), where the value
of the parameters are written in (C.12) and (C.13), for the first and the second quantisation
procedures, respectively. For both of the cases mentioned above, the LR and LS occur for large
values of the variable y, where the latter expressions go to zero when y → ∞; i.e. the WKB
approximated solution is valid. The inequality (C.7) is a necessary condition for the first order
WKB approximation. Being g(y) = [γ + β ln(y)] y2s, we get

ġ(y) = {β + 2s [γ + β ln(y)]} y2s−1, (C.18)
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g̈(y) = {(2s− 1) {β + 2s [γ + β ln(y)]}+ 2sβ} y2s−2, (C.19)

so for the zeroth order approximation we have

1

η̃

∣∣∣∣∣{β + 2s [γ + β ln(y)]}
2 [γ + β ln(y)]

3
2

y−(s+1)

∣∣∣∣∣≪ 1, (C.20)

and for the first order approximation we get∣∣∣∣∣
{

5

16

{β + 2s [γ + β ln(y)]}2

[γ + β ln(y)]
− 1

4
{(2s− 1) {β + 2s [γ + β ln(y)]}}

−sβ
2

}{
y−2(s+1)

[γ + β ln(y)]
2

}∣∣∣∣∣ 1

η̃2
≪ 1,

(C.21)

which is clearly verified when y → ∞ because −1 < s, for both cases and for the two quanti‐
sation methods. Here γ and β are constants which for the zeroth and first orders are given in
(10.11) and (10.18), respectively.

C.2 Detailed calculations for the matter part of the WDW equa‐

tion given by equation (10.24)

The matter part of the WDW equation, given in (10.24), can be rewritten as

∂2φk(α, z)

∂z2
+

(
1

4
z2 − β

)
φk(α, z) = 0, (C.22)

where

β = − 1

2ℏ(πG)1/2

[
C1/2a30e

3α

6
− Ek

C1/2a30e
3α

]
, (C.23)

and

z =
2a

3/2
0 e3α/2(πGC)1/4

ℏ1/2
(ϕ− ϕ1). (C.24)

The expression given in (C.22) corresponds to the expression 19.1.3 of page 686 in [307]. Thus,
its solutions are the following parabolic cylinder functions:

φ
(1)
k (α, ϕ) =W (β, z) , φ

(2)
k (α, ϕ) =W (β, −z) ,

φ
(3)
k (α, ϕ) = E (β, z) , φ

(4)
k (α, ϕ) = E∗ (β, z) ,

(C.25)

with

E(α, ϕ) = K−1/2W (β, z) + iK1/2W (β, −z) , (C.26)

and

K =
√
1 + e2πβ − eπβ . (C.27)
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We are interested on the behaviour of these functions for arbitrary values of the field and very
large values of α. It can be noted that β → −∞ when α→ ∞. Defining

X =
√
z2 − 4β =

√
2 a

3/2
0 e3α/2

ℏ1/2(πGC)1/4

√
2πGC(ϕ− ϕ1)2 +

C
6
− Ek

a60e
6α
, (C.28)

it can be noted that X → ∞ when α→ ∞. Thus, we focus our attention on the case β < 0 and
X2 ≫ 0. The real solutions for this regime are given by (see equations 19.23.10 and 19.23.11
of page 694 in [307])

W (β, z) =
√
2Kevr cos(π/4 + θ + vi), (C.29)

and

W (β, −z) =
√
2/Kevr sin(π/4 + θ + vi), (C.30)

with

θ =
1

4
zX − β ln

(
z +X

2
√
|β|

)

=
a30e

3α

2ℏ
√
πGC

{
√
πGC(ϕ− ϕ1)

√
2πGC(ϕ− ϕ1)2 +

C
6
− Ek

a60e
6α

+

[
C
6
− Ek

a60e
6α

]
ln

√πGC(ϕ− ϕ1) +
√

2πGC(ϕ− ϕ1)2 +
C
6 − Ek

a6
0e

6α√
C
6 − Ek

a6
0e

6α

 ,

(C.31)

and vi and vr are defined by series that go as vr ≈ −1/2 lnX and vi ≈ 0 for very large values
of X (see equation 19.23.4 of [307]). Moreover, using (C.27) and (C.31), it can be seen that θ
diverges as e3α and K → 1 for α→ ∞. For large values of α, we can approximate (C.29) as

W (β, z) ≈
√
2X−1/2 cos

[
π

4
+

1

4
zX − β ln

(
z +X

2
√

|β|

)]
. (C.32)

Thus, we have

W (β, z) ∼ e−3α/4 cos(e3α) → 0, (C.33)

and

W (β, −z) ∼ e−3α/4 sin(e3α) → 0, (C.34)

for α → ∞. On the other hand, taking into account (C.33) and (C.34) into (C.26), one can
conclude that the imaginary solutions also vanish in the asymptotic limit.

C.3 The BO approximation

Consider the case of a WDW equation (7.10), where the total wave function is written as (12.19),
i.e. the total wave function is a product of the gravitational part, Ck(α), and the matter part,
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φk(α, ϕ). Therefore, the WDW equation (7.10) can now be written as

ℏ2

2

κ2

6

(
Ck

∂2φk

∂α2
+ φk

∂2Ck

∂α2
+ 2

∂Ck

∂α

∂φk

∂α

)
+

ℏ2

2
Ck

∂2φk

∂ϕ2
+ a60e

6αV (ϕ)Ckφk = 0. (C.35)

The BO approximation assumes that the first and third terms inside the parenthesis of the latter
equation can be neglected in comparison with the second term. That is, it considers that the
gravitational part, Ck(α), varies faster with the scale factor than the matter part, φk(α, ϕ), in
such a way that

∂2φk(x, ϕ̃)

∂x2
Ck(x),

∂φk(x, ϕ̃)

∂x

∂Ck(x)

∂x
≪ ∂2Ck(x)

∂x2
φk(x, ϕ̃). (C.36)

This assumption leads to the separation of the initial equation (7.10) into two coupled equations
C(x) and φ(x, ϕ̃). Once these differential equations are solved, it is necessary to justify whether
the obtained solutions C(x) and φ(x, ϕ̃) fulfill the inequality (C.36).

C.3.1 Validity of the BO approximation

The validity of this approximation can be explored using expansions with respect to κ (see [48]
and references cited there). For Example, in the geometric part of (10.23), we get

Ck ∼ O(κ0), Ċk ∼ O(κ−1), C̈k ∼ O(κ−2), (C.37)

with ˙≡ ∂/∂α. The matter part is given in terms of parabolic cylinder functions. In order to get
its expansion in terms of κ and A in a simple way, we use the approximation for large values
of the scale factor given by (C.32). We should also keep track of the dependence on α. Noting
that

β ∼ θ ∼ O(κ−1C1/2a30) e
3α, z ∼ X ∼ O(κ−1/2C1/4a

3/2
0 )e3α/2, (C.38)

we get

φk(α, ϕ) ∼ E(α, ϕ) =
√
2 exp [h(α, ϕ)] , (C.39)

where

h(α) ∼ O (1) α+O
(
κ−1C1/2a30

)
e3α, (C.40)

and the quantity κ−1/2A1/4a
3/2
0 is dimensionless. Thus, we have

Ckφ̈k

C̈kφk

∼ O(κ2)
[
ḣ2 + ḧ

]
∼ O(κ2) +O(κ C1/2 a30) e

3α +O(C a60) e6α, (C.41)

and

Ċkφ̇k

C̈kφk

∼ O(κ) ḣ ∼ O(κ1) +O(C1/2a30) e
3α. (C.42)

Thus, the B.O. approximation is fulfilled as long as Ca60e6α ≪ κ2; i.e. this approach is valid for
sufficiently small value of C, i.e. the fluid (2.16) is close enough to a cosmological constant and
for large enough values of a but not infinite value of a, that is within a semiclassical regime.
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On the other hand, the asymptotic behavior of the terms in (12.19) can be written as

∂2Ck

∂x2
φk ∼ 48

κℏ2
e6xCkφk, (C.43)

∂φk

∂x

∂Ck

∂x
∼ 24

√
6

ℏ2κ2ρ0
[f (w)]

1
2 e6xϕ̃2Ckφk, (C.44)

∂2φk

∂x2
Ck ∼ 18f(w)

ℏ2κ3ρ20
e6xϕ̃4Ckφk. (C.45)

It should be stressed that although the parabolic cylinder functions obtained in (12.26) depend
on the metric for both the order and the argument, the order approaches a constant parameter
when x→ ∞ (see the expression (12.27)). Therefore, one can derive (C.43), (C.44) and (C.45)
by calculating the corresponding derivatives of the asymptotic expression obtained in (12.31).
In this regard, the BO approximation method is valid as far as

ϕ̃
√
κρ0

≪ 1. (C.46)

The term κρ0 is dimensionless and it quantifies the current value of the phantom DE density
normalised with the EiBI coupling constant κ. In any case, the inverse of ϕ̃ should be very
large (at least much larger than the EiBI scale and very close to the Planck scale) near the BR
singularity. This then justifies the BO approximation. In principle, the smaller the value of ϕ̃ is,
the better is the BO approximation. Despite that the BO method breaks down for large values
of ϕ̃, we can ensure that such an approach is still valid close to the region given by the classical
trajectory, i.e., x→ ∞ and ϕ̃→ 0.

C.4 Justification for the approximation done in the equation (9.43)

The approximation done for the differential equation (9.43) consists into disregarding the first
three terms after the change of variable realised in (9.40). Once these terms are neglected,
the resulting differential equation is separable and the approximation is valid if

ℏ2κ2

24π2
e−2z

[
φ2∂2φ + φ∂φ + 2φ∂φ∂z

]
C (z)U (φ) ≪ℏ2κ2

24π2
e−2z∂2zC (z)U (φ) , (C.47)

and

ℏ2κ2

24π2
e−2z

[
φ2∂2φ + φ∂φ + 2φ∂φ∂z

]
C (z)U (φ) ≪ ℏ2

4π2
∂2φC (z)U (φ) , σφ4C (z)U (φ) . (C.48)

As a result of the performed approximation, the last two terms in the rhs of the above inequality
have the same order of magnitude for large values of z and φ or ϕ and x (See (C.49)). In fact,
the dominant terms that we keep reads

ℏ2

4π2
∂2φC (z)U (φ) , σφ4C (z)U (φ) ∼ ℏ

2π

(
κ2

6k

) 1
4

σ
3
4φ3e−

1
2 z =

ℏ
2π

(
κ2

6k

) 1
4

σ
3
4ϕ3e

5
2x, (C.49)
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ℏ2κ2

24π2
e−2z∂2zC (z)U (φ) ∼ ℏ
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(
κ2k3
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) 1
4
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1
2 z =
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2π

(
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) 1
4
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3
2x, (C.50)

while the neglected terms evolve asymptotically as

ℏ2κ2

24π2
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12π

(
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) 1
4
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3
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2x. (C.53)

Therefore, in order to obtain the suitable region for the realised approximation we compare the
smallest of the saved terms with the largest between the neglected ones, that is

ℏ
12π

(
κ10

6k

) 1
4

σ
3
4ϕ5e

5
2x ≪ ℏ

2π

(
κ2k3

6

) 1
4

σ− 1
4ϕ−1e−

3
2x,

=⇒ κ2σ

6k
ϕ6e4x ≪ 1.

(C.54)

Finally, the realised approximation is valid as long as
(
κ2σ/6k

)
ϕ6e4x ≪ 1. This means that for

sufficiently small values of σ; i.e. for small valuesi of C, which is indeed the observationally
preferred situation, and large values of x; i.e. x ≫ 1 (but finite), the approximation we have
used is valid.

C.5 Scalar field eigenstates and Symanzik scaling behavior

In this Appendix we analyse the expression (9.38) in the context of the Symanzik scaling law, fol‐
lowing the results found in [393–395]. We start by performing, in the aforementioned equation,
the following change of variables,

x = c1x̄ , ϕ = c2ϕ̄ , (C.55)

where c1 and c2 are constants. We obtain{
ℏ2

4π2

[
κ2

6c21
∂2x̄ +

1

c22
∂2ϕ̄

]
+ σe6c1x̄ c42ϕ̄

4

}
Ψ(x̄, ϕ̄) = 0 , (C.56)

where by imposing

c1 =
ℏ

2
√
6π
κ , c2 = i

ℏ
2π

, (C.57)

we get [
∂2x̄ − ∂2ϕ̄ +

ℏ4

16π4
σe

√
6

2π ℏκx̄ϕ̄4
]
Ψ(x̄, ϕ̄) = 0 , (C.58)

iSmall values of C implies small deviations of our model from the ΛCDM scenario.
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which is precisely given by equation (1) of [393]. As done in [393], we conclude that the general
solutions of (C.58) can be expressed as

Ψ(x̄, ϕ̄) =

+∞∑
n=0

An (x̄)Φn

(
x̄, ϕ̄

)
, (C.59)

which can be rewritten in a vectorial notation as

Ψ(x̄, ϕ̄) = ΦT
(
x̄, ϕ̄

)
·A (x̄) , (C.60)

where the scalar part wave functions satisfy[
∂2ϕ̄ + En (x̄)−

ℏ4

16π4
σe

√
6

2π ℏκx̄ϕ̄4
]
Φn

(
x̄, ϕ̄

)
= 0 . (C.61)

Notice that the scalar part solutions depend on the scale factor. Using the Symanzik scaling law
[393–395], we have that

Φn

(
x̄, ϕ̄

)
=

[
ℏ4

16π4
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6

2π ℏκx̄
] 1

12

fn (χ̄) ,

En (x̄) =

[
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] 1

3
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(C.62)

where

χ̄ =

[
ℏ4

16π4
σe

√
6

2π ℏκx̄
] 1

12

ϕ̄ . (C.63)

Furthermore, the vectorial scalar field wave equation can be used to define a coupling matrix
Ω as [393–395]

∂Φ

∂x̄
= ΩΦ

(
x̄, ϕ̄

)
. (C.64)

Given that {Φn} are an orthonormal basis, we can conclude that

Ωmn =
εm − εn

4

∫
dχ̄ χ̄2fm (χ̄) fn (χ̄) . (C.65)
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