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Resumo

A tese presente tem por objetivo estudar e comparar trés modelos com energia escura fantasma,
onde cada um induz um cenario cosmologico extremo de extincdao do Universo. Escolhemos
identificar esses trés modelos como: modelo A, modelo B e modelo C, enquanto as extincoes
cosmicas correspondentes sao conhecidas como Big Rip (BR), Litlle Rip (LR) e Little Sibling of the
Big Rip (LS), respetivamente. Encaramos o BR como uma verdadeira singularidade, uma vez que
esta acontece ao fim de um intervalo de tempo cosmico finito, enquanto identificamos o LR e
LS como acontecimentos abruptos, porque estes ocorrem ao fim de intervalo de tempo cosmico
que tende para infinito. Contudo, é reconhecido que em tais acontecimentos abruptos, mais
cedo ou mais tarde, todas as estruturas ligadas serdo inevitavelmente destruidas e, portanto, o
Universo iria confrontar-se com uma destruicao total num intervalo de tempo cosmico finito.

Numa primeira abordagem ao assunto da tese, consideramos a fenomenologia das solucdes de
fundo e as perturbacoes de primeira ordem cosmoldgicas para os modelos de energia escura
fantasma acima mencionados. Adicionalmente, usamos o largamente conhecido modelo ACDM
como padrao em relacdo ao qual se estimam os desvios dos modelos considerados. Uma vez
que o conteudo de energia escura esta presente, evitamos o surgimento das instabilidades as-
sociadas através da decomposicao da pressao da energia escura nas contribuicdes adiabaticas e
nao adiabaticas. Calculamos, através de métodos numéricos, a evolucdo das quantidades per-
turbadas para um Universo contendo radiacdo, matéria e energia escura. Estes calculos sao
feitos assumindo um ponto de partida bem no interior da era dominada pela radiacao até ao
futuro longinquo. Subsequentemente, prevemos o espetro de poténcia atual e a taxa de cresci-
mento f,, para cada modelo. Tais quantidades observaveis sdo, entdo, comparadas com os
dados observacionais correntes de modo a encontrar indicios que nos permitiriam distinguir os
diversos modelos na época atual. Por forma a completar o estudo, impusemos constrangimentos
observacionais aos modelos de energia escura fantasma com o ACDM para obter um conjunto
consistente de parametros. Por um lado, descobrimos que embora o ACDM se ajuste melhor as
observacdes, os modelos aqui considerados seguem de muito perto esse bom ajuste do modelo
padrao. Por outro lado, descobrimos que estes modelo genuinos de energia escura fantasma in-
duzem uma inversao de sinal do potencial gravitico para fatores de escala muito grandes. Este
facto pode ser interpretado como a forca da gravidade se tornar efetivamente repulsiva num
futuro distante. Finalmente, estudamos os efeitos de variar a velocidade efetiva do som da
energia escura nas perturbacoes.

Numa segunda abordagem, partimos do principio que é expectavel que os efeitos quanticos
se tornem importantes quando o Universo se aproxima de uma singularidade cosmica futura,
0 que se afigura o destino certo nos modelos considerados anteriormente. Infelizmente, nao
dispomos ainda de uma teoria quantica da gravidade consistente para completar a nossa visao
sobre os acontecimentos mais dramaticos no fim da vida do Universo. E esperado que com a
ajuda de uma teoria tao fundamental, como a teoria quantica do campo gravitico, os cenarios
singulares previstos na Relatividade Geral sejam naturalmente evitados. Assim, abordamos o
problema da remocao das singularidades cosmoldgicas adotando uma abordagem quantica. A
guantizacao é implementada através da equacao de Wheeler-DeWitt e a imposicao da condicao
fronteira de DeWitt, isto &, considerando que a funcdo de onda se anula perto da singularidade.
Analisamos cada modelo considerando varias ordens dos fatores na construcao dos observaveis
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na equacao de Wheeler-DeWitt, resolvendo-a para varios conteldos da energia escura dados por
(i), um fluido perfeito, e (ii), um campo escalar. Adicionalmente, consideramos estes modelos
no contexto da teoria de gravidade modificada Eddington-inspired-Born-Infeld e aplicamos a
abordagem quantica, acima descrita, para remover as singularidades classicas.

Deste modo, esta tese é dividida em duas partes principais, uma classica, onde descrevemos
as solugdes de fundo e as perturbacdes desse fundo para os trés modelos genuinos de energia
escura fantasma e, uma segunda parte onde estudamos a remogao quantica das singularidades
resultantes destes modelos.

Dado que a UBI permite que se apresente uma tese que inclua uma introducao, um conjunto
de capitulos baseados em trabalhos publicados durante o Doutoramento e as conclusoes, nos
seguimos principalmente esse formato.

Palavras-chave

Universo tardio, energia escura, teoria da gravitacao modificada, teorias de Palatini, pertur-
bacdes cosmologicas, cosmologia quantica, dados de observacao.
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Abstract

The present thesis is aimed to disclose three genuine phantom Dark Energy (DE) models where
each of them induce a particular cosmic doomsday. We have named these models as model
A, model B and model C, while the corresponding induced cosmic events are known as Big Rip
(BR), Little Rip (LR) and Little Sibling of the Big Rip (LS), respectively. We regard a BR as a
true singularity since it takes place at a finite cosmic time, while we have coined LR and LS as
abrupt events, since they occur at infinite cosmic time. Nevertheless, it is well known that in
such abrupt events sooner or later all the bound structures would unavoidably torn away, and
therefore, the Universe would face a total destruction at a finite cosmic time.

On the one side, we have addressed the background phenomenology and the first order cosmo-
logical perturbations for the phantom DE models above mentioned. In addition, we have made
use of the widely known ACDM model as a guideline to measure deviations among the models.
Given that a DE content is present, we avoid the associated instabilities at the perturbative
level by applying the method of DE pressure decomposition in its adiabatic and non-adiabatic
contributions. We compute, by means of numerical methods, the evolution of the perturbed
quantities for a Universe filled with radiation, matter and DE. Such computations are carried
from well inside the radiation dominated era to the far future. Then, we predict the current
matter power spectrum and f,, growth rate for each model. The latter mentioned observable
quantity is compared with the current observational data in order to find footprints that could
allow us to distinguish between the mentioned models. For the sake of completeness, we have
fitted observationally these phantom DE models together with ACDM in order to constrain the
parameters characterising the models. On the one hand, we have found that despite that ACDM
still gives the best fit, it is closely followed by the models studied in the present thesis. On
the other hand, we have found that these genuine phantom models induce a sign switch of the
gravitational potential at very large scale factors. This fact could be understood as gravity be-
coming effectively repulsive in the far future. Finally, we have studied the effects of DE speed
of sound on the perturbations.

On the other side, it is expected that quantum effects will become important when the Universe
approaches a future cosmic singularity, which is the case of those events addressed in the present
thesis. Unfortunately, we have not yet a consistent theory of quantum gravity to deal with the
most dramatic effects that would take place at the end of the Universe. It is expected that such
a fundamental quantum theory of gravity will naturally avoid those singularities present in the
classical theory of General Relativity (GR). We have rather addressed the issue of cosmological
singularity avoidance within the context of a quantum approach. The quantisation is carried via
Wheeler-DeWitt (WDW) equation and imposing the DeWitt (DW) boundary condition, i.e. the
wave function vanishes close to the singularity. We have analysed each model by considering
different factor orderings and solving the WDW equation for a DE content given by (i), a perfect
fluid, and (ii), a scalar field. In addition, we have addressed these phantom models in the
context of the Eddington-inspired-Born-Infeld (EiBl) modified theory of gravity and applied the
same quantisation methods above mentioned to analyse the avoidance of singularities from a
quantum point of view.

Therefore, this thesis is divided in two main parts, a classical part, where we present the back-
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ground and perturbations of three genuine phantom models, and a second part, where we ad-
dress the avoidance of singularities induced by such models from a quantum point of view.

Given that UBI allows to present the thesis as an introduction, a set of chapters based on the
published works during the PhD and the conclusions, we have followed mainly this format.

Keywords

The late-universe, dark energy, modified gravity, Palatini theories, cosmological perturbations,
quantum Cosmology, observational data.
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Chapter 1. Introduction

1

Introduction

All my life through, the new sights of Nature made me rejoice like a child
- Marie Curie

1.1 The classical Universe

Cosmology has experimented a significant progress since its boost with Einstein’s GR in 1915.
The first evidences that endorse the reliability of GR, for instance, explained the anomaly of the
mercury’s perihelium precession and the apparent position of stars during a solar eclipse [1].
A century later, the gravitational waves predicted by GR were measured for the first time as a
result of an extraordinary collaboration work, which probed the shortest distance ever measured
[2]. Certainly, the technological development of the last century has played an important role
on the improvement of the observational aspect of Cosmology. During this time, some of the
hiding features of the current Universe were revealed. Let us mention briefly those that have
changed completely the initial knowledge we had of the cosmos.

1.1.1 Abrief history of cosmology: from the first revelations to the current
knowledge

In 1929 Hubble computed the current expansion rate of the Universe by using the redshift of
the Cepheid star cluster [3]. He also computed the redshift of the star-light coming from other
astronomical objects, identifying them as galaxies and regarding the milky way as just another
common galaxy in the vast Universe [4]. The electromagnetic Doppler effect was the clearest
evidence of a dynamical Universe rather than a static one, contrary to the most widely accepted
idea on the scientific community including Einstein believes. In fact, the cosmological constant
introduced by Einstein was motivated to counteract the natural gravitational attraction of stan-
dard matter, i.e. matter that fulfill the strong energy condition p +p > 0, p + 3p > 0, where
p stands for the energy density and p for the pressure. In 1922 the soviet scientist Alexan-
der Friedmann solved the Einstein equations for a homogeneous and isotropic Universe filled
with standard matter pointing out an expanding Universe for open and flat spatial curvature
while for closed geometry the Universe is finite and recollapses after reaching a maximum size.
Meanwhile, the Belgium scientist Georges Lemaitre was already working on the theory of “the
primeval atom”, where the notion of a very hot and dense early Universe was introduced for the
first time [5]. This idea is considered the precursor of the Big Bang theory. The theory continued
along the path laid by Friedmann while it was observationally supported by the existence of the
Cosmic Microwave Background (CMB) radiation, first detected by Penzias and Wilson in 1965 [f].
Such radiation corresponds to a black body emission at 2.625 K at present, while small fluctua-
tions reaching up to ten thousandth #1023 K. In 1933 Fritz Zwicky proposed, for the first time,
the existence of Dark Matter (DM) between galaxies [7], however, the clearest evidences were
not found till the late 70’s when Vera Rubin observed the rapid rotation curves of galaxies [8].
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Subsequent observations, based on gravitational lensing, pointed to the presence of an exotic
matter that do not interacts with radiation as usual baryonic matter does, altough it contributes
to the universal energy budget as ordinary matter [7-9]. Finally, in 1998, observations of su-
pernova type la pointed out that the Universe is currently experiencing a phase of accelerated
expansion [10-12], corroborated by further observations as the Wilkinson Microwave Anisotropy
Prove (WMAP) and Baryon Acoustic Oscillations (BAO) [13-17]. The energy source responsible for
such speed up is still unknown, which is the reason for coining it DE. Indeed, it represents roughly
70% of the total energy budget of the Universe. The remaining 30% corresponds mainly to the
contribution of matter wherein only a tiny 5% corresponds to baryonic matter. The contribution
of radiation could be neglected at present since it corresponds to an insignificant 0.008% [{15].

According to what was just exposed above, in the most optimistic perspective, we barely know
from a fundamental point of view 5% of the total composition of the Universe. However, it
can be said that we are lucky for living in particular conditions, where the horizon covers large
distances giving us the possibility to “watch” the evolution of the Universe from the distant past
to the present epoch. The current expansion rate is set to be roughly Hy ~ 70 Km Mpc™*
This value establishes, at the present time, the size of the observable part of the Universe as
a ball with a 95 giga light years diameter, holding inside up to the last scattering surface and
further. This value is crucial, at first, because the observations of very distant galaxies give us
a photography of the past scenarios, but secondly, because a detailed view of the CMB grant
us the opportunity to draw a chronology of the different stages faced by the Universe from the
very early epochs.

s,

The age of the Universe is roughly 14 Gyr. The radiation dominated epoch finished after the first
0.3 Myr years and, since then, after the decoupling the thermal radiation started to travel freely
with almost no interaction with matter. The matter dominated epoch covers almost the rest of
the Universe existence until recently, where a new stage has started with the DE domination
epoch, characterised by a late-time acceleration. In addition, considering small fluctuations in
the CMB radiation and applying the Galilean principle, we can assume the Universe as isotropic
and homogeneous on large scale. In fact, the Universe becomes effectively homogeneous at
scales larger than 100 Mpc [[18].

1.1.2 The fate of the Universe: future cosmic events

Our understanding of the Universe has improved significantly, but in turn, each discovery brings
more questions to be addressed. Probably, solving the mysterious dark side of the Universe (the
origins of DE and DM) has become one of the most important open problems in modern cosmology
and in theoretical physics in general. While the fundamental nature of radiation and baryonic
matter is well known, the ”hidden sides” of DM and DE are still open questions.

How DE works is not clear. Fortunately, we are not blind at this aspect; it is possible to infer
its behaviour by analysing the history of the expansion of the Universe. Some theories consider
DE as an hypothetical fluid with negative pressure called “quintessence” [19-21]. The Equation
of State (EoS) parameter of DE (the ratio between the pressure and the energy density of the
DE fluid), wq, could be constant or time dependent but it must be smaller than —1/3 in order
to induce acceleration. Assuming an EoS parameter constant and equal to —1 is equivalent to
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incorporate into the gravitational action the widely known cosmological constant. Surprisingly,
such paradigm, known as ACDM (which incorporate as well the DM contribution) is the model
that better fits the observations [13-15, 18]. However, from a theoretical point of view it has
some problems as: (i) the so called cosmological constant problem; the mismatch between the
large vacuum energy density predicted by particle physics in comparison with the observed one.
Such a difference reaches up to 120 orders of magnitude and it can be considered nowadays as
the worst prediction ever made in physics. (ii), the coincidence problem; why DM and DE are
almost of the same order and are currently dominating the expansion of the Universe.

An interesting way to avoid the aforementioned hurdle is by invoking the so called “k-essence”
model, which consist in incorporating a non-canonical correction to the kinetic term of the
scalar field [22-26]. This produces a scenario where the EoS parameter could stay below —1.
Therefore, the null energy condition, 0 < p+ p, would not be satisfied. The scenarios described
by such an energy condition are known as phantom models. Surprisingly, they represent an
excellent option among the paradigms deviating from the widely analysed ACDM model since
the best fits of the EoS parameter of DE give values close but less to —1 [[13-115, 18].

The discovery of an accelerated Universe has pointed out the possibility of a future doomsday
not characterised by a gravitational collapse but by a Universal Rip. The acceleration is so
strong that the Universe could face a cosmological singularity in the far future, i.e. some of
the cosmological parameters, as the energy density, for instance, are expected to blow up. The
Big Bang is probably the most well known cosmological singularity, it takes place in the early
Universe where the Hubble parameter and its cosmic time derivatives blow up when the size of
the Universe is too small in the initial stage of its evolution. With the advent of DE, the future
expansion of the Universe could be different from a Big Crunch. For example, let us addreess
first the asymptotic evolution of one of the hottest model in the market, ACDM. On that case,
the curvature of Universe would reach a constant non vanishing value in the future. While
getting colder and colder when heading to such an asymptotic state [27]. Within this scenario,
despite the fact that objects are progressively far away from each other, the Universe would be
asymptotically de Sitter (dS). Consequently, hypothetical future observations will detect a CMB
radiation corresponding to a black body emission below the current temperature. In addition,
their comoving Hubble horizon (1/aH) will be smaller than the horizon holding us at present.
Note that this is the predicted scenario as long as the the DE EoS parameter fulfils wq = —1
everywhere and at any time. However, the smallest variation on the EoS of DE from that value
can induce a wide range of very different types of cosmological singularities or abrupt events.
Within this context, from now on we will call such an event a “true curvature singularity”, when
the event happens at a finite cosmic time from the present. On the other hand, we will call it
an “abrupt event”, when such an event happens at an infinite cosmic time.

Despite the fact that, in an abrupt event, the singularity occurs at an infinite cosmic time, all the
bound structures are unavoidably destroyed at a finite cosmic time [28]. As a simple example,
one could imagine first our galaxy being teared apart from the local group, then, at some point,
the dissociation of the solar system would follow and at the end the decomposition of atoms
would take place. The following is a list of some well known curvature future singularities and
abrupt eventsl:

IIt is well known that in such kind of abrupt events, quantum effects are expected to become important
and, therefore, it will be necessary to implement a well motivated quantum treatment. We will address
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» Big Rip (BR): In this kind of singularity the scale factor, the Hubble rate and its higher orders

cosmic time derivatives blow up at a finite cosmic time [28-35]. For example, in these
models, an effective DE EoS constant parameter below w < —1 leads the Universe towards
this kind of doomsday. The name Big Rip was first coined by Caldwell in [28] and it has
been extensively studied in [36-40] where several authors have analysed differents setups
of DE (See [36-38, 40, 41] and the extensive list of references therein). The quantum realm
for this singularity was first addressed in [42] and later on studied in detail in [43, 44].

Big Freeze (BF): In this type of singularity the Hubble rate and its cosmic time derivatives
diverge not only at a finite cosmic time but at a finite scale factor as well. Indeed, the
energy density and the pressure blow up at such an event. The model that induces this
kind of singularity was first suggested in [45, 46] where the DE component is driven by
a phantom Generalised Chaplying Gas (GCG). In [47] the authors study the casuistic and
analyse the different final abrupt events depending on the parameters choice. The name
of BF was coined in the work [46]. In ref [48], the authors address the corresponding
quantum analysis and singularity avoidance.

Sudden singularity (SS): In this kind of singularity the scale factor and the Hubble rate
remain finite while the higher cosmic time derivatives of the Hubble rate diverge at finite
cosmic time. It was obtained, for example, in the late time acceleration assisted by a
tachyonic scalar field [49] or in interacting models in [bJ]. The DE component can be
described by standard type GCG, as in the case of the previously mentioned BF singularity.
However, we can have two scenarios depending on the nature of the matter considered.
On the one hand, and in in contrast with the BF singularity, if a phantom type matter
is present it induces a past singularity also known as big démarrage [48, 51] where the
acceleration evolve very fast from negative to positive values. On the other hand, if
a standard type matter is considered, it leads the Universe to a future singularity also
known as a big brake because the deceleration blows up, i.e. the Universe moves from a
positive accelerated stage to an infinitely negative acceleration [49, b2]. In fact, it was
studied before BF singularity [53-55] while quantum studies were addressed first in [56]
and later on in [48, 51|, 57].

Type IV (IV): In this type of singularity, the scale factor, the Hubble rate and its first cosmic
time derivative remain constant while the higher cosmic time derivatives of the Hubble
rate blow up at finite cosmic time [47, 58, 59]. It was first analysed in [47] where the
authors analyse a particular model that, depending upon the value of the parameters,
give rise to a rich variety of future singularities, including the previously aforementioned
singularities. Moreover, for a type IV to occur in a GCG it is necessary to restrict the
value of a particular parameter [60] in such a way that despite the curvature is finite,
its derivatives might not be well defined (See [61] and the extensive list of references
therein). This class of singularity is also present in modified theories of gravity [62]. In
addition, the quantum realm for this particular cosmic event was analysed in [63] where
the authors address the quantisation within the framework of the WDW equation.

Little Rip (LR): In this abrupt event the scale factor, the Hubble rate and its cosmic time
derivatives blow up at an infinite cosmic time. It could be understood as the soft version
of the BR since it is reached at an infinite cosmic time. Despite the this abrupt event takes
place at an infinite cosmic time, all the bound structures will be unavoidably ripped apart

this issue in detail later on.
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Table 1.1: Table with the most well known DE singularities and their diverging parameters. The first column
denotes the singularities or abrupt events. The second set of columns denotes the diverging parameters
where t, a, H, H and H are, respectively; the cosmic time, the scale factor, the Hubble rate and the first
and second cosmic time derivatives of the Hubble rate. The third column corresponds to the expression
for the dominant term of the potential when mapping the fluid into a phantom scalar field nearby the
singularity. Note that the factor « is positive. The ~ factors are real numbers with the following conditions:
Y1,72 < —2, and v3 # 2(p — 1)/(p + 1) where p is an integer. The last couple of columns point out the
classification depending upon Tipler (Tip) or Krolak (Kro) criteria, where S stands for strong and W for
weak.

at a finite cosmic time. It was first discovered in [64] as a result of applying quadratic
corrections into the Lagrangian and later on rediscovered in a brane-world model [65], and
applied as a DE model in [66] where the name of “Little Rip” was coined by Frampton et
al. Subsequently, it was studied in [67] where the authors reproduce a LR by considering
bulk viscosity and in [68] as a modified f(R) theory of gravity.

« Little Sibling of the Big Rip (LSBR): In this class of abrupt event the scale factor and the
Hubble parameter blow up at an infinite cosmic time while the first cosmic time deriva-
tive of the Hubble rate remains constant. It is even smoother than the above mentioned
LR abrupt event. It was first introduced in [69] where the authors include a detailed
study about the fate of different bound structures. Finally, the quantum avoidance was
addressed in [70, 71].

Aside from the above mentioned singularities and abrupt events, the so called w singularities
and Q singularities have been found. In the former case, the EoS parameter blows up at a finite
cosmic time and scale factor while the Hubble rate vanishes and its cosmic time derivative stands
finite. It is worth to mention that this class of events could be found as well on the so called Type
IV singularity. The second branch of singularities are only found in models where different kind of
components interact with each other, where in addition, the resulting interacting term, usually
denoted by ), blows up. As has been pointed out in [61]], within both subset of singularities
aside from the singularities present at the background level, instabilities could appear at the
perturbative level leading to a dramatic growth of DE perturbations or giving rise to a speed of
sound above the speed of light.

Looking at the above classification the reader could figure out a hierarchy which would be based
on the number of the diverging parameters and more precisely, on the order of the diverging
cosmic time derivative of the Hubble rate. In this sense, the BR is at the top while a type IV
singularity stands at the bottom. In the case of the LR and LSBR abrupt events, it is conceiv-
able that as they occur at an infinite cosmic time, they are softer than those true singularities
happening at a finite cosmic time. The third column of table [.1] shows the dominant term of
the potential when mapping the fluid into a phantom scalar field. First of all, we remind that
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singularities like a BF, SS and type IV, can be achieved with a GCG model where the induced
singularity depends on the particular value of the chosen parameters [60]. As can be seen, the
effective potential for a BR singularity corresponds to an exponential potential while the rest of
the singularities and abrupt events are mapped to a power law potential, where the latter, char-
acterises the class of singularity. At first glance, it is clear that once again, the BR singularity
is the stronger singularity, however, the rest of the singularities and abrupt events do not show
the same hierarchy visualised in the examples before. Nonetheless, there is not a particular way
to classify such cosmological singularities [4€, 47, 61|, 72-74]. While we have established the
diverging parameters as the basis for classifying those doomsdays, in the literature one could
find often such events classified as “strong” or “weak” depending upon the Tipler or Krolak
criteria [75, 76]. The strength of a singularity is determined by taking into account the tidal
forces on a volume element falling on a geodesic near the singularity. On the one hand, Tipler
criteria establishes that a singularity is strong if the volume element vanishes when the singu-
larity occurs [75]. Therefore, only the BR singularity is strong while the rest of singularities and
abrupt events are considered weak. On the other hand, Krolak criteria says that a singularity
is strong if the proper time derivative of the volume element is negative when approaching the
singularity [76]. A detailed analysis (done, for example, in [61, 77, 78]) shows that not only
BR but BF type singularities are regarded as strong as well. The mismatch is due to the fact
that the Tipler criteria are more restrictive since it is applied to the volume element. After all,
both classifications points out that the BR drives the Universe to the most dramatic doomsday
while the other cosmological events are weaker (with the exception of the BF depending on the
chosen criteria). We consider that a classification of the cosmological events depending on the
divergence of the Hubble parameter could be more intuitive.

It is worthy to point out some of the interesting fact about the phantom nature of those models
inducing abrupt events. On the one hand, singularities as BF, SS and Type IV can be achieved
with phantom or standard models [46-48]. On the other hand, the BR, LR and LSBR are genuinely
phantom, i.e. they only occur in models where phantom matter is present. There is an exception
in the case of the LSBR where it was found in a model with a three-form field [71, 79].

1.1.3 Describing the current speed up: parametric models

A further approach to explain the late-time acceleration consists on the so called parametric
models [80-83], where the relevant cosmological quantities are parametrised through a dynami-
cal variable around a particular value, usually, the present time. They were designed to analyse
the dynamics at low orders of some of the most relevant cosmological quantities. As it is the
case of the DE EoS parameter, where the variation of the cosmological constant is questioned.
For instance, on the well known Chevallier-Polarski-Linder (CPL) model the DE EoS parameter is
parametrised as an arbitrary function of the scale factor (or equivalently the redshift) [80, 81].
In the same way, other models have been suggested with more intricate functions as it is the
case of the models introduced in [84, 83] or using logarithmic and power law functions as in the
works [86, 87].

Parametric models have been widely studied given their viability to describe DE phenomenol-
ogy. The new phase entered by the Universe is understood as a recent phenomena where the
parametrisation is usually expanded around the vicinity of the present time (as we mentioned
before) and often with a standard and a phantom fluid. Those models contain a set of param-
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eters that should be fitted to observational data. Moreover, different parametrisations could
return very similar footprints resulting in the impossibility to distinguish models beyond the
statistics, which often, could lead us to ambiguities due to eventual coincidences. In this sense,
it is worth to mention those parametrisations dealing with future cosmic singularities [85, 88-
91] where an extended parametrisation is carried such that it encompasses a wide span in time
ranging from the future singularity to the present and matching the past edge with the matter
domination era. It is expected that those models which are more restrictive when fitting them
to data to be in turn more reliable since they avoid possible numeric coincidences on fitting.
Nevertheless, this thesis does not focus on parametrised models since they go beyond the scope
of the present work.

1.1.4 From background to perturbations

Although ACDM is the model that better fits the observations there is no reason to exclude
other models that could describe suitably the current speed up. Given that the observations
slightly support a Universe driven by a phantom type of DE rather than a standard one, we felt
encouraged to study in deep those pure phantom paradigms. So the motivation of this work
lays on focusing on genuine phantom models, studying in detail the induced doomsdays (the BR
singularity and the LR and LSBR abrupt events). These phantom models could be understood as
deviations of the ACDM paradigm and therefore, good candidates to describe appropriately the
late time acceleration.

A useful tool, to check the validity of the models, consists on the computation of the pertur-
bations. The perturbations can be visualised as the small fluctuations on the CMB temperature
that grow as the Universe expands. The hottest regions evolve leading to large concentrations
of matter, as well as galaxy clusters, while the coldest regions end up in vast voids.

Following the Helmholtz theorem, the space-time perturbations can be decomposed into scalar,
vector, and tensor perturbations where in total, there are ten perturbations (four scalars, two-
component purelly rotational two vector fields, and a two-component traceless spatially sym-
metric tensor field). Gauge fixing can significantly simplify the problem by removing four de-
grees of freedom, where each one is generated by the coordinate transformations in the chosen
basis. In the perturbation theory it is often used the Newtonian gauge (also known as the longi-
tudinal gauge or shear free gauge [23, D2]) and the comoving Newtonian gauge which are closely
related via time-time transformations. The suitable choice of a Newtonian gauge provides two
vanishing scalars and a vanishing vector field leaving the problem with only six degrees of free-
dom (two scalars, a two-components vector field and a two-components tensor field). Vectorial
contributions are present at the lowest orders of cosmological perturbations but it is well known
that they vanish in the early Universe and cannot be produced during the inflationary era at the
first order of the cosmological perturbations [23, 92]. Tensorial perturbations correspond to
gravitational waves, so their contribution is negligible as well. Therefore, the remaining two
scalars are the main contribution to the inhomogeneities at first order in the cosmological per-
turbations. Such scalars, known as Bardeen potentials, arise as the gravitational source on the
Newtonian limit. As stated before, an observer in the Newtonian frame is blind against the
expansion while the peculiar velocity of the objects moving around (or velocity field, if a fluid
description is preferred) transforms like a pure rotational vector field. The assumption of a
vanishing anisotropic stress tensors on the local energy momentum tensor leads to the equality
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between Bardeen potentials, leaving just one Bardeen potential as the single degree of freedom
at the first order approach. This potential is usually named as the gravitational potential since
it coincides with Newtonian gravity which satisfies the Poisson equation [23, 92].

Depending on the evolution of the chosen model, the distribution of matter could be different
in such a way that the imprints left are distinguishable. The obtained results are compared with
the observational data where statistical methods tell us how close is the prediction from the
observed Universe. Therefore, the flourishing new models dealing with the late-time accelera-
tion brings, in turn, the mandatory work of constraining the model parameters and a detailed
analysis of the perturbations. Nevertheless, while the perturbations of the models inducing a BR
have been extensively studied, this is not the case of the models inducing a LR or a LSBR. A BR
inducing model could simply be achieved assuming a DE fluid with an effective EoS parameter
constant and below —1. Several observational fits have been made within this setup, as is the
case of the so called wCDM models [118].

Beside the background parameters, the induced perturbations can be used in order to get the
best values for the parameters of the model. In addition, the initial conditions is often a dis-
cussed issue. What is known is that most models present a very low dependence with respect to
the initial conditions, this fact could be a hint of the existence of attractors which, independetly
of the choice of the initial conditions, drive the Universe towards the same stage at present time
[24, 47, 93-98]. There are several approaches to describe the perturbations in a DE dominated
regime. For example, the DE perturbations can be neglected since they are very small in com-
parison with matter induced inhomogeneities [88-91]. The strategy consists in computing the
observable quantities as for example, the matter power spectrum and the growth rate. This
pair provide useful data about the distribution of matter. Unfortunately, in most of the cases
the imprints of different DE models on such observables are insignificant. Consequently, im-
portant efforts have been made to improve the accuracy of the observations, particularly, on
scrutinising the DE sector as it is the case of the upcoming Euclid mission [99, 100].

Special emphasis has been put into constraining the EoS parameter of DE because, at the end,
it determines the dynamics of the unknown energy source responsible of the recent speed up.
Nevertheless, in addition to the EoS parameter, there is another important parameter that plays
a key role on the perturbation dynamics: The squared speed of sound, ¢2, which is defined as the
variation of the pressure over the variation of the energy density, ¢2 = §p/dp. For fluids, with
a negative EoS parameter, it is recommendable to decompose the pressure on its adiabatic and
non-adiabatic contributions [16, 101], giving rise to a couple of new parameters known as the
adiabatic squared speed of sound, ¢, and the rest-frame squared speed of sound, c2. While the
first one is defined as ¢2 = p//p’ (as far the EoS is well defined), when computing perturbations,
the 2 parameter is regarded as a free parameter which can take any real value from 0 to 1. In
a scalar field interpretation, it is often set equal to one [16, 101]]. However, one of the most
striking problems when dealing with the squared speed of sound lays on defining a well behaved
function. By definition, the squared speed of sound diverge at the phantom crossing. We recall
that for a single scalar field it is impossible to describe at the same time standard and phantom
matter. Moreover, when describing a mixture of standard and phantom matters the effective
squared speed of sound corresponding to the mixture blows up when the total EoS parameter
crosses the phantom barrier, that is, when the EoS parameter pass over the phantom bisection,
wet = —1 [21, B9, 102, 103]. In fact, the aforementioned Euclid mission is aimed to measure
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these parameters precisely in order to get an accurate view of the dark sector [99, 100, 104].

The strategy followed in our perturbation analysis consists into describing a Universe filled with
radiation, matter and a DE fluid with a well defined EoS parameter from the radiation dominated
epoch to the far future. The motivation of imposing a DE existence at small scales, even if its
presence is completely negligible, is supported by the need of fixing the initial conditions when
computing the cosmological perturbations of the model. The adiabatic conditions are presumed
to be satisfied at the beginning, i.e. far enough to be at a completely radiation dominated era
but detached from the early inflationary agesﬁ.

Bearing in mind that each separated component introduces two independent variables; the
matter density contrast and the peculiar velocity of the corresponding fluid, we therefore build
a set of six dynamical equations coming from the conservation equations. This means that the
problem needs up to six initial conditions. We assume adiabatic conditions between the different
components [23, 92]. These conditions, together with some approximations, conform the set of
equations establishing the initial values of the different components. Using numerical methods,
we estimate the matter power spectrum and the fog growth rate. The results are confronted
with the observations, more precisely with the results for the ACDM model, as a guidance,
whereby deviations with respect to other models are obtained [[105-107].

1.1.5 Beyond Einstein’s GR: modified theories of gravity

The possibility of modifying Einstein’s GR at large scales is attractive from a theoretical point of
view provided that it can explain the late-time acceleration as it can explain the early inflation-
ary era through Starobinsky model [108]. Some of the aforementioned cosmological singularities
have been found on modified gravity models as is the case of the BR in [109-111]] LR in [68, 112-
116] and the LSBR in [[117].

However, at present time, the description of the current Universe concerning small scales, GR
has shown to be the best approach (without any modification). Since the birth of cosmology with
Einstein’s GR, several tests have been performed in order to check the reliability of the theory.
During decades, different experiments have shown the solidity of GR improving the results and
increasing the accuracy more and more. Currently, GR has passed successfully several tests with
a significant accuracy at scales up to the solar system [[118-120].

Faced with the robustness of the theory, there is no choice unless to conclude that in case of
existing a deviation from GR at present cosmic time, it should be at very large scales. One could
expect that in the upcoming years GR will be proved to be correct at larger scales. In this sense,
we will consider GR as a fundamental law that governs the nature of the cosmos, while modified
theories of gravity, although interesting from the point of view that they could explain the late-
time acceleration, have not been verified fully and they constitute a set of approaches only
relevant at very large scales. Therefore, we will focus on the original GR theory regarding most
of modified theories of gravity outside the scope of this thesis. Nevertheless, some approaches

In the very early epochs, let us say, like the inflationary era, some of the most dramatic effects should
be taken into account as could be for example, quantum effects and particle creation. We stand far away
from such a phase of the Universe but inside enough a radiation dominated epoch where the chosen initial
conditions are imposed.
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like the so called EiBI theory will be handled later on, mostly, motivated to address the quantum
realm.

Regarding the classical scope of the EiBI theory, this approach is based first, on Eddington sug-
gestion of a functional where the connection is the main gravitational field [121]. As a result
of this theory, an alternative metric emerges, the so called “auxiliary metric”. The vacuum
solutions are equivalent to those obtained from the Hilbert-Einstein action [122]. Second in
the EiBI gravity, a Born-Infeld like structure Lagrangian is suggested [[123, 124]. In this way, for
small values of the Ricci scalar the Einstein’s functional is recovered while for large values of the
Ricci scalar the action approaches Eddington’s action [122]. Despite the success of Eddington’s
approach, the theory is incomplete since it does not include the matter fields [122]. In most of
the approaches a minimal coupling is considered, however, there have been several suggestions
for a metric matter coupling beside the minimal way [125-127]. The theory presents interesting
features. On the one hand, the merging auxiliary metric could absorb the singularities arising
in the true metric, in such a way that those abrupt events prevalent in GR could be avoided in a
natural way. The issue of cosmological singularities on a EiBl context have been deeply studied
in [128-131], where the authors address the quantum analysis close to some of the most known
singularities. On the other hand, within this approach some of the solutions point to a minimum
size of the Universe, which plays an important role in introducing bouncing solutions on the EiBI
context [[132, 133].

The perturbations induced within the framework of the EiBl theory were analysed in detail
in [134-137]. In addition, it has been recently shown that the singularities on the auxiliary
metrics are related with instabilities on the true metric at the perturbative level [138]. However,
quantum effects might smooth those instabilities [139]. In addition, it has been shown that
some of the models can be observationally constrained and tested at solar system scales or in
the vicinity of compact stars [135, 136, 140-146].

1.2 The quantum Universe

Paying attention to the efforts done to shed some light on the dark sector of the Universe one
could figure out the scientific significance, and not least, the possible technological develop-
ment behind the mysterious essence that drives the cosmos. The discovery of an accelerated
Universe, and the novel questions related with it, has become the problem of the century. For
sure those that will solve this problem will write a new chapter in history, opening the doors for
the entire Humanity to a new age of scientific progress. This does not mean however, that all
questions will be answered. It is widely assumed that a phantom dominated Universe will most
likely face a singularity or an abrupt event, where all the bound structures will unavoidably
ripped apart at a finite future cosmic time. Sooner or later, all the Universe as we know it will
end in a cosmic doomsday. This scenario could lead to a second quantum era, understanding the
first quantum era as the scenario in which a singularity launched the Universe at the beginning,
i.e. The Big Bang. It is clear that future singularities tell us about the end of the Universe rather
than its origin. In both singular events, quantum effects are expected to dominate the dynamics
and therefore, a classical description would not be enough to describe suitably such a Universe.

While we have so far focused on a classical approach to describe an accelerated Universe,
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a quantum point of view will be brought into the discussion. The discovery of an accelerated
Universe and, in turn, the possibility of an open range of future singularities implies the need of a
Quantum Cosmology (QC) theory more imperative than ever. The main motivation in considering
a quantum point of view consists on solving, or at least alleviate, the singularities present in
GR. The hope is that a consistent theory of QC should, in principle, avoid such abrupt events by
means of quantum phenomena.

1.2.1 Quantum cosmology: from the classical scope to the quantum realm

The idea of handling the Universe as a whole is inspiring from a quantum point of view. If it
is possible to apply quantum mechanics (QM) to every system with a well defined Hamiltonian,
it should be possible to apply QM to the whole Universe as well, provided of course, by a well
defined Hilbert space wherein the wave functions, ¥,,, represent the eigenvectors with their
corresponding eigenvalues, FE,, that set the energy levels. The problem looks simple at first
glance but nowadays represents one the most difficult hurdle to deal with. One main difficulty
consists on how to address the variable of time. In GR the time is just a metric variable, as it
could be, for example, the position. However, in QM theory the position is an operator while
time is regarded as an external and absolute variable on which all the rest of the observables
depend. Hence, the question on how to deal with time is an important question that demands
a suitable answer. In order to give an appropriate approach to this inquiry many attempts have
been carried [147-150]. However, so far there is not a fully consistent quantum theory of gravity.
Therefore, it will be amazing to setup a robust quantum theory that unify all the forces in the
Universe. It would be, at the end, the theory of everything, the philosopher’s stone enabling us
to understand how the whole Universe works from the microscopic realm to the global scope.
That is the reason for searching stubbornly such a physical theory.

As already mentioned, we have not yet a suitable approach to handle appropriately cosmology
according to QM, that is, we did not find yet the correct principles to address in a consistent
way the framework of QC. However, there are some approaches that give us some hints on how
to proceed [151-153]. Nowadays, there are three important approaches to tackle GR within a
quantum scope: (i) string theory, (ii) loop quantum cosmology and (iii) WDW equation. The first
approach considers the point like particles as vibrating strings [154-164]. The second approach
suggests a space-time metric chained by a spin network at microscopic scales (up to the Planck
length) [165-175]. The third one promotes the Hamiltonian constraints through metric variables,
where time is just taken as a metric variable as in GR [[176-183].

1.2.2 The quantum approach: the WDW equation

The objective of this thesis is to work on the third approach, i.e. WDW equation. The WDW
equation is the cosmological analogous to the Schrodinger equation in QM. It was first suggested
by Bryce DeWitt in 1967 as an approach for quantising gravity on the basis of a canonical formu-
lation of gravity [176] and inspired on the quantisation techniques of Hamiltonian dynamics by
Paul Dirac [[184]. The Hamiltonian and momentum constraints play an essential role here. First,
the Hamiltonian is obtained starting from the Lagrangian by the usual Legendre transformations
of classical mechanics. The Lagrangian in turn, comes from a physically motivated action within
a particular theory. The transition from classical to quantum realm consists in promoting the
conjugate momenta as operators acting on a set of wave functions, where the latter are the

11
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solutions to the WDW equation. The dynamics is obtained by means of a vanishing Hamilto-
nian [[151, 152, 176] and ultimately, the choice of a factor ordering completely determines the
shape of the wave function. There is not a single way to address the later procedure and one
has the free choice to adopt a particular ordering. Hence, the investigated models should be
taken with caution since they lead to different results depending on the chosen ordering, so we
should understand those methods more as a reliable approach rather than a consistent theory.
In this sense, it is often preferred the Laplace-Beltrami (LB) operator, for the reason that it
leads to a kinetic term invariant under transformations of the configuration space as it is the
case of Srchodinger equation in QM [[151]. Finally, the DW boundary condition is imposed, which
requires that the wave function should vanish at singular regions (as it is the case of an infinite
potential wall on QM) [[151], 152].

As an initial example, the first action to be addressed would be the Hilbert-Einstein action.
Taking a FLRW metric background, one could deduce that the scale factor is the only degree
of freedom. The underlying interpretation is that the scale factor plays the role of time, so it
indirectly suggests at least, a second degree of freedom. For example, incorporating different
scalar fields enrich the variables of the phase space dimension where the wave function spreads,
together with the subsequent quantum phenomena as for example, tunnelling effects across
classically forbidden regions. Therefore,the WDW equation could be understood as a canonical
approach to quantum gravity rather than a closed physical theory. So one could figure out that
we are dealing with a rather simple description by means of a toy model. Nevertheless and not
by accident, as a first approach it is shown to be successful enough to avoid those singularities
arising in several DE models and modified theories of gravity. Therefore, those results can be
interpreted as valuable hints of singularity avoidance within a possible framework of QC theory
instead as a proof in itself.

In the present thesis, we have followed the quantum analysis based on WDW equation for a
FLRW Universe and applied over those purely phantom-matter induced singularities (read Big
Rip, Little Rip and Little Sibling of the Big Rip). The target consists in achieving a solution which
also fulfils with the DW boundary conditions, that is, the wave function vanishes when reaching
the abrupt event. For those descriptions involving more variables than the scale factor as the
single degree of freedom (for example by incorporating a scalar field), a Born-Oppenheimer (BO)
approximation simplifies quite the total differential equation. At the beginning, this approxi-
mation was motivated to solve multi-atomic systems like molecules. Its cosmological analogous
has shown to be valid by neglecting the back reaction of the matter fields on the gravitational
part [185], that is, the matter fields change faster than the gravitational fields do, so the for-
mer ones are considered as the fast degrees of freedom while the latter are regarded as slow
degrees of freedom [151, 185-187].

More generally, given an action with an appropriate boundary term, the Lagrangian and the con-
jugate momenta (together with the Hamiltonian) are completely defined. So the WDW equation
could be applied to any system with a well defined action or at least, with a consistent Hamil-
tonian. On this sense some modified theories of gravity have gained some attention, like the so
called EiBI gravity.

The EiBI theory has shown to be an interesting alternative that has gained a lot of attention on
the last decade. Rather than its origin and modifications, we have mainly focused on the quan-
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tum analysis of those abrupt events induced by genuine phantom models within the framework
of WDW equation [188, 189]. In addition, we have contemplated tensorial instabilities in [[139],
where our quantum analysis suggest that those instabilities are removed. In this part of the
thesis, we have analysed in deep the models which respond to genuinely phantom paradigms
i.e. a phantom type of matter is present.

1.3 Outline of the present thesis

The thesis is divided in two main parts. First, the classical part, where the subject of cos-
mological perturbations is addressed. Second, the quantum part, where the avoidance of DE
singularities is tackled. Therefore the outline of this work runs as follows: On the one hand,
the classical part holds the chapters @-6. In chapter [, we present the background of three
genuine phantom models, coined as model A, model B and model C. In addition, we introduce
the first order linear perturbations and the computational methods used in the present thesis
to calculate the perturbations. In chapter f§, we present the results of the perturbations for
the three phantom models together with the predicted observational quantities as the matter
power spectrum and the fog growth rate. We compare the DE models and try to find footprints
that could allow us to distinguish between them. In addition, we compute the perturbations for
the widely accepted ACDM model as well, in order to use it as a standard model to measure the
deviations of the DE models. In chapter H, we constrain observationally the model parameters
of those phantom DE models using, by consistency, the same dataset. Here, we compute the
relevant parameters involved in the ACDM paradigm as well, in order to use it as a comparison
model. We not only predict the matter power spectrum and the fog growth rate but go be-
yond via the measure of the relative deviations of the perturbation quantities with respect to
ACDM. In chapter H, we compare two DE model with a constant EoS parameter: barely deviating
from the ACDM model, one corresponds to a standard fluid while the other is a phantom fluid.
Motivated by the previous works, we focus on the far future where the gravitational potential
could switches the sign depending if a standard or a phantom model is chosen. In chapter B, we
compute all the perturbation variables when varying the effective speed of sound parameter,
¢, from 0 to 1. In order to find the footprints induced by different models with varying cZ
parameter, we compute the deviations with respect to c2, = 1 of the main observational quan-
tities as the matter power spectrum and the fog growth rate. As in the previous chapter, we
focus on the far future and study how the ¢Z, parameter affects the gravitational potential sign
switch.

On the other hand, the quantum part holds the chapters @-f13. In chapter fl, we introduce the
WDW equation and derive the quantum Hamiltonian considering a DE fluid driven by i) a perfect
fluid and ii) by a scalar field. In chapter 8, we study the Holographic Ricci DE (HRDE) model,
which it is effectively described by a DE content with a constant EoS parameter below —1 and
therefore, induces a BR singularity. Then, by means of the WDW equation we get the wave
function fulfilling the DW boundary condition. In chapter @, we not only study the classical be-
haviour of a DE scalar field leading the Universe to a LR abrupt event, but we study the quantum
avoidance in the context of the WDW equation. We have made use of the BO approximation
and obtained the solution to the total wave function. We have found vanishing solutions at the
vicinity of the LR abrupt event, fulfilling in this way the DW boundary condition. In chapter [id,
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we proceed in the same way as in the previous chapters and try to find a wave function of the
Universe vanishing at the vicinity of the LS abrupt event. Here, we represent the DE content
by i) a perfect fluid and ii) by a scalar field. In addition, we have made use of different factor
orderings and obtained the resulting wave function. In chapter [1, we start from the action
suggested by the EiBl theory, which considers the connection and the metric separated fields.
The DE content is described by two type of models leading the Universe to the abrupt events
of LR and LS. We apply a quantum geometrodynamical approach by performing an appropriate
Hamiltonian, where the latter is derived from the Lagrangian by the well known Legendre trans-
formations. Then, we study in the context of WDW equation the quantum avoidance of such
abrupt events, i.e. the fulfillment of the DW boundary condition, by considering two differ-
ent factor orderings. In addition, we compute the expected value of the auxiliary scale factor
proving the avoidance of the LR and LS abrupt events. In chapter [12, we follow the path of the
previous work but in this case, we consider a more fundamental degree of freedom correspond-
ing to a phantom scalar field which, in turn, induces a BR singularity at large scales. In addition,
we include an analysis of the constraints of the system. Once again, the quantisation is done
in the context of the WDW equation where the conjugate momenta acts like operators over the
wave function via a factor ordering choice. On the other hand, we make use of some approxima-
tions like the BO approximation. In chapter [13, like in the previous works, we perform a study
of the quantum avoidance in the context of WDW equation and within the EiBI theory. However,
in contrast to the previous chapters, we focus on the Big Bang primordial singularity rather than
on future ones. We study the cases of a Universe filled by a perfect fluid or a scalar field, where
in addition, we take into account the branch of solutions for a negative coupling constant, x.
Once we get the wave function, we check if the DW boundary condition is satisfied. This will
ensure that the tensorial instabilities are prevented from a quantum point of view. Finally, in
chapter [14, we present our main conclusions. In addition, to complete the thesis, we include
the appendix |, where we get the full expression for the statefinders parameters, appendix B,
where we show detailed calculations of the perturbations, and appendix [d, where we perform
the main approximations and their corresponding justification carried in the quantum part of
the present thesis.
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2

Background models and first order perturbations

No one is dumb who is curious. The people who don’t ask questions remain clueless
throughout their lives
- Neil deGrasse Tyson

2.1 introduction

Cosmology has made a long way on the last years with the impressive amount of observations
and theoretical advancements. Yet, it still faces many challenging questions like the fundamen-
tal cause of the recent acceleration of the Universe, which was found with SNela observations
almost twenty years ago [10, [11], and afterwards confirmed by several types of cosmological
and astrophysical observations (see for example [[13] for a recent account on this issue). The
simplest approach which is in agreement with the current observations is to assume a cosmo-
logical constant that started recently to dominate the late-time energy density budget of the
Universe [14]. But then the issues of why is it so tiny? and why this cosmological constant has
begun to be important only right now? have to be addressed as well (see for example: [190-
193]). Another, equally important, issue is what happens if the cosmological constant is not
quite constant? This has led to a great interest in exploring other possible scenarios to explain
the late-time acceleration of the cosmos by invoking either an additional matter component
in the Universe, which we name DE [22, 23, 194], or by modifying appropriately the laws of
gravity (for a recent account on this issue see, for example, [195, 196] and the extensive list of
references provided therein).

We will focus on the third question: what happens if the cosmological constant is not quite
constant? More precisely, we will address this question on the framework of the cosmological
perturbations and for some DE models whose equations of state; i.e., the ratio between its
pressure and its energy density, deviate slightly from the one corresponding to a cosmological
constantl. Before proceeding let us remind the following well known fact: if the EoS parameter
of DE deviates from —1, the Universe fate might be quite different from the one corresponding
to an empty de Sitter Universe. In particular, if the EoS parameter of DE is smaller than —1, i.e.,
DE is apparently (at least from an effective point of view) not fulfilling the null energy condition,
several future singularities or abrupt events might correspond to the cosmic doomsday of the
Universe. Amazingly, some of these models are in accordance with current data [85].

On the other hand, the theory of cosmological perturbations is a cornerstone of nowadays cos-
mology. It provides us with a theoretical framework which allows us to determine, for example,
the CMB predicted from an early inflationary era or compute the matter power spectrum and
the growth rate of matter in order to make a comparison with the observational results. In

IThis chapter corresponds mainly to our publication [[105]
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addition, it allows us to compute the evolution and possible clustering of DE perturbations and
investigate their effect on the growth of DM. Even though no perturbations of DE have so far
been detected, and are in fact absent in the ACDM model, the existence of a great number of
experiments aiming to probe the physics of the late-Universe, like the DE Survey [197] and the
Euclid mission [[100], suggests that a thorough study and characterisation of such effects can be
proven to be important to understand the nature of this mysterious fluid that drives the accel-
eration of the Universe. With this mindset, on this work we analyse the perturbative effects of
phantom DE models i and look for observational fingerprints that could be used as a mean to
favour or disregard such models.

There are three genuinely phantom DE fates; i.e., which happens if and only if a phantom DE
component is present: BR [28-35], LR [47, b5, b9, 64-67, 201] and LS [47, 55, 59, 64-67, 201].

We will consider three models which share in common the fact that in the (far) future all the
structures in the Universe would be ripped apart in a finite cosmic time [66, 69]. The classical
singular asymptotic behaviour of these DE models has led us to a quantum cosmological analysis
of these setups [42, 44, 70, 202, 203]. In these works, it was concluded that once the Universe
enters in a genuinely quantum phase; i.e., where coherence and entanglement effects are
important, the Universe would evade a doomsday a la rip. This applies even to the smoother
version of these singular behaviours corresponding to a LS [202] (see also [48, b1, 57, 63, 204]).

We will as well present the equations that describe the cosmological perturbations of these
models. the numerical results will be shown in the next chapter.

2.2 Background models

In this section, we briefly review the different models that, at the background level, lead to
distinct future cosmological abrupt events: (i) BR, (ii) LR and (iii) LS. For each of these models,
we begin by presenting an EoS for DE that can originate such genuinely phantom abrupt events
in the future, while ensuring that the background evolution follows closely that of ACDM until
the present time. These models should be interpreted as an effective description of a more
fundamental field, therefore, even though at the background level they might be defined by a
barotropic fluid, the same should not be assumed at the perturbative level. In fact, as we will
discuss below, in order to avoid non-physical instabilities we will explicitly break the adiabaticity
of the DE perturbations. Bearing in mind, from now on, the approach that we will follow, we
next describe the effective background models that we will contemplate.

Let us consider a homogeneous and isotropic Universe described by the Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric:

dr?

2 _ 32 2
ds® = —dt* + a” (t) T 72

+72d6? + r? sin? 0dp? | | (2.1)

where a(t) is the scale factor and ¥ = —1,0,1 for open, flat and closed spatial geometry,
respectively. We will focus on the spatially flat case (k = 0), for which the Friedmann and

"There are some promising phantom DE models [{198, 199] which are free from ghosts and gradient
instabilities (see also [200]).
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Raychaudhuri equations read

=5, 2.2)
3
H=—47G (p+p) . (2.3)

Here, H is the Hubble parameter, a dot represents a derivative with respect to the cosmic time,
t, G is the cosmological constant and p and p are the total energy density and pressure of all the
matter content of the Universe. In this work, and as we will focus on the late-Universe we will
consider the Universe to be filled by radiation, dust (cold DM and baryons), and DE. As such, we
can decompose p and p as

p=pr+pm+ps and  p=pr+pm+pd, (2.4)

where pr, pm, and pq correspond to the energy density of radiation, matter (cold DM and baryons)
and DE. Similarly, pr, pm, and p4 are the pressure of radiation (pr = 1/3p,), matter (pm = 0),
and DE (pq = wgpq). We will not take into account interactions between the individual matter
components. Consequently, each fluid A = r,m,d verifies the usual conservation equation:

pa+3H (pa+pa)=0. (2.5)

For latter convenience, we define the fractional energy density of the individual mater compo-
nents as

0= .= o =7 (2.6)

and the individual parameters of EoS

1
o up=tmao, we = (2.7)

Wr = )
' pr 3 Pm Pd

The DE parameter of EoS, wq, will be fixed later for each individual model. From (2.4) and (2.6)
we can obtain the total parameter of EoS, w, from the individual w4 as:

= Qr'l.Ur + Qm'l.Um + ded . (2.8)

w =

SRRS

We have considered the case of a spatially flat Universe in agreement with observations [[15].
We assume that each component is independently conserved as shown in (2.5). In consequence,
the Friedman equation can be written as

o2 — Hg |:Qr0af3(1+wr) + Qmoa—3(1+wm) + Qo fj (a)} (2.9)

where H is the Hubble parameter, « is the scale factor and the parameters €2, (i=r,m,d) are the
current fractional energy densities of the components. The subindex 0 denotes the values at
present time. From now on, we will adopt ag = 1. In order to avoid repetitions on the notation,
the scale factor will be denoted simply by a. While the EoS parameters for radiation (wr = 1/3)
and matter (wy = 0) are constant, it can be scale dependent in the case of DE. The contribution
of DE to the total energy budget can be expressed by means of the dimensionless function fj (a),
where the subindex j refers to the selected model (j=A,B,C).
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The set of parameters corresponding to each models are fixed, mainly, by using Planck data
[13, 15]. The necessary parameters to totally describe the background models are: The current
fractional energy densities of radiation and matter, ;o and Q,o; the current Hubble parameter,
H,. While to get the perturbations we need: The root mean square mass fluctuations amplitude
in spheres of size 8 h_lMpc, og; the amplitude of the scalar for single field inflation, A,, and the
spectral index, n,. In different works the criteria for fixing these model parameters is a little
bit different, and therefore, the numerical value of those parameters is slightly different in the
subsequent works. However, as the selected parameters are not very different, the expected
differences are so small that we expect no large deviations on the perturbations.

We understand that the difference between background models mostly lie on the fj (a) function,
while we expect to find footprints of different DE models, (i) at present, in such a way that it
could be useful to distinguish between different DE models, and (ii), in the far future, where
such a deviation between DE models becomes larger and arises some features of each particular
DE model.

2.2.1 BR singularity: model A

A BR singularity [28-B5] can be induced by a perfect fluid whose EoS parameter, wyq, is constant
and smaller than —1:

Pd = Wdpd, (2.10)

Solving the conservation equation we get the expression for the corresponding f, (a) function in

2.9
fa(a) = a=30Fwa), 2.11)

Finally, the asymptotic evolution of the scale factor is

2
3(1+wg)

a(t) ~ | 3 1+ wal Hoy/Dg (15— 1) 2.12)

where t, corresponds to the time where the singularity would take place. In this kind of future
singularity, the scale factor, the Hubble parameter and its cosmic time derivatives blow up at a
finite cosmic time t = ¢,.

2.2.2 LR abrupt event: model B

The case of a LR [47, b5, 59, 64-67, 201] can be caused by a perfect fluid whose EoS fulfils
[47, b5]

pd = —pd — By/pd, (2.13)

where B is a positive constant whose dimensions are those of an inverse squared length. This
model can be understood as a deviation of the widely known ACDM paradigm. Notice that for
a vanishing parameter B the ACDM model is recovered. Solving the conservation equation, we
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get the corresponding f3 (a) function for model B [64, 201],

3 [Qp
1+§ %ln(a)

where B is reabsorbed in the dimensionless parameter Qg = [(87G) / (3Hg)] B2. This class of
abrupt event suffers from all the divergences present in a BR singularity but driven at an infinite
cosmic time. Therefore, we consider a LR less harming than a BR. Finally, the asymptotic future
evolution of the scale factor can be written as [66]

a(t) ~ exp [exp (g\/STBHOt)] . (2.15)

2

fo(a) = ; (2.14)

In this kind of abrupt event, the scale factor, the Hubble parameter and its cosmic time deriva-
tives blow up at an infinite cosmic time.

2.2.3 LS abrupt event: model C

The LS can be induced by a perfect fluid whose EoS deviates from that of a cosmological constant
as [69, 71, 205]

C

Pa=—ps— 3, (2.16)
where C is a positive constant. The smaller is C, the closer is model C to ACDM. Solving the

conservation equation we get the corresponding expression of fc (a) for this model [69],

fc(a)zl—i-&ln(a), (2.17)
Qdo

where C is a positive constant and whose dimensions are length to the fourth power. It can
be absorbed in the new parameter ¢ = [(87G) / (3H3)] C. Model C induces the abrupt event
known as LS. In this type of abrupt event, the scale factor and the Hubble parameter blow up
at infinite cosmic time. However, the cosmic time derivative of the Hubble parameter remains
constant. We regard the LS as the less harming abrupt event among those induced by phantom
scenarios. Finally, the future asymptotic growth of the scale factor with respect to the cosmic
time can be written as [69]

a (t) ~ exp <chH02t2> ) (2.18)

2.2.4 Comparing these models

Aside from the definition of the BR, LR and LS given in the introduction, a few words are in
order to compare the models we analyse in this thesis from a background point of view. All the
models presented above can be seen as a deviation from ACDM which can be recovered by setting
wg = —1 on the first model, B = 0 on the second model and C = 0 on the third model. Despite
this apparent similarity with ACDM, they are characterised by a DE EoS satisfying w < —1, so
they correspond to phantom models whose end state is drastically different from the de Sitter
behaviour of a cosmological constant dominated Universe. In all these cases, the Universe is not
only accelerating but super accelerating asymptotically. This fact leads the universe unavoidably
to unzip itself; i.e., all the bound structures within it will be destroyed. As can be seen from the
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asymptotic expansion of the scale factor a(t) in (2.159), the BR is a true singularity as it would
take place at a finite cosmic time from now. In addition, the geodesics cannot be extended
beyond that point [63]. On the other hand, the LR is more virulent than the LS as can be seen
from (2.15) and (2.18), although both of them would happen at an infinite time from now.

In a FLRW background a phantom perfect fluid can in principle be described through a phantom
scalar field, i.e., a minimally coupled scalar field with the opposite sign for its kinetic term
[3d]. In particular, this statement applies to the models we are considering. While a detailed
study of this equivalence is not the purpose of this manuscript, in the Appendix B.7, we briefly
explore the phantom scalar field model that could describe the phantom models (A), (B) and

().

We will next analyse the behaviour of these models within the standard framework for the cos-
mological perturbations. As a first approach and in the rest of the work, we will disregard any
anisotropic stress tensor and consider that the DE perturbations are non-adiabatic. As we will
show, the second supposition is crucial to get a right description of the matter power spectrum.
In addition, and as a matter of simplicity, the non-abiabaticity will be described within a phe-
nomenological approach rather than in a more fundamental scope able to describe unequivocally
and realistically the speed of sound. This issue is discussed in Section 2.3.3.

2.3 Linear cosmological perturbations

In this section, we review the theory of linear perturbations for multi-fluid components. We
choose the Newtonian gauge and work with the corresponding gauge invariant perturbation
quantities. For a FLRW Universe, the perturbed line element is [92, 206]

ds® = a® [- (14 2®) dn* + (1 — 2V) §;;da*da’ ] (2.19)

where 7 is the comoving time, dn = (1/a)dt, a latin index denote purely spatial coordinates,
and ¥(n, z*) and ®(n, 2*) are the gauge invariant Bardeen potentials [207]. The transformation
rule {} = (1/a){}’, where a prime represents a derivative with respect to the conformal time,
allows us to write H and H in terms of the conformal Hubble parameter, H = a'/a, and its
derivative, H’, as

H:lﬂ, H:%(H/—HQ). (2.20)

a a

Drawing from the line element (B.2), the inverse of the metric tensor can be obtained applying a
Taylor expansion up to first order. Once we define the Christoffel symbols, we can compute the
perturbation of the Ricci tensor, §R,,,,, and of the curvature scalar, R, in order to obtain the
perturbed Einstein tensor 6G,,, = 0R,, — 30%5R. In addition, the perturbed Einstein equations
read

SGH, = 8TGST*, | (2.21)

where §T*, is the linear perturbation of the total energy momentum tensor. The individual
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components of (2.21) can be written as [92, 206]

3H (V' + ®H) — V2V = 4nGa?5TY,
— (V' +HD) ; = 4nGa’0TY,

" / / ! 2 2 2 4rCG 2 L (222)
U+ 2H (' +20') + 20 (2H' + H )<I>+§V (®—U) = — ¢ 5T,
(® - 0),; = 87Ga?sT", (i #7j).

The 6T*, on the right hand side (rhs) of (2.21) is the sum of the perturbations of the energy
momentum tensor of radiation, 67}, non-relativistic matter (cold DM and baryons), §7},, and
DE, 6T} ,. For each fluid, we can write the individual components of 67"}, (A =r,m,d) as

5T20 =—4pa,
§Tho=—(p+p)d'va,
§T3; =(p+p) Biva,
6T} ; = Opa 85 + 114 5,

(2.23)

where 6p4, dpa, va, and Hf4j are, respectively, the perturbation of the energy density, the
perturbation of the pressure, the peculiar velocity potential and the anisotropic stress tensor of
the fluid A. As a first approximation, we consider that none of the fluids introduce anisotropies
at the linear level of scalar perturbations. Therefore, from this point onward we will set Hf;‘j =
0. From (2.22), we find that this implies the equality of the metric potentials ¥ = ®. Replacing
this equality and (2.23) in the first three equations of (2.22)), we obtain [92, 206]

3H (HY + U') — V2V = —4xGa’dp,
V2 (HT + 0') = —47Ga® (p + p) Vv, (2.24)
U+ 3HY + W (2H + H?) = 4rGa®bp,
where we have introduced the total energy density perturbation, dp, total pressure perturba-

tion, dp, and total velocity potential, v. These can be written in terms of the individual fluid
variables in (2.23) through the relations

dp= Y dpa, Gp= ) dpa,  v= ¥, Qv (2.25)
A A

Following [16, 101], we decompose the pressure perturbation astt

0pa = ea0pa — 3H (L +wa) (24 — cha) pava, (2.26)
where
dpa P
===, =4 (2.27)
4 opa r.f. 4 p;&

are, respectively, the effective squared speed of sound, defined in the rest frame (r.f.), of the
fluid and the adiabatic speed of sound. In the following analysis, we will replace the energy
density perturbation §p4 by the fractional energy density perturbation 54 = dpa/pa. The total

The re-derivation of this expression is presented in the Appendix B.5.
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perturbation & can be obtained from (2.25) and reads
5= "25,=3 Quba. (2.28)
a P A
The perturbed conservation equations of the energy-momentum tensor for each fluid read:
V6T, +0Th, Tq, — 0Ty, Th, =0, (2.29)

where JI'}, is the perturbation of the Christoffel symbol and T3, is the background value of
the energy momentum tensor. Using (2.23), (2.26), (2.27), and (2.28), we can compute the
temporal and spatial components of (2.29) and obtain the evolution equations for the fractional
energy density perturbation 64 and the velocity potential v4

6 =3H (wa—c24) 04+ (L+wa) [IH? (24— c2y) — V] va+3(1+wa) TV,
2 (2.30)
vy = (324 — 1) Hoa — 1:2%5,4—\1!.

In summary, from the perturbed Einstein equation, we obtain (B.40) which relate the metric
perturbations to the total perturbed matter quantities. On the other hand, from the perturbed
conservation equations we obtain (2.30) which dictate the dynamics for the individual energy
density and velocity perturbations. In order to study the evolution of the linear perturbations,
we conveniently apply a Fourier transformation, where we decompose a given function (7, x)
into its Fourier components v, (n) as
1 —ik-x 3
wlnx) = 75 [ ) dk. 2.31)
(2m)

Therefore, for practical purposes, we make the substitution V? — —k? in all the evolution
equations. On the other hand for our numerical calculations, we will apply the following change
of variable:

r=ln), {={LH O'=0."+LH 2.32)

where the subscript « denotes a derivative with respect to x. By applying the Fourier decom-
position (B.47) and the transformation (B.51) to the sets of equations (B.40) and (2.30), we
obtain the evolution equations for each mode of the energy density and velocity perturbations
of radiation, dust and DE

(2.33)

k2
(3a), = (1 +wq) { {,H +9H (g — czd)} vg + 3%} + 3 (wg — cZq) 04,
1 2y 2
(vd), =% \T1w Sa+ )+ (3cZg—1) vg.
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and for the metric potential

2
q:$+\11<1+ i ):—15,

372 2
U, 4= —%’Hv(l+w) , (2.34)
1 3 0p
Y ——(1 U, — U =—-—.
P [3 2( +3w)} z — W 27

2.3.1 |Initial conditions

Once the system of equations of the perturbed quantities is defined, we need to impose proper
initial conditions in order to compute the cosmological evolution of the perturbations (cf. for
example [208, 209] for a detailed discussion on the initial conditions on DE models). For this
goal, we will take into account the following considerations. First, we assume that at an ini-
tial moment, z ~ 105 (which roughly corresponds to zj,; ~ —14), the Universe is completely
dominated by radiation, so that all relevant quantities of the total matter fluid are those of a
perfect fluid with p = p/3. Secondly, we note that at such moment the wave-length of all the
relevant modes is small when compared with the comoving Hubble parameter (k¥ <« #), i.e.
they are outside the horizon. With these two approximations, we can combine the first and
third equations of (2.34) and obtain a closed evolution equation for the metric potential in the
asymptotic past [23]

U, +30, =0. (2.35)
The dominant solution of this equation is a constant solution ¥;,; = \IJ(:rim)B. Applying this result

to the set of equations (2.34), we find that initially

1
Wini = —§5im‘, (2.36)
Wini & —2HiniVini -

Assuming initial adiabatic conditions, we can relate the initial values of the individual fluid
perturbed variables to the total perturbation in (B.61) through [23, 208, 209]

Oy Om g 4]

— = = . (2.37)
14+ wr 1+ wm 14wy 1+w
This allows us to write the initial values of ¢4 in terms of &, as
3 O ini 3
“Orini = Omini = ———— ~ —0ini , 2.38
4 r,ini m,ini 1+ Wi 4 ini ( )

By imposing the adiabatic condition (B.63) between two fluids A and B on the comoving gauge,
we obtain

0,ini — 3Hini (1 + waini) Va,ini 0B.ini — 3Hini (1 + Wg.ini) VB,ini
= , (2.39)
1+ W A, ini 1+ WA ini

VFor the rest of this section we will denote by Xi the value of a quantity X evaluated at z = xjn;.
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which then leads to the initial values of the peculiar velocities:

Jini
Ur,ini = Um,ini = Ud,ini ~ e (2.40)
mni

We note that the conditions (B.64) and (B.66) coincide with the ones presented in [208] in the
absence of neutrinos. Making use of the linearity of (2.33) and (2.34), we can first compute the
evolution of the perturbation quantities using the initial conditions (B.61), (B.64) and (B.66) for
U;hi = 1 (which implies 6i,j = —2) and then multiply all the solutions obtained by the physical
value of dphys(k), which we will take from the Planck observational fit to single field inflation
[n4]:

ng—1

5phys(k):&rm< i ) 2 k™

3 kpivot

Nlw

(2.41)

Here, A, and n, are defined as the amplitude and spectral index of the primordial inflationary
power spectrum corresponding to a previously selected pivot scale kpivor = 0.05 Mpc~t. We will
consider A, = 2.143 x 109, and n, = 0.9681 in accordance with Planck observational data [[14].

2.3.2 Matter power spectrum and the growth rate

The matter power spectrum describes how galaxies are distributed along the Universe and pro-
vides us with a method to compare theoretical predictions with the observational data. In
the next chapter, we will compute the linear matter power spectrum for each model studied
in section 2.2 and we will try to detect deviations from the predictions of ACDM. The whole
framework presented in this chapter provide us the necessary tools to obtain the aimed results.
Notice, however, that the correct definition of the matter power spectrum uses the fractional
energy density perturbation in the comoving gauge [210, 211|]], while the analysis carried out in
this work has been done in the Newtonian gauge. Using the variables employed in the previous
sections, we can resolve this gauge difference by expressing the matter power spectrum as

(com)|? >
Psm=‘5m‘ ’ = [0m — 3Hom|" - (2.42)

Another method we will use to constrain the models presented in Section .2 is based in com-
puting the growth rate of the matter perturbations for the different models. By definition, the
growth rate of the matter perturbations is given by the formula [88]

~ d(Indm)
/= d(Ina)

(2.43)

For DM-DE models that closely mimic ACDM, it was found that the growth rate at late-time can
be approximated reasonably well by the formula [[19, 212, 213]

=, (2.44)

where v ~ 0.55 for ACDM. The next to leading order of (2.44) can be found in [18].

In this thesis, instead of using any approximated parametrisation, we opt to calculate the evolu-
tion of the growth rate f for each DE model using the full (2.33)-(2.34) and compare the results
with observations. We note, however, that in most cases, the observational data refers not to
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the growth rate f directly, but to the combination fog, where og is the root mean square mass
fluctuation amplitude in spheres of size 8Sh~'Mpc which is used to normalise the matter power
spectrum. This combination has the advantage that it avoids the degeneracy in the parame-
ter space regarding og and the linear bias, b, between the perturbations of DM and density of
galaxies [214]. We calculate the temporal evolution of o5 by the formula [215]

o8 (2, kog) = 05 (0, koy) m , (2.45)
where k,, = 0.125 h Mpc™! is the wave-length of the mode corresponding to distances of
8 h™'Mpc. For each of the DE models considered in this work, we will calculate the evolu-
tion of fos using the numerical solutions of (2.33)-(2.34) and the relations (2.43) and (2.45).
For all the models we use 05(0, k,,) = 0.820 [18] as the present day value of o5. We compare
the results obtained with the available observational data [214, 216-230] to check whether the
predictions of the models are within the observational constraints. Since at the background
level these models are very similar to ACDM till the present time, we expect that the deviations
from ACDM in the evolution of the growth rate to be small.

2.3.3 The speed of sound of DE

So far, in this thesis we have described all the individual matter components as perfect fluids
with a barotropic equations of state p4(pa). Since a barotropic fluid is adiabatic, its effective
and adiabatic squared speeds of sound are the same (cf. (2.27)). While for radiation and matter
such a representation works well, for fluids with negative EoS, in particular for fluids playing
the role of DE, there might be some problems if the squared speed of sound becomes negative,
as this would lead to instabilities at the perturbative level. As a matter of extra-clarification we
discuss in the Appendix B.€ how instabilities at the linear level in perturbations arise in fluids
with a negative adiabatic squared speed of sound. It is therefore necessary to take into account
additional considerations for the DE fluid. To avoid this problem we note that the EoS presented
in the previous section are effective descriptions of some unknown fundamental field. As such,
the barotropic nature of the models at the background level is not necessarily inherited by the
cosmological perturbations. Bearing this in mind, we fix the effective squared speed of sound
of DE, as defined in (2.27), to unity, i.e., in (2.33) we set ¢, = 1, while ¢, is given by (2.27).
We next show the expressions for the adiabatic speed of sound corresponding to the the models
A, B and C, respectively.

A czzwd,
5 1 B
B Co = — <1+2p1/2 ) (2'46)
d
C A =-1

This strategy can be encountered in several works in the literature [[16, 101, 231]] and in cosmo-
logical codes such as CAMB [232] and CLASS [233] in particular when interpreting the DE fluid
as Quintessence. Here, we would like to point out that our choice of ¢?; = 1 is purely phe-
nomenological rather than deduced from a realistic theoretical grounded model. Nevertheless,
as discussed in the Appendix B.7, this choice for %, extends to first order in perturbations the
possibility of mapping the phantom DE fluid to a phantom scalar field.
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On the next chapter, we will solve numerically the cosmological perturbations of the three
models presented in this chapter.

2.3.4 Summary

In the present thesis, we have followed the strategy shown in this chapter to compute the
perturbations. In summary, we first define a background for DE components. The latter should
be a well defined function in the full interval in which we pretend to compute the perturbations.
This interval ranges from well inside the radiation dominated epoch till the far future. We
assume that radiation, matter (Baryonic and DM) and DE are conserved separately. The model
parameters are fixed using different constraint methods. In order to avoid instabilities on the DE
sector, we follow the method of DE pressure decomposition on its adiabatic and non-adiabatic
contributions [16, 101]. Then, we use the Fourier transforms in order to separate the spatial
dependence and get a dynamical set of first order differential equations. Finally, in order to fix
the initial conditions we impose the adiabatic condition in the early Universe where we assume
a Universe completely dominated by radiation.
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3
Perturbations in a genuine phantom Universe

| feel at home in the entire world, wherever there are clouds and birds and human
tears
- Rosa Luxemburg

3.1 Introduction

In this thesis, we will analyse the cosmological perturbations of DE models that induce a BR,
LR or LS. While the background analysis of the phantom DE scenario has been widely analysed,
this has not been the case of its cosmological perturbations [88-90, 103, 234]. In [88-PQ] a
kinematical approach was assumed, i.e., a dependence of the scale factor as a function of the
cosmic time was considered for FLRW Universes with future singularities at a finite cosmic time.
Within this setup and using approximated equations for the growth of the perturbations at late-
time, the authors obtained the DM and DE perturbations [89]. Furthermore, in [88, 90], DE
perturbations are disregarded and only the growth rate of matter perturbations is calculated.
In this chapter, we will rather assume a dynamical model, i.e., we assume a given EoS for DE.
This is the approach employed in Ref [234], where the future behaviour of the linear scalar
perturbations is presented for a type of model that, depending on the value of the parameters,
can lead to a BR or a BF singularity [46]. In our analysis, we use the full theory of linear
perturbation to study how the perturbations of DM and DE, as well as, the gravitational potential
evolve for a range of different scales. Our numerical integrations start from well inside the
radiation era and continue till the far future. In fact, in order to see the behaviour of the
phantom DE models, we extend our numerical calculations till the Universe is roughly ¢!'? times
larger than at present, i.e., roughly z ~ —1. In the perturbative analysis carried out we (i)
disregard any anisotropic stress tensor, (ii) consider the DE perturbations to be non-adiabatic
and (iii) describe this non-adiabaticity within a phenomenological approach for the speed of
sound. On the other hand, we disregard the contribution of neutrinos as a first approach where
we do not use a more advanced Boltzman code such as CAMB [232] or CLASS [233].

The chapter is organised as follows: In Sect. B.2 we briefly present the method to obtain a
numerical value for the model parameters and some other relevant quantities as for instance,
the Hubble parameter and the amplitude and spectral indexes. In Sect. B.3 we present the
numerical results for the models introduced in Sect. .2 (where we have made use of the equa-
tions and initial conditions presented in Sect. 2.3). We show show the evolution of different
perturbed quantities related to DM and DE. We present as well the matter power spectrum for
the different models. We equally constrain these models using several measurements of the
growth rate function, more precisely fos. Finally, in Sect. B.4, we present our conclusions.

IThis chapter corresponds mainly to our publication [[105]
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3.2 method for the model parameter fixing

For the BR model, we fix the free parameters of the model to the best fit in accordance with
Planck data for wCDM model [18]: wq = —1.019, Qmo = 0.306 and Hy, = 68.1 km Mpc 's~!
(please, cf. page 687 of [[14, 18]). For our later numerical calculations and as a guideline
we fix the same values for current Hubble parameter and matter fractional energy density.
However, the value of the parameter Qg and Q)¢ are chosen such that at the start of our numerical
calculations the corresponding EoS parameters is equal to the one given by the model A, i.e.
we (aini) = wg (aini)) = wa. This equality implies that initially the DE perturbations dq4 of the
three models are also equal if the condition (B.64) is imposed. On the other hand, the values
for the amplitude and espectral index are set to be A, = 2.143 x 1072, and n, = 0.9681 in
accordance with Planck observational data [{14].

3.3 Results

In this section, we present and discuss the results obtained for the evolution of the cosmological
perturbations in the three models discussed in Sec .2 that contain distinct future cosmological
abrupt events: BR (model A), LR (model B) and LS (model C). For each of these models, the
evolution of the matter perturbations én,, vm, o, vr, d4, and vq was obtained by numerically
integrating the set of (2.33) after substituting ¥ and ¥, given in (2.34). After carrying this
numerical integration, the gravitational potential ¥ and its derivative ¥, can be obtained from
the first two equations in (2.34). The integration was performed since an initial moment deep
inside the radiation epoch (z ~ 106), when all the relevant modes are outside the horizon, and till
a point in the distant future (z ~ —0.99). At the initial moment, the values of the variables were
fixed according to (B.64), (B.66) and (2.41)). In addition, for each model this integration was
repeated for 200 different modes with wave-numbers ranging from kmin ~ 3.3 x 10~*h Mpc™',
which corresponds to the mode that is exiting the Hubble horizon at the present time, to a
kmax ~ 3.0 x 10~'h Mpc_l. Notice that for k > kmax the validity of the linear perturbation
theory breaks down as non-linear effects start to become dominant in the evolution of the
perturbations. In fact, kmax should be at most 2.0 x 10~'h Mpc™'. On the plots we included
the higher value kmax ~ 3.0 x 10~*h Mpc ™" to amplify visually the effect and evolution on the
largest modes. As we mention in section .2, the cosmological parameters Q0 and H, for all
the three models studied were taken from the recent Planck mission [[14]. While the value of w,
for the model (i) was fixed according to the Planck data for wCDM model [[18], the parameter
Qg of model B and the parameter Q¢ of model C were fixed so that in all models the variable dq4
has the same value at the initial momentll. As such, the results of this section should be viewed
as a first step in obtaining a description of the evolution of the cosmological perturbations in
phantom DE models. A more realistic picture of the imprints of each model will be explored in a
next chapter where a fit of the parameters of the models will be performed using the available
cosmological data.

In figure B.1, we illustrate the evolution of the cosmological perturbations, since the initial
moment and till a point in the future evolution of the Universe. The two top panels show
the evolution (top-left) of the fractional energy densities of DM, é,, and (top-right) of the
gravitational potential, ¥, which has been normalised with respect to its initial value, Ui,

This implies that initially all the models have the same value for the DE EoS.
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Figure 3.1: The top panels of this figure show the evolution of (top-left) the matter perturbation, dm,
and (top-right) the gravitational potential, ¥, the latter being normalised to its initial value ¥y, for
different modes k. All the three models considered present an almost identical behaviour that makes
them indistinguishable from ACDM (such is the case that although we have plotted the results of £>/2 |Om|
and ¥ /Ui, for ACDM, we cannot distinguish those results from the others). The bottom panel shows
the evolution of the perturbation of DE, 44, for the same modes. Here, the differences between the three
models become more noticeable, in particular in the amplitude of the perturbations. In all panels the solid
lines correspond to the model (i), the dotted lines to the model B and the dot-dashed lines to the model
C. Each colour represents a different mode: k = 3.33 x 10~*h Mpc™* (purple), k = 7.93 x 10~*h Mpc™*
(dark blue), k& = 3.50 x 10~3h Mpc™" (light blue), & = 1.54 x 10~2h Mpc™* (green), k = 6.80 x 10~ 2h Mpc ™!
(orange), k = 0.30h Mpc™" (red). All perturbations are represented versus = = log(a/ao) which varies from
values well inside the radiation era (z = —13.81) till the far future (z = 12). The value = = 0 corresponds
to the present time. The dashed vertical line corresponds to the radiation-matter equality while the solid
vertical line represents the equality between DE and matter.

while the bottom panel shows the evolution of the fractional energy densities of DE, 4. In
each panel we identify the results of the model A using solid lines, the results of the model
B using dotted lines and the results of the model C using dot-dashed lines. For each of these
quantities, we plot the results for 6 different wave-numbers: k = 3.33 x 10~*h Mpc~" (purple),
k=7.93x10"*h Mpc ™" (dark blue), k = 3.50 x 10~3h Mpc " (light blue), k¥ = 1.54 x 10~2h Mpc "
(green), k = 6.80 x 1072h Mpc™* (orange), and k& = 0.30h Mpc™* (red). In terms of evolution,
we can distinguish three different behaviours, according to the range of the wave-numbers:

29



Chapter 3. Perturbations in a genuine phantom Universe

“I//\I/ini

qj/\I/ini, B

U /Wi, C

T

Figure 3.2: This Figure shows the evolution of the gravitational potential ¥ for the model A on the top-
panel, for the model B on the middle panel, and for the model C on the bottom panel for the same modes
k shown in B.1. Positive (negative) values of ¥ are indicated with solid (dashed) lines. On all panels the
corresponding behaviour in ACDM model is indicated by a dotted line. While within a ACDM model the
gravitational potential decays exponentially with positive values of x until the asymptotic future, in the
phantom DE models A, B and C ¥ approaches constant negative negative value in the future. The change
in sign of ¥ is scale and model dependent - for a given model it happens first for the larger scales (smaller
k) and for the same mode it happens first for the model A, then for the model B and then for the model C.

o large k: 0.30 hMpc~' (red) and 6.80 x 10~2hMpc—! (orange).
o medium k: 1.54 x 10~2 hMpc—! (green) and 3.50 x 10~3hMpc—! (light blue).
o small k: 7.93 x 10~2 hMpc~! (dark blue) and 3.33 x 10~* hMpc~! (purple).

The top-left panel of figure B.1 shows that the evolution of the matter perturbations for the dif-
ferent models and for ACDM presents an almost identical behaviour. During the initial radiation
dominated epoch, each individual mode remains constant until it enters the Hubble horizon. Af-
ter this point, the gravitational collapse leads to the growth of ¢, which becomes exponential
in = during the matter era (we have used however a logarithmic scale for £%/2§ ). Once the DE
starts to become dominant, the growth of the matter perturbations slows down as 4, seems to
converge to a constant value in the asymptotic future. Notice that since the modes with larger
k enter the horizon at earlier time, they correspond to the curves with higher values of d, in

figure B.1.

The top-right panel of figure presents the evolution of the gravitational potential ¥. As
in the case of ¢, the overlap between the three models studied and ACDM is almost perfect
and any differences until the present time are virtually undetectable. For all the ranges of
k considered the perturbations start with a constant value at the radiation dominated epoch,
reach a second plateau during the matter dominated era and start decaying when DE starts to
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dominate. Nevertheless, we can identify some qualitative differences in the evolution of ¥ until
the present time, depending on the range of k:

« large k: These modes enter the Horizon during the radiation dominated era. Around the
time of horizon crossing they start to decay and can present oscillations before the moment
of radiation-matter equality. Then, during the matter dominated era the oscillations are
suppressed and the perturbations reach a constant value till DE gains importance.

« medium k: The gravitational potential remains constant during the radiation dominated
epoch, decays around the radiation-matter equality and reaches a second plateau in the
matter dominated era. The decay observed in the transition between the two epochs is
scale dependent and affects mostly the modes with higher wave-number.

« small £: As in the previous case, the modes corresponding to the smallest wave-numbers
show a constant behaviour during the radiation dominated and the matter dominated
epochs and a decay around the radiation-matter equality. Here, however, the decay is
scale independent and for all the modes the amplitude of ¥ /¥;,; during the matter era is
9/10 of its initial value, as follows from theoretical prediction in the limit £ — 0 [23].

Around the matter-DE equality, we find that for all modes the amplitude of the gravitational
potential starts to decay rapidly. However, after some 5 e-folds of expansion into the future, the
top-right panel of figure B.1 seems to indicate that the value of the modes of the gravitational
potential stabilises at a negative value. In order to have a clearer picture of this behaviour, we
plot in figure B.Z the evolution of |¥/¥;,| in logarithmic scale from = = 0 to = = 12 for: top
panel - model A; middle panel - model B; and bottom panel - model C. Here, we see that after
an initial period of exponential decay, eventually the value of ¥ changes sign and then evolves
towards a negative constant (negative values of ¥ are indicated a dashed line). This behaviour
is in clear contrast with the evolution in the ACDM model, indicated by dotted lines, where
we see that the exponentially decay with respect to = continues asymptotically. Although not
depicted here, it was found that for quintessence models with constant w > —1 the gravitational
potential also evolves towards a constant but with a positive asymptotic value. Therefore, this
change in sign of the gravitational potential appears as a clear indicator of a phantom evolution.
Notice however that this only happens in the far future and cannot be observed at the present
time. From figure B.2 it can also be seen that this effect is scale dependent, for the same model
the change in sign happens first for the larger scales and only later for the smaller ones, and
model dependent, for the same value of k& the change in sign happens first for the model A, then
for the model B and finally for the model C.

In order to understand the effects described above, we note that once the DE dominated era be-
gins and the modes start to exit the horizon again, the gravitational potential is initially sourced
by the matter perturbations and DE perturbations. Therefore, the first equation in (2.34) can
be written as

2

U+ 0 (14—
+<+3H2

) =} b+ 2at) (3.1)
If the rhs of (B.1) evolves asymptotically to a negative constant, then the potential stabilises at
a negative value. On the other hand, if the potential is to cross the ¥ = 0 value and stabilise at
a positive value than the the rhs of (B.1) needs to evolve towards a positive constant in the far
future. We now recall that Q, is decreasing exponentially with x while Q4 is approaching unity,
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and that is due to the adiabatic conditions (see the (B.64) for a detailed calculation and
approximations) imposed at the beginning of the integration, é, is positive-valued while for a
phantom fluid d4 is negative-valued. Thus, the changing of sign of the gravitational potential
can happen in a phantom DE model after the equality

‘Qm5m| = |Qd5d|a (3.2)

is reached. From figure we observe that when 4, and §4 become constant after matter-DE
equality, |om| is larger for the modes with larger & while 44 larger for the modes with smaller .
Therefore, the modes corresponding to smaller scales are the ones that see the change in the
sign of U first. On the other hand, for the model A the ratio Qn, /24 decays faster than for the
models B and C, while decaying faster for the model B than for the model C. Therefore, for the
same value of k the equality (B.2) is reached first for model A, then for model B and finally for
model C, as seen in figure B.2.

The bottom panel of figure B.1, we present the evolution of the fractional energy density of
DE for different wave-numbers. In contrast with the perturbations of DM, here we observe
some differences between the three models. First, we note that while the initial value of dq ini
is the same for all the models, at the present time for the models B and C 44 appears to be
systematically suppressed on all the scales with regards to the model A. This suppression can be
understood by the evolution of ¢4 deep inside the radiation dominated and the matter dominated
epochs. For model A we observe in figure that all the modes present a constant plateau in
these periods. in contrast, in the models B and C we find that similar plateaus exist in these
periods but with a negative tilt, meaning that the amplitude of d4 is continuously decreasing
until the present time. This effect seems to be tied to how strong is the variation of wy during
these periods since the model C, which is the one that more rapidly converges to wyq = —1 is
the one that sees a stronger suppression of the DE perturbations.

Similarly to what happens with the DM perturbations, we can characterise the qualitative evo-
lution of 44 in terms of the range of the wave-number of the mode:

« large k: These modes are the first to enter the horizon during the radiation epoch. While
initially their amplitude decreases slowly, after the horizon crossing they suffer a fast
decay and we observe a damped oscillatory behaviour till the radiation-matter equality.
At this point the modes present a second plateau and that lasts until the end of the matter
era. Once DE starts to dominate they start to decay rapidly once more.

« medium k: In this range, the modes present a behaviour of transition. While they enter the
horizon only in the matter era, and therefore present no early oscillations, we still observe
the existence of a plateau during the matter dominated era. The length of the plateau
depends on the horizon crossing time - for the modes with smaller k& the amplitude does
not have time to stabilise before the DE dominated epoch. At this point, the amplitude
starts to decay but, much like what happens for modes in the small £ range, it stabilises
once the accelerated expansion shrinks the Hubble radius and leads the modes to exit the
horizon.

« small k: These modes are outside of the horizon for most of their evolution and there-
fore present little to no variation in amplitude till close to the present time, when they
enter the horizon. At this point we observe a difference in behaviour, with the modes
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with smallest wave-numbers being amplified during the initial stages of the DE dominated
epoch, while the largest modes in this range present a slight decay. Once the DE fluid
completely dominates, however, the modes exit the horizon and their amplitude stabilises
once more.

Despite all the differences in behaviour and amplitude between distinct modes, we always find
that the amplitude of DE perturbations is extremely small when compared to DM. This validates
the usual assumption of a DE smooth fluid.
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Figure 3.3: The lhs panel shows the almost perfect superposition of the matter power spectra, Ps,, of
the models A, B and C with the matter power spectrum of ACDM. For clarity of the plot, we did not plot
the case of ACDM as it overlaps perfectly with the other three curves. The rhs panel shows the relative
deviation of each model in comparison with ACDM. In both panels, the red solid curve corresponds to the
model A, the blue dotted curve corresponds to the model B and the black dot-dashed curve corresponds
to the model C. The dashed vertical line denotes the mode that crossed the horizon at the moment of the
radiation-matter equality. All the models present a small enhancement (< 1%) of the amplitude of Ps,,.
This effect is increasingly suppressed for large scales but seems to become scale invariant for modes that
are already inside the horizon during the radiation-matter equality. The model that induces a BR singularity
shows the highest enhancement in the power spectrum while the model that induces a LS abrupt event
presents the smallest deviation respect to the ACDM model.

In addition, on the left hand side (lhs) of figure B.3, we compare theoretical matter power
spectrum, P;_, for each of the models considered in this work with the one predicted by ACDM.
For all the cases, we find an almost perfect superposition of the spectra. This reflects the close
resemblance in terms of evolution of all the models up to the present time and suggests that
observables like the matter power spectrum may not be able to distinguish DE models that do
not differ significantly from ACDM till today. In each panel we identify the results of model
A using solid lines, the results of model B using dotted lines and the results of model C using
dot-dashed lines.

In order to be able to make a comparison between the results of the models A, B and C, we have
proceeded to plot on the rhs panel of Figure B.3 the relative difference in the magnitude of the
matter power spectrum with respect to the ACDM model. For all the models we find a small
enhancement (< 1%) in the amplitude of the matter power spectrum that is practically constant
for modes that are outside of the horizon at the moment of the radiation-matter equality. At
the large-scale end of the spectrum, we find that this enhancement becomes increasingly small.
This effect seems to be related to how much the model in question deviates from ACDM until
the present time: model A which is the one that deviates the most from ACDM is the one that
sees a stronger enhancement, while model C is the one that more closely resembles ACDM and
sees the faintest effect. These results are in conformity with figure 6 of [30] where it is shown
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that in wCDM the suppression of the growth of the matter perturbations becomes smaller as
(1 + wq) becomes more and more negative.

|

ﬁ ]H ! -

03+
S S S S S S S R S R SR R

0.0 0.2 0.4 0.6 0.8 1.0 12 14

f—facom

fos

©10 ~ facpm

log

z z

Figure 3.4: The lhs panel of this figure shows the evolution of fos in terms of the redshift against the
available data points indicated in Table B.5. The red solid curve corresponds to the model A, the blue
dotted curve corresponds to the model B and the black dot-dashed curve corresponds to the model C. For
clarity of the plot, we did not plot the case of ACDM as it overlaps with the other three curves. The rhs
panel shows the relative deviation of fogs with respect to ACDM. It can be shown that for the models there
is a small enhancement of fos (< 0.4%), which starts to decrease rapidly after the matter-DE equality
(z ~ 0.3 — 0.4). The model that induces a BR singularity shows the highest enhancement in the power
spectrum while the model that induces a LS abrupt event presents the smallest deviation respect to the
ACDM model.

Finally, we present in figure B.4 the evolution of fos (lhs panel) and the relative deviation of
fog with respect to ACDM (rhs panel) for the three models studied and for a redshift within
the range z € (0, 1.4). In each panel we identify the results of the model A using solid lines,
the results of the model B using dotted lines and the results of the model C using dot-dashed
lines. We find that all models are within the error bars for almost all the points (cf. Table
B.2). Nevertheless, there seems to be some tension between the theoretical predictions and
the observational data, as the fog curves are systematically above most of the data points for
redshifts up to z ~ 0.8. This tension between the theoretical predictions based on CMB data -
higher values of Qr, and og - and the local redshift distortion measurements - lower values of
Qm and og - is already found in ACDM and is not a special feature of the models studied in this
work. A more detailed discussion on this topic can be found in [235, 236].

On the rhs panel of figure B.4, which presents the relative deviation of each model with regards
to ACDM, we find the same tendency as in the case of the matter power spectrum in figure B.3:
there is an enhancement of fog for all models (< 0.4%) that seems to be more intense the more
the model deviates from ACDM, i.e., the effects are more intense for the model A, followed by
the model B and finally for the model C. These results are in conformity with the increase in
the growth of the matter perturbations in a phantom scenario shown in figure 6 of [30]. After
the matter-DE equality at z ~ 0.3 — 0.4, this effect starts to vanish rapidly, with the deviations
from ACDM being < 0.08% around the present time. This behaviour seems to be associated to
the fact that in all models ¢, becomes constant at late-time, when DE completely dominates
the energy budget of the Universe.

By simply looking at the plot on the lhs of figure B.4, we can clearly see that the three considered
models fit pretty well the observations. We can try to understand which of these three models
fits better the observational data. For this we would need to make a fitting of the background
models which is far beyond the current work. Therefore, we will simply “extrapolate” the
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Model Nty X2

ACDM 2 0 1.094 1.010
A 3 0 1.202  1.063
B 3 0 1.185  1.048
C 3 0 1.176  1.040

Table 3.1: This table shows the reduced x” for different values of N¢,. The lhs (rhs) column within the Ng,
column corresponds to the lhs (rhs) column within the x? column.

definition of the reduced x?2:

N N 12
2 _ N _lep Z [fobs (Zz)o-zfth (Zt)] . (33)

7

X

Here, fobs (z:) and fu, (2;) are, respectively, the observational and theoretical growth rates at
redshift z;, while o; is the corresponding error for each measurement and N the total number
of observations while Ny, is the number of fitted parameters. We will work out these numbers
for Ny, = 3 as our model has, or Ny, = 0 as we did not fit any of them. Likewise, we will do
it for the ACDM model. Our results are shown in table B.1. These results seem to suggest that
although all the models considered in this work provide a good fit to the observational data,
this fit tends to become worse as the background evolution deviates more from ACDM.

3.4 Conclusions

In this chapter, we analyse the cosmological perturbations within the framework of GR, taking
into full account the presence of DE at the perturbative level. The DE component is described
by three different models, where each one of them behaves almost as ACDM model at present
but induces a unique doomsday scenario in the future: model A leads to a BR; model B leads to
a LR; model C leads to a LS. At late time, the parameter of EoS of DE for each of these models is
very close to but slightly smaller than —1, thus corresponding to a phantom-like behaviour of DE.
Despite the small variations of the parameter of the EoS for the three models, the asymptotic
behaviour of the Universe is quite different from the one in ACDM, with the unavoidable rip of
all the structure in the Universe no matter the interaction that bound them.

The cosmological parameters of the models are fixed as follows: the value of Hy and Qm o in all
the models, as well as of wq in model A were fixed using the best fit in the Planck data [{18].
For the models B and C we fix the respective parameters Qg and ¢ so that the amplitude of
the DE energy density perturbations is the same for all models in the distant past. This choice
of parameters was made so as to better understand the relative effects of each model on the
evolution of the perturbations. In addition, we fix the effective squared speed of sound of the
DE fluid, defined as dpq/dpq in the rest frame of the fluid, to unity. This choice was made to
remove potential instabilities in the dark sector that would lead the DE perturbations to quickly
violate observational constraints. An improved analysis would incorporate in the calculations
an observationally constrained value for all the parameters , obtained by constraining the ho-
mogeneous and isotropic evolution of the model using standard candles like SNela. This will be
done on the next chapter.

35



Chapter 3. Perturbations in a genuine phantom Universe

z fos Survey Ref.
0.02  0.36 +0.04 [216]
0.067  0.4234+0.055 6dF Galaxy Survey [217]
0.15  0.49 £0.15 SDSS DR7 MGS [218]
0.17  0.51 40.06 2dF Galaxy Redshift Survey [2211;]’
0.22 042 +0.07 WiggleZ Dark Energy Survey [220]
0.25  0.351+0.058 SDSS Il LRG [221]
0.3 0.40740.055 SDSS 1/11 LRG + SDSS 111 BOSS CMASS [222]
0.32  0.394+0.062 SDSS 11l BOSS DR12 LOWZ [223]
0.35  0.440+0.05 SDSS DR LRG [214,

’ ’ ’ 224]
0.37  0.460+0.038 SDSS 1l LRG [221]
0.38  0.430£0.054 SDSS 11l BOSS DR12 [230]
04 0.41940.041 SDSS I/11 LRG + SDSS 111 BOSS CMASS [222]
041  0.45 £0.04 WiggleZ Dark Energy Survey [220]

WiggleZ Dark Energy Survey +
044 0.413+0.080 Alcock-Paczynski distortion [223]
0.5 0.42740.043 SDSS 1/11 LRG + SDSS 111 BOSS CMASS [222]
0.51  0.452+0.057 SDSS 11l BOSS DR12 [230]
0.57  0.444+0.038 SDSS 11l BOSS DR12 CMASS [223]
0.59  0.488+0.06 SDSS 11l BOSS DR12 CMASS [226]
0.60  0.43 £0.04 WiggleZ Dark Energy Survey [220]
0.6 0.4334+0.067 SDSS I/11 LRG + SDSS 1l BOSS CMASS [222]
WiggleZ Dark Energy Survey +
0-60- 039040063 Alcock-Paczynski distortion [223]
0.61  0.457+0.052 SDSS 11l BOSS DR12 [230]
WiggleZ Dark Energy Survey +
0.7 0437+0.072 Alcock-Paczynski distortion [223]
0.77  0.490+0.18 VIMOS-VLT Deep Survey [222174]’
0.78  0.38 £0.04 WiggleZ Dark Energy Survey [220]
0.8 0.470+£0.08 VIMOS Public Extragalactic Redshift Survey [228]
1.36 0.482+£0.116 FastSound [229]

Table 3.2: This table shows the available observational data points for fos at different redshifts, which
are plotted in figure B.4. For each data point we present, in order, the value of the effective redshift,
the value of fos and respective error, the corresponding survey, and the reference from which the values

were taken.

For each of the models studied, we analyse the evolution of the linear cosmological pertur-
bations in absence of an anisotropic stress tensor and considering non-adiabatic contributions
for the DE perturbations. In particular, we compute numerically the evolution of the matter
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density contrast for the DM and DE components, together with the evolution of the gravitational
potential. The integrations are performed from well inside the radiation era till the far future.
The outcome, which we present in figure B.1], shows that in all the models there is a very similar
behaviour in the evolution of the perturbations. The largest difference until the present time
seems to lie in the magnitude of DE perturbations: even though the initial value of 44 is the same
in all the models, we find that the more the background model resembles ACDM, the smaller
04 is at the present time. This effect is observed for all the scales. On the other hand, our
numerical results indicate that in the future, when the perturbations of DE are the only sources
of the gravitational potential, a change of the sign of ¥ occurs on a scale-dependent order: it
starts at large scales and progressively affects the smaller ones. We also find that this effect is
model dependent, in the sense that it happens first in the model A, which leads the Universe
to a BR singularity, then in model B which leads to a LR abrupt event, while in model C which
leads to a less virulent LS abrupt event, this effect happens later. We interpret this result as a
change in the behaviour of gravity, which in the far future becomes repulsive and starts to rip
structures apart, an effect that was already discussed in previous works [66, 69] on the same
kind of phantom DE-fuelled abrupt events.

Using the results of the numerical integrations, we obtain for each model theoretical prediction
for the matter power spectrum, as observed today, and the late-time evolution of the observable
combination fog. In all three models the deviations to the results of ACDM are within the < 1%
margin for the matter power spectrum (cf. figure B.3), and within the < 0.3% margin for fo8
(cf. figure B.4). Comparing the results of the three models we find that the deviations to ACDM,
are stronger for the model A that leads the Universe to a BR and weaker in the model C that
leads the Universe to a LS, while the model B that induces a LR in the future has an intermediate
behaviour. This suggests that these effects become more noticeable the more the background
model deviates from ACDM at the present time.

We compare the evolution of fog for low reshift (z < 1.4) with the latest observations and
find that, for all the models, the curve of fog is within the error bars for most data points. We
quantify the deviation from the observations by calculating the corresponding reduced x?, which
allows us to make a preliminary comparison of the results for the three models. We find that all
models are only slightly worse that ACDM at fitting the observational data. Here, we note that
we do not perform a true statistical comparison of our models with observations, in particular we
do not take into account the difference in number of parameters of the models. Nevertheless,
since the three models analysed in this work have the same number of free parameters, the
reduced 2 allows us to state that model A provides the worse fit, while model B seems to be
of the three models analysed the one that best fits the observational data. We thus conclude
that although the ACDM model gives the best fit to the observations, we cannot exclude other
models like the ones analysed in this thesis.

In general, the results of this paper suggest the possibility of finding imprints of a phantom DE
which can be in agreement with the current observations. Nevertheless, the effects are small
and a further examination is necessary to find an indication that could more clearly differentiate
each model. We also stress that since we did not make an observational fit of these models (from
a homogeneous and isotropic point of view), all our results should be taken as a guideline for a
more accurate study that we hope to carry in the future.
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While the classical cosmological pertubations of these models at first order are well defined,
as we have shown, there are still some fundamental and intrinsic problems related to phantom
DE models. In fact, as discussed in [31, 237, 238], when a particle-physics description of the
phantom DE is attempted, some instabilities may rise in theory due to higher order effects.
In all three models presented in this work, this kind of effects can potentially become more
problematic as the Universe evolves into one of the cosmological events considered, as the
energy density becomes increasingly high. Though a thorough examination of these effects and
the compatibility of the phantom DE models with a particle physics description is outside the
scope of this thesis, we will take this question into account in a future study.
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4

Constraining observationally the phantom DE
models

Science, for me, gives a partial explanation for life. In so far as it goes, it is based on
fact, experience and experiment
- Rosalind Franklin

4.1 introduction

It is well known that the expansion of our Universe is accelerating. This fact was observation-
ally supported firstly in 1998 by the measurements of supernova type la (SNla) [0, 11] and
then, corroborated by measurements of the Cosmic Microwave Background (CMB) and Baryonic
Acoustic Oscillations (BAO) [13]. On the other hand, the history of the expansion reveals that
the transition to an accelerated state happened recently [14, 15]. The origin of the matter
that induces the current speed up of the Universe is still unknown and it is usually dubbed DE
[23, 194]. In addition, the contribution of DE to the total energy density of the Universe is
roughly 70% [113, (4], so the hidden source that causes the current acceleration of the Universe
covers a significant portion of the total energy budget. We do not know much about the fun-
damental cause of DE. However, there are phenomenological models that can describe suitably
the current expansion of the Universe. Amazingly, the cosmological constant suggested by Ein-
stein, in principle, to get a static Universe, becomes nowadays the paradigm that better fits
the observational data. The model, which also takes into account the contribution of DM was
coined as ACDM. This model is characterised by having an Equation of State (EoS) parameter for
DE which is constant and equal to —1, in such a way that the asymptotic evolution leads to a
de Sitter Universe. Despite that the ACDM model gives the best observational fit, there is no
reason to exclude other models that could describe as well suitably the current acceleration,
as those that we will address in the present thesisl. In addition, the ACDM model suffers from
some fine tuning problems.

It can be said that the problem has become the problem of the century for cosmologist. The urge
to reveal this intriguing fact has motivated a vast amount of works trying to explain the recent
speed up of the Universe. In this way, several models that can induce a positive acceleration
have been suggested. We can classify them in two groups: (i) quintessence models which are
those that preserve the null energy condition, i.e. 0 < p + p, in such a way that the EoS
parameter is always larger than —1. (ii) phantom models where the null energy condition is
violated and the EoS parameter can go below —1 [33, 239, 240]. Surprisingly, phantom models
are not excluded, but even seem to be favoured by observations [[15, 30, 85, 241]-243].

On the other hand, the discovery of an accelerated Universe has opened the door to theorise
about an infinity of possible doomsdays, where the universal acceleration is so powerful that

IThis chapter corresponds mainly to our publication [[107]
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the Universe ends ripping itself in a dramatic state. Those events are named and classified as
singularities or abrupt events depending if they occur at a finite or an infinite cosmic time,
respectively. In particular, we will focus on three genuine phantom models, where each of them
induce a specific doomsday known as BR [28-35, 244], LR [47, b5, 59, 64-67, 201|, 245] and LS
[69, 71|, 205]. While a BR is a true singularity, we highlight that a LR and a LS are abrupt events.
However, in all these models the bound structures will be ripped apart unavoidably sooner or
later. In this scenario, the energy density could increase up to the Planck scale, where quantum
effects are expected to be important. This has lead to carry a quantum analysis close to the
cosmological singularities/abrupt events, where the classical singularity could be avoided in the
quantum realm [42, 44, 48, b1, b7, 63, 70, 110, 188, 189, 202-204, 246-248] (see the recent
review [61]). In this work, we allude to the models that induce these events as model A, B
and C, respectively. In particular, the model A is actually the model known as wCDM, where
its EoS parameter is constant and less than —1. The corresponding model parameters were
observationally constrained in [14, 15, 18]. On the other hand, the model B was constrained in
[66], where the authors fit observationally the model parameters and compute when different
bound structures are destroyed. However, the model C has not been observationally constrained
so far. All these models need to be compared and fitted with the available observational data.
In addition, the cosmological perturbations have been a useful tool for cosmologist in this task,
for example, they predict the matter distribution that can be compared with the observations.
The predicted observables within the cosmological perturbations theory have been widely used
to test several models of DE, as well as DE-DM interacting models and f(R) modified gravity.

In the models studied in [88-91], it is assumed a dependence of the scale factor with cosmic
time. In [88] the authors disregard DE perturbations and the predicted evolution of the growth
rate is compared with observations. In [89, 90], DE and DM perturbations are considered. These
models are suitable to describe the Universe from the matter dominated epoch till the present
time. In addition, most of them predict future singularities or abrupt events. In [234] the
authors compute the matter and DE perturbations and fit the results with the observational
data. In [103] a mixture of phantom and standard fluids is studied in order to analyse the
instabilities arisen at the perturbative level. Some instabilities merge when dealing with a
negative EoS parameter of DE fluids. To avoid such instabilities, in [[16, 101] the authors suggest
a decomposition of the pressure in its adiabatic and non adiabatic contributions. In [105] this
method is applied and initial conditions are imposed at the radiation dominated epoch. On the
other hand, in [249] the authors analyse the effects of non adiabaticity on the growth rate for
several DE models and compute the observable fos.

There are other interesting models of DE that have been studied within the framework of cosmo-
logical perturbations. In [250] the authors obtain the growth rate in the framework of a scale
invariant theory. The initial conditions are set at a matter dominated epoch and they com-
pute the resulting perturbations for a range of different backgrounds. The DE-DM interacting
models are useful to describe a transition to an accelerated Universe [251-253]. In [251] the
authors focus on computing the anisotropies of the CMB and find a particular footprints of the
model studied. In [252], models arising from the scalar-fluid theories with a derivative coupling
are analysed. The authors compute the perturbations and predict particular footprints on the
growth rate. On the other hand, in [253] the authors study the perturbations for a model where
a DM superfluid is assumed to be responsible of the current acceleration. Such superfluid con-
sists on a combination of the ground and excited states of DM. The obtained expansion history
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and growth rate are compared with that given by ACDM.

A large class of modified gravity models have been studied. For example, in [19€, 254] the
authors consider different f(R) models with a non vanishing anisotropic stress tensor. The
impact of the EoS parameter in several perturbation variables is studied and the predicted
anisotropies on CMB are faced against observations. In [255] the authors not only constrain
observationally the background model but also compute the resulting perturbation variables
such as the Bardeen potentials and fos.

On the other hand, the cosmological perturbations are useful to constrain further observationally
DE models. For example, in [21]] the scale dependent DE perturbations are studied for different
DE models where some future singularities are involved. The authors find the possibility to
distinguish different DE models in the oncoming missions as DESI, Euclid, and WFirst-2.4. In
[256] the authors constrain observationally a DE scalar field representation in the so called
bound DE model.

The most considered observational probes of DE are SNla, BAO and CMB. SNla describe the ex-
pansion history of the Universe by means of luminosity distances. BAO have been also developed
and provides a direct measurement of the Hubble expansion, H(z), and the angular diameter
distance. CMB provides distance priors which are a strong constraint on DE. In order to avoid de-
generacy in the observational data, a tighter constraints on the model parameters are obtained
by combining all of SNla, CMB, BAO and measurement of H(z), i.e. the Hubble expansion. In ad-
dition, since the observational data are obtained from independent cosmological probes, their
total likelihood is the product of each separate likelihoods.

In this chapter, we focus in two goals. The first one consists on constraining observationally the
parameters that characterise the models A, B and C using, for consistency, the same samples
of data. Indeed, We compare and classify these models with respect to the ACDM and test
their consistency to the observational data. In order to obtain the best fit parameters, their
mean values and their uncertainties, we confront our DE models by means of a Markov Chain
Monte Carlo (MCMC) [255] method to the observational data. We use the Pantheon compila-
tion of SNla dataset [257], the Planck 2018 distance priors of CMB [{15, 258], the BAO datall
including (6dFGS+SDSS+BOSS-LOWZ+BOSS-CMASS+WiggleZ+BOSS-DR12) [260-264] and measure-
ments of the Hubble rate [260, 265-271|]]. For the second goal, we will use the previous best
fit parameters to compute the first order linear perturbations and analyse the distribution of
matter during the different cosmological epochs. The aim is to analyse the footprints that these
models could leave on the distribution of galaxies. Indeed, we compute the predicted matter
power spectrum and the evolution of fog quantity at low redshift. This fog evolution is faced
against a second and independent set of observations (matter power spectrum and fog data
set). For consistency, aside from the models A, B and C, we compute as well the results for the
ACDM setup, which we use as a pattern to compare with the other three models.

The chapter is organised as follows: In section K.2, we discuss the details of the different data.
In section §.3, we show the obtained results for the model parameters with their confidence
levels and contourplots. In section 4.4, we compute the evolution of the perturbation variables

The authors of [259] have regrouped in a chronological order 30 BAO non correlated data points.
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and the predicted matter power spectrum and fog. Finally, in section §.5, we discuss our main
conclusions.

4.2 Data description

4.2.1 SNla data

We have used the Pantheon compilation as a SNIa dataset, they are made of 1048 spectroscop-
ically confirmed Type la Supernovae distributed in the redshift interval 0.01 < z < 2.26 [257].
The Pantheon sample is the largest compilation up to date and consists of a different supernovae
surveys, including SDSS, SNLS, various low-z samples and some high-z samples from HST. The
distance modulus for supernovae is given by,

dr,
Hth = 5 loglo m + 25, (4.1)

where d;, = (¢/Hy) Dy, is the luminosity distance, H, is the Hubble constant, ¢ is the speed of
light,

ZCMB d
Dy = (1+ el / 2 (4.2)

0 W,

where 2z is the heliocentric redshift and zcyg is the CMB frame redshift, E(z) = H(z)/H, is
the normalised Friedmann equation which encodes DE models.

The observed apparent magnitude for the Pantheon compilation is given by mgps = fiops + M
[257], where p.ps is the observed distance modulus and M is the absolute magnitude. To esti-
mate the cosmological parameters, we compute the chi-square, x?. For SNla, x%  is constructed
as

X%N = (Mobs - ,Uth)T-C}_D;ntheon-(Mobs - /J/th)v (4.3)

where (uobs — 1en) is the difference vector between the model expectations and the observed
magnitudes, where Cpantheon iS the covariance matrix of Pantheon data which is given by the
sum of a statistical part and systematic part Cpantheon = Cstat + Csys. In order to get rid of
the nuisance parameter M, we perform an analytical marginalisation over it, by defining a new
chi-square [272]

C B2

2 =Atln— — — 4.4

XSN +1n O (4.4)

where A = (,Uobs — Mth)T'CI;;ntheon'(uObS — ,uth), B = (,Uobs — H“th)T'Cl?';ntheon'l and C =
1T.Cpl iheon-1 being 1 the 1048 x 1048 identity matrix.

4.2.2 CMB data

The power spectrum of CMB affects crucially the physics, from the decoupling epoch till today.
These effects are mainly quantified by the acoustic scale /, and the shift parameter R given by
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[17]

R=\/QmHZ(1+ zeme)Da(zcms), (4.5)

7D a(zcm)

7s(ZcmB) (4.6)

l, = (]. + ZCMB)

where zcyp is the redshift at the decoupling epoch, D4 (zcmg) is the angular diameter distance
of photons in a flat FLRW Universe expressed as

1 Z dy
Dalz) = Ho(l—i-z)/o E(z)’ (4.7)

and r,(z) is the comoving sound horizon given by

1 [ da’
TS(Z) - FO/O a’E(a’) /73(1 T R—b)a/a (48)

where a = (1 + 2)~! is the conversion rule from the redshift to the scale factor and R, =
31500Qph>% (Tems /2. 7K) 4, with Tews = 2.275K [273]. The redshift at decoupling is given by the
fitting formula [274]

zems = 1048[1 + 0.00124(Q2h2%) "% 78] [1 + g1 (Qmh?)?2], (4.9)
where
_0.0783(Qph?) 70238
I 1739.5(Qph2)0763 (4.10)
and
0.56
g2 (4.11)

T 1421 1(Qph2)LET
The CMB covariance matrix is given by [258]

1598.9554 17112.007  —36.311179
Cemp = 1078 x 17112.007  811208.45 —494.79813 | . (4.12)
—36.311179 —494.79813  2.1242182

Finally, the CMB contribution to the total x? is
XgMB = XEMB'CEN%B-XCM& (4.13)
where Xcpmg is the CMB parameters vector based on Planck 2018 release, as derived by [258]

R — 1.74963
X = | 1, —301.80845 |. (4.14)
Qph? — 0.02237
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4.2.3 BAO data

The baryon acoustic oscillation is an important observational data currently used to constrain
the cosmological parameters more efficiently in combination with other probes such as the CMB.
The information taken from the BAO peaks present in the matter power spectrum can be used to
determine the Hubble parameter H(z) and the angular diameter distance D 4(z) which allows us
to calculate DE parameters. The combination of the angular-diameter distance and the Hubble
parameter, Dy (z), is given by [275]

Dy(2) = |(1+2)2D3(2) H?Z) v : (4.15)
where the redshift at the drag epoch, z4, is given by the fitting formula [276]
=7 i%gég(m;jzz;ls% [1+ b1 (Wh?)?2], (4.16)
where
by = 0.313(Qnh?) ™M1 + 0.607(Qmh?)°57, (4.17)
and
by = 0.238(Qmh?)0-223. (4.18)

To infer the cosmological parameters, BAO data can be used as constraints beside other surveys
such as SNIa and CMB, in general the 2 statistics is used for that purpose, and BAO contribution
takes the from

X80 = Xgr0-Caao-Xss0; (4.19)

where Xgyo is the difference vector between theoretical predictions (the third column of the
tabe ) and observational measurements (the fourth column of the same table) and Cgag is
the covariance matrix given for the correlated data.

We should mention that WiggleZ and BOSS-DR12 data are correlated, and their covariance ma-
trices are given respectively [263, 264]

2.17898878 —1.11633321  0.46982851
Chigglez = 10™% x 1.70712004  —0.71847155 |, (4.20)
1.65283175

624.707 23.720 325.332 8.34963 157.386 3.57778
560873 11.6429 2.33996 6.39263 0.968056
905.777 29.3392 515271 14.1013

Choss.oriz = . 4.21
BOSS-DR12 5492327 16.1422 2.85334 “.21)
1375.12  40.4327

6.25936
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| BAOname [ =z [ BAO expression | BAO measurement | osao | 1% | Ref |
6dFGS 0.106 e 0.327 0015 | — | [261]
SDSS DR7 MGS | 0.15 = 4.47 0.16 | 148.69 | [262]
BOSS-LOWZ | 0.32 Dy 8.47 0.17 | 149.28 | [260]
BOSS-CMASS | 0.57 Dyt 13.77 0.13 | 149.28 | [260]
0.44 1716 83
WiggleZ fia
0.60 Dy i 2221 101 | 148.6 | [263]
0.73 2516 86
038 | Da(14 2" 1512.39 25.00
Jrps e 81.2087 2.3683
BOSS-DR1Z | 051 | Da(1+2)2 1975.22 30.10 | 147.78 | [264]
Sfid
2 90.9029 2.3288
0.61 | Da(l+2)= 2306.68 37.08
Sfid
98.9647 2.5019

Table 4.1: Summary of the Baryon Acoustic Oscillations data used in the current work.

The total x40 Can be expressed as:

2 o 2 2 2
XBAO = Xédras T Xspss T XBoss-Lowz +

2 2 2
XB0ss-cmass T Xwigglez + XB0ss-DR12- (4.22)

4.2.4 The H(z) measurements

In our analysis we have induced the Hubble expansion rate data to have a tighter constraints on
our DE models, in general the H(z) data can be derived either by the clustering of galaxies and
quasars by measuring the BAO in the radial direction [277] or by the differential age method by
expressing the Hubble parameter as

L d
(1+2z)dt

H(z)=- (4.23)
and inferring dz/dt from Az /At [278], where Az and At are respectively the redshift difference
and the age difference between two passively evolving galaxies. In the current analysis we used
a compilation of 36 data points of the Hubble parameter shown in table 4.2 where each data
point is given with its corresponding reference. While the Hubble parameter data points are not
correlated, the x%., function can be written as

36 2
Ho S,0 H Zi
N {b()} 7 (4.24)

o
i=1 Hi

s

where H,, ; is the observational value of the Hubble parameter given for each redshift z; in the
table 4.2 and H(z) is the theoretical prediction of the Hubble parameter.
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z H(z) ou Ref. z H(z) omg Ref.
0.07 69.0 19.6 [265] 048 97.0 62.0 [266]
0.09 69.0 12.0 [266] 0.57 96.8 3.4 [260]
0.12 68.6 26.2 [265] 0.593 104.0 13.0 [267]

0.17 83.0 8.0 [266] 0.60 87.9 6.1 [266]
0179 750 4.0 [267] 068 920 80 [267]
0199 750 5.0 [267] 0.73 973 7.0 [266]

0.2 72.9 296 [265] 0.781 1050 12.0 [267]
0.27 7701 140 [266] 0875 1250 17.0 [267]
0.28 88.8 36.6 [265] 0.88 90.0 40.0 [266]
0.35 82.7 84 [268] 09 1170 23.0 [266]

0.352 83.0 14.0 [267] 1.037 154.0 20.0 [267]
0.3802 830 135 [270] 1.3 1680 17.0 [266]
0.4 95.0 17.0 [266] 1.363 160.0 33.6 [269]
04004 770 102 [270] 143 177.0 18.0 [266]
04247  87.1 112 [270] 153 1400 14.0 [266]
0.44 82.6 7.8 [225] 1.75 202.0 40.0 [266]
044497 928 129 [270] 1.965 186.5 50.4 [269]
04783 809 9.0 [270] 234 2220 7.0 [271]

Table 4.2: This table shows the measurements of the Hubble expansion.H(z) data used in the current
analysis are in the unit of km s~! Mpc™'.

Finally, the x?2,, is the sum of all the x? previously defined:

Xiot = X&N + Xems + XBao + X%—I(z)‘ (4.25)

4.3 background results

In this section, we present the obtained results for the observational fit. The figure §.1, §.2
and }.3 show the contour plots of the model parameters corresponding to the model A, B and
C, respectively. The numerical results are all gathered in Table 4.3.

The criteria methods used in the literature to compare between models are mainly the y7¢¢
and the corrected Akaike Information Criterion (AIC.) defined as [279-281]

2N, (N, + 1)

AIC. = —2In Ly + 2N, )
C nl + p+Nd_Np_1

(4.26)
where N, denotes the number of parameters and N, denotes the number of data. In the case
of Gaussian errors, x2,.. = —21In L., and

2N, (N, + 1)

. 4.27
Ny—N, -1 4.27)

AIC, = X2, + 2N, +
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Model  Par

2 red

Best fit Mean Xoot XZot AIC. AAIC,
. . 4 7
Om 0.318349§§‘§§§§§§§} 0.31834f§b8§§§§§; 1047.42  0.957422  1053.441953 0
ACDM h 0.69814 190480814 0.69860270-018.787
Oph? 0022218 ST 0.0222202 0000132003
O 031717320 003158473 0.3173277 0003 150s  1047.51  0.958380  1055.54663  2.104677
A wg —1.02758%00310102 — 102874+ 0230306
. 77 . 7
h 0.6910137-03077T1 0.691523 100207536
Qph? 00221218 SN 0.022123 0000170588
O 031719870 00370521 0.317705 10 003s01a1  1047.53  0.958398  1055.56663  2.124677
B Qs 0.00044572173:950416159  (0.000763824 19590416359
h 0.69460410-0494111 0.68858410-0195315
Qph? 0022120575801 0.0221028 00001722
. 7 .
Qm 0.317115t383’;i§§3§ 0.3161441”8.883?3238 1047.56  0.958426  1055.59663  2.154677
C Qc 0.050026170 0130141 0.0299424 700133308
h 0.69570519-0481201 0.70196271 59331965
Qh? 00221387000 00221028 000N
Table 4.3: Summary of the best fit and the mean values of the cosmological parameters.
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Figure 4.1: These figures correspond to 1o and 20 confidence contours obtained from SNIa+CMB+BAO+H(z)
data for the model A.
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Figure 4.2: These figures correspond to 1o and 2o confidence contours obtained from SNla+CMB+BAO+H(z)
data for the model B.
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Figure 4.3: These figures correspond to 1o and 20 confidence contours obtained from SNIa+CMB+BAO+H(z)
data for the model C.
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In practice, we do not care about AIC. value itself in model comparisons. Actually we are
interested to calculate the AAIC, between models, i.e, AAIC. = AIC, modet — AIC: min. The
model with a minimal value of AIC. is more favoured by data and it is chosen as a reference
model. Roughly speaking, the models with 0 < AAIC. < 2 have substantial support, those with
4 < AAIC, < 7 have considerably less support, and models with AAIC. > 10 have essentially no
support, with respect to the reference model. Finally, ACDM model is also favoured by the y ¢
selection.

In table 4.3, we show the best fit and the mean values of the parameters. The free parameter
vectors when assuming a flat Universe for ACDM, A, B, and C models are respectively Oxcpy =
(s by Uh?), 04 = (U, wa, b, Wh?), 0 = (L, s, h, Wh?) and 0c = (Qm, Qc, b, Qh?). The
x3,; and Xfot"ed are also given in the same table. In order to study the statistical significance of
our constraints, we compute AIC, and AAIC, with Ny = 1097, N, = 3 for ACDM and N,, = 4
for the rest of the models. The values of AAIC, are 2.104677, 2.124677 and 2.154677 for the
models A, B and C respectively, and are given for the purpose of models comparison. Given that
all the AAIC. values are close to ~ 2, it makes the three models A, B and C competitive and
supported by the data. But still the strongly favoured model is the ACDM.

4.4 Perturbation Results

Before tackling the cosmological perturbations of the models introduced in chapter @, we show
how the EoS parameter evolves in time for the models A, B and C. The reason for highlighting
wq for these models, is the important role they play for the initial condition of DE perturbations
(cf. (3.20) and (3.21) of [105]).

In order to get figure §.4, we use the best fit parameters values obtained in section which
are shown in table §.3. In this figure, the black line corresponds to ACDM, the red line to model
A; i.e. a constant EoS and smaller than —1, and leading to a BR, the green line to model B; i.e.
the one leading to a LR, and the purple line to model C; i.e. the one leading to a LS.

We next show our results for the evolution of the cosmological perturbations of radiation, DM
and DE. We have computed these perturbations for six relevant modes which run from roughly
a mode corresponding to the current Hubble horizon k; = 3.33 x 10~*h Mpc ™' to the largest
mode where the linear regime is still valid, ks = 0.1 h Mpc™*. The six modes are equidistant in

a logarithmic scale as follows

by = (@ , (4.28)

where ¢ runs from 1 to 6. Therefore, the numerical value of the six modes are

ki = 3.33 x 10~*h Mpc ™", ks = 1.02 x 1072h Mpc ™, (4.29)
ko = 1.04 x 10~*h Mpc ™", ks = 3.19 x 10~2h Mpc ™ *, (4.30)
ks = 3.26 x 1073h Mpc™*, ke = 1.00 x 10~'h Mpc ™. (4.31)

As mentioned on the previous section, the evolution of the perturbations are computed from
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Figure 4.4: This figure shows the evolution of the EoS parameter of DE, wq, versus x = In (a) for the model
parameters given by the best fit in table B.3. The model A corresponds with the red line describing a
constant EoS. The model B is represented by the green line while the model C is shown in purple. The
ACDM model is presented as a black line at wq = —1.

well inside the radiation dominated epoch, z; = —13.8, till the distant future, z¢ = 13, where
the DE completely dominates the dynamics of the Universe. We consider z; large enough to
detect relative deviations between the studied models. We next present the main results.
The left panel of figure }.5 shows the evolution of the matter density contrast of models A,
B and C together with ACDM. As can be seen, there is no significant deviation since all the
modes show almost identical evolution. As expected, the matter density contrast of each mode
grows linearly when the mode enters the horizon and reaches it maximum value when DE starts
dominating.

The right panel of figure §.5 shows the evolution of the gravitational potential, ¥, divided by
its initial value, ¥,. The results of the models A, B, C and ACDM are plotted together in the
figure. Once again, the overlap is almost perfect, except for the small deviations presented by
all the modes at very large scales, we will discuss this feature later on.
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0.8

0.6

T/,

0.4
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Figure 4.5: The left panel of this figure shows the evolution of the mater density contrast while the right
panel shows the evolution of the gravitational potential divided by its initial value. Both panels show a
perfect overlapping of the results corresponding to the models A, B, C and ACDM. The results corresponding
to a given mode are represented by a particular color as follows: k; (purple), k2 (dark blue), ks (light blue),
k4 (green), ks (orange) and k¢ (red).
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The left panel of figure §.6 shows the predicted current matter power spectrum of models A,
B, C and ACDM. The black curve corresponds to the ACDM model while the models A, B and C
are shown overlapped in a single red curve. The overlap is almost perfect being impossible to
distinguish any footprints between these models and ACDM. In general, the main behaviour is
in accordance with that found in the literature and gives a suitable description of the current
matter power spectrum.

The right panel of figure §.6 shows the evolution of fos. The results of the models A, B and
C are overlapped and appear as purple curve, while the results corresponding to ACDM are in
black. There are no significant deviations between models A, B and C. However, there is some
deviation with regards to ACDM for z ~ 0.3 to z ~ 0.6. This result implies that fog is larger for
phantom DE models as compared with ACDM. This result is in agreement with [105, 106].

As can be seen from figures 4.5 and j4.6, it is very difficult to distinguish the models A, B and C as
no significant deviation is observed on the matter density contrast and gravitational potential.
In view of this, we find convenient to compute relative deviations with respect to ACDM.

2x10* -

1x10% |

fos

5000
0.42

P [h*Mpc?]

2000 - 4 0.40 -

107 1072 107 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
k [h Mpcil} z

Figure 4.6: The left panel of this figure shows the matter power spectrum when using the model parameters
given table B.3. The result corresponding to the models A, B and C are shown overlapped in red, while the
black color corresponds to the ACDM model. As can be seen, both results are almost indistinguishable. On
the other hand, the right panel of this figure shows the evolution of the fos. The evolution corresponding
to the ACDM model is shown in black color, while the results given by the models A, B and C are gathered
in a single purple curve.

The left panel of figure 4.7 shows the relative difference for the models A, B and C with respect
to ACDM of the matter power spectrum. As can be seen, all the models show a very similar be-
haviour. The deviation is positive for all the modes, reaching a maximum at k& ~ 5 x 10~3h Mpc "
where the largest deviation is around a 2%. The right panel of Figure 4.7 shows the relative dif-
ference of fog for the models A, B and C with respect to ACDM. Such deviations show a maximum
at z ~ 0.5 with a value around 0.5%. The deviation of fog with respect to ACDM is positive for
all the redshift range except for the lowest values. In fact, a transition to a negative difference
is observed around redshift z ~ 0.05 . This later deviation increases as we approach the present.
Once again, we obtain very similar plots when comparing the results obtained for the models A,
B and C. We find that the largest deviations correspond to the model A and the smallest one to
the model C.

Figure 4.§ shows the evolution of DE density contrast, where each panel corresponds to a given
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Figure 4.7: The left and right panels of this figure show the relative deviation of the matter power spectrum
and fog with respect to ACDM, respectively. The colors red, green and purple have been used to plot results
corresponding to the models A, B and C, respectively. Both plots are drawn in a logarithmic scale, where
the dashed line is used to denote negative values and the solid line to denote positive values.

mode. As the perturbations of DE into the ACDM model vanishes, we do not compare them with
the result of our models. The initial values of the perturbations 64 are not significantly affected
for different modes, i.e. k. However, they depend on the specific model because the EoS of DE is
model dependent, in particular at « = x; where we start our numerical integrations. Moreover,
given that the EoS parameter for the model C is closer to —1 and it shows the highest density
contrast for DE at earlier time (cf. (B.64)). The model A presents the opposite behaviour, while
the model B shows an intermediate behaviour. This hierarchical behaviour is inverted in the
future, where 04 gets larger values for the model A and smaller values for the model C. This
transition occurs at very low redshifts which brings difficulties in distinguishing the different DE
models analysed.

|0a] k2

3
2

6] K

Figure 4.8: This figure shows the DE density contrast for the models A (red), B (green) and C (purple).
Each panel corresponds to a specific wave-number k.

We have seen that the difference between models are very small. However, we know very well
that each model induces a different and unique abrupt event in the far future. Therefore,
we have focused on the evolution of the gravitational potential at very large scale factors.
Figure §.9 shows the evolution of the gravitational potential, ¥, from the present cosmic time
to the far future for different modes. As can be seen, at present the gravitational potential of
all the models are very close to ACDM. However, at some point in the future, the gravitational
potential flips its sign and evolves towards a constant negative value. Within these asymptotic
evolutions, model A introduces the highest deviation while model C introduces the smallest one.
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U/,

U/,

Figure 4.9: This figure shows the evolution of the gravitational potential, ¥, divided by its initial value,
¥, . As done in the previous figures, each panel corresponds to a given value of wave-number while each
color represents a particular model (model A red, model B green and model C purple). The dashed lines
denote negative values while solid lines represent positive values. The black dashed lines correspond to
the ACDM model.

The flip on the sign of ¥ occurs sooner in the model A, then in the model B and finally in the
model C, independently of the mode. On the other hand, the smallest is the mode the sooner
occurs the sign flip on the gravitational potential.

Finally, and based on the best parameters of table }.3, we have computed the reduced y? for
the fog analysis in order to have a numerical value that could quantify the difference between
models. Note that we do not run a different chain taking into account such fog data. We rather
perform a simple analysis in order to get some preliminary results involving background and
perturbative observations. Here, we have used the “Gold 2017” data [282]. This data provides
a set of the latest measurements of fog valuesil! (ranging from a redshift z ~ 0 to z ~ 1.4) where
all samples are considered as independent. The obtained results are shown in table §.4. As can
be seen, the model A is the model that more deviates from ACDM, followed by the model B and
finally by the model C. The best value is still given by the ACDM model, however, among the
studied phantom models in this work, the model C is observationally preferred. We notice that
the background classification of the models A, B and C, table , is not in agreement with that
based on the measurement of fog. In a future work, we will carry a full Monte Carlo Markov
Chain which takes into account the background and the perturbative quantities.

Model Event X2

ACDM De Sitter 1.13498
A BR 1.16163
B LR 1.15919
C LS 1.15680

Table 4.4: This table presents the values of the reduced x> for each model. These results have been
obtained using a data collection of independent survey known as “Gold 2017” growth dataset, which values
are shown in table }.5.

Figure shows the evolution of fos. The ACDM model is plotted in black dashed line while

iAn extension of the Gold 2017 compilation is given by [283].
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z fos Survey Ref.
0.02  0.31440.048 2MASS [284]
0.02  0.39840.065 SNla + IRAS [285]
0.02  0.428+0.046 6dF Galaxy Survey + SNla [286]
0.10  0.37040.130 SDSS-veloc [287]
0.15 0.49 +0.15 SDSS DR7 MGS [218]
017 051 +0.06 2dF Galaxy Redshift Survey [2211;]’
0.18  0.36040.090 GAMA [288]
025  0.351+0.058 SDSS Il LRG [221]
0.32  0.38440.095 BOSS LOWZ [289]
0.37 0.460+0.038 SDSS Il LRG [221]
0.38  0.44040.060 GAMA [288]

WiggleZ Dark Energy Survey +

0.44 " 0.413+0.080 Alcock-Paczynski distortion [223]

0.59  0.488+0.06 SDSS 11l BOSS DR12 CMASS [226]
WiggleZ Dark Energy Survey +

0-60 0.3900.063 Alcock-Paczynski distortion [223]

0.60  0.550-£0.120 Vipers PDR-2 [290]
WiggleZ Dark Energy Survey +

0.73 0.43740.072 Alcock-Paczynski distortion [225]

0.86  0.400-0.110 Vipers PDR-2 [290]

1.40  0.482+0.116 FastSound [229]

Table 4.5: This table shows fos measurements from independent surveys. The first column denotes the
redshift while in the second column the corresponding value of fos and its error. In the third column, we
show the name of survey and in the final column the reference.

models A, B and C are plotted in red.

4.5 Conclusions

In this chapter we have analysed three genuine phantom models. We call those models as A,
B and C, where each of them induces a particular future cosmological event known as a BR, a
LR and a LS, respectively. These models are characterised by having a particular EoS, which
can be understood as deviations from the widely accepted ACDM model and therefore, suitable
models to describe the current Universe. We use SNla, CMB, BAO and H (z) data and the Markov
Chain Monte Carlo method to estimate the cosmological parameters of models A, B and C. We
remark that the model C has not been constrained previously. In the case of the model A,
the corresponding model parameter consists on the EoS parameter of DE. This value has been
observationally constrained, for example, in [[14, 18], where the result given, wq = —1.019, is
very close to the one we have found, wq = —1.02758. Similarly, the result obtained for the
model B is of the same order of magnitude to that found in [66] where the relative difference
is less than a 6%, this can be understood as an indicative of the reliability of the obtained
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Figure 4.10: This figure shows the evolution of the predicted fos observable versus the redshift, z. The
results given by the models A, B and C are plotted in red color where the overlap is almost perfect. The
result given by the ACDM model is plotted in black dashed line. We have included the survey data given
in table |.5 with the corresponding error.

results. In addition, we have computed the results of the ACDM model as well, in order to make
a comparison with the models A, B and C.

Once we have fitted observationally the parameters of the models, we have computed numer-
ically linear cosmological perturbations since the radiation dominated epoch. Therefore, we
have not only considered perturbations of DM and DE but also those of radiation. The numer-
ical calculations have been performed till the far future. In particular, we have obtained the
density contrast of DM and DE and evaluated as well the matter power spectrum of DM and
the corresponding evolution of fos. We have as well computed the evolution of the Bardeen
gravitational potential. We have confirmed that indeed in phantom DE models, it is expected
that the Bardeen gravitational potential will flip its sign in the future [105, 106]. This is in
accordance with the fact that all the structures will be destroyed in phantom DE models.

Using the values of the best fit (shown in the third column of table K.3), the matter power
spectrum given by models A, B and C are so similar that it is almost impossible to distinguish
them. Something similar happens when comparing the results of fos. In order to give an account
of small differences, we compute the relative deviation with respect to ACDM and found that
the largest differences are around a 2% for the matter power spectrum and fogs. The models
show a very similar phenomenology till the present time and future cosmic times. We notice
that there are no significant differences that could allow us to find a characteristic footprint of
each model with enough accuracy.

In view of this, we compare the predicted fog evolution against the observational data and
compute the reduced x2. We conclude that the ACDM model gives the best fit. The models A,
B and C have similar behaviour with respect to the ACDM. When performing the y? analysis at
fos level, what we found is that the model C is the one which less deviates from ACDM while
the model A is the one with larger deviations. However, this is not enough to conclude that the
model C is observationally preferred. We conclude as well that there is a disagreement between
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the background and the perturbation analysis. This discordance will be a subject of a future
work.
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5

What if gravity becomes really repulsive in the
future?

We know what we are, but know not what we may be
- William Shakespeare

5.1 Introduction

Hubble’s discovery was crucial for our understanding of the Universe. He showed that the Uni-
verse was evolving and not static as it was believed at that time [3]. His discovery was based
on observing that the spectrum of far away galaxies was red-shifted which implied that those
galaxies were moving away from us. He even measured the galaxies radial outward veloci-
ties and realised that it followed a rule: (i) the velocities were proportional to the distances
at which the galaxies were located from us and (ii) the proportionality factor was a constant,
the Hubble constant. About 70 years later, two independent teams [{11], 12] realised that by
measuring further objects, SNela, the Hubble constant was not quite constant as was already
expected. The issue was that the deviation from the constancy was not on the anticipated di-
rection. It was no longer enough to invoke only matter to explain those observations. A new
component had to be invoked adjectivated dark, as it interacts as far as we know only gravi-
tationally, and named energy. This component started recently fuelling a second inflationary
era of the visible Universe. Of course, all these observations, and subsequent ones, are telling
us how gravity behaves at cosmological scales through the kinematic expansion of our Universe
[14, 197, 217, 219, 220, 230].

This kinematic description is linked to the dynamical expansion through the gravitational laws of
Einstein theory. To a very good approximation, we can assume that our Universe is homogeneous
and isotropic on large scales and it is filled with matter (standard and dark) and DE, where their
relative fractional energy densities are Q, = 0.309 and 4 = 0.691, respectively, at present. In
addition, the current Hubble parameter is of the order of Hy = 67.74 km s~ Mpc~!. We have
fixed those values by using the latest Planck data [[14] but please notice that our conclusions
in this chapterI are unaltered by choosing other values for these physical quantities. In what
refers to EoS parameter, w, to be constant; i.e. we will be considering wCDM model as a natural
candidate to describe our Universe. As it is well known (i) for w < —1 the Universe would face
a BR singularity [28-30], i.e., the Universe would unzip itself in a finite time from now, (ii) for
w = —1 the Universe would be asymptotically de Sitter and finally (iii) if w > —1 the Universe
would be asymptotically flat locally; i.e. the scalar curvature and the Ricci tensor would vanish
for large scale factors. As we next show this pattern is shown as well on the behaviour of the
gravitational potential.

IThis chapter corresponds mainly to our publication [[106]
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The chapter is organised as follows: in section .2, we review briefly the models to be consid-
ered and compare them using a cosmographic/statefinder analysis. In section 5.3, we present
the cosmological perturbations of the models focusing on the asymptotic behaviour of the grav-
itational potential. Finally, in section 5.4, we conclude. In the .1, we include some formulas
useful to section p.2.

5.2 Background Approach

In this work, we adopt three different values for w: {—0.99, —1, —1.01}, in order to obtain three
qualitatively different types of late-time behaviour for DE: quintessence (w = —1), cosmological
constant (w = —1) and phantom behaviour (w < —1). In a cosmographic approach [196, 291-
293], the scale factor is Taylor expanded around its present day value ag := a(to) as

%(f) =1+ ;A”n(!t()) [Ho (t —to)]" . (3.1)

Here, H, is the present day value of the Hubble rate H := a/a, where a dot represents a
derivative with respect to the cosmic time, and the cosmographic parameters A,, are defined
as A, :=a™/(a H"), n € N, where o™ is the n'"-derivative of the scale factor with respect
to the cosmic timell. Based on the cosmographic expansion (b.1), the statefinder hierarchy
was developed as a tool to distinguish different DE models [294-297]. In fact, the statefinder
parameters are defined as specific combinations of the cosmographic parameters:

sV = A, (5.2)
S = A+3(1- A, (5.3)
S = Ay —2(4—34,) (1— Ay) (5.4)

such that, by construction, Sﬁl) |acom = 1, i.e., the statefinder hierarchy defines a null diagnostic
for the ACDM model [296]. It is also convenient to introduce the statefinder parameter s defined
in [294] as
1— S(l)
s = 731 (5.5)
3 (A2 +3)

For the case of a wCDM model with a radiation component, such as the models considered in
this chapter, we present in the full expressions of the statefinder parameters as functions
of the scale factor a/ay and the cosmological parameters {€; o, w}. In the limit ¢ — 400 the
expressions found reduce to

9
S5 lucon = 1+ gw(l+w), (5.6)
(1) _ 9
Silwcom = 1= w(l+w)(7T+9w), (5.7)
9
S lucow = 1+ Jw (1 +w) (41 + 87w + 54u?) | (5.8)
slucom = 1+w. (5.9)
"The parameters As, As, A4, As are also known as the deceleration parameter ¢ = —A,, the jerk

j = As, the snap s = A4 and the lerk [ = As, respectively [291].
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We thus find that as w deviates from the nominal value —1 the asymptotic values of the statefinder
parameters Si(l) run away from unity. In fact, for small deviations Aw := |w+ 1] <« 1 the
statefinder parameters depend linearly on Aw and we find that SV < 1 for quintessence mod-
els and S,(Ll) > 1 in the case of phantom behaviour. On the other hand, it can be shown that
asymptotically s vanishes for ACDM, and it gets negative for w < —1 and positive for —1 < w. We
have assumed on all our conclusions the presence of radiation no matter its tiniest contribution.
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Figure 5.1: This figure shows the trajectory of the three models considered in this work in the planes
(SS9 s}, {557, 59y and {S{", SV} that characterise the statefinder hierarchy. The coloured points
indicate the asymptotic values of the statefinder parameters as presented in (5.6)-(5.8). The dependence
of these points on the deviation of w from the ACDM value —1 is illustrated by the dashed lines. The black
stars indicate the present day values of the statefinder parameters for each of the models.

On figure b.1, we present the evolution of the statefinder hierarchy {S?El), s} (top panel),
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{SM, 591 (middle panel) and {S$", 5V} (bottom panel) for the three models considered:
w = —0.99 (blue), w = —1 (green) and w = —1.01 (red). When the Universe is dominated
by radiation and matter the three models are indistinguishable and can be seen following the
same straight line trajectory in the planes {S{", s}, {S5", 5"} and {S{", S{V}. However, as
DE starts to dominate at late-time the differences between the three models become appar-
ent. The trajectory {Sél), s} evolves towards the point (1, 0) for the ACDM model, then for a
quintessence model that trajectory evolves towards the second quadrant in the plane {Sél), s},
i.e. Sél) < land 0 < s, and, finally, for a phantom scenario the trajectory {Sél), s} heads
towards the fourth quadrant, i.e. 1 < S:gl) and s < 0. For the second group of trajectories
({Sél) Sf)} and {Sél), Sé”}), while the trajectories of the model with w = —1 evolve towards
the point (1, 1) that characterises ACDM, in the quintessence model the trajectories evolve to-
wards the third quadrant in both panels (S,(f) < 1forn = 3,4,5). In contrast, for the model with
phantom behaviour the trajectories evolve towards the first quadrant in the planes {S:gl), Sil)}
and {S?(,l), Sél)} characterised by S > 1 forn = 3,4,5. Finally, by looking at figure .1, it
seems that the pair {Sél), Sél)} are better to distinguish the model with w < —1 from —1 < w.

5.3 Cosmological Perturbations: from gravity to DM and DE

In order to tackle the cosmological perturbations of a perfect fluid with a negative and constant
EoS some care has to be taken into account [105]. In fact, unless non-adiabatic perturbations
are taken into account a blow up on the cosmological perturbations quickly appears even at
scales we have already observed. Please notice that this is so even for non-phantom fluids, i.e.,
for w > —1. This will be our first assumption and therefore non-adiabatic perturbations will be
considered. The non-adiabaticity implies the existence of two distinctive speed of sounds for
the DE fluid: (i) its quadratic adiabatic speed of sound ¢2 = w (in our case) and (ii) its effective
quadratic speed of sound, 2, whose deviation from ¢2 = w measures the non-adiabaticity in the
evolution of the fluid [101]. For simplicity, we will set the latter to one which fits perfectly the
case of a scalar field, no matter if it is a canonical scalar field of standard or phantom naturell,
In addition, we will solve the gravitational equations describing the cosmological perturbations
at first order using the same methodology we presented in [105]. The initial conditions are fully
fixed by the Planck observational fit to single inflation [[14] as follows from equations (2.41)) and

(B.61):

The behaviour of the gravitational potential and the perturbations is shown in the top panel
of figure b.7 for a given scale. We choose as an example & = 1073 Mpc~!. As it must be,
the gravitational potential is constant during the matter era and start decreasing as soon as DE
goes on stage. This behaviour is independent of the considered DE model. However, shortly
afterwards; i.e., in our near future, the gravitational potential will depend on the specifically
chosen EoS for DE. In fact, (i) it will decrease until reaching a positive non-vanishing value at
infinity for w > —1, (ii) it will vanish asymptotically for w = —1 and amazingly (iii) it will vanish
and become negative for w < —1!!! Thisisin full agreement with the fact that close to the BR the
different structures in our Universe will be destroyed no matter their sizes or bounding energies.

fiAs long as the speed of sound ¢2 is not too close to zero and w ~ —1, the value of ¢? will not affect
so much the perturbations of DM. A full discussion on the effect of the speed of sound of DE on the
perturbations of the late Universe can be found in [[1€, 209, 298]. Therefore, our choice ¢ = 1 is not
crucial in our study, it was taken just for simplicity and because it is common to use it in codes like CAMB
and CLASS though there is no fundamental reason for such a choice.
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Figure 5.2: The evolution of the Fourier mode of the gravitational potential @ (top panel), the DM pertur-
bation 4., (middle panels) and the DE perturbation (bottom panel), from the matter era to the far future
for the mode k = 10~2 Mpc~! and for three DE models: (blue) w = —0.99, (green) w = —1 and (red)
w = —1.01. For the quintessence model (blue) the gravitational potential evolves towards a constant in
the far future without changing sign, while for ACDM (green) ®; vanishes asymptotically. In the phantom
model (red), @ also evolves towards a constant in the far future but a change of sign occurs roughly at
log,, a/ao =~ 2.33, corresponding to 8.84 x 10'° years in the future. A dashed line indicates negative values
of Dy

When could the gravitational potential vanishes and flip its sign? Of course, the answer is model
and scale dependent [[105]. For the model we have considered, the gravitational potential for
the mode k£ = 1072 Mpc—! will vanish in 8.84 x 10'° years from the present time or equivalently
when the Universe is roughly 213 times its current size. Furthermore, numerical results show
that the smaller the scale that is considered (larger k) the later the gravitational potential will
flip sign [105].

In addition to the gravitational potential, we present in the second and third panels of figure 5.2
the behaviour of the density contrast of DM. We observe that the growth of the linear perturba-
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tions is very similar in all models, with differences of < 0.2% with regards to ACDM. However,
when comparing the phantom DE model with ACDM we find that until the present time there is
an excess in the growth of the linear perturbations of DM in the phantom DE case. In the case
of quintessence the opposite behaviour is observed: until the present time §,, is smaller in the
quintessence case when compared with ACDM. This effect, which depends on the qualitative
behaviour of DE, was first noted in [30]. Surprisingly, these deviations peak around the present
time and their sign reverses in the near future. On the bottom panel of figure 5.2 we present
the evolution of dpg for the different models. Of course, for the ACDM case the perturbations
remain at 0 as the cosmological constant does not cluster. In good agreement with observations,
for the quintessence and phantom DE models we find that the DE perturbations remain small,
with small variations of the initial value, throughout the whole evolution of the Universe.
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Figure 5.3: (Top panel) evolution of fos for low red-shift z € (0, 1.4) for three DE models: (blue) w =
—0.99, (green) w = —1 and (red) w = —1.01. White circles and vertical bars indicate the available
data points and corresponding error bars (cf. Table | of [105]). (Bottom panel) evolution of the relative
differences of fos for each model with regards to ACDM (w = —1). Afos is positive in the phantom case
and negative in the quintessence case. For all the models, it was considered that o5 evolves linearly with
om and that os = 0.816 at the present time [14].

Finally, and most importantly, all these models are in full agreement with observations. In
figure 5.3, we show the evolution of the observable fog for the three models mentioned above.
This combination of f, the relative growth of the linear matter perturbations, and o5, the
root-mean-square mass fluctuation in spheres with radius 8 h—*Mpc, was proposed in [214] as a
discriminant for different models of late-time acceleration that is independent of local galaxy
density bias. On the top-panel of figure 5.3, we contrast the fog curves of the three models
with the available observational data (cf. Table I of [105]). All the three curves, which are
practically indistinguishable at the naked eye, are within the error bars of nearly all the points.
On the bottom panel of figure b.3, we present the relative difference, Afos, of the results of
each model with regards to ACDM.Y Despite the small values found in terms of amplitudes, the
behaviour observed suggests that the sign of A fog can distinguish between a phantom (positive
Afog) and a quintessence model (negative A fog). As a consequence of this difference in sign,
the growth of the linear matter perturbations is stronger in a phantom scenario as opposed to

iVAfUémOdel)(%) — 100[(f0‘;.;m°del))/(f0'§\CDM) _ 1]'
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ACDM and quintessence. This is in full agreement with the results presented in [30] where the
decay of the growth suppression factor of the linear matter perturbations is found to be faster
in quintessence models and slower in phantom models.

5.4 Concluding remarks

Summarising, what we have shown is that after all gravity might behave the other way around
in the future and rather than the apple falling from the tree, the apple may fly from the earth
surface to the branches of the tree, if DE is repulsive enough, as could already be indicated by
current observationst,

To illustrate these observations, we have considered three models where DE is characterised by
a constant parameter of EoS w with values w = —0.99, —1, —1.01. After comparing the present
and future behaviour at the background level by using a statefinder approach, as illustrated
in figure b.1, we have considered the cosmological perturbations of these models. We have
shown that for models with w < —1 the gravitational potential changes its sign in the future
(cf. figure 5.2). We have as well analysed the behaviour of the DM and DE perturbations as
shown for example in figure 5.2. Finally, we have proven that no matter the future behaviour
of the gravitational potential depicted in figure 5.2, the three models discussed above are in
full agreement with the latest observations of fog (cf. figure 5.3).

Before concluding, we would like to remind that on this work, we have considered the existence
of phantom matter, however it might be possible that Nature presents rather a phantom-like
behaviour as happens in brane world-models [244, 300] where no BR takes place and where the
perturbations can be stable. In addition, even the presence of phantom matter might not be
a problem at a cosmological quantum level where the BR or other kind of singularities can be
washed away [42, 48, b1].

YRepulsive gravity could happen as well if the effective gravitational constant changes sign. This could
happen, for example, in scalar-tensor theories, in particular, for a non-minimally coupled scalar field [299].
However, an anisotropic curvature singularity arises generically at the moment of this transition.
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6

The Speed of sound in phantom DE models

We have peered into a new world and have seen that it is more mysterious and more
complex than we had imagined. Still more mysteries of the Universe remain hidden.
Their discovery awaits the adventurous scientists of the future. I like it this way

- Vera Rubin

6.1 Introduction

During the last two decades Cosmology has experienced a great improvement in the theoretical
and observational scopes. The discovery of an accelerated Universe, a fact supported by several
observations [[10, 11], has developed a flourishing of new ideas that deal with the intriguing
speed up. The simplest explanation consists into invoking a new component in the Universe
named DE as the responsible of the current acceleration [23]. Among the vast amount of DE
models, those where the null energy condition is violated are coined as phantom [28, 30, 33,
239]. In these class of models, the DE EoS parameter stays always below —1. Despite some
energy conditions are not satisfied, phantom DE models seem to be favoured by observations
[n5].

It is known that most phantom DE models predict future singularities. As we have already
mentioned in the introduction chapter, we focus on three genuine phantom modelsl where each
of them induce a particular future doomsday known as BR, LR, and LS ( see [28-35], [47, b5, 59,
64-67, 201], [69, 71, 205] for a detailed description of the respective model). We recall that
no matters if a true singularity or an abrupt event takes place, all the bound structures in the
Universe are torn away and destroyed.

All the models mentioned above can be understood as alternatives from the widely accepted
ACDM paradigm, and therefore, good models to describe suitably the current Universe. An
appropriate fitting of the parameters involved will made these models indistinguishable among
them at the background level. Therefore, it becomes necessary to address the cosmological
perturbations.

Observables as for example, the matter power spectrum and the growth rate provide useful data
about the distribution of matter. Unfortunately, in most of the cases the imprints of different
DE models on such observables are insignificant. Therefore, important efforts have been made
to improve the accuracy of the observations, particularly, focusing on scrutinising the DE sector
as it is the case of Euclid mission [99, 100].

The squared speed of sound parameter, ¢2, is another important variable that plays a key role
on cosmological perturbations. It is well known that DE models with a negative ¢2 parameter

IThis chapter is based on a work in progress to be submitted soon.
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induce instabilities at the perturbation level. To avoid those instabilities, in [16, 101] the au-
thors consider a non-adiabatic contribution on the pressure perturbations. This method lead to
separate the adiabatic speed of sound, c,; which depends on the EoS, and the effective speed
of sound, c,; which is regarded as a free parameterﬁ. For example, in [301]] the authors analyse
the implications of a varying effective speed of sound parameter on the matter perturbations.
In [302], the authors consider a DE model with a constant EoS parameter and estimate the cor-
rections on the growth index when ranging c2. On the other hand, in [303] it is considered a
DE model with an affine EoS. Then, the results obtained when fixing ¢ = 0 and ¢ = 1 are
compared. A further analysis on the effective speed of sound parameter is performed in [209],
where the authors consider the contribution of matter (Baryonic and DM), photons and neutrinos
to get, for example, a probability distribution for the ¢2 value. In [304], a new class of DM-DE
interacting models is identified. The authors study the implications of a varying effective speed
of sound on the CMB and the matter power spectrum. An interesting model with viscosity pa-
rameter is suggested in [305], where the effects of such viscosity on the CMB and matter power
spectrum are compared against the effects that a non-vanishing effective speed of sound could
induce.

Several models have been observationally constrained in order to fit a value for ¢2. For example,
in [[16, 298] the authors use the temperature fluctuations of the CMB dataset to set the value of
the speed of sound. In [B06] the authors study the structure formation and constrain a CPL model
with a free effective speed of sound parameter. In view of the upcoming Euclid mission, several
works forecast the necessary accuracy in order to discriminate between different DE models.
For instance, in [104] the authors compute the sensitivity of the photometric and spectroscopic
surveys for measuring the speed of sound and viscosity parameters.

In this chapter, we consider a Universe filled with radiation, matter and DE components, where
the latter is described by three different phantom models. We address the scalar cosmological
perturbations following the method of pressure decomposition for DE [[1€, 101]]. We set the
initial conditions as done in [105, 196] where the physical value of the total matter density
contrast, dnys. (k), for a single field inflation is taken from Planck data 2018 [18]. After imposing
adiabatical conditions for scales larger than the horizon at the beginning, the physical value of
dpnys. (k) is the last condition needed to ultimately fix all the initial numerical values. We analyse
the phenomenological effects of changing the effective speed of sound on the perturbations. In
addition, we compute the relative differences on observables by evaluating the matter power
spectrum and fog growth rate. Finally, we study the behaviour of the gravitational potential on
large scales.

The chapter is organised as follows, In section .2 we present the obtained results and in sec-
tion .3, we present the main conclusions.

6.2 Results: The effect of the speed of sound

In the following, we present the results obtained for the cosmological perturbations evolution
and for the three models addressed in this thesis. We remind that in order to set the model pa-

In the case of a scalar field representation, the effective speed of sound parameter coincides with
unity, i.e. ¢2 =1 (c.f please [16, 101] for a detailed explanation).
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rameters we have used those obtained in our work [[107]. We compute the evolution of the mat-
ter density contrast and peculiar velocities, from well inside the radiation dominated epochm,
a ~ 2.65x 1075, till the far future, a ~ 1.62 x 10°>. We perform the integrations for the following
six particular modes

« small k (large distances): k; = 3.33 x 10~*h Mpc ™' and k, = 1.04 x 10~*h Mpc ™.
+ medium k (intermediate distances): ks = 3.26x10~3h Mpc " and ks = 1.02x 10~2h Mpc .
« large k (short distances): k5 = 3.19 x 10~2h Mpc ™" and kg = 1.00 x 10~*h Mpc .

The minimum mode, k;, coincides with the current Hubble horizon, i.e. no smaller mode can
be detected. On the other hand, we consider as maximum mode, kg, where the linear approxi-
mation breaks down and the non-linear contributions become important.

6.2.1 Matter power spectrum and f,,

We have computed the current matter power spectrum and the growth rate fos, testing the
effective squared speed of sound from 0 to 1 in steps of 0.2. In this process, the numerical
integration was repeated for 200 modes ranged from k; to k.
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Figure 6.1: The left panel of this figure represents the matter power spectrum while the right panel shows
the evolution of fos in terms of the redshift z. All models with different values of c2; give an almost
identical result, so the curves appear completely overlapped and their differences are negligible.

Figure shows the current matter power spectrum and the evolution of fog predicted by the
models. These results are in agreement with observations but does not allow to distinguish any
deviation for different models. In addition, the effects of a varying speed of sound turn out to
be almost undetectable since the results appear totally overlapped. Therefore, in order to give
an account of the contrast, we compute the relative deviation with respect to ¢?, = 1.

As it is shown in the left column of figure .2, the relative differences (with respect to Zy=1)
on the matter power spectrum are negative for the smallest modes and positive for the largest
ones. The transition occurs in a narrow interval around the wave number & ~ 1.8 x 10~3h Mpc ™.
The separation obtained for a vanishing speed of sound parameter is remarkable. First, looking
at small modes, the deviations are constant, the larger is the deviation from ¢2, = 1 the larger
is such a constant. Secondly, looking at the large modes, the deviation is constant for vanishing
c?, parameters while such deviation vanishes for non vanishing ¢, parameters.

iThe scale factor for this epoch represents a moment in the early Universe where its energy content
consists in 1% of matter against 99% of radiation.
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Figure 6.2: This figure presents the relative deviation with respect to the result given when c?; = 1. The
top, middle and bottom panels correspond with the models A, B and C, respectively. The left panels show
the results for the matter power spectrum as a function of the mode. The right panels show the results
for fos in terms of redshift, z. Different values of ¢Z, are coloured as; ¢?; = 0 (black), c%; = 0.2 (red),
¢y = 0.4 (orange), ¢, = 0.6 (purple) and c; = 0.8 (blue). The plots are represented in a logarithmic
scale, in such a way that dashed lines corresponds with negative values while solid lines represents positive
values.

Something similar happen for fog results. As it is shown on the right column of figure .2,
the relative difference for a vanishing effective speed of sound parameter show an important
separation with respect to the results given for a non-vanishing ¢, parameter. Conversely, the
deviation is positive for the smallest redshifts and negative for the largest ones. The transition
occurs at z ~ 0.85 for a vanishing ¢?; and at z ~ 1 for non-vanishing ¢2;. Such transition point is
slightly affected depending which DE model is considered. In addition, contrary to what happens
for the matter power spectrum, in fog the deviations goes to a constant for both large and small
modes. As expected, such a constant is larger the larger is the deviation from ¢Z; = 1.

The largest deviations are of the order 10~2 in both, the matter power spectrum and fos evo-
lution. So we conclude that no significant footprints appear on the matter distribution when
changing the effective speed of sound. In fact, the most relevant effects of a varying effective
speed of sound are clearly manifested in the DE sector.
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6.2.2 DE perturbations

Figure b.3 shows the evolution of the matter density contrast of DE for different models and
ranges of ¢2;. We remind that due to the phantom nature of DE models, the adiabatic condition
imposed at the early Universe implies that the DE perturbations are negative [105, 106].
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Figure 6.3: This figure shows the evolution of DE density contrast for different models and different values
of 2. The panels of the first, second and third row correspond with the model A, B and C, respectively. The
panels of the first, second and third columns correspond, respectively, to the values of the squared speed
of sound %, = 0, c2y = 0.2 and 2y = 1. The plot is drawn as a function of = = In (a) which goes from well
inside the radiation dominated epoch, z* = —12.84, to the far future, x = 12. Each colour corresponds to
a particular value of the wave-number k: ki = 3.33x10~*h Mpc™* (purple), k2 = 1.04x 10~*h Mpc™* (dark
blue), k3 = 3.26 x 10~2h Mpc™* (light blue), k4 = 1.02 x 1072h Mpc™* (green), ks = 3.19 x 10~2h Mpc™*
(orange) and ks = 1.00 x 10" h Mpc™" (red).

Figure b.3 shows the evolution of DE density contrast for different models and values of c%y. We
realise that the effect of varying %, is minimal for values larger than 0.2, i.e., inside the interval
[0.2,1]. Hence, we just show the results for ¢2; = 0, ¢?; = 0.2 and ¢?; = 1. As can be seen in
the first column of Figure b.3 (i.e. for a vanishing c¢?, parameter), once the modes enters the
horizon, the perturbations increase up to three orders of magnitude in the case of the largest
mode and around two orders of magnitude for the medium size modes. All the growing modes
reach a maximum at present time and decay during the DE domination era. That is; once the
modes enters the horizon they grow, and then, when they exit the horizon, the perturbations
decay evolving towards a negative constant®. This is not the case of the smallest modes, we
should bear in mind that such small modes have recently entered the horizon and are the first
exiting it, so the smallest modes do not experience important deviations.

¥We remind that phantom DE perturbations are considered to be negative at the beginning of the
numerical integration, as it is the case of the gravitational potential. On the other hand, standard matter
perturbations are considered to be positive.
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For a ¢2; = 0.2, the growth of DE perturbations is strongly suppressed in the matter domination
era. During this epoch, the largest modes (ks and kg) decay and reach a plateau while the
medium sized modes (ks and k) experience a small growth. When DE starts dominating, the
perturbations decrease up to three orders of magnitude for the largest modes and one order
of magnitude for the medium sized modes. The smallest modes (k; and k) do not show to be
significantly affected.

For a value of ¢2; = 1, the resulting plot is very similar to the one when ¢2; = 0.2. The main
difference consists on the total suppression of the growing perturbations during the matter
dominated epoch. Once again, the perturbations decay when the corresponding mode enters
the horizon and evolve to a negative constant after exiting the horizon.

In summary, DE perturbation are strongly affected near vanishing values of ¢2, parameter and
mostly, for large modes. On the contrary, small modes do not show significant deviations. We
should bear in mind that due to the change of the acceleration of the Universe (from a negative
to a positive acceleration stage) the smallest modes are the last entering the horizon and the
first exiting it, therefore, such modes have not enough time to be significantly affected.

On the other hand, it is possible to find important deviations between the different models,
mostly, in the early Universe where radiation dominates over the other components. We set
the initial value of DE matter density contrast, ¢; (where the script * denotes the initial value)
through the adiabatic conditions written in (2.37) [23]. Taking into account that we have used
in all the models the same value of the current radiation fractional energy, 9, and that the
current matter fractional energy is almost the same in the three paradigms analysed, Qo ~ 0.3,
it is worthy to point out the next approximation relating the initial DE perturbations of the
different models

* * *
0% % ddc

~ ~ . 6.1
1—|—wg’A 1 —&—w;,B 1 —&—wa‘,c (6.1)

Given the model parameters used in this chapter [107], the EoS parameters at the beginning
(deep inside the radiation era) read

wia=—1027,  wig=-1.050, wjc=—1.320. (6.2)
Therefore, the relation of the initial DE perturbation between the different models is roughly
125;,A ~ %55,3 ~ 5&0 (6.3)

As can be seen the larger is the deviation from —1 of the initial EoS parameter, the larger is the
initial DE density contrast. This explains the large initial amplitude for model C. Similarly, in
the case of model B it can be observed a weak decay, while in model A, on the contrary, it is
almost constant. Despite the large deviation given by these DE models in the early Universe,
the amplitudes are strongly suppressed during the late-radiation dominated epoch and matter
domination era, in such a way that different models predict very similar results at present time,
and therefore, no significant deviations should be expected at a future cosmic time.
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6.2.3 Evolution of the gravitational potential

Aside from DE perturbations, we found some deviations on the evolution of the gravitational
potential. We remind that in our phantom models the gravitational potential evolves asymp-
totically to a positive constant, which is not the case of a ACDM or standard DE models, where
the gravitational potential evolves towards a vanishing or a negative constant [106]. Since no
relevant differences are observed for the different models, we just present the results corre-
sponding to model A. The left panel of figure b.4 shows the gravitational potential evolution for
a vanishing effective speed of sound parameter. As can be seen, at a particular scale factor the
gravitational potential flips the sign. We can notice that the gravitational potential evolution is
almost unaffected by changing ¢, from the early time till present. However, in the far future
some differences merge.

The left panel of figure b.4 shows the evolution of the gravitational potential, ¥, divided by its
initial value, ¥, for the six relevant modes previously chosen. As can be seen, the gravitational
potential almost vanishes for the largest modes, while it evolves to a positive constant for small
modes. We remind once again that the gravitational potential is negative at the beginning of
the computations, which confers the attractive nature of gravity. Therefore, a positive sign on
the gravitational potentials is understood as a repulsive effect.

The right panel of figure b.4 shows the asymptotic value of the gravitational potential divide
by the initial value, ¥,. The plot is done to highlight how such a constant is affected by the
different values of the modes and ¢?, parameter. As can be seen, for large modes the gravita-
tional potential vanishes with independence of the chosen ¢2; parameter, while for the smallest
modes such a constant is set to be around —0.065. Bear in mind that the initial value of the
gravitational potential is negative while asymptotically it approximates to the constant ¥y,
which is a positive value.
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Figure 6.4: The left panel of the above figure presents the evolution of the gravitational potential divided
by its initial value, T*. These results corresponds to model A and choosing a vanishing effective speed of
sound c2; = 0. The vertical dashed line corresponds to radiation-matter equality, 2 ~ —8.24, while the
solid gray vertical line denotes the matter-DE equality, x ~ —0.27. The range and the numerical value
of the modes for different colours are the same as those used in figure b.3. The right panel shows the
asymptotic value of the gravitational potential in terms of log(k) for five different values of the effective
speed of sound parameter: c2; = 0 (black), c%; = 0.2 (red), c2y = 0.4 (orange), c24 = 0.6 (purple), c%; = 0.8
(blue) and %y = 1 (gray).

We find interesting to focus on the evolution of the gravitational potential in the far future,
mainly, where it flips its sign. For instance, figure .5 shows the evolution of the gravitational
potential from the present time till the distant future. As can be seen, for a vanishing effective
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Figure 6.5: This figure presents the evolution of the gravitational potential, ¥, with respect to its initial
value, ¥*, in a logarithmic scale and from the present to the far future. The solid lines represent the
positive values while the dashed lines represent negative values. We apply the same criteria as the ones
used in figure B.3 to represent the different modes. The coloured vertical lines represent the moment of
horizon exit for the corresponding mode.

speed of sound parameter the gravitational potential flip of sign occurs, for all the modes, at
the same time (z ~ 3). In addition, such flip occurs before some of the modes have exited
the horizon. This is not the case of a non-vanishing ¢, parameter (second and third column of
figure .5, for c?y = 0.2 and ¢%; = 1, respectively). As can be seen, the smallest modes switch
the sign earlier than the largest modes do, however, all the relevant modes have exited the
horizon when those flips occur. In addition, we found that that the more abrupt is the cosmic
event induced by the model, the sooner occurs the sign flip. This difference is more pronounced
the larger are the k£ modes and 2, values.

With the aim to better understand the asymptotic evolution of the metric perturbation, we
solve the second order differential equation for the gravitational potential. By incorporating
the decomposition of the pressuref in (2.34) we get

2 1.2

oy + % [5— 3w+ 6c24] VU, + {3 (g —w) + C;&]; ] T =0 (6.4)

Let us consider a constant EoS parameter where 1 c?y = wq. Therefore, in a phantom DE
dominated Universe the Eq (b-4) can be approximated as 4

1 C%dk‘2 (Bwg+1)z

doko

¥see B.5) for detailed calculations on decomposing the DE pressure in its adiabatic and non-adiabatic
contributions.

¥IThe differential equations for models B and C are not the same. However, after solving by numerical
analysis these cases, we have not found significant deviations

Viiln the case of the models B and C, this assumption is not correct since the differential equation (6.4)
is different. However, we do not observe significant changes between the results given by the different
models. So we focus on model A since its differential equation becomes analytically solvable.
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whose solutions are given by

C
Vi) = it ﬁz‘e%» (6.6)
Vi, 20 = e 27 {DyJ, [A(k)e "] — DoY,, [A (k) e 7]}, (6.7)
- F(z? 7 [Aék)]y e {A;k)} S o 0<s 69

where J, and Y, are the first kind Bessel functions with order v, I" is the Gamma function, while
C1, Cy, Dy and D, are integration constants. The remaining parameters are defined as

B 1|3y k
1+ 3wq), v=——, Ak)= -] =5 —
( 2 2y (k) 7V Qo ko

(6.9)

N =

1
=5 (6+3uw), y=-

Since V is linear, a particular solution multiplied by a constant factor is still a solution. There-
fore, the total result can be written as

Uiot (z) = U (x) F (K, csd) » (6.10)

where F (k,cyq) can be fixed (with an appropriate choice for Cy, and D;) by analysing the
asymptotic behaviour of the gravitational potential shown on the right panel plot of figure b.4.

As can be seen, the asymptotic behaviour for large scale factors given in it Eq (6.8), coincides
with the solution for a vanishing ¢%;, Eq (6.6). However, instead of having just the constants
terms Cy, and (s, the solutions for non-vanishing ¢, # 0 parameter keep some information of
the modes through the function A(k) and modulated by the constants D,, and D,. Note that the
dominant solution for  — oo is constant as long as the coefficient g is positive, i.e. —5/3 < wyq
which is indeed our case.

Finally, in order to obtain the point where the gravitational potential flip of sign occurs, we just
solve U = 0 for the couple of equations (6.6) and (6.7). Therefore, we get

s = ~zln[-af], (6.11)

1 1 1 [c? 1 k
Tfip = ——Injagsin(mv)]+—In|=4/=¢| +=1In {} 6.12

where we have defined a proportionality between the integration constants, i.e. C1/Cy = ay
and D,/Dy = «as. Given that C, D; < 0 and 0 < Cs, Dy, o and «s are negative constants.

On the one hand, z.: is the lower value for which the gravitational potential can switch its
sign and corresponds to a vanishing effective speed of sound parameter. Bear in mind that
the differential equation (6.5) remains invariant by choosing different % and %, as long as the
product k?c?, is fixed. Therefore, the solution for the limit £ — 0 corresponds to the solution for
a vanishing c?,. On the other hand, for non-vanishing values of the product £2?c?;, the moment
at which the gravitational potential flips its sign is given by (6.12) (which is valid as long as

ViNotice that the coefficient ~ is positive, therefore, the argument of Bessel function vanishes when
x — oo. We have obtained the expression for small arguments making use of (9.1.7) and (9.1.9) of
reference [307])
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Terit < Tflip)-

Therefore, we could define a second horizon whose size is the distance where the gravitational
potential becomes positive. In addition, we notice that such a second horizon changes with
time as fast as the true horizon does, i.e. In (k/ky) ~ vz. So this could be understood as two
horizons, the true one; i.e. that enclose the observable Universe, and a second one; i.e. where
the gravitational potential becomes positive, keeping the relative distance as constant at the
far future.

Tip

Figure 6.6: This figure shows the moment where the gravitational potential switches its sign, zf;p, in terms
of log,, (k). Each curve corresponds to a given value of the speed of sound parameter; ¢?; = 0 (solid black),
2y = 0.2 (red), ¢y = 0.4 (orange), 24 = 0.6 (purple),c?; = 0.8 (blue) and ¢?; = 1 (gray). The red dashed
curve corresponds to ¢, = 2.09 x 10~% while the black-dotted line represent the value of = where modes
exit the horizon.

Figure 6.6 shows a plot of xgip VS logyg (k). Since no relevant differences are found between
models, we again only present the result given for the model A. We should keep in mind that
the differential equation that lead to the analytical solution will be different instead we choose
model B or C. However, at a perturbation level all the models give similar numerical solutions.

As it is shown in Figure b.6, for a vanishing ¢?, parameter (solid black line) the flip of sign
occurs at the same time for all the modes. The plots given by non-vanishing ¢?; parameters
(coloured solid lines) becomes parallel, at large modes, with respect to the horizon exiting line
(black dotted line). This means that there is an upper bound on ¢, that will ensure sign-flipped
modes inside the horizon, while values larger than such an upper bound would stand beyond
the observable Universe. We have estimated such an upper bound roughly to be the order of
2y <2 x107? (represented by the red dotted curve).

6.3 Conclusions

In this work, we have analysed the cosmological perturbations of three genuine phantom DE
models with a varying effective speed of sound parameter. These models, named in the present
thesis as model A, B and C, induce a particular future event known as BR, LR and LS, respectively.
In these future events the Universe reach a scenario where all the bound structures are ripped
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apart. We have addressed the computation of the linear cosmological perturbations following
the method of decomposing the DE pressure perturbation in its adiabatic and non adiabatic
contributions [[16, 101]], which leaves a dynamical set of equations free of instabilities. In this
way, the effective speed of sound parameter of DE, ¢?%,, is regarded as a free parameter.

We have considered a Universe filled with radiation, matter and DE, where the latter is described
by the aforementioned models. We have computed the perturbations since the radiation dom-
inated epoch, (ai, ~ 2.6 x 1079), till a far future (asi, ~ 1.6 x 10°), where the DE completely
dominates. On the one hand, the model parameters where fixed by using the observational con-
straints obtained in [[107]. On the other hand, the physical values as the initial conditions for a
single field inflation, spectral amplitude and spectral index were fixed using Planck data [{18].
Then, we obtain the predicted current matter power spectrum and evolution of fog growth
rate. Finally, we study the effect of changing ¢?, from 0 to 1.

We find that different values of the ¢?; parameter does not affect significantly the matter
perturbations. Consequently, the matter power spectrum and fog evolution do not show any
relevant footprint. However, we have found interesting footprints in the DE density contrast
when changing ¢2;. Those changes are amplified when ¢, is set very small. Despite the different
three models are almost indistinguishable at present, there are significant deviations in the
early Universe, which strongly depend on the initial EoS parameter of DE due to the adiabatic
conditions imposed at the beginning (see (b.1) and (6.3)).

We conclude that the possibility of a vanishing speed of sound parameter does not seem to be
favoured by two reasons: (i) the DE density contrast grows too much during the matter dom-
inated epoch, and this would lead to a DE clustering, something that has not been detected
so far, (ii) the gravitational potential sign flip occurs at the same time for all the modes, such
unexpected and sudden event does not seem physical. This is not the case of a non-vanishing ef-
fective speed of sound parameter, where the Bardeen potential becomes progressively negative
from very large distances to smaller ones. Such distances decrease with time as fast as the hori-
zon does. Therefore, there is a particular value of ¢2; where the gravitational potential switches
the sign precisely at the horizon. We have found that this value is close to ¢?; ~ 2 x 1073. We
stress that the effect of a gravitational potential sign flip occurs due to the negative sign of DE
perturbations.

Despite the fact that the DE perturbations have not been observed so far, we strongly believe
that they hide revealing footprints that could allow us to distinguish different DE models if ever
detected. We hope that upcoming missions such as Euclid will provide crucial information about
the dark sector of the Universe, granting us a useful tool to favouring or discriminating among
DE models as those addressed in the present thesis.
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7

WDW equation in QC

If you wish to make an apple pie from scratch, you must first invent the Universe
- Carl Sagan

7.1 introduction

The WDW equation can be introduced in the canonical quantisation of gravity in the so called
quantum geometrodynamics approach. From the Einstein-Hilbert gravitational action func-
tional, the Einstein (Euler-Lagrange) equations can be obtained and used to deduce the Hamil-
tonian equations describing the dynamical evolution. It turns out that this is a constrained dy-
namical system, in which the constraints correspond to the invariance of the model with respect
to space-time diffeomorphisms. There are two types of constraints: the momenta constraints
(space diffeomorphisms) and the Hamiltonian constraint (time diffeomorphisms) [151, 152]. The
canonical formulation of general relativity leads to four local constraints. If quantisation is per-
formed in the Dirac sense, they turn into the WDW equation and the quantum diffeomorphism
constraints [151]. Therefore, the WDW equation can be understood as the analogous to the
Schrodinger equation in QM where the Universe is taken as a whole; i.e. as the full system to
be analysed [[151, 152]. In order to deduce the WDW equation, the first step is to obtain the
classical Hamiltonian from the usual Hilbert-Einstein action (in our case we restrict to a FLRW
metric). Then the quantum operators are introduced according to the canonical quantisation
procedure leading to the WDW equation [[151, 152]. The gravitational action depends upon the
chosen metric, in particular for a FLRW space-time, the Hilbert-Einstein action is given by

1 ,
Sup = 16— [/d‘lz\/fg(R— 2A) — 2/d5x\/—7hK} . (7.1)

The second term on the right hand side of the previous equation contains the extrinsic curvature
K and is a compulsory boundary term to have a well-defined variational problem. The extrinsic
curvature and its trace read [[151], [152]

1 by

Kub = 2N 3t I (7'2)
K = K, h, (7.3)
where N (¢) is the lapse function and h,; is the induced spatial metric [[151), 152]
hap = a? () dr® +72d6? + r%sin® Odyp (7.4)
ab 1—kr2 ' )

The Lambda function introduced in the action corresponds to A = 87Gp; i.e. the matter La-
grangian of the Universe is described by A(a). From the Hilbert-Einstein action, we obtain the
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following Lagrangian density (after performing an integral)

3 -2 3
L:NLQ(—%2+M—A@Z)] (7.5)

Defining the momentum p, as

oL 37 [aa
Pa = % - _% (N) 5 (7.6)

we get the Hamiltonian corresponding to the action (7.1))
2
HN[G%+A@ﬁy (7.7)
T a

where p, is the canonical momentum corresponding to the scale factor. Notice that the canonical
momentum associated with the lapse function does not appear because it corresponds to a
primary constraint [152]. Therefore, the scale factor is the only variable in this particular
cosmological problem. The curvature term is reabsorbed in the A(a) function which can be
understood as an effective potential. Depending on the features of the model inducing the
abrupt event, such a potential is described, in general, by a growing function of the scale
factor, for example: by a power law, by an exponential function or by a product of both.

A perfect fluid description, where the scale factor is the single degree of freedom, shows inter-
esting features and have been analised in the present thesis, but it turns out that it describes a
simple one dimensional problem where the roles of the scale factor and time are not very clear.
By mapping the fluid to a scalar field adds an additional variable, in consequence, the wave
function can be spread over a larger number of variable while the scale factor could be under-
stood as playing the role of time. Choosing, in addition, a perfect fluid and a set of minimally
coupled scalar fields, the total action consisting of the Einstein-Hilbert action and the matter
action reduces to [42, 44, 51|, 70, 151|, 152]

S:/Edt, L:&
2

The energy density p could represents a mixture of those perfect fluids while ¢; represents the
scalar field where [ = 1, (—1) for a standard (phantom) scalar field. The constant V, stands for
the volume of the three-dimensional spatial sections for a« = 1. As we are dealing with spatially
flat sections, it is implicitly assumed that we either choose a torus compactification with the
correct volume or we leave the volume open, that is, choose a reference volume V, I. We can
work out both options without loss of generality. Bear in mind that this choice leads only to a
constant factor multiplying the Lagrangian and, therefore, will not affect the results presented
below, after all, the Hamiltonian is obtained from a Legendre transformation and the classical
constraint H = 0 becomes after quantisation [[151, 152]

3T 2a7,.3 1 4.2
B TeIvid a—27°Na (pw;lz@ +V(¢17“¢n)>‘|7 (7.8)

HT = 0. (7.9)

This equation enables an appropriate quantum approach where the wave function of the Uni-

IFor non-vanishing spatial curvature, the total action can be written as [151, 52], S =
3% [ [-d*a+ka] dt —7* [a® [d)Q + 2V(¢;)] dt, where the lapse function is taken as unity, N = 1.
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verse ¥ depends on the degrees of freedom used to describe the physical system under study,
that is, the configuration space. We will address quantisation by means of: (i) a single degree
of freedom corresponding to the scale factor, where the matter content is given by a perfect
fluid (with a known EoS corresponding to the chosen model (see chapter ), and (ii) two de-
grees of freedom corresponding to the scale factor and a scalar field (which portrays the matter
content).

In the first approach, the scale factor is the only independent variable. This is certainly a
very simple model, but it is interesting enough to study the behavior of the wave function near
the singularities. In the absence of a full quantum gravity framework it is, of course, an open
question what the correct criterion of singularity avoidance is. A useful heuristic criterion is
the one introduced by DeWitt in 1967 [[17€] ; it states that the wave function should vanish
at the place of the classical singularity. This criterion was successfully applied to a variety of
cosmological models, see [[151|, 152, 308] and [44, 48, 63, 70, 309].

In the second approach, an approximation describing the matter content by a scalar field yields
a suitable framework with an additional degree of freedom. We move from the classical trajec-
tory, ¢ = ¢ (a), to the corresponding quantum analog where the wave function is defined over
the configuration space (a, ¢). In this way, the quantum nature arises and gains significance
close to the singularity, once the quantum effects become important. Here, again, the DW
criterion is useful as a heuristic device.

7.2 Quantisation procedures: Factor ordering

The passage to the quantum description is done by promoting all the degrees of freedom and
canonically conjugate momenta to operators acting on some Hilbert space. The usual approach
is to consider the so called minisuperspace, the space of all 3-dimensional totally symmetric
(FLRW) metrics and all matter-energy configurations. It is analogous to the configuration space
in the classical analysis. The wave function of the Universe (in the Schrodinger representation)
will live on this space and each point on it represents a FLRW Universe with a certain value of
the scale factor and certain well defined values for all the matter-energy degrees of freedom.
The WDW equation governs precisely the distribution of the wave function in this (quantum)
configuration space. It corresponds to the Hamiltonian constraint (time diffeomorphism invari-
ance) previously mentioned, where the Hamiltonian operator acting on the wave function gives
zero. In fact, the classical Hamiltonian constraint # = 0 corresponds to the Friedmann equa-
tion. Therefore, time is absent in this quantum description and the wave function in the Born
interpretation is expected to provide a stationary probability (amplitude) distribution in min-
isuperspace [[151]. As mentioned in the introduction, in the canonical quantisation procedure
we have to take into account that there are different “factor-orderings” in obtaining the WDW
equation.

A reasonable model is one in which the decoherence of the general superposition of quantum
states is absent in those regions of minisuperspace corresponding to a classically behaving Uni-
verse [151]]. This requirement is analogous to the correspondence principle in usual QM where
the classical regime is re-obtained for large quantum numbers. Here, coherence presupposes
the possibility for confined wave packet solutions, effectively reproducing the classical tra-
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jectory in configuration space. However, in the vicinity of classical singularities, where the
quantum cosmology can have important non-classical effects, decoherence might be present
and the quantum results can differ from the classical description [42]. Therefore, for any FLRW
model with singularities (or abrupt events such as the LR and the LS), one should check if the
distribution of the wave function in minisuperspace is such that these (classical) cosmic events
can be effectively avoided with the quantum approach. That is, it is necessary to check the
DW boundary condition verifying whether among the obtained solutions exists a wave function
which effectively vanishes at the vicinity of the abrupt event. Unfortunately, we have not yet
a complete quantum theory and there is some inconsistency as the factor ordering choice, i.e.
different factor orderings lead to different wave function of the Universe. Therefore, every
result is taken rigorously as a hint rather than a proof of singularity avoidance.

One of the factor ordering chosen in the present work is the corresponding to the covariant
generalisation of the LB operator. This method has the attribute of waranting a kinetic term
invariant under phase-space transformations as it happens with the Schrodinger equation in QM
[151]. The corresponding WDW equation ﬁw(a, ¢) = 0, for flat spatial geometry is [42]

12 [52 0? o

2|6 002 a2

5 ] (e, ) + age™V(9)v(a, d) =0, (7.10)

where o = In(a/ag), k* = 87G and V(¢) represents the potential of the scalar field. Bear in
mind that the above quantisation in terms of LB operator corresponds to the minusuperspace
of variables considering both metric and the scalar field. In the case of a single degree of
freedom the term p?/a in the classical Hamiltonian given in (7.7) becomes in the quantum
version something proportional to §%/9u?, where u = (3/2)a’/2.

On the other hand, some others factors orderings are considered in the present work. Bear in
mind that the classical Hamiltonian results in a vanishing outcome, so it is always possible to
multiply by an arbitrary functiontl. In general, this function could depend on both variable, the
scale factor and the scalar field. For simplicity, we assume that such a function depends only
on the scale factor. The goal is to see that our results do not depend on the factor ordering.

Then, once the factor ordering is selected, it comes the diagonalisation of the operator. This
step is performed by a change of the gravitational variable, usually the scale factor or a function
of it. This becomes a differential equation in a double derivative over the new gravitational
variable, as well as, over the scalar field if it is present, and plus an effective potential. The
latter is a product of separated functions depending on the gravitational variable and the scalar
field for those cases where two variables are involved. The resulting differential equation could
be difficult to solve, therefore, we apply some methods as the well known BO approximation
(see [C.3 in the appendix for a detailed analysis).

When solving the WDW equation some comments are in order. The quantum description based
on the WDW equation will be limited to a subset of the minisuperspace corresponding to DE
dominance, (pior ~ pae = p in (2.2)). In the second place, a and ¢ are not independent clas-
sically. Naively, this could seem to imply that to check the fulfilment of the DW criterium we

Of course, as long as such a function is not divided by zero, which would imply an indetermination to
be solved.
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should search for solutions +(a, ¢) that decay along that line ¢ = ¢°'#(a), (o, ¢°12%(a)) — 0,
when the scale factor goes to infinity. Nevertheless, when the energy density approaches a
certain quantum gravity threshold, the quantum effects should become important breaking the
classical constraint ¢ = ¢°'*%(). Indeed, although the potential is classically obtained, o and
¢ are independent in the quantum description. Therefore, we must investigate the evolution
of the wave function ¢(«, ¢) for @« — oo and arbitrary values of ¢. Finally, for a compatible
link between the quantum solutions and the classical behaviour, far from the quantum effects
dominance, the wave function should be described by wave-packets centered in each point of
the classical trajectory ¢ = ¢<!%**(a) [151]. We will not consider this issue in the present work.

7.3 WDW equation in EiBI theories

The WDW equation derived in the previous section comes from the fundamental action which
consists on the Hilbert-Einstein action minimally coupled to a matter field. Then, we move from
the classical to the quantum real by promoting the Hamiltonian constraints and the conjugate
momenta as operators acting over the wave function. Therefore, this step is always doable as
far as it exists a physically motivated Hamiltonian. So, in order to analyse the possible factor
orderings that changes the resulting wave function, we go beyond and ask what if the action
that leads to the classical Hamiltonian is different? One of the most appealing suggestion is the
EiBlI modified gravity. On the one hand, it has shown to be effective to address the issue of cos-
mological singularities. The merging of an auxiliary (or equivalent) space-time metric “absorbs”
the physical singularity leading to a harmless scenario. On the other hand, it is interesting from
the application of the WDW equation, since it could provide an original Hamiltonian giving rise to
different mechanics deviated from those addressed in the previous sections, where our starting
point to obtain the WDW equation lied on the usual Hilbert-Einstein action.

The EiBI theory is inspired on the Eddington’s functional [121], where the connection is consid-
ered as the main field. We will focus on the EiBI action proposed in [[122]

Seint = = [ a[\/lgu + KR = W3] + Slo) 7.11)

where |g,, + kR, | is the determinant of the tensor g,, + xR,,. From now on, we assume
8mG =c=1.

The theory is assumed to contain only the symmetric part of the Ricci tensor R,,) and the
curvature is constructed by the affine connection I', which is independent of g,,. Within this
setup, the theory respects the projective gauge symmetry and the torsion field, if it exists,
can be removed by simply choosing a gauge. On the other hand, the dimensionless constant
A quantifies the effective cosmological constant at the low curvature limit. Moreover, on the
action (7.11)) |9 + KR (.| stands for the absolute value of the determinant of the rank two
tensor g,, + xR(,,). Finally, x characterises the theory and has inverse dimensions to that of
a cosmological constant. In addition, this parameter is assumed to be positive to avoid the
imaginary effective sound speed instabilities usually associated with a negativeEi k [142].

fiHowever, within the quantum study we will perform later on in the chapter [i3 both cases, < « and
k < 0, will be considered.
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The EiBI theory is equivalent to GR in vacuum, while it could deviate from GR when matter
fields are included. In the early Universe, the theory has been shown to be free of the big
bang singularity. Furthermore, it should be stressed that the equations of motion of the theory
contain derivatives of the metric up to only second order because of the Palatini structure of
the theory. To be more precise, one can define an auxiliary metric Aq,, = g, + KR(,,) such
that ¢, is compatible with the connection. One of the two field equations relates algebraically
the matter field with the two metrics, and the other equation corresponds to a second order
differential equation of ¢,,. It can be seen that when the curvature vanishes, the two metrics
are identical up to a constant conformal rescaling, rendering the equivalence of the EiBl theory
and GR in the zero curvature regime.

Considering a homogeneous and isotropic spacetime which can be described by the following
metric ansatz:

ds; = —N(t)*dt* + a(t)*6;;da’ da’ ds? = —M(t)*dt* + b(t)?6;;dx’da’ (7.12)

where N (t) and a(t) are the lapse function and the scale factor of the physical metric g,,,,, while
M (t) and b(t) are the lapse function and the scale factor of the auxiliary metric g,,. In this
metric ansatz, these four quantities can be expressed as functions of the cosmic time ¢ and
their evolutions in time are determined by the Euler-Lagrange equations of motion. The field
equations are obtained by varying (7.11)) with respect to g, and the connection I'. Therefore,
in a flat, homogeneous and isotropic (FLRW) Universe filled with a perfect fluid. The Friedmann
equations of the physical metric g,,, and of the auxiliary metric compatible with I" are [[130]

wH? = So+3p-2+2/05 907

(1+p)01-p)?

X — — = = —, (7.13)
[(1=p)(4+p—3p)+ 3L +p)(p+D)?
and
_/1dby? 1 p+3p—2

wherel! p = kp and p = kp. On the above equations a and b are the scale factor of the physical
and auxiliary metrics, respectively. # is a rescaled time such that the auxiliary metric can be
written in a FLRW form.

The deduction of the WDW equation of the EiBI model is based on the construction of a classical
Hamiltonian that is promoted to a quantum operator. As shown in [203], this can be achieved
more straightforwardly by considering an alternative action which is dynamically equivalent to

VNotice that we are dealing with Palatini type of models which are also known as affine models. On these
types of theories (c.f. the action (/.11)) there is a metric g,.,. and a connection I" which does not correspond
to the Christoffel symbols of the metric. However, it is always possible to define a metric compatible with
that connection [310] and this is the metric that we are referring to as the auxiliary metric. The same
applies to the action (7.15) where we denote the auxiliary metric as quv and the physical metric g,... This
is the standard and usual nomenclature in Palatini/affine theories.
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the E]BI aCtion (m):
a P . a m

On the above action (7.15), the fundamental variables are g, and the auxiliary metric ¢, .
It can be proven that the equations of motion derived from the original action (7.11)) can be
obtained unambiguously by varying the action (7.15) with respect to g,,, and g,,,.. In [126] it has
been shown that the field equations obtained by varying the action (7.15) with respect to v
and the auxiliary metric ¢,,,, are the same to those derived from the action 7. 11).

We will use this alternative action (7.15) to deduce the classical Hamiltonian and the corre-
sponding WDW equation in the EiBl gravity. It turns out that the construction of the WDW
equation is much more straightforward because of the absence of the square root structure of
the curvature present in the original action (7.11). For the sake of later convenience, we use
the following changes of variables

Y

==

a
X o (7.16)

to replace N and a with X and Y, respectively. Using the alternative action (7.15) and assuming
that the matter sector is described by a perfect fluid with energy density p and pressure p, the
reduced Lagrangian associated with the action (7.15) can be written as

602 2\

— 3| _ _ =
L=V | s ==

1
+ = (X2 4+3Y% —2XY?) | —2p[(bY)| MV’ XY?, (7.17)
K
where p is a function of a where the relation a = bY has been imposed, i.e., p = p(bY). In
the present work, the energy density will be fixed by the selected DE model. Note that for
large scale factors DE dominates the dynamics of the Universe, in such a way that the Universe
is considered to be filled by a single DE component neglecting the contribution of the matter
content.

According to the definition of conjugate momenta, we have three primary constraints:

oL oL oL

:7.’\“07 :7.’\/07 :7.’\107 7.18
ox Y=oy PM= vt (7.18)

Px

where ~ denotes a weak equality, i.e., an equality on the constraint surface. The total Hamil-
tonian is defined as follows

2 2;3 313
Dj 22D Asos 3A g 5 2XYOb
= M|—- — b’ X° — =bY _— (A
Hr 24\b K K K + K (At sp)
+Axpx + Aypy + Avpwms (7.19)

where p; is the conjugate momentum of the phase space variable b. In the last few terms, Ay,
Ay, and A\, are Lagrange multipliers associated with each primary constraint. Note that the
primary constraints are obtained directly from the definition of the conjugate momenta. These
constraints should be satisfied throughout time and this would lead to the so called secondary
constraints. To derive these secondary constraints requires the use of the equations of motion:
pyv = [pv, Hr] ~ 0, px = [px,Hr| ~ 0, and py = [py, Hr] ~ 0. We call these requirements con-
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sistent conditions of the corresponding constraints and the consistent conditions of the primary
constraints lead to the following secondary constraints [311, 312]:

Cx = M -=Y3\+rp)~0, (7.20)

Cy = 3XN=3XY(\+kp)— XY?brp' ~0, (7.21)
2 9N ) 3\ 2XY3b3

Cy = 2Z§b - TPX 4 Y - (A + Kp) ~ 0. (7.22)

The prime denotes the derivative with respect to a = bY. Furthermore, it can be shown that
the total Hamiltonian is a constraint of the system:

Hr = —MChu + Axpx + Aypy + Anpuy ~ 0. (7.23)

Because the Poisson brackets of the total Hamiltonian with all the constraints should vanish
weakly by definition, H is a first class constraint and we will use it to construct the modified
WDW equation.

This system has six independent constraints: px, py, pym, Cx, Cy, and Cy,. After calculating
their Poisson brackets with each other, we find that except for pj;, which is a first class con-
straint, the other five constraints are second class [311, 312]. The existence of the first class
constraint p;; implies a gauge degree of freedom in the system and one can add a gauge fixing
condition into the system to make the constraint second class. An appropriate choice of the
gauge fixing condition is M = constant and after fixing the gauge, the conservation in time of
this gauge fixing condition, i.e., [M, Hr] = 0, implies A\y; = 0.

Within the EiBI framework, the scale factor plays the role of a parameter while the true variable
corresponds to the auxiliary scale factor denoted by b. As done in the previous section, the
content given by a perfect fluid can be mapped to a scalar field, in such a way that the system
has a further degree of freedom. The resulting reduced Lagrangian constructed from the action,
S, = v [ dtL, can be rewritten as

662 2\ 1,N?2 a> _Nda? iz
_ i i D> Yal 3(7 7
L=V [ = oo = 24 (T +357 — 2015 ) | + Na* (15 —2v(9)), (7.24)
where vy corresponds to the spatial volume after a proper compactification for spatially flat
sections. On the above equation [ = +1 denotes the ordinary scalar field (+1) and phantom
scalar field (—1), respectively. After applying the change of variables (7.1€) in (7.11), the
Lagrangian then becomes

S 62 2n 1 : : ¢’
— 3| _an - 2 2 3 3yv3 o
L= AMV| = —o = =+ (X2 4372 = 2XV)| + MXPY? (105 = 2V(9)). (7.25)
The conjugate momenta of this system are
py=—10b,  py= 2210, (7.26)
px =0, py=0, pu=0. (7.27)

It can be seen that the variables X, Y, and M cannot be inverted to be functions of canonical
variables and their conjugate momenta, so the system is a constrained system and it has the
same three primary constraints as given in (7.18) [312]. Provided the existence of the primary
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constraints, the corresponding Hamiltonian for a content described by a scalar field is defined
as follows [312]

Hr = —oikipp + ARG Ip2 — A (X2 4 3Y2 — 2X VP — 2)) (7.28)
+2MXV3Y3V (@) + Appm + Axpx + Aypy-

Therefore, the secondary constraints when describing the content by scalar field read as follows
[139]

X Iy,
A I}
Cy = = -A+ H(gbﬁyﬁ - v<¢>)) ~0, (7.30)
Cu = v X Ip? + A—bB(X? +3Y2 - 2XY? —2)\) - 2Xb3Y3V (¢) ~ 0. (7.31)
24\b  4b3Y3 0T

Moreover, the consistent conditions of these secondary constraints do not generate new con-
straints anymore. Once again, we have six constraints in this system, where p,, is a first class
constraint, i.e. its Poisson brackets with other constraints are zero weakly, while px, py, Cx,
Cy and C); are second class constraints because they have at least one non-vanishing Poisson
bracket with the other constraints on shell. Therefore, mapping the perfect fluid into a scalar
field does not change the underlying feature of the first and second class constraints and the
Hamiltonian is within both descriptions a first class constraint since it can be written as a linear
combination of the constraints as follows

Hr = —MCuy + Avpy + Axpx + Ay py, (7.32)

and therefore, its Poisson brackets with all the constraints vanish weakly by definition. In
the following subsection, we will use the Hamiltonian to write down the WDW equation, i.e.,
Hop|W) = 0.

7.3.1 Quantisation with Dirac brackets

The system that we are dealing with contains several second class constraints. According to
[312], it was suggested that to quantise such a system, one needs to use the Dirac bracket, in-
stead of the Poisson bracket, to define the commutation relations and promote the phase space
functions to quantum operators. The Dirac bracket is basically constructed by calculating the
Poisson brackets among all independent second class constraints of the system. The notion of
independent second class constraints means that one cannot obtain any other first class con-
straints by taking linear combinations of these second class constraints. The independent second
class constraints in our system (after choosing the gauge) are x; = {M, pux, px, py, Cx, Cy }.
Note that the Hamiltonian (F.32)) is a first class constraint and it can be written as a linear
combination containing C,,. That is the reason why we have excluded C,; when defining ;.

The Dirac bracket of two phase space functions F' and G is defined by [312]
We remind that the existence of the matrix A;; is proven in Dirac’s lecture [312] while Poisson
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bracket is defined as

_OFOG  OF 0G
~ 0q; Op;  Op; Og;’

[F, Gl
(7.34)

where ¢; are the variables and p; their conjugate momenta and A;; is a matrix satisfying
Aij X5, xk] = ik, (7.35)

where the repeating suffices denote the summation. According to [312], the second class con-
straints can be treated as zero operators after promoting them to quantum operators as long as
the Dirac brackets are used to construct the commutation relations:

[Fa G] = Zh[F7 G]D, (F=F,G=G)" (736)

This is due to the fact that the Dirac brackets of the constraints ; with any phase space func-
tion vanish strongly (they vanish without inserting any constraint). Considering a perfect fluid
description, the Dirac brackets between the fundamental variables take the forms

b,pe]lp = [b:p) =1,

b,X], = 0,

b,Y], = 0,

(X, Y], = 0,

[(Xipelp = [i(X,Y,0) = fi(b),

Y.polp = f2(X,Y,0) = fa(b), (7.37)

where f; and f, are two non-vanishing functions. Notice that f; and f, can be written as
functions of b because it is legitimate to insert the constraints C'x and Cy to replace X and
Y with b when calculating the Dirac brackets. One of the important properties of the Dirac
bracket is that the Dirac bracket of a second class constraint with any phase space function is
zero strongly, i.e., [x;, G]p = 0. This means that after promoting the phase space functions to
quantum operators via the Dirac bracket, the second class constraints y; can be treated as zero
operators and the Hamiltonian can be significantly simplified. Therefore, when describing the
content by a scalar field and considering the constraints C'x and Cy, the Hamiltonian operator
Hr only contains b, p;, ¢, and pe. The Dirac brackets of the fundamental variables corresponding
to these operators are

b, 9lp = [b,pslp = [®,p6]lD = [P, Pe]D = 0,
b.pslp = [o,pelD = 1. (7.38)

This means that the standard commutation relations are still valid. In the next analysis done in
the present thesis (see chapters [11, iZ and [13) we will make use of the second class constraints
x; to derive an explicit form of the WDW equation.
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7.4 conclusions

In the current chapter we have disclosed the method used to move from the classical description
to the quantum realm. Such a quantisation is carried via the WDW equation, where the classical
Hamiltonian is derived from the fundamental action given by: (i) the Hilbert-Einstein action, and
(ii), within the context of EiBI theory. That is, we consider the Eddington’s functional provided
with a Born-Infeld like structure. On the other hand, the DE content could be given by: (i) a
perfect fluid, and (ii), a phantom scalar field. The conjugate momenta of the metric and scalar
field are promoted as operators acting on a wave function. Such a function, in principle, should
be defined within a Hilbert space with well defined eigenvalues and eigenfunctions. However,
as aforementioned, we have not yet a fundamental theory of gravity that allows a particular way
to perform the transitions from classical GR to its quantum analogous. This becomes obvious
when dealing with different factor orderings. However, different approaches have shown to
be viable in order to avoid the cosmological singularities prevalent in the classical theory of
gravity. That is, the obtained wave function effectively vanishes when approaching cosmic to
the doomsday. We stress that this result is not meant as a proof of singularity avoidance in
QC, it should be rather understood as a hint of singularity avoidance. If a fundamental theory
able to handle QM and GR simultaneously exists, it should, in principle, avoid those singularities
present in the classical theory. In such a way that the subsequent wave functions obtained by
different approaches are just the results of a more fundamental theory holding all the underlying
approaches as those performed in the present thesis.
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8

The BR singularity in a HRDE model

To the dumb question "Why me?” the cosmos barely bothers to return the reply: Why
not?
- Christopher-Hitchens

8.1 Introduction

The late-time observed acceleration of the Universe has promoted several scenarios that try
to describe this recent speed up of the Universe. In fact, it is well known that a Universe
filled only with matter and radiation (for open, flat or closed spatial geometries) cannot ex-
pand with positive acceleration. Therefore, it is necessary to find other mechanisms/matters
that could explain this feature. The simplest phenomenological approach consists in invoking
another kind of energy density responsible for the current acceleration of the Universe which is
usually dubbed DE being the cosmological constant the simplest option [23]. The common way
to describe DE is via its equation of state (EoS) parameter, which is usually denoted by wq. This
cosmological parameter is the ratio between the pressure and the energy density of DE. It can
be constant or time-dependent. By definition, DE EoS must fulfil wg < —1/3 at late-time to be
able to describe the current speed up of the Universe. In fact, observations suggest wq ~ —1 at
present (see for example [14]).

Within the above framework, the ACDM model is the best fit to the observational data [[14]. This
model assumes besides ordinary matter, the presence of non-baryonic matter corresponding to
DM and a cosmological constant A. In fact, the EoS of A is just wy = —1 and remains unchanged in
time [313]. In this Universe, the expansion is accelerated at late-time reaching an infinite scale
factor in an infinite cosmic time where the Universe geometry is described by a de Sitter space-
time. Planck latest results when combined with other cosmological measurements provides
wq =~ —1.006 + 0.045 for a DE constant equation of state [14]. Even though this value is very
close to minus one, a slight deviation from it is crucial for the asymptotic future behaviour
of the Universe. In fact, if w, is slightly larger than -1, the Universe will continue expanding
eternally, but if this value is slightly smaller than -1, and no matter how tiny is such a deviation,
the Universe could end up in a doomsday. For example, it could happen that the energy density
becomes infinite at a finite cosmic time [28-30, 32, 45-47, 59, 60].

Although the ACDM model gives the best observational fit to explain our current Universe, there
are other ways that have gained great attention [23]. One of them is the holographic DE scenario
[40, 314] which is inspired on the holographic principle rooted in quantum gravity. We next
explainI briefly the ideas behind the HRDE.

IThis chapter corresponds mainly to our publication [44]
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As it is well known, the entropy of a given closed system with finite volume L? has an upper
bound which is not proportional to its volume, but to its surface area, L? [315, 316]. On the
other hand, for an effective quantum field theory with a given ultra-violet (UV) cutoff, My, the
entropy of the same system is scaled as L3M3,. Therefore, there is always a scale or a length
where the quantum field theory with UV cutoff is expected to fail. This will happen for large
volumes or lengths. To overcome this problem a link between UV and infrared (IR) cutoffs was
proposed in [317]:

LMy, S LM (8.1)

This proposal ensures the validity of the quantum field theory within this regime. When the
inequality is saturated, we can define an energy density which is inversely proportional to the
square of the characteristic length of the system. Applying these ideas to the universe give rise
to the holographic DE scenario [40].

Now, the next task would be to find a suitable holographic energy density able to speed up
the current Universe. This issue has been tackled in different works. For example, taking as
a characteristic length the inverse of the Hubble parameter, Iy = H !, it was found that the
effective EoS for DE is equal to zero and therefore is not a suitable proposal to describe the
current Universe because it would imply an eternally decelerating Universe [4(Q]. Later on, the
particle horizon was suggested as a characteristic length for the universe within the holographic
approach lpy = a jot dt/a [318]. In this case, it turns out that the effective EoS is larger than -1/3,
therefore this choice is equally unsuitable to describe our present Universe [40, 318]. Contrary
to the previous proposals, the future event horizon lgy = afttf dt/a is phenomelogically viable
as it fits the current observations [40, 319], however, it has a drawback with causality; the
future event horizon should not affect the current or past physical evolution of our Universe
[320]. There is a further possibility to define an holographic DE model which consists in taking
as the square of the length characterising the Universe, the inverse of the Ricci scalar curvature
[321]. This model was named the Holographic Ricci Dark Energy scenario (HRDE) for further
generalization of the holographic DE model see [39, 102, 322-325].

While the HRDE is suitable to describe the current acceleration of the universe as shown in [321),
326-329], it might induce a BR singularity [321]; i.e., the scale factor, the Hubble parameter and
its first cosmic time derivate blow up in a finite future cosmological time [28-30]. This model
has been observationally constrained in [330]. For more updated observational constraints on
the HRDE we refer to [329], where even interaction between DM and the HRDE is considered,
and again, a BR is favoured observationally.

When the Universe approach the BR regime, we expect quantum effects to be important, there-
fore, it is necessary to do a quantum analysis. The field of cosmological singularities has been
extensively studied in quantum cosmology [151|, 152] (see [204] for a review on this topic).
Quantum Cosmology consists in applying the quantum theory to the Universe as a whole [331].
A consistent theory of quantum gravity should in principle avoid the classical singularities preva-
lent in the classical theory of general relativity [42, 48, 51]. Indeed, it has been shown that in
some specific models, most DE related singularities can be avoided in the analogous quantum
version [42, 48, b1, 63].
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In the present chapter, we address the quantisation of the HRDE model. We use the WDW
formalism for a homogenous, isotropic and spatially flat universe. The solutions to the WDW
equation must obey the DW boundary conditions [[151|, 152], which implies that the wave function
of the Universe has to vanish close to the singularities, ensuring that the classical singularity is
avoided through the quantisation procedure. We extend our analysis to the primordial Universe
where a Big Bang is expected to take place from a classical point of view and where again a
quantum analysis is required.

The chapter is outlined as follows. In the next section, we make a brief review of the HRDE
model. In section Ill, we present the WDW equation for a standard fluid and present the solutions
for the HRDE model. Finally, in section IV we discuss the overall conclusions. In the appendix
.1, we include a brief explanation of the WKB method that was used to solve the WDW equation
for some periods of the expansion of the Universe.

8.2 The HRDE: a short review

We start reviewing the HRDE model. The Universe on its largest scale can be described by a
FLRW Universe. On the other hand, we consider an energy density proportional to the Ricci
scalar, i.e. [321]

. k
pr =60 (H +2H? + a2) , (8.2)
where 3 is a proportionality constant and dot stands for derivates with respect to the cosmic

time ¢. Defining a dimensionless quantity 3 = 167G3, and solving the Friedmann equation, the
expression for the Ricci DE density is found to be [321]

B 3H? B a\ a —2(2-3)
PR = Ry [(2_5> Qmo (%) + Qpo <ao> ) (8.3)

where () is an integration constant which will quantify the effective amount of DE in the HRDE

model [321]]. Notice that the presence of radiation and spatial curvature in the Universe do not
modify the previous result. The Ricci DE has one part that behaves as matter and another part
which depends on the value of 5 and plays the role of DE. The asymptotic future behaviour of
the Universe depends on the values acquired by 3, more precisely:

1. If 1 < 8, the cosmic acceleration is negative. We disregard this case as it cannot describe
the present Universe.

2. If 1/2 < B8 < 1, the Universe enters in an accelerating state when the HRDE dominates.
The Universe is asymptotically flat in the future.

3. If 5 =1/2, the model is equivalent to the existence of a cosmological constant plus the
matter contributions. We will disregard this case as it reduces to ACDM model.

4. If 0 < 8 < 1/2, the Universe not only enters in an accelerated state, but also super
accelerates (H > 0) in the future hitting a BR; i.e. the Universe hit a singularity at a finite
cosmic time.
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The observational constraints of the HRDE model favour the last case, i.e 0 < 5 < 1/2[329, 330],
so the Universe would reach a future singularity in a finite time. In this framework, classical
Einstein theory is no longer valid and it is necessary to make a quantum treatment.

8.3 Quantisation of the HRDE

For a HRDE model we follow the one dimensional description where the action (7.1) leads to
the Lagrangian given in Eq (7.5). Therefore, the total matter content is absorbed in the A(a)
function which reads

a\* 2 a\® a2 o\ 2C-%)
Qro (CLO) + <2 — 5) Qmo <ao> + Qo (Clo) + Opo (%) ] - (8.4)

Here, Qi is the dimensionless energy density parameter for curvature at present. On the other
hand, we follow the quantisation procedure where the term p? /a generates the operator

A(a) = 3H;

B p2[a3,] [ato.]. 8.5)

in the quantum framework where we have choosen a factor ordering corresponding to the covari-
ant generalization of the LB operator [151] (for alternative choices see for example [332-334]).
It is useful to apply the following change of variable to remove the first order derivate from the
quantum Hamiltonian operator
z= (“) - (8.6)
ao

Therefore, the quantum Hamiltonian operator can be written as

H=N

~ 2 H2 3 2 2 2 2 2
{3Gh 92+ 377463% |:Qr0$_3 + (2—[3) Qmo + Qrow3 + onﬂﬁi"(l")} } . (8.7)

3
4may

As the variation of the Hamiltonian with respect to the lapse function N produces the Hamil-
tonian constraint, the WDW equation reads H¥ (z) = 0. We will take the case of a spatially
flat universe (ko = 0) for simplicity and in accordance with the current observations [14].
Therefore the WDW equation reduces to

{83 +7 [Qroﬂﬁg + <235> Qmo + onx_g(l_ﬁ)} } U (z) =0, (8.8)

where we have introduced the following dimensionless constant:
v = (wHodl/Gh). (8.9)

Due to the complexity of the equation (B.8), we will divide the evolution of the Universe thereof
in three regimes corresponding to the domination eras of radiation, matter and DE, respectively.
The first one, has an exact solution, for the others two cases we will make a WKB approximation
(up to first order). In the radiation dominated era the WDW is

{a§+79r0$_%}\1’($) =0, (8.10)
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whose exact solution reads [307]

¥y (1) = (o)} VE [C1Jg (2\/9r0’7$§> LY,y (gmmx%)} , (8.11)

where C; and C; are constants. The functions .J;,4 and Y3/, correspond to the first and second
kind Bessel functions of order 3/4, respectively. We choose C; = 0 to ensure that the wave
function vanishes when a — 0, according with the DW boundary condition [151, 330]. For the
matter dominated era the WDW is

{02 + 792 ()} W (2) =0, (8.12)

where the function g (z) is defined as

2 2
92 (z) = {Qr0$_3 + <25> Qmo] . (8.13)
The first order WKB solution gives
Uy (2) ~ [~z ()] 3 [a1eih2(w) + ozze_””(m)} , (8.14)

where «; and «» are constants and the function hy(z) is given by

ho (z) = (|~ (225> Qmo {x + (2_25> gﬂ ’) (8.15)

Finally, during the DE dominated era the WDW is

{92 4 g3 ()} ¥ (z) =0, (8.16)

where the function g;(z) is defined as

gs (x) = {(2_%) Omo + ngxs] . (8.17)

The first order WKB approximation gives the solution
W (z) = [—s (2)] " * [616“13(@ + 52e*ih3<f>} : (8.18)

where §; and d; are constants. The function h3(x) reads

hs (z) = 2—\_?89: {2 93 (%) + s 4/ (2_25) Qmo 2F1 E, é; 1+ é; (622> g::())xs} }, (8.19)

where s = —2/3(1 — 2/3). Notice that (i) the hypergeometric function defined in (8.19) is not
well defined as a series but it is well defined as an integral [307] and (ii) the parameter s is
positive, in fact it is larger than 2 for 0 < 8 < 1/2. The function h3(z) is always real, on the
other hand, the function gs(x) is positive and an increasing function of z; in fact, it blows up
for large values of . Therefore, the wave-function (B.18) which corresponds to an Universe
dominated by DE vanishes at large scales and the DW condition is fullfilled authomatically for
Us.
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Now, it is necessary to connect continuously the solutions among them. Taking the arbitrary
constant C; = 1 (for convenience, this election will not modify the fundamental behaviour of
the wave function), the conditions for a smooth wave-function give the values of a1, as, 41, ds.
These conditions are just the continuity conditions of the wave function and its first derivate
on a first connecting point (x;) and on a second connecting point (z5), which can be read as

Uy (z1) = W2 (z1), Ui/ (21) = ol (z1) , U2 (22) = U3 (22) , Vo/ (22) = U3/ (22) (8.20)

where prime stands for a derivative with respect to x.

We choose the first connecting point (z1) in which the matter component is subdominant with
respect to the radiation component (for example p,, ~ 10~%p,.), the second connecting point
(z2) is just where the radiation and the phantom contribution in equation (8.8) are subdominant
with respect to DM (for example when they are equal). The connecting points then read

16 2\ Qmo] 2
21 =10 [(2—6 ol (8.21)
.
_ (&
Ty = <on> . (8.22)

Using the Cramer method to solve the algebraic system, the constants a1, as, d1, 62 can be written
as follows

1 3 a
a1 = =5 l=yga () F| 12 (8.23)
Yz a2
1 3| a
oy =5 [=g @)t | O T (8.24)
a1 Y2
1 3| 21 b
b1 =5 @)t ”‘, (8.25)
22 bao
1 3| b z
b2 =5 [rgs (e2)]* | 1« (8.26)
bar 22
where we define
ai = [—v92 (:cl)]fi etha(@1) (8.27)
aiz = [—v92 (961)]7i e~ th2(@1) (8.28)
-3 _5 (2 _5 . 1 nt
as = {—74 [—g2 (x1)] " * <3Qr0331 3) —i[yge (x1)] 2 } etha(@1), (8.29)
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NG
Nl

a2 = {”44 a2 o] (30 ) 4 ibae o)

} 671‘}12({1}1)’

oolw

Y1 = (Qrov)

3 2
vais; (3wl ).

3 1 3 2 11 3 2
Y2 = (QrO'Y)8 [Ji (2 V QrO'Yﬂcf) -2 (QrO'Y)2 x4 JJ% (2\/ Qro’ﬂ’f) + 1:| s

bi = [—gs (z2)] T €32

bia = [—gs ()] T e~tha(@2),

i s )
ba1 = {74 [—9g3 (w2)] * <SQp0$§71) —i[ygs (x2)] " 2 } eths(@2)

7% 5 1 .
b”‘{ [0 @) (@025 7™") +i [ygs (22)] z}emm,

- 5 (2 _5 _1 .
Z22=m {74 [—g2 (z2)] 2 <3Qr0I2 3) —i[yge (z2)] 2 } eh2(r2)

K -1 (2 -3 _1 .
—ao {74 [—g2 (x2)] 7 <3Qrox2 3) +i[yga (x2)] 2 } p—iha(@2)

(8.30)

(8.31)

(8.32)

(8.33)

(8.34)

(8.35)

(8.36)

(8.37)

(8.38)

(8.39)

With the aim to show a numerical result, we use the constraints 5 = 0.3823, Qo = 8-107%, Qmo =
0.2927,Qpp = 0.6380 in accordance with the best fit of the current Universe within the HRDE

model [330]. Therefore, the connecting points are
21 = 3.287-10712, 25 = 0.07608,
and the constants can be written as

Q1 = Uq + Val,
Qg = Vo + Uat,
61 = us + vst,

0o = vs + ugi.

(8.40)

We next show an example of these constants. We choose v = 102°, sufficiently large to ensure
the validity of the WKB approximation for the connecting first point; i.e. well inside the radi-
ation dominated epoch where matter is subdominant. Notice that if the WKB approximation is
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fulfilled for the first connecting point it is well defined for the second connecting point. Then
we obtain ¢(z1) = 0.035 (see (C.7)). Finally, using the above introduced constraints and for the
selected v we find:

U = 80274.39, (8.45)
Vo = —288039.58, (8.46)
us = —298682.24, (8.47)

vs = 14131.34. (8.48)

In principle, ~ is much larger, in fact, taking ag = 1 gives the value v = 8.072-10%". If in addition,
we take into account the whole number of e-folds since the radiation dominated epoch, the
parameter v would be much larger. We choose the previous value of v; i.e. v = 10%°, to be able
to get numerically the values of the constants defined in (B.41)).

8.4 Conclusions and outlook

The HRDE is a suitable proposal to describe the late Universe. The best fit of the model provides
a value for the proportionality constant g inside the interval 0 < 8 < 1/2 [330]. This means that
the Universe is not only accelerating but will also face a future BR singularity. This classical
singularity is analysed within a quantum treatment where the quantisation is realised in the
framework of the WDW equation for a flat FLRW universe and imposing the DW boundary con-
dition. We have shown that the BR singularity as a consequence of the phantom like behaviour
of the HRDE could be avoidable and would be harmless within the quantum approach used in
this work. This might not be the case within a classical approach [335]. The DW condition can
be regarded as a guidance in the nowadays incomplete theory of quantum cosmology. In fact,
the disappearance of the probability distribution at singularities should arise in the theory in
a natural way as a dynamical consequence of some other requirements, such as the normaliz-
ability of the wave function, and should not be postulated. Given that we lack of a complete
and consistent quantum gravity theory, we will stick to the DW condition as our guidance for
singularity avoidance.

Despite the quantum analysis presented in this work about the avoidance of the Big Bang and
BR singularities, this fact cannot be interpreted as an exact and thorough evidence of singular-
ities avoidance in quantum cosmology, but rather an indication that a consistent and complete
quantum theory of gravity should be free of these singularities.

To solve the WDW equation we carry two types of approximations: (i) we divide the evolution of
the universe in three different epoch corresponding to radiation, matter and DE dominance as
explained in the previous section, (ii) for the last two periods we use a WKB approximation where
it is enough to go to first order in the WKB approximation to ensure the DW boundary condition
for large scale factors where the wave function is asymptotically decreasing and vanishing.

During the radiation dominated epoch, we obtain the exact wave function, fulfilling the DW
condition, which can be matched with the WKB approximation for the second period (mat-
ter+radiation). The larger is the value of v, defined in (B.9), the sooner, i.e. for smaller
scale factors, we can carry the matching between the two wave functions. In fact, the asymp-
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totic behaviour of the wave function during the radiation dominated epoch matches smoothly
and naturally with the WKB approximated solution corresponding to the matter and radiation
epochs.

The quantisation is necessary to describe the Universe close to singularities. However, outside
of these singularities the Universe can be described classically. In this regime, the square of the
modulus of the wave function can be interpreted as the classical probability density distribution.
We can see this clearly when the value of ~ is very large and therefore, the wave function
carries out a significant number of oscillations within a short interval of the chosen variable. In
fact, these oscillations are modulated by the classical probability density distribution, which is
defined as the time average of the scale factor.

In an analogy with the classical picture, a slight deviation of the resulted wave function from the
classical probability density distribution is expected. This is due to the performed first type of
approximation, which disregards the contribution of DE for small scales and the contribution of
radiation for large scales. Therefore, this deviation is more significant in the matter dominated
epoch.

Next, we would like to stress that our model has only one degree of freedom described through
the scale factor which in fact can play the role of the classical time. On the other hand, gravity
is a reparametrisation invariant theory with first class constraints. Therefore, there is always a
gauge fixing condition which reduces the number of physical variables and in our case we would
be left without any degree of freedom after the gauge fixing. However, our current work can be
regraded as a first approach in quantising the HRDE model, in fact a toy model, and we expect
to present in a different work a more elaborated scenario for the quantisation of the HRDE with
two physical variables and a genuine degree of freedom [70, 188, 189, 202]. In fact, to get at
least one degree of freedom with physical meaning, we can map the matter content given by
a perfect fluid to one or more scalar fields that could mimic the different components of the
universe. This method was carried out for example in [57] for a minimally coupled scalar field
or a tachyon scalar field.

In addition, we have been mainly focussing on the wave function of the universe while in fact
the important thing is the probabilistic interpretation of it. This requires the definition of a
Hilbert space with a proper scalar product and measure. In the interesting review [[181], this
non trivial problem is discussed and several potential solutions are presented while in [[183, 204]
those procedures are applied to different cosmological models. We hope to implement those
methods for the HRDE in a future work.

The aforementioned interpretation has some conceptual drawbacks: first, this picture corre-
sponds with the description of an “external observer”, who lives in a reality outside from the
quantum system under study. This is certainly not the case for a cosmological system where
the observer is part of the system [181]. In fact, we would need to apply a quantum theory of
closed systems or the many-worlds interpretation of QM to our universe but this is beyond the
scope of our current work (see [181] for more details on this subject).

We have restricted our analysis to a homogeneous and isotropic configuration. However, it is well
known that the inhomogeneities and anisotropies can be quite important close to singularities,
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for example through the creation of particle and gravitons (see for example [52, 336]). We leave
this interesting issue for a future work.
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9

Classical and quantum cosmology of the LR abrupt
event

The universe we observe has precisely the properties we should expect if there is, at
bottom, no design, no purpose, no evil, no good, nothing but blind, pitiless indiffer-
ence

- Richard Dawkins

9.1 introduction

One of the most challenging problems in theoretical physics is the formulation of a consistent
quantum theory of gravity [[151, 152]. Such a theory is needed not only for conceptual reasons,
but also for understanding the origin of the Universe and the structure of black holes. In this
chapter', we shall deal with quantum cosmology, that is, the application of quantum theory
to the Universe as a whole. For this purpose, we shall use the conservative framework called
quantum geometrodynamics, with the WDW equation as its central equation. This framework
is straightforwardly obtained by constructing quantum wave equations from which the Einstein
equations can be recovered in the semiclassical (WKB) limit [337].

Besides these fundamental issues, we also encounter the problem to explaining the observed
acceleration of the Universe. Phenomenologically, this is done by adding an ingredient called
DE [23]. Some of the models describing DE predict the occurrence of singularities beyond big
bang (or big crunch), occurring for example in the finite future. Aside from DE singularities,
there are also DE abrupt events like the LR [47, b5, b9, 64-67, 201]. We name them abrupt
events rather than singularities because they occur at an infinite future cosmic time. Some of
these models are in accordance with current data [83]. Since the presence of singularities and
abrupt events in a theoretical framework is an indication of its breakdown, we expect quantum
effects to be important there, too. A central question is then whether those future singularities
and abrupt events can be avoided in quantum cosmology or not [308]. This question will be also
addressed (and answered) for the models discussed in this chapter. Naively, we would expect
that at cosmological scales quantum effects are important only in the early Universe, that is, on
time scales of the order of the Planck time, ¢p, and for distances related to the Planck length
lp. This naive belief is based on the fact that quantum theory is usually important for small
systems such as atoms or molecules. Assuming the universality of the superposition principle,
quantum effects can occur at any scale, whenever decoherence is negligible. This can happen
even for the Universe as a whole, for example, in the case of a classically recollapsing Universe
[338], or in cases where singularities or abrupt events are present in the classical theory, as is
the case here.

IThis chapter corresponds mainly to our publication [202]
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Before proceeding further, we should clarify that among all DE singularities and abrupt events,
only three of them are intrinsic to phantom DE, that is, within a relativistic model they hap-
pen if and only if suitable phantom matter is present. These are the BR, the LR, and the LS.
Consequently, if we want to address the question: can quantum cosmology smoothen or avoid
divergent behaviors caused by phantom matter, we need to quantise models that induce in
the classical picture a BR, a LR, or a LS. These questions have been partially addressed in the
quantum theory of cosmological models with a BR [42, 44] or a LS [7Q]. In this paper, we will
complete the answer to these questions by quantising a classical model for the LR.

This chapter is organised as follows In section P.2 and for later convenience, we introduce as
well a scalar field suitable to describe the nowadays late-time acceleration of the universe and
are simultaneously able to induce a LR asymptotically in the presence and absence of DM. In
Section .3, we present and solve the WDW equation for the model B. Here, the DE is described
by a perfect fluid and we have made use of two different factor orderings. In Section p.4 we
address the same model B but with a DE content mapped to a scalar field. We assume a variable
separation ansatz and apply some approximations to get a separable differential equation. We
show in all the analysed cases the existence of solutions to the WDW equation that avoid the
LR. Finally, in P.5 we present our conclusions. In addition, a detailed analysis for the WKB
approximation performed in this chapter can be found in [C.1.2, in which we prove the validity
of the approximations used in section P.3. Finally, in the appendix section [C.5, the Symanzik
scaling behavior is presented as an alternative method to analyse the scalar field eigenstates.

9.2 The LR as induced by a scalar field

For later convenience, we map the perfect fluid with EoS (2.13) to a scalar field, ¢. As the
constant B must be positive to induce a LR, the mapping to a scalar field entails a phantom
character for the field. Consequently, we can write the kinetic energy and potential of the
scalar field as

¢* = —(p+p), (9.1)

1

V=3(-p. (9.2)

Making use of (2.13) and (2.14) in (B.1), we get

. 1 ‘362

¢ =Bp; = |- In <(Z> 1 By/paol - (9.3)

Introducing the new variable

z=In (a) : (9.4)
ao

we Ccan express d) as

. do
o= —TH. (9.5)

We now treat in separate subsections the cases without and with DM.
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9.2.1 Disregarding DM

Using (9.3) and (2.2), we can write

d¢ = %dm = :l:ﬁ (8;))

=

dx
3 /& :
EVEER

where k2 = 87G and Qg = (lSm-/\ﬁHo)2 = pg/p.. The latter denotes a critical energy density
fraction which is related with the model parameter B and quantifies the deviation of a DE model
based on (2.13) from the standard ACDM model, that is, the smaller is g, the closer we are
to the ACDM model. Notice that the expression (D.€) is only valid asymptotically, for we have
disregarded the contribution of DM which will red-shift quickly in the future and thus become
negligible compared to DE. Finally, from integrating (9.6) we find (for Qg # 0)

4 ()3 [T (3 [
(b(x)_i\/gn(QB) 5 Qdox—i—l sign (2 Qdox—i—l . (9.7)

We have chosen the integrations constants, ¢, and z, such that

1 1
4 Qd0)43 Qs (3 [
= F— | = A/ =+ 1| sign| =y/=—z.+1]. 9.8
i \/§H<QB 2\ 2V ow ©-8)
In addition, we have selected . to be large enough to ensure the validity of the approximation
made in (D.6); that is, we are far enough in the future such that the DM component can be

ignored in the Friedmann equation. For practical purpose, we select z, = 1.17, where the
matter energy density is two orders of magnitude smaller than the DE density. Therefore, z, is

; (9.6)

N

large enough for the Universe to be in an almost total DE domination phase. This numerical value
is not crucial for this subsection, but it has to be fixed in the next subsection where numerical
calculations are required and therefore a fixed value of z, is needed. In addition, our results
do not change by imposing larger values of x... Finally, the function sign (z) is the sign function,
that is

-1 if z<0
sign (x) = 0 if z=0 . (9.9)
1 if 2>0

As mentioned before, the EoS shown in (2.13) describes a deviation from the standard ACDM
model through the parameter A. Therefore, for a vanishing parameter A, the expected classical
trajectory, ¢ (z), is characterised by a constant, i.e. d¢ = 0. This result can be recovered by
taking the limit Qg — 0 in (D.6), however, after the integration done in (9.7) the outcome is not
well defined for the limit Qg — 0 (notice that ¢, could blows up in this case). To get a suitable
expression for small values of g, we perform a Taylor expansion up to first order of the general
integral of (9.6), which reads

ola)— G~ Y2 <%)4(za~:*>, (9.10)
Qa0
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where in this case, we have chosen ¢, and z, in such way that:
J)*:ié <QB) . (9.11)

This result will be used later to determine the potential V (¢). In the LR not only the scale
factor gets very large, but also the scalar field ¢, see figure B.1. From now on we will focus on
this regime.

50 ’/,,r"‘/ |
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Figure 9.1: Plot of the scalar field, ¢, versus z = In(a/ao) where z. = —2v/Q40/3v/%. This plot is valid
for Qg # 0 since x.. is not well defined for a vanishing 2, i.e. a vanishing 5. The solution (9.7) gives two
branches, one above ¢ = 0 (blue color) and another below ¢ = 0 (red color) The dashed curve describes
a realm where the neglected DM contribution is important, while the solid lines describes a regime where
we assume a complete DE domination. We disregard the solutions for x < x. as our approximation breaks
down there. Therefore, only the solid lines are physically relevant for our purpose.

For the case of Qg # 0, since the function (9.7) is invertible, we can consequently write z = x(o),

2
K 2 2 QdO 3 QB
r = —¢° — =\ — f — = 1 9.12
T 8q§ 3\ 0 or O<2 Qd0x+, ( )

2
_ e 2 [ 3 /%%
T = 8(;5 3\ 0 for 3 Qdoaz:+1<0. (9.13)

Once we have the relation between the potential and the energy density, (9.2), we can write

the potential in terms of z, that is
3 /0 ’ 3 /0
B B
S A | iy =—z+1
2V Qqo v 2V Qqo v
As can be seen, for a vanishing (g, the potential becomes constant as expected within the ACDM

paradigm, i.e. V = pg. Using (9.12)) in the later expression, the potential shows a quadratic
dependence on the scalar field:

3H2
+ — vV Qa0

2K2

V (¢) = b1¢* + baop?, (9.15)

where the constants b; and b, are defined as

27
by = %ﬁﬂgm, b

9

)= o HE0s (9-16)
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On the one hand, notice that b; has physical dimension of an inverse mass times length (and is
thus dimensionless in natural units where & = 1 and ¢ = 1), while b, has dimension of an inverse
length squared (mass squared in natural units). As was mentioned above, (9.7) does not take
into account the contribution of DM; therefore, the result shown in figure is only valid for
very large values of the scale factor.

On the other hand, for a vanishing parameter A the potential given in (9.15) cannot show the
expected constant value. This is not surprising as (.15) was deduced using (9.7) which is not
valid for A = 0. To recover this solution it is necessary to replace in (9.14) the expression
obtained in (9.10) for small values of Q. In fact, on that case, we obtain

1 2 1
V() ~ pao l*@ (QB) o1 vix (QB) oi1.  ©.17)

3H?
+ —— Vo8

2 Qd() 2K 2 QdO

As can be seen from the previous expression when A — 0, V (¢) approaches a constant; i.e. the
model in this case behaves as ACDM.

9.2.2 Including DM

Just for completeness and to get an accurate solution also for small values of = (but still large
enough to be in a matter domination epoch after the radiation dominated epoch), it is necessary
to incorporate the DM contribution to the energy density budget of the Universe. Following the
same approach we used before, (9.5) can be written as

é J (@) + 2
d¢:inx:{W} da. (9.18)

The contribution of DM is here included in the Hubble parameter. The equation for ¢ (x) is now
given by

Vw3
qS(x):j:\l/f/ ‘2 oo ’ dz + .. (9.19)
S Y

2
m0€ 3% + Qgo (%,/%ﬁ)x + 1)

The integral in (9.19) cannot be solved analytically; therefore, we have performed a numerical
integration in which the integration constant ¢, was fixed as after (9.7) to the value imposed in
(.8). In this way, we ensure that the approximated model and the numerical solution are equal
at the point z, as long as z, is large enough. For practical purpose, we select =, = 1.17, where
the matter energy density is two orders of magnitude smaller than the DE density. Therefore,
x, is large enough for the Universe to be in an almost total DE domination phase. Figure
shows ¢(x).

Once we have obtained the solution for the scalar field, we get the numerical solution for the
potential V' (¢), which also takes into account the DM contribution. We compare the obtained
potential with the approximated potential (which neglects DM) in figure B.3.

Because DM is completely negligible at late times, the quantum analysis of the LR is unaffected
by it. We will thus neglect DM from now on.
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Figure 9.2: Plot of the rescaled scalar field, (n/\/g) ¢, versus z, the logarithmic scale factor. The solution
(p-19) has two branches which we have drawn as dashed linesin bottom (red) and upper (blue) panels.
These lines take into account DM contribution. The solid blue and red lines correspond to the solution
(B.7) where DM is neglected. All the plots have been obtained for z, = 1.17. For practical purpose, we see
that for values larger than x = 0.42 (i.e. the energy density of DM is 10 times smaller than that of DE), the
difference between the two solutions (inclusion of DM and exclusion of DM) is almost negligible. For values
of = smaller than = = 0.42, the approximated solution starts to show a relevant deviation from the exact
solution and we have drawn in this case the approximated solution as a curve with crosses. In addition,
we have fixed the other constants as Hy = 70.1 km s™*Mpc™!, Qo = 0.274, and Bk = 3.46 - 10~ 3Gyr !
according to the best fit obtained in [66].
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Figure 9.3: Plot of the dimensionless potential, (f<;/3H§) V, versus the absolute value of the scaled scalar
field, (n/\/g) |¢|. The dashed curve takes into account the presence of DM, while the solid line neglects
it. In consistency with the other plots, we take xz, = 1.17. The deviation becomes significant when
(n/\/§) |¢| < 7.45 (drawn as thin curve with crosses), that is, x < 0.42, corresponding to the energy
density of DM being 10 times smaller than that of DE.
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