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Resumo

A triangulação de uma nuvem de pontos de um objeto 3D é um problema com‐
plexo, uma vez que depende da complexidade da forma desse objeto, assim
como da densidade dos pontos extraídos desse objeto através de um scanner 3D
particular.

Na literatura, existem essencialmente duas abordagens na reconstrução de su‐
perfícies a partir de nuvens de pontos: interpolação e aproximação. Em geral, as
abordagens de interpolação estão associadas aos métodos simpliciais, ou seja,
a métodos que geram diretamente uma malha de triângulos a partir de uma
nuvem de pontos. Por outro lado, as abordagens de aproximação estão habit‐
ualmente associadas à geração de uma função implícita global —que representa
uma superfície implícita— a partir de funções locais de forma, para em seguida
gerar uma triangulação da dita superfície implícita.

Os métodos simpliciais dividem‐se em duas famílias: triangulação de Delaunay
e triangulação baseada em crescimento progressivo da triangulação (i.e., mesh
growing). Tendo em conta que o primeiro dos métodos apresentados nesta dis‐
sertação se enquadra na categoria de métodos de crescimento progressivo, fo‐
quemos a nossa atenção por ora nestes métodos. Um dos maiores problemas
destes métodos é que, em geral, se baseiam no estabelecimento de limites de
ângulos diédricos (i.e., dihedral angle bounds) entre triângulos adjacentes, para
assim tomar a decisão sobre qual triângulo acrescentar à frente de expansão da
malha. Tipicamente, também se usam limites para os ângulos internos de cada
triângulo. No decorrer desta dissertação veremos como é que este problema foi
resolvido.

O segundo algoritmo introduzido nesta dissertação também é um método simpli‐
cial, mas não se enquadra em nenhuma das duas famílias acima referidas, o que
nos faz pensar que estaremos na presença de uma nova família: triangulação
baseada em atlas de vizinhanças sobrepostas (i.e., atlas of charts) ou estrelas
de triângulos (i.e., triangle star). Este algoritmo gera um atlas da superfície
que é constituído por estrelas sobrepostas de triângulos, ou seja, produz‐se a
cobertura total da superfície, resolvendo assim um dos problemas comuns desta
família de métodos de triangulação direta que é o do surgimento de furos ou de
triangulação incompleta da superfície.

O terceiro algoritmo refere‐se a um método implícito, mas, ao invés de grande
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parte dos métodos implícitos, utiliza uma abordagem de interpolação. Ou seja,
as funções locais de forma interpolam os pontos da nuvem. É, talvez, um dos
poucos métodos implícitos que podemos encontrar na literatura que interpola
todos os pontos da nuvem. Desta forma resolve‐se um dos maiores problemas dos
métodos implícitos que é o do arredondamento de forma resultante do blending
das funções locais que geram a função global, em particular ao longo dos vincos
da superfície (i.e., sharp features).

O que é comum aos três métodos é a abordagem de interpolação, quer em
métodos simpliciais quer em métodos implícitos, ou seja a linearização da su‐
perfície sujeita a reconstrução. Como se verá, a linearização da vizinhança de
cada ponto permite‐nos resolver vários problemas colocados aos algoritmos de
reconstrução de superfícies, nomeadamente: sub‐amostragem de pontos (point
sub‐sampling), amostragem não uniforme (non‐uniform sampling), bem como
formas vincadas (sharp features).

Palavras‐chave

Computação Gráfica, Geometria Computacional, Malha, Nuvem de Pontos, Re‐
construção de Superfícies, Triangulação
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Resumo alargado

Este resumo alargado, escrito em Língua Portuguesa, tem como objetivo de‐
screver de forma breve o trabalho de investigação subjacente a esta tese de
doutoramento. Começando por fazer o enquadramento da tese, o resumo pros‐
segue com a descrição do problema que se pretende resolver, com a respetiva
hipótese de investigação (thesis statement), bem como com uma possível solução
para o problema previamente formulado. O resumo alargado termina com a de‐
scrição da estrutura da tese e com a apresentação das principais conclusões,
sem deixar de apresentar também algumas linhas de investigação futura.

Enquadramento da Tese

A reconstrução de superfícies é um problema que visa a construção de uma su‐
perfície, quer ela seja paramétrica, simplicial ou implícita, a partir de um con‐
junto de pontos desorganizado (ou nuvem de pontos) que resultou da amostragem
da superfície de um objeto 3D. Obviamente, a sua visualização requerá sempre
a sua triangulação de qualquer superfície, com a exceção das superfícies sim‐
pliciais que já são trianguladas.

Este problema de reconstrução de uma superfície a partir de uma nuvem de
pontos 3D, previamente adquirida por meio de um scanner 3D, é um importante
tópico de investigação nos domínios da computação gráfica e da geometria com‐
putacional, com aplicações variadas em realidade virtual, animação computa‐
cional, engenharia reversa, visão computacional, biomedicina, bioinformática
molecular e, ainda, em património cultural.

O problema geral da reconstrução de superfícies é desafiante devido aos prob‐
lemas subsidiários que se colocam quando a amostragem (densidade) de pontos
não é uniforme, quando existem zonas com falta de pontos, quando existem
vincos e ápices, quando existe ruído ou quando existe desalinhamento dos pon‐
tos. Apesar dos muitos esforços de investigação que têm sido realizados nas
últimas décadas para ultrapassar esses problemas, não se pode dizer que existe
um algoritmo que resolva todos eles simultaneamente.

Assim, o foco deste trabalho é o de conceber e implementar algoritmos de recon‐
strução de superfícies a partir de nuvens de pontos que não sejam sensíveis aos
problemas referidos acima. No entanto, contrariamente ao que acontece com
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outros algoritmos, pretende‐se que a reconstrução da superfície seja realizada
evitando recorrer a critérios que imponham demasiadas limitações geométri‐
cas ou de outra natureza, como é o caso dos limites de ângulos diédricos entre
triângulos adjacentes ou de ângulos internos de triângulos.

Descrição do Problema

Os algoritmos para reconstrução de superfícies podem agrupar‐se em três cate‐
gorias de métodos: métodos de interpolação, métodos de aproximação e méto‐
dos híbridos [GVJ+09].

Todos estes métodos garantem genericamente a correta reconstrução da super‐
fície desde que a nuvem de pontos seja suficientemente densa. Se a nuvem de
pontos não for suficientemente densa, a reconstrução da superfície será muito
provavelmente incorreta. Ou seja, a qualidade da amostragem da nuvem de
pontos determina a qualidade ou a correção da superfície que será reconstruída.
Os problemas que poderão surgir na reconstrução da superfície são os seguintes:
deriva da triangulação (mesh drifting), reconstrução incompleta da superfície
(mesh holes), arredondamento e chanfradura de vincos e ápices (sharp fea‐
tures).

O foco desta tese reside na resolução destes problemas de reconstrução de su‐
perfíces através de três métodos de interpolação. Os dois primeiros são métodos
simpliciais, pois geram diretamente uma malha de triângulos a partir dos pontos
da nuvem de entrada, ou seja, os vértices dos triângulos gerados pelo processo
de reconstrução são pontos da nuvem de entrada. O terceiro método pertence
à categoria de métodos implícitos, os quais estão normalmente associados a
abordagens de aproximação, e não de interpolação, como é o caso. Por outras
palavras, o terceiro método produz uma superfície implícita que interpola todos
os pontos da nuvem de entrada.

Hipótese de Investigação

Os trabalhos de investigação realizados tiveram como objetivo encontrar novos
algoritmos de reconstrução de superfícies que superassem os problemas acima
mencionados. Neste sentido, os novos algoritmos, entretanto propostos nesta
dissertação, deveriam ser menos sensíveis à densidade da nuvem de pontos de
entrada e às variações de forma da superfície.
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Por conseguinte, a investigação ao longo deste trabalho foi no sentido de explo‐
rar uma base de conceitos (ou critérios) dos domínios da geometria e da topolo‐
gia que permitisse a correta reconstrução de superfícies, independentemente
de se usar métodos simpliciais ou implícitos. Assim, a hipótese de investigação
(thesis statement) que deu origem à presente tese, pode ler‐se como se segue:

É possível reconstruir corretamente superfícies a partir de nuvens
de pontos, independentemente das variações de amostragem e de
forma da superfície, utilizando para isso uma estrutura de critérios
assente nos conceitos de planaridade, regularidade, vizinhança e
manifoldness.

De modo mais concreto, pode dizer‐se que os dois primeiros algoritmos de re‐
construção da superfícies propostos nesta dissertação tiram partido pleno destes
três conceitos, ao passo que o terceiro algoritmo só não tira partido do critério
de regularidade, porque a triangulação da superfície definida implicitamente
é feita utilizando o algoritmo de triangulação baseada em cubos marchantes
(marching cubes algorithm) [LC87].

Percurso da Investigação

Com o objetivo de demonstrar positivamente a hipótese acima mencionada, os
trabalhos de investigação conducentes à presente dissertação de doutoramento
tiveram como principais etapas as que a seguir se descrevem.

• Algoritmo baseado no crescimento progressivo da triangulação (mesh grow‐
ing): O ponto de partida para o desenvolvimento deste algoritmo, desig‐
nado por algoritmo PCR (acrónimo de Proximidade, Coplanaridade e Reg‐
ularidade), resultou do objetivo de eliminar os limites impostos aos ângu‐
los diédricos (i.e., angle bounds) entre triângulos adjacentes, tão comuns
nos algoritmos de crescimento progressivo, como se pode constatar nos
algoritmos propostos por Wongwaen [WTS12], Wang et al. [WZZW13] e
Xumin et al. [XLC14]. No algoritmo PCR, não existem limites impostos aos
ângulos diédricos, sendo que a triangulação da superfície cresce dando
prioridade às regiões mais coplanares ou de mais baixa curvatura. Este
algoritmo baseia‐se em três critérios geométricos: proximidade, copla‐
naridade e regularidade. Como se verá, a proximidade torna o algoritmo
menos sensível à falta de uniformidade na densidade dos pontos da nuvem
de entrada. A coplanaridade evita o fenómeno de deriva da triangulação,

xi



Surface Reconstruction From 3D Point Clouds

bem como torna desnecessária a imposição de limites aos ângulos diédricos
entre triângulos adjacentes. A inovadora função de regularidade permite
produzir malhas com triângulos que tendem a ser regulares, não havendo
necessidade de uma etapa de regularização após a construção da malha.

• Algoritmo baseado em estrelas compatíveis de triângulos: A ideia princi‐
pal deste algoritmo, designado por CTC (Compatible Triangle Charts), é a
de construção de um atlas de estrelas compatíveis na triangulação, sendo
que cada estrela de triângulos representa uma vizinhança (ou carta) que
está centrada em cada ponto da nuvem. Portanto, o algoritmo é par‐
alelizável com uma thread por estrela, o que significa também que este
algoritmo não é de crescimento progressivo. As estrelas de triângulos têm
suporte no conceito topológico de estrela de pontos da teoria de grafos.
Tal conceito é utilizado no algoritmo PCR, mas só para construir uma es‐
trela de triângulos que é a semente inicial da triangulação. Ao invés,
no algoritmo CTC constrói‐se uma estrela para cada ponto da nuvem de
pontos, verificando‐se depois a compatibilidade de estrelas sobrepostas
em termos de triângulos. Por conseguinte, o objetivo passou por encon‐
trar critérios que permitissem selecionar os triângulos corretos. O critério
principal utilizado na seleção de triângulos foi o da manifoldness. Isto é,
a adjunção de um triângulo à malha em construção não pode criar qual‐
quer situação de quebra demanifoldness na referida malha. Note‐se que a
construção de cada estrela terá de obedecer aos critérios de planaridade,
regularidade e também de manifoldness. Através da planaridade evita‐
se fenómenos de deriva da triangulação (ou seja, atalhos de triângulos),
permitindo também lidar com características de forma vincada tais como
vincos e ápices. A manifoldness de cada estrela garante a sua consistência
topológica. A regularidade permite construir estrelas e, por consequência,
malhas com triângulos que são tendencialmente regulares.

• Algoritmo baseado na superfície implícita linear: A ideia de gerar uma
superfície implícita através de uma função global que é o resultado da mis‐
tura de funções de forma locais não é uma ideia nova. Um dos algoritmos
mais populares que utiliza esta ideia para criar uma superfície implícita a
partir de um nuvem de pontos é o algoritmo baseado em MPU (Multilevel
Partition‐of‐Unit), o qual foi introduzido por Ohtake et al. [OBA+03]. No
algoritmo baseado em MPU, cada função de ponderação está centrada no
centro do respetivo subdomínio (célula terminal da árvore de octantes,
também designada por octree) com suporte esférico de raio que se so‐
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brepõe aos limites do seu subdomínio. Deste modo, o centro da função
de ponderação leva em consideração o centro do subdomínio, mas não
tem em conta a distribuição dos pontos de amostragem no interior do sub‐
domínio, os quais definem a função de aproximação local. No entanto,
o centro de um subdomínio pode não ser representativo do conjunto de
pontos situados no interior desse subdomínio. No algoritmo aqui proposto,
e que se designa por algoritmo baseado em LIS (Linear Implicit Surface),
cada ponto de amostragem é o centro de um subdomínio definido pela
sua estrela de pontos, a qual determina uma função linear local dada pelo
seu plano tangente. Isto significa que o algoritmo baseado em LIS codifica
um método de interpolação. Por outras palavras, a LIS interpola todos os
pontos de amostragem da nuvem de entrada. É, tanto quanto sabemos, o
primeiro algoritmo da literatura que produz uma superfície implícita que
interpola todos os pontos de amostragem sem ter a necessidade de uti‐
lizar cálculo matricial que, como se sabe, é bastante oneroso em termos
computacionais. Além disso, o algoritmo LIS evita os problemas inerentes
à deriva da triangulação e ao arredondamento e à chanfradura de vincos
e ápices.

Principais Contribuições

Considerando a hipótese de investigação (thesis statement) supracitada, o tra‐
balho de investigação que conduziu à presente tese, tem como principal con‐
tribuição a seguinte:

• É de facto possível reconstruir corretamente superfícies a partir de nuvens
de pontos, independentemente das variações de amostragem e de forma
da superfície, utilizando para isso uma estrutura de critérios assente nos
conceitos de planaridade, regularidade, vizinhança e manifoldness.

Em resultado deste trabalho de investigação, existem outras contribuições que
devem ser destacadas e que a seguir se indicam:

• A inovadora função de regularidade introduzida no Capítulo 3 permite‐nos
produzir malhas que são formadas tendencialmente por triângulos regu‐
lares. Assim, ao invés da esmagadora maioria dos algoritmos de recon‐
strução de superfícies, não é necessário qualquer passo de pós‐processamento
para regularizar a malha.
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• O conceito de planaridade aplicado transversalmente aos três algoritmos
desenvolvidos, ainda que concretizado por diferentes propriedades ge‐
ométricas, permite evitar o problema da deriva de forma, bem como descar‐
tar limites impostos aos ângulos diédricos entre triângulos adjacentes, tão
comuns em algoritmos de triangulação direta.

• A compatibilidade de estrelas de triângulosmanifold deu origem a um novo
algoritmo de interpolação que não se enquadra nem na família de algorit‐
mos baseados na triangulação de Delaunay, nem na família de algoritmos
baseados no crescimento progressivo da triangulação (mesh growing). No
algoritmo CTC, a triangulação é feita por compatibilização dos triângulos
das estrelas sobrepostas, e não por avanço da frente de expansão. Es‐
tamos, pois, na presença de uma nova família de algoritmos de interpo‐
lação, aqui designados por algoritmos baseados em atlas de mapas (atlas
of charts), em que cada mapa é um estrela de triângulos (triangle star).

• O algoritmo baseado na LIS, apesar da sua natureza e da sua aplicabilidade
à reconstrução de superfícies implícitas, é um método de interpolação,
porque as funções lineares locais interpolam os pontos de amostragem.
Aliás, pelo que julgamos conhecer da literatura, é um dos poucos algorit‐
mos de reconstrução de superfícies implícitas que interpola os pontos da
nuvem de entrada sem usar cálculo matricial. Note‐se que este algoritmo
também utiliza estrelas de pontos para definir a zona de influência das
funções locais de forma.

Organização da Tese

Tendo como objetivo a conceção, o desenvolvimento e a implementação de
novos algoritmos para a reconstrução de superfícies a partir de nuvens de pon‐
tos, esta tese de doutoramento encontra‐se estruturada da seguinte forma:

• Capítulo 1: No primeiro capítulo é feita uma descrição do trabalho de
investigação realizado e que conduziu à elaboração da presente tese de
doutoramento. Além do enquadramento do tema abordado, são indicados
os motivos que estiveram na origem deste trabalho.

• Capítulo 2: Este capítulo revisita a literatura no que respeita aos métodos
para de reconstrução de superfícies a partir de nuvens de pontos, indi‐
cando os seus princípios, bem como as suas virtudes e as suas limitações.
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• Capítulo 3: Neste capítulo é descrito um novo algoritmo de interpolação
para a reconstrução de superfícies (PCR), e que se enquadra na família dos
algoritmos baseados em crescimento progressivo da triangulação. Este al‐
goritmo tem por base três propriedades geométricas (i.e., proximidade,
coplanaridade e regularidade) que permitem superar os problemas iner‐
entes a este tipo de algoritmos.

• Capítulo 4: Um outro novo algoritmo para reconstrução de superfícies é
descrito neste capítulo. Este algoritmo (CTC) é também um método de in‐
terpolação, mas pertence, como se verá, a uma nova família de algoritmos.
Essencialmente, o algoritmo produz um atlas de estrelas de triângulos que
cobre a superfície completamente.

• Capítulo 5: Neste capítulo é proposto um novo algoritmo (LIS) de in‐
terpolação que se enquadra na família dos métodos implícitos de recon‐
strução de superfícies. Portanto, este algoritmo produz uma superfície
implícita a partir de uma função global que resulta da combinação pon‐
derada das funções locais que representam os planos tangentes nos pontos
de amostragem da nuvem de entrada.

• Capítulo 6: Este último capítulo apresenta as principais conclusões dos tra‐
balhos de investigação que conduziram à escrita da presente dissertação,
apresentando também algumas questões pertinentes para trabalho futuro.

Considerações Finais

Ao longo dos trabalhos de investigação conducentes à presente dissertação foram
desenvolvidos os seguintes algoritmos:

• PCR: algoritmo de crescimento progressivo da triangulação (i.e., mesh
growing).

• CTC: algoritmo de compatibilização de estrelas de triângulos (i.e., atlas
of charts).

• LIS: algoritmo de reconstrução de superfícies implícitas lineares.

O que estes algoritmos têm em comum é que todos eles se enquadram na cat‐
egoria dos métodos de interpolação. Os dois primeiros são algoritmos de trian‐
gulação direta, ou seja, os pontos da nuvem de entrada tornam‐se vértices da
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triangulação da superfície reconstruída, ao passo que o terceiro é uma algoritmo
de triangulação indireta, pois requer que se determine uma função paramétrica
ou implícita antes de se passar à sua triangulação.

O primeiro é um algoritmo simplicial que se baseia no crescimento progressivo
da triangulação (mesh growing). O segundo é também um algoritmo simplicial,
mas baseia‐se na compatibilização de estrelas de triângulos. O terceiro é um
algoritmo implícito pois determina uma função implícita que representa a super‐
fície antes de levar a cabo a sua triangulação. Esta função implícita resulta da
mistura de funções lineares locais que representam planos tangentes nos pontos
de amostragem.

Como se sabe, os algoritmos de reconstrução de superfícies são sensíveis às vari‐
ações da densidade e da forma da nuvem de pontos resultantes da amostragem
gerada por qualquer scanner 3D. O que os algoritmos propostos nesta dissertação
têm também em comum é que todos eles foram desenhados para ultrapassar os
problemas de variação de densidade e de forma. Para isso, todos eles tiram par‐
tido dos mesmos conceitos geométrico‐topológicos: proximidade, planaridade,
regularidade e, ainda, manifoldness. A exceção é que o terceiro algoritmo não
utiliza o conceito de regularidade porque a discretização da superfície implícita
é feita através do algoritmo de cubos marchantes (marching cubes).

Por exemplo, o critério da coplanaridade utilizado no algoritmo PCR encontra
paralelo nas funções locais lineares do algoritmo LIS, em que cada função local
representa um plano tangente num dos pontos de amostragem. Desta forma
evita‐se o fenómeno de deriva da triangulação (i.e., atalhos indesejáveis entre
regiões que passam próximas umas das outras), bem como o arredondamento
de formas vincadas da superfície (i.e., sharp features).

Convém lembrar que o problema de reconstrução de superfícies a partir de nu‐
vens de pontos é um problema mal‐colocado, visto existirem um número infind‐
ável de superfícies que aproximam uma nuvem de pontos. Além do mais, uma
nuvem de pontos não define por si só uma superfície. Portanto, este problema
inverso requer que se defina um conjunto de pressupostos e de restrições que
determinam como a superfície será reconstruída, ou seja, diferentes pressupos‐
tos e restrições geram diferentes superfícies para a mesma nuvem de pontos.
A escolha que recaiu nos métodos de interpolação constitui, pois, uma tenta‐
tiva de reduzir o número de superfícies que podem ser geradas a partir de uma
nuvem de pontos.
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Abstract

The triangulation of a point cloud of a 3D object is a complex problem, since it
depends on the complexity of the shape of such object, as well as on the density
of points generated by a specific scanner.

In the literature, there are essentially two approaches to the reconstruction of
surfaces from point clouds: interpolation and approximation. In general, inter‐
polation approaches are associated with simplicial methods; that is, methods
that directly generate a triangle mesh from a point cloud. On the other hand,
approximation approaches generate a global implicit function — that represents
an implicit surface — from local shape functions, then generating a triangulation
of such implicit surface.

The simplicial methods are divided into two families: Delaunay and mesh grow‐
ing. Bearing in mind that the first of the methods presented in this dissertation
falls under the category of mesh growing methods, let us focus our attention
for now on these methods. One of the biggest problems with these methods is
that, in general, they are based on the establishment of dihedral angle bounds
between adjacent triangles, as needed to make the decision on which triangle
to add to the expansion mesh front. Typically, other bounds are also used for
the internal angles of each triangle. In the course of this dissertation, we will
see how this problem was solved.

The second algorithm introduced in this dissertation is also a simplicial method
but does not fit into any of the two families mentioned above, which makes
us think that we are in the presence of a new family: triangulation based on
the atlas of charts or triangle stars. This algorithm generates an atlas of the
surface that consists of overlapping stars of triangles, that is, one produces a
total surface coverage, thus solving one of the common problems of this family
of direct triangulation methods, which is the appearance of holes or incomplete
triangulation of the surface.

The third algorithm refers to an implicit method, but, unlike other implicit
methods, it uses an interpolation approach. That is, the local shape functions
interpolate the points of the cloud. It is, perhaps, one of a few implicit meth‐
ods that we can find in the literature that interpolates all points of the cloud.
Therefore, one of the biggest problems of the implicit methods is solved, which
has to do with the smoothing of the surface sharp features resulting from the
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blending of the local functions into the global function.

What is common to the three methods is the interpolation approach, either in
simple or implicit methods, that is, the linearization of the surface subject to
reconstruction. As will be seen, the linearization of the neighborhood of each
point allows us to solve several problems posed to the surface reconstruction
algorithms, namely: point sub‐sampling, non‐uniform sampling, as well as sharp
features.
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Chapter 1

Introduction

This chapter introduces the surface reconstruction problem in the scope of com‐
puter graphics and computational geometry. Also, it briefly describes the moti‐
vation behind the research work, and how the research was carried out through‐
out the Ph.D. programme. At the end of this chapter, we present the organiza‐
tion or structure of this dissertation.

1.1 Motivation

The reconstruction of surfaces is a problem that aims to build a surface, whether
it is parametric, simplicial, or implicit, from an unorganized set of points (or
point cloud) that resulted from the sampling of the surface of a 3D object.
Nevertheless, its visualization will always require triangulation of such a surface,
except for simplicial surfaces because they are already triangle meshes.

The problem of reconstructing a surface from a 3D point cloud is an important
research topic in computer graphics and computational geometry, with diverse
applications in virtual reality, computational animation, reverse engineering,
computer vision, biomedicine, molecular bioinformatics, and cultural heritage.

Surface reconstruction is a challenging problem because it is hard to deal with
the non‐uniform sampling (density) of points, sharp features like creases and
apices, sampling noise, and misalignment of the points. Despite the many re‐
search efforts that have been carried out in recent decades to overcome these
problems, one cannot say that there is an algorithm that solves all of them
simultaneously.

Thus, the focus of this work is on the design and implementation of surface
reconstruction algorithms from point clouds, solving at the same time the prob‐
lems mentioned above. However, contrary to what happens with other algo‐
rithms, we intend to carry out the surface reconstruction avoiding the use of
criteria that impose too many geometric limitations, such as the bounds on di‐
hedral angles between adjacent triangles or internal angles of triangles.

1
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1.2 Surface Reconstruction: Overview

In the literature, we find several surface reconstruction methods, which can be
grouped in three main categories [GVJ+09]:

• Interpolation methods

• Approximation methods

• Hybrid methods

Interpolation methods. These methods aim to build a simplicial surface that
interpolates the input point samples. In turn, this category of methods divides
into two families. The first family comprises algorithms that build upon Delau‐
nay triangulations (and Voronoi diagrams) of the input point samples. The crust
algorithm of Amenta et al. [ABK98] is an emblematic algorithm of this family
because it was the first to guarantee a correct surface reconstruction from a
sufficiently dense point set. The cocone algorithms (see [ACDL00] or [CSD04])
are also representatives of this family. However, these algorithms have diffi‐
culties in dealing with either sparse point sets (i.e., they are rather sensitive
to point sampling) or massive point sets (i.e., they are very time‐consuming).
The second family includes the mesh growing algorithms, which make the mesh
grow progressively under some geometric conditions. The ball pivoting algo‐
rithm [BMR+99] is a well‐known mesh growing algorithm, as well as the one
due to Xumin et al. [XLC14]. In general, mesh growing algorithms have limited
success in generating a mesh that interpolates a given point cloud, largely be‐
cause they use bounds for the admissible dihedral angle to decide on the next
triangle to be attached to the mesh front, as well as for the internal angles of
each triangle. Moreover, interpolation methods have difficulties in dealing with
non‐uniform density or low density of such point clouds.

Approximationmethods. They aim at fitting a smooth surface to the input point
samples [BTS+17]. These methods also are very time‐consuming because they
need to solve large systems of equations. Besides, they have difficulties in deal‐
ing with sharp features as those of mechanical parts, as rounding effects may
occur. Interestingly, they can handle noisy point sets because they mostly follow
an approximation approach. Some of these approximation methods define im‐
plicit functions at samples, which jointly form a zero level set of the surface to
be built up. Several representations of implicit surfaces are used such as, Radial
Basis Functions, Moving Least Squares or Multiple Partition Unity, which can be

2
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found in [HDD+92], [CBC+01], [SMG10], [KBSS01], [OBA+03], [DS05], [KBH06],
[DMSL11]. For further details see Gomes et al. [GVJ+09]. Other approximation
methods use parametric surfaces, defined by a function, that closely approxi‐
mates a point cloud, [FH05], [PL03].

Hybrid methods. They combine the previous techniques concerning interpola‐
tion and approximation methods. For that purpose, we define the implicit func‐
tions through the distance to samples, since the Delaunay/Voronoi diagram of
such samples has a natural connection with the distance function. Interestingly,
one can prove that the original surface can be reconstructed with theoretical
guarantees through the union of the stable manifolds (i.e., surface patches) of
the index‐2 critical points that are close to the surface [Gro93]. In the litera‐
ture, we find other hybrid algorithms that combine Delaunay/Voronoi diagram
and region‐growing approaches. The algorithms of Kuo and Yau [KY03] or [KY05]
are representative of hybrid algorithms. They later improved their algorithms
to reconstruct surfaces with sharp features [KY06].

All these methods usually ensure the correct reconstruction of the surface since
the point cloud is dense enough. Otherwise, the reconstruction of the surface is
very likely to be incorrect. That is, the sampling density of the point cloud de‐
termines the correctness of the reconstructed surface. The problems that may
arise in the reconstruction of the surface are as follows: mesh drifting, incom‐
plete reconstruction of the surface (mesh holes), rounding and also trimming of
sharp features (i.e., creases and apices).

This dissertation aims to research new algorithms for surface reconstruction
that overcome the problems mentioned above. Therefore, the main challenges
are to design and implement new surface reconstruction algorithms capable of
dealing with non‐uniform point density and sharp features. These capabilities
would avoid problems like mesh drifting, mesh holes, and trimming/rounding of
sharp features, without using angle bounds and, at the same time, generating
meshes with triangles that tend to be regular.

1.3 Research Hypothesis

The focus of this research work is on the investigation of new interpolation‐based
surface reconstruction methods. Their novelty stems from the new geometric
machinery used to solve the aforementioned problems. In this sense, the new
algorithms should be less sensitive to the point sampling density and the shape

3
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variations of the surface.

Therefore, the research behind this work aims to explore a base of concepts
(or criteria) from geometry and topology that would allow the correct recon‐
struction of surfaces, regardless of whether using simplicial or implicit methods.
Thus, the thesis statement (which can be reformulated in terms of a research
hypothesis) that gave rise to the present dissertation reads as follows:

It is possible to correctly reconstruct surfaces from point clouds,
regardless of their variations in point sampling density and shape.

More specifically, we will show that this statement is true using the following
geometric and topological criteria: proximity, planarity, regularity, and mani‐
foldness. The first two surface reconstruction algorithms proposed in this dis‐
sertation take full advantage of these four concepts. In turn, the third algorithm
does not use the regularity criterion because it uses the marching‐cubes trian‐
gulation for implicitly‐defined surfaces [LC87].

1.4 Research Path

To positively demonstrate the hypothesis above, the course of the research work
leading to the present dissertation encompassed the following main steps:

• PCR, a mesh growing algorithm: The starting point for developing this al‐
gorithm, called PCR algorithm (an acronym for Proximity, Coplanarity, and
Regularity), resulted from the objective of eliminating the bounds imposed
on the dihedral angles (i.e., angle bounds) between adjacent triangles.
Note that these angle bounds are typical in mesh growing algorithms, as
those due to Wongwaen [WTS12], and Wang et al. [WZZW13] and Xumin
et al. [XLC14]. In the PCR algorithm, there are no bounds imposed on the
dihedral angles, and the triangulation of the surface grows, giving priority
to the most coplanar or lower curvature regions. This algorithm mostly
builds upon three geometric criteria: proximity, coplanarity, and regular‐
ity. As will be seen, proximity makes the algorithm less sensitive to the
lack of uniformity in the point sampling density. Coplanarity avoids the
phenomenon of mesh drifting and makes it unnecessary to impose bounds
on the dihedral angles between adjacent triangles. The innovative reg‐
ularity function allows producing meshes with triangles that tend to be
regular, without the need for a regularization step after constructing the

4
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mesh.

• CTC, a mesh atlas algorithm: The main idea of this algorithm, called CTC
(Compatible Triangle Charts), is to build an atlas of compatible stars in
the triangulation, with each triangle star representing a neighborhood (or
chart) centered at each cloud point. Therefore, the algorithm is paralleliz‐
able using one thread per triangle star. In other words, the CTC algorithm
is not a mesh growing algorithm. PCR algorithm takes advantage of the tri‐
angle star concept, but only to build a seed triangle star at the beginning
of the triangulation. On the contrary, in the CTC algorithm, we use a point
star (i.e., a sequence of points neighboring each point) for each point in
the point cloud. Then we check the compatibility of overlapping stars in
terms of triangles. Therefore, the objective was to find criteria that would
allow selecting the right triangles. The main criterion used in the selection
of triangles was that of manifoldness. The attachment of any triangle to
the mesh under construction cannot break the mesh manifoldness. Note
that each star’s construction must satisfy the conditions of proximity, pla‐
narity, regularity, and manifoldness. Planarity avoids the phenomenon of
mesh drifting (i.e., shortcuts), also allowing to deal with sharp features
(i.e., creases and apices). Manifoldness guarantees its topological con‐
sistency. Regularity makes it possible to build stars and, consequently,
meshes with triangles that tend to be regular.

• LIS, an implicit algorithm: The idea of generating an implicit surface
through a global function resulting from local functions’ blending is not
new. One of the most popular algorithms using this idea to create an
implicit surface from a point cloud is the MPU‐based algorithm (Multi‐
level Partition‐of‐Unit), introduced by Ohtake et al. [OBA+03]. In the
MPU‐based algorithm, each weighting function applies to the center of
the respective subdomain (leaf cell of the octree) with spherical radius
support that overlaps its subdomain’s limits. In this way, the center of
the weighting function takes into account the center of the subdomain.
Still, it does not consider the distribution of sampling points within the
subdomain, which defines the local approximation function. Therefore,
the center of a subdomain may not represent the set of points located
within that subdomain. In the algorithm proposed here, which is called
an algorithm based on LIS (Linear Implicit Surface), each sampling point
is the center of a sub‐domain defined by its point star, which determines
a local linear function given by its plane tangent. Thus, the LIS‐based
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algorithm encodes an interpolation method. In other words, the LIS inter‐
polates all sampling points in the input cloud. As far as we know, LIS is the
first algorithm that produces an implicit surface that interpolates all the
sampling points without the need to use time‐consuming matrix compu‐
tations. Besides, LIS overcomes the problems of mesh drifting, rounding,
and trimming of sharp features (i.e., creases and apices).

1.5 Contributions

Regarding the research hypothesis (thesis statement) above, the research work
underlying this dissertation has the following main contribution:

• It is possible to correctly reconstruct surfaces from point clouds, regardless
of the point sampling and shape variations, using a setup of criteria based
on the following concepts: proximity, planarity, regularity, and manifold‐
ness.

As a result of this research work, we must highlight other contributions as fol‐
lows:

• The innovative regularity function introduced in Chapter 3 allows us to
produce meshes that tend to be formed by regular triangles. Thus, unlike
the overwhelming majority of surface reconstruction algorithms, no post‐
processing step is necessary to regularize the mesh.

• The concept of planarity applied transversely to the three developed al‐
gorithms, even though realized by different geometric properties, allows
us to avoid the problem of shape drifting and discard bounds imposed on
the dihedral angles between adjacent triangles, so common in the direct
triangulation algorithms.

• The star compatibility of manifold triangles gave rise to a new interpola‐
tion algorithm that does not fit either in Delaunay triangulation algorithms
or in mesh growing algorithms. In the CTC algorithm, the triangulation oc‐
curs by making the triangles of the overlapping stars compatible and not
by advancing the expansion front. Therefore, we are in the presence of a
new family of interpolation algorithms, here called atlas‐of‐charts based
algorithms, in which each chart is a triangle star.

• The LIS‐based algorithm is an interpolation method because local linear
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functions interpolate the sampling points. From what we think we know
from the literature, it is the first algorithm that reconstructs an implicit
surface that interpolates the input cloud points without using time‐consuming
matrix computations. Note that this algorithm also takes advantage of
point stars to define the zone of influence of local shape functions.

1.6 Thesis Organization

Considering that the dissertation intends to develop and implement new algo‐
rithms for the reconstruction of surfaces from point clouds, it is then structured
as follows:

• Chapter 1: The first chapter briefly describes the research work which
led to the preparation of this doctoral thesis. Furthermore, it approaches
the research topic of surface reconstruction in the context of computer
graphics and geometric computing and the motivation behind this work.

• Chapter 2: This chapter revisits the literature regarding methods for re‐
constructing surfaces from point clouds, indicating its principles, as well
as its virtues and limitations.

• Chapter 3: This chapter describes a new interpolation algorithm for re‐
constructing surfaces (PCR), which fits into the family of mesh growing
algorithms. This algorithm builds upon three main geometric properties
(say, proximity, coplanarity, and regularity) that allow us to overcome
the problems inherent to this type of algorithms.

• Chapter 4: This chapter describes a new algorithm for reconstructing sur‐
faces, called CTC algorithm. CTC is also an interpolation method, but it
belongs to a new family of algorithms. Essentially, this algorithm produces
an atlas of compatible triangular stars that completely covers the surface.

• Chapter 5: This chapter proposes a new interpolation algorithm that fits
the family of implicit surface reconstruction methods (LIS). Therefore, this
algorithm produces an implicit surface from a global function that results
from the weighted blending of the local functions representing the tangent
planes at the input cloud points.

• Chapter 6: This last chapter presents the main conclusions of the research
work that has led to this dissertation’s write‐up and puts forward some
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questions for future work.

1.7 Summary

Throughout the research work leading to this dissertation, we developed the
following algorithms:

• PCR: a mesh growing algorithm.

• CTC: triangle star matching algorithm (i.e., atlas of charts).

• LIS: reconstruction algorithm of implicit linear surfaces.

What these algorithms have in common is that they all fall into the category
of interpolation methods. The first two are direct triangulation algorithms;
that is, the input cloud points become vertices of the reconstructed surface
triangulation. In turn, the third is an indirect triangulation algorithm, as it
requires determining a parametric or implicit function before moving on to its
triangulation.

The first is a simplicial algorithm that is based on mesh growing. The second
is also a simplicial algorithm, but it builds upon the compatibility or matching
of triangular stars. The third is an implicit algorithm because it determines a
global implicit function representing the surface before carrying out its triangu‐
lation. This implicit function results from the blending of local linear functions
representing tangent planes at the sampling points.

As known, the surface reconstruction algorithms are sensitive to variations in
density and shape of the point cloud resulting from sampling generated by any
3D scanner. Therefore, our three algorithms intend to overcome such problems
of point density and shape. For this purpose, our algorithms take advantage of
the same geometric and topological concepts: proximity, planarity, regularity,
and manifoldness. The exception is the third algorithm, which does not use the
concept of regularity because one discretizes the implicit surface through the
marching cubes algorithm.

For example, the coplanarity criterion used in the PCR algorithm finds its parallel
in the LIS algorithm’s linear local functions, with each local function represent‐
ing a tangent plane at each sampling point. This fact allows us to avoid the
phenomenon of shape drifting (i.e., undesirable shortcuts between surface re‐
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gions that pass close to each other) and prevent the smoothing of sharp features
of the surface.

Recall that reconstructing surfaces from point clouds is an ill‐posed problem
since there is an endless number of surfaces that approximate a point cloud.
Furthermore, a point cloud per se does not define a surface. Therefore, this
inverse problem requires the definition of a set of assumptions and constraints
which determine the reconstruction of a specific surface. That is, different as‐
sumptions and constraints generate different surfaces for the same point cloud.
Hence, it is not strange that our choice for interpolation methods, as they con‐
stitute an attempt to reduce the number of surfaces generated from a point
cloud.

9



Surface Reconstruction From 3D Point Clouds

10



Surface Reconstruction From 3D Point Clouds

Chapter 2

Interpolation Methods for Surface Reconstruction:
A Survey

2.1 Introduction

The main focus of this research work is on interpolation methods for surface re‐
construction from a point cloud. Therefore, we survey here such methods. The
interpolation methods for surface reconstruction divide into Voronoi/Delaunay
based methods, region‐growing methods, and implicit surface‐based methods.
The first type of algorithm computes the Voronoi diagram and its dual graph,
which corresponds to the Delaunay triangulation. The reconstructed surface
consists of triangles resulting from the Delaunay triangulation. In the second
type of algorithms, the reconstruction process starts with a triangle seed, and
then the mesh grows under some geometric criteria. Finally, implicit methods
build upon triangulation of cloud point‐interpolatiing isosurfaces locally defined
by kernel functions.

2.2 Voronoi/Delaunay Based Methods

Surface reconstruction algorithms based on the Delaunay triangulation/Voronoi
diagram work well when the sample points are dense enough. If the point cloud
is dense enough, there is no need for any hole‐filling step to guarantee the
reconstruction correctness. However, these algorithms produce holes on the
reconstructed surface if the point clouds are not dense enough (i.e., downsam‐
pling). Thereby, the reconstructed surface becomes incomplete. In case of
downsampling, errors at sharp features may also occur. Another drawback of
these algorithms is they are very time‐consuming when the number of sampling
points increases because the Delaunay triangulation/Voronoi diagram’s compu‐
tation slows down rapidly.

As described below, crust algorithms and co‐cone algorithms are well‐known
algorithms based on the Voronoi diagram and Delaunay triangulation to produce
a triangle mesh from a point cloud.
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2.2.1 Crust Algorithms

Amenta et al. in [ABK98] proposed the first Voronoi diagram based surface
reconstruction algorithm with theoretical guarantees. Such an algorithm was
called the crust algorithm, which has worked as a basis for developing other
algorithms.

2.2.1.1 The Crust Algorithm

The crust algorithm is described by Amenta et al. in [ABK98], and its theoretical
guarantees appear in [AB99]. This algorithm computes the Voronoi diagram of
the points belonging to the point cloud. After that, one determines Delaunay
triangulation from the Voronoi diagram.

Figure 2.1: 2D crust algorithm: On the left, the Voronoi diagram of a point set
S sampled from a curve. The Voronoi vertices V in red approximate the medial
axis of the curve; On the right, the Delaunay triangulation of S ∪ V , with the
crust edges in black. (abusively taken from [ABK98])

In 2D Euclidean space, we define the crust as the graph of Delaunay edges that
connects all sample points (e.g., the black polygon in Figure 2.1). Note that the
crust is a subset of the Delaunay triangulation of the input points. Moreover,
the Voronoi vertices (in red) allow us to filter out the unwanted edges from the
Delaunay triangulation, a procedure we call Voronoi filtering. Voronoi vertices
also approximate the medial axis if the points sampled are dense enough.

In 3D Euclidean space, not all Voronoi vertices are near to the medial axis. Some
are closed to the surface. As shown in [AB99] when the sample points are dense
enough, the solution is to use only two Voronoi vertices, called poles, per sam‐
ple point. These two poles of a sample point are the farthest vertices of the
sample point’s cell below and beyond the surface. As shown in Fig. 2.2), those
poles well approximate to the surface’s medial axis. Doing so, we generalize the
crust algorithm to 3D. The Delaunay triangles with circumspheres rid of poles
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Figure 2.2: Voronoi vertices called poles: the two farthest vertices of the
Voronoi cell one on each side of the surface, p+ and p−. (abusively taken from
[ABK98])

result in a piecewise‐linear surface that converges to the original surface. That
is, the crust algorithm only keeps those triangles whose three vertices are sam‐
ple points (Voronoi filtering). Poles also allow for further filtering of unwanted
triangles using surface normals (normal filtering). This second filtering removes
any triangle whenever at least one of its vertices satisfies the following condi‐
tion: the angle between its surface normal and the vector to one of its poles is
“too large”. The definition of “too large” means ”greater than” an input param‐
eter given by the user. This parameter is connected with the sampling density
and has to be estimated, backing off when holes appear in the reconstructed
surface.

The crust algorithm’s theoretical guarantees comewith the notion of r‐sampling,
which we define relative to the medial axis of the sampled surface. In fact, the
crust algorithm uses a positive function, called the Local Feature Size (LFS). LFS
at the point x defines itself as the distance from x to its nearest point in the
medial axis. Therefore, the LFS function describes the sampling density. A sam‐
ple is said to be sufficiently dense if the distance from any sample point x to its
nearest neighbor is smaller than the constant r (0 < r < 1) times the LFS func‐
tion. The expression r × LFS is called sampling condition. The constant r is an
input parameter that the user needs to estimate, determining the r‐sampling
of the point cloud. For a small r, it means the sample is dense enough, and
the algorithm will produce a good reconstructed surface. When r is too big, the
algorithm may fail.
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2.2.1.2 Power Crust Algorithm

The power crust algorithm proposed by Amenta et al. in [ACK01a] also produces
a piecewise‐linear approximation of the original surface. The algorithm first
produces a MAT (Medial Axis Transform) approximation from the point cloud.
It then applies an inverse transform to the MAT to generate a piecewise‐linear
surface that approximates the original surface. Details about the theoretical
guarantees of this algorithm are in [ACK01b].

Figure 2.3: 2D example of power crust construction: a) an object with its medial
axis. One maximal interior ball is shown; b) the Voronoi diagram of the sample
points, with the Voronoi ball surrounding a single pole. In 2D, all Voronoi vertices
can be selected as poles, but not in 3D; c) the inner and outer polar balls. Outer
polar balls with centers at infinity degenerate to halfspaces on the convex hull;
d) the Power diagram cells of the poles, labeled inner and outer. (abusively
taken from [ACK01a])

Note that one approximates the MAT by a subset of the Voronoi vertices of the
input point cloud, called the poles. As seen above, these poles are near the
medial axis. The balls centered at the poles and touching the nearest sample
points are the polar balls. These polar balls approximate maximal balls con‐
tained either in the interior or else in the surface’s exterior. Similarly, the
power diagram is the Voronoi diagram of polar balls and divides space into poly‐
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hedral cells. Labeling power diagram cells inside or outside, the power crust
is the boundary (2‐dimensional faces) that separates the power diagram cells
belonging to inner poles from power diagram cells belonging to outer poles (see
Fig. 2.3). The power crust is the piecewise‐linear surface that approximates
the original object’s surface.

Although the power crust algorithm is an interpolation method, not all input
sample points are power crust vertices; conversely, not all power crust vertices
are input sample points. Besides, power crust faces are not triangles because
they result from intersection points between balls in 3D space. Therefore, the
power crust algorithm produces a piecewise‐linear surface with more points and
faces than other comparable triangulated surfaces. Under the theoretical sam‐
pling assumptions, power crust is a robust algorithm, always bounding a solid.
No hole‐filling step is required, and sharp features are correctly polygonized.
However, the expensive computing costs of the MAT constitute a drawback of
the power crust algorithm. Furthermore, it fails to reconstruct surfaces when
the input point cloud owns noise because it might estimate a wrong medial axis.
Another drawback is the need to change user input parameters due to the input
data’s sample spacing variability.

2.2.1.3 The Eigen Crust Algorithm

The eigen crust algorithm is due to Kolluri et al. [KSO04]. This algorithm com‐
putes the Delaunay tetrahedralization of the input point cloud, and then it labels
each tetrahedron as inside or outside the surface. The result is a piecewise‐
linear surface called eigen crust. This eigen crust surface is composed of all
triangles where each inside tetrahedron meets an outside tetrahedron. This
procedure guarantees that the output surface bounds a volume. Also, this pro‐
cedure ensures that the eigen crust surface is watertight and closed.

The eigen crust algorithm’s main novelty is the introduction of spectral parti‐
tioning techniques into surface reconstruction. We usually find spectral parti‐
tioning techniques in image segmentation, circuit layout, document clustering,
and sparse matrix arithmetic on parallel computers. Here, and following Hall
[Hal70], Fiedler [Fie73], and Pothen et al. [PSL90], spectral methods were used
for partitioning graphs connecting tetrahedra.

Based on a spectral partitioner, the algorithm creates a graph representing the
tetrahedralization and subdivides it into two subgraphs, an inside subgraph and
an outside subgraph. The advantage has to do with the spectral partitioner hav‐
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ing a global view of the point set. It effectively identifies the triangles that are
most likely to lie at the interface between the object’s interior and exterior.
This way for labeling the tetrahedral is more robust than in previous algorithms.
Besides, spectral surface reconstruction is robust against noise or outliers. How‐
ever, that makes the eigen crust algorithm slower than competitors. Like its
predecessors, this algorithm approximates the original surface well if the cloud
points are sampled densely enough from a closed surface.

2.2.2 Co‐cone Algorithms

This family of algorithms arose with the basic co‐cone algorithm proposed by
Amenta et al. in [ACDL00]. The co‐cone algorithm simplifies and improves the
crust algorithm. After that, we can find in the literature several enhancements
to the basic co‐cone algorithm.

2.2.2.1 The Basic Co‐cone Algorithm

The basic co‐cone algorithm [ACDL00] computes the restricted Voronoi diagram
of the input point cloud, from which one determines the dual Delaunay trian‐
gulation. The Delaunay triangulation contains the piecewise‐linear surface one
intends to output. Designing this algorithm assumed the sampled surface is a
smooth manifold without boundary and was adopted the definition of sampling
density from [AB99]. This algorithm provides topological guarantees and geo‐
metric accuracy guarantees when the input points are appropriate samples from
a smooth surface.

In each restricted Voronoi cell Vp, the farthest Voronoi vertex p+ is called the
positive pole of the sample point p, and the vector pp+ is the pole vector for p.
Pole vectors approximate the normals of the surface S at sample points. The
co‐cone of point p is the set Cp that is defined as the complement of a double
cone centered at p clipped within a Voronoi cell Vp. This double cone has p as the
apex, the pole vector pp+ as the axis, and an opening angle of 3π/8 with the axis
(see Fig. 2.4). The resulting piecewise‐linear surface requires computing all its
triangles from the Delaunay triangulation, whose dual Voronoi edges intersect
the co‐cones.

The co‐cone algorithm simplified the crust algorithm because it only requires
one Voronoi diagram computation instead of two such computations in the crust
algorithm. Besides, the co‐cone algorithm makes unnecessary the normal trim‐
ming step (or normal filtering).
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Figure 2.4: A Voronoi cell Vp is elongated along the normal np. The pole vector
pp+ approximates np. The co‐cone Cp is the region in Vp between the two cones
at p. (abusively taken from [DG03])

2.2.2.2 The Super Co‐cone Algorithm

For unorganized point sets, surface reconstruction methods based on the Voronoi
diagram (and its dual) are too slow and cannot handle large data sets; for exam‐
ple, data sets with about a million points. The super co‐cone algorithm was pro‐
posed by Dey et al. [DGH01] and extends the applicability of the basic co‐cone
algorithm [ACDL00] to large data sets by using the divide‐and‐conquer approach.
Moreover, the theoretical guarantees assume, globally, the sample points lie
with sufficient density on a smooth surface, in line with the r‐sampling assump‐
tions presented in [ACDL00] and [AB99].

The super co‐cone algorithm builds upon an octree subdivision to accelerate
neighbor points’ computation and point clustering. This way, it processes small
subsets from the entire input point set separately, allowing the computation of
local Voronoi diagrams for fewer sample points. Each node divides further if it
holds more sample points than the predefined threshold. This procedure ends
with the lowest leaf node containing a subset of sample points, which is smaller
than the predefined value.

After the octree subdivision step, one computes the local Voronoi diagram com‐
putation for each leaf node, considering its lowest adjacent leaf nodes. The
local reconstruction is similar to the co‐cone algorithm steps described above.
However, the super co‐cone algorithm gathers a fraction of points belonging
to adjacent leaf nodes, but there is no guarantee that a leaf node includes all
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their restricted Voronoi neighbors. As a consequence, their co‐cones may not
be computed correctly. Another consequence is that the correct co‐cone trian‐
gles may not be computed across the node boundaries, and the reconstructed
patches are not stitched seamlessly together. The super co‐cone algorithm can
handle large sample sets, with the advantage of reconstructing the 3D surface
without computing the entire Voronoi diagram that consumes too much time and
memory and can be parallelizable.

2.2.2.3 The Tight Co‐cone Algorithm

The co‐cone algorithm works well in case of the input point set samples the
surface densely. However, when the input set undersamples the surface, holes
are left on the reconstructed surface, producing an incomplete reconstructed
surface. Moreover, the co‐cone algorithm computes many undesirable trian‐
gles near undersampling regions. The tight co‐cone algorithm was proposed by
Dey and Goswami in [DG03] and is a modified implementation of the co‐cone
algorithm that produces a surface that is free of holes.

This version combines several algorithms performing in several phases. First,
the co‐cone algorithm computes the set of co‐cone candidate triangles. Next,
it comes the time of marking all input points into well‐sampled and poorly‐
sampled regions applying the detection of undersampling presented in [DG01].
The removal of those triangles with vertices falling into under poorly‐sampled
regions takes place. In the end, applying the umbrella filter found in [DZ02],
holes are detected and filled up.

The umbrella definition of a point resembles a topological disk, and all triangles
in the umbrella have that point as the common vertex. For a well‐sampled
surface, every point in 3D reconstruction owns its umbrella, contrary to when
holes show up. This topological structure resembling an umbrella is essential
for detecting the surface boundaries, i.e., holes in undersampled regions.

This process to fill up the holes introduces no additional points, and the piecewise‐
linear surface is generated by interpolating input sample points. Note that the
tight co‐cone algorithm relies on the principle of locality of undersampling.
However, if this assumption is not satisfied, the algorithm faces trouble in com‐
puting the surface. Therefore, the output surface may not be close to the orig‐
inal or even produce holes. This algorithm copes with some noise for noisy
samples, but it cannot output any surface if the noise is beyond its tolerance
limit.
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2.2.2.4 The Robust Co‐cone Algorithm

In [DG06], Dey and Goswami proposed the robust co‐cone algorithm to recon‐
struct surfaces from noisy point sets. Recalling some of the principles of the
power crust algorithm in [ACK01b] and [ACK01a], the union of polar balls ap‐
proximates the solid bounded by the sampled surface. However, this property
does not hold in the presence of noise because of the small and big Delaunay
balls’ appearance.

The robust co‐cone algorithm applies a filtering process to separate big Delaunay
balls from small ones. The algorithm will use big Delaunay balls to approximate
the solid surface bounded by a point cloud. As shown, some of the big Delaunay
balls remain relatively big under some reasonable noise conditions and can play
the role of the polar ball. So, we need to separate outer and inner big Delaunay
balls, keep the points that reside on the outer (or inner), and then delete the
rest of the points. Next, the surface reconstruction performs from the retained
points.

Thus, the algorithm computes a surface interpolating the collected points using
the restricted Delaunay triangulation of the filtered point set concerning the
boundary of the union of the outer (or inner) Delaunay balls. However, for this
second phase, the algorithm does not compute the restricted Delaunay triangu‐
lation. Instead, the tight co‐cone is used to reconstruct the surface from the
filtered point set.

A drawback is this algorithm requires two Delaunay triangulation computations,
one for the filtering phase and another for the surface reconstruction phase.
The theoretical guarantees of the robust co‐cone algorithm come under the
notion of reasonable noise conditions. So, some assumptions have to be made
in the algorithm, such as sampling density or proximity of the points. Therefore,
predefined or threshold values for some parameters are assumed.

2.2.2.5 Localized Co‐cone Algorithm

The localized co‐cone algorithm [DDW11] is a modification of the super co‐cone
algorithm previously introduced by Dey e al. [DGH01]. As seen above, the super
co‐cone algorithm is an octree‐based version of the co‐cone algorithm, such that
the restricted Delaunay tetrahedralization only performs upon small clusters of
the entire point set. However, the super co‐cone algorithm does not guarantee
topological correctness and geometric accuracy as the original co‐cone algo‐
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rithm. Therefore, the localized co‐cone algorithm results from reformulating
the super co‐cone algorithm to recover those guarantees.

Like its predecessor, the localized co‐cone algorithm also uses an octree for
spatial partition. The input point set is divided into small manageable subsets,
performing the co‐cone algorithm on each subset so that all the pieces match
up to one consistent whole. Processing small portions of the surface means de‐
termining patches with boundaries, but the co‐cone algorithm is not prepared
to provide guarantees for surfaces with boundaries. On the other hand, such
patches must be consistent across those boundaries to produce a manifold sur‐
face without boundary. Besides that, the pole vector used to estimate the nor‐
mal vector at each sample point may not be reliable if we only consider a portion
of the samples.

To face such difficulties and ensure that each node has the correct set of co‐
cone triangles, one includes those triangles that have vertices in more than one
node into the set of the co‐cone triangles of each such node. This way, all the
properties of the traditional co‐cone algorithm are maintained while process‐
ing the nodes individually. Note that the pole vector is not used to estimate
the normal vector at the sample point p. Instead, one selects the normal to a
particular Delaunay triangle bounded by p that is guaranteed to lie close to the
surface’s tangent plane at p. As demonstrated in [DDW11], any triangle with
a vertex at sample point p that have a circumradius bounded by the sampling
radius (the distance from sample point p to its nearest neighbor) will suffice
for that purpose. Different from its predecessor, the localized co‐cone algo‐
rithm does not use a fixed size of buffer around each node to create an overlap
between adjacent nodes. Such an option has a drawback because the buffer’s
width might not be sufficiently large concerning the local feature size. The lo‐
calized co‐cone algorithm adaptively builds a buffer around each node, and Dey
et al. demonstrated that it is possible to ensure that it is sufficiently broad.
The buffer’s size depends on the maximum local density requirement, which
depends on the sampling condition.

When the sample points lie with sufficient density on a smooth surface, the
localized co‐cone algorithm produces piecewise‐linear surfaces with topologi‐
cal and geometric guarantees. To accommodate input point sets that do not
meet the algorithm’s theoretical sampling requirements, one uses heuristics to
prevent catastrophic failure. When these heuristics are employed, there is no
theoretical guarantee on the output. However, the algorithm maintains the
theoretical guarantees for point sets whose local sampling density is bounded
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by a constant. Specifically, the maximum local density requirement demands
for any sample point x a ball with a radius equal to a constant multiplied by the
local feature size containing no more than c sample points; by default, c = 50

points. Besides, this algorithm has limitations that are inherent to its roots as
a co‐cone algorithm. Problems may occur if the local curvature does not match
a sufficient local sampling density, such as holes in the mesh. Similar problems
occur in noisy point sets.

2.2.2.6 Singular Co‐cone Algorithm

This algorithm is the latest co‐cone family algorithm proposed by Dey e al.
[DW13]. The singular co‐cone algorithm handles singular features, as sharp fea‐
ture curves or corners, and reconstructs the surface using the weight co‐cone
method [DGQ+12]. The weight co‐cone is a variation of the co‐cone algorithm
[ACDL00] that uses a weighted Delaunay triangulation.

The singular co‐cone algorithm takes advantage of a novel feature recovery
method as its first step. For that, a provable Voronoi‐based method for fea‐
ture point detection [DGGZ02] was extended, which can isolate points near the
feature curves from a possibly noisy sample of a singular surface with no orien‐
tation. Next, curve direction is estimated applying principal component analysis
(PCA), and these points are filtered to rebuild feature curves using NNCrust al‐
gorithm [DK99]. For the second step, surface reconstruction uses the weight
co‐cone algorithm described in [DGQ+12] designed to reconstruct surfaces in
the presence of feature curves. The singular co‐cone algorithm is more robust
than other co‐cone algorithms in dealing with noise due to the local Voronoi di‐
agram computations for each point and the Voronoi diagram’s weighted version.
However, these modifications increase the computational cost, but with better
accuracy.

The major drawback of this algorithm is the use and setting of multiple param‐
eters. For most models, setting such parameters can be fixed in a short time.
However, in a poorly sampled model or a model that contains noise, outliers,
and small features close to each other, it can be challenging to find the right
set of parameters that aid in capturing all the features. Another drawback has
to do with the weights used for feature detection at the noise scale. A too‐
small weight may not detect the feature point; on the other hand, a too‐large
weight may compromise the feature detection step’s locality and increase the
computation cost.
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2.3 Mesh‐Growing Methods

The leading idea of mesh‐growing algorithms is to grow the surface mesh starting
from a seed triangle, so that new triangles are attached to the mesh front while
there are cloud points to triangulate (see Fig. 2.5)

(a) (b)

Figure 2.5: Illustrating the mesh growing procedure: (a) partial triangulation of
a point cloud; (b) attaching new triangles (dashed triangles) to mesh front.

2.3.1 Ball Pivoting Algorithm

One of the most known mesh‐growing algorithms is the ball pivoting algorithm
(BPA), introduced by Bernardini et al. [BMR+99]. This algorithm augments the
data points with approximate surface normals to decide surface orientation.

BPA algorithm uses a sphere of a predefined radius that inscribes each edge of
the mesh front or boundary, searching for the next cloud point on the sphere,
with the restriction that no other point is inside the sphere. So, the three points
on the sphere form a putative new triangle, but, for that, the dot product of its
normal vector with the surface normal must be positive; otherwise, one rejects
the triangle. Therefore, this algorithm is very dependent on the choice of the
ball radius; consequently, it is not robust for noisy point clouds unless the point
cloud is dense enough, nor when the original object presents ridges or sharp
features. Moreover, this algorithm outputs the surface with holes when the
sample points are low density. For dealing with point clouds of non‐uniform
density, the BPA allows for multiple ball radii.

The BPA takes much time to complete and is memory intensive. Hence, its
multi‐threading implementation proposed by Digne [Dig14], using multiple ball
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radii. Compared with Delaunay/Voronoi‐based algorithms, the BPA algorithm is
time‐efficient because it does not need to compute the Delaunay triangulation
or Voronoi diagram to produce the mesh surface.

2.3.2 Advanced‐Front Algorithm

Cohen‐Steiner et al. in [CSD04] present a surface reconstruction algorithm based
on the 3D Delaunay triangulation from unorganized point sets that uses a greedy
approach, called the advanced‐front algorithm. The leading idea is to extract
a 2D triangle mesh (or piecewise‐linear surface) from the 3D Delaunay triangu‐
lation. The advanced‐front algorithm sequentially selects the triangles that are
attached to the mesh front one by one. At each advancing step and following a
specific criterion, the algorithm selects the most plausible triangle, striking on
the generation of an orientable manifold triangulated surface.

The first step of this algorithm is the 3D Delaunay triangulation of the point set.
After that, the Delaunay triangle with the smallest radius is the seed triangle.
This triangle is the initial triangulated surface, and its three boundary edges
are the initial advancing front. The radius of a triangle is the smallest sphere’s
radius passing through that triangle’s vertices and enclosing no other sample
point.

This algorithm maintains a priority queue of candidate (valid) triangles incident
to the current surface’s boundary edges. That priority is the plausibility grade.
The algorithm pops from the queue the most plausible candidate triangle and
adds it to the surface, while the priority queue is not empty.

New candidate triangles are pushed to the priority queue whenever new bound‐
ary edges appear on the advancing front. As this algorithm strikes on the gener‐
ation of a manifold surface, some candidate triangles cannot be selected due to
topological constraints. Those topological constraints correspond to four con‐
figurations, and a triangle is valid whether one of those configurations applies.

Besides, valid triangles for an edge on the front mesh are subjected to geometric
criteria. Such criteria impose angle bounds, namely the dihedral angle between
adjacent triangles, the angle between the triangles’ normals, and the internal
angles of the triangle. The user can specify these bounds. Thus, the candidate
triangle of an edge on the front mesh is valid if it owns the smallest radius and
satisfies the angle bounds criteria. Consequently, the most plausible candidate
triangle among those in the priority queue has the smallest radius.
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Results indicate this algorithm should be competitive. However, it was not
proved the topological correctness of the output under reasonable assumptions
on the sampling. Although this algorithm correctly reconstructs the surface for
most cases, angle bounds are a drawback. Moreover, the algorithm may not
work well for regions where the sampling is too sparse or non‐uniform concern‐
ing curvature.

2.3.3 Scale‐Space Surface Meshing Algorithm

Digne et al. [DMSL11] developed a scale‐space strategy for orienting and mesh‐
ing a raw input point set. Later, a parallel implementation of the scale‐space
meshing algorithm was proposed by Digne [Dig15]. The scale‐space algorithm
applies the mean curvature motion (MCM) to a set of points. The MCM moves
all points toward the shape’s concavity at a rate equal to the surface mean
curvature. The use of the mean curvature motion, forward and backward, is a
direct 3D extension of the scale‐space paradigm in image processing introduced
by Witkin in [Wit83]. A scale‐space represents a shape at different geometric
scales, i.e., at different degrees of smoothness.

The principle behind the scale‐space meshing method is to use a standard sur‐
face mesh reconstruction algorithm to interpolate the point set once we get the
shape smoothed. Then, we can find the mesh for the original scale from the
smoothed scale mesh. The scale‐space surface meshing algorithm builds upon
the scale‐space framework for reconstructing a mesh from an oriented input
point set. This algorithm first smooths the point set, producing a singularity‐
free shape. Then the ball pivoting algorithm is used to build a mesh from the
smoothed point set. The final step consists of back projecting the mesh built on
the smoothed positions onto the original point set. The result of this process is
a surface mesh whose vertices are almost all raw input points.

As shown in [DMSL11], this algorithm approximates the mean curvature motion
through the iterative process of projecting each point of the data set onto the
local regression plane of its radial neighborhood. This iterative projection pro‐
cess allows for the computation of robust geometric information, which can be
backtracked to the initial scale. The projection algorithm makes no use of the
normal; the orientation choice is irrelevant for the mean curvature motion, but
having that information is useful for performing the ball pivoting algorithm.

The use of a scale‐space overcomes a few limitations. If data has to be smoothed
before building a mesh, then the interpolating property may be lost. Moreover,
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although the ball pivoting algorithm works well for noiseless data or data with
details at a scale coherent with the ball’s chosen radius, it fails when data
contains small details or noise. So, scale‐space allows for a better interpolation
of the original raw points and deals better with noise and small details.

The scale‐space surface meshing algorithm has ideal conditions. A few are in‐
herent to the ball pivoting algorithm. The surface should be reasonably regu‐
larly sampled and dense enough, and it should not contain overly concavities.
A drawback of this algorithm is that it depends on parameters whose values we
need to set each other. We need two parameters for scale‐space: the radius of
the projection filter and the number of iterations. The ball pivoting algorithm
needs one parameter, the radius of the pivoting ball, which is equal to half of
the projection filter radius. Consequently, when using not appropriate param‐
eter settings or lacking sample points, we observe that concave regions, sharp
features, and sparse regions may not be reconstructed correctly.

2.3.4 Other Mesh Growing Algorithms

The mesh growing algorithm proposed by Li et al. [LHW09] uses a priority‐driven
function for the mesh growing so that low curvature regions triangulate before
high curvature regions. In this regard, this algorithm resembles our PCR Cock‐
tail, but unlike ours, it uses angle bounds for internal angles of each triangle
and the dihedral angle between adjacent triangles. The sum of three quanti‐
ties gives its priority‐driven function. The first is the value of the cosine of the
largest internal angle of the new triangle; the second quantity is the cosine of
the dihedral angle between the border triangle and the new triangle; the third
corresponds to the distance between the border edge and the evaluation point.
Among all candidate points beyond the growing mesh front, one selects one with
the highest priority to generate the next triangle. In addition to angle bounds,
this algorithm does not produce regular high‐quality triangulations, being neces‐
sary to use some triangle optimization procedure to locally re‐triangulate some
triangles after surface mesh reconstruction. In some circumstances, in particu‐
lar, when a region is very noisy, the algorithm becomes noise‐sensitive.

Angelo et al. [ASG11] introduced a mesh growing algorithm based on Gabriel 2‐
Simplex criterion (G2S), which states that a triangle is a G2S if the smallest ball
that circumscribes it is empty [AGJ00]; this is the 2D counterpart in 3D space
for the Delaunay’ empty circle criterion in 2D space. However, given a point
cloud, and unlike Delaunay triangulations, the G2S triangulation is not unique,
as it depends on the seed triangle. Besides, there is no guarantee that G2S
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triangles all belong to the mesh surface, so some additional work to distinguish
wrong from right triangles; this involves a non‐manifoldness repair because some
triangles are transverse to each other. In a way, the G2S algorithm is similar to
the ball pivoting method, but it has the advantage of adapting the ball radius to
the spacing of neighbor points. Like other algorithms, one of the main downsides
is that some of its parameters are empirically set, not entirely automated. Even
worse, it is a fact the G2S may fail for very non‐uniform point clouds.

Wongwaen et al. [WTS12] proposed another mesh‐growing algorithm, which
subdivides the bounding box that encloses the point cloud into small equally‐
sized cubes. Then, triangulation occurs inside each cube, resulting in a set of
triangle sub‐meshes requiring some interstitial triangulation. However, this in‐
terstitial triangulation may go wrong if the sub‐meshes of adjacent cubes are
not supposed to be connected, which happens when the surface gets close to
itself without touching, resulting in an undesirable mesh drifting effect. This
fact also means that this algorithm cannot cope with sharp features and noise.
Besides, it is sensitive to point density, and finding the right size of the cubes
is challenging, not to say unfeasible. Also, similar to other mesh growing algo‐
rithms, it imposes bounds to the internal angles of each triangle and the dihedral
angle between adjacent triangles.

The mesh‐growing algorithm due to Wang et al. [WZZW13] tries to avoid dras‐
tic transitions in the mesh growing, so imposing angle bounds to the dihedral
angle between adjacent triangles, as usual in other algorithms; it also avoids
too narrow triangles by imposing angles bounds to internal angles of each tri‐
angle. As usual, this triangulation method assumes that the input data enjoy
a uniform sampling rate, concerns a closed surface, and possesses noise‐free
sampling points.

Xumin et al. [XLC14] proposed another mesh‐growing surface reconstruction
algorithm that depends on angle bounds. Interestingly, it takes advantage of
an octree space subdivision so that a local triangulation takes place in each
octant containing points of the original cloud, with a maximum of 48 points.
The problems resulting from the surface mesh reconstruction are related to
the difficulty in finding adequate reconstruction criteria, hence using empirical
parameters. Consequently, sharp or high curvature regions, and oscillatory or
noisy regions, create difficulties in triangulating the point cloud. The algorithm
also produces triangulation holes when the point sampling is not uniform.
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2.4 RBF Implicit Surfaces Interpolation

The use of radial basis functions (RBFs) in computer graphics was introduced by
Nielson [Nie93] to build interpolants for 3D data where the interpolation centers
do not form a regular grid. After that, Savchenko et al. [SPOK95], Carr et al.
[CFB97], and Turk and O’Brien [TO99] developed the first surface reconstruction
algorithms based on RBF interpolants.

Radial basis functions are used for interpolating a multivariate scattered data.
Let focus on the problem of interpolating a multivariate function f from a set
of sample values f(xi) (i = 1, · · · , N) on a scattered point set xi (i = 1, · · · , N)
in R3. In order to reconstruct f, this function is locally approximated by a
real‐valued function (called radial basis function) ϕ at each center xi. That
real‐valued function depends on the Euclidean distance from each center xi and
is radially symmetric. The characteristic property of a radial basis function is
its monotone decreasing (or increasing) with the distance from its center.

Thin‐plate functions are a class of radial basis functions and are a particular
case of polyharmonic functions. The success of RBF interpolation has to do with
an appropriate choice of the radial basis functions. Turk and O’Brien [TO99]
used the triharmonic thin‐plate RBF ϕ(∥x − xi∥) = ∥x − xi∥3. The uniharmonic
thin‐plate RBF ϕ(∥x − xi∥) = ∥x − xi∥ was used by Carr et al. [CFB97]. After
the choice for the radial basis function ϕ, function f can be approximated by
the interpolant F (x) that results from the sum of N radial basis functions, each
of which is associated with a distinct center xi, and weighted by an adequate
coefficient wi as follows:

F (x) =
N∑
i=1

wiϕ(∥x− xi∥) (2.1)

However, it is necessary to add a low‐degree polynomial P (x) to the interpolant
F (x) to guarantee the positive‐definiteness, which is one condition to ensure
the uniqueness of the solution. Thus, the RBF interpolant results as follows:

F (x) = P (x) +
N∑
i=1

wiϕ(∥x− xi∥) (2.2)
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As Duchon [Duc77] showed, the smoothness of the interpolant can be guaranteed
by a linear polynomial P .

Surface reconstruction through RBF interpolation requires to approximate a real‐
valued function f(x) by the RBF interpolant F (x) given the scalar values fi at
the distinct points xi (i = 1, · · · , N). The computation of the interpolant F (x)

requires determining the weights wi and the vector of unknown coefficients of
the polynomial P (x) in terms of its basis. The weights wi are such that F (x)

satisfies the interpolation conditions, F (xi) = fi, i = 1, · · · , N. Besides, we
need to impose orthogonality conditions on the weights wi because this system
of equations has more parameters than data, such as

N∑
i=1

wiP (xi) = 0 (2.3)

All the above conditions determine a system of equations which may be written
in matrix form to determine the coefficients of P , the weights wi, and after all,
the interpolant F (x). The time consumption for solving this equation system
is the main drawback of this interpolation process, mainly when the number of
data points goes above a few thousands.

The RBF interpolation allows the reconstruction of complex and smooth implicit
surfaces with arbitrary topological shapes from a set of scattered data points.
RBFs impose no restrictions on data points, namely, concerning those where data
points lie in, the type of regular grid, and space decomposition of the points.

2.4.1 Fast RBF Interpolation

As referred before, the standard RBF interpolation has a significant drawback.
It only copes with small scattered data sets, having up to two thousand points
approximately. Carr et al. [CBC+01], and [CBM+03] overcame this problem by
introducing a kind of fast RBFs to reconstruct surfaces from large point sets.
We can speed up the RBF interpolation thanks to two mechanisms: the fast
multipole method (FMM) and RBF center reduction.

The FMM method allows the computation of the matrix‐vector product using
lower order operations than O(n2) operations performed on the direct product.
The center reduction technique used in the fast RBF interpolation makes possible
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the surface reconstruction from large point data sets. The fast RBFs do not use
all the input scattered points xi as RBF centers. Instead, we use a significantly
smaller point set as the centers. This technique also allows removing redundant
detail or noise.

2.4.2 CS‐RBF Interpolation

Standard RBF interpolation and fast RBF interpolation have a global nature that
comes from the use of noncompact supported basis functions. That is a draw‐
back of the RBFs because even a small change of one center may affect the
entire interpolated surface. Instead of that, the use of radial basis functions
with compact support (CS‐RBFs) preserve the principle of locality, which means
changing the position of a given center xi causes only a local change of the in‐
terpolant and the corresponding surface. Thus, the use of RBFs with compact
support gives a better control because of each radial function’s local influence,
which depends on the radial basis function’s radius at each center.

A table with a list of radial basis functions with compact support, which can be
used to interpolate an implicit surface from scattered point data, can be found
in Wendland [Wen95]. Those functions’ support has a radius equal to 1, although
scaling is allowed any radius. Therefore, a piecewise polynomial interpolant of
minimal degree is built from summing up the contributions of these polynomial,
positive‐definite, and compactly supported RBFs associated with the centers.

2.5 Approximation Methods

We are not carrying out here a comprehensive review of approximation methods
for surface reconstruction. Indeed, we will only address the algorithm we used
in our tests, the Poisson surface reconstruction algorithm, which comes wrapped
in CGAL Library (http://www.cgal.org).

2.5.1 Poisson Surface Reconstruction Algorithm

Introduced by Kazhdan et al. [KBH06], the Poisson surface reconstruction algo‐
rithm is a two‐step process. It consists of computing an implicit function that
approximates a solid surface, outputting a surface mesh as an isosurface of that
function. Given a set of 3D points with oriented normals gotten as samples from
the surface of a 3D solid, the Poisson surface reconstruction algorithm computes
an approximate indicator function of the solid, whose gradient best matches the
input normals. The output scalar function, represented in an adaptive octree, is
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then iso‐contoured using an adaptive marching cubes algorithm. The problem of
computing the indicator function is to perform a least‐square fit to minimize the
difference between the gradient of the scalar function f and the vector field V

of the input normals defined by the sample points. The divergence operator is
applied to transform this problem into a standard Poisson problem; hence, the
Poisson equation∆f = ∇•V . That means computing the scalar function f whose
Laplacian (divergence of the gradient) equals the vector field’s divergence V .

CGAL library comes with a variant of the Poisson algorithm. This variant com‐
putes a piecewise linear function on a 3D Delaunay triangulation instead of an
adaptive octree. The algorithm takes input from a set of 3D‐oriented points and
builds the 3D Delaunay triangulation from these points. The Delaunay refine‐
ment presented in [RY07] is applied to remove all poorly shaped (non‐isotropic)
tetrahedra. Thus, the number of input points reduces as well as noise in the
input data. Then, one computes the scalar indicator function f, represented by
a piecewise‐linear function over the refined Delaunay triangulation. The Pois‐
son equation is solved at each vertex of the triangulation using a sparse linear
solver. In the end, using the CGAL surface mesh generator, an isosurface is ex‐
tracted with function value set by default as the median value of f at all input
sample points.

Ideally, this implementation of the Poisson surface reconstruction method ex‐
pects a sufficiently dense 3D oriented point set and sampled over a closed
smooth surface. The algorithm solves an implicit function, which is an approx‐
imate indicator function of an inferred solid. For this reason, the algorithm
always extracts a closed surface mesh, hence can fill the small holes where
data are missing. Moreover, it is reasonably robust to noise. However, there
is a drawback; the algorithm may not recover the sharp features and corners
present in the inferred solid because of the smooth effect of approximation lo‐
cal functions on sharp features and corners. That is a common characteristic of
implicit methods. Another limitation has to do with the reconstruction of thin
features at undersampled regions. Such reconstruction of thin features depends
on the local spacing, and it is related to the local feature size (the distance to the
medial axis, which captures curvature, thickness, and separation altogether).
There is no formal proof of correctness reconstruction by the algorithm under
certain density conditions. When density is not enough, the algorithm does not
reconstruct the thin features.
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2.6 Summary

We have surveyed the most relevant surface reconstruction algorithms, partic‐
ularly those that take advantage of the interpolation approach. In this way, we
intend to highlight the three algorithms’ contributions introduced in the next
chapters. We have also described the only approximation algorithm we used in
benchmarking for dissertation self‐containedness sake.
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Chapter 3

Surface Reconstruction: PCR Algorithm

3.1 Introduction

Reconstructing a surface from an unorganized point set (or point cloud) acquired
by a laser scanner or a similar device is an important research topic in computer
graphics, geometric modeling, virtual reality, computer animation, medicine,
and reverse engineering, to mention a few. However, surface reconstruction
algorithms have difficulties dealing with non‐uniform density (including holes),
sharp features (e.g., creases and apices), shape drifting, and noise of such un‐
organized point clouds. The method proposed —called PCR Cocktail— directly
triangulates the entire raw point set without normal vectors and allows for an
accurate meshing of the scanning holes and sharp features, even when the point
sampling is not uniform. Furthermore, contrary to other meshing methods, our
method does not generate new points; that is, only raw data points are vertices
of the final mesh.

PCR Cocktail is a mesh growing method for surface reconstruction. It gener‐
ates a triangle mesh from a seed triangle so that every new triangle is attached
to a mesh front’s triangle in conformity with one or more geometric criteria.
More specifically, PCR Cocktail uses three geometric criteria, namely proximity
(P), coplanarity (C), and regularity (R). As shown further ahead, the proxim‐
ity relation is used in two circumstances and makes PCR Cocktail not sensitive
to non‐uniform point density of the input point cloud. Coplanarity allows for
avoiding the shape drifting phenomenon that shows up in other methods and
discarding dihedral angle bounds between adjacent triangles, which are typical
in mesh growing methods. Note that PCR Cocktail triangulation flows from low
curvature regions to high curvature regions. It gives priority to coplanar or low
curvature regions in the triangulation of a given point cloud. Finally, an innova‐
tive regularity function allows us to produce meshes with triangles that tend to
be regular (or equilateral). Thus, there is no need for a regularization step after
the mesh construction. In short, combining the three criteria above allows us
to solve most surface reconstruction problems identified in the literature and
thus control the correctness of the final mesh.
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3.2 Background

The input data P consists of a set of points p ∈ P , which we assume to lie on
the surface S = ∂O of an unknown object O. Besides, we assume that S is a
manifold; that is, it is locally homeomorphic to R2. Our goal is to reconstruct a
watertight triangle mesh M that linearly approximates to the surface S so that
the points of P are vertices of M.

As mentioned above, our surface reconstruction algorithm builds upon three
fundamental geometric criteria: proximity, regularity, and coplanarity.

3.2.1 Coplanarity

Coplanarity is the dominant geometric criterion of our mesh growing method.
This criterion imposes a local geometric constraint to the manifoldness of the
surface S. That is, the neighborhood of each point p ∈ P in S must be not
only homeomorphic to R2 (or an open disc) but also isometric to R2 as much
as possible. Thus, we prioritize the triangles around each point p ∈ P in S

according to their coplanarity. The decision to attach either a candidate triangle
or another to a mesh front edge depends on which one is the most coplanar with
the adjacent triangle of the growing mesh.

(a) (b)

Figure 3.1: Reconstruction of flat and low‐curvature regions come first.

In practice, in each step of the algorithm, among all candidate triangles to be
attached to the edges of the mesh growing front, we select the one that is
the most coplanar with its nearest front triangle. Hence, our argument of not
using angular bounds. In other words, the triangulation of S takes place firstly
on planar regions and lastly in high curvature regions (e.g., sharp features).
Equivalently, the mesh growing works by decreasing the dihedral angle from
π to 0, that is, the most coplanar triangles first, the fewer coplanar triangles
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afterward. Fig. 3.1 shows this mesh growing process, where the mesh front in
the dolphin’s body only expands to the left pectoral fin when the body gets fully
meshed.

3.2.2 Regularity

The regularity of the mesh has to do with the generation of approximately reg‐
ular triangles, i.e., approximately equilateral triangles. PCR Cocktail tends to
generate regular triangulations without using any post‐processing step. We say
that the triangle T1 is more regular than the triangle T2 if the sum of the cosines
of the three internal angles of T1 is greater than the one of T2. This sum is here
called regularity function, and expresses itself as follows:

rT (α, β, γ) = cos(α) + cos(β) + cos(γ) (3.1)

where α, β, and γ stand for the internal angles of a given triangle T . As it
proved further, the regularity function has a maximum when the three angles
are identical and equal to 60◦. That maximum is rT (60◦, 60◦, 60◦) = 1.5, and it is
the maximum regularity of the given triangle.

(a) (b)

Figure 3.2: Four triangulations for two sets of four points when P1 ̸∈ S2 and
P2 ̸∈ S1: (a) for this set of four points, the correct triangulation choose the
point P1 to form a triangle with AB; (b) for this set of four points, the correct
triangulation choose the point P2 to form a triangle with AB.

Therefore, given two triangulations of four points, it is feasible to decide which
one is the most regular triangulation, as illustrated in Fig. 3.2. For example,
in Fig. 3.2(a), we have two triangulations of the same set of four points, A, B,
P1, and P2; the first triangulation T1 consists of two triangles, T1 = (A,P2, B)

and T2 = (A,P2, P1), whereas the triangles of the second triangulation T2 are
T3 = (B,P1, A) and T4 = (B,P1, P2). We see T2 is more regular than T1, as can
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be determined through the following relative regularity function:

r = max {min {rT (T1), rT (T2)}, {min {rT (T3), rT (T4)}} (3.2)

Consequently, we choose P1 as the point that together with AB will form the
next triangle of the triangulation. Also, applying the above regularity func‐
tion to the triangulations in Fig. 3.2(b) allows us to know that the triangulation
consisting of the triangles (A,P2, P1) and (A,P2, B) is more regular than the
triangulation comprising the triangles (B,P1, A) and (B,P1, P2); consequently,
(A,P2, B) will be next triangle of the triangulation. Note that we do not impose
angular restrictions over the amplitude of the mesh triangles’ internal angles.

3.2.3 Maximum regularity

Let consider the function which is called regularity function and is given by the
following expression,

rT (α, β, γ) = cos(α) + cos(β) + cos(γ). (3.3)

The variables, α, β, and γ are the internal angles of a given triangle T and they
are under the next constraint,

α + β + γ = 180◦ with 0◦ < α, β, γ < 180◦. (3.4)

Applying the above constraint, the regularity function is equivalent to the bi‐
variate expression,

rT (α, β) = cos(α) + cos(β) + cos(180◦ − α− β). (3.5)

Let’s find the maximum of this function. For that, we begin to take the gradient
(∇) of the regularity function,

∇rT (α, β) = (sin(180◦ − α− β)− sin(α), sin(180◦ − α− β)− sin(β))

Thereafter, we have to find the critical points of the regularity function, be‐
cause the extreme values of this function will be find in such set of points. So,
we need to solve the following equation,

∇rT (α, β) = (0, 0) (3.6)
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equivalent to,

sin(180◦ − α− β)− sin(α) = 0 ∧ sin(180◦ − α− β)− sin(β) = 0

or yet,

sin(180◦ − α− β) = sin(α) ∧ sin(180◦ − α− β) = sin(β). (3.7)

Consequently,

sin(α) = sin(β) (3.8)

where two solutions are possible,

α = β ∨ α = 180◦ − β. (3.9)

However, according to the previous constraint at Eq. 3.4, only the first solution
have to be considered. So, by substitution in Eq. 3.7, just in one of the two
conditions is needed, it comes,

sin(α) = sin(180◦ − 2α) ⇔ α = 180◦ − 2α ⇔ α = 60◦ (3.10)

and also,

β = 60◦. (3.11)

By the above demonstration, regularity function has only one critical point at
(α, β) = (60◦, 60◦). Next, we will apply the Hessian matrix to that critical point
to determine whether at this point is a maximum. The Hessian matrix is as
follows:

H(α, β) =

[
−cos(α)− cos(180◦ − α− β) −cos(180◦ − α− β)

−cos(180◦ − α− β) −cos(β)− cos(180◦ − α− β)

]

then,

H(60◦, 60◦) =

[
−1 −1/2

−1/2 −1

]
(3.12)
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where the principal minors in ascending order are, respectively, d1 = −1 and
d2 = 3/4. Hence, the Hessian matrix at (60◦, 60◦) is negative definite, thus, reg‐
ularity function attains a maximum, moreover, that maximum is rT (60◦, 60◦) =
1.5.

As demonstrated, the maximum regularity of a triangle occurs when all internal
angles are 60◦of amplitude, which means it is an equilateral triangle.

3.2.4 Proximity

Proximity is the geometric concept underlying the computation of the nearest
neighbors of a cloud point and the computation of the closest point to a given
edge. In the first case, to decrease the complexity and searching time to find
the point neighborhoods, we use the octree subdivision of the bounding box
containing the point cloud. The objective is to reduce, for each point, the
search domain of the closest points instead of considering all sample points, but
such search space’s reduction cannot be too much. The subdivision performs
until the leaf nodes contain fewer points than a pre‐established threshold. This
threshold considers that each edge of a triangle determines four perpendicular
half‐spaces holding such an edge. Therefore, around each vertex of the triangle,
we have eight perpendicular half‐spaces. So, by selecting the closest point in
each of those eight half‐spaces per vertex, we end up having 24 points nearby to
a triangle. Thus, 24 points make the threshold below which we stop the octree
subdivision of each populated octant. This way, the search for the closest points
of a given point is limited to its leaf node’s points and its adjacent nodes, which
all together form the point neighborhood. Therefore, PCR neither pre‐establish
a maximum radius nor pre‐establish a minimum number of points for the closest
points surrounding a given point. So, PCR Cocktail is less sensitive to the non‐
uniform point density of the input point cloud.

In the second case, when attaching a new triangle to the mesh front, we first
need to find the appropriate closest point to a given front edge. Let be point A
and point B the endpoints of a given edge. The nearest point P of bothA and B

among their neighbor points N(A) and N(B), respectively, is the one given by
the minimum distance d that combines the distances from A and B to P, that
is,

d = min
x∈N(A)∪N(B)

(||A− x||+ ||B− x||) (3.13)
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3.3 PCR Cocktail Triangulation

The PCR Cocktail algorithm essentially consists of the following steps:

1. Find the seed triangle and build the smooth and manifold star of triangles.

2. Find candidate triangles on new edges of mesh front;

3. Select the new triangle among all candidate triangles to be attached to
mesh front;

4. Repeat the last two steps while there are points to triangulate.

3.3.1 Finding the seed triangle and the star

The seed (or initial) triangle choice is crucial in reconstructing the surface; oth‐
erwise, one may undermine the correctness or quality of the resulting triangu‐
lation. So, this first step of the PCR algorithm aims to find a smooth curvature
region to start the surface reconstruction. Given a cloud point and taking it as
the center point, we build an initial triangle. Afterward, we construct a smooth
manifold star approximately isomorphic to a disc by attaching new triangles to
the initial triangle and around that fixed center point, as illustrated in Fig. 3.4.
Note that no neighbor point can project to any star triangle orthogonally. Oth‐
erwise, we cannot ensure the smoothness and manifoldness of the star.

The procedure to find the point where to start the surface reconstruction is the
following:

• Find the initial triangle;

• Build the smooth and manifold star;

The previous procedure is applied to each cloud point until one point succeeds.
Let us detail the two sub‐steps outlined above.

3.3.1.1 Finding the initial triangle

Given a point P0, consider the point P1 as the closest point to the first one.
Both points make the initial edge, Fig. 3.3(a). Then, find the point Pk that
belongs to the P0 neighbor points, making the most regular triangle with the
initial edge P0P1. Next, determine the normal vector N⃗1 with the initial edge
and coplanar with the triangle ∆(P0P1Pk) and also toward the point Pk. The
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vector N⃗1 determines the half‐space where the initial triangle lies. Besides this,
the first candidate to the initial triangle is ∆(P0P1Pk). Moreover, if there is no
closer point to the initial edge among the P0 neighbor points, then the initial
triangle is found, as shown in Fig. 3.3(b). However, suppose there is another
point P2 closer to the initial edge. In that case, we look at three cases, and we
have to decide among the triangles ∆(P0P1Pk) or ∆(P0P1P2), which of them will
be the initial triangle or none. In the first, we orthogonally project both third
vertices of such triangles to the other triangle. This fact could not guarantee
smoothness conditions or low curvature around point P0; in this case, the initial
triangle’s computation does not occur. In the second, the closer point P2 to
the edge P0P1 is the only projected point to within the triangle ∆(P0P1Pk), so,
we select the triangle ∆(P0P1P2) as the initial triangle candidate, as depicted
in Fig. 3.3(c). Finally, in the third, there is not any triangle projecting it to
each other; hence, the choice among those two triangles occurs by applying
the relative regularity function (3.2) over those four points, as illustrated in
Fig. 3.3(d). This task ends when there are no more points closer to the initial
edge to analyze; thus, the initial triangle is found.

(a) (b) (c)
(d)

Figure 3.3: Finding the seed triangle: (a) P1 is the closest point to P0 and both
together define the initial edge; (b) Pk makes the most regular triangle with the
edge P0P1; N⃗1 is the normal vector with the edge P0P1 and coplanar with the
triangle ∆(P0P1Pk); (c) P2 is closer to the edge P0P1 and is projected to within
the triangle∆(P0P1Pk), the initial triangle candidate has changed to∆(P0P1P2);
(d) P2 is closer to the edge P0P1 and is not projected to within the triangle
∆(P0P1Pk), the initial triangle is ∆(P0P1P2) as the result by the application of
the relative regularity function (3.2).

3.3.1.2 Building the smooth and manifold star

After the seed triangle has been found, Fig. 3.4(a), the next task is to build
the star by attaching new triangles around the center point P0 until the star is
closed, Fig. 3.4(d). In each iteration, finding a new triangle and attaching it
to the last built edge of the star is similar to the procedure described above to
find the initial triangle from the initial edge. Before proceeding any further, we
should consider a few details on determining the half‐space where the next at‐
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taching triangle lies. Thus, taking the last built triangle, we compute the normal
vector to the last built edge, which is coplanar and outward with the last built
triangle, as illustrated in Fig. 3.4(a or b) by the vectors N⃗2 or N⃗4. However, af‐
ter a few iterations, the initial edge of the seed triangle is not behind the plane
defined by the normal outward vector with the last built edge, Fig. 3.4(c). In
this case, we have to consider the normal outward vector to the seed triangle’s
initial edge to confine the half‐space where we will find the next triangle to be
attached. Another detail we should note is the smoothness and manifoldness
guarantees. Accordingly, one must check the orthogonal projection test to vali‐
date any new attaching triangle. Thus, no point of the star cannot orthogonally
project to within the new triangle nor vice‐versa. Otherwise, one discards the
new triangle; also, one abandons the computation of the in‐progress star be‐
cause one cannot ensure the star’s low curvature. In this case, one proceeds to
the triangle star computation for another point.

(a) (b) (c) (d)

Figure 3.4: Building the star: (a) N⃗2 is the normal outward vector with the edge
P0P2; (b) the initial edge is still behind the plane defined by the vector N⃗4; (c)
the initial edge is not behind the plane defined by N⃗5, both vectors, N⃗4 and N⃗5,
determine the half‐space where the next triangle to be attached lies; (d) the
star is completed.

3.3.2 Finding candidate triangles

The mesh grows when one adds a new triangle to the mesh front. When a new
triangle is attached to the mesh front, it adds either one, two, or three (for the
seed triangle) new border edges to the mesh front. For each new border edge,
one has to find the candidate triangle that supposedly will attach to it.

The procedure to identify the candidate triangle T that supposedly attaches a
new border edge AB comprises the following steps:

• Find the subspace S ∈ R3 beyond AB where the third vertex of T lies in,
as illustrated in Fig. 3.5.

41



Surface Reconstruction From 3D Point Clouds

• Find two points P1 and P2 (at maximum) in S that are the nearest points
to the border edge AB bounded by the endpoints A and B (see Fig. 3.6).

• If two nearest points P1 and P2 are found in S (see Fig. 3.6(a)‐(b)), we
have to decide which one is the right one; if only a single nearest point P1

is found in S, the candidate triangle ∆(ABP1) is achieved; if no nearest
point is found in S (see Fig. 3.6(c)), P1 and P2 are set to opposite endpoints
of the border edges incident atA andB, respectively, so we have to decide
which one is the right one once again.

Let us now detail each of the three sub‐steps outlined above.

3.3.2.1 Finding subspace S in the neighborhood of border edge AB

Let us now see how to form the subspace S ∈ R3 beyond the border edge AB.
We have to determine the outwards vector n⃗ that is perpendicular to AB, but
parallel to plane defined by the mesh triangle bounded by AB. Then, we de‐
termine the plane π that contains AB and is defined by n⃗. As shown in Fig. 3.5,
we have then to consider four possible cases. In the first case, both vertices
A′ and B′ bounding the border edges A′A and BB′ are behind π (Fig. 3.5(a));
in the second case, only one of those two vertices, either A′ or B′, is behind π

(Fig. 3.5(b)); in the third and fourth cases, both vertices A′ and B′ are beyond
π (Fig. 3.5(c)‐(d)). Thus, S is defined by the intersection of one, two or three
planar half‐spaces defined by outwards vectors that are perpendicular to border
edges.

3.3.2.2 Finding at most two nearest points P1 and P2 to border edge AB

These nearest points (if any) must be in the subspace S (see Fig. 3.6), and belong
to N(A) and N(B). The nearest points are found using the distance function
given by Eq. (3.13).

3.3.2.3 Finding the third vertex P of the candidate triangle ∆(ABP )

Let us assume that we have already found the two nearest points P1 and P2

relative toAB, as shown in Fig. 3.6. We first determine the unbounded subspace
S1 generated by the triangle ∆(ABP1) along the direction defined by its normal
vector. Such subspace results from the intersection between three half‐spaces,
each containing an edge of the candidate triangle. Analogously, we determine
the unbounded subspace S2 generated by the triangle ∆(ABP2).
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(a) (b)

(c) (d)

Figure 3.5: The subspace S beyond the border edge AB: (a) with A′ and B′

behind the plane π defined by n⃗; (b) with A′ behind π and B′ beyond π; (c) and
(d) with both A′ and B′ beyond π.

To determine the third vertex P ∈ {P1, P2} of the candidate triangle ∆(ABP ) in
the neighborhood of the border edge AB, we consider the three cases depicted
in Fig. 3.6. If P1 ∈ S2 but P2 ̸∈ S1 (see Fig. 3.6(a)), then the right candidate
triangle is ∆(ABP1). Otherwise, if P1 ∈ S2 and P2 ∈ S1 (see Fig. 3.6(b)), then
the right candidate triangle is ∆(ABP ), where P ∈ {P1, P2} is the point that is
more close to AB. Finally, if P1 ̸∈ S2 nor P2 ̸∈ S1 (Fig. 3.6(c)), we choose the
point P ∈ {P1, P2} that makes the candidate triangle ∆(ABP ) the most regular.

In searching the third vertex of the candidate triangle, we have assumed that
we had two or more points in the subspace S delimited by AB and its incident
neighbor border edges, A′A and BB′ (Fig. 3.5). However, it may happen to
have only one point P1 in S; in this case, the candidate triangle is ∆(ABP1).
But, if there is no neighbor point remaining in the subspace S, we also consider
the particular cases shown in Fig. 3.7, where the third point P of the triangle
(A,P,B) is a boundary vertex of the mesh front.

3.3.3 Attaching the new triangle

We have to select a triangle —and attach it to the mesh— among all candidate
triangles around the mesh front (i.e., a ring of border edges). Such a triangle
is the most coplanar with the triangle plane that upholds the growing front’s
border edge. Thus, the mesh grows preferably in regions with less curvature.
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(a) (b) (c)

Figure 3.6: Choosing the third vertex P ∈ {P1, P2} of the candidate triangle
∆(ABP ) in the neighborhood of the border edge AB.

(a) (b) (c)

Figure 3.7: Choosing the third vertex P when there is no neighbor point in the
subspace S beyond the border edge AB.

For example, in Fig. 3.1, we can see the reconstruction of the dolphin’s fin took
place after the main body because there is a fast‐changing curvature of the
main body to the dolphin’s fin. Note that, unlike most mesh growing algorithms
(see, for example, [LHW09], [WTS12] and [XLC14]), we do not use bounds to
the dihedral angle between the adjacent triangles along with the mesh growing
process.

The mesh front consists of one or more rings of border edges together with their
triangles (see Fig. 3.7); for example, the initial mesh front consists of three
edges and a single triangle, the so‐called initial or seed triangle. The second
triangle of the mesh is attached to one of the border edges of the seed triangle.
The mesh growing algorithm terminates when no border edge of the mesh front
is left out, and the resulting triangulated surface is a manifold.
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3.4 Experimental Results

3.4.1 Hardware and software setup

We implemented the proposed algorithm in C++ and GLUT 3.7 (Microsoft Visual
Studio 2017) on a desktop computer equipped with an Intel processor Core(TM)
i3‐4005U, 1.73 GHz, 6 GB RAM, running Windows 8.1. Furthermore, we used
MeshLab v1.3.3 (http://www.meshlab.net/) to evaluate the mesh reconstruc‐
tion quality of the benchmarking algorithms (including the PCR Cocktail algo‐
rithm) through the Hausdorff distance between original meshes and their corre‐
sponding reconstructed meshes.

3.4.2 Benchmarking surface reconstruction methods

The surface reconstruction method, PCR Cocktail, was compared to four meth‐
ods. The first is the power crust meshing algorithm due to Amenta et al. [ACK01a]
(http://web.cs.ucdavis.edu/~amenta/powercrust.html). In contrast, the other
three are the advancing front meshing algorithm due to Cohen‐Steiner and Da
[CSD04], the Poisson surface reconstruction algorithm due to Kazhdan et al.
[KBH06], and the scale‐space reconstruction algorithm due to Digne et al. [DMSL11].
The latter three methods are part of CGAL (http://www.cgal.org).

3.4.3 Testing mesh models

Our testing point cloud models were obtained from triangle meshes retrieved
from Princeton Shape Benchmark (http://shape.cs.princeton.edu/benchmark/),
3D Segmentation Benchmark (http://segeval.cs.princeton.edu/), tf3dm (http:
//tf3dm.com/), John Burkardt Home Page (https://people.sc.fsu.edu/~jburkardt/
data and MeshLab Samples (https://people.sc.fsu.edu/~jburkardt/data/meshlab/
meshlab.html), some of which are listed in Tables 3.1 and 3.2. Such triangle
meshes form our ground‐truth dataset for benchmarking surface reconstruction
methods. Several mesh models are depicted in Figs. 3.9 and 3.10 after recon‐
struction through PCR Cocktail algorithm.

3.4.4 Mesh reconstruction quality

Intuitively, Hausdorff distance measures “how similar” two point sets are in the
metric sense. We used the Hausdorff distance between two surface meshes as
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Table 3.1: Original meshes and reconstructed meshes generated by PCR and
advancing‐front algorithms.

Model Label

Original Mesh PCR Mesh Advancing Front Mesh

#Vertices #Triangles #Vertices #Triangles H #Vertices #Triangles H

1 Duck 710 1,416 710 1,414 4.639 710 1,416 3.098

2 Knot 1,280 2,560 1,280 2,560 0.380 1,280 2,560 0.281

3 Loop 1,440 2,880 1,440 2,880 2.691 1,440 2,874 7.502

4 Dolphin 1,867 3,694 1,867 3,734 4.413 1,867 3,658 23.400

5 Doubletorus 4,352 8,708 4,352 8,708 0.000 4,352 8,708 3.612

6 MaxPlanck 7,399 14,749 7,399 14,796 22.446 7,399 14,794 22.261

7 Egea 8,268 16,532 8,268 16,532 1,889 8,268 16,531 1.889

8 Pear 10,754 21,504 10,754 21,504 0.153 10,754 21,504 0.127

9 Fish 14,000 27,996 14,000 28,005 3,624 14,000 27,998 5.064

10 Horse 20,000 39,996 20,000 40,004 2.721 20,000 39,994 2.591

11 Armadillo 26,002 52,000 26,002 52,013 1.936 26,002 51,995 1.467

12 Bunny 34,834 69,451 34,834 69,663 16.010 34,834 69,656 16.253

Abbreviations:
H: Hausdorff distance

Table 3.2: Reconstructed meshes generated by power‐crust, scale‐space, and
Poisson algorithms.

Model Label

PowerCrust Mesh Scale‐Space Mesh Poisson Mesh

#Vertices #Triangles H #Vertices #Triangles H #Vertices #Triangles H

1 Duck 6,642 13,279 7.705 710 1,988 27.355 1,489 2,974 27.746

2 Knot 7,744 15,492 23.791 1,280 4,356 29.430 2,490 5,004 34.903

3 Loop 14,368 28,613 14.869 1,440 4,498 32.077 2,223 4,454 38.958

4 Dolphin 16,009 32,006 3.614 1,867 5,436 25.066 3,281 6,562 24.008

5 Doubletorus 35,064 70,132 10.997 4,352 16,752 18.413 3,176 6,356 14.921

6 MaxPlanck 66,282 132,560 22.779 7,399 28,732 8.932 11,108 22,212 22.515

7 Egea 71,882 155,970 2.065 8,268 32,818 6.827 3,568 7,132 5.778

8 Pear 104,840 209,675 1.068 10,754 37,840 25.895 2,994 5,984 28.969

9 Fish — — — 14,000 44,932 21.303 12,030 24,080 21.299

10 Horse 209,879 419,744 3.641 20,000 78,936 7.549 10,264 20,524 9.200

11 Armadillo 245,683 491,364 2.418 26,002 99,346 4.908 16,032 32,060 8.432

12 Bunny 349,013 698,011 17.382 34,834 138,050 4.470 12,927 25,850 16.998

Abbreviations:
H: Hausdorff distance

our mesh reconstruction quality metric. It is defined as follows:

H(S, S ′) = max
(
max
xi∈S

δ(xi, S
′),max

xj∈S′
δ(xj, S)

)
(3.14)

where S, S ′ denote the two surface meshes, the ground‐truth mesh and testing
mesh, with

δ(xi, S
′) = min

xj∈S′
d(xi,xj) and δ(xj, S) = min

xi∈S
d(xj,xi) (3.15)

where d(x,x′) is the Euclidean distance between points x and x′.

During the tests of our PCR algorithm, we used the MeshLab to compute the
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Figure 3.8: Number of triangles differs between original meshes and recon‐
structed meshes.

Hausdorff distance. The closer the reconstructed mesh is to the original mesh,
the higher quality is of such reconstruction. According to Eq. (3.14), Hausdorff
distance applies to sets of points. Therefore, the simplest way to compute the
distance between two meshes consists of calculating the Hausdorff distance con‐
sidering only vertices. However, the Hausdorff distance would be zero because
the vertices of PCR, advancing front, and scale‐space meshes are the same as
those of the original mesh. We also considered barycenters of edges and tri‐
angles in computing the Hausdorff distance between meshes to overcome this
problem.

Looking at Tables 3.1 and 3.2, we observe the following:

• Number of vertices. The number of vertices remains unchanged for PCR
Cocktail, advancing front, and scale‐space algorithms, but not for Power
crust and Poisson algorithms. Power crust meshing adds much more ver‐
tices to the mesh as a way of getting a uniform density of points in the
cloud (cf. [ACK01a]). Poisson algorithm produces a mesh of an implicit
surface that approximates the point cloud. The triangulation of the im‐
plicit surface explains why the number of vertices (and their locations)
varies relative to the original ones.

• Number of triangles. The number of triangles tends to remain unchanged
for simplicial methods like PCR Cocktail and advancing‐front methods (see
Table 3.1). This fact does not apply to the power‐crust method because it
adds more points to the input point set. On the other hand, Poisson and
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(a) Duck (b) Knot

(c) Loop (d) Dolphin

(e) Doubletorus (f) MaxPlanck

Figure 3.9: Reconstructed surface meshes using the PCR Cocktail.

scale‐space reconstruction methods produce implicit surfaces that approx‐
imate the input point cloud, after which one proceeds to the triangulation
of such surfaces. In other words, implicit methods generate triangles that
do not necessarily match those of the original mesh, as shown in Table 3.2.
Besides, Fig. 3.8 indicates the number of triangles difference between the
original meshes and the reconstructed meshes, PCR Cocktail and Advanc‐
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(g) Egea (h) Pear

(i) Fish (j) Horse

(k) Armadillo (l) Bunny

Figure 3.10: More reconstructed surface meshes using the PCR Cocktail.

ing front present the lowest differences.
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• Hausdorff distance. As shown in Tables 3.1 and 3.2, the Hausdorff dis‐
tance between the original meshes and the meshes generated by the PCR
Cocktail algorithm is, in general, smaller than for the benchmarking sur‐
face reconstruction methods (cf. Fig. 3.11). Therefore, our algorithm
produces more reliable or high‐quality meshes than the other ones, as can
be observed in Figs. 3.9 and 3.10. Recall that the Hausdorff distance is
the maximum of the minimum distance between two sets of points (see
Eq. (3.14)).
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Figure 3.11: Hausdorff distance for reconstructed meshes, comparing PCR Cock‐
tail, Power Crust, Advancing Front, Scale‐Space and Poisson algorithms.

Overall, a glance at Figs. 3.11‐3.14 allows us to observe implicit methods (i.e.,
Poisson and scale‐space surface reconstruction algorithms) generate meshes
that are further away from the original meshes than simplicial methods (i.e.,
power crust, advancing front, and PCR Cocktail algorithms). This deviation is
due to the approximating approach of implicit methods rather than the simplicial
methods’ interpolation approach. Moreover, the blending of kernel functions of
implicit methods causes rounding of sharp features (e.g., apices and creases) of
the original object.

It is worth noting both mesh growing algorithms, say PCR Cocktail and advancing
front algorithms, perform in a similar way regarding the Hausdorff distance (see
Fig. 3.11). To make sure about which one of these two methods ranks first, we
carried out a finer‐grain analysis of results in terms of other Hausdorff metrics
as follows:

• Hausdorff distance’s mean. This measure represents the mean distance
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between two sets of points, that is,

dM =
1

n+m

( n∑
i=1

δ(xi, S
′) +

m∑
j=1

δ(xj, S)
)

(3.16)

where δ(xi, S
′) is the minimum distance from the point xi ∈ S to the point

set S ′ and δ(xj, S) is the minimum distance from the point xj ∈ S ′ to
the point set S, as given by Eq. (3.15). Fig. 3.12 shows that simplicial
algorithms outperform implicit algorithms in terms of Hausdorff mean dis‐
tance. Besides, PCR Cocktail and advancing‐front algorithms rank first and
are indistinguishable concerning Hausdorff’s mean distance.
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Figure 3.12: Hausdorff distance’s mean for reconstructed meshes, comparing
PCR Cocktail, Power Crust, Advancing Front, Scale‐Space and Poisson algo‐
rithms.

• Hausdorff distance’s root mean square (RMS). This metric measures the
arithmetic mean of the squares of the set of minimum distances between
two point sets S and S ′, that is,

dRMS =

√√√√ 1

n+m

( n∑
i=1

(δ(xi, S ′))2 +
m∑
j=1

(δ(xj, S))2
)
. (3.17)

As shown in Fig. 3.13, we see that PCR Cocktail ranks first and produces
triangulations more similar to the original meshes than the advancing front
algorithm, which agrees with the results shown in Fig. 3.11. Note that
the most different triangulations relative to the original are the fourth
and sixth models (i.e., Dolphin and Max Planck models). Still, the lack
of similarity is even more striking in the triangulations generated by the
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advancing front algorithm.
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Figure 3.13: Hausdorff distance’s root mean square for reconstructed meshes,
comparing PCR Cocktail, Power Crust, Advancing Front, Scale‐Space and Poisson
algorithms.

• Hausdorff distance’s standard deviation. This metric allows us to mea‐
sure the dispersion of the minimum distances in relation to the Hausdorff’s
mean distance (see Eq. (3.16)), that is,

dSD =

√√√√ 1

n+m

( n∑
i=1

(δ(xi, S ′)− dM)2 +
m∑
j=1

(δ(xj, S)− dM)2
)
. (3.18)

As shown in Fig. 3.14, PCR Cocktail has the lower dispersion of the dis‐
tances for all models.

In short, PCR Cocktail produces the most similar triangulations to the original
meshes. In general, simplicial methods generate triangulations that tend to be
identical to the original meshes because of their interpolating approach. On
the other hand, the approximating approach behind implicit methods generates
triangulations that are further away from the original meshes, mainly when the
implicit surface results from local functions’ blending.

3.4.5 Surface reconstruction times

Another comparison we have observed was the time performance of surface
reconstruction algorithms. Table 3.3 shows the times taken to the mesh re‐
construction by each algorithm; see also Fig. 3.15. Besides the reconstructed
surfaces’ quality, we note the PCR algorithm also presents the shortest times for
each mesh reconstruction. As we observe in Tables 3.1 and 3.2, the power‐crust
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Figure 3.14: Hausdorff distance’s standard deviation for reconstructed meshes,
comparing PCR Cocktail, Power Crust, Advancing Front, Scale‐Space and Poisson
algorithms.

algorithm uses a linear approximation method to increase the density of points
of the point cloud, so new vertices are part of the mesh. This fact explains
why the power‐crust algorithm reconstruction takes a long time in the surface
reconstruction compared to PCR. In turn, the Poisson algorithm’s implicit na‐
ture explains the poor time performance results, particularly in the larger point
clouds.

Table 3.3: Time performance for surface reconstruction by every algorithms.

Model Label

Original Mesh Time (seconds)

#Vertices #Triangles PCR Adv Front Scl Space PCrust Poisson

1 Duck 710 1,416 0.024 0.051 0.045 1.259 0.863

2 Knot 1,280 2,560 0.041 0.067 0.072 2.172 1.358

3 Loop 1,440 2,880 0.049 0.086 0.093 3.200 1.285

4 Dolphin 1,867 3,694 0.075 0.124 0.134 2.809 2.379

5 Doubletorus 4,352 8,708 0.175 0.297 0.372 10.955 2.627

6 MaxPlanck 7,399 14,749 0.334 0.441 0.504 11.050 3.619

7 Egea 8,268 16,532 0.368 0.520 0.595 18.554 3.863

8 Pear 10,754 21,504 0.372 0.663 1.086 41.161 3.663

9 Fish 14,000 27,996 0.658 0.976 1.044 — 13.848

10 Horse 20,000 39,996 1.176 1.328 1.605 31.500 9.435

11 Armadillo 26,002 52,000 1.423 1.733 2.018 45.957 15.115

12 Bunny 34,834 69,451 2.180 2.240 2.635 71.754 14.774
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Figure 3.15: Times for reconstructed meshes using PCR Cocktail, Power Crust,
Advancing Front, Scale‐Space and Poisson algorithms.

3.5 Discussion

We observed from our experiments that all benchmarked surface reconstruction
algorithms work well for uniform, high‐density point clouds. Therefore, non‐
uniform, low‐density point sampling is the principal problem faced by surface
reconstruction algorithms and the source for most mesh reconstruction quality
issues: mesh drifting, holes, incomplete meshing, and trimming and rounding
off sharp features (e.g., apices and creases).

We also noted that the benchmarked implicit algorithms are more sensitive to
sampling non‐uniformity than simplicial methods. As shown in Figs. 3.16(c)‐(d),
implicit methods may misbehave when the input point cloud does not possess
a uniform distribution and high density of the points, resulting in incomplete
or weird triangulations. As shown in Figs. 3.16(a)‐(b), simplicial methods are
more robust because the meshing tends to have fewer holes and less prone
to unexpected triangulations than implicit methods. However, we noted the
power‐crust algorithm could not reconstruct the fish model (Table 3.2) at all,
possibly because in high‐density zones, the distance between points is less than
its pre‐defined minimum distance. In practice, the power‐crust algorithm does
not work for point clouds with overdense regions of points either.

PCR algorithm successfully copes with these extreme situations because it grace‐
fully combines the coplanarity criterion and clustering of points via octree sub‐
division of the point cloud. The octree subdivision ensures the triangulation of
low‐density points to those in surroundings, even when the original surface is
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(a) (b)

(c) (d)

Figure 3.16: Non‐uniform point sampling issues: (a) fish’s meshing using advanc‐
ing front algorithm originates a hole through the mesh; (b) duck’s meshing using
power crust algorithm increases its volume as a result of more points added
to the initial point cloud; (c) incomplete dolphin’s meshing using scale‐space
algorithm; (d) weird fish’s meshing using Poisson algorithm.

not closed (i.e., a surface with a boundary).

Taking into consideration the Hausdorff distance results shown in Fig. 3.11, we
see the worst surface mesh reconstructions using PCR Cocktail are those con‐
cerning Max Planck and bunny models (see Tables 3.1‐3.2 and Figs. 3.9(f) and
3.10(l)). These results are so because their original meshes are not closed
meshes underneath. Therefore, the algorithm attaches new triangles to the
mesh to close any mesh border to the outside. In other words, new edges and
facets that act as hole caps increase the Hausdorff distance between the original
mesh and the reconstructed mesh.

3.5.1 Mesh drifting

As shown in Fig. 3.17, the four competitor benchmarking algorithms suffer from
the mesh drifting problem, which translates itself into internal shortcuts (or
holes), external shortcuts, and components (separate parts). This problem oc‐
curs when two or more non‐adjacent regions of the surface get nearby to each
other. For example, in Fig. 3.17(a), we see the advancing front reconstruction
algorithm makes an internal shortcut or hole when the dolphin’s surface passes
a short distance from itself, as is the case of the hole through the left pectoral
fin. Additionally, the shortcut in the tail fin (or fluke) put it apart into two com‐
ponents. But, as suggested by triangulations in Fig. 3.17, implicit methods are
more prone to mesh drifting than simplicial methods. This drifting phenomenon
explains itself by the inflating (and blending) effect of implicit methods in ap‐
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proximating the input cloud’s points, making non‐adjacent, nearby mesh regions
even closer to each other. This fact agrees with the Hausdorff distance’s results
obtained in the previous section. In contrast, PCR Cocktail’s coplanarity crite‐
rion prevents mesh drifting effects during the reconstruction process, as shown
in Figs. 3.9 and 3.10.

(a) (b)

c) (d)

Figure 3.17: Mesh drifting issues: (a) dolphin’s meshing using advancing front
algorithm; (b) knot’s meshing using power crust algorithm; (c) loop’s meshing
using scale space algorithm; and (d) loop’s meshing using Poisson algorithm.

3.5.2 Trimming and rounding of sharp features

We observed that simplicial algorithms tend to trim sharp features, whereas
implicit algorithms tend to round them, as illustrated in Fig. 3.18. Regarding
PCR Cocktail, we can say it deals very well with creases and corners because
the triangulation grows from flat regions to sharp features due to applying the
coplanarity criterion. In fact, as illustrated in Figs. 3.9 and 3.10, where we see
the creases of duck’s wings and dolphin’s back fin (Fig. 3.9(a) and (d)), as well
as the corner of fish’s right fin (Fig. 3.10(i)), are correctly triangulated. Thus,
in principle, reconstructing sharp features of mechanical parts is also feasible.

3.5.3 Dihedral angle and internal angles bounds

Typically, mesh‐growing algorithms suffer from the problem of dihedral angle
bounds. Such algorithms impose minimum and maximum internal angles of each
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(a) (b)

(c) (d)

Figure 3.18: Sharp features issues: (a) dolphin’s meshing using advancing front
algorithm originates a total trimming of its fluke; (b) dolphin’s meshing using
power crust algorithm originates a partial trimming of its fluke; (c) Max Planck’s
meshing using scale space algorithm; and (d) double torus’s meshing using Pois‐
son algorithm.

new triangle attached to the mesh front. Moreover, such algorithms also set a
maximum dihedral angle between the new triangle and its corresponding trian‐
gle in the mesh front. This problem does not exist in our algorithm because PCR
Cocktail prioritizes attaching triangles with the lowest dihedral angle with mesh
front triangles; hence, the coplanarity criterium. Besides, the coplanarity and
regularity criteria ensure that our triangulation consists of triangles that tend to
be regular. Therefore, PCR Cocktail does not impose any bounds on triangles’
internal angles and the adjacent triangles’ dihedral angle.

3.6 Summary

We have introduced the PCR Cocktail algorithm, a surface mesh reconstruction
algorithm that belongs to interpolation methods. Our algorithm combines three
geometric properties: proximity, regularity, and coplanarity. These properties
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allow us to decide the next triangle to be attached to the growing mesh front.

PCR algorithm gives priority to smoother regions during mesh growing process,
which means lower curvature regions or even planar regions are triangulated
before higher curvature regions, as illustrated in Fig. 3.1. As a consequence of
the coplanarity criterion, the triangulation of sharp features takes place after
lower curvature regions. Another result of that priority is ridding of eventual
mesh drifting effects.

This algorithm constructs a tendentiously regular triangle mesh; that is, trian‐
gles tend to be equilateral. This quasi‐regular triangulation makes unnecessary
any regularization step after the mesh construction. The use of regularity cri‐
teria avoids imposing any bounds on the internal angles of triangles. Besides
combining regularity and coplanarity criteria, one does not need to use any di‐
hedral angle bounds between adjacent triangles.

The proximity criteria and that meshing priority given to flat regions make the
PCR Cocktail algorithm capable of successfully dealing with point clouds with
variable point density. Moreover, this algorithm neither pre‐determines a maxi‐
mum radius nor pre‐determines a minimum number of points for the point neigh‐
borhoods.

To the best of our knowledge, no other mesh growing algorithm reunites these
properties in an integrated manner. Even algorithms belonging to different cat‐
egories hardly enjoy these properties simultaneously.
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Chapter 4

Surface Reconstruction: CTC Algorithm

4.1 Introduction

This chapter proposes another algorithm to reconstruct a manifold mesh from
a point cloud, called Compatible Triangle Charts (CTC). This algorithm builds
upon the concept of the manifold star, already used in the PCR algorithm. But,
unlike PCR algorithm, the CTC algorithm determines a manifold star of triangles
(or triangle chart) for every cloud point, making such stars compatible with one
another, much like in the spirit of the compatible charts to build an atlas in
topology and differential geometry [Laf15]. Therefore, the CTC algorithm is
not a mesh growing algorithm because it does not grow the mesh from any mesh
front. Indeed, it is a new type of meshing algorithm, an atlas‐based surface
reconstruction algorithm.

CTC algorithm triangulates the point cloud without normal vectors, and the
vertices of the final mesh are only input cloud points. A curvedness criterion
guides the triangulation flow, giving priority to low curved charts (or more pla‐
nar charts). Note that each triangle chart is topologically equivalent to R2.
This priority‐based strategy is similar to the one used in the PCR algorithm, as it
avoids the shape drifting phenomenon and helps in dealing with sharp features.
This priority‐based strategy discards dihedral angle bounds between adjacent
triangles and does not impose bounds on the generated triangles’ internal an‐
gles. The manifoldness criterion is necessary for the chart compatibility stage
to ensure that the final triangle mesh corresponds to a manifold surface. Fur‐
thermore, the CTC method produces meshes whose triangles tend to be regular;
that is, there is no need for a regularization step after the mesh construction.

4.2 Background

Before proceeding any further, let us introduce a few fundamental concepts
to understand the CTC algorithm better. Those concepts have to do with the
manifoldness and curvedness of triangle charts.
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4.2.1 Manifoldness

Let us begin by classifying edges and triangles concerning manifoldness. Any
candidate triangle (and its bounding edges) of a chart must satisfy the manifold‐
ness criterion. A 2‐dimensional mesh is topologically equivalent to a 2‐manifold
if all its triangles meet the manifoldness condition. A mesh triangle is manifold
if and only if each of its points has a mesh neighborhood topologically equivalent
to the 2‐dimensional Euclidean space; the same applies to mesh edges.

(a) (b)

Figure 4.1: Triangle manifoldness: (a) the triangle ABC is manifold; (b) the
triangle ABC is not manifold.

Manifold edge: A manifold edge has precisely two incident triangles. For in‐
stance, in Fig. 4.1, the edge AC on the left‐hand side is manifold because it has
two adjacent triangles, whereas the edge AC on the left‐hand side has three
incident triangles so that it is not a manifold edge.

Manifold triangle: A triangle is manifold if its edges are all manifold. As shown
in Fig. 4.1, ABC on the left‐hand side is a manifold triangle because its edges
are all manifold. Interestingly, this also means that this triangle ABC belongs to
the triangle chart of each vertex, A, B, and C. However, the triangle ABC on the
right‐hand side is not manifold because the edge AC is not manifold.

Note that the manifoldness criterion is paramount to remove redundant triangles
incident on edges, as needed to comply with triangle charts’ compatibility. For
example, we must discard one of the triangles incident on the edge AC on the
right‐hand side in Fig. 4.1 to preserve the manifoldness condition.

4.2.2 Planarity degree of a triangle chart

Considering that surface reconstruction is performed prioritizing more planar
charts, we need to come across a planarity metric. In a way, planarity is the
antonym of curvedness because a more planar triangle chart means a less curved
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chart. We might also use the classical surface curvature measures (e.g., the
Gaussian curvature and the mean curvature) at a surface point or even their
discrete forms. However, often they are not indicative of the local shape of a
surface [KvD92].

A triangle star’s planarity is determined by the coplanarity degree of its adjacent
triangles. Thus, the supplementary angle (i.e., the one that adds up to 180◦) to
the dihedral angle has to be computed (see Fig. 4.2). In practice, one calculates
the cosine of the supplementary angle to evaluate the planarity degree. This
calculation is so because the cosine is a normalized function and the maximum
coplanarity also corresponds to the maximum cosine value of the supplementary
angle (i.e., 0◦). Therefore, we can define the planarity degree of a triangle star
or chart as the minimum cosine value of the supplementary angle for any two
adjacent triangles of such a star. For example, in Fig. 4.3, the triangle star on
the left‐hand side has a higher planarity degree than the star on the right‐hand
side.

Figure 4.2: Dihedral angle between two adjacent triangles and the supplemen‐
tary angle.

Figure 4.3: The maximum supplementary angle on the left‐hand side is less than
the one on the right‐hand side.

4.2.3 Planarity degree of a triangle neighborhood

Before proceeding any further, let us say that the triangle charts mentioned
above are not indeed triangle stars but vertex stars to speed up the algorithm
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and use less memory space. A vertex star has a central vertex and a sequence
of vertices around it; in other words, a vertex star is a triangle star without its
triangles, as its vertices remain.

The triangulation or meshing process starts effectively after building all the
stars. Therefore, we need to pick up which triangles will be attached to the tri‐
angle mesh. As seen further ahead, we will use a few criteria to select a triangle
and attach it to the mesh. Such criteria are the manifoldness and planarity of
each triangle and its neighbor triangles.

Let us then see the criterion concerning the planarity of the neighborhood of
each triangle. To better illustrate how to determine the planarity degree of
a triangle neighborhood, we first look at this problem’s 2‐dimensional setting.
So, the word “triangle” must be replaced by the word “edge”, and the expres‐
sion “triangle neighborhood of a triangle” gives place to “edge neighborhood
of an edge.” An edge neighborhood’s planarity in the 2‐dimensional setting is
determined using the inscribed angle in a circle and a half‐circle.

(a) (b)

(c)

Figure 4.4: Inscribed angle of a polygonal chain within the circle.
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In Fig. 4.4(a)‐(c), the edge AB and its adjacent edges AD and BE constitute an
edge chain. The straight lines supporting AD and BE meet at point P with the
angle c. Recall that the inscribed angle in a semicircle is exactly 90◦ (see angle
c in Fig. 4.4(b)). Also, the inscribed angle in an arc smaller than semicircle
is always greater than 90◦ (see angle c in Fig. 4.4(a)). Otherwise, the angle
inscribed in an arc bigger than a semicircle is always less than 90◦ (see angle c
in Fig. 4.4(c)). In these circumstances, the sum of the two external adjacent
angles, a and b, is supplementary to the inscribed angle. Consequently, if the
sum of the two external adjacent angles is 90◦ at maximum, then such edge
chain is laid in a half circle (Fig. 4.4(a) and (b)); otherwise, that edge chain is
laid in a circle (Fig. 4.4(c)). Thereby, the inscribed angle defined by adjacent
edges allows us to evaluate an edge chain’s local planarity.

Figure 4.5: Minimum planarity criterion: the sum of both supplementary adja‐
cent angles to the dihedral angles at edges AB and AC must be 90◦ in maximum.

Analogously, the planarity degree of each triangle depends on its three adjacent
triangles in the 3D space. For that purpose, we determine the supplementary
angle to the inscribed angle between two triangles that are adjacent to the ref‐
erence triangle, as illustrated in Fig. 4.5. Let us consider the reference triangle
ABC and two of its adjacent triangles at edges AB and AC. Thus, the sum of both
supplementary adjacent angles to the dihedral angles at edges AB and AC must
be 90◦ in maximum. Applying this criterion to each pair of adjacent triangles
around the reference triangle, it comes up with the following conjunction of
three conditions.
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The minimum planarity criterion: Given a manifold triangle and its three adja‐
cent triangles, and considering each pair of these adjacent triangles, the sum
of both supplementary angles to the dihedral angles must be 90◦ at maximum.
This fact leads to the conjunction of the following three conditions:

a+ b < 90◦ ∧ b+ c < 90◦ ∧ c+ a < 90◦ (4.1)

where a, b, and c correspond to the supplementary angles to the dihedral angles
at edges AB, AC and BC, respectively (Fig. 4.5).

As mentioned above, this conjunction given by Eq. 4.1 will be one of the cri‐
teria we will use to decide whether each candidate triangle will be part of the
reconstructed surface.

4.3 CTC Triangulation

The CTC algorithm essentially consists of the following main steps, which are
detailed in the next subsections.

1. Point cloud octree subdivision;

2. Find neighbor points for each point;

3. Build triangle stars;

4. Sort triangle stars by planarity degree;

5. Reconstruct the surface by attaching triangles to its mesh;

6. Fill in surface holes with triangles;

4.3.1 Point cloud octree subdivision

We use an octree as an acceleration data structure to determine each cloud
point’s neighborhood; that is, the points neighboring each point. The leading
idea here is to determine the triangle star of each point in a subsequent step.
After finding the bounding box enclosing the point cloud, one proceeds to its
octree subdivision. We do not use a regular division of the bounding box into
voxels (i.e., equally‐sized cubes) because the cloud points do not equally dis‐
tribute in the space; that is, the point cloud is not necessarily uniform in terms
of point density. The octree subdivision of a cell stops whenever the cell con‐
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tains a number of points below a pre‐defined threshold. In our experiments, we
have used 24 points for such a threshold. This threshold is large enough to en‐
sure that the leaf cells preserve surface connectivity from one cell to another,
avoiding as much as possible getting isolated leaf cells containing points.

4.3.2 Finding neighbor points for each point

After terminating the octree subdivision, the leaf cells contain all the cloud
points. Usually, the octree subdivision of the bounding box enclosing the cloud
points is static because each cube cell’s size remains unchanged. This fact im‐
plies that finding the neighbor points around each point must be performed
inside its leaf cell and adjacent leaf cells.

To reduce the number of neighbor points for each point (i.e., reference point),
we use the procedure illustrated in Fig. 4.6. First, we determine a local bound‐
ing box for the points inside its cell (i.e., reference cell), as well as a local
bounding box for the points inside each one of its adjacent cells (see Fig. 4.6(a)
and (c)). Next, for each cell, one computes the distance from the bounding
box barycenter to its closest corner (see d1, d2, and d3 in Fig. 4.6(a) and (c)),
enlarging then each bounding box up to a square box whose size doubles the
distance computed previously (see Fig. 4.6(b) and (d)). Finally, if any enlarged
bounding box intersects the enlarged bounding box of the reference (or current)
cell (Fig. 4.6(b)), its neighbor points remain as neighbor points of the reference
point; otherwise, they are discarded (Fig. 4.6(d)).

For example, in Fig. 4.6, the reference cell is C2, and any of its points is a ref‐
erence point. The cells C1 and C3 are adjacent cells. But, C3 will be discarded
as an adjacent cell of C2 because their enlarged boxes do not intersect. Con‐
sequently, the points of C3 do not belong to the set of neighbor points of C2.
In the end, any point inside the reference cell C2 has the same set of neighbor
points.

Note that the number of points neighboring a reference point is not pre‐defined.
Moreover, the set of neighboring points for all points inside a cell is always
the same. In a way, we can say that the local bounding boxes enlargement
strategy allows the algorithm to adapt to shape changes and non‐uniform point
distribution (or point density) of the point cloud. For example, in Fig. 4.6(a)‐
(f), points inside the leaf cells C1 and C2 are neighbor points, whereas points
inside the leaf cells, C2 and C3 cannot be considered as neighbors.
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(a) (b)

(c) (d)

Figure 4.6: The enlargement strategy of local bounding boxes: C2 is here the
reference cell, and C1 and C3 are two of its adjacent cells; BB1, BB2 and BB3

are local bounding boxes, while B1, B2 and B3 are the corresponding enlarged
bounding boxes; V1, V2 and V3 are the closest cell corners from the bounding
box centers; d1, d2 and d3 are the distances from the bounding box centers to
the closest cell corners; C1 and C2 remain adjacent cells, but not C2 and C3.

The effects of using the local bounding boxes enlargement strategy are particu‐
larly noticeable for the Duck’s point cloud depicted in Fig. 4.7, where straight‐
line segments connect neighbor points. Fig. 4.7(a) shows the result of applying
the local bounding boxes enlargement strategy, and Fig. 4.7(b) exhibits the re‐
sult of not using the local bounding boxes enlargement strategy. We see that
using the local bounding boxes’ enlargement strategy results in point neighbor‐
hoods that better approximate the surface shape.
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(a) (b)

Figure 4.7: Duck’s point neighborhoods: (a) applying the local bounding boxes
enlargement strategy; (b) not applying the local bounding boxes enlargement
strategy.

4.3.3 Building triangle stars

We build up the triangle star of each point from its set of neighbor points. For
that purpose, we use the method described in Section 3.3.1 of the previous
chapter. Recall that constructing a triangle star around a point (i.e., reference
point) is based on two main geometric criteria: proximity and regularity. A point
closer to the reference point has a higher probability of being picked up to form
a triangle than a distant point from the reference point. We use the regularity
criterion to resolve eventual ambiguities in selecting the next neighboring point
around the reference point.

Fig. 4.8 shows the union of triangle stars for each of three cloud points. These
stars cover each surface almost entirely. This fact is a consequence of building
each triangle star, which ensures its manifoldness. However, the manifoldness
of each star per se does not guarantee the manifoldness of the final mesh. For
that purpose, we need to introduce a few rules to distinguish ‘good’ triangles
from ‘bad’ triangles, discarding then those ‘bad’ triangles from the triangulation
induced by the triangle stars. Such rules are detailed further below.

4.3.4 Sorting triangle stars by planarity degree

Before the surface reconstruction step, we need to sort the triangle stars using
the planarity degree in increasing order (Section 4.2). That is, one sorts the stars
from the most planar to the less planar ones. Thus, one performs the surface
reconstruction prioritizing the most planar stars, as illustrated in Fig. 4.9, where
we observe that the surface reconstruction of a dolphin is being performed by
attaching triangles in the most planar regions first.

Then, for each star, we test each one of its triangles against a few conditions to
decide whether one attaches such a triangle to the surface mesh or not. Let us
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(a) Duck (b) Loop

(c) Dolphin

Figure 4.8: Combining smooth and manifold stars for all cloud points of three
models: (a) Ducks’s reconstructed mesh; (b) Loop’s reconstructed mesh; (c)
Dolphin’s reconstructed mesh.

Figure 4.9: Attaching triangles to the mesh representing a dolphin takes place
in most planar regions first.
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then describe this testing procedure.

4.3.5 Reconstructing the surface by attaching triangles to its mesh

Attaching a triangle to the mesh under construction requires that such a triangle
satisfies a few conditions simultaneously. These conditions are the following:

• (i) The triangle must be manifold in the reconstructed mesh (section 4.2);

• (ii) The minimum planarity criterion must be verified (Eq. (4.1));

• (iii) The attachment of the triangle into the mesh must be valid.

The first condition concerns a manifoldness criterion. It is necessary to bear in
mind that there are two moments in the attachment of a triangle to the final
mesh; they are the before and the after. One a priori manifold triangle turns
into one a posteriori manifold triangle. Therefore, we first iterate on the list of
triangle stars, only attaching manifold triangles to the mesh. Next, in a second
iteration on the list of triangle stars, we attach those a priori non‐manifold
triangles that turn into a posteriori manifold triangles. Note that if a triangle
is a priori non‐manifold, it can be even so attached to the mesh since it does
cause the appearance of a non‐manifold edge after attaching it to the mesh. In
other words, a triangle a priori classified as non‐manifold can be attached to
the mesh since it is a manifold triangle in the reconstructed mesh. Thus, we
must block any attempt of attaching a non‐manifold triangle to an edge with
two already attached triangles.

The second condition concerns the minimum planarity conjunction (Eq. (4.1)).
The attaching triangle must also satisfy this condition; otherwise, its attachment
to the mesh does not occur.

The third condition, say the validity condition, is necessary to check whether
the attaching triangle already belongs to the mesh or not. The attaching triangle
may already exist in the mesh because any triangle shares three stars, one star
per vertex. Thus, if a triangle already exists in the mesh, there is no need to
generate an identical triangle and attach it to the mesh.

Summing up, whenever all these three conditions are satisfied simultaneously,
one generates a new triangle, which is then attached to the mesh. At the end
of this stage, the stars and their triangles were all tested out. However, the
reconstructed surface may not be complete yet, as a few holes may exist, as
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shown in Fig. 4.10. In this case, we need a final step to fill in the gaps with new
triangles.

(a) Duck (b) Loop

(c) Dolphin

Figure 4.10: Reconstructed meshes after every stars and its triangles have been
tested. A few holes are left.

4.3.6 Filling in surface holes with triangles

At this point, it may happen that the mesh still has holes (Fig. 4.10). Each mesh
hole results from blocking a triangle from being attached to the mesh because,
as seen above, the triangle stars cover the entire surface. Thus, each blocked
triangle is subject to new scrutiny to make sure its attachment is feasible. At‐
taching a triangle must satisfy the following three conditions: manifoldness,
minimum planarity, and validity. Recall that the final mesh must be manifold;
that is, all the a posteriori triangle edges must be manifold.
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4.4 Experimental Results

4.4.1 Hardware and software setup

We implemented the CTC algorithm in C++ and GLUT 3.7 (Microsoft Visual Stu‐
dio 2017) on a desktop computer equipped with an Intel processor Core(TM)
i3‐4005U, 1.73 GHz, 6 GB RAM, running Windows 8.1. Furthermore, we used
MeshLab v1.3.3 (http://www.meshlab.net/) to evaluate the mesh reconstruc‐
tion quality of the benchmarking algorithms (including the CTC algorithm) through
the Hausdorff distance between original meshes and their corresponding recon‐
structed meshes.

4.4.2 Benchmarking surface reconstruction methods

In this section, we compare the CTC algorithm with other surface reconstruction
algorithms. These latter algorithms are those we used in the previous chapter,
including the PCR algorithm. More specifically, we used the Poisson surface
reconstruction algorithm due to Kazhdan et al. [KBH06]; the advancing front
meshing algorithm due to Cohen‐Steiner and Da [CSD04]; the scale‐space recon‐
struction algorithm due to Digne et al. [DMSL11]. The latter two comewith CGAL
(http://www.cgal.org). Furthermore, we used the power‐crust meshing algo‐
rithm due to Amenta et al. [ACK01a] (http://web.cs.ucdavis.edu/~amenta/
powercrust.html).

4.4.3 Testing mesh models

Our testing point cloud models were obtained from triangle meshes retrieved
from Princeton Shape Benchmark (http://shape.cs.princeton.edu/benchmark/),
3D Segmentation Benchmark (http://segeval.cs.princeton.edu/), tf3dm (http:
//tf3dm.com/), John Burkardt Home Page (https://people.sc.fsu.edu/~jburkardt/
data and MeshLab Samples (https://people.sc.fsu.edu/~jburkardt/data/meshlab/
meshlab.html), some of which are listed in Tables 4.1, 4.2 and 4.3. Such triangle
meshes form our ground‐truth dataset for benchmarking surface reconstruction
methods. Several mesh models are depicted in Figs. 4.12 and 4.13 after recon‐
struction through CTC algorithm.

4.4.4 Mesh reconstruction quality

The closer the reconstructed mesh is to the original mesh, the higher quality is
of such reconstruction. Hausdorff distance measures how far two subsets of the
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Table 4.1: Original and reconstructed meshes generated by CTC and PCR algo‐
rithms.

Model Label

Original Mesh CTC Mesh PCR Mesh

#Vertices #Triangles #Vertices #Triangles H #Vertices #Triangles H

1 Duck 710 1,416 710 1,414 3.062 710 1,414 4.639

2 Knot 1,280 2,560 1,280 2,560 0.281 1,280 2,560 0.380

3 Loop 1,440 2,880 1,440 2,880 1.441 1,440 2,880 2.691

4 Dolphin 1,867 3,694 1,867 3,724 4.413 1,867 3,734 4.413

5 Doubletorus 4,352 8,708 4,352 8,708 2.597 4,352 8,708 0.000

6 MaxPlanck 7,399 14,749 7,399 14,792 21.584 7,399 14,796 22.446

7 Egea 8,268 16,532 8,268 16,529 1,889 8,268 16,532 1.889

8 Pear 10,754 21,504 10,754 21,504 0.153 10,754 21,504 0.153

9 Fish 14,000 27,996 14,000 27,991 0,462 14,000 28,005 3.624

10 Horse 20,000 39,996 20,000 39,994 3.567 20,000 40,004 2.721

11 Armadillo 26,002 52,000 26,002 51,987 1.164 26,002 52.013 1.936

12 Bunny 34,834 69,451 34,834 69,657 15.240 34,834 69,663 16.010

Abbreviations:
H: Hausdorff distance

Table 4.2: Reconstructed meshes generated by advancing‐front and power‐crust
algorithms.

Model Label

Advancing Front Mesh PowerCrust Mesh

#Vertices #Triangles H #Vertices #Triangles H

1 Duck 710 1,416 3.098 6,642 13,279 7.705

2 Knot 1,280 2,560 0.281 7,744 15,492 23.791

3 Loop 1,440 2,874 7.502 14,368 28,613 14.869

4 Dolphin 1,867 3,658 23.400 16,009 32,006 3.614

5 Doubletorus 4,352 8,708 3.612 35,064 70,132 10.997

6 MaxPlanck 7,399 14,794 22.261 66,282 132,560 22.779

7 Egea 8,268 16,531 1.889 71,882 155,970 2.065

8 Pear 10,754 21,504 0.127 104,840 209,675 1.068

9 Fish 14,000 27,998 5.064 — — —

10 Horse 20,000 39,994 2.591 209,879 419,744 3.641

11 Armadillo 26,002 51,995 1.467 245,683 491,364 2.418

12 Bunny 34,834 69,656 16.253 349,013 698,011 17.382

Abbreviations:
H: Hausdorff distance

metrics space are from each other. Thus, we used the Hausdorff distance be‐
tween two surface meshes as our mesh reconstruction quality metric. Hausdorff
distance is defined as follows:

H(S, S ′) = max
(
max
xi∈S

δ(xi, S
′),max

xj∈S′
δ(xj, S)

)
(4.2)
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Table 4.3: Reconstructed meshes generated by scale‐space and Poisson algo‐
rithms.

Model Label

Scale‐Space Mesh Poisson Mesh

#Vertices #Triangles H #Vertices #Triangles H

1 Duck 710 1,988 27.355 1,489 2,974 27.746

2 Knot 1,280 4,356 29.430 2,490 5,004 34.903

3 Loop 1,440 4,498 32.077 2,223 4,454 38.958

4 Dolphin 1,867 5,436 25.066 3,281 6,562 24.008

5 Doubletorus 4,352 16,752 18.413 3,176 6,356 14.921

6 MaxPlanck 7,399 28,732 8.932 11,108 22,212 22.515

7 Egea 8,268 32,818 6.827 3,568 7,132 5.778

8 Pear 10,754 37,840 25.895 2,994 5,984 28.969

9 Fish 14,000 27,998 5.064 12,030 24,080 21.299

10 Horse 20,000 78,936 7.549 10,264 20,524 9.200

11 Armadillo 26,002 99,346 4.908 16,032 32,060 8.432

12 Bunny 34,834 138,050 4.470 12,927 25,850 16.998

Abbreviations:
H: Hausdorff distance
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Figure 4.11: Differences in the number of triangles relative to original meshes.

where S, S ′ denote the two surface meshes, the ground‐truth mesh and testing
mesh, with

δ(xi, S
′) = min

xj∈S′
d(xi,xj) and δ(xj, S) = min

xi∈S
d(xj,xi) (4.3)

where d(x,x′) is the Euclidean distance between points x and x′.

During the tests of the CTC algorithm, the MeshLab was used to compute the
Hausdorff distance. According to Eq. (4.2), Hausdorff distance applies to sets
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(a) Duck (b) Knot

(c) Loop (d) Dolphin

(e) Doubletorus (f) MaxPlanck

Figure 4.12: Some reconstructed surface meshes using the CTC algorithm.

of points. Therefore, the simplest way to calculate the distance between two
meshes is computing the Hausdorff distance considering only vertices. However,
such a distance would be zero because the vertices of CTC, PCR, Advancing
front, and scale‐space meshes are the same as those of the original mesh. We
also considered barycenters of edges and triangles in computing the Hausdorff
distance between meshes to overcome this problem.
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(g) Egea (h) Pear

(i) Fish (j) Horse

(k) Armadillo (l) Bunny

Figure 4.13: More reconstructed surface meshes using the CTC algorithm.

Looking at Tables 4.1, 4.2 and 4.3, we observe the following:

• Number of vertices. The number of vertices remains unchanged for CTC,
PCR, advancing front, and scale‐space algorithms, but not for Power crust
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and Poisson algorithms. Power crust meshing adds much more points into
the point cloud to get a uniform density and increase the density of points
(cf. [ACK01a]). Poisson algorithm produces a mesh of an implicit surface
that approximates the point cloud. Consequently, the number of vertices
(and their locations) varies relative to the original ones.

• Number of triangles. The number of triangles tends to remain unchanged
for interpolated methods like CTC, PCR, and advancing‐front methods (see
Table 4.1 and 4.2 ). This principle does not apply to the power‐crust al‐
gorithm because it adds many more points to the point cloud, producing
a mesh with much more triangles. On the other hand, Poisson and scale‐
space reconstruction algorithms generate implicit surfaces that approxi‐
mate the input point clouds; such surfaces get triangulated a posteriori.
In other words, implicit methods produce triangles whose number does not
necessarily match those of the original mesh, as shown in Table 4.3. Also,
looking at Fig. 4.11, we note the number of triangles of the original meshes
and corresponding reconstructed meshes is not the same, though the num‐
ber of triangles differs less in the CTC, PCR Cocktail, and advancing‐front
algorithms.

• Hausdorff distance. Recall that the Hausdorff distance is the maximum
of the minimum distance between two sets of points (see Eq. (4.2)). As
shown in Tables 4.1, 4.2 and 4.3, the Hausdorff distance between the origi‐
nal meshes and the meshes generated by the CTC or PCR algorithms are, in
general, smaller than for the benchmarking surface reconstruction meth‐
ods (cf. Fig. 4.14). CTC algorithm presents a smaller Hausdorff distance
for models 1, 3, and 9 than the PCR algorithm, whereas the PCR algorithm
presents a shorter Hausdorff distance for model 5 than the CTC algorithm.
Note that the two worst surface mesh reconstructions using CTC are those
concerning model 6 (Max Planck) and model 12 (Bunny). These results are
so because their original meshes are not closed meshes underneath. So, it
is necessary to attach new triangles to the mesh to fill its gaps. Therefore,
new edges and facets increase the Hausdorff distance between the orig‐
inal mesh and the reconstructed mesh. Even so, CTC or PCR algorithms
produce more reliable or high‐quality meshes than their competitors. The
meshes generated by the CTC algorithm can be observed in Figs. 4.12 and
4.13, while meshes generated by the PCR algorithm are shown in Figs. 3.9
and 3.10.

A glance at Fig. 4.14 allows us to observe that the interpolated methods (CTC,
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Figure 4.14: Hausdorff distance for reconstructed meshes, comparing CTC, PCR,
power‐crust, advancing‐front, scale‐space and Poisson algorithms.

PCR, advancing‐front, and power‐crust algorithms) generate meshes closer to
the original meshes than methods that approximate the input point cloud (Pois‐
son and Scale‐space algorithms). This fact explains by the interpolation ap‐
proach of simplicial methods rather than the approximating approach of im‐
plicit methods. Also, the rounding of sharp features results from the blending
of implicit methods’ kernel functions.

To consolidate the ranking of these algorithms, we carried out a more refined
analysis of results in terms of other Hausdorff metrics as follows:

• Hausdorff distance’s mean. This measure represents the mean distance
between two sets of points, that is,

dM =
1

n+m

( n∑
i=1

δ(xi, S
′) +

m∑
j=1

δ(xj, S)
)

(4.4)

where δ(xi, S
′) is the minimum distance from the point xi ∈ S to the point

set S ′ and δ(xj, S) is the minimum distance from the point xj ∈ S ′ to the
point set S, as given by Eq. (4.3).

Fig. 4.15 shows that interpolated algorithms outperform approximating
algorithms in terms of Hausdorff mean distance. Besides, CTC, PCR, and
advancing‐front algorithms rank first and are indistinguishable concerning
Hausdorff’s mean distance.

• Hausdorff distance’s root mean square (RMS). This metric measures the
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Figure 4.15: Hausdorff distance’s mean for reconstructed meshes, comparing
CTC, PCR, power‐crust, advancing‐front, scale‐space, and Poisson algorithms.

arithmetic mean of the squares of the set of minimum distances between
two point sets S and S ′, that is,

dRMS =

√√√√ 1

n+m

( n∑
i=1

(δ(xi, S ′))2 +
m∑
j=1

(δ(xj, S))2
)
. (4.5)

As shown in Fig. 4.16, we see that CTC and PCR rank first and produce
triangulations more similar to the original meshes than the Advancing Front
or Power crust algorithms, which agrees with the results shown in Fig. 4.14.
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Figure 4.16: Hausdorff distance’s root mean square for reconstructed meshes,
comparing CTC, PCR, power‐crust, advancing‐front, scale‐space, and Poisson
algorithms.
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• Hausdorff distance’s standard deviation. This metric allows us to assess
the dispersion of the minimum distances relative to Hausdorff’s mean dis‐
tance (see Eq. (4.4)), that is,

dSD =

√√√√ 1

n+m

( n∑
i=1

(δ(xi, S ′)− dM)2 +
m∑
j=1

(δ(xj, S)− dM)2
)
. (4.6)

As shown in Fig. 4.17, CTC and PCR have the lower dispersion of the dis‐
tances for all models.
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Figure 4.17: Hausdorff distance’s standard deviation for reconstructed meshes,
comparing CTC, PCR, power‐crust, advancing‐front, scale‐space, and Poisson
algorithms.

CTC and PCR algorithms produce the most similar triangulations to the original
meshes. In general, interpolated methods generate triangulations that tend to
be identical to the original meshes because of their interpolating approach. On
the other hand, the approximating approach behind implicit methods generates
triangulations that are further away from the original meshes, mainly when the
implicit surface results from local functions’ blending.

4.4.5 Surface reconstruction times

We have also benchmarked algorithms in terms of time performance. In Ta‐
ble 4.4, and also in Fig. 4.18, we present the mesh reconstruction times taken by
each algorithm. In addition to the reconstructed surfaces’ quality, we note CTC,
PCR, and advancing‐front algorithms are the fastest in the mesh reconstruction
process. As we observed in Tables 4.1 and 4.2, the power‐crust algorithm uses
a linear approximation method to increase the density of points of the point
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cloud, so we end up adding new vertices to the mesh. This fact explains the
slow down of the reconstruction times for this algorithm. The Poisson algorithm
is also expectedly slower than the CTC, PCR, and Advancing Front algorithms
because of its implicit approach, particularly for larger point clouds.

Table 4.4: Time for surface reconstruction by every algorithms.

Model Label

Original Mesh Time (seconds)

#Vertices #Triangles CTC PCR Adv Front Scl Space PCrust Poisson

1 Duck 710 1,416 0.013 0.024 0.051 0.045 1.259 0.863

2 Knot 1,280 2,560 0.021 0.041 0.067 0.072 2.172 1.358

3 Loop 1,440 2,880 0.025 0.049 0.086 0.093 3.200 1.285

4 Dolphin 1,867 3,694 0.049 0.075 0.124 0.134 2.809 2.379

5 Doubletorus 4,352 8,708 0.136 0.175 0.297 0.372 10.955 2.627

6 MaxPlanck 7,399 14,749 0.217 0.334 0.441 0.504 11.050 3.619

7 Egea 8,268 16,532 0.268 0.368 0.520 0.595 18.554 3.863

8 Pear 10,754 21,504 0.271 0.372 0.663 1.086 41.161 3.663

9 Fish 14,000 27,996 0.806 0.658 0.976 1.044 — 13.848

10 Horse 20,000 39,996 0.823 1.176 1.328 1.605 31.500 9.435

11 Armadillo 26,002 52,000 1.596 1.423 1.733 2.018 45.957 15.115

12 Bunny 34,834 69,451 2.297 2.180 2.240 2.635 71.754 14.774
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Figure 4.18: Times for reconstructed meshes using CTC, PCR, power‐crust,
advancing‐front, scale‐space, and Poisson algorithms.

4.5 Discussion

Our experiments have shown that surface reconstruction algorithms work well
for uniform or high‐density point clouds. On the contrary, non‐uniform or low‐
density point sampling is the source for a few problems found in surface re‐
construction algorithms such as mesh drifting, holes, incomplete meshing, and
trimming and rounding of sharp features.
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We also observed that the implicit algorithms are more sensitive to the sampling
non‐uniformity than simplicial methods. As shown in Figs. 4.19(c)‐(d), implicit
methods may misbehave when the input point cloud does not possess a uniform
distribution or high point density, as it results in incomplete or weird triangu‐
lations. Looking at Figs. 4.19(a)‐(b), we observe that the simplicial methods
are more robust than implicit methods because the meshing tends to be com‐
plete and less prone to unexpected triangulations. However, we noted that
the power‐crust algorithm could not reconstruct the fish model (Table 4.2) at
all, possibly because this algorithm imposes a predefined minimum distance be‐
tween points.

(a) (b)

(c) (d)

Figure 4.19: Non‐uniform point sampling issues: (a) Fish’s meshing using
advancing‐front algorithm originates a hole through the mesh; (b) Duck’s mesh‐
ing using power crust algorithm increases its volume as a result of more points
added to the initial point cloud; (c) incomplete Dolphin’s meshing using scale‐
space algorithm; and (d) weird Fish’s meshing using Poisson algorithm.

CTC algorithm successfully deals with sampling non‐uniformity mainly for two
reasons. First, the octree subdivision following the use of local bounding boxes
enlargement strategy, as detailed in subsection 4.3.2, it allows for every cloud
point a more suitable neighborhood taking into account the point distribution
(see Fig. 4.7). Secondly, the triangle stars all together ensure connectivity from
a point to those surrounding it, as shown in Fig. 4.8. Note that the CTC algorithm
does not pre‐determine the maximum number of closest points or pre‐determine
the maximum radius enclosing a given point’s neighborhood. The most suitable
values vary from one point cloud to another, particularly in a non‐uniform point
distribution.

Looking at the Hausdorff distance results shown in Fig. 4.14, we see the worst
surface mesh reconstructions using CTC are those concerning Max Planck and
Bunny models (see Tables 4.1‐4.3 and Figs. 4.12(f) and 4.13(l)). This fact is so
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because original meshes are not closed meshes underneath, so new triangles
must be attached to the mesh to close any mesh border to the outside. In
other words, new edges and facets increase the Hausdorff distance between
the original mesh and the reconstructed mesh.

4.5.1 Mesh drifting

As can be observed in Fig. 4.20, four reconstructed surfaces suffer from the
mesh drifting problem. This problem occurs when non‐adjacent regions, passing
to a short distance from each other, are wrongly triangulated together, making
shortcuts or separate parts. In Fig. 4.20(a), the advancing‐front algorithm made
a hole due to an internal shortcut at the left pectoral fin. Besides, a separate
part appeared at the tail fin. Looking at Fig. 4.20(b), we see that the Power
Crust algorithm built an external shortcut that is not part of the knot surface.

As suggested by the triangulations shown in Figs. 4.20(c) and (d), implicit meth‐
ods have more tendency to the drifting phenomena than simplicial methods.
The mesh drifting effects of implicit methods can be explained by the inflat‐
ing caused by the blending functions used in the approximation to the points of
the input cloud, making non‐adjacent nearby regions even closer to each other.
This fact is in line with the Hausdorff distance results presented in the previous
section.

In the CTC algorithm, we combine the priority given to triangle stars (sorting
them by smoothness degree) and the minimum planarity conjunction (Eq. 4.1)
applied to candidate triangles. This combination aims to select which triangles
will be attached to the mesh, preventing at the same time mesh drifting effects
during the reconstruction process, as shown in Figs. 4.12 and 4.13.

4.5.2 Trimming and rounding of sharp features

As illustrated in Fig. 4.21(c)‐(d), implicit algorithms tend to round sharp fea‐
tures, whereas simplicial algorithms tend to trim sharp features, Figs. 4.21(a)‐
(b). Regarding the CTC algorithm (see Figs. 4.12 and 4.13), and considering the
resulting triangulations for the same input point sets, we see that there are no
rounding or trimming effects. This fact is so because the CTC triangulation gives
priority to more planar regions. Finally, there are no rounding effects because
CTC is an interpolating method; thus, we do not add new mesh points.
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(a) (b)

c) (d)

Figure 4.20: Mesh drifting issues: (a) Dolphin’s meshing using advancing front
algorithm; (b) Knot’s meshing using power crust algorithm; (c) Loop’s meshing
using scale space algorithm; and (d) Loop’s meshing using Poisson algorithm.

4.5.3 Dihedral angle and internal angles bounds

The problem of imposing angle bounds in mesh growing algorithms is general‐
ized. These algorithms pre‐determine an internal angle minimum and maximum
for each new triangle attached to the mesh front. Moreover, such algorithms
also pre‐determine a maximum dihedral angle between the new triangle and its
adjacent triangle in the mesh front. In the CTC algorithm, this problem does not
exist due to the regularity function Eq. (3.2) that is applied to build the stars of
triangles. Thus, there is no need to impose any bounds on the internal angles
of triangles. The CTC algorithm does not set bounds to any dihedral angle be‐
tween adjacent triangles because one carries out the triangulation, prioritizing
smoother stars. Then, one sorts such stars by smoothness degree and applying
the smoothness conjunction Eq. (4.1). Hence, the triangulation of smoother
regions comes first.

4.6 Summary

The CTC algorithm is a surface mesh reconstruction algorithm that belongs to the
family of interpolation methods. We do not use normal vectors in this algorithm.
It builds upon triangle stars that cover the whole surface, providing a priori a set
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(a) (b)

(c) (d)

Figure 4.21: Sharp features issues: (a) Dolphin’s meshing using advancing front
algorithm originates a total trimming of its fluke; (b) Dolphin’s meshing using
power crust algorithm originates a partial trimming of its fluke; (c) Max Planck’s
meshing using scale space algorithm; and (d) Double Torus’s meshing using Pois‐
son algorithm.

of candidate triangles; most of them will belong to the reconstructed surface.
The more planar stars are processed first, as well as their triangles. Under some
rules related to manifoldness and planarity, one tests those triangles to decide
which ones will be attached to the final mesh.

As a consequence of applying a planarity criterion, the triangulation gives pri‐
ority to low curvature regions or even planar regions, as can be observed in
Fig. 4.9. Therefore, the triangulation of sharp features comes after low curva‐
ture regions, avoiding eventual mesh drifting effects. The CTC algorithm copes
with non‐uniform point sampling and does not impose dihedral angle bounds be‐
tween adjacent triangles. Moreover, the regularity function used to construct
the triangle stars makes the CTC algorithm generate a quasi‐regular triangle
mesh.

Finally, the enlarged local bounding box strategy applied to each leaf octree
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cell’s points makes it unnecessary to set a maximum radius or a minimum number
of neighbor points around each point. That is, the CTC algorithm copes with an
eventual, non‐uniform distribution of cloud points.
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Chapter 5

Surface Reconstruction: The LIS Algorithm

5.1 Introduction

We here introduce a new reconstruction surface algorithm, called the Linear
Implicit Surface (LIS) algorithm. Unlike most implicit surface reconstruction al‐
gorithms —see, for example, Ohtake et al.’ s algorithm [OBA+03], which builds
upon multilevel partition‐of‐unit (MPUs)—, the LIS algorithm does not make use
of an approximation approach. LIS generates an implicit surface that interpo‐
lates the input cloud points.

The MPU‐based algorithm, due to Othake et al., uses a local quadratic function
that fits the data points inside each subdomain (i.e., a leaf cell of an octree).
The global fitting function is the result of combining local functions weighted by
partition functions. The weighting functions limit the influence range of each
local function into the resulting global function. Each weighting function is cen‐
tered at the subdomain’s barycenter (i.e., the center of the octree cell) and has
spherical support of radius that overlaps the subdomain boundaries. Therefore,
the weighting functions influence the local functions in the resulting global func‐
tion. However, the MPU‐based algorithm does not consider how one distributes
the points inside each subdomain; in other words, one does not consider the
surface shape inside each subdomain. That is, the barycenter of a subdomain
may not represent the point subset inside such a subdomain.

On the contrary, the LIS algorithm considers a local linear function (and a weight‐
ing function) centered at each cloud point. Each point is the center of a subdo‐
main defined by a manifold chart (whose triangulation would be a triangle star,
as seen in Section 3.3.1). The normal vector at each point represents each local
linear function and, consequently, the tangent plane at each point. Moreover,
the weighting function at each point has support with radius given by its star’s
mean radius. The global function representing the final reconstructed surface
stems from the weighted blending of local linear functions, one function per
point.
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5.2 Background

We assume that the point cloud includes the input points and their normal vec‐
tors to the surface. So, we can define a local linear implicit function in R3

at each point taking in consideration the its normal vector. Thus, considering
the point pi = (xi, yi, zi) with normal vector n = (A,B,C), the local linear im‐
plicit function represents the tangent plane at such a point, and is given by the
following expression:

fi(x, y, z) = Axi +Byi + Czi +D = 0 (5.1)

where the coefficient D is given by,

D = −(Axi +Byi + Czi) (5.2)

Weighting functions determine the influence of those local functions in the
global function. A weighting function’s support determines how much impact its
corresponding local function has on the global function. Hence, themean radius
of the star around each point determines the radius of the spherical support of
its weighting function (see Fig. 5.1).

Figure 5.1: The center c and the mean radius R of a point star.

Therefore, given the set of k points pj (j = 1, · · · , k) that represents the star
around a point c, the mean radius R of that star is given by the following ex‐
pression:

R =
k∑

j=1

∥ pj − c ∥
k

(5.3)
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5.3 The LIS Algorithm

Given an input point cloud with normal vectors, the LIS algorithm consists of the
following main steps:

1. Construct manifold stars;

2. Determine local functions;

3. Determine weighting functions;

4. Determine global function;

5. Make marching cubes triangulation;

These steps are detailed in the next subsections.

5.3.1 Building manifold stars

Recall that each star defines a subdomain whose center is a cloud point. There‐
fore, the first step of this algorithm corresponds to perform the same three
initial steps of the CTC algorithm (see Sections 4.3.1, 4.3.2 and 4.3.3). They
are: (i) make point cloud octree subdivision; (ii) find neighbor points for each
point (using the enlargement strategy for local bounding boxes, one per leaf oc‐
tree cell); and (iii) finally construct the triangle stars. In practice, a sequence
of points around a cloud point represents its triangle star.

5.3.2 The local functions

The set of normal vectors associated with the point cloud, one per sample point,
defines the tangent space on the surface. Figure 5.2 shows outward normal
vectors for Duck and Dolphin point clouds.

Let us assume that a point cloud consists of N sample points. As mentioned in
Section 5.2, the local functions represent tangent planes at the cloud points.
That is, given the i‐th sample point pi = (xi, yi, zi) with normal vector ni =

(Ai, Bi, Ci), its local linear function is given by

fi(pi) = fi(xi, yi, zi) = Aixi +Biyi + Cizi +Di (5.4)

with i = 1, · · · , N.
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(a)

(b)

Figure 5.2: Normal vectors at sample points for Duck (a) and Dolphin (b).

5.3.3 The weighting functions

The weighting function limits the influence of each local function in the global
function. The weighting function is a nonnegative function centered at each
point, being its support determined by the mean radius of the point’s star. Be‐
sides, we need to normalize the weighting function and make it decay quadrat‐
ically to zero. Thus, the weighting function varies inversely to the mean star
radius raised to 2.

So, considering the star of the i‐th sample point pi = (xi, yi, zi) has mean radius
Ri, the weighting function Wi(p) is given by

Wi(p) =


Ri

2−∥p−pi∥2

Ri
2 , ∥ p− pi ∥≤ Ri

0, ∥ p− pi ∥> Ri

(5.5)

where p = (x, y, z) is an arbitrary point, and i = 1, · · · , N, with N denoting the
total number of cloud points.
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5.3.4 The global function

The resulting global function F (p) is weighted blending of local functions f(pi),
with i = 1, · · · , N, though it is normalized by the weighting functions as follows:

F (p) =

∑N
i=1 Wi(p)fi(p)∑N

i=1 Wi(p)
(5.6)

where p = (x, y, z) is an arbitrary point, and N denotes the total number of
cloud points.

This global function built from linear local shape functions represents the recon‐
structed surface, here called linear implicit surface. Its linearity comes from
the discrete tangent space induced by the point cloud. To triangulate the linear
implicit surface, we can use any triangulation algorithm commonly found in the
literature for implicit surfaces, including the marching cubes (MC) algorithm due
to Lorensen and Cline [LC87].

5.3.5 Marching cubes triangulation

We used a marching cubes algorithm to triangulate the reconstructed surface
through the LIS algorithm ([NY06]). An essential issue in implementing this MC
algorithm is the size of each cube, also called step size. The cube size must vary
from one point cloud to another; otherwise, the implicit surface triangulation
may present holes. This issue is critical in the presence of non‐uniform point
sampling. Furthermore, it is necessary to bear in mind that the surface results
from blending several local functions, with each local function support limited
by its corresponding weighting function. Therefore, the marching cube step size
depends on the input dataset of cloud points. Here, we use a marching cube
step size equal to the minimum influence radius among all local functions.

5.4 Experimental Results

5.4.1 Hardware and software setup

We implemented the LIS algorithm in C++ and GLUT 3.7 (Microsoft Visual Stu‐
dio 2017) on a desktop computer equipped with an Intel processor Core(TM)
i3‐4005U, 1.73 GHz, 6 GB RAM, running Windows 8.1. Furthermore, we used
MeshLab v1.3.3 (http://www.meshlab.net/) to evaluate the mesh reconstruc‐
tion quality of the benchmarking algorithms (including the LIS algorithm) through

91

http://www.meshlab.net/


Surface Reconstruction From 3D Point Clouds

the Hausdorff distance between original meshes and their corresponding recon‐
structed meshes.

5.4.2 Benchmarking surface reconstruction methods

In this section, we compare the LIS implicit surface reconstruction algorithm to
other methods. Two of them are PCR and CTC algorithms we have implemented
and presented in the previous two chapters. In addition to those, we used four
other methods for benchmarking. The Poisson surface reconstruction algorithm
due to Kazhdan et al. [KBH06], the advancing‐front meshing algorithm due to
Cohen‐Steiner and Da [CSD04], and the scale‐space reconstruction algorithm
due to Digne et al. [DMSL11] which are embed in CGAL (http://www.cgal.org).
The last method is the Power Crust meshing algorithm due to Amenta et al.
[ACK01a] (http://web.cs.ucdavis.edu/~amenta/powercrust.html).

5.4.3 Testing mesh models

Our testing point cloud models were obtained from triangle meshes retrieved
from Princeton Shape Benchmark (http://shape.cs.princeton.edu/benchmark/),
3D Segmentation Benchmark (http://segeval.cs.princeton.edu/), tf3dm (http:
//tf3dm.com/), John Burkardt Home Page (https://people.sc.fsu.edu/~jburkardt/
data and MeshLab Samples (https://people.sc.fsu.edu/~jburkardt/data/meshlab/
meshlab.html), some of which are listed in Tables 5.1 and 5.2. Such triangle
meshes form our ground‐truth dataset for benchmarking surface reconstruction
methods. Several mesh models are depicted in Figs. 5.3 and 5.4 after recon‐
struction through LIS algorithm.

Table 5.1: Original meshes and reconstructed meshes generated by LIS, CTC and
PCR algorithms.

Model Label

Original Mesh LIS Mesh CTC Mesh PCR Mesh

#Vertices #Triangles #Triangles H #Triangles H #Triangles H

1 Duck 710 1,416 31,724 8.087 1,414 3.062 1,414 4.639

2 Knot 1,280 2,560 18,516 5.712 2,560 0.281 2,560 0.380

3 Loop 1,440 2,880 27,292 5.845 2,880 1.441 2,880 2.691

4 Dolphin 1,867 3,694 128,022 4.792 3,724 4.413 3,734 4.413

5 Doubletorus 4,352 8,708 17,536 3.451 8,708 2.597 8,708 0.000

6 MaxPlanck 7,399 14,749 135,887 1.495 14,792 21.584 14,796 22.446

7 Egea 8,268 16,532 121,867 1.868 16,529 1,889 16,532 1.889

8 Pear 10,754 21,504 224,913 0.795 21,504 0.153 21,504 0.153

9 Fish 14,000 27,996 208,575 2.268 27,991 0,462 28,005 3.624

Abbreviations:
H: Hausdorff distance
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Table 5.2: Reconstructed meshes generated by advancing‐front, power‐crust,
scale‐space, and Poisson algorithms.

Model Label

Advancing Front Mesh PowerCrust Mesh Scale‐Space Mesh Poisson Mesh

#Vertices #Triangles #Triangles H #Triangles H #Triangles H

1 Duck 1,416 3.098 13,279 7.705 1,988 27.355 2,974 27.746

2 Knot 2,560 0.281 15,492 23.791 4,356 29.430 2,490 34.903

3 Loop 2,874 7.502 28,613 14.869 4,498 32.077 4,454 38.958

4 Dolphin 3,658 23.400 32,006 3.614 5,436 25.066 6,562 24.008

5 Doubletorus 8,708 3.612 70,132 10.997 16,752 18.413 6,356 14.921

6 MaxPlanck 14,794 22.261 132,560 22.779 28,732 8.932 22,212 22.515

7 Egea 16,531 1.889 155,970 2.065 32,818 6.827 7,132 5.778

8 Pear 21,504 0.127 209,675 1.068 37,840 25.895 5,984 28.969

9 Fish 27,998 5.064 — — 27,998 5.064 24,080 21.299

Abbreviations:
H: Hausdorff distance

5.4.4 Mesh reconstruction quality

The higher quality of the reconstructed mesh, the closer of the original mesh is
to such reconstruction. Hausdorff distance measures how far two subsets of the
metrics space are from each other. Thus, we used the Hausdorff distance be‐
tween two surface meshes as our mesh reconstruction quality metric. Hausdorff
distance is defined as follows:

H(S, S ′) = max
(
max
xi∈S

δ(xi, S
′),max

xj∈S′
δ(xj, S)

)
(5.7)

where S, S ′ denote the two surface meshes, the ground‐truth mesh and testing
mesh, with

δ(xi, S
′) = min

xj∈S′
d(xi,xj) and δ(xj, S) = min

xi∈S
d(xj,xi) (5.8)

where d(x,x′) is the Euclidean distance between points x and x′.

The MeshLab was used to compute the Hausdorff distance during the tests of
the LIS algorithm. According to Eq. (5.7), Hausdorff distance applies to sets
of points. Therefore, we use the Hausdorff distance to determine the distance
between two meshes but considering only vertices. However, doing so for the
CTC, PCR, advancing‐front, and scale‐space meshes, the distance would be zero
because those meshes’ vertices are the same as the ones of the original mesh.
We considered the barycenters of edges and triangles in computing the Hausdorff
distance between meshes to overcome the previous problem.

Looking at Tables 5.1 and 5.2 we observe the following:
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(a) Duck (b) Knot

(c) Loop (d) Dolphin

(e) Doubletorus

Figure 5.3: Reconstructed surface meshes using the LIS algorithm.

• Number of triangles. The number of triangles in the case of the LIS algo‐
rithm is much higher than the original meshes due to the Marching cubes
triangulation. In general, the same happens when such a comparison to
any other algorithm takes place. Concerning competing algorithms, the
number of triangles tends to remain unchanged for interpolated methods
like CTC, PCR, and advancing‐front methods (see Table 5.1 and 5.2 ). This
fact is not visible in the power‐crust algorithm because one adds many
more points to the point cloud, producing a mesh with many more trian‐
gles. On the other hand, Poisson and scale‐space reconstruction methods
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(a) MaxPlanck (b) Egea

(c) Pear (d) Fish

Figure 5.4: More reconstructed surface meshes using the LIS algorithm.

generate implicit surfaces that approximate the input point cloud so that
such surfaces are a posteriori triangulated. In other words, implicit meth‐
ods produce triangles whose number does not necessarily match those of
the original mesh, as shown in Table 5.2.

• Hausdorff distance. Recall that the Hausdorff distance is the maximum
of the minimum distance between two sets of points (see Eq. (5.7)). As
shown in Tables 5.1 and 5.2, the Hausdorff distance between the original
meshes and the meshes generated by the LIS, CTC, and PCR algorithms
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are, in general, smaller than for the benchmarking surface reconstruction
methods (cf. Fig. 5.5). Notwithstanding that the LIS algorithm is an im‐
plicit surface method, it performs similarly to CTC and PCR algorithms but
in a more consistent manner because it does not depend on the object’s
shape underlying the point cloud. To grasp this idea better, note that LIS
has the smallest Hausdorff distance for model 6 (Max Planck) because it
can reconstruct that model keeping the underneath opened, such as in the
original mesh. By comparing LIS with reconstruction methods that produce
implicit surfaces, such as Poisson and scale‐space algorithms, we see that
LIS presents much lower Hausdorff distance values (Fig. 5.5). The meshes
generated by the LIS, CTC or PCR algorithms can be observed in Figs. 5.3
and 5.4 for the first, 4.12 and 4.13 for the second, and in Figs. 3.9 and
3.10 for the last.
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Figure 5.5: Hausdorff distance for reconstructed meshes, comparing LIS, CTC,
PCR, power‐crust, advancing‐front, scale‐space, and Poisson algorithms.

Looking at Fig. 5.5, globally, we observe, the interpolated methods (CTC, PCR,
advancing‐front, and power‐crust algorithms) generate meshes closer to the
original meshes than methods that approximate the input point cloud (Pois‐
son and scale‐space algorithms). Also, the rounding of sharp features is due
to the blending of kernel functions of implicit methods. In turn, the LIS im‐
plicit method generates meshes close to the original meshes, in line with the
interpolated methods and even better than advancing‐front and power‐crust al‐
gorithms. We explain this fact considering that LIS uses local linear functions
that interpolate sampling cloud points and variable radii of influence for each
one.

To make sure the ranking of these algorithms, we carried out a more refined
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analysis of results in terms of other Hausdorff metrics as follows:

• Hausdorff distance’s mean. This measure represents the mean distance
between two sets of points, that is,

dM =
1

n+m

( n∑
i=1

δ(xi, S
′) +

m∑
j=1

δ(xj, S)
)

(5.9)

where δ(xi, S
′) is the minimum distance from the point xi ∈ S to the point

set S ′ and δ(xj, S) is the minimum distance from the point xj ∈ S ′ to the
point set S, as given by Eq. (5.8).

In Fig. 5.6, in terms of Hausdorff mean distance, we observe that LIS (im‐
plicit method), CTC, PCR, and advancing‐front (interpolation algorithms)
outperform approximating algorithms. Besides, LIS, CTC, PCR, and advancing‐
front algorithms are indistinguishable concerning Hausdorff’s mean dis‐
tance for most models.
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Figure 5.6: Hausdorff distance’s mean for reconstructed meshes, comparing LIS,
CTC, PCR, power‐crust, advancing‐front, scale‐space, and Poisson algorithms.

• Hausdorff distance’s root mean square (RMS). This metric measures the
arithmetic mean of the squares of the set of minimum distances between
two point sets S and S ′, that is,

dRMS =

√√√√ 1

n+m

( n∑
i=1

(δ(xi, S ′))2 +
m∑
j=1

(δ(xj, S))2
)
. (5.10)

As shown in Fig. 5.7, LIS, CTC, PCR, advancing‐front, and power‐crust al‐
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gorithms produce triangulations more similar to the original meshes, which
agrees with the results shown in Fig. 5.6, although CTC and PCR algorithms
rank first. However, concerning the LIS algorithm, the slightly different
triangulations relative to the originals were verified for those models with
lower density points.
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Figure 5.7: Hausdorff distance’s root mean square for reconstructed meshes,
comparing LIS, CTC, PCR, power‐crust, advancing‐front, scale‐space, and Pois‐
son algorithms.

• Hausdorff distance’s standard deviation. This metric allows us to the dis‐
persion of the minimum distances in relation to the Hausdorff’s mean dis‐
tance (see Eq. (5.9)), that is,

dSD =

√√√√ 1

n+m

( n∑
i=1

(δ(xi, S ′)− dM)2 +
m∑
j=1

(δ(xj, S)− dM)2
)
. (5.11)

As shown in Fig. 5.8, CTC and PCR have the lower dispersion of the dis‐
tances considering all models. In general, the LIS algorithm has a slightly
higher dispersion than CTC and PCR. However, the LIS algorithm has lower
dispersion than CTC considering model 6 because LIS keeps the underneath
hole in the reconstructed mesh like the original mesh.

In general, interpolated methods produce triangulations that tend to be sim‐
ilar to the original meshes because of their interpolating approach. On the
other hand, the approximating approach behind implicit methods generates tri‐
angulations that are further away from the original meshes, mainly when the
implicit surface results from local functions’ blending. Although LIS is an im‐
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Figure 5.8: Hausdorff distance’s standard deviation for reconstructed meshes,
comparing LIS, CTC, PCR, power‐crust, advancing‐front, scale‐space, and Pois‐
son algorithms.

plicit method, it can reconstruct meshes very similar to the original meshes in
line with the interpolation methods. CTC and PCR algorithms produce the most
similar triangulations to the original meshes. However, for most models, LIS
performs like those competitors.

5.5 Discussion

A glance at our experiments shows us that, in general, surface reconstruction
algorithms work well for uniform or high‐density point clouds. However, when
the point cloud presents non‐uniform, low‐density point sampling, it rather dif‐
ficult to come up with a reconstruction surface algorithm capable of dealing
with all the following issues: mesh drifting, holes, and incomplete meshing, as
well as trimming and rounding of sharp features.

Also, we see that the simplicial methods generate more robust triangulations
than implicit methods (see Fig. 5.9(a)‐(b)). This fact is so because simpli‐
cial methods interpolate, rather than approximate, the point cloud. However,
the power‐crust algorithm was not capable of triangulating the fish model (Ta‐
ble 5.2) correctly, possibly because it imposes a predefined minimum distance
between points. Also, implicit algorithms are more sensitive than simplicial
methods to the presence of non‐uniform sampling (Figs. 5.9(c)‐(d)), resulting in
incomplete or weird triangulations.
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(a) (b)

(c) (d)

Figure 5.9: Non‐uniform point sampling issues: (a) Fish’s meshing using
advancing‐front algorithm originates an hole through the mesh; (b) Duck’s mesh‐
ing using power‐crust algorithm increases its volume as a result of more points
added to the initial point cloud; (c) incomplete Dolphin’s meshing using scale‐
space algorithm; and (d) weird Fish’s meshing using Poisson algorithm.

On the contrary, the LIS algorithm successfully deals with non‐uniform point
clouds. The following reasons can explain this fact. First, the stars are not so
sensitive to the point distribution of the point cloud because the triangle stars
cover the whole surface, ensuring the connectivity from each point to its neigh‐
bors surrounding it. Second, LIS takes advantage of an interpolation approach
so that each local function (the tangent plane) interpolates its corresponding
sample point. Besides, its spherical‐support weighting function is centered at
each point spreading its influence up to its star’s mean radius so that the local
functions altogether end up covering the entire surface.

5.5.1 Mesh drifting

Figure 5.10 shows the mesh drifting effects on the triangulation generated by
other reconstructed surfaces other than LIS. This problem occurs when non‐
adjacent regions come close to each other, originating triangle shortcuts or
even separate parts. In Fig. 5.10(a), the advancing‐front algorithm produced
a hole due to a shortcut through the left pectoral fin. Furthermore, a small
part of the tail fin appears now separate from the triangulation. In Fig. 5.10(b),
the Power Crust reconstruction also produced a shortcut between two different
knot surface locations. Even so, implicit methods are more sensitive to drifting
phenomena than simplicial methods, as illustrated in Figs. 5.10(c) and (d). This
sensitivity stems from the fact that most blending functions approximate, rather
than interpolate, the cloud points, increasing the probability of non‐adjacent
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nearby regions touching each other. This fact agrees with the Hausdorff distance
results put forward in the previous section.

(a) (b)

c) (d)

Figure 5.10: Mesh drifting issues: (a) Dolphin’s meshing using advancing‐front
algorithm; (b) Knot’s meshing using power‐crust algorithm; (c) Loop’s meshing
using scale‐space algorithm; and (d) Loop’s meshing using Poisson algorithm.

Despite its implicit nature, the LIS algorithm does not suffer from drifting ef‐
fects because it builds upon an interpolation approach (see Figures 5.3 and 5.4).
That is, the linear implicit surface interpolates the cloud points. In a way, this
is equivalent to using a planarity condition because the local shape functions
represent tangent planes at cloud points. The quality of the LIS mesh agrees
with the Hausdorff distance results presented in the previous section.

5.5.2 Trimming and rounding of sharp features

As known, implicit methods tend to round sharp features, while simplicial al‐
gorithms tend to trim sharp features, as illustrated in Figs. 5.11(c)‐(d) and
Figs. 5.11(a)‐(b), respectively.

Regarding the LIS algorithm, the resulting triangulations do not suffer from
rounding effects on sharp features (see Figs. 5.3(e) and 5.4(f)), mainly because
LIS uses local linear functions interpolating all sample points. Besides, the lo‐
cal function’s radius centered at each sample point limits its influence on each
point’s neighborhood.
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(a) (b)

(c) (d)

Figure 5.11: Sharp features issues: (a) Dolphin’s meshing using advancing‐front
algorithm originates a total trimming of its fluke; (b) Dolphin’s meshing using
power‐crust algorithm originates a partial trimming of its fluke; (c) Max Planck’s
meshing using scale‐space algorithm; and (d) Double Torus’ meshing using Pois‐
son algorithm.

LIS does not cause trimming effects on sharp features either. However, the
Dolphin’s reconstructed mesh through the LIS algorithm (Fig. 5.3(d)) presents a
few extra and divergent triangles on its side fin and back fin. The over‐influence
of local functions may explain this fact through a few marching cubes. A possible
way to solve this issue is to use oblate spherical weighted functions rather than
spherical weighted functions.

5.6 Summary

We have introduced a new implicit method to reconstruct surfaces from point
clouds, LIS (Linear Implicit Surface) algorithm. Its global function results from
the weighted blending of the local functions. We use the Marching Cubes algo‐
rithm to triangulate the resulting implicit surface, but we might use any other
triangulation technique for implicit surfaces.
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This LIS algorithm behaves similarly to the interpolation methods because of
the interpolating tangent space of the surface. Indeed, concerning the mesh
quality, the Hausdorff measurement results presented in Section 5.4 show us
that LIS compares to the interpolation algorithms. That is, LIS produces trian‐
gle meshes quite similar to the original meshes. Furthermore, LIS successfully
deals with non‐uniform point density or sampling, avoiding mesh drifting effects
simultaneously. Interestingly, we did not observe the rounding effects that are
typical in implicit methods.
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Chapter 6

Conclusions and Future Work

Surface reconstruction from a point cloud through interpolation methods is the
focus of this thesis. This chapter presents the main conclusions that resulted
from the research work described in this thesis. Besides, this chapter puts for‐
ward some hints for future work.

6.1 Revisited Research Work

Looking back to work done throughout the doctoral studies, we identify three
main milestones:

• PCR algorithm: PCR algorithm builds upon three geometric criteria: prox‐
imity, coplanarity, and regularity. PCR triangulation gives priority to the
most coplanar or lower curvature regions, making dihedral angle bounds
unnecessary. It also avoids shape drifting. Moreover, the algorithm is less
sensitive to non‐uniform point density. In turn, the innovative regularity
function allows producing meshes with triangles that tend to be regular,
making it unnecessary a regularization step after mesh reconstruction.

• CTC algorithm: Building stars of compatible manifold triangles around
each cloud point is the leading idea of this algorithm. The construction
of each star obeys the criteria of proximity, coplanarity, and regularity.
However, when it comes to matching triangle stars, the manifoldness is the
main criterion to make them compatible. This strategy makes this algo‐
rithm different from any other simplicial algorithm. It is the first algorithm
to take advantage of the atlas of charts, where each chart represents a
triangle star.

• LIS algorithm: LIS is an interpolating implicit algorithm in line with other
methods based on RBFs (Radial Basis Functions) [GVJ+09]. However, the
LIS algorithm than RBF‐based algorithms because it does use time‐consum‐
ing matrix computations. Also, unlike MPU‐based algorithms, [OBA+03],
LIS does not use each octree leaf subdomain’s center to approximate the
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surface. Instead, each point is the center of a subdomain defined by its
star. Besides, each point is associated with a linear local function, which
represents its tangent plane. Also, each point is the center of the weight‐
ing function that controls the linear local function’s influence. Thus, the
reconstructed surface interpolates the cloud points.

6.2 Conclusions

This research work’s main contribution is the general geometric framework we
used to design and implement distinct surface reconstruction algorithms from
point clouds. Such a framework builds upon four conditions: proximity, pla‐
narity, regularity, and manifoldness. We proved that it is feasible to design and
implement surface reconstruction algorithms that produce surfaces with topo‐
logical guarantees.

The three algorithms fit into the category of interpolation methods, although
they fall into different approaches:

• PCR algorithm: An interpolating simplicial algorithm that uses a mesh‐
growing approach to interpolate the sampling points.

• CTC algorithm: An interpolating simplicial algorithm that uses an approach
based on triangle stars’ compatibility. These stars cover the surface wholly.

• LIS algorithm: An interpolating implicit algorithm that interpolates the
sampling points using local linear implicit functions representing their tan‐
gent planes.

The first two surface reconstruction algorithms prioritize lower curvature re‐
gions (or more planar regions) concerning triangulation. It is unnecessary to use
such a priority in the third algorithm because each point’s neighborhood lies in
its tangent plane. This fact avoids mesh drifting effects, making it also unnec‐
essary to impose any dihedral angle bounds. These algorithms produce meshes
with quasi‐regular triangles, making unnecessary any post‐processing step to
regularize the final mesh.

Also, let us mention that the second algorithm opens a window for a new cat‐
egory of surface reconstruction algorithms. In turn, the third algorithm is the
first interpolating implicit algorithm we may find in the literature that does not
perform time‐consuming matrix computations.
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6.3 Future Work

We anticipate three possible improvements for our algorithms:

• Proximity. The algorithms introduced in this dissertation use the concept
of proximity to find a set of neighbors for each point. This procedure
is time‐consuming and takes longer when the number of sampling points
increases. We used the octree subdivision to speed up this procedure to
find the neighbors of each point. For that, we had to impose an empirical
threshold as subdivision stopping criterion, that is, a minimum number
of 24 points within the octree’s leaf cell. Therefore, it would be helpful
to look for another approach to find each point’s neighbors without using
empirical thresholds.

• Compatibility. Another research track for future work would be to improve
the CTC algorithm’s compatibility condition to reduce or even eliminate
mesh holes. Thus, there would make redundant the hole‐repairing step at
the end of this algorithm.

• Over‐influence. To improve the LIS algorithm, it would fine to avoid the
over‐influence of local functions over some regions of the surface, as oc‐
curred in the case of Dolphin’s fins with the appearance of some extra
and divergent triangles (Fig. 5.3(d)). A possible solution is to use oblate
spheroidal weighting functions rather than spherical weighting functions
because oblate spheroidal functions adapt better to the surface’s local
shape.

Finally, let us say that these algorithms’ codes will be publicly available from a
repository at gitub.com.
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