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Resumo

Nesta tese consideramos um modelo eco-epidemiológico geral que inclui uma

grande variedade de modelos eco-epidemiológicos presentes na literatura. Assum-

imos que os parâmetros dependem do tempo e consideramos funções gerais para

a predação de presas infectadas e não infectadas e também para a dinâmica vital

de presas não infectadas e da população de predadores. Estudamos estes modelos

em quatro cenários: não-autónomo geral, periódico, discreto e aleatório. Nos casos

não-autónomo geral e discreto analisamos a persistência forte e extinção da doença,

no caso periódico estudamos as condições para a existência de uma órbita periódica

endémica e, finalmente, no caso aleatório estudamos a existência de atratores globais

aleatórios.

Palavras-chave

Modelos eco-epidemiológicos; não-autónomo; periódico; discreto; aleatório; per-

sistência e extinção; atractor global.
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Resumo alargado

Nesta tese, consideramos um modelo geral que inclui uma grande famı́lia de

modelos eco-epidemiológicos propostos na literatura. Assumimos que os parâmetros

são dependentes do tempo e consideramos funções gerais para a predação de presas

infectadas e não infectadas e também para a dinâmica vital de presas não infectadas

e da população de predadores. Especificamente, consideramos o seguinte modelo

eco-epidemiológico
S ′ = G(t, S)− a(t)f(S, I, P )P − β(t)SI

I ′ = β(t)SI − η(t)g(S, I, P )I − c(t)I

P ′ = H(t, P ) + γ(t)a(t)f(S, I, P )P + θ(t)η(t)g(S, I, P )I

, (0.0.1)

onde S, I e P correspondem, respectivamente, à presa suscet́ıvel, à presa infectada

e ao predador, β(t) é a taxa de incidência da doença, η(t) é a taxa de predação de

presas infectadas, c(t) é a taxa de mortalidade na classe dos infectados, γ(t) é a taxa

de conversão de presas suscet́ıveis em predadores (transferência de biomassa), θ(t) é

a taxa de conversão de presas infectadas em predadores, G(t, S) e H(t, P ) represen-

tam a dinâmica vital das populações de presas suscet́ıveis e predadores, respectiva-

mente, a(t)f(S, I, P ) é a predação de presas suscet́ıveis e η(t)g(S, I, P ) representa a

predação de presas infectadas. Supõe-se que apenas as presas suscet́ıveis são capazes

de se reproduzir, ou seja, a presa infectada é removida por morte (incluindo morte

natural e relacionada à doença) ou por predação antes de ter a possibilidade de se

reproduzir.

No Caṕıtulo 1 consideramos o modelo não-autónomo (0.0.1) com H(t, x) =

h(t, x)x, para alguma função h : (R+
0 )2 → R. Assumimos que as funções f(S, I, P ),

g(S, I, P ) e G(t, S) são localmente Lipschitz e não negativas e que H(t, P ) é local-

mente Lipschitz. O objetivo deste caṕıtulo é discutir a persistência forte e extinção

vii



viii RESUMO ALARGADO

de presas infectadas I sob alguns pressupostos adequados. Os resultados sobre per-

sistência forte e extinção de presas infectadas são baseados na análise de sistemas

relacionados com a dinâmica do modelo na ausência de presas infectadas. Apli-

camos os resultados a modelos eco-epidemiológicos constrúıdos a partir de modelos

predador-presa existentes na literatura. Por fim, foram feitas simulações numéricas

para ilustrar os resultados.

No Caṕıtulo 2 abordamos a existência de órbitas periódicas para duas famı́lias

distintas de modelos. Para a primeira, obtida do modelo geral (0.0.1) fazendo

G(t, S) = Λ(t) − µ(t)S e H(t, P ) = (r(t) − b(t)P )P , usamos o conhecido teo-

rema de continuação de Mawhin para provar a existência de uma órbita periódica

endêmica. Para a segunda, obtida de (0.0.1) fazendo G(t, S) = Λ(t) − µ(t)S e

H(t, P ) = Υ(t)− ζ(t)P , apresentamos um resultado semelhante ao anterior usando

uma estratégia recente que se baseia na unicidade das órbitas periódicas no espaço

livre de doenças.

No Caṕıtulo 3 consideramos um modelo discreto não-autónomo correspondente

ao modelo (0.0.1), com G(t, S) = Λ(t)− µ(t)S e H(t, P ) = (r(t)− b(t)P )P , obtido

pela aplicação do método de discretização de Micken ao modelo de tempo cont́ınuo.

O objetivo neste caṕıtulo é discutir a persistência forte e extinção de presas infec-

tadas I para o modelo discreto obtido.

No caṕıtulo 4, consideramos perturbações aleatórias do modelo (0.0.1) com

G(t, S) = Λ(t) − µS(t) e H(t, P ) = −δ1P (t) − δ2P (t)2. Para isso, introduzimos

perturbações aleatórias na taxa de natalidade (Λ) usando uma variável aleatória

(rúıdo real), considerando todos os outros parâmetros como constantes e positivos.

Demonstramos a existência de um atractor global aleatório, a persistência de pre-

sas suscet́ıveis e fornecemos condições para a extinção simultânea de predadores

e presas infectadas. Também discutimos as dinâmicas do modelo SI aleatório e

do modelo predador-presa aleatório. Obtemos para esses casos um atractor global

aleatório, discutimos a prevalência de presas suscet́ıveis e fornecemos condições para

a extinção de predadores ou presas infectadas.

O trabalho apresentado no Caṕıtulo 2 foi publicado no artigo [55]. Os conteúdos

dos Caṕıtulos 1, 3 e 4 integram as pré-publicações [54], [56] e [57], respetivamente.



Abstract

We consider a general eco-epidemiological model which includes a large variety

of eco-epidemiological models available in the literature. We assume that the pa-

rameters are time dependent and we consider general functions for the predation on

infected and uninfected prey and also for the vital dynamics of uninfected prey and

predator populations. We studied this model in four scenarios: non-autonomous, pe-

riodic, discrete and random. In the non-autonomous and discrete case we discussed

the uniform strong persistence and extinction of the disease, in the periodic case, we

studied the existence of an endemic periodic orbit, and finally, in the random case

we studied the existence of random global attractors.

Keywords

Eco-epidemiological; non-autonomous; periodic; discrete; random; persistence

and extinction; global attractor.
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Introduction

The Lotka-Volterra models were considered independently by Alfred Lotka and

Vito Volterra in 1925. Ecological models including more general models describ-

ing predator-prey interaction have been a major subject in mathematical biology.

On the other hand, mathematical epidemiological models also have a long history

that goes back to the construction of the first epidemiological model by Kermack

and Mckendrick in 1926, having published together a series of papers containing

contributions to the mathematical theory of epidemics [58, 59, 60].

Eco-epidemiological models are ecological models that include infected compart-

ments. In many situations, these models describe more accurately the real ecological

system than models where the disease is not taken into account. Thus the descrip-

tion of the dynamics of eco-epidemiological systems is a subject that have been

receiving increasing attention by the researchers interested in mathematical biology.

In particular, the inclusion of a disease in the preys or in the predators have impact

on the population size of the predator-prey community [43, 97, 45, 103, 19, 47].

The first mathematical studies concerning eco-epidemiological models were con-

sidered in the late 1980’s. To the best of our knowledge, Hadeler and Freedman, in

1989, were the first authors to consider an eco-epidemiological model in [43]. In that

paper they construct a predator-prey model where both predator and prey are sub-

jected to parasitism. They showed that, in the case where the uninfected predator

cannot survive only on uninfected prey, the parasitization could lead to persistence

of the predator provided a certain threshold of transmission is surpassed, i.e., if the

product of rates of conversion of uninfected populations into infected populations is

less than some threshold then the uninfected stable attractor (with respect to the

uninfected system, stationary point or periodic orbit) is also stable against parasitic

infection. On the other hand, if that product passes through the referred thresh-

old then the uninfected attractor loses its stability and a stable infected attractor

appear. In the following year, Chattopadhyay and Arino [18] considered a model
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2 INTRODUCTION

where the disease affects only the prey. Under some assumptions on the intrinsic

growth rate of the susceptible population, the authors reduced their three dimen-

sional system to a two dimensional system and were able to describe the persistence

and extinction of the infected population in terms of the environmental carrying

capacity. They also observed that, when the maximal renewal rate of the infected

population is less than its natural mortality rate then both populations go to extinc-

tion and pointed out that there is an exchange of stability through simple bifurcation

at the crossing point of trivial equilibrium to the boundary equilibrium, as well as

at the crossing point of boundary equilibrium to the positive equilibrium. More-

over, they observed that for certain parametric conditions an Hopf-type bifurcation

occurs for the strictly positive equilibrium. Additionally, considering a Holling-type

II predator functional response, they found that the bifurcation branches are super-

critical in some parametric region space, confirming the local asymptotic stability

of the bifurcation orbit. Finally, using a Poincaré map, they observed that the

analysis for the reduced system is valid for the original system. Later on, in 1994,

Ezio Venturino [97] studied separately the effect of disease in the prey and in the

predator, considering in each of the cases Holling-type I as well as standard func-

tional responses to model the incidence of the disease. For the case of Holling-type

I and disease in the prey, he showed that there exist seven equilibria: the origin, the

neutral equilibrium, the boundary equilibrium, the positive equilibrium and three

other equilibrium points. He found that the origin cannot be stable since one of

its eigenvalues is positive, that the neutral equilibrium is stable under a suitable

condition, that the boundary equilibrium is stable under some conditions and un-

stable otherwise, and that the positive equilibrium is the only nontrivial equilibrium

point which is always unstable. For the stardard functional response, there are four

equilibria: the origin, the neutral equilibrium, the boundary equilibrium and the

positive equilibrium. He proved that origin is a saddle, the neutral equilibrium is

locally asymptotically stable, the boundary and the positive equilibria are always

unstable. For the case of standard functional response in the predator, we also have

four equilibria: the origin, the neutral, the boundary and the positive equilibrium.

He showed that origin is again a saddle since it has one eigenvalue which is pos-

itive, the neutral equilibrium is locally stable under some suitable condition, the
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boundary equilibrium is always unstable. Finally, for the Holling-type I functional

response and disease in the predator case, we have again four equilibria: the origin,

the neutral, the boundary and the positive equilibrium. He established that the

origin and the neutral equilibrium are unstable and that the boundary equilibrium

is stable for some suitable condition. Considering again that the disease only affects

the prey, in [103], Xiao and Chen studied an eco-epidemiological model focusing

on the permanence and stability of equilibria and shown that, for some parameter

values, the positive equilibrium becomes unstable, allowing a periodic solution to

appear by Hopf bifurcation.

Different dynamical aspects of eco-epidemiological models in the autonomous set-

ting have been extensively studied in several contexts. Concerning eco-epidemiological

models with disease in the prey, there is an extensive literature focusing on persis-

tence and extinction, local and global stability, existence of limit cycles and bifurca-

tions. In [45] Haque and Chattopadhyay modified an existent eco-epidemiological

model by replacing the Holling-type I incidence rates by some non-linear incidence

rates. Their numerical simulations allowed them to conclude that, with this change

of incidence rates, they can control the limit cycle oscillations around the positive

interior equilibrium that was observed in the original model and, moreover, they

determined the value for which a Hopf-bifurcation occurs for the positive interior

equilibrium. Later, in [19], Samrat and Chattopadhyay consider a model with

Holling-type I incidence rates and observe that the force of infection and the pre-

dation rate play important roles in maintaining the stability around the positive

steady state. In [93] Upadhyay, Bairagi, Kundu and Chattopadhyay observed, in

several numerical simulations, the existence of chaotic behaviour when some key

parameters attain their critical values and in [94] Upadhyay and Roy considered a

modified version of the model in the cited work by assuming that the predators con-

sume the prey species according to a modified Holling-type II functional response.

They studied the stability of the equilibria and, taking the death rate of preda-

tor and the growth rate of susceptible prey population as bifurcation parameters,

they demonstrated the existence of backward Hopf-bifurcations and saw, in sev-

eral computational experiments, that the system exhibits deterministic chaos when

some control parameters attain some critical values. Still concerning bifurcation
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analysis, it should be referred that in [67] Liu undertook a throughout study of

bifurcations, especially near the boundary equilibrium. Several other works study,

both analytically and numerically, the bifurcations of eco-epidemiological systems,

including [95], where the authors considered distinct functional responses of preda-

tor for susceptible and infected preys, [87], where the authors considered Holling

type II functional responses both for susceptible and infected preys, and [29] where

a ratio-dependent functional response (a type of functional response that assumes

that the prey eaten per unit time is a function of the ratio of prey to predator) is

considered.

An analysis of stability of equilibria and bifurcations of an eco-epidemiological

model was undertaken by Chakraborty, Das, Haldar and Kar in [17] for a model con-

structed from an epidemiological model considered by Bhattacharyya and Mukhopad-

hyay in [73] and including different nonlinear functional responses for susceptible

and infected preys. Another very interesting work devoted to analysis of stability of

equilibria of an eco-epidemiological model can be found in a paper by Sasmal and

Chattopadhyay [86] where the authors compare the model with and without Allee

effect and discuss the way the Allee effect affect the population dynamics of both

the prey and the predator and also the conditions that allow the susceptible prey,

infected prey and predator to coexist. In [81] the authors studied another model

where Allee effect in the predator is considered.

There is still an active line of research aimed at the study of autonomous eco-

epidemiological models as we can see by the recent papers [42], where a model

involving switching (changing of preference of the predator from susceptible to in-

fected prey) is considered, [89] where a model with Holling type II functional re-

sponse functions and a type of mortality rate for the predator that the authors call

hyperbolic mortality is analytically studied, [71] where the fear of predators among

prey population is taken into account by assuming that an increase in the predator

population leads to lowering of prey growth rate, [88] where a model is proposed

that assumes, contrarily to the usual, that the infected prey is able to reproduce,

and [100] where the local and global stability properties, existence of Hopf bifurca-

tion, and permanence of the infected prey is studied for a model that considers the

effect of the amount of prey refuge.
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All the model referred above are autonomous models. However, to make models

more realistic, it is important, in many situations, to consider time varying param-

eters. For instance, it is well known in epidemiology that incidence rates are seldom

subject to periodic seasonal fluctuations.

In the context of eco-epidemiological models, several nonautonomous systems

have been studied in the literature. In [75] Niu, Zhang and Teng consider a class

of general non-autonomous eco-epidemiological models with disease in the prey,

containing the periodic case as a very particular situation, and obtained threshold

conditions for the extinction and persistence of the infected preys. For the same

model, in [90], Silva established the existence of an endemic periodic orbit. The

models in [75] and [90] assume that there is no predation on uninfected preys. It

is quite true, from the biological point of view, that infected individuals can be less

active and caught more easily; another possibility is that the infection modifies the

behavior of the preys in such a way that they start living in parts of the habitat which

are more accessible to the predators. This motivates the simplified assumption that

there is no predation on uninfected prey. Nevertheless, in real life this is not always

the way things happen: predators are often able to catch prey, even if they are not

carriers of a certain infectious disease. In [41] Ghosh, Sardar, Biswas, Samanta and

Chattopadhyay studied a model with predation of uninfected preys. Their model

assumes that the uninfected prey population grows according to a logistic law and,

in the absence of a specific prey population considered, the predator also follows

some logistic law that depends on the availability of alternative preys. Moreover,

they assume that the transmission of the disease is given by a bilinear contact rate

and the predation of both uninfected and infected preys is given by some kind of

Holling-type II functional response, even though in those functions the denominators

depend on the uninfected prey or the infected prey instead of depending on the

total prey population. The authors provided in that paper a condition for uniform

persistence of the disease and conditions for the global asymptotic stability of the

positive periodic orbit they found. Based on the model in [75, 90], in [68] Lu,

Wang and Liu proposed a family of models that include predation on uninfected

preys described by a bilinear functional response and obtained threshold conditions

for the extinction and persistence of the infected prey. In their model, the authors
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assume that in the absence of disease, the growth rate of the prey population is

given by a linear equation, that the predator species vanishes in the absence of the

considered prey and that both the transmission of the disease and the predation

on infected and uninfected preys is given by Holling-type I functional responses.

The extinction result in this work is given by some condition that depends on a

bound for the size of an absorbing region. The model studied in [35] has a very

different structure from the models above: it includes the possibility of recovery

and a modified Leslie-Gower functional response is used to describe the dynamics

between migratory preys and their predators.

Several works are already available in the literature that deal with eco-epi-

demiological models with disease in the predator [92, 48, 76, 102, 9]. Addi-

tionally, there are also works devoted to the study of eco-epidemiological models

with delay [83, 69, 74] as well as models for which optimal control theory is

used [2, 36, 3, 84].

In the context of periodic models, there is already a theory developed to obtain

the basic reproductive number, R0. In fact, in [5], Bacaër and Guernaoui introduced

R0 for periodic epidemiological models, and later on, in [98], the definition ofR0 was

adapted by Wang and Zhao to the study of periodic patchy models. In the recent

article [38] Garrione and Rebelo adapted the theory in [98] to study persistence and

extinction of the predator in general periodic predator-prey models.

In all non-autonomous works cited above, the functional response of the predator

to prey is given by some particular function. Also the vital dynamics of predator

and prey is usually assumed to follow some particular law. In this thesis we con-

sider a general model that includes a large family of the eco-epidemiological models

proposed in the literature. We assume that the parameters are time-dependent and

we consider general functions for the predation on infected and uninfected prey and

also for the vital dynamics of uninfected prey and predator populations. Namely,

we consider the following eco-epidemiological model:
S ′ = G(t, S)− a(t)f(S, I, P )P − β(t)SI

I ′ = β(t)SI − η(t)g(S, I, P )I − c(t)I

P ′ = H(t, P ) + γ(t)a(t)f(S, I, P )P + θ(t)η(t)g(S, I, P )I

, (0.0.2)
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where S, I and P correspond, respectively, to the susceptible prey, infected prey and

predator, β(t) is the incidence rate of the disease, η(t) is the predation rate of infected

prey, c(t) is the death rate in the infective class, γ(t) is the rate converting susceptible

prey into predator (biomass transfer), θ(t) is the rate of converting infected prey into

predator, G(t, S) and H(t, P ) represent the vital dynamics of the susceptible prey

and predator populations, respectively, a(t)f(S, I, P ) is the predation of susceptible

prey and η(t)g(S, I, P ) represent the predation of infected prey. It is assumed that

only susceptible preys S are capable of reproducing, i.e., the infected prey is removed

by death (including natural and disease-related death) or by predation before having

the possibility of reproducing.

In Chapter 1 we consider a non-autonomous model where H(t, x) = h(t, x)x

for some function h : (R+
0 )2 → R. We assume that the functions f(S, I, P ) and

g(S, I, P ) are locally Lipschitz and nonnegative, and G(t, S) and H(t, P ) are locally

Lipschitz. The objective of this chapter is to discuss the uniform strong persistence

and extinction of the infectives I under some suitable assumptions. Our results

on strong persistence and extinction of the infected prey are based on the analysis

of systems related to the dynamics of the model in the absence of infected prey.

We apply our results to eco-epidemiological models built from predator-prey models

existent in the literature. Simulations are made to illustrate the results.

We address in Chapter 2 the existence of periodic orbits for two distinct families

of models. For the first one, obtained from the general model (0.0.2) by making

G(t, S) = Λ(t) − µ(t)S and H(t, P ) = (r(t) − b(t)P )P , we used the well known

Mawhin’s continuation theorem to prove the existence of an endemic periodic orbit.

For the second one, obtained from (0.0.2) by making G(t, S) = Λ(t) − µ(t)S and

H(t, P ) = Υ(t)− ζ(t)P , we obtain a sharp result using a recent strategy that relies

on the uniqueness of periodic orbits in the disease-free space.

All the works above are concerned with continuous time models given by systems

of differential equations. On the other hand, it is important to consider discrete time

models. In fact, a discretization of continuous time models is fundamental to obtain

approximations of the solutions of nonlinear systems of differential equations, for

instance as in a numerical approach. Additionally, in some situations, at least for
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epidemiological model, it has been argued that discrete time models are better to

approximate the disease dynamics as they permit arbitrary time-step units [109, 34].

The chosen process of discretization can lead to models with a very distinct

structure. In [52] the authors use a piecewise constant argument method that lead

to a model whose right hand side includes an exponential of a function of the several

compartments corresponding to the vector field of the original system of differential

equations. Other discrete models of this type can be found in [51, 31]. In [52],

the authors studied the stability of equilibrium solutions analitically and then, nu-

merically, they showed that there appears a series of distinct dynamical behaviors

(for example, varying the death rate of the infected prey and maintaining the ini-

tial value, there appear chaos, Hopf bifurcation, local stability, flip bifurcation, and

chaos). In [51] the authors studied an efficient method for analyzing the global

asymptotic stability for general three dimensional discrete systems based on a piece-

wise constant argument method. For the discrete time model obtained in [31] the

authors studied the local asymptotic stability of equilibria, and also used explicit

Hopf bifurcation and period-doubling bifurcation criteria to discuss emergence of

both type of bifurcations at positive steady-states of their model.

In [10], the authors use the standard Euler forward scheme as well as Mick-

ens nonstandard finite difference scheme to obtain two autonomous discrete models.

Also in [31] Euler’s forward scheme is used to obtain a discrete model from a cor-

responding continuous time model. In [10] the authors showed that the solution

of non-standard finite difference scheme of the system remains positive for all pos-

itive initial values. Fixed points and their local stability properties are shown to

be identical to the corresponding notions in the continuous time model, indicating

its dynamic consistency. On the other hand, they showed that the dynamics of the

Euler model depend on the step size and therefore we have dynamical inconsistency.

Solutions in this method may be negative and allow numerical instabilities, leading

to chaos. For the model obtained by Euler’s forward scheme in [31] it is concluded

that the positive equilibrium is locally asymptotically stable, and they implemented

an explicit criteria for Hopf and flip bifurcations to investigate parametric conditions

for existence of both type of bifurcations at positive steady-states.
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We note that all the discrete models described above are autonomous models. In

contrast, in Chapter 3, we consider a non-autonomous discrete model correspond-

ing to the discrete counterpart of the model (0.0.2) with G(t, S) = Λ(t) − µ(t)S

and H(t, P ) = (r(t) − b(t)P )P , obtained by applying Mickens nonstandard finite

difference scheme to the continuous time model. The objective in this chapter is

to discuss the uniform strong persistence and extinction of the infectives I for the

obtained discrete model.

Finally, in Chapter 4 we consider random perturbations of a general eco-epide-

miological model. In the nondeterministic situation there are two main approaches

to incorporate randomness by considering stochastic and random perturbations,

which, roughly speaking, can be expressed throughout stochastic and random dif-

ferential equations. For an exposition on this subjects, their comparison and appli-

cation in this biological context we refer to [1, 12, 13, 14, 15, 46] and references

therein, where perturbations of epidemiological models where taken into account

both in the presence of white noise (via stochastic differential equations) or real

noise (through pathwise random differential equations). One of the main concerns

on these works is to understand the dynamics of the perturbed model by the pres-

ence of a (random) attractor for the system. On the other hand, in [104, 44, 105, 7]

random perturbations of eco-epidemiological models were considered always made

by the insertion of white noise in a deterministic model. In this former references,

the authors aimed to prove the stochastic stability and long time behaviour around

equilibrium of deterministic model.

In this chapter, we consider random perturbations of the model (0.0.2) with

G(t, S) = Λ(t)−µS(t) e H(t, P ) = −δ1P (t)−δ2P (t)2. For this, we introduce random

perturbations in the birth rate Λ using a random variable (real noise), considering

all other parameters to be constant and positive. We prove the existence of a global

random attractor, the persistence of susceptible preys and provide conditions for the

simultaneous extinction of infective and predators. We also discuss the dynamics of

the corresponding random SI model and random predator-prey model. We obtain

for this cases a global random attractor, prove the prevalence of susceptible preys

and provide conditions for the extinctions of infective or predators.
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The results in Chapter 2 were published in [55]. The contents of Chapters 1, 3

and 4 are included in preprints [54], [56] and [57], respectively.



CHAPTER 1

Non-Autonomous Eco-Epidemiological Model

In this chapter we consider a generalization of the non-autonomous model in [75,

68] by adding general functions corresponding to predation on infected and unin-

fected preys as well as general functions associated to the vital dynamics of the sus-

ceptible prey and predator populations. We obtain persistence and extinction results

for the infected prey based on some assumptions on systems related to the dynamics

in the absence of infected preys. We apply our results to eco-epidemiological mod-

els constructed from several predator-prey models existent in the literature. Some

illustrative simulation is undertaken.

The objective of this chapter is to discuss the uniform strong persistence and

extinction of the infectives I in system (0.0.2) under some hypothesis to be detailed

later. Recall that the infectives are uniformly strong persistent in system (0.0.2) if

there exist 0 < m1 < m2 such that for every solution (S(t), I(t), P (t)) of (0.0.2)

with positive initial conditions S(t0), I(t0), P (t0) > 0, we have

m1 < lim inf
t→∞

I(t) 6 lim sup
t→∞

I(t) < m2,

and we say that the infectives I go to extinction in system (0.0.2) if

lim
t→∞

I(t) = 0,

for all solutions of (0.0.2) with positive initial conditions.

For biological reasons we will only consider for system (0.0.2) solutions with

initial conditions in the set (R+)3.

Our approach is very different to the one in [75] and [68]. In fact, we want

to discuss the extinction and strong persistence of the infectives in system (0.0.2),

having as departure point some prescribed behavior of the uninfected subsystem

corresponding to the dynamics of preys and predators in the absence of disease.

We will assume in the major part of this work, more specifically in section 1.1,

11
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that we have global asymptotic stability of solutions of some special bi-dimensional

systems related to the predator-prey dynamics in the uninfected subspace (the model

obtained by letting I = 0 in the first and third equations in (0.0.2)) and that we will

refer to as uninfected subsystem (see condition N6) in section 1.1). Thus, to apply our

results to specific situations in the literature, one must first verify that the underlying

uninfected subsystem satisfies our assumptions or, looking at our results differently,

we can construct an eco-epidemiological model from a previously studied predator-

prey model (the uninfected subsystem) that satisfies our assumptions. We believe

that this approach is interesting since it highlights the relation of the dynamics of

the eco-epidemiological model with the behavior of the predator-prey model used in

its construction.

We note that, similarly to the thresholds obtained in [68], our thresholds for

extinction and uniform strong persistence are not sharp. In spite of this, unlike

the conditions for extinction and strong persistence in [68], that rely on parameters

that can not, in principle, be computed explicitly (note that conditions (22) and (43)

in [68] depend on q1), our thresholds can be directly obtained from the parameters

and the limit behavior of the predator-(uninfected) prey subsystem.

To illustrate our findings, in section 1.3 several predator-prey models available in

the literature, satisfying our assumptions, are considered and thresholds conditions

for the corresponding eco-epidemiological model automatically obtained from our

results: in our Example 1, we consider the situation where f ≡ 0 in system (0.0.2),

corresponding to a generalized version of the situation studied in [75]; in Example

2, we obtain a particular form for the threshold conditions in the context of periodic

models and particularize our result for a model constructed from the predator-prey

model in [40]; in Example 3, we start with an uninfected subsystem with Gause-

type interaction (a predator-prey model with Holling type II functional response of

predator to prey, logistic growth of prey in the absence of predators and exponential

extinction of predator in the absence of prey) and, using [62], obtain the corre-

sponding results for extinction in the eco-epidemiological model; in Example 4, we

consider the eco-epidemiological model obtained from an uninfected subsystem with

ratio-dependent functional response of predator to prey, a type interaction consid-

ered as an attempt to overcome some know biological paradoxes observed in models
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with Gause-type interaction and again obtain the corresponding results for the eco-

epidemiological model, based on the discussion of ratio-dependent predator-prey

systems in [50]; finally, in Examples 5 and 6, we consider eco-epidemiological mod-

els, based on the discussion of the corresponding predator-prey models in [80, 91]

where the uninfected subsystem has some specific type of non-autonomy in the prey

equation (Example 5) or the predator equation (Example 6). For all these examples

we present some simulation that corroborate our conclusions.

For Examples 3 to 6 we provide computational experiments that suggests that

we have persistence of infected preys when the threshold is given by some func-

tion depending on solutions of the uninfected subsystem instead of solutions of the

subsystems considered in our theoretical results.

1.1. Asymptotically stable behavior in uninfected subspace

In this chapter we consider the model (0.0.2) with H(t, x) = h(t, x)x for some

function h : (R+
0 )2 → R:

S ′ = G(t, S)− a(t)f(S, I, P )P − β(t)SI

I ′ = β(t)SI − η(t)g(S, I, P )I − c(t)I

P ′ = h(t, P )P + γ(t)a(t)f(S, I, P )P + θ(t)η(t)g(S, I, P )I

. (1.1.1)

We will assume the following hypothesis concerning the parameter functions and

the functions f , g, G and h:

N1) The real valued functions a, β, η, c, γ and θ are bounded, nonnegative and

continuous;

N2) The real valued functions f , g, G and H(t, x) = h(t, x)x are locally Lipschitz,

functions f and g are nonnegative and f(0, 0, z) = 0, for every z > 0. For fixed

x, z > 0, functions y 7→ f(x, y, z) and y 7→ g(x, y, z) are nonincreasing. For fixed

y, z > 0, function x 7→ g(x, y, z) is nonincreasing; for fixed x, y > 0, function

z 7→ f(x, y, z) is nonincreasing and function z 7→ g(x, y, z) is nondecreasing;

Our next assumption relates to the ω-limit of solutions of (1.1.1) and is usually

fulfilled by mathematical models in epidemiology.
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N3) Each solution of (1.1.1) with positive initial condition is bounded and there is

a bounded region R that contains the ω-limit of all solutions of (1.1.1) with

positive initial conditions.

Notice in particular that condition N3) implies that there is L > 0 such that

lim sup
t→+∞

(S(t) + I(t) + P (t)) < L,

for all solutions (S(t), I(t), P (t)) of (1.1.1) with positive initial conditions.

To proceed, we need to consider two auxiliary equations and one auxiliary sys-

tem. First, we consider the equation

s′ = G(t, s), (1.1.2)

that corresponds to the dynamics of uninfected preys in the absence of infected preys

and predators (the first equation in system (1.1.1) with I = 0, S = s and P = 0).

We assume the following properties for the solutions of (1.1.2):

N4) Each solution s(t) of (1.1.2) with positive initial condition is bounded, bounded

away from zero, and globally attractive on ]0,+∞[, that is |s(t)− v(t)| → 0 as

t→ +∞ for each solution v(t) of (1.1.2) with positive initial condition.

The second auxiliary equation we consider is the equation

y′ = h(t, y)y, (1.1.3)

that corresponds to the dynamics of predators in the absence of the considered preys

(the third equation in system (1.1.1) with I = 0, S = 0 and P = y). We need the

following property for the solutions of (1.1.3):

N5) Each fixed solution y(t) of (1.1.3) with positive initial condition is bounded and

globally attractive on [0,+∞).

Finally, we need the following auxiliary systemx
′ = G(t, x)− a(t)f(x, 0, z)z

z′ = h(t, z)z + γ(t)a(t)f(x, 0, z)z
(1.1.4)

that describes the behavior of preys and predators in the absence of infected preys

(the first and third equations of system (1.1.1) with I = 0, S = x and P = z). We
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will refer to system (1.1.4) as the uninfected subsystem. We assume that we are able

to construct families of auxiliary subsystems:x
′ = G1,ε(t, x)− a(t)f(x, 0, 0)ẑε(t)− v(ε)ρ(t)x

z′ = h1,ε(t, z)z + γ(t)a(t)f(x, v(ε)ρu, z)z
(1.1.5)

where (x̂ε(t), ẑε(t)) is a solution ofx
′ = G2,ε(t, x)

z′ = h2,ε(t, z)z + γ(t)a(t)f(x, 0, z)z + v(ε)ρ(t)g(x, 0, z)
(1.1.6)

satisfying the following assumptions.

N6) The following holds for systems (1.1.5) and (1.1.6):

N6.1) for sufficiently small ε > 0, the functions Gi,ε and hi,ε, i = 1, 2, are con-

tinuous, the functionals ε 7→ Gi,ε and ε 7→ hi,ε, i = 1, 2, are continuous,

G1,0 = G2,0 = G, h1,0 = h2,0 = h,

G1,ε(t, x) 6 G(t, x) 6 G2,ε(t, x)

and

h1,ε(t, x) 6 h(t, x) 6 h2,ε(t, x);

N6.2) the real valued function v : [0,+∞[→ R verifies v(ε) > 0 for ε ∈ ]0,+∞[,

v(0) = 0 and is differentiable near ε = 0 with

A < v′(ε) < B,

for some A,B > 0 and sufficiently small ε > 0;

N6.3) the function ρ is continuous and there are constants ρu, ρ` such that, for

all t > 0,

0 < ρ` 6 ρ(t) 6 ρu;

N6.4) there is a family of nonnegative solutions, {(x∗1,ε(t), z∗1,ε(t))} of system (1.1.5),

one solution for each ε > 0 sufficiently small, depending on a solution

(x∗2,ε(t), z
∗
2,ε(t)) of system (1.1.6), such that each solution in the family is

globally asymptotically stable in a set containing the set {(x, z) ∈ (R+
0 )2 :
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x > 0 ∧ z > 0} and the function

ε 7→ (x∗1,ε(t), z
∗
1,ε(t)) is continuous;

N6.5) the family of nonnegative solutions {(x∗2,ε(t), z∗2,ε(t))} of system (1.1.6),

one solution for each ε > 0 sufficiently small, is such that each solution

in the family is globally asymptotically stable in a set containing the set

{(x, z) ∈ (R+
0 )2 : x > 0 ∧ z > 0} and the function

ε 7→ (x∗2,ε(t), z
∗
2,ε(t)) is continuous.

We write x∗1,0 = x∗1, x∗2,0 = x∗2, z∗1,0 = z∗1 and z∗2,0 = z∗2 for the components of

the solutions in N6.4) and N6.5) corresponding to ε = 0. For the continuity of

the functionals in N6.1), N6.4) and N6.5) we consider the usual supremum norm,

‖ · ‖0. Also notice that, by N3) the solutions are bounded. Note that we only

aim to control two suitable families of perturbations of the uninfected subsystem,

so that condition N6) is sufficiently flexible to adapt to a wide range of uninfected

subsystems associated to the eco-epidemiological models.

We emphasize that our setting includes several of the most common functional re-

sponse functions: f(S, I, P ) = kS and g(S, I, P ) = kP (Holling-type I), f(S, I, P ) =

kS/(1+m(S+I)) and g(S, I, P ) = kP/(1+m(S+I)) (Holling-type II), f(S, I, P ) =

kSα/(1+m(S+I)α) and g(S, I, P ) = kPα/(1+m(S+I)α) with α > 0 (Holling-type

III), f(S, I, P ) = kS/(a + b(S + I) + cP ) and g(S, I, P ) = kP/(a + b(S + I) + cP )

(Beddington-De Angelis), f(S, I, P ) = kS/(a + b(S + I) + cP + d(S + I)P ) and

g(S, I, P ) = kP/(a + b(S + I) + cP + d(S + I)P ) (Crowley-Martin). In the func-

tions above k,m, a, b, c, d > 0. Notice that while g can be of the form g(S, I, P ) =

kP/(a + b(S + I) + c(S + I)2) (Holling-type IV), this type of functional response

corresponds in the case of f to take f(S, I, P ) = kS/(a+b(S+I)+c(S+I)2). In this

case x 7→ kx/(a+ b(x+ y) + c(x+ y)2) is not nondecreasing when c 6= 0 and cannot

take f such that the corresponding functional response function is Holling-type IV.

1.2. Extinction and uniform strong persistence of infectives

In this section we will establish our results on the extinction and uniform strong

persistence of the infective prey in system (1.1.1). Given a function f we will use
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the notations f ` = inft>0 f(t), fu = supt>0 f(t) and, for a ω-periodic function f we

use the notation f̄ = (1/ω)
∫ ω

0
f(s) ds.

We define

R`(λ) = lim inf
t→+∞

∫ t+λ

t

β(s)x∗1(s)− η(s)g(x∗1(s), 0, z∗2(s))− c(s) ds (1.2.1)

where we still denote by x∗1(t) and z∗2(t) the components of solutions in systems (1.1.5)

and (1.1.6), with ε = 0, and

Ru(λ) = lim sup
t→+∞

∫ t+λ

t

β(s)s∗(s)− η(s)g(s∗(s), 0, y∗(s))− c(s) ds. (1.2.2)

where s∗(t) and y∗(t) are particular solutions, respectively, of (1.1.2) and (1.1.3)

with positive initial conditions.

As we will see in the following, using the global attractivity of solutions of (1.1.2)

and (1.1.3) in ]0,+∞[ and the global attractivity of solutions given at N6.4) and

N6.5) we can easily conclude that (1.2.1) is independent of the particular solu-

tions considered in N6.4) and N6.5). Similarly, it is easy to conclude that (1.2.2)

is independent of the particular solutions of (1.1.2) and (1.1.3) with positive initial

conditions considered.

Proposition 1.1. The numbers (1.2.1) and (1.2.2) are independent, respec-

tively, of the particular solutions considered in N6.4) and N6.5) and of the particular

solutions of (1.1.2) and (1.1.3) with positive initial conditions chosen.

Proof. Let (x∗1(t), z∗1(t)), (x∗2(t), z∗2(t)) and (x̄∗1(t), z̄∗1(t)), (x̄∗2(t), z̄∗2(t)) be two

distinct pairs of nonnegative solutions of (1.1.5) and (1.1.6) as in N6.4) and N6.5).

Let δ > 0. By N6), for t ≥ Tδ sufficiently large, we have

x∗1(t)− δ 6 x̄∗1(t) 6 x∗1(t) + δ and z∗2(t)− δ 6 z̄∗2(t) 6 z∗2(t) + δ.

Addicionally, by N1) and N2) we have, for every t ≥ Tδ,∣∣∣∣∫ t+λ

t
β(s)x∗1(s)− η(s)g(x∗1(s), 0, z∗2(s))− c(s) ds−

∫ t+λ

t
β(s)x̄∗1(s)− η(s)g(x̄∗1(s), 0, z̄∗2(s))− c(s) ds

∣∣∣∣
6
∫ t+λ

t
β(s) |x∗1(s)− x̄∗1(s)|+ η(s) |g(x∗1(s), 0, z∗2(s))− g(x̄∗1(s), 0, z̄∗2(s))| ds

6 λβuδ + 2ληuϕ(δ),



18 1. NON-AUTONOMOUS ECO-EPIDEMIOLOGICAL MODEL

with ϕ(δ)→ 0 as δ → 0. We conclude that, for every δ > 0,

lim inf
t→+∞

∫ t+λ

t
β(s)x∗1(s)− η(s)g(x∗1(s), 0, z∗2(s))− c(s) ds− λβuδ − 2ληuϕ(δ)

6 lim inf
t→+∞

∫ t+λ

t
β(s)x̄∗1(s)− η(s)g(x̄∗1(s), 0, z̄∗2(s))− c(s) ds

6 lim inf
t→+∞

∫ t+λ

t
β(s)x∗1(s)− η(s)g(x∗1(s), 0, z∗2(s))− c(s) ds+ λβuδ + 2ληuϕ(δ),

Thus R`(λ) is independent of the chosen solution. Taking, respectively, lim sup, s∗(t) and

y∗(t) instead of lim inf, x∗1(t) and z∗2(t) and using the same reasoning we can prove that

Ru(λ) is also independent of the particular solutions chosen. The result follows. �

Theorem 1.1. Assume that conditions N1) to N5) hold. Assume further that

either G(t, S) = Λ(t) − µ(t)S and g(S + I, 0, P ) 6 g(S, I, P ) or g does not depend

on I. If there is λ > 0 such that Ru(λ) < 0, then the infectives in system (1.1.1) go

to extinction.

Proof. Assume that there is λ > 0 such that Ru(λ) < 0 and let s∗(t) and

y∗(t) be particular solutions, respectively, of (1.1.2) and (1.1.3) with positive initial

conditions. Since functions β and η are bounded, there are κ > 0, t0 > 0 and ε0 > 0

such that, for t > t0 and δ ∈ ]0, ε0], we have∫ t+λ

t

β(s)(s∗(s) + δ)− η(s)g(s∗(s) + δ, 0, y∗(s)− δ)− c(s) ds 6 −κ < 0. (1.2.3)

Let (S(t), I(t), P (t)) be a solution of (1.1.1) with positive initial conditions. We

will prove first that

lim inf
t→+∞

I(t) = 0. (1.2.4)

Assume that (1.2.4) does not hold. Then, there is ε > 0 such that I(t) > ε for all

sufficiently large t. By the first equation of (1.1.1) we have

S ′ 6 G(t, S) (1.2.5)

and thus S(t) 6 s(t), where s(t) is the solution of (1.1.2) with s(t0) = S(t0). By

condition N4), given ε ∈ ]0, ε0], we have S(t) 6 s∗(t) + ε, for all sufficiently large t.

By the third equation of (1.1.1), we have

P ′ > h(t, P )P (1.2.6)
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and thus P (t) > y(t), where y(t) is the solution of (1.1.3) with y(t0) = P (t0). By

condition N5), given ε ∈ ]0, ε0], we have P (t) > y∗(t)− ε, for all sufficiently large t.

When G(t, S) = Λ(t)− µ(t)S,

(S + I)′ ≤ Λ(t)− µ(t)S − c(t)I ≤ Λ(t)− µ(t)(S + I),

and consequently, for sufficiently large t

S(t) + I(t) ≤ s∗(t) + ε.

Under this assumption on G, by the second equation of (1.1.1), since we assumed

that g(S + I, 0, P ) 6 g(S, I, P ), we have

I ′ 6 [β(t)(s∗(t) + ε)− η(t)g(s∗(t) + ε, 0, y∗(t)− ε)− c(t)]I,

for all sufficiently large t. Notice that, for a general G, if g does not depend on I we

have g(S, I, P ) ≥ g(s∗(t) + ε, 0, y∗(t) − ε) and we still obtain the inequality above.

Denoting by bαc the integer part of α and integrating the previous equation, we get

I(t) 6 I(t0) exp

{∫ t

t0

β(r)(s∗(r) + ε)− η(r)g(s∗(r) + ε, 0, y∗(r)− ε)− c(r) dr
}

6 I(t0) eλ(βu(s∗)u+εβu)

× exp

{∫ t0+b t−t0
λ
cλ

t0

β(r)(s∗(r) + ε)− η(r)g(s∗(r) + ε, 0, y∗(r)− ε)− c(r) dr

}
6 I(t0) e−b(t−t0)/λcκ eλ(βu(s∗)u+εβu),

for all sufficiently large t. Since b(t− t0)/λcκ→ +∞ as t→ +∞, we get a contra-

diction to the hypothesis that there is ε > 0 such that I(t) > ε for sufficiently large

t. We conclude that (1.2.4) holds.

Let ε > 0. Next we will prove that for sufficiently large t

I(t) 6 ε ehλ, (1.2.7)

where

h = sup
t>0
|β(t)(s∗(t) + ε0)− η(t)g(s∗(t) + ε0, 0, y

∗(t)− ε0)− c(t)| .

By (1.2.4), there exists t1 > t0 such that I(t1) < ε.
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Assume, by contradiction that (1.2.7) does not hold. Then, there is t2 > t1 such

that I(t2) > ε ehλ. Since I(t1) < ε, there is t3 ∈ ]t1, t2[ such that I(t3) = ε and

I(t) > ε, for all t ∈ ]t3, t2[. Integrating we get, by (1.2.3),

ε ehλ < I(t2)

6 I(t3) exp

{∫ t2

t3

β(r)(s∗(r) + ε)− η(r)g(s∗(r) + ε, 0, y∗(r)− ε)− c(r) dr
}

6 ε exp

{∫ t2

t3+b(t2−t3)/λcλ
β(r)(s∗(r) + ε0)− η(r)g(s∗(r) + ε0, 0, y

∗(r)− ε0)− c(r) dr
}

6 ε ehλ,

witch is a contradiction. Thus, we conclude that (1.2.7) holds and, since ε ∈ ]0, ε0]

is arbitrary, we conclude that I(t)→ 0 as t→ 0, as claimed. �

Theorem 1.2. Assume that conditions N1) to N3) and N6) hold. If there is

λ > 0 such that R`(λ) > 0, then the infectives in system (1.1.1) are uniformly

strong persistent.

Proof. Assume that there is λ > 0 such that R`(λ) > 0 and let us fix partic-

ular families of solutions of systems (1.1.5) and (1.1.6), respectively (x∗1,ε(t), z
∗
1,ε(t))

and (x∗2,ε(t), z
∗
2,ε(t)), with positive initial conditions and satisfying N6.4) and N6.5).

Then, we can choose t0 > 0, κ > 0 and ε0 > 0 such that, for t > t0 and δ ∈ [0, ε0]

we have∫ t+λ

t

β(s)(x∗1(s)− δ)− η(s)g(x∗1(s)− δ, δ, z∗2(s) + δ)− c(s) ds > κ > 0. (1.2.8)

Let (S(t), I(t), P (t)) be a solution of (1.1.1) with positive initial conditions. We

will prove first that there is ε > 0 such that

lim sup
t→+∞

I(t) >
v(ε)ρ`

(1 + βu)(1 + θuηu)
> 0. (1.2.9)

Assume that for all sufficiently small ε > 0

lim sup
t→+∞

I(t) <
v(ε)ρ`

(1 + βu)(1 + θuηu)
.

Then, we conclude that there is t1 > t0, such that

I(t) <
v(ε)ρ`

(1 + βu)(1 + θuηu)
< v(ε)ρ(t), (1.2.10)



1.2. EXTINCTION AND UNIFORM STRONG PERSISTENCE OF INFECTIVES 21

for each t > t1. By the first and third equations of (1.1.1) and the inequalities in

N6.1) we haveS
′ 6 G2,ε(t, S)

P ′ 6 h2,ε(t, P )P + γ(t)a(t)f(S, 0, P )P + v(ε)ρ(t)θ(t)η(t)g(S, 0, P )
.

Let (x̂ε(t), ẑε(t)) be the solution ofx
′ = G2,ε(t, x)

z′ = h2,ε(t, z)z + γ(t)a(t)f(x, 0, z)z + v(ε)ρ(t)θ(t)η(t)g(x, 0, z)

with x̂ε(t1) = S(t1) and ẑε(t1) = P (t1). We have S(t) 6 x̂ε(t) and P (t) 6 ẑε(t) for

t > t1. By the global stability assumption in N6.5), we have∣∣x∗2,ε(t)− x̂ε(t)∣∣→ 0 and
∣∣z∗2,ε(t)− ẑε(t)∣∣→ 0, as t→ +∞

and, by continuity, again according to N6.5), we have for sufficiently large t

|x∗2(t)− x̂ε(t)| 6
∣∣x∗2(t)− x∗2,ε(t)

∣∣+
∣∣x∗2,ε(t)− x̂ε(t)∣∣

6 ‖x∗2 − x∗2,ε‖0 +
∣∣x∗2,ε(t)− x̂ε(t)∣∣

6 ϕ1(ε),

and

|z∗2(t)− ẑε(t)| 6
∣∣z∗2(t)− z∗2,ε(t)

∣∣+
∣∣z∗2,ε(t)− ẑε(t)∣∣

6 ‖z∗2 − z∗2,ε‖0 +
∣∣z∗2,ε(t)− ẑε(t)∣∣

6 ϕ2(ε),

with ϕ1(ε), ϕ2(ε)→ 0 as ε→ 0. In particular, for sufficiently large t,

S(t) 6 x̂ε(t) 6 ϕ1(ε) + x∗2(t) and P (t) 6 ẑε(t) 6 ϕ2(ε) + z∗2(t). (1.2.11)

On the other hand, by (1.2.10) and by the first and the third equations of (1.1.1),

we have S
′ > G1,ε(t, S)− a(t)f(S, 0, 0)ẑε(t)− v(ε)ρ(t)S

P ′ > h1,ε(t, P )P + γ(t)a(t)f(S, v(ε)ρu, P )P



22 1. NON-AUTONOMOUS ECO-EPIDEMIOLOGICAL MODEL

Letting (x̃ε(t), z̃ε(t)) be the solution ofx
′ = G1,ε(t, x)− a(t)f(x, 0, 0)ẑε(t)− v(ε)ρ(t)x

z′ = h1,ε(t, z)z + γ(t)a(t)f(x, v(ε)ρu, z)z

with x̃ε(t1) = S(t1) and z̃ε(t1) = P (t1), we have S(t) > x̃ε(t) and P (t) > z̃ε(t), for

all t > t1. By the global stability assumption in N6.4), we have∣∣x∗1,ε(t)− x̃ε(t)∣∣→ 0 and
∣∣z∗1,ε(t)− z̃ε(t)∣∣→ 0, as t→ +∞.

and, by the continuity property in N6.4), for sufficiently large t, we have

|x∗1(t)− x̃ε(t)| 6
∣∣x∗1(t)− x∗1,ε(t)

∣∣+
∣∣x∗1,ε(t)− x̃ε(t)∣∣

6 ‖x∗1 − x∗1,ε‖0 +
∣∣x∗1,ε(t)− x̃ε(t)∣∣

6 ψ1(ε),

and

|z∗1(t)− z̃ε(t)| 6
∣∣z∗1(t)− z∗1,ε(t)

∣∣+
∣∣z∗1,ε(t)− z̃ε(t)∣∣

6 ‖z∗1 − z∗1,ε‖0 +
∣∣z∗1,ε(t)− z̃ε(t)∣∣

6 ψ2(ε),

with ψ1(ε), ψ2(ε)→ 0 as ε→ 0. In particular, for sufficiently large t,

S(t) > x̃ε(t) > x∗1(t)− ψ1(ε) and P (t) > z̃ε(t) > z∗1(t)− ψ2(ε). (1.2.12)

By the second equation in (1.1.1), (1.2.8), (1.2.11) and (1.2.12) we get, for t > t1,∫ t+λ

t
β(s)S(s)− η(s)g(S(s), I(s), P (s))− c(s) ds

>
∫ t+λ

t
β(s)(x∗1(s)− ψ1(ε))− η(s)g(x∗1(s)− ψ1(ε), 0, z∗2(s) + ϕ2(ε))− c(s) ds > κ.
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Thus, choosing ε > 0 such that max{ϕ2(ε), ψ1(ε), v(ε)ρu} < ε0, we have

I(t) = I(t1) exp

{∫ t

t1

β(s)S(s)− η(s)g(S(s), I(s), P (s))− c(s) ds
}

> I(t1) exp

{∫ t

t1

β(s)(x∗1(s)− ψ1(ε))ds

}
× exp

{∫ t

t1

−η(s)g(x∗1(s)− ψ1(ε), 0, z∗2(s) + ϕ2(ε))− c(s) ds
}

> I(t1) e−λ(βuψ1(ε)+ηug((x∗1)u−ψ1(ε),0,(z∗2 )`+ϕ2(ε))+cu)

× exp

{∫ t1+b(t−t1)/λcλ

t1

β(s)(x∗1(s)− ψ1(ε))ds

}

× exp

{∫ t1+b(t−t1)/λcλ

t1

−η(s)g(x∗1(s)− ψ1(ε), 0, z∗2(s) + ϕ2(ε))− c(s) ds

}
> I(t1) eb(t−t1)/λcκ e−λ(βuψ1(ε)+ηug((x∗1)u−ψ1(ε),0,(x∗1)`+ϕ2(ε))+cu),

a contradiction to the fact that, according to N3), I(t) is bounded. We conclude

that (1.2.9) holds.

Next we will prove that there is m1 > 0 such that for any solution (S(t), I(t), P (t))

with positive initial condition,

lim inf
t→+∞

I(t) > m1. (1.2.13)

Assume that (1.2.13) does not hold. Then, given ε ∈]0, ε0[, there exists a sequence of

initial values (xn)n∈N, with xn = (Sn, In, Pn) and Sn > 0, In > 0 and Pn > 0 such that

lim inf
t→+∞

I(t, xn) <
ρuv(ε/n2)

(1 + θuηu)(1 + βu)
, (1.2.14)

where (S(t, xn), I(t, xn), P (t, xn)) denotes the solution of (1.1.1) with initial conditions

S(0) = Sn, I(0) = In, and P (0) = Pn. By (1.2.9), given n ∈ N, there are two sequences

(tn,k)k∈N and (sn,k)k∈N with

sn,1 < tn,1 < sn,2 < tn,2 < · · · < sn,k < tn,k < · · ·

and lim
k→+∞

sn,k = +∞, such that

I(sn,k, xn) =
ρ`v(ε/n)

(1 + θuηu)(1 + βu)
, I(tn,k, xn) =

ρuv(ε/n2)

(1 + θuηu)(1 + βu)
(1.2.15)

and, for all t ∈]sn,k, tn,k[,

ρuv(ε/n2)

(1 + θuηu)(1 + βu)
< I(t, xn) <

ρ`v(ε/n)

(1 + θuηu)(1 + βu)
. (1.2.16)
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By the second equation in (1.1.1) and N3), for sufficiently large t, we have

I ′(t, xn) = [β(t)S(t, xn)− η(t)g(S(t, xn), I(t, xn), P (t, xn))− c(t)] I(t, xn)

> −(ηug(0, 0, L) + cu)I(t, xn).

Therefore we obtain∫ tn,k

sn,k

I ′(r, xn)

I(r, xn)
dr > −(ηug(0, 0, L) + cu)(tn,k − sn,k)

and thus I(tn,k, xn) > I(sn,k, xn) e−(ηug(0,0,L)+cu)(tn,k−sn,k). By (1.2.15), and N6.3) we get

ρuv(ε/n2)

ρ`v(ε/n)
>
ρ(tn,k)v(ε/n2)

ρ(sn,k)v(ε/n)
> e−(ηug(0,0,L)+cu)(tn,k−sn,k)

and therefore we have

tn,k − sn,k >
log(ρ`/ρu) + log(v(ε/n)/v(ε/n2))

ηug(0, 0, L) + cu
→ +∞ (1.2.17)

as n→ +∞, since, by N6.2) we have

lim
n→+∞

v(ε/n)

v(ε/n2)
= lim

n→+∞

n v′(ε/n)

2 v′(ε/n2)
> lim

n→+∞

An

2B
= +∞.

By the first and third equations of (1.1.1) and (1.2.16), we have, for t ∈ ]sn,k, tn,k[,
S′ 6 G2,ε(t, S(t, xn))

P ′ 6 h2,ε(t, P (t, xn))P (t, xn) + γ(t)a(t)f(S(t, xn), 0, P (t, xn))P (t, xn)

+ρ(t)v(ε/n)θ(t)η(t)g(S(t, xn), 0, P (t, xn))

.

Letting (x̂n,k(t), ẑn,k(t)) be the solution ofx
′ = G2,ε(t, x)

z′ = h2,ε(t, z)z + γ(t)a(t)f(x, 0, z)z + ρ(t)v(ε/n)θ(t)η(t)g(x, 0, z)

with x̂n,k(sn,k) = S(sn,k) and ẑn,k(sn,k) = P (sn,k). We conclude that S(t, xn) 6 x̂n,k(t)

and P (t, xn) 6 ẑn,k(t), for each t ∈ ]sn,k, tn,k[. By N6.5), given δ > 0, we have∣∣∣x∗2,ε/n(t)− x̂n,k(t)
∣∣∣ < δ/2 and

∣∣∣z∗2,ε/n(t)− ẑn,k(t)
∣∣∣ < δ/2,

for all sufficiently large k (that depends on n). By continuity, for sufficiently large n and

all sufficiently large k > K(n), we have

|x∗2(t)− x̂n,k(t)| 6
∣∣∣x∗2(t)− x∗2,ε/n(t)

∣∣∣+
∣∣∣x∗2,ε/n(t)− x̂n,k(t)

∣∣∣ 6 δ.
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and

|z∗2(t)− ẑn,k(t)| 6
∣∣∣z∗2(t)− z∗2,ε/n(t)

∣∣∣+
∣∣∣z∗2,ε/n(t)− ẑn,k(t)

∣∣∣ 6 δ.
In particular, for sufficiently large n, all sufficiently large k > K(n) and for t ∈ ]sn,k(n), tn,k(n)[,

we have

S(t) 6 x̂n,k(t) 6 x
∗
2(t) + δ and P (t) 6 ẑn,k(t) 6 z

∗
2(t) + δ. (1.2.18)

Similar computations show that, for sufficiently large n, all sufficiently large k > K(n)

and for t ∈ ]sn,k(n), tn,k(n)[, we obtain

S(t) > x̃n,k(t) > x
∗
1(t)− δ and P (t) > z̃n,k(t) > z

∗
1(t)− δ. (1.2.19)

Notice that, for a given δ, eventually considering a larger n, we can take the same n and

k in (1.2.18) and (1.2.19).

Given l > 0, by (1.2.17) we can choose T > 0 such that tn,k − sn,k > lλ for all n > T .

Therefore, by (1.2.15), (1.2.18) and (1.2.19), and by the second equation in (1.1.1), for

n > T and k > K(n) we get

ρuv(ε/n2)

(1 + θuηu)(1 + βu)

= I(tn,k, xn)

= I(sn,k, xn) exp

{∫ tn,k

sn,k

β(r)S(r)− η(r)g(S(r), I(r), P (r))− c(r) dr

}
> I(sn,k, xn)×

× exp

{
κl +

∫ tn,k

sn,k+b(tn,k−sn,k)/λc
β(r)(x∗1(r)− δ)− η(r)g(x∗1(r)− δ, 0, z∗2(r) + δ)− c(r) dr

}

>
ρ`v(ε/n)

(1 + θuηu)(1 + βu)
eκl−λ(βuδ+ηu(g((x∗1)u+δ,0,(z∗2 )u−δ)+cu)

>
ρ`v(ε/n)

(1 + θuηu)(1 + βu)
,

for sufficiently large l (that requires that T is sufficiently large). We conclude that

ρuv(ε/n2)

ρ`v(ε/n)
>1

and this contradicts the fact that, by N6.2) and N6.3), we have

lim
n→+∞

ρuv(ε/n2)

ρ`v(ε/n)
= lim

n→+∞

2ρuv′(ε/n2)/n3

ρ`v′(ε/n)/n2
6 lim

n→+∞

2ρuB

nρ`A
= 0.
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We conclude that there is m1 > 0 such that lim inf
t→+∞

I(t) > m1 and the result follows

from N3). �

In [68], the authors obtain extinction and persistence results for eco-epidemiological

model with Crowley-Martin functional response. In the extinction result the authors

consider auxiliary equations different from (1.1.2) and (1.1.3) using some upper

bound for S and some lower bound for P related to the dimension of some posi-

tive invariant region that contains the omega limit of all solutions. We will borrow

and improve the idea of that paper in our context. To this purpose, we need to

consider families of auxiliary equations. We begin by noticing that, by the proof

of Theorem 1.1, for that any solution (S(t), I(t), P (t)) of our problem with initial

condition (S(t0), I(t0), P (t0)) = (S0, I0, P0) we have s1,`(t) 6 S(t) 6 s1,u(t) and

y1,`(t) 6 P (t) 6 y1,u(t), for all t > 0 sufficiently large, where s1,`(t) = 0, s1,u(t)

is the solution of (1.1.2) with initial condition s1,u(t0) = S0, y1,`(t) is the solution

of (1.1.3) with initial condition y1,`(t0) = P0 and y1,u(t) = L, where L is given in

condition N3). Consider the equations:

s′ = G(t, s)− a(t)f(s, L, y1,u(t))y1,`(t), (1.2.20)

and

s′ = G(t, s)− a(t)f(s, 0, y1,`(t))y1,u(t)− β(t)sL, (1.2.21)

where y1,`(t) is a particular solution of (1.1.3). For equations (1.2.20) and (1.2.21),

we assume the following:

N4’) Each solution s(t) of (1.2.20) (respectively (1.2.21)) with positive initial condi-

tion is bounded, bounded away from zero, and globally attractive on ]0,+∞[,

that is |s(t)− v(t)| → 0 as t→ +∞ for each solution v(t) of (1.2.20) (respec-

tively (1.2.21)) with positive initial condition.

We also need to consider the equations

y′ = h(t, y)y + γ(t)a(t)f(s2,`(t), L, y)y, (1.2.22)

and

y′ = h(t, y)y + γ(t)a(t)f(s2,u(t), 0, y)y + θ(t)η(t)g(0, 0, y)L, (1.2.23)
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where s2,u(t) is a particular solution of (1.2.21). For the family of equations (1.2.22),

we assume the following:

N5’) Each fixed solution y(t) of (1.2.22) (respectively (1.2.23)) with positive initial

condition is bounded and globally attractive on [0,+∞).

Using the solutions of the systems above we can define the following number:

Ru,1(λ) = lim sup
t→+∞

∫ t+λ

t

β(s)s](s)− η(s)g(s](s), 0, y](s))− c(s) ds. (1.2.24)

where s](t) and y](t) are particular solutions, respectively, of (1.2.20) and (1.2.22)

with positive initial conditions. Notice that, according to our assumptions, it is

easy to prove, with similar arguments to the ones in Proposition 1.1, that Ru,1(λ)

is independent of the particular solutions considered.

Theorem 1.3. Assume that conditions N1) to N2), N4’) and N5’) hold. Assume

further x → f(x, y, z) in nondecreasing and that either G(t, S) = Λ(t) − µ(t)S and

g(S + I, 0, P ) 6 g(S, I, P ) or g does not depend on I. If there is λ > 0 such that

Ru,1(λ) < 0, then the infectives in system (1.1.1) go to extinction.

Proof. The proof consists in repeating the steps in the proof of Theorem 1.1,

with the changes that we will describe below. In the first place, instead of the

bounds (1.2.5) and (1.2.6), we use bounds obtained in the following way: letting

y1,`(t) and y2,u(t) be the solutions defined above, we know that

S ′ 6 G(t, S)− a(t)f(S, L, y1,u(t))y1,`(t) (1.2.25)

and

S ′ > G(t, S)− a(t)f(S, 0, y1,`(t))y1,u(t)− β(t)SL. (1.2.26)

Thus, using the solutions s2,u(t) and s2,`(t) respectively of (1.2.25) and (1.2.26), we

obtain

P ′ > h(t, P )P + γ(t)a(t)f(s2,`(t), L, P )P (1.2.27)

and

P ′ 6 h(t, P )P + γ(t)a(t)f(s2,u(t), 0, P )P + θ(t)η(t)g(0, 0, P )L. (1.2.28)
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The bounds in (1.2.25) and (1.2.27) allow us to conclude that, for sufficiently large

t > 0, we have S(t) 6 s](t) and P (t) > y](t), where s](t) and y](t) are respectively

particular solutions of (1.2.20) and (1.2.22); using the solutions s](t) and y](t) and

the number Ru,1(λ) in (1.2.24), similar arguments to the ones in Theorem 1.1 allow

us to obtain the result. �

We note that the procedure in Theorem 1.3 can be iterated to obtain new and

(hopefully) better estimates of the region of extinction, as long as we can still ensure

that assumptions N4’) and N5’) still hold for the new equations. In fact all we have

to do is the following: consider equations (1.2.20) and (1.2.21) with y1,`(t) and y1,u(t)

replaced by y2,`(t) and y2,u(t), the solutions of (1.2.22) and (1.2.23), and denote the

solutions of those equations by s3,`(t) and s3,u(t); consider equations (1.2.22) and

(1.2.23) with s2,`(t) and s2,u(t) replaced by s3,`(t) and s3,u(t); replace Ru,1(λ) by

Ru,2(λ) = lim sup
t→+∞

∫ t+λ

t

β(s)s]](s)− η(s)g(s]](s), 0, y](s))− c(s) ds,

where s]](t) and y]](t) are particular solutions, respectively, of the new equations

corresponding to (1.2.20) and (1.2.22) with positive initial conditions. With these

ingredients we obtain a new theorem on extinction. As long as the assumptions

corresponding to N4’) and N5’) still hold, we can repeat the process over and over

again obtaining a sequence of theorems on extinction and (hopefully) improving the

estimates at each step.

1.3. Examples

In this section we will apply Theorems 1.1 and 1.2 to some particular cases of

model (1.1.1).

1.3.1. No predation on uninfected preys. In this section we will consider

a family of models with no predation on uninfected preys by letting f ≡ 0 and

g(S, I, P ) = P . This family generalises the family of models in [75] by allowing a

very general form for the vital dynamics of predators and preys. Thus, still assuming
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conditions N1) to N6), we consider in this subsection the following model:
S ′ = G(t, S)− β(t)SI

I ′ = β(t)SI − η(t)PI − c(t)I

P ′ = h(t, P )P + θ(t)η(t)PI

. (1.3.1)

In this context, (1.2.1) and (1.2.2) become

R`
np(λ) = lim inf

t→+∞

∫ t+λ

t

β(s)s∗(s)− η(s)y∗(s)− c(s) ds (1.3.2)

and

Ru
np(λ) = lim sup

t→+∞

∫ t+λ

t

β(s)s∗(s)− η(s)y∗(s)− c(s) ds. (1.3.3)

where s∗(t) and y∗(t) are particular solutions, respectively, of (1.1.2) and (1.1.3).

We obtain the corollaries of Theorems 1.1 and 1.2:

Corollary 1. Assume that we have N1) to N5) and that g(S + I, 0, P ) 6

g(S, I, P ). If there is λ > 0 such that Ru
np(λ) < 0 then the infectives in system (1.3.1)

go to extinction.

Corollary 2. Assume that we have N1) to N3) and N6). If there is λ > 0 such

that R`
np(λ) > 0 then the infectives in system (1.3.1) are uniform strong persistent.

As we already mentioned, model (1.3.1) includes the model discussed in [75] as

the particular case where G(t, S) = Λ(t) − µ(t)S and h(t, P ) = b(t) − r(t)P , with

Λ, µ, r and b nonnegative, continuous and bounded functions satisfying:

lim inf
t→+∞

∫ t+ω1

t

Λ(s) ds > 0, lim inf
t→+∞

∫ t+ω2

t

µ(s) ds > 0,

lim inf
t→+∞

∫ t+ω3

t

r(s) ds > 0 and lim inf
t→+∞

∫ t+ω4

t

b(s) ds > 0,

for some constants wi > 0, i = 1, . . . , 4:
S ′ = Λ(t)− µ(t)S − β(t)SI

I ′ = β(t)SI − η(t)PI − c(t)I

P ′ = (b(t)− r(t)P )P + θ(t)η(t)PI

. (1.3.4)
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Note that, for the model in (1.3.4), condition N1) is assumed, condition N2) is

immediate from the particular forms of the functions g and h, conditions N4) and

N5) follow from Lemmas 1 and 3 in [75] and condition N6) is a consequence of

the fact that, in this setting, systems (1.1.5) and (1.1.6) are uncoupled and small

perturbations of each of the equations in those systems is globally asymptotically

stable by Lemmas 1 and 3 in [75]. Finally, condition N3) follows from Theorem

1 in [75]. We also note that Ru
np(λ) and R`

np(λ) coincide with the corresponding

numbers in [75].

Another possible choice for the functions g and h is h(t, P ) = −(δ1(t) + δ2(t)P ),

with δ1 and δ2 continuous and nonnegative functions and G(t, S) = k(t, S)S with k

a continuous and bounded function satisfying the conditions: ∂k/∂S(t, s) < 0, for

every t, s > 0; k(t, 0) > 0 for all t > 0; there is S1(t) > 0 such that k(t, S1(t)) = 0, for

every t > 0. This choice makes the underlying predator-uninfected prey subsystem

in model (1.3.1) correspond to the model studied in section 3 of [38] with the function

f ≡ 0. System (1.3.1) becomes in this case:
S ′ = k(t, S)S − β(t)SI

I ′ = β(t)SI − η(t)PI − c(t)I

P ′ = −(δ1(t) + δ2(t)P )P + θ(t)η(t)PI

. (1.3.5)

Notice that the study of the function k(t, S) in [38] allow us to conclude easily that

conditions N1) to N5) are satisfied for this model. Condition N6) is a consequence

of the fact that systems (1.1.5) and (1.1.6) are uncoupled and small perturbations of

each of the equations in those systems is globally asymptotically stable (the global

asymptotic stability of the first equation is consequence of Lemma 3.1 in [38] and

the global asymptotic stability of the second equation is trivial).

To do some simulation, we consider the following particular set of parameters:

G(t, S) = (0.7−0.6S)S; β(t) = β0(1+0.7 cos(2πt)); η(t) = 0.7(1+0.7 cos(π+2πt));

c(t) = 0.1; h(t, P ) = −0.2− 0.3P ; θ(t) = 0.9. We obtain the model:
S ′ = (0.7− 0.6S)S − β0(1 + 0.7 cos(2πt))SI

I ′ = β0(1 + 0.7 cos(2πt))SI − 0.7(1 + 0.7 cos(π + 2πt))PI − 0.1I

P ′ = −0.2− 0.3P + 0.63(1 + 0.7 cos(π + 2πt))PI

, (1.3.6)
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We first consider β0 = 0.075 and obtain, R0 ≈ 0.87 < 1 and we conclude that we

have extinction of the infected prey (figure 1.1). Next we assume that β0 = 0.09

and obtain R0 ≈ 1.05 > 1 and we conclude that we have uniform strong persistence

of the infected prey (figure 1.2). In the extinction scenario we considered the fol-

lowing initial conditions in time t = 0: (S0, I0, P0) = (2.66, 0.51, 0.9), (S0, I0, P0) =

(1.6, 0.2, 0.3) and (S0, I0, P0) = (0.48, 0.7, 0.6). In the uniform strong persistence

situation we considered the following initial conditions in time t = 0: (S0, I0, P0) =

(0.5, 0.1, 0.4), (S0, I0, P0) = (0.4, 0.8, 0.7) and (S0, I0, P0) = (1.036, 0.387, 0.153).
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Figure 1.1. Extinction; no predation on uninfected prey; β0 = 0.075.
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Figure 1.2. Persistence; no predation on uninfected prey; β0 = 0.09.

1.3.2. Periodic coefficients. In this subsection we consider a family of models

with periodic parameters and predation on uninfected preys that, in general, is not

included in the general family of models considered in [68]. For periodic models,

the thresholds become easier to deal with.

Assume that there is ω > 0 such that all parameters in (1.1.1) are ω-periodic

functions. In this case, (1.2.1) and (1.2.2) become, respectively,

R`(ω) =

∫ ω

0

β(s)x∗1(s)− η(s)g(x∗1(s), 0, z∗2(s))− c(s) ds,

and

Ru(ω) =

∫ ω

0

β(s)s∗(s)− η(s)g(s∗(s), 0, y∗(s))− c(s) ds.
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Thus

R`(ω) > 0 ⇔ βx∗1

ηg(x∗1, 0, z
∗
2) + c

> 1

and

Ru(ω) < 0 ⇔ βs∗

ηg(s∗, 0, y∗) + c
< 1.

where s∗(t) and y∗(t) are particular solutions, respectively, of (1.1.2) and (1.1.3),

and x∗1(t) and z∗2(t) still denote any particular solution of first and second equations

in systems (1.1.5) and (1.1.6), respectively, with positive initial conditions. Define

R`
per =

βx∗1

ηg(x∗1, 0, z
∗
2) + c

and Ru
per =

βs∗

ηg(s∗, 0, y∗) + c
.

We obtain the following corollaries of Theorems 1.1 and 1.2:

Corollary 3. Assume that we have N1) to N5) and that g(S + I, 0, P ) 6

g(S, I, P ). If Ru
per < 1 then the infectives in model (1.1.1) with periodic coefficients

go to extinction.

Corollary 4. Assume that we have N1) to N3) and N6). If R`
per > 1 then the

infectives in model (1.1.1) with periodic coefficients are uniform strong persistent.

Note that the corollaries in [75], concerning the periodic case, are particular cases

of the corollaries above. In fact, in [75] we have f ≡ 0, G(t, S) = Λ(t)− µ(t)S and

h(t, S) = b(t)− r(t)P . In that case, as argued in the previous section, (s∗(t), y∗(t))

is a particular solution of (1.1.4), condition N1) is assumed, condition N2) is imme-

diate, conditions N3) to N6) follow from results in [75]. Thus, when f ≡ 0, we get

similar thresholds to the ones in the mentioned paper:

R`
per = Ru

per =
βs∗

ηy∗ + c
.

We will focus now on a particular models with a function G that is different from

the corresponding function in [68]. We consider the following setting: G(t, S) =

(Λ−µS)S; a(t) = a; f(S, I, P ) = S; g(S, I, P ) = P ; h(t, P ) = b− rP ; γ(t) = γ. We
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obtain the model: 
S ′ = (Λ− µS)S − aSP − β(t)SI

I ′ = β(t)SI − η(t)PI − c(t)I

P ′ = (b− rP )P + γaSP + θ(t)η(t)PI

, (1.3.7)

For this model, condition N1) is assumed, condition N2) is immediate from the

particular forms of the functions g and h, conditions N4) and N5) hold for our

particular functions as already discussed in section 1.3.1. In this context, an endemic

equilibrium for (1.1.6) is (Λ/µ, ẑε) , with ẑε = (bµ+ aγΛ + εµ)/µr, and the endemic

equilibrium for (1.1.5) exists if Λr > ab+ aγΛ/µ:(
Λ̂

µ
,
bµ+ aγΛ̂

µr

)
,

with Λ̂ = Λ − aẑε − ε. These subsystems can be discussed using [40]. In fact,

the global asymptotic stability result proved in section 3 of [40] implies that, if

Λr > ab + aγΛ/µ, condition N6) is satisfied. Finally, condition N3) is consequence

of the following lemma:

Lemma 1.1. There is a bounded region that contains the ω-limit of all orbits

of (1.3.7).

Proof. Let ε > 0. Since, by the first equation in (1.3.7), S ′ 6 (Λ − µS)S, we

conclude that

S(t) 6
Λ

µ
+ ε, (1.3.8)

for all t sufficiently large. Additionally, we get

sup
S∈R

(Λ− µS)S 6

(
Λ− µΛ

2µ

)
Λ

2µ
=

Λ2

4µ
. (1.3.9)

Adding the first two equations in (1.3.7) and using (1.3.8) and (1.3.9) we have, for

all t sufficiently large,

(S + I)′ = (Λ− µS)S − c(t)I

6
Λ2

4µ
+ c(t)S − c(t)(S + I)

6
Λ2

4µ
+ cu

Λ

µ
+ cuε− c`(S + I).

, (1.3.10)
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Since ε > 0 is arbitrary, we conclude that

lim sup
t→∞

(S + I)(t) 6
1

c`

(
Λ2

4µ
+ cu

Λ

µ

)
:= A. (1.3.11)

Finally, by the third equation in (1.3.7) and (1.3.10), given ε > 0, we get

P ′ = (b− rP )P + γaSP + θ(t)η(t)PI

6 (b+ γaA+ θuηuA− rP )P,
(1.3.12)

for sufficiently large t. Thus,

lim sup
t→∞

P (t) 6
1

r
(b+ γaA+ θuηuA) := B.

Equations (1.3.10) and (1.3.12) show that the region

{(S, I, P ) ∈ R3 : 0 6 S + I 6 A and 0 6 P 6 B}

contains the ω-limit of any orbit. The result is proved. �

To do some simulation in the this scenario, we consider the following parameters

in (1.3.7): Λ = 0.7; µ = 0.18; a = 0.4; β(t) = β0(1 + 0.7 cos(2πt)); η(t) = 0.7(1 +

0.7 cos(π + 2πt)); c(t) = 0.1; b = 0.8; r = 0.6; θ(t) = 0.9; γ = 0.1. We obtain the

model:
S ′ = (0.7− 0.18S)S − 0.4SP − β0(1 + 0.7 cos(2πt))SI

I ′ = β0(1 + 0.7 cos(2πt))SI − 0.7(1 + 0.7 cos(π + 2πt))PI − 0.1I

P ′ = (0.8− 0.6P )P + 0.04SP + 0.63(1 + 0.7 cos(π + 2πt))PI

. (1.3.13)

We have Ru
per = 3.764β0 and R`

per = 3.705β0. Thus, if β0 < 0.266, we have ex-

tinction of the infectives and, if β0 > 0.270 , we have persistence of the infec-

tives. In figure 1.3, we present simulation results for β0 = 0.2 (extinction) and

in figure 1.4, we present simulation results for β0 = 1.4 (uniform strong persis-

tence). To obtain figures 1.3 and 1.4 where the extinction and uniform strong

persistence situations were addressed, respectively, the following initial conditions,

in time t = 0, were used (S0, I0, P0) = (0.811, 0.0624, 1.388) and (S0, I0, P0) =

(1.388, 0.06, 1.388) corresponding, respectively, to a disease-free solution and an

(approximately) periodic solution. The other two initial conditions are, for the
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extinction case, (S0, I0, P0) = (0.6, 0.16, 0.46) and (S0, I0, P0) = (1.0975, 0.044, 0.76).

For the case of uniform strong persistence we considered, in time t = 0, the initial

conditions (S0, I0, P0) = (0.5, 0.1, 0.4) and (S0, I0, P0) = (0.4, 0.04, 0.7).
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Figure 1.3. Extinction; periodic coefficients; β0 = 0, 2.
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Figure 1.4. Persistence; periodic coefficients; β0 = 1, 4.

A question that arises is if it is possible to obtain similar results as in Theo-

rems 1.1 and 1.2 perturbing the uninfected subsystem (1.1.4), by considering for

condition N6) the following subsystemsx
′ = G1,ε(t, x)− a(t)f(x, 0, z)z − v(ε)ρ(t)x

z′ = h1,ε(t, z)z + γ(t)a(t)f(x, v(ε)ρu, z)z
(1.3.14)

and x
′ = G2,ε(t, x)− a(t)f(x, v(ε)ρu, z)z

z′ = h2,ε(t, z)z + γ(t)a(t)f(x, 0, z)z + v(ε)ρ(t)g(x, v(ε)ρu, z)
, (1.3.15)

instead (1.1.5) and (1.1.6), pespectively.
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In the next examples is not straightforward to check the necessary properties of

subsystems (1.1.5) and (1.1.6). To give some contributions, we check that the fol-

lowing examples satisty N6) if we replace (1.1.5) and (1.1.6) by (1.3.14) and (1.3.15),

respectively, and we carry out some simulation that suggests we have persistence in

this context, if we replace R`(λ) by

R̂`(λ) = lim inf
t→+∞

∫ t+λ

t

β(s)x∗(s)− η(s)g(x∗(s), 0, z∗(s))− c(s) ds (1.3.16)

where (x∗(t), z∗(t)) is any particular solution of system (1.1.4) with positive ini-

tial conditions. It remains to answer if it is possible to obtain persistence assum-

ing (1.3.15) and (1.3.15) for condition N6).

1.3.3. Gause-type uninfected subsystem. A model with Michaelis-Menten

(or Holling type II) functional response of predator to infected prey is now consid-

ered. The uninfected model obtained is a particular case of a Gause-type model

(see [62]). We consider the following setting: G(t, S) = (Λ − µS)S; a(t) = a;

f(S, I, P ) = S/(m+S+ I); g(S, I, P ) = P/(m+S+ I) with m > 0; h(t, P ) = −dP

and γ(t) = γ. We obtain the model:
S ′ = (Λ− µS)S − a SP

m+S+I
− β(t)SI

I ′ = β(t)SI − η(t) PI
m+S+I

− c(t)I

P ′ = −dP + γa SP
m+S+I

+ θ(t)η(t) PI
m+S+I

, (1.3.17)

where β, η, c and θ are still continuous functions. The result in [62] allows us

to conclude that, for sufficiently small ε > 0, if γa 6 d or γa > d and Λ/µ 6

d(m+ ε)/(γa− d), we have that the equilibrium point ((Λ− ε)/µ, 0) of the systemx
′ = (Λ− µx)x− a xz

m+x
− εx

z′ = −dz + γa xz
m+ε+x

(1.3.18)

is globally asymptotically stable in the set {(x, z) ∈ (R+
0 )2 : x > 0 ∧ z > 0}. Notice

that system (1.3.18) corresponds, in this case, to system (1.3.14) with v(ε) = ε,

ρ(t) = 1, G1,ε = (Λ − µx)x and h1,ε = −d. By [62] we can also conclude that, for



1.3. EXAMPLES 37

sufficiently small ε > 0, If

d(m+ ε)

γa− d
<

Λ

µ
6 m+ ε+

2d(m+ ε)

γa− d
,

the equilibrium(
d(m+ ε)

γa− d
,
µ

a

(
Λ

µ
− d(m+ ε)

γa− d

)(
m+ ε+

d(m+ ε)

γa− d

))
of the system x

′ = (Λ− µx)x− a xz
m+ε+x

z′ = −dz + γa xz
m+x

+ εz
m+ε+x

,
, (1.3.19)

is globally asymptotically stable in the set {(x, z) ∈ (R+
0 )2 : x > 0 ∧ z > 0}. Notice

that system (1.3.19) corresponds, in this case, to system (1.3.15) with v(ε) = ε,

ρ(t) = 1, G2,ε = (Λ− µx)x and h2,ε = −d. For this models, the numbers in (1.3.16)

and (1.2.2) become:

R̂`(λ) = lim inf
t→+∞

∫ t+λ

t

β(s)
dm

γa− d
− η(s)

(
Λ

µ
− d

γa− d

)(
m

dm

γa− d

)
− c(s) ds

(1.3.20)

and

Ru(λ) = lim sup
t→+∞

∫ t+λ

t

β(s)
Λ

µ
− c(s) ds. (1.3.21)

When the parameters are periodic, we obtain

R̂`
per =

dmβ̄

η̄
(

Λ
µ
− d

γa−d

)(
m dm

γa−d

)
+ c̄

and Ru
per =

(Λ/µ)β̄

c̄
.

For model (1.3.17), condition N1) is assumed, condition N2) is immediate from

the particular forms of the functions G and h, condition N4) holds, as already

discussed, and condition N5) is immediate. Finally, condition N3) can be obtained

using similar arguments to the ones in Lemma 1.1. We have the following corollary

of Theorem 1.1:

Corollary 5. Assume that the parameters in model (1.3.17) are periodic. If

Ru
per < 1 then the infectives in model (1.3.17) go to extinction.

Under the conditions above, we conclude that condition N6) holds if we re-

place (1.1.5) and (1.1.6) by (1.3.14) and (1.3.15), respectively. It remains to answer
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that if the parameters in model (1.3.17) are periodic and R̂`
per > 1 then the infec-

tives in model (1.3.17) are uniformly strong persistent. The following simulations

suggests that this is the case.

To do some simulation, in this scenario we assumed that G(t, S) = (0.7−0.6S)S;

a = 0.978; β(t) = β0(1 + 0.7 cos(2πt)); η(t) = 0.7(1 + 0.7 cos(π + 2πt)); c(t) = 0.1;

d = 0.3; m = 2; γ = 0.9; θ(t) = 0.9. We obtain the model:
S ′ = (0.7− 0.6S)S − 0.978 SP

2+S+I
− β0(1 + 0.7 cos(2πt))SI

I ′ = β0(1 + 0.7 cos(2πt))SI − 0.7(1 + 0.7 cos(π + 2πt)) PI
2+S+I

− 0.1I

P ′ = −0.3P + 0.8802 SP
2+S+I

+ 0.63(1 + 0.7 cos(π + 2πt)) PI
2+S+I

. (1.3.22)

When β0 = 0, 07 we obtain approximately Ru
per ≈ 0, 82 < 1 and we conclude

that we have extinction (figure 1.7). When β0 = 0, 6 we obtain approximately

R̂`
per ≈ 1.2 > 1. The simulation suggests that the infectives are uniform strong

persistent in this case (figure 1.8).

In the extinction scenario we considered the following initial conditions in time

t = 0: (S0, I0, P0) = (1.66, 0.51, 0.9), (S0, I0, P0) = (0.6, 0.2, 0.3) and (S0, I0, P0) =

(2.45, 0.7, 0.6). In the uniform strong persistent situation we considered the initial

conditions in t = 0: (S0, I0, P0) = (1, 0.387, 0.153), (S0, I0, P0) = (0.5, 0.1, 0.4) and

(S0, I0, P0) = (0.4, 0.04, 0.7).
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Figure 1.5. Extinction; Gause-type uninfected subsystem; β0 = 0.07.
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Figure 1.6. Persistence; Gause-type uninfected subsystem; β0 = 0.6.

1.3.4. Ratio-dependent uninfected subsystem. The functional response of

predator to prey in the uninfected subsystem in the next example is ratio-dependent.

Ratio-dependent functional responses were considered to overcome some paradoxes

identified in Gause-type systems (see [50] and the references therein). We consider

the following setting: G(t, S) = (Λ−µS)S; a(t) = a; f(S, I, P ) = S/(mP +S) with

m > 0; g(S, I, P ) = P ; h(t, P ) = −d and γ(t) = γ. The following model is obtained:
S ′ = (Λ− µS)S − a SP

mP+S
− β(t)SI

I ′ = β(t)SI − η(t)PI − c(t)I

P ′ = −dP + γa SP
mP+S

+ θ(t)η(t)PI

. (1.3.23)

In this context, the uninfected system was discussed in [50]. In that paper it was

shown that, if d > γa and a < mΛ we have that the equilibrium point (Λ/µ, 0)

is globally asymptotically stable in the set {(x, z) ∈ (R+
0 )2 : x > 0 ∧ z > 0}

(note that this conditions lead to extinction of the predator). Under the conditions

above, we conclude that condition N6) holds if we replace (1.1.5) and (1.1.6) by

(1.3.14) and (1.3.15), respectively. For model (1.3.23), condition N1) is assumed,

condition N2) is immediate from the particular forms of the functions f , G and h,

condition N4) holds, as already discussed, and condition N5) is immediate. Finally,

condition N3) can be obtained using similar arguments to the ones in Lemma 1.1.

To do some simulation, in this scenario we assumed that G(t, S) = (0.7−0.6S)S;

a = 0.4; β(t) = β0(1 + 0.7 cos(2πt)); η(t) = 0.7(1 + 0.7 cos(π + 2πt)); c(t) = 0.1;
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d = 0.4; m = 2; γ = 0.8; θ(t) = 0.9. We obtain the model:
S ′ = (0.7− 0.6S)S − 0.4 SP

2P+S
− β0(1 + 0.7 cos(2πt))SI

I ′ = β0(1 + 0.7 cos(2πt))SI − 0.7(1 + 0.7 cos(π + 2πt))PI − 0.1I

P ′ = −0.4P + 0.32 SP
2P+S

+ 0.63(1 + 0.7 cos(π + 2πt))PI

. (1.3.24)

When β0 = 0, 08 we obtain approximately Ru
per ≈ 0.93 < 1 and we conclude

that we have extinction (figure 1.7). When β0 = 0.25 we obtain approximately

R̂`
per ≈ 2.9 > 1. The simulations below suggests that the infectives are uniformly

strong persistent (figure 1.8).

In the extinction case we considered the following initial conditions in time

t = 0: (S0, I0, P0) = (2.5, 0.514, 0.9), (S0, I0, P0) = (1.2, 0.2, 0.3) and (S0, I0, P0) =

(0.45, 0.7, 0.6). In the uniform strong persistent situation we considered the ini-

tial conditions: (S0, I0, P0) = (1.0357, 0.387, 0.1525), (S0, I0, P0) = (0.5, 0.1, 0.4) and

(S0, I0, P0) = (0.4, 0.04, 0.7), in t = 0.
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Figure 1.7. Extinction; ratio-dependent uninfected subsystem;
β0 = 0.08.
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Figure 1.8. Persistence; ratio-dependent uninfected subsystem;
β0 = 0.25.

1.3.5. Time-varying coefficients in the uninfected subsystem I. We now

consider an example where the uninfected model is nonautonomous. For this model
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we will be able to obtain explicit thresholds based on the study of the underlying

susceptible prey/predator subsystem in [91]. Assuming that G(t, S) = (p+ qh(t)−

dh(t)S)S with h(t) continuous and satisfying h` < h(t) < hu for some constants

h`, hu > 0, f(S, I, P ) = S, g(S, I, P ) = P , a(t) = b, h(t, P ) = −q and γ(t) = d/b

in (1.1.1), we obtain the following particular model:
S ′ = (p+ qh(t)− dh(t)S)S − bSP − β(t)SI

I ′ = β(t)SI − η(t)PI − c(t)I

P ′ = −qP + dSP + θ(t)η(t)PI

, (1.3.25)

where we continue to assume that β, η, c and θ are continuous functions.

For model (1.3.25), condition N1) is assumed, condition N2) is immediate from

the particular forms of the functions G and h, condition N3) can be obtained using

similar arguments to the ones in Lemma 1.1, condition N4) holds, as already dis-

cussed, and condition N5) is immediate. We will check that condition N6) holds if

we replace (1.1.5) and (1.1.6) by (1.3.14) and (1.3.15), respectively.

The results in [107] allow us to conclude that, for sufficiently small ε > 0, the

interior equilibrium ((q − huε)/d, (p+ (hu)2ε)/b) of systemx
′ = (p+ ε(hu)2 + (q − huε)h(t)− dh(t)x)x

z′ = −(q − huε)z + dxz
(1.3.26)

is globally asymptotically stable in the region {(x, z) ∈ R2 : x, z > 0}. Notice that

system (1.3.26) corresponds, in this case, to system (1.1.6) with v(ε) = ε, ρ(t) = h(t),

G2,ε(t, x) = (p+ (q + huε)h(t)− dh(t)x)x and h2,ε(t, z) = −q + (hu − h(t))ε.

By [107], we can also conclude that, for sufficiently small ε > 0, the interior

equilibrium ((q + ε)/d, (p− 2εhu)/b) of systemx
′ = (p− 2εhu + (q + ε)h(t)− dh(t)x)x− bxz

z′ = −(q + ε)z + dxz
(1.3.27)

is globally asymptotically stable in the region {(x, z) ∈ R2 : x, z > 0}. Notice

that system (1.3.27) corresponds, in this case, to system (1.3.14) with v(ε) = ε,

ρ(t) = h(t), G1,ε(t, x) = (p− 2εhu + qh(t)− dh(t)x)x and h1,ε(t, z) = −q − ε.
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Naturally, the continuity of functions

ε 7→ ((q − huε)/d, (p+ (hu)2ε)/b) and ε 7→ ((q + ε)/d, (p− 2εhu)/b)

is immediate and we conclude that condition N6) with the mentioned changes also

holds.

For this model, the numbers (1.3.16) and (1.2.2) become:

R̂`(λ) = lim inf
t→+∞

∫ t+λ

t

β(s)q/d− η(s)p/b− c(s) ds

and

Ru(λ) = lim sup
t→+∞

∫ t+λ

t

β(s)(p+ qh)/d− c(s) ds.

When the parameters are periodic, we obtain

R̂`
per =

qbβ̄

d(pη̄ + bc̄)
and Ru

per =
(p+ qh)β̄

dc̄

and we have the following corollary of Theorems 1.1:

Corollary 6. Assume that the parameters in model (1.3.25) are periodic. If

Ru
per < 1 then the infectives in model (1.3.25) go to extinction.

As in the previous example, it remains to answer that if the parameters in

model (1.3.25) are periodic and R̂`
per > 1 we have that the infectives in model (1.3.25)

are uniformly strong persistent. Again, the following simulations suggests that this

is the case.

To do some simulation, we consider the following setting: p = 0.7, q = 0.7,

h(t) = 0.5(1 + 0.7 cos(2πt)), d = 0.18, b = 0.3, β(t) = β0(1 + 0.7 cos(2πt)), η(t) =

0.7(1 + 0.7 cos(π + 2πt)), c(t) = 0.1 and θ(t) = 0.9. We obtain the model:
S′ = (0.7 + (1 + 0.7 cos(2πt))(0.35− 0.09S))S − β0(1 + 0.7 cos(2πt))SI − 0.3SP

I ′ = β0(1 + 0.7 cos(2πt))SI − 0.7(1 + 0.7 cos(π + 2πt))PI − 0.1I

P ′ = −0.7P + 0.18SP + 0.63(1 + 0.7 cos(π + 2πt))PI

.

(1.3.28)

When β0 = 0.01 we obtain R`per ≈ 0.58 < 1 and we conclude that the infectives

go to extinction (figure 1.9). When β0 = 0, 5 we obtain R̂`per ≈ 1.12 > 1. Sim-

ulation results suggest that the infectives are strong persistent (figure 1.10). In the

extinction and strong persistent situations we considered, in t = 0, respectively, the
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initial condition (S0, I0, P0) = (7.16, 0.15, 4.5) and (S0, I0, P0) = (2.48, 0.38, 1.95). In

both situations, we also considered the initial conditions (S0, I0, P0) = (0.5, 0.1, 0.4) and

(S0, I0, P0) = (0.4, 0.04, 0.7) in t = 0.
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Figure 1.9. Extinction; time-varying coefficients uninfected sub-
system I; β0 = 0.01.
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Figure 1.10. Persistence; time-varying coefficients uninfected sub-
system I; β0 = 0.5.

Note that according to [91], if h in system (1.3.25) is replaced by a nonnegative and

bounded function then, when ε1 = ε2 = 0, a sufficient condition for system (1.3.26) to be

globally asymptotically stable is that h ∈ F[WIP ], where F[WIP ] denotes the class of real

functions defined in [0,+∞[ such that

+∞∑
n=1

∫ σn

τn

h(t) dt = +∞,

for every pair of sequences satisfying τn < σn < τn+1, lim inf(σn−τn) > 0 and lim sup(τn+1−

σn) > 0. See also [107] for a necessary and sufficient condition. It would be interesting to

have a theoretical result for this larger class of systems.

1.3.6. Time-varying coefficients in the uninfected subsystem II. Like in the

previous subsection, in this we will consider as example with non-autonomous uninfected

model but, unlike the uninfected model in the previous subsection, here the time-varying

parameters arise in the predator equation. Assuming that G(t, S) = q, f(S, I, P ) = S,

g(S, I, P ) = P , a(t) = b, h(t, P ) = −p+qh(t)−bh(t)P with h(t) continuous and satisfying
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h` < h(t) < hu for some constants h`, hu > 0, and γ(t) = d/b in (1.1.1), we obtain the

following particular model:
S′ = qS − bSP − β(t)SI

I ′ = β(t)SI − η(t)PI − c(t)I

P ′ = (−p+ qh(t)− bh(t)P )P + dSP + θ(t)η(t)PI

, (1.3.29)

where we continue to assume that β, η, c and θ are continuous functions.

The uninfected system associated to model (1.3.29) was considered in [80] where global

asymptotic stability for the disease-free equilibrium was obtained. For the same model,

in [53], under suitable conditions, the global asymptotic stability for the endemic equi-

librium was also obtained. The results in [53] allow us to conclude that, for sufficiently

small ε > 0, the interior equilibrium ((p− (hu)2ε)/d, (q − huε)/b) of systemx
′ = (q − huε)x− dxz

z′ = (−p+ ε(hu)2 + (q − huε)h(t)− bh(t)z)z + dxz
(1.3.30)

is globally asymptotically stable in the region {(x, z) ∈ R2 : x, z > 0}. Notice that

system (1.3.30) corresponds, in this case, to system (1.3.15) with v(ε) = ε, ρ(t) = h(t),

G2,ε(t, x) = q + (h(t)− hu)ε and h2,ε(t, z) = −p+ (hu)2ε+ (q − huε)h(t)− bh(t)z.

By [80], we can also conclude that, for sufficiently small ε > 0, the interior equilibrium

((q − ε)/b, (p− 2εhu)/d) of systemx
′ = (q − ε)x− bxz

z′ = (−p+ 2εhu + (q − ε)h(t)− bh(t)z)z + dxz
(1.3.31)

is globally asymptotically stable in the region {(x, z) ∈ R2 : x, z > 0}. Notice that

system (1.3.31) corresponds, in this case, to system (1.3.14) with v(ε) = ε, ρ(t) = h(t),

G1,ε(t, x) = (q − ε)x and h1,ε(t, z) = −p+ 2εhu + (q − ε)h(t)− bh(t)z.

As we can see, the continuity of functions

ε 7→ ((p− (hu)2ε)/d, (q − huε)/b) and ε 7→ ((q − ε)/b, (p− 2εhu)/d)

is immediate. We conclude that condition N6) holds if we replace (1.1.5) and (1.1.6) by

(1.3.14) and (1.3.15), respectively .

Let

R̂`(λ) = lim inf
t→+∞

∫ t+λ

t
β(s)p/d− η(s)q/b− c(s) ds
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and

Ru(λ) = lim sup
t→+∞

∫ t+λ

t
β(s)(p− qh)/d− c(s) ds

When the parameters are periodic, we obtain

R̂`per =
pbβ̄

d(pη̄ + bc̄)
and Ruper =

(p− qh)β̄

dc̄

and we have the following corollary of Theorem 1.1:

Corollary 7. Assume that the parameters in model (1.3.29) are periodic. If Ruper < 1

then the infectives in model (1.3.29) go to extinction.

It remains to answer that if the parameters in model (1.3.29) are periodic and R̂`per > 1

we have that the infectives in model (1.3.29) are uniformly strong persistent. The following

simulations suggests that this is the case.

To do some simulation, we consider the following setting: p = 0.7, q = 0.9, h(t) =

0.5(1 + 0.7 cos(100π
√
t)), d = 0.18, b = 0.3, β(t) = β0(1 + 0.7 cos(100π

√
t)), η(t) =

0.7(1 + 0.7 cos(π + 100π
√
t)), c(t) = 0.1 and θ(t) = 0.9. We obtain the model:

S′ = 0.9S − 0.3SP − β0(1 + 0.7 cos(100π
√
t))SI

I ′ = β0(1 + 0.7 cos(100π
√
t))SI − 0.7(1 + 0.7 cos(π + 100π

√
t))PI − 0.1I

P ′ = (−0.7 + (0.45− 0.15P )(1 + 0.7 cos(100π
√
t)))P

+0.63(1 + 0.7 cos(π + 100π
√
t))PI + 0.18SP

. (1.3.32)

When β0 = 0.04 we obtain Ruper ≈ 0.78 < 1 and we conclude that the infectives go to

extinction (figure 1.9). When β0 = 0, 5 we obtain R̂`per ≈ 1, 12 > 1 and we conclude

that the infectives are uniformly strong persistent (figure 1.10). In the extinction and

strong persistent situations we considered, in t = 0, respectively, the initial condition

(S0, I0, P0) = (3.342, 0.15, 2.23) and (S0, I0, P0) = (3.889, 0.15, 2.334) corresponding, re-

spectively, to a disease-free solution and an (approximately) periodic solution. In both

situations, we also considered, in t = 0, the initial conditions (S0, I0, P0) = (0.5, 0.1, 0.4)

and (S0, I0, P0) = (0.4, 0.04, 0.7).
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Figure 1.11. Extinction; time-varying coefficients uninfected sub-
system II; β0 = 0.01.
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Figure 1.12. Persistence; time-varying coefficients uninfected sub-
system II; β0 = 0.5.

Based on the simulation carried out, including a considerable amount of tests under-

taken for the several models studied, but for parameters that fall into the regions where

we are not able to decide, based on Theorems 1.1 and 1.2, if we have extinction or uniform

strong persistence (regions where Ru(λ) > 1 and R`(λ) < 1), we conjecture that for the

model considered in examples 1 to 6, we have extinction when

lim sup
t→+∞

∫ t+λ

t
β(s)x∗(s)− η(t)z∗(s)− c(s) ds < 0,

where (x∗(t), z∗(t)) is any particular solution of system (1.1.4) with positive initial condi-

tions.

1.4. Classical Lotka-Volterra interaction

In section 1.1 we considered that in the predator/uninfected prey subspace we had as-

ymptotic stability. This doesn’t correspond to the behavior of the classical Lotka-Volterra

model, considered independently by Alfred Lotka and Vito Volterra, where the interior

equilibrium was stable in the sense of Lyapunov but not asymptotically stable. It would

be interesting to use a similar strategy to the one in section 1.1 to study the following eco-

epidemiological model, where in the unifected subspace we have a classical Lotka-Volterra
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model: 
S′ = αS − aSP − β(t)SI

I ′ = β(t)SI − η(t)PI − c(t)I

P ′ = γaSP − bP + θ(t)η(t)PI

, (1.4.1)

where the constants α, a, γ and b are positive and the real valued functions β, η, c and θ

are bounded, nonnegative and continuous.

By similarity with the previous thresholds, we define the number

R`LV =
bβ`

γa
− αηu

a
− cu.

To do some simulations we consider the following parameters: α = 0.7, a = 1.2,

β(t) = β0(1 + 0.4 cos(2πt)), η(t) = 0.5(1 + 0.4 cos(π + 2πt)), c(t) = 0.1, γ = 0.5, b = 0.7,

θ(t) = 0.9. We obtain the model:
S′ = 0.7S − 1.2SP − β0(1 + 0.4 cos(2πt))SI

I ′ = β0(1 + 0.4 cos(2πt))SI − 0.5(1 + 0.4 cos(π + 2πt))PI − 0.1I

P ′ = 0.6SP + 0.45(1 + 0.4 cos(π + 2πt))PI − 0.7P

, (1.4.2)

When β0 = 0.9 we obtain RLV ≈ 0, 13 > 0 and the simulation suggests that the

infectives are persistent (figure 1.13). Similar conclusions were obtained in different sim-

ulations.

We considered the following initial conditions in t = 0: (S0, I0, P0) = (0.8, 1.7, 0.7),

(S0, I0, P0) = (0.6, 1.7, 0.5) and (S0, I0, P0) = (0.4, 1.3, 0.3) for the plots in figures 1.13

and 1.14. Additionally, in figure 1.14, we also consider orbits contained in the SI plane

corresponding to following initial conditions in t = 0: (S0, I0, P0) = (0.0041, 0.3531, 0),

(S0, I0, P0) = (0.0065, 1.2949, 0) and (S0, I0, P0) = (0.0845, 0.4234, 0).
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Figure 1.13. Persistence classical Lotka-Volterra interaction; β0 = 0.9.
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Figure 1.14. Persistence classical Lotka-Volterra interaction; β0 = 0.9.

1.5. Comments

In this chapter we studied a general non-autonomous eco-epidemiological model and

obtained some results on the extinction and persistence of the infected prey I assuming

that the uninfected subsystem in globally asymptotically stable: under some suitable

conditions, in Theorem 1 we obtained extinction of the infected prey whenever there is

λ > 0 such that Ru(λ) < 0, in Theorem 2 we obtained the uniform strong persistence

of the infected prey whenever there is λ > 0 such that R`(λ) > 0, and in Theorem 3 we

improved the extinction result by considering better estimates that allowed us to consider

a different condition for extinction than the one in Theorem 1, namely it was proved that

the infected prey goes to extinction if there is λ > 0 such that Ru,1(λ) < 0. Moreover,

we describe an iterative process based on the ideas in the proof of Theorem 3 to obtain a

sequence of conditions for extinction.

When there is no predation on uninfected preys, the integrals in (1.2.1) and (1.2.2)

coincide. One of the natural questions that follows from our results is the following: under

which condition we have a similar situation, even in the case of where we have predation on

uninfected preys. Another related question is to explore the iterative procedure described

after Theorem 1.3.

Still in this chapter we consider several examples to illustrate the applicability of the

results mentioned above.

A natural question that arises is if it is possible to still obtain a result on persistence

and extinction when the uninfected subsystem is a more general predator prey model.



CHAPTER 2

Periodic Eco-Epidemiological Model

In this chapter we address the existence of periodic orbits for periodic eco-epidemi-

ological system with disease in the prey for two distinct families of models obtained from

the general model (0.0.2). For the first one, we use Mawhin’s continuation Theorem in

a wide general system that includes some models discussed in the literature, and for the

second family we obtain a sharp result using a recent strategy that relies on the uniqueness

of periodic orbits in the disease-free space.

In more detail, we consider in sections 2.1 and 2.2 a first family of periodic models

obtained from (0.0.2) by letting G(t, S) = Λ(t)− µ(t)S and

H(t, P ) = (r(t)− b(t)P )P, (2.0.1)

and in section 2.3 a second family of periodic models obtained from (0.0.2) by letting

G(t, S) = Λ(t)− µ(t)S and

H(t, P ) = Υ(t)− ζ(t)P. (2.0.2)

The first model considered generalizes the model studied in [90], a periodic version of the

general non-autonomous model introduced in [75].

In the first scenario, whereH is given by (2.0.1), we allow r(t) to be positive or negative.

When r(t) > 0 for all t, we obtain a model with linear vital dynamics of susceptible prey

in the absence of predators and disease and with logistic vital dynamics of predators in

the absence of the considered prey. This model generalizes [75]. When r(t) < 0 for all

t, we obtain a model with a classical vital dynamics of the predators as in the family of

Lotka-Volterra models considered in [38].

In the second scenario, as referred, we consider a linear vital dynamics for predators by

letting H be given by (2.0.2). The model obtained has no periodic solutions on the axis,

allowing us to use a different set of arguments to establish the existence of an endemic

periodic orbit. Note that, when H is given by (2.0.1), there is space in our model for

the possibility that predators survive in the absence of this prey. In fact, when r(t) is

nonnegative, the predator have a logistic behaviour. A possible biological interpretation

49
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is that predators in this ecosystem possess different sources of food and, in the absence

of the prey in this model, the behavior of the predator population is logistic. When r(t)

is nonpositive we obtain a usual behaviour for predators in the absence of preys. When

H is given by (2.0.2) predators allways survive in the absence of the prey considered in

the model and we also interpret this fact as in the corresponding situation for the first

scenario.

In the first scenario, for technical reasons, we have to make the restriction g(S, I, P ) =

P , while in the second scenario we let g be a general function that satisfies some natural

assumptions.

In the first situation, r(t) and b(t) are parameters related to the vital dynamics of the

predator population that include the intra-specific competition between predators. This

vital dynamics is assumed to follow a logistic law when r(t) > 0 for all t > 0 and that is

similar to the vital dynamics of predator in a family of Lotka-Volterra models considered

in [38] when r(t) < 0 for all t > 0. In both scenarios Λ(t) is the recruitment rate of the

prey population, µ(t) is the natural death rate of the prey population, a(t) is the predation

rate of susceptible prey, β(t) is the incidence rate, η(t) is the predation rate of infected

prey, c(t) is the death rate in the infective class (c(t) > µ(t)), γ(t) is the rate of converting

susceptible prey into predator (biomass transfer), θ(t) is the rate of converting infected

prey into predator. It is assumed that only susceptible preys S are capable of reproducing,

i.e, the infected prey is removed by death (including natural and disease-related death) or

by predation before having the possibility of reproducing.

2.1. Classical or logistic vital dynamics for predators

In this section we let g(S, I, P ) = P , G(t, S) = Λ(t) − µ(t)S and H(t, P ) = (r(t) −

b(t)P )P , obtaining a model that generalizes the model in [90] by considering a function

that corresponds to the predation of uninfected preys:
S′ = Λ(t)− µ(t)S − a(t)f(S, I, P )P − β(t)SI

I ′ = β(t)SI − η(t)PI − c(t)I

P ′ = (r(t)− b(t)P )P + γ(t)a(t)f(S, I, P )P + θ(t)η(t)PI

. (2.1.1)

Given a ω-periodic function f we will use throughout the paper the notations f ` =

inft∈(0,ω] f(t), fu = supt∈(0,ω] f(t) and f̄ = 1
ω

∫ ω
0 f(s) ds. We will assume the following

structural hypothesis concerning the parameter functions and the function f appearing in

our model:
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P1) The real valued functions Λ, µ, a, β, η, c, γ, θ and b are periodic with period ω,

nonnegative and continuous; the real valued function r is periodic with period ω and

continuous and can be nonnegative or nonpositive;

P2) Function f is nonnegative and C1;

P3) Function x 7→ f(x, y, z) is nondecreasing;

P4) Functions z 7→ f(x, y, z) and y 7→ f(x, y, z) are nonincreasing;

P5) For all (x, y, z) we have

f(x, y, z) + z
∂f

∂z
(x, y, z) > 0, η + a

∂f

∂y
(x, y, z) > 0 and θη + γa

∂f

∂y
(x, y, z) > 0;

P6) Λ̄ > 0, µ̄ > 0 and b̄ > 0;

P7) There is α > 1 and K > 0 such that f(x, 0, 0) 6 Kxα.

Note that our functional response must depend on I to be able to include functional

response functions with saturation, that must depend on the total population of preys

(see [32, 8]). Condition P4) is included in condition N2) in chapter 1. Like in chapter 1,

these conditions are satisfied by several usual functional response functions: Holling-type

I, Holling-type II, Holling-type III, Beddington-De Angelis and Crowley-Martin. The

assumption f(x, y, z) + z ∂f∂z (x, y, z) > 0 in P5) and condition P7) are also satisfied by

all the functional response functions above. The other conditions in P5) are satisfied by

Holling-type I functional response functions regardless of the parameter considered and

by the other mentioned response functions for suitable choices of parameters.

To formulate our next assumptions we need to consider two auxiliary equations and

one auxiliary system. First, for each λ ∈ (0, 1], we need to consider the following equations:

x′ = λ(Λ(t)− µ(t)x) (2.1.2)

and

z′ = λ(r(t)− b(t)z)z. (2.1.3)

Note that, if we identify x with the susceptible prey population, equation (2.1.2) gives

the behaviour of the susceptible preys in the absence of infected preys and predator and

identifying z with the predator population, equation (2.1.3) gives the behaviour of the

predator in the absence of preys.

Equation (2.1.2) is a linear equation that was considered in countless papers on epi-

demiological models and equation (2.1.3) was already studied in [64]. These equations

have a well known behaviour, given in the following lemmas:
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Lemma 2.1. For each λ ∈ (0, 1] there is a unique ω-periodic solution of equation (2.1.2),

x∗λ(t), that is globally asymptotically stable in R+.

Lemma 2.2. If the function r is nonnegative, for each λ ∈ (0, 1] there is a unique

ω-periodic solution of equation (2.1.3), z∗λ(t), that is globally asymptotically stable in R+.

If the function r is nonpositive for each λ ∈ (0, 1] the zero solution of equation (2.1.3),

that we still denote by z∗λ(t), is globally asymptotically stable in R+
0 .

For each λ ∈ (0, 1] and ε, ε1, ε2 > 0 sufficiently small, we consider the family of systems:x
′ = λ(Λ(t)− µ(t)x− a(t)f(x, 0, 0)z∗2,ε,λ(t)− ε1x)

z′ = λ(r(t)− b(t)z + γ(t)a(t)f(x, ε2, z))z
(2.1.4)

where (x∗2,ε,λ(t), z∗2,ε,λ(t)) is a solution ofx
′ = λ(Λ(t)− µ(t)x)

z′ = λ(r(t)− b(t)z + γ(t)a(t)f(x, 0, z) + ε)z
(2.1.5)

satisfying the following assumptions.

P8) The following holds for systems (2.1.4) and (2.1.5):

P8.1) For each λ ∈ (0, 1] and each ε1, ε2, ε > 0 sufficiently small, system (2.1.4) has

a unique ω-periodic solution, (x∗1,ε1,ε2,ε,λ(t), z∗1,ε1,ε2,ε,λ(t)), with

x∗1,ε1,ε2,ε,λ(t) > 0 and z∗1,ε1,ε2,ε,λ(t)) > 0,

that is globally asymptotically stable in the set

{(x, z) ∈ (R+
0 )2 : x > 0 ∧ z > 0}.

We assume that (ε1, ε2, ε) 7→ (x∗1,ε1,ε2,ε,λ(t), z∗1,ε1,ε2,ε,λ(t)) is continuous.

P8.2) For each λ ∈ (0, 1] and each ε > 0 sufficiently small, system (2.1.5) has a unique

ω-periodic solution, (x∗2,ε,λ(t), z∗2,ε,λ(t)), with

x∗2,ε,λ(t) > 0 and z∗2,ε,λ(t)) > 0,

that is globally asymptotically stable in the set

{(x, z) ∈ (R+
0 )2 : x > 0 ∧ z > 0}.

We assume that (ε) 7→ (x∗2,ε,λ(t), z∗2,ε,λ(t)) is continuous.
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We write x∗1,0,λ = x∗1,λ, x∗2,0,λ = x∗2,λ, z∗1,0,λ = z∗1,λ and z∗2,0,λ = z∗2,λ for the components

of the solutions in P8.1) and P8.2) corresponding to ε = 0.

Condition P8) is similar to condition N6) in chapter 1. We introduce the numbers

R0 =
β̄Λ̄/µ̄

c̄+ η̄r̄/b̄
, Rλ0 =

βx∗1,λ

c+ ηz∗2,λ
and R̃0 = inf

λ∈(0,1]
Rλ0 . (2.1.6)

Before presenting our main result we have to consider the averaged system corresponding

to (2.1.1): 
S′ = Λ− µS − af(S, I, P )P − βSI

I ′ = βSI − ηPI − cI

P ′ = (r − bP )P + γaf(S, I, P )P + θηPI

. (2.1.7)

The number R0 is the basic reproductive number of (2.1.7) with f ≡ 0. We now present

our main result.

Theorem 2.1. If R̃0 > 1, conditions P1) to P8) hold and there is a unique equilibrium

of the averaged system (2.1.7) in (R+)3, the interior of the first octant, then system (2.1.1)

possesses an endemic periodic orbit of period ω.

Our proof relies on an application of Mawhin’s continuation theorem. We will proceed

in several steps. Firstly, in subsection 2.1.2, we consider a one parameter family of systems

and obtain uniform bounds for the components of any periodic solution of these systems.

Next, in subsection 2.1.3 we make a suitable change of variables in our family of systems

to establish the setting where we will apply Mawhin’s continuation Theorem. Finally, in

subsection 2.1.4, we use Mawhin’s continuation Theorem to obtain our result.

2.1.1. Mawhin’s continuation theorem. In the following, we state Mawhin’s con-

tinuation theorem [39, Part IV]. Let X and Z be Banach spaces.

Definition 2.1. A linear map L : D ⊆ X → Z is called a Fredholm mapping of index

zero if

1. dim kerL = codim ImL 6∞;

2. ImL is closed in Z.

Given a Fredholm mapping of index zero L : D ⊆ X → Z it is well known that there

are continuous projectors P : X → X and Q : Z → Z such that:

1. ImP = kerL;

2. kerQ = ImL = Im(I −Q);
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3. X = kerL ⊕ kerP ;

4. Z = ImL ⊕ ImQ.

It follows that L|D⋂ kerP : (I − P )X → ImL is invertible. We denote the inverse of that

map by K.

Definition 2.2. A continuous mapping N : X → Z is called L-compact on U ⊂ X,

where U is an open bounded set, if

1. QN (U) is bounded;

2. K(I −Q)N : U → X is compact.

Note that, since Im Q is isomorphic to ker L, there is an isomophism I : ImQ→ kerL.

We are now prepared to state the Mawhin’s continuation theorem.

Theorem 2.2 (Mawhin’s continuation theorem). Let X and Z be Banach spaces and

let U ⊂ X be an open set. Assume that L : D ⊆ X → Z is a Fredholm mapping of index

zero and let N : X → Z be L-compact on U . Additionally, assume that

M1) for each λ ∈ (0, 1) and x ∈ ∂U ∩D we have Lx 6= λNx;

M2) for each x ∈ ∂U ∩ kerL we have QNx 6= 0;

M3) deg(IQN , U ∩ kerL, 0) 6= 0.

Then the operator equation Lx = Nx has at least one solution in D ∩ U .

2.1.2. Uniform Persistence for periodic orbits. In this section, to obtain uni-

form bounds for the components of any periodic solution of the family of systems that we

can obtain multiplying the right hand side of (2.1.1) by λ ∈ (0, 1], we need to consider the

auxiliary systems:
S′λ = λ(Λ(t)− µ(t)Sλ − a(t)f(Sλ, Iλ, Pλ)Pλ − β(t)SλIλ)

I ′λ = λ(β(t)SλIλ − η(t)PλIλ − c(t)Iλ)

P ′λ = λ(γ(t)a(t)f(Sλ, Iλ, Pλ)Pλ + θ(t)η(t)PλIλ + r(t)Pλ − b(t)P 2
λ )

. (2.1.8)

We will consider separately each of the several components of any periodic orbit.

Lemma 2.3. Let x∗λ(t) be the unique solution of (2.1.2). There is L1 > 0 such that,

for any λ ∈ (0, 1] and any periodic solution (Sλ(t), Iλ(t), Pλ(t)) of (2.1.8) with initial

conditions Sλ(t0) = S0 > 0, Iλ(t0) = I0 > 0 and Pλ(t0) = P0 > 0, we have Sλ(t) + Iλ(t) 6

x∗λ(t) 6 Λu/µ` and Sλ > L1, for all t ∈ R.

Proof. Let (Sλ(t), Iλ(t), Pλ(t)) be some periodic solution of (2.1.8) with initial con-

ditions Sλ(t0) = S0 > 0, Iλ(t0) = I0 > 0 and Pλ(t0) = P0 > 0. Since c(t) > µ(t), we have,
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by the first and second equations of (2.1.8),

(Sλ + Iλ)′ 6 λΛ(t)− λµ(t)Sλ − λc(t)Iλ 6 λΛ(t)− λµ(t)(Sλ + Iλ).

Since, by Lemma 2.1, equation (2.1.2) has a unique periodic orbit, x∗λ(t), that is globally

asymptotically stable, we conclude that Sλ(t) + Iλ(t) 6 x∗λ(t) for all t ∈ R. Comparing

equation (2.1.2) with equation x′ = λΛu − λµ`x, we conclude that x∗λ(t) 6 Λu/µ`.

Using conditions P3) and P4), by the third equation of (2.1.8), we have

P ′λ 6 λ(r(t) + γ(t)a(t)f(x∗λ(t), 0, 0) + θ(t)η(t)x∗λ(t)− b(t)Pλ)Pλ 6 (Θu − b`Pλ)Pλ,

where function Θ is given by

Θ(t) = max
t∈[0,ω]

{r(t), 0}+ γ(t)a(t)f(x∗λ(t), 0, 0) + θ(t)η(t)x∗λ(t).

Thus, comparing with equation (2.1.3) and using Lemma 2.2, we get Pλ(t) 6 P ∗λ (t) 6

Θu/b`. Using the bound obtained above, since −β(t)Sλ(t) > −β(t)x∗λ(t), we have, by

conditions P3), P4) and P7),

S′λ = λΛ(t)− λµ(t)Sλ − λa(t)f(Sλ, Iλ, Pλ)Pλ − λβ(t)SλIλ

> λΛ` −
(
λµu + λau

f(Sλ, 0, 0)

Sλ

Θu

b`
+ λβu(x∗λ)u

)
Sλ

> λΛ` −
(
λµu + λauK((x∗λ)u)α−1Θu/b` + λβu(x∗λ)u

)
Sλ

According to computations above we have x∗λ(t) 6 Λu/µ` and thus

Sλ(t) >
λΛ`

λµu + λauK(Λu/µ`)α−1Θu/b` + λβuΛu/µ`
=: L1.

�

Lemma 2.4. Let z∗λ(t) be the unique solution of (2.1.3). There is L2 > 0 such that,

for any λ ∈ (0, 1] and any periodic solution (Sλ(t), Iλ(t), Pλ(t)) of (2.1.8) with initial

conditions Sλ(t0) = S0 > 0, Iλ(t0) = I0 > 0 and Pλ(t0) = P0 > 0, we have z∗λ(t) 6

Pλ(t) 6 L2, for all t ∈ R.

Proof. Let λ ∈ (0, 1] and (Sλ(t), Iλ(t), Pλ(t)) be any periodic solution of (2.1.8) with

initial conditions Sλ(t0) = S0 > 0, Iλ(t0) = I0 > 0 and Pλ(t0) = P0 > 0. We have

P ′λ = λPλ(γ(t)a(t)f(Sλ, Iλ, Pλ) + θ(t)η(t)Iλ + r(t)− b(t)Pλ) > (λr(t)− λb(t)Pλ)Pλ.

Comparing the previous inequality with equation (2.1.3) and using Lemma 2.2, we get

Pλ(t) > z∗λ(t).
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Using the computations in proof of the previous lemma, we have Pλ(t) 6 L1 and we

take L2 = L1. �

Lemma 2.5. Let R̃0 > 1. There are L3, L4 > 0 such that, for any λ ∈ (0, 1] and any

periodic solution (Sλ(t), Iλ(t), Pλ(t)) of (2.1.8) with initial conditions Sλ(t0) = S0 > 0,

Iλ(t0) = I0 > 0 and Pλ(t0) = P0 > 0, we have L3 6 Iλ(t) 6 L4, for all t ∈ R.

Proof. We will first prove that there is ε1 > 0 such that, for any λ ∈ (0, 1], we have

lim sup
t→+∞

Iλ(t) > ε1. (2.1.9)

By contradiction, assume that (2.1.9) does not hold. Then, for any ε > 0, there must be

λ > 0 such that Iλ(t) < ε for all t ∈ R. We have

S
′
λ 6 λΛ(t)− λµ(t)Sλ

P ′λ 6 λ(γ(t)a(t)f(Sλ, 0, Pλ) + r(t)− b(t)Pλ + εθuηu)Pλ

.

We have Sλ(t) 6 x∗2,εθuηu,λ(t) and Pλ(t) 6 z∗2,εθuηu,λ(t), for all t > t1 whenever Sλ(t1) =

x∗2,εθuηu,λ(t1) and Pλ(t1) = z∗2,εθuηu,λ(t1). Moreover, sinceS
′
λ > λΛ(t)− λµ(t)Sλ − λa(t)f(Sλ, 0, 0)z∗2,εθuηu,λ(t)− ελβuSλ

P ′λ > λ(γ(t)a(t)f(Sλ, ε, Pλ) + r(t)− b(t)Pλ)Pλ

.

we have Sλ(t) > x∗1,εβu,ε,εθuηuλ(t) and Pλ(t) > z∗1,εβu,ε,εθuηuλ(t) for all t > t2 ≥ t1, whenever

Sλ(t2) = x∗2,εθuηu,λ(t2) and Pλ(t2) = z∗2,εθuηu,λ(t2). Thus, using condition P8), we have

I ′λ = λ(β(t)Sλ − η(t)Pλ − c(t))Iλ

> (λβ(t)x∗1,εβu,ε,εθuηuλ(t)− λη(t)z∗2,εθuηu,λ(t)− λc(t))Iλ

> (λβ(t)x∗1,λ(t)− λη(t)z∗2,λ(t)− λc(t)− ϕ(ε))Iλ,

(2.1.10)

where ϕ is a nonnegative function such that ϕ(ε)→ 0 as ε→ 0 (notice that, by continuity,

we can assume that ϕ is independent of λ and, by periodicity of the parameter functions,

it is independent of t). Integrating in [0, ω] and using (2.1.10), we get

0 =
1

ω
(ln Iλ(ω)− ln Iλ(0)) =

1

ω

∫ ω

0
I ′λ(s)/Iλ(s) ds

> λ
(
βx∗1,λ − c̄− ηz∗2,λ

)
+ ϕ(ε) = λ(c̄+ ηz∗2,λ)(Rλ0 − 1) + ϕ(ε)

and since

Rλ0 > inf
`∈(0,1]

R`0 = R̃0 > 1,
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we have a contradiction. We conclude that (2.1.9) holds. Next we will prove that there is

ε2 > 0 such that, for any λ ∈ (0, 1], we have

lim inf
t→+∞

Iλ(t) > ε2. (2.1.11)

Assuming by contradiction that (2.1.11) does not hold, we conclude that there is a sequence

(λn, Iλn(sn), Iλn(tn)) ⊂ (0, 1]×R+
0 ×R

+
0 such that sn < tn, tn − sn 6 ω,

Iλn(sn) = 1/n, Iλn(tn) = ε2/2 and Iλn(t) ∈ (1/n, ε2/2), for all t ∈ (sn, tn).

Since λn 6 1, by Lemma 2.3 we have

I ′λn = (λnβ(t)Sλn − λnη(t)Pλn − λnc(t))Iλn 6 βuΛuIλn/µ
`

and thus

ln(ε2n/2) = ln(Iλn(tn)/Iλn(sn)) =

∫ tn

sn

I ′λn(s)/Iλn(s) ds 6 βuΛuω/µ`,

which is a contradiction since the sequence (ln(ε2n/2))n∈N goes to +∞ as n→ +∞, and

thus is not bounded.

We conclude that there is ε2 > 0 such that (2.1.11) holds. Letting L3 = ε2, we obtain

Iλ(t) > L3 for all λ ∈ (0, 1].

Since Iλ(t) 6 Sλ(t) + Iλ(t), by Lemma 2.3, we can take L4 = L2 and the result is

established. �

2.1.3. Mawhin’s continuation theorem setting. To apply Mawhin’s continuation

theorem to our model we make the change of variables: S(t) = eu1(t), I(t) = eu2(t) and

P (t) = eu3(t). With this change of variables, system (2.1.1) becomes
u′1 = Λ(t)e−u1 − a(t)f(eu1 , eu2 , eu3)eu3−u1 − β(t)eu2 − µ(t)

u′2 = β(t)eu1 − η(t)eu3 − c(t)

u′3 = γ(t)a(t)f(eu1 , eu2 , eu3) + θ(t)η(t)eu2 − b(t)eu3 + r(t)

. (2.1.12)

Note that, if (u∗1(t), u∗2(t), u∗3(t)) is an ω-periodic solution of the system (2.1.12) then

(eu1(t), eu2(t), eu3(t)) is an ω-periodic solution of system (2.1.1).

To define the operators in Mawhin’s theorem (see subsection 2.1.1), we need to consider

the Banach spaces (X, ‖ · ‖) and (Z, ‖ · ‖) where X and Z are the space of ω-periodic

continuous functions u : R→ R3:

X = Z = {u = (u1, u2, u3) ∈ C(R,R3) : u(t) = u(t+ ω)}
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and

‖u‖ = max
t∈[0,ω]

|u1(t)|+ max
t∈[0,ω]

|u2(t)|+ max
t∈[0,ω]

|u3(t)|.

Next, we consider the linear map L : X ∩ C1(R,R3)→ Z given by

Lu(t) =
du(t)

dt
(2.1.13)

and the map N : X → Z defined by

Nu(t) =


Λ(t)e−u1(t) − a(t)f(eu1 , eu2 , eu3)eu3(t)−u1(t) − β(t)eu2(t) − µ(t)

β(t)eu1(t) − η(t)eu3(t) − c(t)

γ(t)a(t)f(eu1 , eu2 , eu3) + θ(t)η(t)eu2(t) − b(t)eu3(t) + r(t)

 . (2.1.14)

In the following lemma we show that the linear map in (2.1.13) is a Fredholm mapping

of index zero

Lemma 2.6. The linear map L in (2.1.13) is a Fredholm mapping of index zero.

Proof. We have

kerL =

{
(u1, u2, u3) ∈ X ∩ C1(R,R3) :

dui(t)

dt
= 0, i = 1, 2, 3

}
=
{

(u1, u2, u3) ∈ X ∩ C1(R,R3) : ui is constant, i = 1, 2, 3
}

and thus kerL can be identified with R3. Therefore dim kerL = 3. On the other hand

ImL =

{
(z1, z2, z3) ∈ Z : ∃ u ∈ X ∩ C1(R,R3) :

dui(t)

dt
= zi(t), i = 1, 2, 3

}
=

{
(z1, z2, z3) ∈ Z :

∫ ω

0
zi(s) ds = 0, i = 1, 2, 3

}
.

and any z ∈ Z can be written as z = z̃ + α, where α = (α1, α2, α3) ∈ R3 and z̃ ∈ ImL.

Thus the complementary space of ImL consists of the constant functions. Thus, the

complementary space has dimension 3 and therefore codim ImL = 3.

Given any sequence (zn) in ImL such that

zn = ((z1)n, (z2)n, (z3)n)→ z = (z1, z2, z3),

we have, for i = 1, 2, 3 (note that z ∈ Z since Z is a Banach space and thus it is integrable

in [0, ω] since it is continuous in that interval),∫ ω

0
zi(s) ds =

∫ ω

0
lim

n→+∞
(zi)n(s) ds = lim

n→+∞

∫ ω

0
(zi)n(s) ds = 0.

Thus, z ∈ ImL and we conclude that ImL is closed in Z. Thus L is a Fredholm mapping

of index zero. �
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Consider the projectors P : X → X and Q : Z → Z given by

Pu(t) =
1

ω

∫ ω

0
u(s)ds and Qz(t) =

1

ω

∫ ω

0
z(s)ds.

Note that ImP = kerL and that kerQ = Im(I −Q) = ImL.

Consider the generalized inverse of L, K : ImL → D ∩ kerP , given by

Kz(t) =

∫ t

0
z(s)ds− 1

ω

∫ ω

0

∫ r

0
z(s) ds dr

the operator QN : X → Z given by

QNu(t) =



1
ω

∫ ω

0
Λ(s)e−u1(s) − a(s)f(eu1(s), eu2(s), eu3(s))eu3(s) − β(s)eu2(s) ds− µ

1
ω

∫ ω

0
β(s)eu1(s) − η(s)eu3(s) ds− c

1
ω

∫ ω

0
γ(s)a(s)f(eu1(s), eu2(s), eu3(s))eu3(s) + θ(s)η(s)eu2(s) − b(s)eu3(s) ds+ r


and the mapping K(I −Q)N : X → D ∩ kerP given by

K(I −Q)Nu(t) = B1(t)−B2(t)−B3(t),

where

B1(t) =



∫ t

0
Λ(s)e−u1(s) − a(s)f(eu1 , eu2 , eu3)eu3(s) − β(s)eu2(s) − µ(s) ds∫ t

0
β(s)eu1(s) − η(s)eu3(s) − c(s) ds∫ t

0
γ(s)a(s)f(eu1 , eu2 , eu3)eu3(s) + θ(s)η(s)eu2(s) − b(s)eu3(s)dt+ r(s) ds


,

B2(t) =



1
ω

∫ ω

0

∫ r

0
Λ(s)e−u1(s) − a(s)f(eu1 , eu2 , eu3)eu3(s) − β(s)eu2(s) − µ(s) ds dr

1
ω

∫ ω

0

∫ r

0
β(s)eu1(s) − η(s)eu3(s) − c(s) ds dr

1
ω

∫ ω

0

∫ r

0
γ(s)a(s)f(eu1 , eu2 , eu3)eu3(s) + θ(s)η(s)eu2(s) − b(s)eu3(s) + r(s) ds dr


,

and

B3(t) =

(
t

ω
− 1

2

)


∫ ω

0
Λ(s)e−u1(s) − a(s)f(eu1 , eu2 , eu3)eu3(s) − β(s)eu2(s) − µ(s) ds∫ ω

0
β(s)eu1(s) − η(s)eu3(s) − c(s) ds∫ ω

0
γ(s)a(s)f(eu1 , eu2 , eu3)eu3(s) + θ(s)η(s)eu2(s) − b(s)eu3(s) + r(s) ds


.
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The next lemma shows that N is L-compact in the closure of any open bounded subset

of its domain.

Lemma 2.7. The map N is L-compact in the closure of any open bounded set U ⊆ X.

Proof. Let U ⊆ X be an open bounded set and U its closure in X. Then, there

is M > 0 such that, for any u = (u1, u2, u3) ∈ U , we have that |ui(t)| 6 M , i = 1, 2, 3.

Letting QNu = ((QN )1u, (QN )2u, (QN )3u), we have

|(QN )1u(t)| 6 eM
(
Λ̄ + āf(eM , 0, 0) + β̄

)
+ µ̄,

|(QN )2u(t)| 6 eM (β̄ + η̄) + c

|(QN )3u(t)| 6 eM
(
γaf(eM , 0, 0) + θη + b̄

)
+ r

and we conclude that QN (U) is bounded.

Let now

K(I −Q)Nu = ((K(I −Q)N )1u, (K(I −Q)N )2u, (K(I −Q)N )3u) .

Let B ⊂ X be a bounded set. Note that the boundedness of B implies that there is M

such that |ui| < M , for all i = 1, 2, 3, and all u = (u1, u2, u3) ∈ B. It is immediate that

{K(I −Q)Nu : u ∈ B} is pointwise bounded. Given u = (u1, u2, u3)n∈N ∈ B we have

K(I −Q)N )1u(t)− (K(I −Q)N )1u(v)

=

∫ t

v
Λ(s)e−u1(s) − a(s)f(eu1(s), eu2(s), eu3(s))eu2(s) − β(s)eu2(s) − µ(s) ds

− t− v
ω

∫ ω

0
Λ(s)e−u1(s) − a(s)f(eu1(s), eu2(s), eu3(s))eu2(s) − β(s)eu2(s) − µ(s) ds

62(t− v)
[
eM (Λu + auf(eM , 0, 0) + βueM ) + µM

]
,

(2.1.15)

and similarly

(K(I −Q)N )2u(t)− (K(I −Q)N )2u(v) 6 2(t− v)
[
eM (βu + ηu) + cu

]
(2.1.16)

and

(K(I −Q)N )3u(t)− (K(I −Q)N )3u(v))

6 2(t− v)
[
(γuauf(eM , 0, 0) + θuηu + bu)eM + ru

]
.

(2.1.17)



2.1. CLASSICAL OR LOGISTIC VITAL DYNAMICS FOR PREDATORS 61

By (2.1.15), (2.1.16) and (2.1.17), we conclude that {K(I −Q)Nu : u ∈ B} is equicontin-

uous. Therefore, by Ascoli-Arzela’s theorem, K(I −Q)N (B) is relatively compact. Thus

the operator K(I −Q)N is compact.

We conclude that N is L-compact in the closure of any bounded set contained in

X. �

2.1.4. Application of Mawhin’s continuation theorem. In this section we will

construct the set where, applying Mahwin’s continuation theorem, we will find the periodic

orbit in the statement of our result.

Consider the system of algebraic equations:
Λe−u1 − af(eu1 , eu2 , eu3)eu3−u1 − βeu2 − µ = 0

βeu1 − ηeu3 − c = 0

γaf(eu1 , eu2 , eu3) + θηeu2 − beu3 + r = 0

. (2.1.18)

Note that, by hypothesis, the system above has a unique solution on the interior of the

first octant. Denote this solution by p∗(t) = (p∗1, p
∗
2, p
∗
3). Note also that, by the second

equation, we get

ηeu3 = βeu1 − c. (2.1.19)

By Lemmas 2.3, 2.4 and 2.5, there is a constant M0 > 0 such that ‖uλ(t)‖ < M0, for

any t ∈ [0, ω] and any periodic solution uλ(t) of (2.1.8). Let

U = {(u1, u2, u3) ∈ X : ‖(u1, u2, u3)‖ < M0 + ‖p∗‖}. (2.1.20)

Conditions M1) and M2) in Mawhin’s continuation theorem are fulfilled in the set U

defined in (2.1.20).

Using the notation v = (ep
∗
1 , ep

∗
2 , ep

∗
3), the Jacobian matrix of the vector field corre-

sponding to (2.1.18) computed in (p∗1, p
∗
2, p
∗
3) is

J =


−a ∂f∂S (v) ep

∗
3 −β ep

∗
2 −µ −β ep

∗
2 −a∂f∂I (v) ep

∗
3+p∗2−p∗1 −a ∂f∂P (v) e2p∗3−p∗1 −af(v) ep

∗
3−p∗1

β ep
∗
1 0 −η ep

∗
3

γa ∂f∂S (v) ep
∗
1 θη ep

∗
2 +γa∂f∂I (v) ep

∗
2 γa ∂f∂P (v) ep

∗
3 −b ep

∗
3

 .
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Thus

det J(p∗1, p
∗
2, p
∗
3)

=− β ep
∗
1

(
−β ep

∗
2

(
γa

∂f

∂P
(v) ep

∗
3 −b ep

∗
3

)
+

(
a
∂f

∂P
(v) e2p∗3−p∗1 +af(v) ep

∗
3−p∗1

)
θη ep

∗
2

)
−β ep

∗
1

(
−a∂f

∂I
(v) ep

∗
2+p∗3−p∗1

(
γa

∂f

∂P
(v) ep

∗
3 −b ep

∗
3

)
+

(
a
∂f

∂P
(v) e2p∗3−p∗1 +af(v) ep

∗
3−p∗1

)
γa
∂f

∂I
(v) ep

∗
2

)
+ η ep

∗
3

((
−a∂f

∂S
(v) ep

∗
3 −β ep

∗
2 −µ

)
θη ep

∗
2 +β ep

∗
2 γa

∂f

∂S
(v) ep

∗
1

)
+η ep

∗
3

((
−a∂f

∂S
(v) ep

∗
3 −β ep

∗
2 −µ

)
γa
∂f

∂I
(v) ep

∗
2 +a

∂f

∂I
(v) ep

∗
2+p∗3−p∗1 γa

∂f

∂S
(v) ep

∗
1

)
=− β ep

∗
1

(
−
(
β + a

∂f

∂I
(v) ep

∗
3−p∗1

)
ep
∗
2

(
γa

∂f

∂P
(v) ep

∗
3 −b ep

∗
3

)
+

(
a
∂f

∂P
(v) e2p∗3−p∗1 +af(v) ep

∗
3−p∗1

)(
θη + γa

∂f

∂I
(v)

)
ep
∗
2

)
+η ep

∗
3

((
−a∂f

∂S
(v) ep

∗
3 −β ep

∗
2 −µ

)(
θη + γa

∂f

∂I
(v)

)
ep
∗
2

+

(
β ep

∗
2 +a

∂f

∂I
(v) ep

∗
2+p∗3−p∗1

)
γa
∂f

∂S
(v) ep

∗
1

)
.

Taking into account P5) and (2.1.19), we have

det J(p∗1, p
∗
2, p
∗
3)

=− β ep
∗
1

(
−β
η

(
η + a

∂f

∂I
(v)− ac

β

∂f

∂I
(v) e−p

∗
1

)
ep
∗
2

(
γa

∂f

∂P
(v) ep

∗
3 −b ep

∗
3

)
+a ep

∗
3−p∗1

(
∂f

∂P
(v) ep

∗
3 +f(v)

)(
θη + γa

∂f

∂I
(v)

)
ep
∗
2

)
+η ep

∗
3

((
−a∂f

∂S
(v) ep

∗
3 −β ep

∗
2 −µ

)(
θη + γa

∂f

∂I
(v)

)
ep
∗
2

+
β

η

(
η + a

∂f

∂I
(v)− ac

β

∂f

∂I
(v) e−p

∗
1

)
ep
∗
2 γa

∂f

∂S
(v) ep

∗
1

)
< 0.

Let I : ImQ→ kerL be an isomorphism. Thus

deg(IQN , U ∩ kerL, 0) = det J(p∗1, p
∗
2, p
∗
3) 6= 0 (2.1.21)

and condition M3) in Mawhin’s continuation theorem holds. Taking into account Lemma 2.5,

the proof of Theorem 2.1 is completed.

2.2. Examples

In this section we present some examples to illustrate the main result in the previous

section.
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2.2.1. Holling-type I functional response. Letting f(S, I, P ) = S (Holling-type

I functional response) in system (2.1.1), we obtain the model:
S′ = Λ(t)− µ(t)S − a(t)SP + β(t)SI

I ′ = β(t)SI − η(t)PI − c(t)I

P ′ = (r(t)− b(t)P )P + γ(t)a(t)SP + θη(t)PI

. (2.2.1)

Since f(S, I, P ) = S, conditions P2) to P5) are trivially satisfied and P7) is satisfied with

K = α = 1. We obtain the following corollary:

Corollary 8. Assume that that conditions P1), P6) and P8) hold. If R̃0 > 1,

β b− γ aη > 0 and

R0 > 1 + aη
γ Λ

µ(r η + b c)
+ a

β r + γa c

µ(b β − γ aη)
(2.2.2)

then system (2.2.1) possesses an endemic periodic orbit of period ω.

Proof. Consider the system of algebraic equations:
Λe−u1 − aeu3 − βeu2 − µ = 0

βeu1 − ηeu3 − c = 0

γaeu1 + θηeu2 − beu3 + r = 0

. (2.2.3)

By the second and third equations we get

eu1 =
η eu3 +c

β
and eu2 =

β b− γ aη
β θη

eu3 −β r + γa c

β θη

Notice that by hypothesis β b− γ aη > 0 and the right hand side of the second equation is

positive as long as eu3 > (β r + c γa)/(β b− γ aη). Using the first equation we get

β Λ

η eu3 +c
−
(
a+

β b− γ aη
θ η

)
eu3 +

β r + γa c

θ η
− µ = 0.

Taking into account that we must have eu3 > (β r + c γa)/(β b − γ aη), we consider the

function F : [(β r + c γa)/(β b− γ aη),+∞[→ R given by

F (x) =
β Λ

ηx+ c
−
(
a+

β b− γ aη
θ η

)
x+

β r + γa c

θ η
− µ.

It is immediate that F is decreasing and that, by the hypothesis in our corollary, we have

F

(
β r + c γa

β b− γ aη

)
= µ

(
R0 − 1− aη γ Λ

µ(r η + b c)
− a β r + γa c

µ(b β − γ aη)

)
> 0
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and lim
x→+∞

F (x) = −∞. We conclude that there is x0 ∈ [(β r + c γa)/(β b − γ aη),+∞[

such that F (x0) = 0. This implies that there is a unique solution of (2.2.3). The result

follows now from Theorem 2.1. �

We now assume that the real valued functions Λ, µ, r, b, γ and a are constant and

positive. Model (2.2.1) becomes
S′ = Λ− µS − aSP + β(t)SI

I ′ = β(t)SI − η(t)PI − c(t)I

P ′ = (r − bP )P + γaSP + θη(t)PI

. (2.2.4)

We have the following corollary:

Corollary 9. Assume that that conditions P1) and P6) hold. If R̃0 > 1, bβ−γaη > 0,

Λ < µ2/a and

R0 > 1 +
a

µ

(
ηγ Λ

r η + b c
+
β r + γa c

b β − γ aη

)
then system (2.2.4) possesses an endemic periodic orbit of period ω.

Proof. We begin by noticing that systems (2.1.4) and (2.1.5) become in our contextx
′ = λ(Λ− µx− axz∗2,ε,λ(t)− ε1x)

z′ = λ(r − bz + γax)z
(2.2.5)

where (x∗2,ε,λ(t), z∗2,ε,λ(t)) is a solution ofx
′ = λ(Λ− µx)

z′ = λ(r − bz + γax+ ε)z
(2.2.6)

System (2.2.6) has two equilibriums:

E1 =

(
Λ

µ
, 0

)
and E2 =

(
Λ

µ
,
r(µ+ ε) + γaΛ

bµ

)
.

Letting (x∗2,ε,λ(t), z∗2,ε,λ(t)) be the solution corresponding to E2, it is easy to check that

system (2.2.5) also has two equilibriums:

Ẽ1 = (Θ, 0) and Ẽ2 =
(

Θ,
r

b
+
γa

b
Θ
)
,

where

Θ =
bµΛ

(bµ+ ar)(µ+ ε) + γa2Λ
.
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One can check that E2 is locally attractive when ε > 0 is sufficiently small and that E1 is a

saddle point whose stable manifold coincides with the x-axis. The line x = Λ/µ is invariant

and by the first equations we can conclude that the ω-limit of any orbit must be on this

line. Thus, according to the behavior of solutions on that line, the ω-limit of any orbit

on that line must be the equilibrium E2 and we conclude that we have global asymptotic

stability of E2 on the region R+×R+
0 . We have a similar situation for system (2.2.5) when

(x∗2,ε,λ(t), z∗2,ε,λ(t)) is the solution corresponding to E2. In fact, we can easily see that Ẽ2

is locally attractive and that Ẽ1 is a saddle point whose stable manifold coincides with

the x-axis. The line x = Θ is invariant and by the first equations we can conclude that

the ω-limit of any orbit must be on this line. Again, the ω-limit of any orbit on that line

must be the equilibrium Ẽ2 and we conclude that we have global asymptotic stability of

Ẽ2 on the region R+ ×R+
0 .

We conclude that condition P8) holds. �

To do some simulation, we consider the following particular set of parameters: Λ = 0.1;

µ = 0.6; β(t) = 20(1 + 0.9 cos(2πt)); η(t) = 0.7(1 + 0.7 cos(π + 2πt)); c(t) = 0.1; r = 0.2;

b = 0.3; θ = 10, γ(t) = 0.1 and a = 3. We obtain the model:
S′ = 0.1− 0.6S − 20(1 + 0.9 cos(2πt))SI − 3SP

I ′ = 20(1 + 0.9 cos(2πt))SI − 0.7(1 + 0.7 cos(π + 2πt))PI − 0.1I

P ′ = (0.2− 0.3P )P + 7(1 + 0.7 cos(π + 2πt))PI + 0.3SP

. (2.2.7)

Notice that, for our model, Λ = 0.1 > 0.012 = µ2/a, bβ − γaη = 3.99 > 0, R0 ≈

5.88 > 1 + 1.86 and R̃0 ≈ 24.8 > 1, and thus the conditions in Corollary 8 are fulfilled.

Considering the initial condition (S0, I0, P0) = (0.03567, 0.02047, 0.88021) we obtain the

periodic orbit in figure 2.1. Although our theoretical result doesn’t imply the attractivity
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Figure 2.1. Periodic orbit for model (2.2.7)

of the periodic solution, the simulations carried out suggest that this is the case.
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2.2.2. No predation on susceptible preys. Letting f ≡ 0 in system (2.1.1), and

still assuming that the real valued functions Λ, µ, β, η, c, γ, r, θ and b are periodic with

period ω, nonnegative, continuous and also that Λ̄ > 0, µ̄ > 0, r̄ > 0 and b̄ > 0, we obtain

the periodic model considered in [90]:
S′ = Λ(t)− µ(t)S − β(t)SI

I ′ = β(t)SI − η(t)PI − c(t)I

P ′ = (r(t)− b(t)P )P + θ(t)η(t)PI

. (2.2.8)

In [75], the authors refer that the assumption that predator mainly eats the infected

prey (that is modelled by assuming that no predation on uninfected preys occur) is in

accordance with the fact that the infected individuals are less active and can be caught

more easily, or that infection modifies the behavior of the preys in such a way that they

start living in parts of the habitat which are accessible to the predator. Some examples

available in the literature are also provided in [75]: as an example of a situation where

infected individuals can be caught more easily, the authors cite [77], where it is showed

that wolf attacks on moose on Isle Royale in Lake Superior are more successful if the moose

are heavily infected with a lungworm; as an example of a situation where the behavior of

the prey individuals is modified, favoring predation, the authors cite [49].

Note that conditions P2) to P5) and P7) are trivially satisfied since f ≡ 0. Also note

that systems (2.1.4) and (2.1.5) become in this context

x
′ = λ(Λ(t)− µ(t)x− ε1x)

z′ = λ(r(t)− b(t)z)z
(2.2.9)

and x
′ = λ(Λ(t)− µ(t)x)

z′ = λ(r(t)− b(t)z + ε)z
(2.2.10)

and, by Lemmas 1 to 4 in [75] we conclude that condition P8) holds in this setting.

Note also that condition (2.2.2) becomes R0 > 1 and condition b β − γ aη 6 0 is trivially

satisfied since we can take γ = 0 or a = 0. We obtain the following corollary that recovers

the result in [90]:

Corollary 10. If R̃0 > 1 and R0 > 1 hold, then system (2.2.8) possesses an endemic

periodic orbit of period ω.
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2.3. Linear vital dynamics for predators

In this section we let f ≡ 0, G(t, S) = Λ(t) − µ(t)S and H(t, P ) = Υ(t) − ζ(t)P

in (0.0.2), obtaining the following model:
S′ = Λ(t)− µ(t)S − β(t)SI

I ′ = β(t)SI − η(t)g(S, I, P )I − c(t)I

P ′ = Υ(t)− ζ(t)P + θ(t)η(t)g(S, I, P )I

. (2.3.1)

To establish the existence of an endemic periodic orbit for system (2.3.1) we assume the

following natural conditions:

P1*) The real valued functions Λ, µ, β, η, c, Υ, ζ and θ are periodic with period ω,

nonnegative and continuous;

P2*) Functions x 7→ g(x, y, z), y 7→ g(x, y, z) are nonincreasing; function z 7→ g(x, y, z) is

nondecreasing;

P3*) Λ̄ > 0, µ̄ > 0, Ῡ > 0 and ζ̄ > 0.

Like in the first scenario in section 1.1, the present setting includes several of the

most common functional responses for function g, including Holling-type I, Holling-type

II, Holling-type III, (Holling-type IV, Beddington-De Angelis and Crowley-Martin. Also

note that conditions P1*) to P3*) are natural from a biological perspective and naturally

are satisfied by the usual functional responses considered in the literature.

We also need to consider the following auxiliary system that corresponds to perturba-

tions of the disease-free system for (2.3.1):x
′ = Λ(t)− µ(t)x− ε1x

z′ = Υ(t)− ζ(t)z + θ(t)η(t)g(x, ε2, z)ε2

. (2.3.2)

satisfying

P4∗) For each ε1, ε2 > 0 sufficiently small, system (2.3.2) has a unique ω-periodic solution,

(x∗ε1,ε2(t), z∗ε1,ε2,(t)), with

x∗ε1,ε2(t) > 0 and z∗ε1,ε2(t)) > 0,

that is globally asymptotically stable in the set

{(x, z) ∈ (R+
0 )2 : x > 0 ∧ z > 0}.

We assume that (ε1, ε2) 7→ (x∗ε1,ε2(t), z∗ε1,ε2(t)) is continuous.
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We write x∗ = x0,0 and z∗ = z∗0,0 for the components of the solutions in (2.3.2) corre-

sponding to ε = 0.

To obtain the basic reproductive number for our model we consider the ordering

(I, S, P ) instead of (S, I, P ), so that the infected compartment becomes the first one and

the uninfected compartments became the last ones. Our new notation corresponds to the

one in [79]. With this ordering, the functions F , V+ and V− in [79] become respectively

F(t, (I, S, P )) = (β(t)SI, 0, 0),

V+(t, (I, S, P )) =(0, 0,Υ(t) + θ(t)η(t)g(S, I, P )I)

and

V−(t, (I, S, P )) = (η(t)g(S, I, P )I + c(t)I, µ(t)S + β(t)SI, ζ(t)P ).

Having identified F and V we can compute the matrices F (t) and V (t) in [79] that in our

context reduce to one dimensional matrices (that we identify with real numbers). In fact,

we have

F (t) =
∂

∂I
(β(t)SI)|(x∗(t),0,z∗(t)) = β(t)x∗(t)

and

V (t) =
∂

∂I
(η(t)g(S, P, I)I + c(t)I)|(x∗(t),0,z∗(t)) = η(t)g(x∗(t), 0, z∗(t)) + c(t).

The evolution operator W (s, t, λ) associated with the linear ω-periodic parametric system

w′ = (−V (t) + F (t)/λ)w is easily seen to be given by

W (s, t, λ) = e−
∫ t
s β(r)x∗(r)/λ−c(r)−η(r)g(x∗(r),0,z∗(r)) dr

and thus

W (ω, 0, λ) = 1 ⇔ βx∗/λ− c− ηg(x∗, 0, z∗) = 0 ⇔ λ =
βx∗

c+ ηg(x∗, 0, z∗)
.

Define

R0 =
βx∗

c+ ηg(x∗, 0, z∗)
. (2.3.3)

Note that our system satisfies conditions (A1) to (A7) in [38].

Theorem 2.3. Assume conditions P1*) to P3*). If R0 > 1, then model (2.3.1) has

an endemic periodic orbit in (R+
0 )3.

The proof of our theorem adapts to our situation the strategy in [79, 38]. It will be

developed in two steps: using a result derived in [79], we obtain persistence of the infective
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prey in subsection 2.3.1 and then, using a Poincaré map, we establish the existence of a

periodic orbit in subsection 2.3.2.

2.3.1. Uniform strong persistence. The first step in the proof of Theorem 2.3 is

to establish the persistence of all the compartments in our model. To do so we will use

Theorem 2 in [79]. Note first that, as long as α3θ < α2 < α1, we have

〈(S′, I ′, P ′), (α1, α2, α3)〉 = α1 (Λ(t)− µ(t)S − β(t)SI)+

+ α2 (β(t)SI − η(t)g(S, I, P )I − c(t)I) +

+ α3 (Υ(t)− ζ(t)P + θ(t)η(t)g(S, I, P )I)

< α1Λu + α3Υu −min{µ` + c` + ζ`}(α1S + α2I + α3P ).

(2.3.4)

Thus, defining

K =
α1Λu + α3Υu

min{µ` + c` + ζ`}
,

we conclude 〈(S′, I ′, P ′), (α1, α2, α3)〉 < 0 when α1S + α2I + α3P < K and that the set

K = {(S, I, P ) ∈ (R+
0 )3 : α1S + α2I + α3P ≤ K} (2.3.5)

is forward invariant for the flow of system (2.3.1). Additionally, letting W = α1S +α2I +

α3P , t0 > 0 and W0 = α1S(t0) + α2I(t0) + α3P (t0), by (2.3.4) we have for t > t0

W (t) < K − (K −W0) e−min{µ`+c`+ζ`}(t−t0)

and thus lim sup
t→+∞

W (t) < K. We conclude that K is an absorbing set for the flow. Thus

the set K satisfies assumption (A8) in [38].

Let now (S(t), I(t), P (t)) be a solution of (2.3.1) such that I(t) 6 ε, for t > 0. Since,

by the first and third equations in (2.3.1), we haveS
′ > Λ(t)− µ(t)S − βuSε

P ′ > Υ(t)− ζ(t)P

and S
′ 6 Λ(t)− µ(t)S

P ′ 6 Υ(t)− ζ(t)P + θuηuPε
,

condition P4*), allows us to conclude that for sufficiently large t > 0 we have S(t) >

x∗βuε,0(t) > x∗(t) − σ1(ε) and P (t) 6 z∗0,θuηuε(t) 6 z∗(t) + σ2(ε) with σ1(ε), σ2(ε) → 0 as
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ε→ 0. Thus, if I(t) 6 ε we have

I ′ = β(t)SI − η(t)g(S, I, P )I − c(t)I

>
(
β(t)x∗(t)− β`σ1(ε)− η(t)g(x∗(t)− σ1(ε), 0, z∗(t) + σ2(ε))− c(t)

)
I

> (F (t)/λ(ε)− V (t)) I

where λ :]0, ε∗[→ R, well-defined when we take ε∗ > 0 sufficiently small, is given by

λ(ε) = max
t∈ ]0,ε[

β(t)x∗(t)

β(t)x∗(t)− β`σ1(ε) + η(t)g(x∗(t), 0, z∗(t))− η(t)g(x∗(t)− σ1(ε), 0, z∗(t) + σ2(ε))

and we can immediately see that λ(ε)→ 1 as ε→ 0.

By Theorem 2 in [79], we conclude that the infective prey is uniformly strong persistent

in system (2.3.1). The uniform strong persistence of the susceptible prey and the predator,

in our situation, is an immediate consequence of the uniform strong persistence of the

infectives.

2.3.2. Existence of a periodic orbit. Next, to establish the existence of a positive

periodic orbit for (2.3.1) we use the following result:

Theorem 2.4. [106, Theorem 1.3.6] Let τ : X → X be a continuous map with τ(X0) ⊂

X0 that is point dissipative, compact and uniform persistent with respect to (X0, ∂X0).

Then there exists a global attractor A0 for S in X0 that attracts strongly bounded sets in

X0 and S has a coexistence state x0 ∈ A0.

To apply this result to our model we let X = (R+
0 )3, X0 = K and S = τ , where

τ : (R+
0 )3 → (R+

0 )3 ia a time-ω map associated to our system and given by τ(S0, I0, P0) =

(S(ω), I(ω), P (ω)), where (S(t), I(t), P (t)) is the solution of (2.3.1) such that (S(0), I(0), P (0)) =

(S0, I0, P0).

Since the bounded set K is an absorbing set for the flow of (2.3.1), we conclude

that τ is point dissipative. It is immediate that τ is compact and, by the discussion

in subsection 2.3.1, we conclude that τ is uniformly persistent with respect to (K, ∂K).

Therefore, Theorem 2.4 allows us to conclude that τ has a coexistence state in K. This

coexistence state is a periodic orbit of our system contained in K. This established our

result.

2.4. Comments

In this chapter we discussed the existence of periodic orbits for periodic eco-epidemi-

ological system with disease in the prey for two distinct families of models.
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For the first family we used Mawhin’s continuation theorem and for the second family

we obtained a sharp result using a recent strategy that relies on the uniqueness of periodic

orbits in the disease-free space. In the first case we proved that if R̃0 > 1, conditions P1)

to P9) and there is a unique equilibrium of the averaged system (2.1.7) in (R+)3 then

system (2.1.1) possesses an endemic periodic orbit. In the second situation we proved that

if R0 > 1 and conditions P1*) to P4*) hold then model (2.3.1) possesses an endemic peri-

odic orbit. Somehow, the requirement that there is a unique equilibrium of the averaged

system (2.1.7) in (R+)3 is artificial, in the sense that it appears to be only there to allow

the use of Mawhin’s continuation theorem. Thus, a natural question that can be asked is

if we can remove this condition and still be able to obtain the conclusion in Theorem 1.

Another interesting question is if we can still obtain the existence of the endemic peri-

odic orbit for the first family of models when we assume other type of dynamical behavior

for the uninfected subsystem. For instance, if we assume the uninfected subsystem to be

a center like in the original Lotka-Volterra model.





CHAPTER 3

Discrete Eco-Epidemiological Model

In the previous chapters the models involved are continuous. In contrast, in this chap-

ter, using Mickens nonstandard method on model (0.0.2) with G(t, S) = Λ(t) − µ(t)S

and H(t, P ) = (r(t) − b(t)P )P , we obtain a discrete family of non-autonomous eco-

epidemiological models . We obtain results on the persistence and extinction of the infected

preys assuming that the bi-dimensional predator-prey subsystem that describes the dy-

namics in the absence of the infection satisfies some assumptions.

In [52] a discrete eco-epidemiological model was studied. In contrast with our non-

autonomous model, in that paper the model considered is autonomous and assumes no

predation on uninfected preys. Additionally, the discretization method is very different

from ours, resulting in a very different form for the equations obtained. Some examples

and simulations are undertaken to illustrate our results.

The structure of this chapter is the following: in section 3.1 we derive our model from

the corresponding continuous model using Mickens nonstandard discretization scheme,

establish our setting and some preliminary results; in section 3.2 we obtain our main result

on extinction and persistence of the infective prey; finally, in section 3.3, we consider some

particular models that illustrate our results.

3.1. A family of discrete models

We consider the following non-autonomous eco-epidemiological model that derives

from model (0.0.2) by taking G(t, S) = Λ(t)− µ(t)S and H(t, P ) = (r(t)− b(t)P )P :
S′ = Λ(t)− µ(t)S − a(t)f(S, I, P )P − β(t)SI

I ′ = β(t)SI − η(t)g(S, I, P )I − c(t)I

P ′ = (r(t)− b(t)P )P + γ(t)a(t)f(S, I, P )P + θ(t)η(t)g(S, I, P )I

. (3.1.1)

The aim of this chapter is to discuss the uniform strong persistence and extinction of

the infectives I of the discrete counterpart of the system (3.1.1). A possible discretization

of the above model, with stepsize h, derived by applying Mickens’ nonstandard finite

73
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difference method [72], that leads to the following set of equations:

S(nh+ h)− S(nh) = hΛ(nh)− hµ(nh)S(nh+ h)

−ha(nh)f(S(nh+ h), I(nh), P (nh))P (nh)

−hβ(nh)S(nh+ h)I(nh)

I(nh+ h)− I(nh) = hβ(nh)S(nh+ h)I(nh)

−hη(nh)g(S(nh), I(nh), P (nh))I(nh+ h)

−hc(nh)I(nh+ h)

P (nh+ h)− P (nh) = h(r(nh)− b(nh)P (nh+ h))P (nh) + hγ(nh)a(nh)×

×f(S(nh+ h), I(nh), P (nh))P (nh)

+hθ(nh)η(nh)g(S(nh), I(nh), P (nh))I(nh+ h)

.

Using the notation ξn = hξ(nh) for ξ = Λ, µ, a, β, η, c, r, b and also ζn = ζ(nh) for ζ = γ, θ,

we obtain the following system of difference equations:
Sn+1 − Sn = Λn − µnSn+1 − anf(Sn+1, In, Pn)Pn − βnSn+1In

In+1 − In = βnSn+1In − ηng(Sn, In, Pn)In+1 − cnIn+1

Pn+1 − Pn = (rn − bnPn+1)Pn + γnanf(Sn+1, In, Pn)Pn + θnηng(Sn, In, Pn)In+1

.

(3.1.2)

We will assume that

D1) (Λn), (an), (βn), (ηn), (cn), (rn), (bn), (γn) and (θn) are bounded and nonnegative

sequences and 0 < µn 6 cn;

D2) (Λn), (rn) and (bn) are bounded away from zero;

D3) f, g : (R+
0 )3 → R are C1 nonnegative; for fixed x, z > 0, y 7→ f(x, y, z) and y 7→

g(x, y, z) are nonincreasing; for fixed y, z > 0, x 7→ f(x, y, z) is nondecreasing and

x 7→ g(x, y, z) is nonincreasing; for fixed x, y > 0, z 7→ f(x, y, z) is nonincreasing and

z 7→ g(x, y, z) is nondecreasing;

D4) there is ω ∈ N such that

lim sup
n→+∞

n+ω∏
k=n

1

1 + µk
< 1.

It follows from D4) that there are constants K > 0 and θ ∈]0, 1[ such that

n−1∏
k=m

1

1 + µk
< Kθn−m, (3.1.3)
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for any m,n ∈ N0 with n > m.

D5) Given p ∈ N there is a unique solution ((Sn, In, Pn))n>p of system (3.1.2) with initial

condition (Sp, Ip, Pp) ∈ (R+
0 )3.

D6) Any solution of system (3.1.2) with nonnegative (resp. positive) initial condition,

(Sq, Iq, Pq) is nonnegative (resp. positive) for all n > q.

Note that when f(Sn+1, In, Pn) = Sn+1 and g(Sn, In, Pn) = Pn in (3.1.2), the equation

can be rewritten in explicit form:

Sn+1 =
Θn

Ψn

In+1 =
βnΘn + Ψn

ΨnΦn
In

Pn+1 =
(1 + rn)ΨnΦn + γnanΘnΦn + θnηn(Ψn + βnΘn)In

ΨnΦn(1 + bnPn)
Pn

, (3.1.4)

where Ψn = 1+µn+βnIn+anPn, Φn = 1+ηnPn+cn and Θn = Λn+Sn. From (3.1.4), we

conclude that when f(Sn+1, In, Pn) = Sn+1 system (3.1.2) is well defined and D6) holds.

Let us introduce the notation f ` = inf fn and fu = sup fn.

To proceed, we need to consider two auxiliary equations. The first one corresponds to

the dynamics of preys in the absence of infected preys and predators:

sn+1 − sn = Λn − µnsn+1.

Rearranging terms, the equation above becomes:

sn+1 =
Λn

1 + µn
+

sn
1 + µn

. (3.1.5)

We have the following lemma that was essentially proved in [70]:

Lemma 3.1. We have the following:

i) The solution of equation (3.1.5) with Λn = 0, n > p, and initial condition sp = 0 is

the identically null sequence;

ii) All solutions (sn) of equation (3.1.5) with initial condition s0 > 0 are positive for all

n ∈ N;

iii) Given a solution (sn) of equation (3.1.5) with initial condition s0 ∈ [Λ`/µu,Λu/µ`] we

have
Λ`

µu
6 sn 6

Λu

µ`

for all n ∈ N;
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iv) Each fixed solution (sn) of (3.1.5) with initial condition s0 > 0 is bounded and globally

uniformly attractive on [0,+∞);

v) There is a constant D > 0 such that if ϕn > 0, n ∈ N, (sn) is a solution of (3.1.5)

and (s̃n) is a solution of the system

sn+1 =
Λn + sn + ϕn

1 + µn
(3.1.6)

with s̃0 = s0 then

sup
n>0
|s̃n − sn| 6 D sup

n>0
|ϕn|.

vi) There is a constant E > 0 such that if ψn > 0, n ∈ N, (sn) is a solution of (3.1.5)

and (s̃n) is a solution of the system

sn+1 =
Λn + sn

1 + µn + ψn
(3.1.7)

with s̃0 = s0 then there is N1 sufficiently large such that

sup
n>N1

|s̃n − sn| 6 E sup
n>0
|ψn|.

Proof. Properties i) to v) follow from Lemma 1 in [70]. To prove vi), let (sn) be a

solution of (3.1.5) and (s̃n) be a solution of (3.1.7) with s̃0 = s0. By (3.1.5) and (3.1.7),

we have

(s̃n+1 − sn+1)(1 + µn) = s̃n − sn − ψns̃n+1

Therefore, letting wn = |s̃n − sn|, we have

wn+1(1 + µn) 6 wn + |ψn|s̃n+1

and thus

wn+1 6
wn

1 + µn
+
|ψn|s̃n+1

1 + µn

Fix ε > 0. By iii) and iv) we get, for n sufficiently large, say n > N1,

wn+1 6
wn

1 + µn
+
|ψn|

1 + µn

[
Λu

µ` + ψ`
+ ε

]
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and thus, for n > N1,

wn 6

[
Λu

µ` + ψ`
+ ε

] n−1∑
m=0

|ψm|

(
n−1∏
k=m

1

1 + µk

)

6

[
Λu

µ` + ψ`
+ ε

]
sup
n>0
|ψn|K

n−1∑
m=0

θn−m

6

[
Λu

µ` + ψ`
+ ε

]
Kθ

1− θ
sup
n>0
|ψn|.

Defining E = Kθ
[
Λu/(µ` + ψ`) + ε

]
/(1− θ), we get

sup
n>N1

|s̃n − sn| = sup
n>N1

wn 6 E sup
n>0
|ψn|,

and the result follows. �

We also need to consider the equation:

yn+1 − yn = (rn − bnyn+1)yn.

Rearranging terms, we get:

yn+1 =
rnyn + yn
1 + bnyn

(3.1.8)

The following lemma holds.

Lemma 3.2. We have the following:

i) The solution of equation (3.1.8) with yp = 0 is the identically null sequence;

ii) All solutions (yn) of equation (3.1.8) with initial condition y0 > 0 are positive for all

n ∈ N;

iii) Given a solution (yn) of equation (3.1.8) with initial condition y0 ∈ [r`/bu, ru/b`] we

have
r`

bu
6 yn 6

ru

b`

for all n ∈ N;

iv) Each fixed solution (yn) of (3.1.8) with initial condition y0 > 0 is bounded and globally

uniformly attractive on ]0,+∞);

v) There is a constant E > 0 such that, if gn > 0, n ∈ N, (yn) is a solution of (3.1.8)

and (ỹn) is a solution of the system

yn+1 =
rnyn + yn

1 + (bn + gn)yn
, n = 0, 1, . . . (3.1.9)
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with ỹ0 = y0 then there is N1 sufficiently large such that

sup
n>N1

|ỹn − yn| 6 E sup
n>N1

|gn|.

vi) There is a constant G > 0 such that, if hn > 0, n ∈ N, (yn) is a solution of (3.1.8)

and (ỹn) is a solution of the system

yn+1 =
(rn + hn)yn + yn

1 + bnyn
, n = 0, 1, . . . (3.1.10)

with ỹ0 = y0 then there is N2 sufficiently large such that

sup
n>N2

|ỹn − yn| 6 G sup
n>N2

|hn|.

Proof. With the change of variable wn = 1/yn, equation (3.1.8) becomes

wn+1 =
bn

rn + 1
+

wn
rn + 1

,

equation (3.1.9) becomes

wn+1 =
wn + bn + gn

rn + 1
.

and equation (3.1.10) becomes

wn+1 =
wn + bn

1 + rn + hn
.

Using Lemma 3.1, we obtain ii) to vi). Property i) is immediate. �

We must assume the following:

D7) Each solution of (3.1.2) with positive initial condition is bounded and there is a

bounded region R that contains the ω-limit of all solutions of (3.1.2) with positive

initial conditions.

Notice in particular that condition D7) implies that there is L > 0 such that, for each

solution (Sn, In, Pn) we have

lim sup
t→+∞

(Sn + In + Pn) < L. (3.1.11)

The next lemma shows that, when g(S, I, P ) = g0(S, I)P , there is an invariant region

that attracts all orbits of system (3.1.2).

Lemma 3.3. Assume that conditions D1) to D6) hold and that g(S, I, P ) = g0(S, I)P .

Then, there is L > 0 such that, for any solution (Sn, In, Pn) of (3.1.2), with nonnegative
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initial conditions, there is T ∈ N such that

Sn + In + Pn 6 L for n > T.

Proof. Let (Sn, In, Pn) be a solution of (3.1.2) with nonnegative initial conditions

Sq = sq, Iq = iq and Pq = pq. Adding the first two equations in (3.1.2) and writing

Nn = Sn + In, we get

Nn+1 −Nn = Λn − µnSn+1 − cnIn+1 − anf(Sn+1, In, Pn)Pn

− ηng0(Sn+1, In)PnIn+1

6 Λn − µnNn+1,

since µn = min{µn, cn}. Thus

Nn+1 6
Λn

1 + µn
+

Nn

1 + µn
.

By iii) and iv) in Lemma 3.1, we conclude that, for any given ε > 0, we have Sn + In =

Nn 6 sn 6 Λu/µ` + ε, where sn is a solution of (3.1.5) with initial condition sq = Nq, for

n sufficiently large, say n > N1.

By the third equation in (3.1.2) we obtain

Pn+1 =
Pn + rnPn + γnanf(Sn+1, In, Pn)Pn + θnηng0(Sn+1, In)PnIn+1

1 + bnPn

6

[
rn + γnanf(Λu/µ` + ε, 0, 0) + θnηng0(0,Λu/µ` + ε)(Λu/µ` + ε)

]
Pn + Pn

1 + bnPn

for n > N1. By iii) and iv) in Lemma 3.2, we conclude that, for any given δ > 0, there is

N2 > N1 such that, for all n > N2

Pn 6
ru

β`
+ δ +G sup

n>q

(
γnanf(Λu/µ` + ε, 0, 0) + θnηng0(0,Λu/µ` + ε)(Λu/µ` + ε)

)
Thus

Sn + In + Pn 6
Λu

µ`
+ ε+

ru

β`
+ δ

+G sup
n>q

(
γnanf(Λu/µ` + ε, 0, 0) + θnηng0(0,Λu/µ` + ε)(Λu/µ` + ε)

)
,

and the result follows. �

To formulate our next assumption we need to consider the systemxn+1 − xn = Λn − µnxn+1 − anf(xn+1, 0, zn)zn

zn+1 − zn = (rn − bnzn+1)zn + γnanf(xn+1, 0, zn)zn

. (3.1.12)
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which corresponds to the dynamics of the susceptible preys and the predators in the

absence of infected preys. We also need to consider the two families of auxiliary systems:xn+1 − xn = Λn − µnxn+1 − anf(xn+1, 0, 0)z∗2,ε,n − εxn

zn+1 − zn = (rn − bnzn+1)zn + γnanf(xn+1, ε, zn)zn

(3.1.13)

where (x∗2,ε,n, z
∗
2,ε,n) is a solution ofxn+1 − xn = Λn − µnxn+1

zn+1 − zn = (rn − bnzn+1)zn + γnanf(xn+1, 0, zn)zn + θnηng(xn, 0, zn)znε
. (3.1.14)

We make the following assumptions concerning systems (3.1.13) and (3.1.14):

D8) There is a family of nonnegative solutions (x∗1,ε,n, z
∗
1,ε,n) of system (3.1.13), one for

each ε > 0 sufficiently small, depending on a solution (x∗2,ε,n, z
∗
2,ε,n) of system (3.1.14),

such that each solution in the family is globally asymptotically stable in a set con-

taining {(x, z) ∈ (R+
0 )2 : x, z > 0} and the function ε 7→ (x∗1,ε,n, z

∗
1,ε,n) is continuous.

D9) The family of nonnegative solutions (x∗2,ε,n, z
∗
2,ε,n) of system (3.1.14), one for each

ε > 0 sufficiently small, is such that each solution in the family is globally asymp-

totically stable in a set containing {(x, z) ∈ (R+
0 )2 : x, z > 0} and the function

ε 7→ (x∗2,ε,n, z
∗
2,ε,n) is continuous.

We denote the element of the family of solutions in D8) and D9) with ε = 0, by (x∗1,n, z
∗
1,n)

and (x∗2,n, z
∗
2,n), respectively. For each solution (x∗1,n, z

∗
1,n) of (3.1.13) associated to a

solution (x∗2,n, z
∗
2,n) of (3.1.14), with ε = 0, and initial conditions (x0, z0) with x0 > 0 and

z0 > 0, and each λ ∈ N, define the number

R`(λ) = lim inf
n→+∞

n+λ∏
k=n

1 + βkx
∗
1,k+1

1 + ck + ηkg(x∗1,k, 0, z
∗
2,k)

(3.1.15)

and for each solution (s∗n) of (3.1.5) with s0 > 0, each solution (y∗n) of (3.1.8) with y0 > 0

and each λ ∈ N, define the number

Ru(λ) = lim sup
n→+∞

n+λ∏
k=n

1 + βks
∗
k+1

1 + ck + ηkg(s∗k, 0, y
∗
k)

(3.1.16)

These numbers will be useful in obtaining conditions for permanence and extinction and,

in some sense, play the role of upper and lower bounds for the basic reproductive number

in this general context. In the following lemma we prove that the numbers above are

independent of the particular positive solutions of (3.1.5), (3.1.8) and (3.1.13) considered.
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Lemma 3.4. The numbers R`(λ) and Ru(λ) are independent of the particular solutions

(s∗n) of (3.1.5) with s0 > 0, (y∗n) of (3.1.8) with y0 > 0 and (x∗1,n, z
∗
1,n) and (x∗2,n, z

∗
2,n)

of (3.1.13) and (3.1.14), with xi,0 > 0 and zi,0 > 0, for i = 1, 2.

Proof. Let v = (x∗2,n, z
∗
2,n)n∈N and v̄ = (x̄∗2,n, z̄

∗
2,n)n∈N be distinct solutions of (3.1.14)

and u = (x∗1,n, z
∗
1,n)n∈N and ū = (x̄∗1,n, z̄

∗
1,n)n∈N be the corresponding solution of (3.1.13)

with wi,0 > 0, w̄i,0 > 0, for w = x, z and i = 1, 2. Denote by R`(λ, u, v) and R`(λ, ū, v̄)

the number in (3.1.15) corresponding to u, v and ū, v̄.

Let δ > 0 be sufficiently small. By assumptions D8) and D9), for k > N (where

N ∈ N) sufficiently large, we have

x∗1,k − δ 6 x̄∗1,k 6 x∗1,k + δ and z∗2,k − δ 6 z̄∗2,k 6 z∗2,k + δ.

Additionally, since g is C1 and therefore locally Lipschitz, by D3), there is c > 0 such

that, for sufficiently large k,

|g(x∗1,k, 0, z
∗
2,k)− g(x∗1,k, 0, z̄

∗
2,k − δ)| 6 c|z∗2,k − z̄∗2,k + δ| 6 2cδ

and

|g(x̄∗1,k, 0, z
∗
2,k)− g(x∗1,k, 0, z

∗
2,k)| 6 c|x̄∗1,k − x∗1,k| 6 cδ.

Thus, for n > N

n+λ∏
k=n

1 + βkx
∗
1,k+1

1 + ck + ηkg(x∗1,k, 0, z
∗
2,k)

6
n+λ∏
k=n

1 + βkx̄
∗
1,k+1 + δβk

1 + ck + ηkg(x∗1,k, 0, z̄
∗
2,k − δ)

6
n+λ∏
k=n

1 + βkx̄
∗
1,k+1 + δβk

1 + ck + ηkg(x̄∗1,k, 0, z̄
∗
2,k)

1 + ck + ηkg(x̄∗1,k, 0, z̄
∗
2,k)

1 + ck + ηkg(x∗1,k, 0, z̄
∗
2,k − δ)

=

n+λ∏
k=n

(
1 + βkx̄

∗
1,k+1

1 + ck + ηkg(x̄∗1,k, 0, z̄
∗
2,k)

+
δβk

1 + ck + ηkg(x̄∗1,k, 0, z̄
∗
2,k)

)
×

×

(
1 +

3cδηk
1 + ck + ηkg(x∗1,k, 0, z̄

∗
2,k − δ)

)

6 (1 + δB)λ+1
n+λ∏
k=n

(
1 + βkx̄

∗
1,k+1

1 + ck + ηkg(x̄∗1,k, 0, z̄
∗
2,k)

+ δA

)

6 (1 + δB)λ+1

n+λ∏
k=n

1 + βkx̄
∗
1,k+1

1 + ck + ηkg(x̄∗1,k, 0, z̄
∗
2,k)

+

λ+1∑
j=1

(
λ+ 1

j

)
δjCλ+1−jAj

 ,

(3.1.17)
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where

A =
βu

1 + c` + η`(g(x̄∗1,k, 0, z̄
∗
2,k))

`
, B =

3cηu

1 + c` + η`(g(x∗1,k, 0, z̄
∗
2,k − δ))`

and

C =
1 + βu(x̄∗1)u

1 + c` + η`(g(x̄∗1,k, 0, z̄
∗
2,k))

`
.

By (3.1.15) and (3.1.17), taking limits we conclude that

R`(λ, u, v) 6 (1 + δB)λ+1

R`(λ, ū, v̄) +
λ+1∑
j=1

(
λ+ 1

j

)
δjCλ+1−jAj

 .

By the arbitrariness of δ > 0, we conclude that R`(λ, u, v) 6 R`(λ, ū, v̄) and, inter-

changing the roles of u, v and ū, v̄ it is immediate that R`(λ, ū, v̄) > R`(λ, u, v). Thus

R`(λ, ū, v̄) = R`(λ, u, v).

Now writeRu(λ, s, y) for the number in (3.1.16) corresponding to the solutions s = (s∗n)

of (3.1.5) with s0 > 0 and y = (y∗n) of (3.1.8) with y0 > 0.

Let again δ > 0 be sufficiently small. Additionally, let s∗1 = (s∗1,n) and s∗2 = (s∗2,n) be

distinct solutions of (3.1.5) and y∗1 = (y∗1,n) and y∗2 = (y∗2,n) be distinct solutions of (3.1.8).

By iv) in Lemma 3.1 and iv) in Lemma 3.2, we have

s∗1,k − δ 6 s∗2,k 6 s∗2,k + δ and y∗1,k − δ 6 y∗2,k 6 y∗1,k + δ

for k > N sufficiently large. There is c > 0 such that

|g(s∗1,k, 0, y
∗
1,k)− g(s∗1,k, 0, y

∗
2,k − δ)| 6 c|y∗1,k − y∗2,k + δ| 6 2cδ

and

|g(s∗2,k, 0, y
∗
1,k)− g(s∗1,k, 0, y

∗
1,k)| 6 c|s∗2,k − s∗1,k| 6 cδ.
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Therefore

n+λ∏
k=n

1 + βks
∗
2,k+1

1 + ck + ηkg(s∗2,k, 0, y
∗
2,k)

6
n+λ∏
k=n

1 + βks
∗
1,k+1 + δβk

1 + ck + ηkg(s∗2,k, 0, y
∗
1,k − δ)

6
n+λ∏
k=n

1 + βks
∗
1,k+1 + δβk

1 + ck + ηkg(s∗1,k, 0, y
∗
1,k)

1 + ck + ηkg(s∗1,k, 0, y
∗
1,k)

1 + ck + ηkg(s∗2,k, 0, y
∗
1,k − δ)

6
n+λ∏
k=n

(
1 + βks

∗
1,k+1

1 + ck + ηkg(s∗1,k, 0, y
∗
1,k)

+
δβk

1 + ck + ηkg(s∗1,k, 0, y
∗
1,k)

)
×

×

(
1 +

3cδηk
1 + ck + ηkg(s∗2,k, 0, y

∗
1,k − δ)

)

6 (1 + δB)λ+1
n+λ∏
k=n

(
1 + βks

∗
1,k+1

1 + ck + ηkg(s∗1,k, 0, y
∗
1,k)

+ δA

)

6 (1 + δB)λ+1

n+λ∏
k=n

1 + βks
∗
1,k+1

1 + ck + ηkg(s∗1,k, 0, y
∗
1,k)

+
λ+1∑
j=1

(
λ+ 1

j

)
δjCλ+1−jAj

 ,

(3.1.18)

for n > N , where

A =
βu

1 + c` + η`(g(s∗1,k, 0, y
∗
1,k))

`
, B =

2cηu

1 + c` + η`(g(s∗2,k, 0, y
∗
1,k − δ))`

and

C =
1 + βu(s∗1)u

1 + c` + η`(g(s∗1,k, 0, y
∗
1,k))

`
.

By (3.1.16) and (3.1.18), taking limits, we conclude that

R`(λ, s∗2, y∗2) 6 (1 + δB)λ+1

R`(λ, s∗1, y∗1) +
λ+1∑
j=1

(
λ+ 1

j

)
δjCλ+1−jAj ,


By the arbitrariness of ε > 0, we conclude that R`(λ, s∗2, y∗2) 6 R`(λ, s∗1, y∗1) and, inter-

changing the roles of (s∗1, y
∗
1) and (s∗2, y

∗
2) it is immediate that R`(λ, s∗2, y∗2) > R`(λ, s∗1, y∗1).

Thus R`(λ, s∗2, y∗2) = R`(λ, s∗1, y∗1).

The result is proved. �

3.2. Extinction and uniform strong persistence

In this section we establish our main results on extinction and persistence. To obtain

our result on extinction we must make some additional assumptions on the function g. In

spite of this, it is easy to see that the usual growth rates still fulfill these assumptions.
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Theorem 3.1. Assume conditions D1) to D7). Assume further that g(S + I, 0, P ) 6

g(S, I, P ). If there is λ ∈ N such that Ru(λ) < 1 then the infectives (In) go to extinction

in system (3.1.2). Furthermore, if a ≡ 0 and g(S, I, P ) = g0(S, I)P , any disease-free

solution (s∗n, 0, y
∗
n) of (3.1.2), where (s∗n) is a solution of (3.1.5) and (y∗n) is a solution

of (3.1.8), is globally asymptotically attractive.

Proof. Since Ru(λ) < 1, given δ1 > 0 sufficiently small, there are δ0 > 0 and N ∈ N

such that
n+λ∏
k=n

1 + βk(s
∗
k+1 + δ)

1 + ck + ηkg(s∗k + δ, 0, y∗k − δ))
< 1− δ1, (3.2.1)

for n > N and all positive δ 6 δ0. Let Nn = Sn + In. Since µn 6 cn, by the first two

equations in (3.1.2), we conclude that

Nn+1 −Nn 6 Λn − µnNn+1 ⇔ Nn+1 6
Λn

1 + µn
+

Nn

1 + µn

and thus Sn, In 6 Nn 6 sn, where (sn) is any solution of (3.1.5) with s0 = S0. By iv) in

Lemma 3.1 we have |sn − s∗n| 6 δ0 for sufficiently large n, say n > N1 > N . Thus

Sn, In 6 Sn + In = Nn 6 sn 6 s
∗
n + δ0,

for n > N1.

By the third equation in (3.1.2), we conclude that

Pn+1 − Pn > (rn − bnPn+1)Pn ⇔ Pn+1 >
rnPn + Pn
1 + bnPn

and thus Pn > yn, where (yn) is any solution of (3.1.8) with y0 = P0. By iv) in Lemma 3.2

we have |yn − y∗n| 6 δ0 for sufficiently large n, say n > N2 > N1. Thus Pn > yn > y∗n − δ0,

for n > N2. Using our hypothesis, by the second equation in (3.1.2) and (3.2.1),

In+1 =
βnSn+1In + In

1 + ηng(Sn, In, Pn) + cn

6
βnSn+1In + In

1 + ηng(Sn + In, 0, Pn) + cn

6
βn(s∗n+1 + δ0) + 1

1 + cn + ηng(s∗n + δ0, 0, y∗n − δ0)
In

< (1− δ1) In−λ−1

< · · · < (1− δ1)b(n−N2)/(λ+1)c In−b(n−N2)/(λ+1)c(λ+1)

6 d
(

(1− δ1)1/(λ+1)
)n−N2

,
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for n > N2, where d = max
j=0,...,N2

Ij . We conclude that In → 0 as n → +∞ and we have

extinction of the infectives.

Assume now that a ≡ 0 and g(S, I, P ) = g0(S, I)P , let ((Sn, In, Pn)) be any solution

of (3.1.2) and consider the sequence ((s∗n, 0, y
∗
n)), where (s∗n) is a solution of (3.1.5) and

(y∗n) is a solution of (3.1.8).

Since In → 0 as n → +∞, given δ > 0 there is T ∈ N such that In < δ for n > T .

Letting Un = Sn − s∗n, we have, by the first equation in (3.1.2),

Un+1 − Un = −µnUn+1 − βnSn+1In,

for n > T . Thus, by iv) in Lemma 3.1 and by Lemma 3.3, we have

−βuLδ < (1 + µn)Un+1 − Un < 0

for n sufficiently large.

We get, for δ > 0 sufficiently small

Un+1 > −
βuLδ

1 + µn
+

1

1 + µn
Un

> − βuLδ

1 + µn
+

1

1 + µn

(
− βuKδ

1 + µn−1
+

1

1 + µn−1
Un−1

)
> · · ·

>

(
n∏

m=0

1

1 + µm

)
U0 −

n∑
m=0

(βuLδ)m+1

(
n∏

k=m

1

1 + µk

)

>

(
n∏

m=0

1

1 + µm

)
U0 − δβuL

n∑
m=0

Kθn−m

>

(
n∏

m=0

1

1 + µm

)
U0 −

βuLKθ

1− θ
δ

> −β
uLKθ

1− θ
δ.

Similarly,

Un+1 <
1

1 + µn
Un <

(
n∏

m=0

1

1 + µm

)
U0.

Since
n∏

m=0

1

1 + µm
→ 0 as n→ +∞,
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given δ > 0, we have |Un+1| < Mδ, where M = βuLKθ/(1 − θ), for sufficiently large n.

We conclude that |Un| → 0 as n→ +∞ and thus

Sn → s∗n as n→ +∞. (3.2.2)

By the third equation in (3.1.2), we have, for sufficiently large n,

Pn+1 − Pn = (rn − bnPn+1)Pn + θnηng0(Sn, In)PnIn+1

6 (rn − bnPn+1)Pn + θnηng0(0, 0)Pnδ

and thus

(rn − bnPn+1)Pn 6 Pn+1 − Pn 6 (rn + θuηug0(0, 0)δ − bnPn+1)Pn.

We conclude that

rnPn + Pn
1 + bnPn

6 Pn+1 6
(rn + θuηug0(0, 0)δ)Pn + Pn

1 + bnPn
.

By iv) in Lemma 3.2, we have |Pn − y∗n| → 0 as n → +∞. The result follows since

(Sn, In, Pn)→ (s∗n, 0, y
∗
n) as n→ +∞. �

Theorem 3.2. Assume conditions D1) to D3) and D5) to D9). If there is a constant

λ ∈ N such that R`(λ) > 1 then the infectives (In) are strong persistent in system (3.1.2).

Proof. Assume that there is a constant λ > 0 such that R`(λ) > 1. Then, there is a

function ψ such that, for all δ > 0 sufficiently small we have

n+λ∏
k=n

1 + βk(x
∗
1,k+1 − δ0)

1 + ck + ηkg(x∗1,k − δ0, 0, z∗2,k + δ0)
> 1 + ψ(δ), (3.2.3)

with ψ(δ) > 0 for all δ > 0 and ψ(δ) → 0 as δ → 0. Let N1 ∈ N and (Sn, In, Pn) be a

solution of (3.1.2) with In > 0 for all n > N1. We will use a contradiction argument to

prove that there is ε1 > 0 such that

lim sup
n→+∞

In > ε1. (3.2.4)

We may assume that ε1 > 0 is sufficiently small so that D8) and D9) hold for ε1. Assuming

that (3.2.4) does not hold, there is N2 > N1 such that In < ε1 for all n > N2. By the first

and third equation in (3.1.2), we conclude thatSn+1 − Sn 6 Λn − µnSn+1

Pn+1 − Pn 6 (rn − bnPn+1)Pn + γnanf(Sn+1, 0, Pn)Pn + θnηng(Sn, 0, Pn)Pnε1

,
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for all n > N2. Considering system (3.1.14) with ε = ε1, we have Sn 6 x2,ε1,n and

Pn 6 z2,ε1,n for sufficiently large n. By D9) we also have, for sufficiently large n,

x2,ε1,n 6 x
∗
2,ε1,n + ε1 and z2,ε1,n 6 z

∗
2,ε1,n + ε1

and by the continuity properties in D8) and D9), we have

x2,ε1,n 6 x
∗
2,ε1,n + ε1 6 x

∗
2,n + χ1(ε1) and z2,ε1,n 6 z

∗
2,ε1,n + ε1 6 z

∗
2,n + χ2(ε1),

with χ1(ε1), χ2(ε1)→ 0 as ε1 → 0. Thus, in particular, for sufficiently large n,

Sn 6 x2,ε1,n 6 x
∗
2,n + χ1(ε1) and Pn 6 z2,ε1,n 6 z

∗
2,n + χ2(ε1), (3.2.5)

Again by the first and third equation in (3.1.2), we conclude thatSn+1 − Sn > Λn − µnSn+1 − anf(Sn+1, 0, 0)z2,ε1,n − βnSn+1ε1

Pn+1 − Pn > (rn − bnPn+1)Pn + γnanf(Sn+1, ε1, Pn)Pn

,

for all n > N2.

Consider system (3.1.13) with ε = ε1. We have Sn > x1,ε1,n and Pn > z1,ε1,n for

sufficiently large n. By D8) we also have, for sufficiently large n,

x1,ε1,n > x
∗
1,ε1,n − ε1 and z1,ε1,n > z

∗
1,ε1,n − ε1.

and by the continuity properties in D8) and D9), we have

x1,ε1,n > x
∗
1,ε1,n − ε1 > x

∗
1,n − ϕ1(ε1) and z1,ε1,n > z

∗
1,ε1,n − ε1 > z

∗
1,n − ϕ2(ε1),

with ϕ1(ε1), ϕ2(ε1)→ 0 as ε1 → 0. Thus, in particular, for sufficiently large n,

Sn > x1,ε,n > x
∗
1,n − ϕ1(ε1) and Pn > z1,ε,n > z

∗
1,n − ϕ2(ε1). (3.2.6)

From the second equation in (3.1.2), (3.2.6), (3.2.5) and (3.2.3), we conclude that

In+1 =
βnSn+1In + In

1 + ηng(Sn, In, Pn) + cn

>
βn(x∗1,n+1 − ϕ1(ε1)) + 1

1 + ηng(x∗1,n+1 − ϕ1(ε1), 0, z∗2,n + χ2(ε1)) + cn
In

> (1 + ψ(ε1)) In−λ−1

> · · · > (1 + ψ(ε1))bn/(λ+1)c In−bn/(λ+1)c(λ+1),

(3.2.7)
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for all n > N3 with N3 > N2. Therefore, by (3.2.3) and (3.2.7), we conclude that In →

+∞. A contradiction to Lemma 3.3. We have (3.2.4) and the infectives in system (3.1.2)

are weak persistent.

Using again a contradiction argument, we will prove that we have strong persistence

of the infectives. We may assume, with no loss of generality, that there are δ, δ0 > 0 such

that
n+λ∏
k=n

1 + βk(x
∗
1,k+1 − δ0)

1 + ck + ηkg(x∗1,k − δ0, 0, z∗2,k + δ0)
> 1 + δ, (3.2.8)

for all sufficiently large n ∈ N. For each z0 = (S0, I0, P0), denote by ((Sn,z0 , In,z0 , Pn,z0))

the solution of (3.1.2) with (S0,z0 , I0,z0 , P0,z0) = (S0, I0, P0).

Proceeding by contradiction, if the system is not strong persistent, then there is a

sequence of initial values z0,k = (S0,k, I0,k, P0,k), k ∈ N, such that

lim inf
n→+∞

In,z0,k <
ε0

k2
. (3.2.9)

From (3.2.4) and (3.2.8), for each k ∈ N there are sequences (sm,k) and (tm,k) such that

0 < s1,k < t1,k < s2,k < t2,k < · · · < sm,k < tm,k < · · · , (3.2.10)

sm,k → +∞ as m→ +∞, (3.2.11)

Ism,k,z0,k >
ε0

k
, Itm,k,z0,k <

ε0

k2
, (3.2.12)

and
ε0

k2
6 In,z0,k 6

ε0

k
, for all n ∈ [sm,k, tm,k − 1] ∩N. (3.2.13)

For any n ∈ [sm,k, tm,k − 1] ∩N sufficiently large, we have, using (3.1.11),

In+1,z0,k =
1 + βnSn+1,z0,k

1 + cn + ηng(Sn,z0,k , In,z0,k , Pn,z0,k)
In,z0,k

>
1

1 + cn + ηng(Sn,z0,k , 0, Pn,z0,k)
In,z0,k

>
1

1 + a
In,z0,k ,

where a = cu + ηug(0, 0, L+ δ) > 0. Therefore, by (3.2.12), we obtain

ε0

k2
> Itm,k,z0,k >

(
1

1 + a

)tm,k−sm,k
Ism,k,z0,k >

(
1

1 + a

)tm,k−sm,k ε0

k
,

and therefore we get

tm,k − sm,k >
ln k

ln(1 + a)
→ +∞ as k → +∞.
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Given n1 ∈ N, we conclude that we can choose k1 ∈ N such that

tm,k − sm,k > n1 + λ+ 1,

for all k > k1.

Now, for all k > k1 and n ∈ [sm,k + 1, tm,k] ∩N, we have

Sn+1,z0,k − Sn,z0,k 6 Λn − µnSn+1,z0,k

Pn+1,z0,k − Pn,z0,k 6 (rn − bnPn+1,z0,k)Pn,z0,k

+ γnanf(Sn+1,z0,k , In,z0,k , Pn,z0,k)Pn,z0,k

+ θnηng(Sn,z0,k , In,z0,k , Pn,z0,k)ε1

,

Let (x̄1,n, z̄1,n) be a solution of (3.1.13) with initial condition x̄1,sm,k+1 = Ssm,k+1 and

z̄1,sm,k+1 = Psm,k+1. By D8), for sufficiently large k ∈ N we have

|Sn,z0,k − x∗1,n| 6 |Sn,z0,k − x̄1,n|+ |x̄1,n − x∗1,n| < ε0/2 + ε0/2 = ε0

for all n ∈ [sm,k + 1, tm,k] ∩N. In particular

Sn,z0,k > x
∗
1,n − ε0, (3.2.14)

for all n ∈ [sm,k+1, tm,k]∩N. In a similar way, using D9), we conclude that, for sufficiently

large k ∈ N we have

Pn,z0,k 6 z
∗
2,n + ε0, (3.2.15)

for all n ∈ [sm,k + 1, tm,k] ∩N.

Finally, we have

In+1,z0,k =
1 + βnSn+1,z0,k

1 + cn + ηng(Sn,z0,k , In,z0,k , Pn,z0,k)
In,z0,k

>
1 + βn(x∗1,n − ε0)

1 + cn + ηng(x∗1,n − ε0, 0, z∗2,n + ε0)
In,z0,k

(3.2.16)

for all n ∈ [sm,k + n1 + 1, tm,k] ∩N and k > n4. By (3.2.9) and (3.2.16) we get

ε0

k2
> Itm,k,z0,k > Itm,k−λ,z0,k

tm,k∏
n=tm,k−λ

1 + βn(x∗1,n − ε0)

1 + cn + ηng(x∗1,n − ε0, 0, z∗2,n + ε0)
In,z0,k >

ε0

k2
,

a contradiction. Thus we conclude that the infectives are strong persistent and the result

follow. �
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3.3. Examples

3.3.1. No predation of uninfected preys. Letting a ≡ 0 and g(x, y, z) = z

in (3.1.2), we obtain the model below that corresponds to the discrete counterpart of

the model in [75]. 
Sn+1 − Sn = Λn − µnSn+1 − βnSn+1In

In+1 − In = βnSn+1In − ηnPnIn+1 − cnIn+1

Pn+1 − Pn = (rn − bnPn+1)Pn + θnηnPnIn+1

. (3.3.1)

For model (3.3.1) we assume conditions D1), D2) and D4). Notice that D3) is trivial,

D5) and D6) follow from the discussion on (3.1.4) with an = 0, D7) follows from Lemma 3.3

and D8) and D9) follow from Lemma 3.1 and Lemma 3.2, respectively.

For each solution (s∗n) of (3.1.5) with s0 > 0, each solution (y∗n) of (3.1.8) with y0 > 0

and each λ ∈ N, in this context of no predation (of uninfected preys) we set

R`NP (λ) = lim inf
n→+∞

n+λ∏
k=n

1 + βks
∗
k+1

1 + ck + ηky
∗
k

and

RuNP (λ) = lim sup
n→+∞

n+λ∏
k=n

1 + βks
∗
k+1

1 + ck + ηky
∗
k

.

The next theorems correspond to discrete counterparts of the results in [75].

Theorem 3.3. If there is λ ∈ N such that RuNP (λ) < 1 then the infectives (In) go

to extinction in system (3.3.1) and any disease-free solution ((s∗n, 0, y
∗
n)) of (3.3.1), where

(s∗n) is a solution of (3.1.5) and (y∗n) is a solution of (3.1.8), is globally asymptotically

attractive.

Theorem 3.4. If there is λ ∈ N such that R`NP (λ) > 1 then the infectives (In) are

strongly persistent in system (3.3.1).

To do some simulation, we consider the particular solutions s∗n = Λ/µ, y∗n = r/b

and the following particular set of parameters in system (3.3.1): Λn = 0.3, µn = 0.1,

βn = β0(1 + 0.7 cos(πn/5)), ηn = 0.3(1 + 0.7 cos(πn/5)), cn = 0.18, rn = 0.3, bn = 0.2,

θn = 0.9. This example is based the continuous time example from Chapter 1.

When β0 = 0.17 we obtain RuNP (λ) ≈ 0.89 < 1 and we conclude that we have the

extinction (figure 3.1). When β0 = 0.29 we obtain R`NP (λ) ≈ 1.24 > 1 and we conclude

that the infectives are strongly persistent (figure 3.2).
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Figure 3.1. Extinction; no predation uninfected preys; β0 = 0.17.
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Figure 3.2. Persistence; no predation on uninfected preys; β0 = 0.29.

In extinction and uniform strong persistence scenario we considered, respectively, the

following initial conditions: (S0, I0, P0) = (0.8, 0.6, 0.1), (S0, I0, P0) = (1.7, 0.2, 0.3) and

(S0, I0, P0) = (2.3, 0.4, 0.7); (S0, I0, P0) = (1.5, 0.1, 0.2), (S0, I0, P0) = (0.7, 0.2, 0.4) and

(S0, I0, P0) = (0.3, 0.15, 0.9).

3.3.2. Periodic coefficients. Consider the system (3.1.2) and assume that there is

ω ∈ N such that Λn+ω = Λn, µn+ω = µn, an+ω = an, βn+ω = βn, ηn+ω = ηn, cn+ω = cn,

rn+ω = rn, bn+ω = bn, γn+ω = γn and θn+ω = θn, for all n ∈ N. Conditions D1) to D3)

and D5) to D8) are assumed; condition D4) is trivial.

For each solution (s∗n) of (3.1.5) with s0 > 0, each solution (y∗n) of (3.1.8) with y0 > 0

and for each solution ((x∗1,n, z
∗
1,n)) of (3.1.13) and ((x∗2,n, z

∗
2,n)) of (3.1.14) with ε = 0 and

initial conditions x0 > 0 and z0 > 0, and each λ ∈ N, we set

R`PER =

ω∏
k=1

1 + βkx
∗
1,k+1

1 + ck + ηkg(x∗1,k, 0, z
∗
2,k)

and

RuPER =

ω∏
k=1

1 + βks
∗
k+1

1 + ck + ηkg(s∗k, 0, y
∗
k)
,

Corollary 11. If RuPER < 1 then the infective (In) go to extinction in system (3.1.2)

and any disease-free solution ((s∗n, 0, y
∗
n)) of (3.1.2), where (s∗n) is a solution of the periodic

version of (3.1.5) and (y∗n) is a solution of the periodic version of (3.1.8), is globally

asymptotically attractive.
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Figure 3.3. Extinction; periodic coefficients; β0 = 0.17.
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Figure 3.4. Persistence; periodic coefficients; β0 = 2.2.

Corollary 12. If R`PER > 1 then the infective (In) is strongly persistent in sys-

tem (3.1.2), where x∗1,n, z
∗
1,n and x∗2,n, z

∗
3,n are the components of solutions of (3.1.13)

and (3.1.14), respectively. Moreover, there exist a periodic orbit of period ω.

To do some simulation, we consider f(x, y, z) = x, g(x, y, z) = z. We also considered

the following particular set of parameters, and with the exception of β we assume that

they are all constants: Λn = 0.3, µn = 0.1, an = 0.4, βn = β0(1 + 0.7 cos(πn/5)), ηn = 0.3,

cn = 0.18, rn = 0.3, bn = 0.2, γn = 0.1 and θ = 0.9. We have the particular solutions

s∗k = Λ/µ, y∗k = r/b,

(x∗2,ε,n, z
∗
2,ε,n) =

(
Λ

µ
,Θ

)
and (x∗1,ε,n, z

∗
1,ε,n) =

(
Λ

µ+ aΘ + ε
,
r

b
+

γaΛ

b(µ+ aΘ + ε)

)
,

where

Θ =
rµ+ γaΛ + θηµε

bµ
.

When β0 = 0.17, we obtain RuPER ≈ 0.44 < 1 and we conclude that we have the extinction

(figure 3.3). When β0 = 2.2, we obtain R`PER(λ) ≈ 2.72 > 1 and we conclude that

the infectives are uniformly strong persistent (figure 3.4). In extinction and uniform

strong persistence scenario we considered, respectively, the following initial conditions:

(S0, I0, P0) = (0.8, 0.6, 0.1), (S0, I0, P0) = (1.7, 0.2, 0.3) and (S0, I0, P0) = (2.3, 0.4, 0.7);

(S0, I0, P0) = (1.5, 0.1, 0.2), (S0, I0, P0) = (0.7, 0.2, 0.4) and (S0, I0, P0) = (0.3, 0.15, 0.9).
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3.3.3. Autonomous model. Consider the system (3.1.2), and assume now that

f(x, y, z) = x, g(x, y, z) = z, Λn = Λ, µn = µ, an = a, βn = β, ηn = η, cn = c,

rn = r, bn = b and γn = γ, θn = θ. Then we obtain following the model:


Sn+1 − Sn = Λ− µSn+1 − aSn+1Pn − βSn+1In

In+1 − In = βSn+1In − ηIn+1Pn − cIn+1

Pn+1 − Pn = (r − bPn+1)Pn + γaSn+1Pn + θηIn+1Pn

. (3.3.2)

Conditions D1) to D4) are immediate. Conditions D5) and D6) follow from the discussion

on (3.1.4). Condition D7) follows from Lemma 3.3 and D8) and D9) follow from Lemma

3.1 and Lemma 3.2, respectively. For each solution (s∗n) of (3.1.5) with s0 > 0, each

solution (y∗0) of (3.1.8) with y0 > 0 and each solution ((x∗n, z
∗
n)) of (3.1.13) with ε = 0 and

initial conditions x0 > 0 and z0 > 0, and each λ ∈ N, we set

R`A =
µ+ aΘ + β

(µ+ aΘ)(1 + c+ ηΘ)
,

where Θ = (rµ+ γaΛ)/(bµ), and

RuA =
1 + β (Λ/µ)

1 + c+ η (r/b)
,

Corollary 13. If RuA < 1 then the infective (In) in system (3.3.2) go to extinction.

Corollary 14. If R`A > 1 then the infective (In) in system (3.3.2) are strongly

persistent.

To do some simulation, we consider the following particular set of parameters: Λ = 0.3,

µ = 0.1, a = 0.4, η = 0.3, c = 0.18, r = 0.3, b = 0.2, γ = 0.1 and θ = 0.9.

When β = 0.17 we obtain RuA ≈ 0.93 < 1 and we conclude that we have the extinction.

When β = 2.2 we obtain R`A ≈ 1.85 > 1 and we conclude that the infectives are strongly

persistent.

In uniform strong persistence and extinction scenario we considered, respectively, the

following initial conditions: (S0, I0, P0) = (0.8, 0.6, 0.1), (S0, I0, P0) = (1.7, 0.2, 0.3) and

(S0, I0, P0) = (2.3, 0.4, 0.7); (S0, I0, P0) = (1.5, 0.1, 0.2), (S0, I0, P0) = (0.7, 0.2, 0.4) and

(S0, I0, P0) = (0.3, 0.15, 0.9).

3.4. Comments

In this chapter we used Mickens nonstandard method on a version of model (0.0.2)

to obtain a discrete family of non-autonomous eco-epidemiological models and discuss the

persistence and extinction of the infected preys.
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Figure 3.5. Extinction; autonomous model; β0 = 0.17.
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Figure 3.6. Persistence; autonomous model; β0 = 2.2.

A natural extension of our work would be to obtain persistence and extinction results

when we have general functions for the vital dynamics of uninfected preys and predators,

in the spirit of Chapter 1. It would also be interesting to obtain a discrete version of

Theorem 3 in Chapter 1 for the general model.



CHAPTER 4

Random Eco-Epidemiological Model

In this chapter we consider random perturbations of system (0.0.2) by introducing a

random noise in a parameter. We prove the existence of a global random attractor, the

persistence of susceptibles preys and provide conditions for the simultaneous extinction

of infectives and predators. We also discuss the dynamics of the corresponding random

epidemiological SI and predator-prey models. We obtain for this cases a global random

attractor, prove the prevalence of susceptibles preys and provide conditions for the extinc-

tions of infectives/predators.

As already mentioned in the Introduction, the understanding of asymptotic behavior

of eco-epidemiological models is an important problem in the mathematical biology. How-

ever, from the very beginning of the theory it became clear that even models for a ultra

simplified version of real world phenomena exhibit intricate and complex behaviours, de-

spite their simple formulation. In view of this, several mathematical tools were developed

with great success in order to understand as much as possible the features and properties

of these models.

Motivated, in one hand, by the attempts to approximate the mathematical models to

real world phenomena as much as possible and, on the other hand, by the mathematical

challenge to provide a deep and general knowledge on the theory constructed due to this

formulations, the models and the related theory have been reconstructed and evolved in

many directions. One of these directions aimed to consider nonautonomous elements in the

mathematical models, such as the seasonal dynamics, and also random elements in order

to deal with the presence of noise or complicated fluctuations, in contrast to a completely

deterministic situation.

As mentioned in the Introduction, in the nondeterministic situation there are two

main approaches to incorporate randomness by considering stochastic and random per-

turbations, which, roughly speaking, can be expressed throughout stochastic and random

differential equations. There are techniques to transform a system with stochastic per-

turbation to a random dynamical system, being that this can lead to unbounded random

95
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coefficients on the system and can substantially change the structure of the model; see for

instance [14, 15].

Random attractors are a central concept in the analysis of random models. Since their

introduction there are several improvements regarding the existence and properties of such

attractors, but there are questions that are still open in this theory; see [22, 23, 24, 25,

26, 46]. The main strategy adopted to ensure the existence of a random attractor for a

given family of random sets is to find a compact absorbing set. Moreover, since the family

of random sets we are interested contains every compact deterministic set, the random

attractor is actually unique (cf. Remark 4.6).

In this work we consider random perturbations of the general eco-epidemiological

model introduced in Chapter 1, that generalizes the model in [75] by adding a general

function corresponding to predation on uninfected and infected preys, that is, we aim to

perturb the model (0.0.2) with G(t, S) = Λ(t)− µS(t) and H(t, P ) = −δ1P (t)− δ2P (t)2.

We consider a random coefficient (real noise), establish a framework of Random Dy-

namical Systems (RDS) and discuss the asymptotic behaviour of the solutions of the model

considered. Namely, we focus on the existence of a global random attractor which can

be understood as a random counterpart of a deterministic global attractor. We moreover

prove the prevalence of susceptibles preys and provide conditions for the simultaneous

extinction of infectives and predators.

We also discuss the dynamics of the corresponding random epidemiological SI and

predator-prey models, by considering the infectives (I) and predators (P ) identically equal

to zero in the main model (4.2.1). For both subsystems we obtain a global random attrac-

tor, prove the persistence of susceptibles/preys and provide conditions for the extinctions

of infectives/predators. Random perturbations for a SI model, albeit slightly different,

were discussed in [14, 15].

This chapter is organized as follows: in section 4.1 we recall basic facts from RDS

and random attractors; in section 4.2 we introduce a random perturbation in an eco-

epidemiological model and establish a RDS framework; in section 4.3 we prove existence,

uniqueness and boundedness of solutions; in section 4.4 we prove the existence of a unique

global random attractor and provide a threshold for the extinction of predators and in-

fected preys, which is illustrated with a particular example; in section 4.5 we discuss the

partial dynamics of the perturbed model in the absence of predators or infected preys.
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4.1. Random attractors

We start by recalling some basic concepts about Random Dynamical Systems (RDS)

and random attractors. For details on RDS we refer to the reference monograph by

Arnold [1] and for random attractors see e.g. the survey [25] and reference therein.

Let (Ω,F ,P) be a probability space, where F is the σ-algebra of measurable subsets

of Ω and P is a probability measure on F . Given a topological space S we denote by B(S)

the Borel σ-algebra of S. Consider a metric dynamical system (Ω,F ,P, θ) in the sense

that

(i) θ : R× Ω→ Ω is (B(R)⊗F ,F)-measurable;

(ii) θt : Ω→ Ω given by θtω = θ(t, ω) satisfies:

(a) θ0 = IdΩ and θt+s = θt ◦ θs, for all t, s ∈ R;

(b) P(θtA) = P(A), for all A ∈ F , that is, θt preserves the probability measure P

for all t ∈ R.

The non-intuitive term metric is present in the literature for historical reasons.

A (measurable) random dynamical system (RDS) ϕ on X = Rd over θ (with time R+
0 )

is a map

ϕ : R+
0 × Ω×X → X

satisfying

(i) measurability: (t, ω, x) 7→ ϕ(t, ω, x) is (B(R+
0 )⊗F ⊗ B(X),B(X))-measurable;

(ii) cocycle property: ϕ(t, ω, x) forms a cocycle over θ, i.e.,

(a) ϕ(0, ω, x) = x, for all ω ∈ Ω, x ∈ X;

(b) ϕ(t+ s, ω, x) = ϕ(t, θsω, ϕ(s, ω, x)), for all s, t ∈ R+
0 , ω ∈ Ω and x ∈ X.

We, moreover, assume a continuity condition:

(iii) x→ ϕ(t, ω, x) is continuous for all ω ∈ Ω and t ∈ R+
0 .

To simplify we refer to such a RDS as the pair (θ, ϕ).

Remark 4.1.

1. The cocycle property is assumed to hold for all ω ∈ Ω, or at least in a P-full

measure subset. This can be a delicate issue to ensure in specific examples of RDS

generated from a stochastic or a random differential equation.

2. Often joint continuity (t, x) → ϕ(t, ω, x) is assumed, but the continuity in time t

will not have a role in the following theory of random attractors. Nevertheless,

the RDS to be considered here is induced by random differential equations, which

provide joint continuity in time and space. In this case, the mapping ϕ(t, ω, x0)
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corresponds to the solution mapping with noise realization ω and initial condition

x0 = ϕ(0, ω, x0); cf. Theorem 4.1.

3. We consider the phase space X = Rd because we have in mind specific RDS related

to random versions of eco-epidemiological models that evolve on R3. However, it

is typical to assume X to be a Polish space, i.e., a separable topological space for

which there is a complete metric which induces the topology. This, in particular,

includes open non-empty subsets of Euclidean spaces as well as separable Hilbert

and Banach spaces.

Definition 4.1. A random set C is a measurable subset of X ×Ω with respect to the

product σ-algebra B(X)⊗F .

Given ω ∈ Ω, the ω-section of a random set C ⊆ X × Ω is defined by

C(ω) = {x : (x, ω) ∈ C}.

If a set C ⊆ X×Ω has closed or compact ω-sections C(ω) it is a random set as soon as the

mapping ω 7→ d
(
x,C(ω)

)
is measurable (from Ω to [0,∞[) for every x ∈ X (see [16]). In

this case C will be said to be a closed or a compact random set, respectively. We say that

a random set C has deterministic components or, for short, that is a deterministic set (as

subset of X ×Ω) if its ω-sections are constant: there is Ĉ ⊆ X such that C(ω) = Ĉ for all

(or, at least, almost all) ω ∈ Ω. We define D(X) as the set of all deterministic compact

random sets. For any set C ⊆ X × Ω, we define C := {(x, ω) : x ∈ C(ω)}. We say that

a random set C(ω) is bounded if C(ω) ⊆ X is bounded for all (or, at least, almost all)

ω ∈ Ω.

Remark 4.2. In general, having ω 7→ d
(
x,C(ω)

)
measurable for every x ∈ X, does

not guarantee that C ⊆ X × Ω is a (B(X)⊗F)- measurable set; see [25, Remark 4].

Definition 4.2. A bounded random set K is said to be tempered with respect to θ if

for P-a.e. ω ∈ Ω,

lim
t→∞

e−βt sup
x∈K(θ−tω)

‖x‖ = 0, for all β > 0.

A random variable r : Ω→ R is said to be tempered with respect to θ if for P-a.e. ω ∈ Ω,

lim
t→∞

e−βt sup
t∈R
|r(θtω)| = 0, for all β > 0.

We denote by T (X) the set of all tempered sets of X (i.e, tempered bounded random

sets with fibers on X) with respect to θ. Notice that D(X) ⊆ T (X). In our perspective,

the underlying dynamics θ is given, so that we will often omit the reference to θ.



4.1. RANDOM ATTRACTORS 99

Definition 4.3. Consider a RDS (θ, ϕ) on X and an arbitrary family R of random

sets. A random set Γ is called a random absorbing set in R if for any K ∈ R and P-a.e.

ω ∈ Ω, there exists TK(ω) > 0 such that

ϕ(t, θ−tω,K(θ−tω)) ⊆ Γ(ω) for all t > TK(ω).

If, in addition, Γ is a closed random set, then we say that Γ is a closed absorbing set.

Definition 4.4. Consider a RDS (θ, ϕ) on X and an arbitrary family R of random

sets. A compact random set A is called a pullback R attractor if:

(i) invariance: for P−a.e. ω ∈ Ω and all t ≥ 0 it holds

ϕ(t, ω,A(ω)) = A(θtω);

(ii) attracting property: for any K ∈ R and P-a.e. ω ∈ Ω,

lim
t→∞

dist(ϕ(t, θ−tω,K(θ−tω)),A(ω)) = 0, (4.1.1)

where

dist(G,H) = sup
g∈G

inf
h∈H
‖g − h‖ (4.1.2)

is the Hausdorff semi-metric for G,H ⊆ X.

If R = T (X) we say in this conditions that A is a global random attractor.

Remark 4.3. Notice that a global random attractor is also a pullback D(X) attractor.

Remark 4.4. Unless stated otherwise, a random attractor will be understood always

as a pullback attractor. There are other notions of attraction in this context, such as

forward attraction, weak attraction and attraction in probability but it is not our purpose

to investigate those behaviours. Notice also that the notion of pullback attractor does not

depend on the choice of the metric dist, which is not the case when we consider a forward

attractor A which instead condition (4.1.1) satisfies

lim
t→∞

dist(ϕ(t, ω,K(ω)),A(θtω)) = 0;

see [26, Section 5].

Proposition 4.1. [15, Proposition 1] Consider a RDS (θ, ϕ) on X and an arbitrary

family R of random sets containing D(X). If there is a compact absorbing set Γ ∈ R then
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there is a unique global random attractor A with component subsets

A(ω) =
⋂

τ≥TΓ(ω)

⋃
t≥τ

ϕ(t, θ−tω,Γ(θ−tω)). (4.1.3)

If the pullback absorbing set is positively invariant, i.e., ϕ(t, ω,Γ(ω)) ⊂ Γ(θtω) for all

t ≥ 0, then

A(ω) =
⋃

t>TΓ(ω)

ϕ(t, θ−tω,Γ(θ−tω)). (4.1.4)

Remark 4.5. The original statement requires an asymptotic compactness property

which is trivially satisfied in our context since X = Rd. Note also that this path-wise

attracting in the pullback sense does not need to be path-wise attracting in the forward

sense, although it is forward attracting in probability: for any ε > 0,

P({ω ∈ Ω: dist(ϕ(t, θ−tω,K(θ−tω)),A(ω)) ≥ ε})

= P({ω ∈ Ω: dist(ϕ(t, ω,K(ω)),A(θtω)) ≥ ε})

which goes to 0 as t→∞. That is,

lim
t→∞

d
(
ϕ(t, ω)K(ω), A(θtω)

)
= 0 in probability

for every K ∈ R. In particular, this allows individual realizations along sample paths to

have large deviations from the attractor, but still to converge in this probabilistic sense.

Remark 4.6. The attractor need not be unique for a general family R. However, as

soon as R contains every compact deterministic set, if a random attractor for R exists

then it is unique (cf. [26]). Notice this is the case if R ∈ {D(X), T (X)}.

4.2. Random eco-epidemiological model with real noise

In this section we consider random perturbations of a particular case of model (0.0.2),

by introducing a random noise in a parameter, meanwhile the remaining parameters are

assumed to be all positive constants.

We consider the eco-epidemiological model (0.0.2), with G(t, S) = Λ(t) − µS(t),

H(t, P ) = −δ1P (t) − δ2P (t)2, a(t) = 1, with constant parameter functions µ, β, η, c, γ

and θ (that we rewrite in this chapter as r, once θ is used for the auxiliary metric dy-

namical system), and with a random birth rate Λ of the prey population modelled by a
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random variable, as follows:
S′(t, ω) = Λ(θtω)− µS(t)− f(S(t), I(t), P (t))P (t)− βS(t)I(t)

I ′(t, ω) = βS(t)I(t)− ηg(S(t), I(t), P (t))I(t)− cI(t)

P ′(t, ω) = γf(S(t), I(t), P (t))P (t) + rηg(S(t), I(t), P (t))I(t)− δ1P (t)− δ2P (t)2

(4.2.1)

where (Ω,F ,P, θ) is a metric dynamical system that drives the noise and:

H1) µ, β, η, c, γ, r, δ1 and δ2 are all positive constants, and we assume that µ < c;

H2) functions f, g : (R+
0 )3 → R+

0 are locally Lipschitz and satisfy

a) S → f(S, I, P ) and P 7→ g(S, I, P ) are nondecreasing,

b) I → f(S, I;P ), P → f(S, I, P ), S 7→ g(S, I, P ) and I 7→ g(S, I;P ) are nonincreas-

ing,

c) f(0, I, P ) = 0 and g(S, I, 0) = 0;

d) f(S, 0, 0) > 0 whenever S > 0;

H3) Λ : Ω→ R+ is a measurable function such that

Λ(ω) ∈ [Λ`,Λu] := q0[1− ε; 1 + ε], (4.2.2)

with q0 > 0, ε ∈ (0, 1), for all ω ∈ Ω, and such that the function t 7→ Λ(θtω) is

continuous.

Typically, the functional response of the predator to prey is given by some particular

function. Besides the population compartments, given by S, I and P that correspond,

respectively, to the susceptible prey, infected prey and predator, we may understood Λ

and µ as the (random) recruitment rate and the natural death rate of prey population,

respectively, β as the incidence rate of the disease, η as the predation rate of infected

prey, c as the death rate in the infective class, γ as the rate converting susceptible prey

into predator (biomass transfer), r as the rate of converting infected prey into predator,

f(S, I, P ) is the predation of susceptible prey and g(S, I, P ) is the predation of infected

prey. It is assumed that only susceptible preys S are capable of reproducing, i.e, the

infected prey is removed by death (including natural and disease-related death) or by

predation before having the possibility of reproducing.

Like in Chapter 1, the present setting includes several of the most common functional

responses for both functions f and g, including Holling-type I, Holling-type II, Holling-

type III, Beddington-De Angelis and Crowley-Martin. Also note that conditions in H2)
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are natural from a biological perspective and they are satisfied by the usual functional

responses considered in the literature.

Remark 4.7. Although it can be possible to consider a more generalised model in which

some others coefficients can also be random, in this particular case we consider just one to

highlight the technique and specificities of this model. For examples of bounded real noise

as considered in this model (in particular, as in 3) see for instance [4, 13].

4.3. Existence and properties of solutions

In this section we prove the existence, uniqueness and boundedness of solutions to

(4.2.1) with nonnegative initial conditions on the populations. Moreover, we prove that

the solution mapping gives rise to a RDS. We start by showing that nonnegative initial

conditions for the populations remains nonnegative, avoiding meaningless solutions in

biological contexts.

Lemma 4.1. The set

R3
+ = {(S, I, P ) ∈ R3 : S ≥ 0, I ≥ 0, P ≥ 0} (4.3.1)

is positively invariant for the system (4.2.1) for each fixed ω ∈ Ω.

Proof. The planes I = 0 and P = 0 are invariant since on it we have I ′(t, ω) = 0 and

P ′(t, ω) = 0, respectively, and S′(t, ω) > 0 on the plane S = 0.

If we start on the positive P -semi axes we have S′(t, ω) > 0 and I ′(t, ω) = 0, so that

the solution remains on R3
+ ∩ {I = 0}, while if we start on the positive I-semi axes we

have S′(t, ω) > 0 and P ′(t, ω) = 0, so that solution does not leave R3
+.

Finally, we claim that the positive S-semi axes is invariant. Indeed on this semi axe

we have I ′(t, ω) = P ′(t, ω) = 0 and

S′(t, ω) = Λ(θtω)− µ(t)S(t). (4.3.2)

That is, writing S0 = S(t0, ω) for the initial condition of population S on time t0, we

have for the corresponding solution

S(t; t0, ω, S0) = S0e
−µ(t−t0) + e−µt

∫ t

t0

Λ(θsω)eµsds.

Since Λ` ≤ Λ(θtω) ≤ Λu, the last term is bounded:

Λ`e−µt
∫ t

t0

eµsds ≤ e−µt
∫ t

t0

Λ(θsω)eµsds ≤ Λue−µt
∫ t

t0

eµsds,
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hence

Λ`(1− e−µ(t−t0)) ≤ µe−µt
∫ t

t0

Λ(θsω)eµsds ≤ Λu(1− e−µ(t−t0)).

In particular, for nonnegative initial condition S0 the population S(t; t0, ω, S0) remains

nonnegative. We conclude that the vector field at the boundary of R3
+ never points

outwards.

�

Set au = max{γ, r}, a` = min{γ, r}. To simplify the notation, unless stated oth-

erwise, given (S0, I0, P0) ∈ R3
+ we write S = S(t; t0, ω, S0), I = I(t; t0, ω, I0) and P =

P (t; t0, ω, P0) to be the components of the solution u(t; t0, ω, u0) of system (4.2.1) with

initial state u0 = (S0, I0, P0) ∈ R3
+ at time t = t0 and fixed ω ∈ Ω. Moreover, define

M0 = a`S0 + rI0 + P0, N0 = auS0 + rI0 + P0, M = M(t; t0, ω,M0) = a`S + rI + P and

N = N(t; t0, ω,N0) = auS + rI + P . This notation will also be used for the particular

situation t0 = 0, which should become clear from the context. In this case we should write

h = h(t; 0, ω, h0) = h(t;ω, h0), for h = S, I, P , M and N (and also for h = V and h = W

to be defined later).

In the following we provide thresholds for forward invariant subsets of R3
+. Set

Θu =
auΛu

min{µ, δ1}
,

and, for δ ≥ 0,

Θ`
δ = max

{
0,
a`Λ` − δ2(Θu + δ)2

max{c, δ1}

}
,

and set Θ` = Θ`
0.

Proposition 4.2. For each δ ≥ 0 the region

Kδ =
{

(S0, I0, P0) ∈ R3
+ : Θ`

δ ≤M0 ≤ N0 ≤ Θu + δ
}

(4.3.3)

is positively invariant for the system (4.2.1) for each ω ∈ Ω.

Proof. Let δ > 0 and ω ∈ Ω be fixed. For t0 ≥ 0, we have

N ′ = auΛ(θtω)− auµS − auf(S, I, P )P − auβSI

+ rβSI − rηg(S, I, P )I − rcI

+ γf(S, I, P )P + rηg(S, I, P )I − δ1P − δ2P
2

≤ auΛu − auµS − rcI − δ1P + (γ − au)f(S, I, P )P

+ β(r − au)SI.

(4.3.4)
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Since γ − au ≤ 0 and r − au ≤ 0, we have

N ′ ≤ auΛu −min{µ, δ1}N. (4.3.5)

This implies

N ≤ Θu + (N0 −Θu)e−min{µ,δ1}(t−t0). (4.3.6)

Similarly,

M ′ ≥ a`Λ` −max{c, δ1}M

+ (γ − a`)f(S, I, P )P + β(r − a`)SI

− δ2P
2.

(4.3.7)

Recall that γ−a` ≥ 0 and r−a` ≥ 0, and if N0 ≤ Θu+δ, from (4.3.6) we have N ≤ Θu+δ

for all t ≥ t0 and

M ′ ≥ a`Λ` − δ2(Θu + δ)2 −max{c, δ1}M, (4.3.8)

which implies, in this situation,

M ≥ Θ`
δ +

(
M0 −Θ`

δ

)
e−max{c,δ1}(t−t0). (4.3.9)

Thus if u0 = (S0, I0, P0) ∈ Kδ then u(t; t0, ω, u0) ∈ Kδ for all t > t0. �

Corollary 15. For all ω ∈ Ω, t0 ∈ R+
0 and (S0, I0, P0) ∈ R3

+ we have

lim
t→∞

N(t; t0, ω,N0) ∈ [Θ`,Θu] and lim
t→∞

M(t; t0, ω,M0) ∈ [Θ`,Θu].

Proof. From (4.3.6) we have

lim
t→∞

M(t; t0, ω,M0) ≤ lim
t→∞

N(t; t0, ω,N0)

≤ lim
t→∞

Θu + (N0 −Θu)e−min {µ,δ1}(t−t0)

= Θu.
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In particular, for any δ > 0, if t is sufficiently large we have N < Θu + δ, and from (4.3.9)

follows that

lim
t→∞

N(t; t0, ω,N0) ≥ lim
t→∞

M(t; t0, ω,M0)

≥ lim
t→∞

Θ`
δ + (M0 −Θ`

δ)e
−max {c,δ1}(t−t0)

= Θ`
δ.

�

Theorem 4.1. For any ω ∈ Ω, t0 ∈ R+
0 and any initial condition u0 = (S0, I0, P0) ∈

R3
+ the system (4.2.1) admits a unique bounded solution u(·) = u(·; t0, ω, u0) ∈ C([t0,+∞),R3

+),

with u(t0; t0, ω, u0) = u0. Moreover, the solution generates a RDS (θ, ϕ) defined as

ϕ(t, ω, u0) = u(t; 0, ω, u0), for all t ≥ 0, u0 ∈ R3
+ and ω ∈ Ω. (4.3.10)

Proof. The system (4.2.1) can be rewritten in the following form

u′(t) = F (θtω, u). (4.3.11)

Since t 7→ Λ(θtω) is continuous, the map Fω(t, u) = F (θtω, u) ∈ C([t0,+∞) × R3
+,R

3
+)

is locally Lipschitz respect to u. From Corollary 15, all the solutions u(t) are bounded.

Thus for each ω ∈ Ω the system (4.2.1) possesses a unique global solution u(t; t0, ω, u0)

with initial condition u(t0) = u0.

Since F (θtω, u) = F (t, ω, u) is also measurable in ω, the map

u(·; t0, ·, ·) : [t0,∞)× Ω×R3
+ → R3

+

is (B([t0,∞))⊗F ⊗B(R3
+),B(R3

+))-measurable. From [1, Theorem 2.2.2], the solutions of

system (4.2.1) generate a RDS via (4.3.10). We remark in particular the cocycle property

of (θ, ϕ) that can be obtained through

u(t+ t0; t0, ω, u0) = u(t; 0, θtω, u0),

for all t ≥ t0 ≥ 0, ω ∈ Ω and u0 ∈ R3
+. �

4.4. Global random attractor

In this section we prove the existence of a global random attractor, analyze the vital

dynamics of susceptible preys and discuss thresholds for extinction of infectives of (4.2.1).

4.4.1. Global random attractor. We establish now the existence of a pullback

T (R3
+) attractor for system (4.2.1).
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Theorem 4.2. The RDS (θ, ϕ) generated by (4.2.1) possesses a unique global random

attractor.

The proof follows straightforward from Proposition 4.1 and from the existence of a

compact random absorbing set Γ ∈ T (R3
+) given by Proposition 4.3 below.

Proposition 4.3. There exists a compact random absorbing set Γ ∈ T (R3
+) of the

RDS (θ, ϕ) generated by (4.2.1). Moreover, for any δ > 0 the sets Γ(ω) can be chosen as

the deterministic Kδ for any ω ∈ Ω.

Proof. Consider A ∈ T (R3
+) and δ > 0. We want to prove that for each ω ∈ Ω there

exists TA(ω) > 0 such that for all t ≥ TA(ω)

ϕ(t, θ−tω,A(θ−tω)) ⊆ Kδ.

From Proposition 4.2 the set Kδ is positively invariant, which means that for all t ≥ 0

ϕ(t, ω,Kδ) ⊆ Kδ.

To simplify, we write N(t; 0, ω,N0) = N(t;ω,N0) and M(t; 0, ω,N0) = M(t;ω,N0). Recall

that given u0 = (S0, I0, P0) we write M0 = a`S0 + rI0 + P0 and N0 = auS0 + rI0 + P0.

From (4.3.6) we have

N(t; θ−tω,N0) ≤ Θu + sup
u0∈A(θ−tω)

(N0 −Θu) e−min {µ,δ1}t.

Since A is tempered,

lim
t→∞

sup
u0∈A(θ−tω)

(N0 −Θu) e−min {µ,δ1}t = 0 (4.4.1)

and thus

lim
t→∞

N(t; θ−tω,N0) ≤ Θu. (4.4.2)

Assume that Θ`
δ > 0, otherwise the result follows from Lemma 4.1. From (4.4.2), for any

0 < δ′ < δ and t sufficiently large we have N(t; θ−tω,N0) < Θu + δ′ and from (4.3.9), in

this situation we get

M(t; θ−tω,M0) ≥ Θ`
δ′ + inf

u0∈A(θ−tω)

(
M0 −Θ`

δ′

)
e−max{c,δ1}t.

Since

lim
t→∞

inf
u0∈A(θ−tω)

(
M0 −Θ`

δ′

)
e−max{c,δ1}t = 0 (4.4.3)
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we have

lim
t→∞

M(t; θ−tω,M0) ≥ Θ`
δ′ > Θ`

δ. (4.4.4)

Henceforth there is TA(ω) such that for all t ≥ TA(ω) we have for all u0 ∈ A(θ−tω) that

Θ`
δ ≤M(t; θ−tω,M0) ≤ N(t; θ−tω,N0) ≤ Θu + δ

and the conclusion holds. �

From Remark 4.6, the global random attractor is unique. From Remark 4.5, (θ, ϕ)

possesses a forward attractor in probability and from Remark 4.3, it also possesses global

random D(R3
+) attractor.

4.4.2. Susceptible dynamics.

4.4.2.1. Random attractor for susceptible vital dynamics. If we have no predators nei-

ther infected preys, from (4.2.1) the dynamics of susceptible preys is given by

S′(t, ω) = Λ(θtω)− µS(t). (4.4.5)

For each ω ∈ Ω, the solution of (4.4.5) with initial condition S0 ≥ 0 at t = t0 is

S(t; t0, ω, S0) = S0e
−µt +

∫ t

t0

Λ(θsω)e−µ(t−s)ds.

Replacing ω by θ−tω, and taking t0 = 0 we have, denoting S(t; 0, ω, S0) by S(t;ω, S0),

S(t; θ−tω, S0) = S0e
−µt +

∫ 0

−t
Λ(θsω)e−µsds.

For any K ∈ T ([0,+∞[) we have

lim
t→∞

sup
S0∈K(θ−tω)

S0e
−µt = 0

so that we may define

lim
t→∞

S(t; θ−tω, S0) =

∫ 0

−∞
Λ(θsω)e−µsds := S∗(ω) (4.4.6)

The equation (4.4.5) generates a RDS (θ, ϕS), with ϕS(t, ω, S0) = S(t;ω, S0), which pos-

sesses a singleton global random attractor A(ω) = S∗(ω). Moreover, it follows from (4.2.2)

and (4.4.6) that S∗(ω) ∈
[

Λ`

µ ,
Λu

µ

]
.

4.4.2.2. Persistence of susceptible preys. We give conditions to ensure the prevalence

of susceptible preys. We do not discuss conditions for prevalence of infected preys neither
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predators. To simplify the following computations, for a given δ > 0 we set

ξδ = Λ` − f
(

Θu + δ

au
, 0, 0

)
(Θu + δ) and ζδ = µ+ β

(
Θu + δ

r

)
.

Proposition 4.4. The global random attractor A for the RDS generated by (4.2.1)

possesses nontrivial components on the ω-sections: A(ω) = (AS(ω), AI(ω), AP (ω)) with

AS(ω) ≥ ξδ/ζδ, for all ω ∈ Ω. In particular, susceptible preys are prevalent if ξδ > 0 for

some δ > 0.

Proof. To simplify, in the following we write

h = h(t; 0, θ−tω, h0) = h(t; θ−tω, h0),

for h = S, I and P . From Proposition 4.3, for any δ > 0 and any K ∈ T (R3
+) there exists

T ′K(ω) such that, for t ≥ T ′K(ω) and (S0, I0, P0) ∈ K(θ−tω) we have

auS + rI + P ≤ Θu + δ.

From (4.2.1) we therefore have

S′ ≥ Λ` − µS − f
(

Θu + δ

au
, 0, 0

)
(Θu + δ)− β

(
Θu + δ

r

)
S

= ξδ − ζδS.

Thus, for all t ≥ T ′K(ω)

S ≥ ξδ
ζδ

+

(
S(T ′K(ω); θ−tω, S0)− ξδ

ζδ

)
e−ζδ(t−T

′
K(ω)) .

Hence for any δ > 0 and K ∈ T (R3
+) and large t, we have for all (S0, I0, P0) ∈ K(θ−tω)

S = S(t; θ−tω, S0) ≥ ξδ
ζδ
. (4.4.7)

�

4.4.3. Extinction of predators and infected preys. We discuss now conditions

that lead to the vanish of infectious and predators.

Proposition 4.5. The global random attractor A for the RDS generated by (4.2.1)

has singleton components A(ω) = (S∗(ω), 0, 0) for every ω ∈ Ω, provided that

βΘu

au
< c and γf

(
Θu

au
, 0, 0

)
< δ1.
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Proof. The last two equations in system (4.2.1) yields to

(rI + P )′ = rβSI − rcI + γf(S, I, P )P − δ1P − δ2P
2

= (βS − c)rI + (γf(S, I, P )− δ1 − δ2P )P.
(4.4.8)

We will see that our hypothesis imply that both factors

βS − c and γf(S, I, P )− δ1 − δ2P

are negative for large t. If βΘu

au < c we can choose a δ′ > 0 small enough such that taking

δ = βδ′/au we have
βΘu

au
+ δ < c.

From Proposition 4.3 we have that Kδ′ × Ω is an absorbing set in T (R3
+), so that for any

K ∈ T (R3
+) and ω ∈ Ω there exists T ′K(ω) such that for t ≥ T ′K(ω) and (S0, I0, P0) ∈

K(θ−tω) we have

βS = βS(t; θ−tω, S0) ≤ βΘu

au
+ δ < c,

which implies that

βS − c < 0, for all t > T ′K(ω). (4.4.9)

Now, if γf
(

Θu

au , 0, 0
)
< δ1, since f is continuous, by taking δ′ > 0 even smaller, if necessary,

we also have that

γf

(
Θu

au
+ δ, 0, 0

)
< δ1.

Again, since Kδ × Ω is also an absorbing set in T (R3
+), for any K ∈ T (R3

+) and ω ∈ Ω

there exists TK(ω) ≥ T ′K(ω) such that, for t ≥ TK(ω) and (S0, I0, P0) ∈ K(θ−tω) we have

S ≤ Θu

au + δ and, setting P = P (t; θ−tω, P0), by Lemma 4.1 we have I, P ≥ 0. By the

monotonicity of f ,

γf(S, I, P ) ≤ γf
(

Θu

au
+ δ, 0, 0

)
≤ δ1,

which implies

γf(S, I, P )− δ1 − δ2P < 0 (4.4.10)

for all t > TK(ω). Setting I = I(t; θ−tω, I0), from (4.4.8), (4.4.9) and (4.4.10) we have for

t ≥ TK(ω)

(rI + P )′ ≤ max

{
βΘu

au
− c+ δ, γf

(
Θu

au
+ δ, 0, 0

)
− δ1

}
(rI + P ).

This implies that for all K ∈ T (R3
+),

lim
t→+∞

(rI + P ) = lim
t→+∞

(rI(t; θ−tω, I0) + P (t; θ−tω, P0)) = 0,
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for all (S0, I0, P0) ∈ K(θ−tω). Moreover, from (4.4.6) if I, P = 0 we have

lim
t→+∞

S(t; θ−tω, S0) = S∗(ω).

Thus the global random attractor A for the RDS generated by (4.2.1) has singleton com-

ponents sets A(ω) = {(S∗(ω), 0, 0)} for every ω ∈ Ω. �

Example 4.1. To illustrate this result in a model we consider Holling-type I functional

responses f(S, I, P ) = S and g(S, I, P ) = P . Our model is in this specific case is
S′(t, ω) = Λ(θtω)− µS(t)− S(t)P (t)− βS(t)I(t)

I ′(t, ω) = βS(t)I(t)− ηI(t)P (t)− cI(t)

P ′(t, ω) = γS(t)P (t) + rηI(t)P (t)− δ1P (t)− δ2P (t)2

.

Thus we have simultaneous extinction of infected preys and predators, in the sense that

the global random attractor has ω-sections of type (S∗(ω), 0, 0), if

βΛu

cmin{µ, δ1}
< 1 and

γΛu

δ1 min{µ, δ1}
< 1.

This can also be interpreted in the deterministic setting by considering Λ(ω) = Λ0 for all

ω and some Λ0 > 0.

4.5. Random attractors for partial dynamics

We discuss now the dynamics of the corresponding random epidemiological SI and

predator-prey subsystems of model (4.2.1).

In section 4.4.2.1 we analysed the vital dynamics of susceptible population, in the

simultaneous absence of disease and predators, for which we concluded the existence of a

singleton random global attractor with sections (S∗(ω), 0, 0). We discuss now the existence

of random global attractors in other subsystems, namely either in the absence of predators

or infectious, respectively. Set R2
+ = {(x, y) ∈ R2 : x, y ≥ 0}.

4.5.0.1. The case without predator. Let us now consider the system (4.2.1) when we

do not have predators, by making P = 0. This case reduces toS
′(t, ω) = Λ(θtω)− µS(t)− βS(t)I(t)

I ′(t, ω) = βS(t)I(t)− cI(t)
. (4.5.1)

In this situation we have a (random) epidemiological SI model. This SI model is a slightly

different model from de SI model corresponding to the first two equations (SI) of the SIR
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models considered in [14, 15]. In our work, we obtain global random attractor, prove the

persistence of susceptibles and provide conditions for the extinctions of infectives.

Let us consider now v(t; t0, ω, v0) = (S(t; t0, ω, S0), I(t; t0, ω, I0)) as a solution of the

system (4.5.1) with initial conditions S(t0, ω) = S0 and I(t0, ω) = I0, and v0 = (S0, I0).

Let us define V = S + I and V0 = S0 + I0. Similarly to Lemma 4.1, we easily conclude

that the region R2
+ is positively invariant for system (4.5.1). In the following we provide

thresholds for forward invariant subsets of R2
+.

Proposition 4.6. For each 0 < δ ≤ Λ`/c the region

Vδ =

{
(S0, I0) ∈ R2

+ :
Λ`

c
− δ ≤ V0 ≤

Λu

µ
+ δ

}
is positively invariant for the system (4.5.1).

Proof. Recall that we assume µ < c. Adding the two equations in (4.5.1) we have

V ′(t, ω) = Λ(θtω)− µS − cI

≤ Λu − µV
(4.5.2)

and

V ′(t, ω) = Λ(θtω)− µS − cI

≥ Λ` − cV.
(4.5.3)

Writing V = V (t; 0, θ−tω, V0) = V (t; θ−tω, V0), this implies

Λ`

c
+

(
V0 −

Λ`

c

)
e−ct ≤ V ≤ Λu

µ
+

(
V0 −

Λu

µ

)
e−µt. (4.5.4)

If (S0, I0) ∈ Vδ, the solution remains in this region.

�

We notice that from (4.5.2) and (4.5.3) we have

lim
t→∞

V ≤ lim
t→∞

Λu

µ
+ (V0 −

Λu

µ
)e−µt =

Λu

µ

and

lim
t→∞

V ≥ lim
t→∞

Λ`

c
+ (U0 −

Λ`

c
)e−ct =

Λ`

c

From the previous estimates we get easily that the solutions v are bounded. The following

result follows straightforward as in the proof of Theorem (4.1).
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Theorem 4.3. For any ω ∈ Ω, t0 ∈ R+
0 and any initial condition v0 = (S0, I0) ∈ R2

+

the system (4.5.1) admits a unique bounded solution v(·) = v(·; t0, ω, v0) ∈ C([t0,+∞),R2
+),

with v(t0; t0, ω, v0) = v0. Moreover, the solution generates a RDS (θ, ϕSI) defined as

ϕSI(t, ω, u0) = v(t; 0, ω, u0), for all t ≥ 0, v0 ∈ R2
+ and ω ∈ Ω. (4.5.5)

In the following we establish the existence of a random global attractor for the partial

dynamics with no predators.

Theorem 4.4. The RDS (θ, ϕSI) generated by (4.5.1) possesses a global random at-

tractor ASI .

We will prove that exists a closed random absorbing set Γ ∈ T (R2
+). The result follows

then from Proposition 4.1.

Proposition 4.7. There exists a closed random absorbing set Γ ∈ T (R2
+) of the RDS

(θ, ϕSI) generated by (4.5.1). Moreover, for 0 < δ ≤ Λ`

c , the sets Γ(ω) can be chosen as

the deterministic Vδ for any ω ∈ Ω.

Proof. Consider A ∈ T (R2
+) and δ > 0. We want to prove that for each ω ∈ Ω there

exists TA(ω) > 0 such that

ϕ(t, θ−tω,A(θ−tω)) ⊆ Vδ for all t ≥ TA(ω).

From (4.5.4), we have

V (t; θ−tω, V0) ≤ sup
v0∈A(θ−tω)

(
V0 −

Λu

µ

)
e−µt +

Λu

µ
,

and since A is tempered, we have

lim
t→∞

sup
v0∈A(θ−tω)

(
V0 −

Λu

µ

)
e−µt = 0

and thus

lim
t→∞

V (t; θ−tω, V0) ≤ Λu

µ
. (4.5.6)

Similarly,

lim
t→∞

V (t; θ−tω, V0) ≥ Λ`

c
. (4.5.7)

Considering the inequalities (4.5.6) and (4.5.7), there exists a TA(ω) such that for t ≥

TA(ω), we have ϕSI(t, θ−tω, V0) ∈ Vδ for all V0 ∈ A(θ−tω). If δ ≤ Λ`

c then Vδ ⊆ R2
+. �
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Proposition 4.8. The global random attractor ASI for the RDS (θ, ϕSI) generated

by (4.5.1) possesses nontrivial component sets on the ω-sections: ASI(ω) = (AS(ω), AI(ω))

with

AS(ω) ≥ Λ`

µ+ βΛu

µ

.

Proof. Since for any δ > 0 the random set Vδ × Ω is an absorbing set in T (R2
+), for

any K ∈ T (R2
+) there exists TK(ω) such that for t ≥ TK(ω) and (S0, I0) ∈ K(θ−tω) we

have

S + I = S(t; θ−tω, S0) + I(t; θ−tω, I0) ≤ Λu

µ
+ δ.

From (4.5.1) we have

S′ ≥ Λ` − µS − β
(

Λu

µ
+ δ

)
S

= Λ` −
(
µ+ β

(
Λu

µ
+ δ

))
S.

Hence for any δ > 0 and K ∈ T (R2
+), (S0, I0) ∈ K(θ−tω) and large t we have

S(t; θ−tω, S0) ≥ Λ`

µ+ β
(

Λu

µ + δ
) .

�

In the following we give condition for an attractor without infectious component.

Proposition 4.9. The global random attractor ASI for the RDS (θ, ϕSI) generated

by (4.5.1) has singleton components ASI(ω) = (S∗(ω), 0) for every ω ∈ Ω, provided that

βΛu

µ < c.

Proof. From the second equation in (4.5.1) we have that

I ′(t, ω) = (βS − c)I. (4.5.8)

Consider δ > 0 small enough such that

βΛu

µ
+ βδ < c.

From Proposition 4.7, for any A ∈ T (R2
+) there exists TA(ω) such that for all t ≥ TA(ω),

and (S0, I0) ∈ A(θ−tω) we have

βS = βS(t; θ−tω, S0) ≤ βΛu

µ
+ βδ < c
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which implies

βS − c ≤ βΛu

µ
+ βδ − c < 0, for all t ≥ TA(ω).

From (4.5.8) we have

lim
t→+∞

I(t; θ−tω, I0) ≤ lim
t→+∞

I(TA(ω); θ−tω, I0)e

(
βΛu

µ
+βδ−c

)
(t−TA(ω))

= 0.

Moreover, if I = 0 we have from (4.4.6) that S(t; θ−tω, S0) converges to S∗(ω), as t→ +∞,

for each ω ∈ Ω. �

The case without infectious. We consider now the case that we have no infected preys

in system (4.2.1), by making I = 0, which becomesS
′(t, ω) = Λ(θtω)− µS − f̄(S, P )P

P ′(t, ω) = γf̄(S, P )P − δ1P − δ2P
2.

(4.5.9)

where f̄(S, P ) = f(S, 0, P ). This models corresponds to a random perturbation of a

predator-prey model. We obtain global random attractor, prove the persistence of preys

and provide conditions for the extinctions of predators.

Let w(t; t0, ω, w0) be the solution of system (4.5.9) with initial condition w0 = (S0, P0)

and let W = γS + P and W0 = γS0 + P0. Define

Θ̂u =
γΛu

min{µ, δ1}

and, for δ ≥ 0

Θ̂`
δ = max

{
0,
γΛ` − δ2(Θ̂u + δ)2

max{µ, δ1}

}
.

Proposition 4.10. For each δ > 0 the region

Wδ =
{

(S0, P0) ∈ R2
+ : Θ̂δ ≤W0 ≤ Θ̂u + δ

}
is positively invariant for the system (4.5.9).

Proof. From (4.5.9) we have

W ′(t, ω) = γΛ(θtω)− γµS − δ1P − δ2P
2

≤ γΛu −min{µ, δ1}W,
(4.5.10)

which, writing W = W (t; 0, θ−tω,W0) = W (t; θ−tω,W0), implies

W ≤ Θ̂u +
(
W0 − Θ̂u

)
e−min{µ,δ1}t. (4.5.11)



4.5. RANDOM ATTRACTORS FOR PARTIAL DYNAMICS 115

We also have

W ′(t, ω) ≥ γΛ` − δ2P
2 −max{µ, δ1}W. (4.5.12)

Notice that if the initial condition (S0, P0) belongs to Wδ then P ≤ Θ̂u + δ, and in this

situation we have

W ′(t, ω) ≥ γΛ` − δ2(Θ̂u + δ)2 −max{µ, δ1}W. (4.5.13)

Hence, in this case we have

W ≥ Θ̂`
δ +

(
W0 − Θ̂`

δ

)
e−max{µ,δ1}t. (4.5.14)

If (S0, P0) ∈ Wδ, the solution remains in that region. �

From (4.5.11) we have

lim
t→∞

W ≤ Θ̂u.

Notice that for any δ > 0, for large t we have P ≤W < Θ̂u + δ, and then (4.5.14) implies

lim
t→∞

W ≥ Θ̂`
δ.

This implies that the solutions w are bounded.

Proposition 4.11. For any ω ∈ Ω, t0 ∈ R+
0 and any initial condition w0 = (S0, P0) ∈

(R+
0 )2 the system (4.5.9) admits a unique bounded solution w(·) = w(·; t0, ω, w0) ∈ C([t0,+∞), (R+

0 )2)

with w(t0; t0, ω, w0) = w0. Moreover, the solution generates a random dynamical system

(θ, ϕSP ) defined as

ϕSP (t, ω, v0) = w(t; 0, ω, w0), for all t ≥ 0, w0 ∈ (R+
0 )2 and ω ∈ Ω.

Theorem 4.5. The RDS (θ, ϕSP ) generated by (4.5.9) possesses a global random at-

tractor ASP .

As before, the proof follows from Proposition 4.1 and from the fact that there exists a

closed random absorbing set Γ ∈ T (R2
+) given by Proposition 4.12 below.

Proposition 4.12. There exists a closed random absorbing set Γ ∈ T (R2
+) of the RDS

(θ, ϕSP ) generated by (4.5.9). Moreover, for any δ > 0 the sets Γ(ω) can be chosen as the

deterministic Wδ for any ω ∈ Ω.
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Proof. Consider A ∈ T (R2
+). We will prove that for any ω ∈ Ω there exists TA(ω) > 0

such that

ϕSP (t, θ−tω,A(θ−tω) ⊆ Wδ for all t ≥ TA(ω).

From Proposition 4.10 the region Wδ is positively invariant for δ > 0. From (4.5.11) we

have for w0 = (S0, P0) ∈ A(θ−tω) that

W (t; θ−tω,W0) ≤ Θ̂u + sup
w0∈A(θ−tω)

(
W0 − Θ̂u

)
e−min{µ,δ1}t.

Since A is tempered, we have

lim
t→∞

sup
w0∈A(θ−tω)

(
W0 − Θ̂u

)
e−min{µ,δ1}t = 0

and thus

lim
t→∞

W (t; θ−tω,W0) ≤ Θu. (4.5.15)

Similarly, for any 0 < δ′ < δ and large t we have

W (t; θ−tω,W0) ≥ Θ̂`
δ′ + inf

w0∈A(θ−tω)

(
W0 − Θ̂`

δ′

)
e−max{µ,δ1}t.

Since

lim
t→∞

inf
w0∈A(θ−tω)

(
W0 − Θ̂`

δ′

)
e−max{µ,δ1}t = 0

we have

lim
t→∞

W (t; θ−tω,W0) ≥ Θ`
δ′ , (4.5.16)

and the result follows. �

Proposition 4.13. The global random attractor ASP for the RDS generated by (4.5.9)

possesses component sets on the ω-sections ASP (ω) = (AS(ω), AP (ω)) with

µAS(ω) ≥ Λ` − Θ̂uf̄
(

Θ̂u/γ, 0
)
.

In particular, susceptible preys are prevalent provided the right side of inequality is positive.

Proof. Since for any δ > 0 the random set Wδ ×Ω is an absorbing set in T (R2
+), for

any K ∈ T (R2
+) there exists TK(ω) such that for t ≥ TK(ω) and (S0, P0) ∈ K(θ−tω) we

have

γS + P = γS(t; θ−tω, S0) + P (t; θ−tω, P0) ≤ Θ̂u + δ.
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From (4.5.9) we then have for any δ > 0

S′ > Λ` − µS − f̄
(

Θ̂u/γ + δ, 0
)

(Θ̂u + δ).

Hence for any δ > 0 and K ∈ T (R2
+), (S0, I0) ∈ K(θ−tω) and large t we have

S(t; θ−tω, S0) >
Λ` − f̄

(
Θ̂u/γ + δ, 0

)
(Θ̂u + δ)

µ

and the result follows. �

We give now a condition leading to the extinction of predators.

Proposition 4.14. The global random attractor ASP for the RDS (θ, ϕSP ) generated

by (4.5.9) has a singleton components ASP = (S∗(ω), 0) for every ω ∈ Ω, provided that

γf̄
(

Θ̂u/γ, 0
)
< δ1.

Proof. We can choose δ > 0 small enough, such that

γf̄

(
Θ̂u

γ
+ δ, 0

)
< δ1. (4.5.17)

SinceWδ×Ω is an absorbing set in T (R2
+), for any K ∈ T (R2

+), there is TK(ω) such that,

for t > 0 sufficiently large we have

S = S(t; θ−tω, S0) ≤ Θ̂u

γ
+ δ.

From the monotonicity of f (and thus of f̄) we have for all t ≥ TK(ω)

P ′ = P ′(t, θ−tω, P0) = (γf̄(S, P )− δ1 − δ2P )P

≤
(
γf̄
(

Θ̂u/γ + δ, 0
)
− δ1

)
P.

(4.5.18)

From (4.5.17) we conclude that P (t; θ−tω, P0) decreases to zero as t goes to infinity. More-

over, if P = 0, from the vital dynamics of susceptible preys (4.4.6) we have for all ω ∈ Ω

lim
t→+∞

S(t; θ−tω, S0) = S∗(ω).

�

4.6. Comments

In Chapter 4 it was discussed the existence and properties of solutions of the eco-

epidemiological model with random perturbations (4.2.1) (Section 4.3), the existence of
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a global random attractor (Section 4.4), the vital dynamics of susceptible preys (Sec-

tion 4.4.2.1) and thresholds for extinction of infectives (Secion 4.4.3). It would be inter-

esting to understand under which conditions the uniform strong persistence occur. The

asymmetry in the equations of system (4.2.1) with respect to biomass transfer gives rise

to significant obstacles and some other ideas should be incorporated to accomplish this

objective. On the other hand, a natural extension of this chapter is to consider perturba-

tions in more parameters than just the Λ parameter. One should not expect significant

changes in the main strategy in this situation.

Another question that is pertinent from both mathematical and biological viewpoints is

to consider perturbations with white noise, i.e., to consider systems derived from stochastic

differential equations. However, as mentioned before, these perturbations may change the

nature of the original model and, in some circumstances, can even lead to situations where

one looses the biological meaning of the system. Still, it would be interesting to study

this type of perturbations considering the general model (0.0.2). Moreover, numerical

simulations for this random dynamical systems should be considered taken into account

the theory of numerical analysis for stochastic dynamical systems (see [46]).

Motivated by the seasonal behaviour of dynamics that are considered in Biology, one

could aim to consider periodic random perturbations and look for the existence of periodic

random attractors, in the spirit of Chapter 2, but here for systems with random pertur-

bations. However, there is a substantial lack in the theory of periodic random dynamical

systems which can imply a great effort to move on in this direction.

Finally, there are few works on random perturbations for discrete eco-epidemiological

models. It would be very interesting to do research along this line. Namely, to consider

random perturbations of the discrete model described in Chapter 3 and provide informa-

tion about random attractors in this context.
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APPENDIX A

Mathlab code for figures

Figures in chapter 1

Figure 1. clear all

global Lamb mu beth c eta r b Thet delt1 delt2

format short

t=0;

Lamb=0.7;
mu=0.6;
beth=0.075;
eta=0.7;
c=0.1;
delt1=0.2;
Thet=0.9;
delt2=0.3;
S0=2.66
I0=0.51
P0=0.09

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’sistem51’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S1=S; I1=I; P1=P;
t1=t;

S0=1.6
I0=0.2
P0=0.3

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’sistem51’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S2=S; I2=I; P2=P;
t2=t;

S0=0.15
I0=0.7
P0=0.6

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’sistem51’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
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S3=S; I3=I; P3=P;
t3=t;

figure
plot(t1,S1,’k’)
xlabel (’t’);
ylabel (’S’,’Rotation’,0.0)
axis ([0,35,0,1.3])
hold on
plot(t2,S2,’r’)
hold on
plot(t3,S3,’c’)

figure
plot(t1,I1,’k’)
xlabel (’t’);
ylabel (’I’,’Rotation’,0.0)
axis ([0,40,0,.2])
hold on
plot(t2,I2,’r’)
hold on
plot(t3,I3,’c’)

figure
plot(t1,P1,’k’)
xlabel (’t’);
ylabel (’P’,’Rotation’,0.0)
axis ([0,50,0,1])
hold on
plot(t2,P2,’r’)
hold on
plot(t3,P3,’c’)

Figure 2. clear all

global Lamb mu beth c eta r b Thet delta1 delta2

format short

t=0;

Lamb=0.7;
mu=0.6;
beth=0.09;
eta=0.7;
c=0.1;
delta1=0.2;
Thet=0.9;
delta2=0.3;

S0=0.5
I0=0.1
P0=0.4

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’sistem51’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S1=S;
I1=I;
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P1=P;
t1=t;

S0=0.4
I0=0.8
P0=0.7

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’sistem51’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S2=S;
I2=I;
P2=P;
t2=t;

S0=1.036
I0=0.387
P0=0.153

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’sistem51’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S3=S;
I3=I;
P3=P;
t3=t;

figure
plot(t1,S1,’k’)
xlabel (’t’);
ylabel (’S’,’Rotation’,0.0)
axis ([0,35,0,1.3])
hold on
plot(t2,S2,’r’)
hold on
plot(t3,S3,’c’)

figure
plot(t1,I1,’k’)
xlabel (’t’);
ylabel (’I’,’Rotation’,0.0)
axis ([0,40,0,.2])
hold on
plot(t2,I2,’r’)
hold on
plot(t3,I3,’c’)

figure
plot(t1,P1,’k’)
xlabel (’t’);
ylabel (’P’,’Rotation’,0.0)
axis ([0,50,0,1])
hold on
plot(t2,P2,’r’)
hold on
plot(t3,P3,’c’)
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Figure 3. clear all

global Lamb mu beth c eta r b Thet gamm a

format short

t=0;

Lamb=0.7;
mu=0.18;
beth=.2;
eta=0.7;
c=0.1;
r=0.6;
Thet=0.9;
b=0.8;
gamm=0.1;
a=0.4;

S0=.811
I0=0.0624
P0=1.388

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’sistem52’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S1=S;
I1=I;
P1=P;
t1=t;

S0=0.6
I0=0.16
P0=0.46

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’sistem52’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S2=S;
I2=I;
P2=P;
t2=t;

S0=1.0975
I0=0.044
P0=0.76

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’sistem52’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S3=S;
I3=I;
P3=P;
t3=t;
S3=S3
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figure plot(t1,S1,’k’)
xlabel (’t’);
ylabel (’S’,’Rotation’,0.0)
axis ([0,150,0,1.4])
hold on
plot(t2,S2,’r’)
hold on
plot(t3,S3,’c’)

figure plot(t1,I1,’k’)
xlabel (’t’);
ylabel (’I’,’Rotation’,0.0)
axis ([0,150,0,.3])
hold on
plot(t2,I2,’r’)
hold on
plot(t3,I3,’c’)

figure plot(t1,P1,’k’)
xlabel (’t’);
ylabel (’P’,’Rotation’,0.0)
axis ([0,50,0,1.6])
hold on
plot(t2,P2,’r’)
hold on
plot(t3,P3,’c’)

Figure 4. clear all

global Lamb mu beth c eta r b Thet gamm a

format short

t=0;

Lamb=0.7;
mu=0.18;
beth=1.4;
eta=0.7;
c=0.1;
r=0.6;
Thet=0.9;
b=0.8;
gamm=0.1;
a=0.4;

S0=1.388
I0=0.426
P0=1.388

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’sistem52’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S1=S;
I1=I;
P1=P;
t1=t;

S0=.5
I0=.1
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P0=.4

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’sistem52’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S2=S;
I2=I;
P2=P;
t2=t;

S0=.4
I0=.04
P0=.7

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’sistem52’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S3=S;
I3=I;
P3=P;
t3=t;
S3=S3
figure plot(t1,S1,’k’)
xlabel (’t’);
ylabel (’S’,’Rotation’,0.0)
axis ([0,150,0,1.4])
hold on
plot(t2,S2,’r’)
hold on
plot(t3,S3,’c’)

figure plot(t1,I1,’k’)
xlabel (’t’);
ylabel (’I’,’Rotation’,0.0)
axis ([0,150,0,.3])
hold on
plot(t2,I2,’r’)
hold on
plot(t3,I3,’c’)

figure
plot(t1,P1,’k’)
xlabel (’t’);
ylabel (’P’,’Rotation’,0.0)
axis ([0,50,0,1.6])
hold on
plot(t2,P2,’r’)
hold on
plot(t3,P3,’c’)

Figure 5. clear all

global Lamb mu beth c eta m Thet d a gamm

format short
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t=0;

Lamb=0.7;
mu=0.6;
beth=0.07;
eta=0.7;
c=0.1;
m=2;
Thet=0.9;
d=0.3;
a=0.978;
gamm=0.9;

S0=1.66
I0=0.514
P0=0.9

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system3’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S1=S;
I1=I;
P1=P;
t1=t;

S0=.6
I0=.2
P0=.3

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system3’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S2=S;
I2=I;
P2=P;
t2=t;

S0=2.45
I0=.7
P0=.6

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system3’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S3=S;
I3=I;
P3=P;
t3=t;

figure
plot(t1,S1,’k’)
xlabel (’t’);
ylabel (’S’,’Rotation’,0.0)
axis ([0,100,0,3])
hold on
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plot(t2,S2,’r’)
hold on
plot(t3,S3,’c’)

figure
plot(t1,I1,’k’)
xlabel (’t’);
ylabel (’I’,’Rotation’,0.0)
axis ([0,25,0,.8])
hold on
plot(t2,I2,’r’)
hold on
plot(t3,I3,’c’)

figure
plot(t1,P1,’k’)
xlabel (’t’);
ylabel (’P’,’Rotation’,0.0)
axis ([0,150,0,1.4])
hold on
plot(t2,P2,’r’)
hold on
plot(t3,P3,’c’)

Figure 6. clear all

global Lamb mu beth c eta m Thet d a gamm

format short

t=0;

Lamb=0.7;
mu=0.6;
beth=0.6;
eta=0.7;
c=0.1;
m=2;
Thet=0.9;
d=0.3;
a=0.978;
gamm=0.9;

S0=1.0357
I0=0.387
P0=.153

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system3’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S1=S;
I1=I;
P1=P;
t1=t;

S0=.5
I0=.1
P0=.4
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OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system3’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S2=S;
I2=I;
P2=P;
t2=t;

S0=.4
I0=.04
P0=.7

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system3’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S3=S;
I3=I;
P3=P;
t3=t;

figure
plot(t1,S1,’k’)
xlabel (’t’);
ylabel (’S’,’Rotation’,0.0)
axis ([0,75,0,1])
hold on
plot(t2,S2,’r’)
hold on
plot(t3,S3,’c’)

figure
plot(t1,I1,’k’)
xlabel (’t’);
ylabel (’I’,’Rotation’,0.0)
axis ([0,70,0,.8])
hold on
plot(t2,I2,’r’)
hold on
plot(t3,I3,’c’)

figure
plot(t1,P1,’k’)
xlabel (’t’);
ylabel (’P’,’Rotation’,0.0)
axis ([0,75,0,.8])
hold on
plot(t2,P2,’r’)
hold on
plot(t3,P3,’c’)

Figure 7. clear all

global Lamb mu beth c eta m Thet d a gamm

format short
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t=0;

Lamb=0.7;
mu=0.6;
beth=0.25;
eta=0.7;
c=0.1;
m=2;
Thet=0.9;
d=0.4;
a=0.4;
gamm=0.8;

S0=1.0357
I0=0.387
P0=0.1525

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system4’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S1=S;
I1=I;
P1=P;
t1=t;

S0=.5
I0=.1
P0=.4

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system4’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S2=S;
I2=I;
P2=P;
t2=t;

S0=.4
I0=.04
P0=.7

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system4’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S3=S;
I3=I;
P3=P;
t3=t;

figure
plot(t1,S1,’k’)
xlabel (’t’);
ylabel (’S’,’Rotation’,0.0)
axis ([0,150,0,1.2])
hold on
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plot(t2,S2,’r’)
hold on
plot(t3,S3,’c’)

figure
plot(t1,I1,’k’)
xlabel (’t’);
ylabel (’I’,’Rotation’,0.0)
axis ([0,150,0,.6])
hold on
plot(t2,I2,’r’)
hold on
plot(t3,I3,’c’)

figure
plot(t1,P1,’k’)
xlabel (’t’);
ylabel (’P’,’Rotation’,0.0)
axis ([0,100,0,.8])
hold on
plot(t2,P2,’r’)
hold on
plot(t3,P3,’c’)

Figure 8. clear all

global Lamb mu beth c eta m Thet d a gamm

format short

t=0;

Lamb=0.7;
mu=0.6;
beth=0.08;
eta=0.7;
c=0.1;
m=2;
Thet=0.9;
d=0.4;
a=0.4;
gamm=0.8;

S0=2.66
I0=0.514
P0=0.9

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system4’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S1=S;
I1=I;
P1=P;
t1=t;

S0=1.2
I0=.2
P0=.3
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OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system4’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S2=S;
I2=I;
P2=P;
t2=t;

S0=.45
I0=.7
P0=.6

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system4’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S3=S;
I3=I;
P3=P;
t3=t;

figure
plot(t1,S1,’k’)
xlabel (’t’);
ylabel (’S’,’Rotation’,0.0)
axis ([0,50,0,2.5])
hold on
plot(t2,S2,’r’)
hold on
plot(t3,S3,’c’)

figure
plot(t1,I1,’k’)
xlabel (’t’);
ylabel (’I’,’Rotation’,0.0)
axis ([0,50,0,.8])
hold on
plot(t2,I2,’r’)
hold on
plot(t3,I3,’c’)

figure
plot(t1,P1,’k’)
xlabel (’t’);
ylabel (’P’,’Rotation’,0.0)
axis ([0,75,0,1.2])
hold on
plot(t2,P2,’r’)
hold on
plot(t3,P3,’c’)

Figure 9. clear all

global p q d h beth c eta b Thet

format short
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t=0;

p=0.7;
q=0.7;
b=0.3;
d=b*0.6;
h=0.5;
beth=0.01;
eta=0.7;
c=0.1;
Thet=0.9;

S0=7.16
I0=.15
P0=4.5

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system5’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S1=S;
I1=I;
P1=P;
t1=t;

S0=.5
I0=.1
P0=.4

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system5’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S2=S;
I2=I;
P2=P;
t2=t;

S0=.4
I0=.04
P0=.7

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system5’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S3=S;
I3=I;
P3=P;
t3=t;

figure
plot(t1,S1,’k’)
xlabel (’t’);
ylabel (’S’,’Rotation’,0.0)
axis ([0,50,0,11])
hold on
plot(t2,S2,’r’)
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hold on
plot(t3,S3,’c’)

figure
plot(t1,I1,’k’)
xlabel (’t’);
ylabel (’I’,’Rotation’,0.0)
axis ([0,15,0,.16])
hold on
plot(t2,I2,’r’)
hold on
plot(t3,I3,’c’)

figure
plot(t1,P1,’k’)
xlabel (’t’);
ylabel (’P’,’Rotation’,0.0)
axis ([0,50,0,5])
hold on
plot(t2,P2,’r’)
hold on
plot(t3,P3,’c’)

Figure 10. clear all

global p q d h beth c eta b Thet

format short

t=0;

p=0.7;
q=0.7;
b=0.3;
d=b*0.6;
h=0.5;
beth=0.5;
eta=0.7;
c=0.1;
Thet=0.9;

S0=2.48
I0=0.38
P0=1.95

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system5’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S1=S;
I1=I;
P1=P;
t1=t;

S0=.5
I0=.1
P0=.4

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system5’,[0,300],w0,OPTIONS);
S=w(:,1);
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I=w(:,2);
P=w(:,3);
S2=S;
I2=I;
P2=P;
t2=t;

S0=.4
I0=.04
P0=.7

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system5’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S3=S;
I3=I;
P3=P;
t3=t;

figure
plot(t1,S1,’k’)
xlabel (’t’);
ylabel (’S’,’Rotation’,0.0)
axis ([0,80,0,5.5])
hold on
plot(t2,S2,’r’)
hold on
plot(t3,S3,’c’)

figure
plot(t1,I1,’k’)
xlabel (’t’);
ylabel (’I’,’Rotation’,0.0)
axis ([0,75,0,2.5])
hold on
plot(t2,I2,’r’)
hold on
plot(t3,I3,’c’)

figure
plot(t1,P1,’k’)
xlabel (’t’);
ylabel (’P’,’Rotation’,0.0)
axis ([0,75,0,4])
hold on
plot(t2,P2,’r’)
hold on
plot(t3,P3,’c’)

Figure 11. clear all

global p q d h beth c eta b Thet

format short

t=0;
p=0.7;
q=0.9;
b=0.3;
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d=b*0.6;
h=0.5;
beth=0.01;
eta=0.7;
c=0.1;
Thet=0.9;

S0=3.342
I0=0.15
P0=2.23

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system6’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S1=S;
I1=I;
P1=P;
t1=t;

S0=.5
I0=.1
P0=.4

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system6’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S2=S;
I2=I;
P2=P;
t2=t;

S0=.4
I0=.04
P0=.7

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system6’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S3=S;
I3=I;
P3=P;
t3=t;

figure
plot(t1,S1,’k’)
xlabel (’t’);
ylabel (’S’,’Rotation’,0.0)
axis ([0,50,0,11])
hold on
plot(t2,S2,’r’)
hold on
plot(t3,S3,’c’)

figure
plot(t1,I1,’k’)
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xlabel (’t’);
ylabel (’I’,’Rotation’,0.0)
axis ([0,15,0,.16])
hold on
plot(t2,I2,’r’)
hold on
plot(t3,I3,’c’)

figure
plot(t1,P1,’k’)
xlabel (’t’);
ylabel (’P’,’Rotation’,0.0)
axis ([0,50,0,5])
hold on
plot(t2,P2,’r’)
hold on
plot(t3,P3,’c’)

Figure 12. clear all

global p q d h beth c eta b Thet

format short

t=0;

p=0.7;
q=0.9;
b=0.3;
d=b*0.6;
h=0.5;
beth=0.5;
eta=0.7;
c=0.1;
Thet=0.9;

S0=3.889
I0=.15
P0=2.334

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system6’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S1=S;
I1=I;
P1=P;
t1=t;

S0=.5
I0=.1
P0=.4

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system6’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S2=S;
I2=I;
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P2=P;
t2=t;

S0=.4
I0=.04
P0=.7

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode113(’system6’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S3=S;
I3=I;
P3=P;
t3=t;

figure
plot(t1,S1,’k’)
xlabel (’t’);
ylabel (’S’,’Rotation’,0.0)
axis ([0,80,0,5.5])
hold on
plot(t2,S2,’r’)
hold on
plot(t3,S3,’c’)

figure
plot(t1,I1,’k’)
xlabel (’t’);
ylabel (’I’,’Rotation’,0.0)
axis ([0,75,0,2.5])
hold on
plot(t2,I2,’r’)
hold on
plot(t3,I3,’c’)

figure
plot(t1,P1,’k’)
xlabel (’t’);
ylabel (’P’,’Rotation’,0.0)
axis ([0,75,0,4])
hold on
plot(t2,P2,’r’)
hold on
plot(t3,P3,’c’)

Figures 13 and 14. clear all

global Alp b gamm bt a et c Tt

format short

t=0;

Alp=0.7;
b=0.7;
a=1.2;
gamm=.5;
bt=.9;
et=0.5;
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c=.1;
Tt=0.9;

S0=.8
I0=1.7
P0=.7

OPTIONS=odeset(’Reltol’,1e-13,’AbsTol’,1e-30);
w0=[S0,I0,P0]; [t,w]=ode113(’sistemLVC1’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S1=S;
I1=I;
P1=P;
t1=t;

S0=.6
I0=1.7
P0=.5

OPTIONS=odeset(’Reltol’,1e-13,’AbsTol’,1e-30);
w0=[S0,I0,P0]; [t,w]=ode113(’sistemLVC1’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S2=S;
I2=I;
P2=P;
t2=t;

S0=.4
I0=1.3
P0=.3

OPTIONS=odeset(’Reltol’,1e-13,’AbsTol’,1e-18);
w0=[S0,I0,P0]; [t,w]=ode113(’sistemLVC1’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S3=S;
I3=I;
P3=P;
t3=t;

S0=0.0041
I0=0.3531
P0=0

OPTIONS=odeset(’Reltol’,1e-13,’AbsTol’,1e-18);
w0=[S0,I0,P0]; [t,w]=ode113(’sistemLVC1’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S4=S;
I4=I;
P4=P;
t4=t;

S0=0.0065
I0=1.2949
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P0=0

OPTIONS=odeset(’Reltol’,1e-13,’AbsTol’,1e-18);
w0=[S0,I0,P0]; [t,w]=ode113(’sistemLVC1’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S5=S;
I5=I;
P5=P;
t5=t;

S0=0.0845
I0=0.4234
P0=0

OPTIONS=odeset(’Reltol’,1e-13,’AbsTol’,1e-18);
w0=[S0,I0,P0]; [t,w]=ode113(’sistemLVC1’,[0,300],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S6=S;
I6=I;
P6=P;
t6=t;

figure
plot(t1,S1,’k’)
xlabel (’t’);
ylabel (’S’,’Rotation’,0.0)
axis ([0,150,0,1.2])
hold on
plot(t2,S2,’r’)
hold on
plot(t3,S3,’c’)
hold on
plot(t4,S4,’c’)

figure
plot(t1,I1,’k’)
xlabel (’t’);
ylabel (’I’,’Rotation’,0.0)
axis ([0,100,0,2.5])
hold on
plot(t2,I2,’r’)
hold on
plot(t3,I3,’c’)
hold on
plot(t4,I4,’c’)
hold on
plot(t5,I5,’c’)
hold on
plot(t6,I6,’c’)

figure
plot(t1,P1,’k’)
xlabel (’t’);
ylabel (’P’,’Rotation’,0.0)
axis ([0,180,0,.9])
hold on
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plot(t2,P2,’r’)
hold on
plot(t3,P3,’c’)
hold on
plot(t4,P4,’c’)

figure
plot3(S1,P1,I1,’k’)
axis ([0,1,0,2,0,2])
xlabel (’S’);
ylabel (’P’);
zlabel (’I’)
box on
hold on
plot3(S2,P2,I2,’k’)
hold on
plot3(S3,P3,I3,’k’)
hold on
plot3(S4,P4,I4,’b’)
hold on
plot3(S5,P5,I5,’r’)
hold on
plot3(S6,P6,I6,’c’)

Figure in chapter 2

Figure 1. clear all

global Lamb mu beth c eta r b Thet a gamm

format short

t=0;

Lamb=0.1;
mu=0.6;
beth=20;
eta=0.7;
c=0.1;
r=0.2;
Thet=4;
b=0.3;
a=2;
gamm=.1;

S0=0.03567
I0=0.02047
P0=0.88021

OPTIONS=odeset(’AbsTol’,1e-10);
w0=[S0,I0,P0]; [t,w]=ode45(’system7’,[0,10],w0,OPTIONS);
S=w(:,1);
I=w(:,2);
P=w(:,3);
S1=S;
I1=I;
P1=P;
t1=t;

figure
plot(t1,S1,’k’)



150 A. MATHLAB CODE FOR FIGURES

xlabel (’t’);
ylabel (’S,I’,’Rotation’,0.0)
axis ([0,10,0,.05])
hold on
plot(t1,I1,’r’)

figure
plot(t1,P1,’c’)
xlabel (’t’);
ylabel (’P’,’Rotation’,0.0)
axis ([0,10,0.8,.9])

figure
plot3(S1,P1,I1,’k’)
axis ([.033,.039,.872,.89,0.016,.025])
xlabel (’S’);
ylabel (’P’);
zlabel (’I’)

Figures in chapter 3

Figure 1. clear all

function sistemDNZT
mu=0.1;
Lambda=0.3;
betaPAR=0.17;
c=0.18;
theta=0.9;
eta=0.3;
b=0.2;
r=0.3;
gammaPar=0.1;
a=0.4;
lambda=0.4;

function betaPAR1=betaPAR1(tp) betaPAR1=betaPAR*(1+0.7*cos(2*pi*tp));
end

function etaPAR1=etaPAR1(tp) etaPAR1=eta*(1+0.7*cos(2*pi*tp));
end

S10=1.5;
I10=0.1;
P10=0.2;

S20=0.7;
I20=0.2;
P20=0.4;

S30=0.3;
I30=0.15;
P30=0.9;

m=400;
h=0.1;

S1(1)=S10;
I1(1)=I10;
P1(1)=P10;



FIGURES IN CHAPTER 3 151

for n=1:m
PSIN=1+h*mu+h*betaPAR1(n*h)*I1(n)
PHIN=1+h*etaPAR1(n*h)*P1(n)+h*c
THETAN=h*Lambda+S1(n)
S1(n+1)=(THETAN)/(PSIN);
I1(n+1)=I1(n)*(h*betaPAR1(n*h)*THETAN+PSIN)/(PSIN*PHIN)
P1(n+1)=P1(n)*((1+h*r)*PHIN*PSIN+h*theta*etaPAR1(n*h)*(...)
(PSIN+h*betaPAR1(n*h)*THETAN)*I1(n))/(PSIN*PHIN*(1+h*b*P1(n)));

end

S2(1)=S20;
I2(1)=I20;
P2(1)=P20;

for n=1:m
PSIN=1+h*mu+h*betaPAR1(n*h)*I2(n)
PHIN=1+h*etaPAR1(n*h)*P2(n)+h*c
THETAN=h*Lambda+S2(n)
S2(n+1)=(THETAN)/(PSIN);
I2(n+1)=I2(n)*(h*betaPAR1(n*h)*THETAN+PSIN)/(PSIN*PHIN)
P2(n+1)=P2(n)*((1+h*r)*PHIN*PSIN+h*theta*etaPAR1(n*h)*(...)
(PSIN+h*betaPAR1(n*h)*THETAN)*I2(n))/(PSIN*PHIN*(1+h*b*P2(n)));

end

S3(1)=S30;
I3(1)=I30;
P3(1)=P30;

for n=1:m
PSIN=1+h*mu+h*betaPAR1(n*h)*I3(n)
PHIN=1+h*etaPAR1(n*h)*P3(n)+h*c
THETAN=h*Lambda+S3(n)
S3(n+1)=(THETAN)/(PSIN);
I3(n+1)=I3(n)*(h*betaPAR1(n*h)*THETAN+PSIN)/(PSIN*PHIN)
P3(n+1)=P3(n)*((1+h*r)*PHIN*PSIN+h*theta*etaPAR1(n*h)*(...)
(PSIN+h*betaPAR1(n*h)*THETAN)*I3(n))/(PSIN*PHIN*(1+h*b*P3(n)));

end

n=1:m+1;

S=[S1(n).’,S2(n).’,S3(n).’];
figure(1)
stem (S,’LineStyle’,’none’);
xlabel (’n’);
ylabel (’S’,’Rotation’,0.0);
figure(2)
I=[I1(n).’,I2(n).’,I3(n).’];
stem (I,’LineStyle’,’none’);
xlabel (’n’);
ylabel (’I’,’Rotation’,0.0)
figure(3)
P=[P1(n).’,P2(n).’,P3(n).’];
stem (P,’LineStyle’,’none’);
xlabel (’n’);
ylabel (’P’,’Rotation’,0.0)
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end

Figure 2. clear all

function sistemDNZT
mu=0.1;
Lambda=0.3;
betaPAR=0.29;
c=0.18;
theta=0.9;
eta=0.3;
b=0.2;
r=0.3;
gammaPar=0.1;
a=0.4;
lambda=0.4;

function betaPAR1=betaPAR1(tp)
betaPAR1=betaPAR*(1+0.7*cos(2*pi*tp));

end

function etaPAR1=etaPAR1(tp)
etaPAR1=eta*(1+0.7*cos(2*pi*tp));

end

S10=1.5;
I10=0.1;
P10=0.2;

S20=0.7;
I20=0.2;
P20=0.4;

S30=0.3;
I30=0.15;
P30=0.9;

m=400;
h=0.1;

S1(1)=S10;
I1(1)=I10;
P1(1)=P10;

for n=1:m
PSIN=1+h*mu+h*betaPAR1(n*h)*I1(n)
PHIN=1+h*etaPAR1(n*h)*P1(n)+h*c
THETAN=h*Lambda+S1(n)
S1(n+1)=(THETAN)/(PSIN);
I1(n+1)=I1(n)*(h*betaPAR1(n*h)*THETAN+PSIN)/(PSIN*PHIN)
P1(n+1)=P1(n)*((1+h*r)*PHIN*PSIN+h*theta*etaPAR1(n*h)*(...)
(PSIN+h*betaPAR1(n*h)*THETAN)*I1(n))/(PSIN*PHIN*(1+h*b*P1(n)));

end

S2(1)=S20;
I2(1)=I20;
P2(1)=P20;
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for n=1:m
PSIN=1+h*mu+h*betaPAR1(n*h)*I2(n)
PHIN=1+h*etaPAR1(n*h)*P2(n)+h*c
THETAN=h*Lambda+S2(n)
S2(n+1)=(THETAN)/(PSIN);
I2(n+1)=I2(n)*(h*betaPAR1(n*h)*THETAN+PSIN)/(PSIN*PHIN)
P2(n+1)=P2(n)*((1+h*r)*PHIN*PSIN+h*theta*etaPAR1(n*h)*(...)
(PSIN+h*betaPAR1(n*h)*THETAN)*I2(n))/(PSIN*PHIN*(1+h*b*P2(n)));

end

S3(1)=S30;
I3(1)=I30;
P3(1)=P30;

for n=1:m
PSIN=1+h*mu+h*betaPAR1(n*h)*I3(n)
PHIN=1+h*etaPAR1(n*h)*P3(n)+h*c
THETAN=h*Lambda+S3(n)
S3(n+1)=(THETAN)/(PSIN);
I3(n+1)=I3(n)*(h*betaPAR1(n*h)*THETAN+PSIN)/(PSIN*PHIN)
P3(n+1)=P3(n)*((1+h*r)*PHIN*PSIN+h*theta*etaPAR1(n*h)*(...)
(PSIN+h*betaPAR1(n*h)*THETAN)*I3(n))/(PSIN*PHIN*(1+h*b*P3(n)));

end

n=1:m+1;

S=[S1(n).’,S2(n).’,S3(n).’];
figure(1)
stem (S,’LineStyle’,’none’);
xlabel (’n’);
ylabel (’S’,’Rotation’,0.0);
figure(2)
I=[I1(n).’,I2(n).’,I3(n).’];
stem (I,’LineStyle’,’none’);
xlabel (’n’);
ylabel (’I’,’Rotation’,0.0)
figure(3)
P=[P1(n).’,P2(n).’,P3(n).’];
stem (P,’LineStyle’,’none’);
xlabel (’n’);
ylabel (’P’,’Rotation’,0.0)

end

Figure 3. clear all

function sistemDPER
mu=0.1;
Lambda=0.3;
betaPAR=0.17;
c=0.18;
theta=0.9;
eta=0.3;
b=0.2;
r=0.3;
gammaPar=0.1;
a=0.4;
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function betaPAR1=betaPAR1(tp)
betaPAR1=betaPAR*(1+0.7*cos(2*pi*tp));

end

function etaPAR1=etaPAR1(tp)
etaPAR1=eta*(1+0.7*cos(2*pi*tp));

end

S10=1.5;
I10=0.1;
P10=0.2;

S20=0.85;
I20=0.2;
P20=0.4;

S30=0.03;
I30=0.015;
P30=0.02;

m=300;
h=0.1;

S1(1)=S10;
I1(1)=I10;
P1(1)=P10;

for n=1:m PSIN=1+h*mu+h*betaPAR1(n*h)*I1(n)+h*a*P1(n)
PHIN=1+h*etaPAR1(n*h)*P1(n)+h*c
THETAN=h*Lambda+S1(n)
S1(n+1)=(THETAN)/(PSIN);
I1(n+1)=I1(n)*(h*betaPAR1(n*h)*THETAN+PSIN)/(PSIN*PHIN)
P1(n+1)=P1(n)*((1+h*r)*PHIN*PSIN+h*gammaPar*a*THETAN*PHIN
+h*theta*etaPAR1(n*h)*(PSIN+h*betaPAR1(n*h)*THETAN)*I1(n))/(PSIN*PHIN*(1+h*b*P1(n)));

end

S2(1)=S20;
I2(1)=I20;
P2(1)=P20;

for n=1:m
PSIN=1+h*mu+h*betaPAR1(n*h)*I2(n)+h*a*P2(n)
PHIN=1+h*etaPAR1(n*h)*P2(n)+h*c
THETAN=h*Lambda+S2(n)
S2(n+1)=(THETAN)/(PSIN);
I2(n+1)=I2(n)*(h*betaPAR1(n*h)*THETAN+PSIN)/(PSIN*PHIN)
P2(n+1)=P2(n)*((1+h*r)*PHIN*PSIN+h*gammaPar*a*THETAN*PHIN
+h*theta*etaPAR1(n*h)*(PSIN+h*betaPAR1(n*h)*THETAN)*I2(n))/(PSIN*PHIN*(1+h*b*P2(n)));

end

S3(1)=S30;
I3(1)=I30;
P3(1)=P30;

for n=1:m
PSIN=1+h*mu+h*betaPAR1(n*h)*I3(n)+h*a*P3(n)
PHIN=1+h*etaPAR1(n*h)*P3(n)+h*c
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THETAN=h*Lambda+S3(n)
S3(n+1)=(THETAN)/(PSIN);
I3(n+1)=I3(n)*(h*betaPAR1(n*h)*THETAN+PSIN)/(PSIN*PHIN)
P3(n+1)=P3(n)*((1+h*r)*PHIN*PSIN+h*gammaPar*a*THETAN*PHIN
+h*theta*etaPAR1(n*h)*(PSIN+h*betaPAR1(n*h)*THETAN)*I3(n))/(PSIN*PHIN*(1+h*b*P3(n)));

end

n=1:m+1;

S=[S1(n).’,S2(n).’,S3(n).’];
figure(1)
stem (S,’LineStyle’,’none’);
xlabel (’n’);
ylabel (’S’,’Rotation’,0.0);
figure(2)
I=[I1(n).’,I2(n).’,I3(n).’];
stem (I,’LineStyle’,’none’);
xlabel (’n’);
ylabel (’I’,’Rotation’,0.0)
figure(3)
P=[P1(n).’,P2(n).’,P3(n).’];
stem (P,’LineStyle’,’none’);
xlabel (’n’);
ylabel (’P’,’Rotation’,0.0)

end

Figure 4. clear all

function sistemDPER
mu=0.1;
Lambda=0.3;
betaPAR=2.2;
c=0.18;
theta=0.9;
eta=0.3;
b=0.2;
r=0.3;
gammaPar=0.1;
a=0.4;

function betaPAR1=betaPAR1(tp)
betaPAR1=betaPAR*(1+0.7*cos(2*pi*tp));

end

function etaPAR1=etaPAR1(tp)
etaPAR1=eta*(1+0.7*cos(2*pi*tp));
end

S10=1.5;
I10=0.1;
P10=0.2;

S20=0.85;
I20=0.2;
P20=0.4;

S30=0.03;
I30=0.015;
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P30=0.02;

m=300;
h=0.1;

S1(1)=S10;
I1(1)=I10;
P1(1)=P10;

for n=1:m PSIN=1+h*mu+h*betaPAR1(n*h)*I1(n)+h*a*P1(n)
PHIN=1+h*etaPAR1(n*h)*P1(n)+h*c
THETAN=h*Lambda+S1(n)
S1(n+1)=(THETAN)/(PSIN);
I1(n+1)=I1(n)*(h*betaPAR1(n*h)*THETAN+PSIN)/(PSIN*PHIN)
P1(n+1)=P1(n)*((1+h*r)*PHIN*PSIN+h*gammaPar*a*THETAN*PHIN
+h*theta*etaPAR1(n*h)*(PSIN+h*betaPAR1(n*h)*THETAN)*I1(n))/(PSIN*PHIN*(1+h*b*P1(n)));

end

S2(1)=S20;
I2(1)=I20;
P2(1)=P20;

for n=1:m
PSIN=1+h*mu+h*betaPAR1(n*h)*I2(n)+h*a*P2(n)
PHIN=1+h*etaPAR1(n*h)*P2(n)+h*c
THETAN=h*Lambda+S2(n)
S2(n+1)=(THETAN)/(PSIN);
I2(n+1)=I2(n)*(h*betaPAR1(n*h)*THETAN+PSIN)/(PSIN*PHIN)
P2(n+1)=P2(n)*((1+h*r)*PHIN*PSIN+h*gammaPar*a*THETAN*PHIN
+h*theta*etaPAR1(n*h)*(PSIN+h*betaPAR1(n*h)*THETAN)*I2(n))/(PSIN*PHIN*(1+h*b*P2(n)));

end

S3(1)=S30;
I3(1)=I30;
P3(1)=P30;

for n=1:m
PSIN=1+h*mu+h*betaPAR1(n*h)*I3(n)+h*a*P3(n)
PHIN=1+h*etaPAR1(n*h)*P3(n)+h*c
THETAN=h*Lambda+S3(n)
S3(n+1)=(THETAN)/(PSIN);
I3(n+1)=I3(n)*(h*betaPAR1(n*h)*THETAN+PSIN)/(PSIN*PHIN)
P3(n+1)=P3(n)*((1+h*r)*PHIN*PSIN+h*gammaPar*a*THETAN*PHIN
+h*theta*etaPAR1(n*h)*(PSIN+h*betaPAR1(n*h)*THETAN)*I3(n))/(PSIN*PHIN*(1+h*b*P3(n)));

end

n=1:m+1;

S=[S1(n).’,S2(n).’,S3(n).’];
figure(1)
stem (S,’LineStyle’,’none’);
xlabel (’n’);
ylabel (’S’,’Rotation’,0.0);
figure(2)
I=[I1(n).’,I2(n).’,I3(n).’];
stem (I,’LineStyle’,’none’);
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xlabel (’n’);
ylabel (’I’,’Rotation’,0.0)
figure(3)
P=[P1(n).’,P2(n).’,P3(n).’];
stem (P,’LineStyle’,’none’);
xlabel (’n’);
ylabel (’P’,’Rotation’,0.0)

end

Figure 5. clear all

function sistemDAUT
mu=0.1;
Lambda=0.3;
betaPAR=0.17;
c=0.18;
theta=0.9;
eta=0.3;
b=0.2;
r=0.3;
gammaPar=0.1;
a=0.4;

S10=1.5;
I10=0.1;
P10=0.2;

S20=0.7;
I20=0.2;
P20=0.4;

S30=0.3;
I30=0.15;
P30=0.9;

m=300;
h=0.1;

S1(1)=S10;
I1(1)=I10;
P1(1)=P10;

for n=1:m
PSIN=1+h*mu+h*betaPAR*I1(n)+h*a*P1(n)
PHIN=1+h*eta*P1(n)+h*c
THETAN=h*Lambda+S1(n)
S1(n+1)=(THETAN)/(PSIN);
I1(n+1)=I1(n)*(h*betaPAR*THETAN+PSIN)/(PSIN*PHIN)
P1(n+1)=P1(n)*((1+h*r)*PHIN*PSIN+h*gammaPar*a*THETAN*PHIN
+h*theta*eta*(PSIN+h*betaPAR*THETAN)*I1(n))/(PSIN*PHIN*(1+h*b*P1(n)));

end

S2(1)=S20;
I2(1)=I20;
P2(1)=P20;

for n=1:m
PSIN=1+h*mu+h*betaPAR*I2(n)+h*a*P2(n)
PHIN=1+h*eta*P2(n)+h*c
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THETAN=h*Lambda+S2(n)
S2(n+1)=(THETAN)/(PSIN);
I2(n+1)=I2(n)*(h*betaPAR*THETAN+PSIN)/(PSIN*PHIN)
P2(n+1)=P2(n)*((1+h*r)*PHIN*PSIN+h*gammaPar*a*THETAN*PHIN
+h*theta*eta*(PSIN+h*betaPAR*THETAN)*I2(n))/(PSIN*PHIN*(1+h*b*P2(n)));

end

S3(1)=S30;
I3(1)=I30;
P3(1)=P30;

for n=1:m
PSIN=1+h*mu+h*betaPAR*I3(n)+h*a*P3(n)
PHIN=1+h*eta*P3(n)+h*c
THETAN=h*Lambda+S3(n)
S3(n+1)=(THETAN)/(PSIN);
I3(n+1)=I3(n)*(h*betaPAR*THETAN+PSIN)/(PSIN*PHIN)
P3(n+1)=P3(n)*((1+h*r)*PHIN*PSIN+h*gammaPar*a*THETAN*PHIN
+h*theta*eta*(PSIN+h*betaPAR*THETAN)*I3(n))/(PSIN*PHIN*(1+h*b*P3(n)));

end

n=1:m+1;

S=[S1(n).’,S2(n).’,S3(n).’];
figure(1)
stem (S,’LineStyle’,’none’);
xlabel (’n’);
ylabel (’S’,’Rotation’,0.0);
figure(2)
I=[I1(n).’,I2(n).’,I3(n).’];
stem (I,’LineStyle’,’none’);
xlabel (’n’);
ylabel (’I’,’Rotation’,0.0)
figure(3)
P=[P1(n).’,P2(n).’,P3(n).’];
stem (P,’LineStyle’,’none’);
xlabel (’n’);
ylabel (’P’,’Rotation’,0.0)

end

Figure 6. clear all

function sistemDAUT
mu=0.1;
Lambda=0.3;
betaPAR=2.2;
c=0.18;
theta=0.9;
eta=0.3;
b=0.2;
r=0.3;
gammaPar=0.1;
a=0.4;

S10=1.5;
I10=0.1;
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P10=0.2;

S20=0.7;
I20=0.2;
P20=0.4;

S30=0.3;
I30=0.15;
P30=0.9;

m=300;
h=0.1;

S1(1)=S10;
I1(1)=I10;
P1(1)=P10;

for n=1:m
PSIN=1+h*mu+h*betaPAR*I1(n)+h*a*P1(n)
PHIN=1+h*eta*P1(n)+h*c
THETAN=h*Lambda+S1(n)
S1(n+1)=(THETAN)/(PSIN);
I1(n+1)=I1(n)*(h*betaPAR*THETAN+PSIN)/(PSIN*PHIN)
P1(n+1)=P1(n)*((1+h*r)*PHIN*PSIN+h*gammaPar*a*THETAN*PHIN
+h*theta*eta*(PSIN+h*betaPAR*THETAN)*I1(n))/(PSIN*PHIN*(1+h*b*P1(n)));

end

S2(1)=S20;
I2(1)=I20;
P2(1)=P20;

for n=1:m
PSIN=1+h*mu+h*betaPAR*I2(n)+h*a*P2(n)
PHIN=1+h*eta*P2(n)+h*c
THETAN=h*Lambda+S2(n)
S2(n+1)=(THETAN)/(PSIN);
I2(n+1)=I2(n)*(h*betaPAR*THETAN+PSIN)/(PSIN*PHIN)
P2(n+1)=P2(n)*((1+h*r)*PHIN*PSIN+h*gammaPar*a*THETAN*PHIN
+h*theta*eta*(PSIN+h*betaPAR*THETAN)*I2(n))/(PSIN*PHIN*(1+h*b*P2(n)));

end

S3(1)=S30;
I3(1)=I30;
P3(1)=P30;

for n=1:m
PSIN=1+h*mu+h*betaPAR*I3(n)+h*a*P3(n)
PHIN=1+h*eta*P3(n)+h*c
THETAN=h*Lambda+S3(n)
S3(n+1)=(THETAN)/(PSIN);
I3(n+1)=I3(n)*(h*betaPAR*THETAN+PSIN)/(PSIN*PHIN)
P3(n+1)=P3(n)*((1+h*r)*PHIN*PSIN+h*gammaPar*a*THETAN*PHIN
+h*theta*eta*(PSIN+h*betaPAR*THETAN)*I3(n))/(PSIN*PHIN*(1+h*b*P3(n)));

end

n=1:m+1;
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S=[S1(n).’,S2(n).’,S3(n).’];
figure(1)
stem (S,’LineStyle’,’none’);
xlabel (’n’);
ylabel (’S’,’Rotation’,0.0);
figure(2)
I=[I1(n).’,I2(n).’,I3(n).’];
stem (I,’LineStyle’,’none’);
xlabel (’n’);
ylabel (’I’,’Rotation’,0.0)
figure(3)
P=[P1(n).’,P2(n).’,P3(n).’];
stem (P,’LineStyle’,’none’);
xlabel (’n’);
ylabel (’P’,’Rotation’,0.0)

end


