
UNIVERSIDADE DA BEIRA INTERIOR
Engenharia

Threat Modeling Solution for Internet of
Things in aWebbased Security Framework

Joana Cabral Amaral Nunes da Costa

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática
(2º Ciclo de Estudos)

Orientador: Professor Doutor Tiago Miguel Carrola Simões
Coorientador: Professor Doutor Pedro Ricardo Morais Inácio

Covilhã, julho 2021

ii

Acknowledgements

I would like to thank my supervisors, Professor Doutor Tiago Miguel Carrola Simões and

Professor Doutor Pedro Ricardo Morais Inácio, for their guidance and availability when

discussing ideas and doubts.

I am also grateful for the support and suggestions provided by Bernardo Sequeiros and

Carolina Lopes.

Finally, I would like to thank my family and friends for all the motivation and encourage

ment in completing this stage of my academic life.

The work described in this dissertation was carried out at the Instituto de Telecomuni

cações, Multimedia Signal Processing Cv Laboratory, in Universidade da Beira Interior,

at Covilhã, Portugal. This research work was funded by the S E C U R I o T E S I G N Project

throughFCT/COMPETE/FEDERunderReferenceNumberPOCI010145FEDER030657

and by Fundação para Ciência e Tecnologia (FCT) research grant with reference BIL/

Nº12/2019B00702.

iii

iv

Resumo

A Internet das Coisas (do inglês Internet of Things, IoT) é um paradigma em acentuado

crescimento com benefícios inegáveis para o dia a dia dos utilizadores, com uma elevada

aplicação dos dispositivos da IoT em cenários sensíveis. No entanto, atualmente os dis

positivos da IoT não garantem corretamente as propriedades de segurança, o que pode

levar a toda uma panóplia de problemas, muitos com impacto no utilizador. Este tra

balho propõe o desenvolvimento de uma ferramenta que auxilie os programadores a criar

dispositivos da IoT seguros. A ferramenta é ummódulo de uma framework denominada

Security Advising Modules (SAM), e procura atingir o referido objetivo através da iden

tificação de fraquezas que possam existir no software ou hardware dos dispositivos IoT.

Com o objetivo de delinear as fraquezas, consultouse ao longo deste projeto um conjunto

de bases de dados que contêm informações sobre vulnerabilidades e fraquezas encon

tradas em sistemas, do qual se escolheram um conjunto restrito de fraquezas a apresen

tar. A escolha deste conjunto devese a algumas das bases de dados consultadas con

terem centenas de milhares de vulnerabilidades, pelo que não é exequível nem pertinente

a sua completa apresentação na nossa ferramenta. Complementarmente, identificaram

se neste trabalho as questões que permitem obter informações sobre o sistema em desen

volvimento que depois nos permitem mapear as fraquezas em função das respostas do

programador.

A ferramenta desenvolvida foi devidamente testada através da execução de testes au

tomáticos, com a framework Selenium, e também validada por especialistas de segu

rança e avaliada por um conjunto de 18 utilizadores. Por fim, com base no feedback dos

utilizadores, concluiuse que a ferramenta desenvolvida era útil, de utilização simples e

direta, e que 89% dos inquiridos nunca tinham interagido com uma ferramenta similar

(nesse sentido inovadora).

Palavraschave
Ferramenta de Segurança, Internet das Coisas, Modelação de Ameaças, Segurança por

Design

v

vi

Resumo alargado

Introdução

O presente capítulo detalha a motivação e o âmbito desta dissertação, apresentando o

enquadramento e descrição do problema encontrado na literatura, justificando a neces

sidade do desenvolvimento desta dissertação, os objetivos e as principais contribuições.

Refere também sumariamente os resultados e o conhecimento provenientes desta disser

tação.

Enquadramento, Descrição do Problema e Objetivos

Atualmente, observase um crescimento significativo do número de dispositivos da Inter

net das Coisas (do inglês Internet of Things, IoT) existentes na rede, com implicações na

vida quotidiana dos seus utilizadores. No entanto, a segurança destes dispositivos não

foi totalmente assegurada pelas empresas, levantando problemas de privacidade e confi

dencialidade. Posto isto, é crítico para a aceitação das empresas no mercado, que estas

comecem a aplicar mecanismos de segurança, devidamente identificados, nos seus dis

positivos.

A exclusão da segurança dos dispositivos da IoT devese a dois fatores principais: 1) o

consumo de energia e a capacidade de processamento necessários para aplicar mecanis

mos de segurança; e 2) a falta de conhecimento, por parte dos programadores de sistemas

da IoT, na área de segurança. Assim, é necessário implementar uma solução que aux

ilie os utilizadores a produzir sistemas seguros, considerando a segurança desde a fase de

design.

De forma a tentar solucionar o problema apresentado posteriormente, esta dissertação

propõe o desenvolvimento de uma solução que auxilie na identificação de ameaças ao

sistema da IoT em desenvolvimento. Nesta dissertação definemse como objetivos: 1) a

identificação de ameaças em diferentes domínios da IoT e com implementações variadas;

2) o planeamento e implementação de uma ferramenta Web que permita a identificação

destas ameaças com base nas especificações de um dispositivo; e 3) a apresentação de

uma divisão clara entre modelação de ataques e modelação de ameaças.

Principais Contribuições

De acordo com os objetivos propostos, as principais contribuições desta dissertação con

sistem em: 1) um protótipo de uma ferramenta que apresenta um conjunto de fraque

zas habitualmente encontradas no Software e no Hardware de um dispositivo; 2) uma

análise extensa de ataques e vulnerabilidades, que permitiu esclarecer as diferenças entre

modelação de ataques e modelação de ameaças.

vii

Estado da Arte

O capítulo do Estado da Arte aborda quatro tópicos principais e inclui uma comparação

das ferramentas reportadas na literatura com a solução proposta. É feita a descrição do

estado da IoT, onde se apresenta a sua estrutura, dos ataques (que se encontram divi

didos em três categorias), dos modelos de ataque e ameaça (representando modelos uti

lizados nesse contexto), e das vulnerabilidades e fraquezas (apresentando o seu registo e

importância). Finalmente, apresentamse um conjunto de quatro ferramentas similares

à solução proposta e uma tabela sumária das caraterísticas de cada uma.

Segundo a literatura, a arquitetura dos dispositivos IoT é composta por três camadas prin

cipais: perceção, transporte e aplicação (perception, transportation e application, do in

glês). A primeira camada engloba os dispositivos ou componentes que comunicam direta

mente comomundo físico; a camada de transporte é responsável pelo transporte de dados

e/ou informação entre a camada de perceção e aplicação; por fim, a camada de aplicação

processa todos os dados e produz informação útil para o utilizador. Analogamente, cada

uma destas camadas está sujeita a ataques, pelo que estes são divididos em ataques aos

sistemas da IoT, às comunicações e à criptografia. Adicionalmente, também se apresenta

um conjunto de modelos habitualmente utilizados na modelação de ataques e ameaças,

como Attack Trees,DiamondModel e Cyber Kill Chain. Estes modelos pretendem delin

ear passos que um atacante pode seguir, perceber quais os valores associados ao atacante

e compreender como é que um ataque pode ser intercetado.

Por fim, apresentase um conjunto de vulnerabilidades e fraquezas encontradas em sis

temas proprietários e/ou open source. Expõese um conjunto de bases de dados que con

têm informações sobre as vulnerabilidades encontradas em sistemas proprietários, e qual

a versão emque estas estão presentes, e ainda umabase de dados que retrata o conjunto de

fraquezas habitualmente encontradas no desenvolvimento de sistemas, quer no Software

quer no Hardware. Finalizase com a apresentação de quatro ferramentas cujo objetivo

principal é realizar a modelação de ameaças de um determinado sistema.

Sistema Proposto

Neste capítulo apresentase o planeamento da solução proposta, onde se definem os req

uisitos funcionais e não funcionais, a integração da solução numaplataformade segurança

já existente, denominada Security Advising Modules (SAM), a seleção e formulação das

questões e das ameaças que podem existir num sistema, bem como a sua interligação.

No que diz respeito aos requisitos, os principais são: a solução apresenta um conjunto

de ameaças com base em respostas dadas por um utilizador; a solução é modular e con

segue lidar com a inserção e/ou remoção de outros módulos existentes na plataforma;

e a solução está implementada na linguagem de programação necessária para executar

na plataforma. Na fase de design do sistema, apresentamse as relações entre a solução

proposta e os módulos já existentes, ou em desenvolvimento, bem como a troca de dados

viii

entre estes. Adicionalmente, justificamse as escolhas realizadas relativamente ao sistema

proposto, nomeadamente, dos conteúdos a exibir na solução proposta, da seleção de um

conjunto finito de fraquezas e da ordenação destas. Finalmente, apresentase a escolha de

questões previamente existentes na plataforma e a formulação de novas, específicas para

a solução proposta, bem como a associação entre as fraquezas e as questões escolhidas e

desenvolvidas.

Implementações do Módulo e da Plataforma

Dado que a solução proposta foi incluída numa plataforma de segurança já existente, as

contribuições estão expostas em duas vertentes: incorporação da solução proposta e mel

horias à plataforma.

No que diz respeito à incorporação da solução proposta, foram desenvolvidas algumas

funções para obter as respostas dos módulos já existentes na plataforma, as recomen

dações registadas na base de dados e a seleção e ordenação das fraquezas a apresentar

ao utilizador. Paralelamente, foram implementadas melhorias à plataforma que se en

contram divididas em Backend e Frontend. Especificamente, foram corrigidos diver

sos erros e incorporadas diversas melhorias. Por exemplo, foram implementadas novas

funcionalidades que facilitam a interação com o utilizador e novas funcionalidades com

preendidas na Application Programming Interface (API) de desenvolvimento da SAM

que permitem a criação, implementação e instalação de novos módulos.

Documentação e Avaliação

Nopresente capítulo, e como intuito de avaliar a suapertinência, definiramse e realizaram

se um conjunto de testes à ferramenta desenvolvida e, inevitavelmente, à plataforma. O

processo de testagem dividese em três fases principais: planeamento, desenvolvimento

de um guia do utilizador e de cenários a aplicar na ferramenta, e apresentação dos resul

tados obtidos.

De modo a avaliar a ferramenta desenvolvida, este processo foi dividido em três etapas:

1) avaliar se a ferramenta se comporta de acordo com o esperado; 2) obter a validação da

ferramenta por parte de especialistas de segurança; e 3) avaliar o feedbackdos utilizadores

relativamente à utilidade e inovação da ferramenta. Adicionalmente, e com o intuito de

facilitar a avaliação da ferramenta desenvolvida, produziuse um guia de utilizador que

apresenta uma breve descrição do funcionamento da plataforma e uma explicação das

questões apresentadas pela ferramenta desenvolvida.

Através da análise dos resultados, podese concluir que: 1) a ferramenta se comportou

conformeodesejado, produzindo os resultados esperados para cada conjunto de questões;

2) os especialistas de segurança confirmaram a utilidade da ferramenta, afirmando que

esta produzia resultados diretos; e 3) os utilizadores finais, em geral, acharam a ferra

menta fácil de utilizar e compreender, e também reforçaram o carácter inovador desta.

ix

Conclusões e Trabalho Futuro

Ao longo do trabalho desenvolvido foi possível chegar a conclusões secundárias. A área

da IoT está ainda em expansão e não está completamente consolidada, produzindo inco

erências nos trabalhos apresentados na literatura. Adicionalmente, verificouse que o uso

alternado, na literatura, das terminologias “attack modeling” e “threat modeling” para

referenciar o processo de identificação do conjunto de passos necessários para um ataque

bem sucedido dá azo a incoerências. Deste modo, e com o intuito de reduzir o entrave de

compreensão destes dois processos, propõese uma possível distinção entre estas termi

nologias. Por fim, descobriuse que a priorização de vulnerabilidades e fraquezas é uma

tarefa manual custosa em termos temporais e que exige um elevado grau de experiência.

Esta situação apresenta um obstáculo à determinação de como priorizar vulnerabilidades

recentemente descobertas. Todas estas conclusões contribuem para que a principal con

tribuição desta dissertação seja aplicável na literatura para ajudar utilizadores inexperi

entes na àrea de segurança.

A solução desenvolvida encontrase alojada numa plataforma de segurança denominada

SAM, que éuma ferramentaWebque abordadiferentes tópicos de segurança. Esta solução

debita um conjunto de fraquezas passíveis de serem encontradas no sistema que o uti

lizador está a desenvolver, obtendo informação sobre este sistema através de um conjunto

de questões. Por fim, a solução desenvolvida foi devidamente testada, usando a frame

work Selenium, validada por especialistas de segurança e avaliada por utilizadores que

afirmam a sua utilidade e simplicidade.

O trabalho futuro focase principalmente na ferramenta desenvolvida, nomeadamente na

melhoria da disposição da informação aos utilizadores finais. Sugerese o agrupamento

das fraquezas apresentadas em categorias que representam os requisitos de segurança.

Tambémse propõe a adição de umadescrição extensa, opcional, para que o utilizador final

tenha acesso a mais detalhes sobre as recomendações dadas. Adicionalmente, sugerese

a criação de um conjunto de questões que permitammoldar as fraquezas aos domínios da

IoT, através de uma investigação extensa destes. Por fim, propõese a aplicação de técni

cas de Inteligência Artificial para moldar automaticamente a lógica da solução proposta.

O trabalho apontado em último já está, na verdade, em desenvolvimento, e já deu azo a

um artigo científico aceite.

x

Abstract

The Internet of Things (IoT) is a growing paradigm that provides daily life benefits for its

users, motivating a fast paced deployment of IoT devices in sensitive scenarios. However,

current IoT devices do not correctly apply or integrate security controls or technology,

potentially leading to a wide panoply of problems, most of them with harmful impact to

the user. Thus, this work proposes the development of a tool that helps developers create

properly secure IoT devices by identifying possible weaknesses in the system. This tool

consists of a module of a framework, denominated Security Advising Modules (SAM) in

the scope of this work, and achieves the referred objective by identifying possible weak

nesses found in the software and hardware of IoT devices.

To define the weaknesses, a set of databases containing information about vulnerabili

ties and weaknesses found in a system were investigated throughout this project, and a

restricted set of weaknesses to be presented was chosen. Since some databases contain

hundreds of thousands of vulnerabilities, it was neither feasible nor pertinent to present

them completely in the developed tool. Additionally, the questions to retrieve system in

formation were identified in this work, allowing us to map the chosen weaknesses to the

answers given by the developer to those questions.

The tool developed was properly tested by running automated tests, with the Selenium

framework, and also validated by security experts and evaluated by a set of 18 users. Fi

nally, based on user feedback, it was concluded that the developed tool was useful, simple

and straightforward to use, and that 89% of respondents had never interacted with a sim

ilar tool (adding, in this way, to the innovative character).

Keywords
Internet of Things, Security by Design, Security Framework, Threat Modeling

xi

xii

Contents

List of Figures xvi

List of Tables xvii

Acronyms xx

1 Introduction 1

1.1 Motivation and Scope . 1

1.2 Problem Statement and Objectives . 2

1.3 Proposed Approach and Main Contributions 2

1.4 Document Organization . 3

2 Background and RelatedWork 5

2.1 Introduction . 5

2.2 State of IoT . 5

2.2.1 Perception Layer . 5

2.2.2 Transportation Layer . 6

2.2.3 Application Layer . 7

2.3 Attack Types . 7

2.3.1 Cryptography . 8

2.3.2 Communications . 8

2.3.3 IoT Systems . 9

2.4 Attack and Threat Models . 10

2.4.1 Attack Tree . 10

2.4.2 Diamond Model . 11

2.4.3 Cyber Kill Chain . 13

2.5 Vulnerabilities and Weaknesses . 15

2.5.1 Databases . 15

2.5.2 Scores . 16

2.6 Related Work . 19

2.6.1 Main Literature Contributions . 19

xiii

2.6.2 Framework Comparison . 21

2.7 Conclusion . 22

3 System Proposal 23

3.1 Introduction . 23

3.2 Scope and Requirements Analysis . 23

3.3 System Design . 24

3.4 Threat and Question Selection . 25

3.4.1 Vulnerability and Weakness Selection 25

3.4.2 Question Selection and Formulation 27

3.5 Conclusion . 33

4 Module and Framework Implementations 35

4.1 Introduction . 35

4.2 Module Incorporation . 35

4.3 Framework Enhancement . 37

4.3.1 Backend Improvements Overview 37

4.3.2 Frontend Improvements Overview 39

4.4 Conclusions . 40

5 Documentation, Demonstration, and Evaluation 41

5.1 Introduction . 41

5.2 Methodology . 41

5.3 User Guide and IoT Scenarios . 42

5.3.1 User Guide . 42

5.3.2 IoT Scenarios . 45

5.4 Results Discussion . 51

5.5 Conclusions . 53

6 Conclusions and Future Work 55

6.1 Conclusions . 55

6.2 Future Work . 56

Bibliography 57

xiv

List of Figures

2.1 AT example, with the primary goal of opening a safe, adapted from [Sch99]. 11

2.2 ADTexample, with the root nodebeing ensuringdata confidentiality, adapted

from [KMRS10]. The green bordered rectangles are defense nodes and red

bordered circles are attack nodes. The dotted lines represent countermea

sures. 12

2.3 Diamond model usage example, adapted from [CPB13]. 13

2.4 CKC application example, adapted from [HCA11]. 14

2.5 CVSS version 2 metrics for each group, adapted from [oIRT21a]. 17

2.6 CVSS version 3 metrics for each group, adapted from [oIRT21b]. 17

2.7 CWSS metrics for each group, used to prioritize weaknesses in a system.

Adapted from [Cor18]. 18

3.1 Overview of finished and under developmentmodules at the time of writing

of this dissertation. The blue rectangle represents the SAM platform,white

rectangles represent the concluded modules, the orange rectangle denotes

the proposed module, and the red rectangle depicts a module being devel

oped concurrently. 24

3.2 Framework frontend, backend, and proposed module data flow diagram.

The orange rectangle represents the proposed module. 25

3.3 Summary of the correlation between the questions gathered from the SRE

module and weaknesses. Blue rectangles represent the questions, orange

rectangles depict the answer given to that question, and the white rectan

gles denote the CWE identifier. 28

3.4 Summary of the correlation between the questions gathered from the SBPG

module and weaknesses. Blue rectangles represent the questions, orange

rectangles depict the answer given to that question, and the white rectan

gles denote the CWE identifier. 29

3.5 Summary of the correlation between the questions for the design phase and

weaknesses. Blue rectangles represent the questions, orange rectangles de

pict the answer given to that question, and the white rectangles denote the

CWE identifier. 31

3.6 Summary of the correlation between the questions for postdesign phases

and weaknesses. Blue rectangles represent the questions, orange rectan

gles depict the answer given to that question, and the white rectangles de

note the CWE identifier. 32

xv

4.1 Demonstration of the SAM platform workflow when selecting a module,

answering questions, and viewing the outputs and their correlation with

the backend. 37

5.1 Highlevel design of the Smart Transportation Monitoring scenario. 46

5.2 Highlevel scheme of the Smart Electrical Vehicle Home Charging scenario. 47

5.3 Highlevel design of the Smart Car scenario. 48

5.4 Highlevel scheme of the Smart Pacemaker scenario. 49

5.5 Highlevel design of the Smart Irrigation System scenario. 49

5.6 Highlevel scheme of the Smart Watch scenario. 50

5.7 Highlevel design of the Smart Factory scenario. 51

5.8 Graph summarizing the answers given to the evaluation questionnaire of

the proposed module according to the scale from 1 to 7, where 1 is the most

negative evaluation, and 7 is themost positive. Green, Light Blue, andDark

Blue represent options 2, 3, and 4, respectively. Orange, Pink, and Cream

represent options 5, 6, and 7, respectively. 52

xvi

List of Tables

2.1 Proposed framework comparison with related work. Empty cells corre

spond to component unavailability. 21

xvii

Acronyms

4G Fourth Generation

5G Fifth Generation

6LoWPAN IPv6 over LowPower Wireless Personal Area Network

ACISM Assessment of the Correct Integration of Security Mechanisms

ACM Association for Computing Machinery

ACT Attack Countermeasure Tree

ADT Attack Defense Tree

AG Attack Graph

API Application Programming Interface

AT Attack Tree

CCS Computing Classification System

CKC Cyber Kill Chain

CPU Central Processing Unit

CSRE Cloud Security Requirements Elicitation

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CWE CommonWeakness Enumeration

CWSS CommonWeakness Scoring System

DBMS Database Management System

DDoS Distributed Denial of Service

DoS Denial of Service

HARM Hierarchical Attack Representation Model

HDL Hardware Description Language

HTTP HyperText Transfer Protocol

IEEE Institute of Electrical and Electronics Engineers

xviii

IoT Internet of Things

IP Internet Protocol

IPv6 Internet Protocol version 6

IT Information Technology

JSON JavaScript Object Notation

LWCAR LightWeight Cryptographic Algorithm Recommendation

MitM ManintheMiddle

MQTT Message Queuing Telemetry Transport

NIAC National Infrastructure Assurance Council

NIST National Institute of Standards and Technology

NVD National Vulnerability Database

OSAT Outsourced Semiconductor Assembly and Test

OpenSSF Open Source Software Foundation

OWASP Open Web Application Security Project

PDF Portable Document Format

PHP Hypertext Preprocessor

RFID RadioFrequency Identification

SAM Security Advising Modules

SBPG Security Best Pratice Guidelines

SQL Structured Query Language

SRE Security Requirements Elicitation

TLS Transport Layer Security

TSP Trust, Security and Privacy

WPAN Wireless Personal Area Network

WSN Wireless Sensor Networks

XML Extensible Markup Language

xix

xx

Chapter 1

Introduction

1.1 Motivation and Scope

The combination of quotidian physical objects used in different domains with the Inter

net degenerates into the new (though rapidly becoming commonplace) Internet of Things

(IoT) paradigm [ZMKd17], a set of heterogeneous devices that collect data, intercommuni

cate and interactwith the ideal purpose of improving quotidian tasks performance [SOBG19].

Therefore, IoT is ubiquitous and pervasive, interacting with the physical world by gather

ing information or actuating, and possibly harming human lives if not correctly secured.

Since IoT is a new paradigm that gathers private information about users or animals,

about locations or complex conditions, etc., it is crucial to ensure the triad of security

related properties known as data confidentiality, integrity and availability. Nonetheless,

it is common knowledge that securing a device has performance and energy costs which

manufacturers can not neglect, and which sometimes even hinders the adoption of secu

rity related technologies. Furthermore, considering security while designing IoT devices

(since many security flaws come from a poor design [JDSTN19]) helps to surpass the pre

viously presented problem.

IoT is very heterogeneous, meaning also that there is no unique solution to secure all the

devices, presenting the problem of identifying the devicespecific threats. Therefore, it is

essential to develop an automatedway of predicting securitymeasures based on the device

application domain and sourcing from system specifications and conditions, tackling the

aforementioned issues. This provides the basic motivation of the work described herein.

The scope of this work falls in the intersection of the areas of information security, cyber

physical systems, and system modeling. Under the 2012 version of the Association for

ComputingMachinery (ACM)ComputingClassification System (CCS), a de facto standard

for computer science, the scope of the master’s project, reflected in this dissertation, can

be defined by the categories named:

• Security and privacy ~ Systems security;

• Security and privacy ~ Human and societal aspects of security and privacy;

• Security and privacy ~ Security services.

1

1.2 Problem Statement and Objectives

Nowadays, many IoT devices are being deployed and introduced into the market by dif

ferent companies that actually take security into consideration [CBA17], thought still with

different degrees of adequacy. Furthermore, security mechanisms tend to reduce the de

vice performance and energy, which are crucial points in IoT. However, the demand kept

growing, and the industry produced many insecure devices to meet this demand.

IoT devices are present in out everyday life, gathering sensitive information about the

user and, sometimes, these devices play a crucial role in the life of the users or in society

in general. Therefore, it it necessary to assure security of these devices in order to prevent

major catastrophic events. Moreover, skilled planning is critical to ensure the security of

the device, consisting of specification reporting, threats evaluation, and security testing.

Thus, developing an IoTbased threat modeling tool that considers characteristics from

the device and its implementation is necessary. This dissertation tackles this open issue

via its main contribution: providing an IoTspecific framework responsible for modeling

the threats to an individual IoT device or software. Therefore, the main objectives of this

dissertation are presented as follows:

• Identify threats perceived in different IoT domains and for varying implementa

tions;

• Plan, implement, and incorporate into a security platform a Webbased tool that

allows threat identification based on user and system specifications;

• Provide a clear division between attack modeling and threat modeling, since they

are often used interchangeably but used for different purposes.

1.3 Proposed Approach and Main Contributions

The main contribution of this dissertation is an automated webbased solution that out

puts possible threats that can be found in IoT systems and software, which does not re

quire security expertise and provides prioritization of these threats. This solution asks the

enduser questions regarding an IoT system, processes the given answers using Python,

and provides possible threats to that system. The development of this solution requires

the analysis and review of currently used IoT technologies, attack and threat modeling

techniques, and threat databases and scoring systems. In conjunction with examining

the security framework, this thorough research allows selecting the information to be dis

played and the implementation and integration of the proposed solution. Finally, the

proposed solution will be duly tested, validated, and evaluated by security specialists and

endusers. These were precisely the steps taken along the project and thus comprise the

proposed approach to solve the problem.

During the development of this dissertation, particularly considering the analysis and re

2

view of the stateoftheart, other open issueswere found. Standardization of IoTmethod

ologies and cryptographic mechanisms is still an open issue in literature and hinders ap

plying these techniques in IoT systems. Additionally, there is a lack of standardization

between the enterprise and research environments regarding the attack and threat mod

eling, limiting the comprehension of distinctive characteristics between these techniques.

Finally, the prioritization of vulnerabilities and weaknesses is manually performed by or

ganizations and can be automatized using machine learning techniques. This issue led

to the development of a Common Vulnerability Scoring System (CVSS) calculator with

embedded artificial intelligence, which will be the subject of a paper. Though this contri

bution is not described herein because it was not initially planned, it can be considered

as a collateral of this work. Moreover, initial steps towards the construction of tools with

embedded artificial intelligence was taken during the development of the project, in col

laboration with other researchers, leading to the paper [LCS+21], submitted and accepted

for publication in a scientific peerreviewed conference.

1.4 Document Organization

The structure of this document follows closely the way the work was performed in accor

dance with the initially delineated in the work plan:

• Chapter 1 – Introduction – presents the scope and motivation of the project be

hind this dissertation, as well as open issues found in literature and objectives to

solve them, ending up with the document organization;

• Chapter 2 – Background and Related Work – reviews available IoT systems,

IoT targeted attacks, attack and threat models commonly used in security assess

ment and finally, it describes a set of databases built to map security vulnerabilities

and weaknesses into a multinumeric score;

• Chapter 3 – SystemProposal – exposes the elicited requirements for the tool that

materializes part of the proposed solution, as well as system design and integration

in a greater security platform, and threat selection, prioritization, and question as

sociation;

• Chapter 4 –Module and Framework Implementations – discusses how the

developed tool was incorporated into amajor security framework, and describes the

enhancements made to the backend and frontend of that platform;

• Chapter 5 –Documentation, Demonstration, and Evaluation – contains the

user guide, including a brief demonstration of the (entire) platformwith focus on the

developed tool, IoT scenarios, the planning for the tool evaluation, and the obtained

results and feedback;

• Chapter 6 – Conclusions and Future Work – focuses on the main conclusions

drawn from this dissertation and presents future improvements.

3

4

Chapter 2

Background and RelatedWork

2.1 Introduction

This chapter (briefly) covers the current state of the art of IoT, explaining the systems

and communication protocols involved in section 2.2. Additionally, it discusses some at

tacks regarding cryptographic functions, communication protocols, and IoT systems, in

section 2.3, illustrating different attack and threat modeling techniques in section 2.4.

Moreover, it presents vulnerability and weakness databases and their scoring systems in

section 2.5, concluding with the description and comparison of work related to the pro

posed solution 2.6.

2.2 State of IoT

The architecture of IoT systems is divided into three different layers [FPAF18]: percep

tion, transportation, and application (the layer designations may vary, but the underlying

idea remains). ISO 20924 defines IoT as the “infrastructure of interconnected entities,

people, systems, and information resources and services that processes and reacts to

information from the physical and virtual world.” Additionally, this standard defines

an IoT device as an ‘‘entity of the IoT system that interacts and communicates with the

physical world through sensing or actuating.” [fS18].

2.2.1 Perception Layer

A vast amount of heterogeneous devices with limited capabilities characterize the percep

tion layer. This layer is in direct contact with the physical environment, being also called

the edge layer, and can monitor and change its physical aspects. Therefore, pointing out

a clear division between IoT devices like sensors and actuators.

Sensors can monitor a set of physical conditions, such as temperature, humidity, pres

sure, among others. The transportation layer sends this information to the application

layer, which is responsible for all the processing. Afterward, a decision is sent to the edge

devices, either by storing the data or sending an action to an actuator. An actuator has

a physical impact on the environment, changing its conditions. For example, it can raise

the temperature, reduce humidity, among others. Thus, the information that reaches the

actuators must be the correct one. Otherwise, they have the wrong impact on the envi

ronment, creating risky or lifethreatening situations.

5

IoT edge devices have memory and processing constraints (small amounts of memory

and low capacity Central Processing Unit (CPU)) and are mostly power restricted. These

characteristics suggest that it is unreasonable to run the currently used cryptographic al

gorithms, which rely on a heavy workload.

2.2.2 Transportation Layer

Device heterogeneity, lossy connections, and a massive amount of devices characterize

IoT networks. Some devices perform two different functionalities, such as data acquisi

tion and transportation, making it unclear which devices will permanently stay in IoT net

works. Additionally, the connection established between two nodes is not pointtopoint

but pointtomultiple or multipletopoint [WTB+12].

Communication protocols in IoT need to handle lossy connections to avoid packet loss

and shorten their frame size to support device heterogeneity. Most of the Internet trans

port protocols rely on a set of devices that are permanently on the network and are strictly

routingoriented. This condition does not relate with IoT paradigm, leading to the cre

ation of new protocols (described below) and the modification of older ones.

Message Queuing Telemetry Transport (MQTT) is a messaging protocol initially

developed in 1999 to monitor oil and gas pipe remotely [Tea20]. MQTT is a publish/sub

scribe lightweight protocol, requiringminimal resources and bandwidth. Devices that de

sire to obtain information about a sensor on the network need to subscribe to the service

provided by it. Every time the sensor informs about a physical event (e.g., temperature),

it sends this information to its subscribers. MQTT provides reliable message delivery,

ensuring that the user does not miss any crucial data, and supports unreliable networks.

Finally, this protocol uses Transport Layer Security (TLS) to encrypt messages and au

thenticate clients using OAuth [MQT20].

Zigbee is a Wireless Personal Area Network (WPAN) that works under lowpower and

processing conditions. This technology mainly focuses on reducing the power consump

tion associated with other protocols working under WPAN. Despite being developed to

work with proprietary devices, it also functions with different communication protocols,

providing interoperability. Zigbee networking protocol offers a set of security features

ensuring message authentication and encryption [Far08].

Bluetooth is a wireless technology initially developed in 1989, being present in almost

all personal devices. This technology allows data transfer at a shortrange but was not

designed with the IoT paradigm in mind. In July 2017, Bluetooth launched Bluetooth

Mesh, which supports IoT connections in a simple, efficient, and flexible manner. Blue

tooth Mesh was designed with security in mind, providing message authentication and

encryption with two different keys [DSLA17].

Wireless Sensor Networks (WSN) defines as a network of nodes that interact with

the physical environment, either by sensing or actuating on it. Many sensors exist in the

network, meaning that a considerable amount of information will be collected and trans

6

mitted in these networks. It is mandatory to have Trust, Security and Privacy (TSP) to

secure IoT networks. TSP technology supports message authentication, encryption, ac

cess control, and identity authentication. Thus, being a preferred technology to use in the

IoT context [pt14].

RadioFrequency Identification (RFID) is a technology that works with a set of tags

and readers, using radiofrequency waves to identify an object. A tag is a passive element,

meaning that it does not have power source. Meanwhile, a reader is an active element,

responsible for providing enough power to the tag to read the information it stores. This

technology has been around for approximately 50 years [DOL07]. If a user has a reader

close to a tag, he can read the stored data andpossibly have access to sensitive information.

Tag processing and memory capabilities are very reduced, meaning it can not be secure

by itself [Tew20].

IPv6 over LowPower Wireless Personal Area Network (6LoWPAN) is a pro

tocol focused on saving energy and works with resourceconstrained devices. It works

on Internet Protocol version 6 (IPv6) with a reduced frame size to minimize power con

sumption via header compression [PTC16]. Since it uses IPv6 as its transport protocol,

6LoWPAN will face the same security and privacy issues as IPv6.

2.2.3 Application Layer

The application layer offers all the processing and analyzing capabilities of the IoT sys

tems. It supplies the necessary amount of resources to create the intelligence (therefore

easiness) provided by the perception layer. Existing cloud services or any device capa

ble of processing a considerable amount of information can be considered as part of the

application layer. Since this layer is known for high processing capacity and no power

failures, current cryptographic algorithms can be applied, and most of its vulnerabilities

are known.

Cloud services are delivered via many computing units with huge processing capacities

and almost no power constraints (can handle power failures for long periods). Cloud is

a technology that already exists for years and is now being leveraged to handle the appli

cation layer of IoT applications in many cases. Attackers have been exploiting its vulner

abilities for long, meaning that these systems can be considered the most secure among

IoT.

2.3 Attack Types

When attacking a system, the attacker must know its vulnerabilities, chosen from dif

ferent categories. The attacker either chooses to attack cryptographic implementations,

communications, or system vulnerabilities at a specific period.

7

2.3.1 Cryptography

Cryptographic attacks are limited and mathematically defined, so it is straightforward to

list them all, unless something wasmissed by the scheme designers. Firstly, cryptanalysts

presented four attack models [SP18], and later two other models emerged with a modifi

cation of two of the existing models. The remaining part of this section briefly describes

these models.

CiphertextOnly Attack happens when the attacker attempts to acquire the plaintext

or cipher key, only knowing the ciphertext. The attacker only has the passive capability

of viewing ciphertext. Thus, being the hardest to be performed and the most realistic

one [Bir11c].

Known Plaintext Attack occurs when an attacker has access to knownplaintext and

corresponding ciphertext pairs, which are limited. This attack scenario increases the ca

pabilities of the attacker, raising its practicability [Bir11d].

Chosen Ciphertext Attack is a scenario in which the attacker intends to obtain a spe

cific plaintext by previously having access tomultiple ciphertexts and their corresponding

plaintexts. This attack model assumes that the attacker has access to the decryption func

tion to decrypt the chosen ciphertexts. This scenario is suitable for publickey encryption

because the encryption key is publicly available, and the attacker can produce ciphertexts,

but not viceversa [Bir05a].

Chosen Plaintext Attack is similar to Chosen Ciphertext Attack, but in this turn, the

attacker has access to plaintext and the corresponding ciphertext. Therefore, the attacker

needs to have access to the encryption function to produce the ciphertexts. This attack

scenario is less practicable than Known Plaintext Attack [Bir05b].

Adaptive Chosen Ciphertext Attack operates as a Chosen Ciphertext Attack scenario

in which the attacker can choose the inputs for the decryption function based on pre

viously obtained ciphertexts. This scenario is more unrealistic than Chosen Ciphertext

Attack because it raises the capabilities associated with the attacker [Bir11a].

AdaptiveChosenPlaintextAttack performance is similar toAdaptive ChosenCipher

text Attack, but the attacker has access to the previously chosen plaintext and correspond

ing ciphertext. Therefore, this attack is more powerful, making it less realistic [Bir11b].

2.3.2 Communications

Independently of the communication protocol used, these are always susceptible to Man

intheMiddle (MitM) attacks, either passive or active. The first one, also known as eaves

dropping, happens when the attacker has a passive role and records the messages ex

changed through that channel. On the other hand, active implies the possibility of com

municationmodification between twodevices. MitMattacks happenwhen an attacker can

intercept the communicationbetween two entities and identify itself as legitimate [PIS+17].

8

Like any other layer in the IoT network, communications are susceptible to Denial of Ser

vice (DoS) or Distributed Denial of Service (DDoS) attacks, which occur when the user

does not receive or transmit information, or receives incomplete messages, due to the

overflow or deletion of network packets or due to inflicted malfunction of network ser

vices or forwarding technologies. E.g., the attacker sends a massive amount of packets

throughout the network or installs a device in that same network to receive all the packets

preventing them from reaching their destination [Yu14].

A Sybil attack is another typical attack performed under IoT networks when system au

thentication is weak. In this case, the attacker introduces a malicious node or controls

a legitimate node in the network and impersonates other nodes or generates fake identi

ties [MAL+19]. If no cryptography is applied to the communications, this type of attack

makes the network insecure.

It is not feasible to describe all the communication layer attacks due to space limitations.

However, it should be mentioned that these attacks are typically executed by a third per

son over the communication channel. Thus, most of the attacks described throughout this

section suit under the category of attacks that involve a third person/device that needs to

be legitimately identified in the network.

2.3.3 IoT Systems

Inevitably, IoT systems inherit the properties of the existing electronic devices, mean

ing that they are also susceptible to electronic devices vulnerabilities. Additionally, many

IoT devices are resource and powerconstrained, meaning that they are exposed to even

a more significant number of attacks. Some of the IoT systems are also positioned in lo

cations where they are not easily accessible and have seldom physical maintenance.

Computational resources are the basis of cryptographic security, meaning that the usage

of cryptographic algorithms implies that they have a considerable amount of resources.

Lack of capabilities in IoT devices leads to the impossibility of using the widely known

cryptographic algorithms. Therefore, research and development of new cryptographic

algorithms that offer the same strength but work under constrained conditions is needed.

Placing IoT devices in isolated locations makes these systems vulnerable to physical tam

pering, due to the lack of humanpresence to prevent the attacker fromacquiring hardware

information. It is essential to prevent the attacker from either reaching the device or tam

pering with its hardware.

IoT manufacturers are responsible for maintaining their systems. Nonetheless, to ease

the maintenance process, manufacturers usually discard security, thus leaving another

open entry for attackers to exploit and gain access to the device.

Another vulnerable characteristic is the power restriction ofmost of the IoT systems,mak

ing these devices susceptible to battery exhaustion under specific conditions. The attacker

can simulate legitimate requests and continually send them to a powerconstrained de

9

vice, leading to battery exhaustion. As said before, some of the devices are located in

isolated places, meaning that exchanging batteries is an expensive and time costly pro

cess.

IoT systems are as vulnerable to social engineering attacks as any other usercontrolled

device. The credentials to access the device are under the possession of a user who lacks

the knowledge to dodge wellperformed social engineering attacks. Unintentionally, the

user gives the attacker access to the system.

2.4 Attack and Threat Models

Along the time, different ways of representing (modeling) susceptibility to attacks or the

way that attacks are performed have been proposed. Different widely used attack and

threat models will be detailed throughout this section to help defining the modeling tech

nique for the proposed solution.

2.4.1 Attack Tree

One of the most widely adopted models to represent attacks and vulnerabilities to a spe

cific system is named Attack Tree (AT) due to its significant advantage of easily being

replaced through a textual representation. The attacker goal is the root node of such tree,

while the remaining nodes are the steps required to reach this goal. Leaf nodes are atomic

steps the attacker may accomplish to achieve his main goal. The connections between

each node represent a logic operator, being AND or OR [Sch99, Sch01]. Figure 2.1 shows a

simple example of an AT, whose main goal is to open a safe.

AT models are still frequently used by system administrators to perform risk assessment.

It is possible to add the financial cost to complete each step on the AT, identifying expen

sive attacks that require higher monetary resources, thus narrowing the number of users

that can perform a specific attack. The AT model can also contain information regarding

the need for special equipment to achieve a particular step.

ATmodels are very dynamic and allow the user to perceive whichwill be themost attacked

components, which units will need to be more thoroughly secured, and if the attacker

needs special equipment. This analysis process makes it possible for system administra

tors to secure their systems correctly without overextending their budget.

The attacker viewpoint is the main focus of the presented model. As researchers felt the

need to add the system defenses to represent the real dynamic of the systems, this model

was updated, leading to the development of Attack Defense Tree (ADT). In such model,

there are two types of nodes which represent either an attack or a defense. Furthermore,

the connection between two nodes is either a refinement or countermeasure [KMRS10].

ADT is an improvement to the existingAT; thus, ADTmodels have the same interpretation

as attack tree models. Figure 2.2 shows a truncated example of an ADT, whose root node

10

Open Safe

Install ImproperlyCut Open SafeLearn ComboPick Lock

Find Written
Combo

Get Combo from
Target

Threaten Blackmail Eavesdrop Bribe

Listen to
Conversation

Get Target to
State Combo

and

Figure 2.1: AT example, with the primary goal of opening a safe, adapted from [Sch99].

is applying a defensive procedure such as data confidentiality.

Lately, AttackCountermeasureTree (ACT)models have been gaining traction also, propos

ing a combinatorial analysis between attacks and countermeasures. As a novelty, ACT

brought the possibility to represent countermeasures in all the tree nodes, not only at the

leaf nodes [RKT10].

An attack is directly associated with a fault: a defect in a system can be the entrance of

an attacker, and an attack can cause a fault. This idea lead to the rise Attack Fault Tree

models also. This type of model provides both AT and Fault Tree outcomes, contributing

to a tradeoff between security and security [KS17].

AT, which was initially presented in 1999, has evolved in many ways to other models (as

shown throughout this section). It is possible to find modifications from the original AT

and subsequent models that were not presented here.

2.4.2 Diamond Model

The DiamondModel describes the core features for any intrusion event: adversary, capa

bility, victim, and infrastructure. Each element is connected to another by an edge repre

senting the fundamental relationships between the core features. Diamond Model works

under the conception that each intrusion event has an adversary working towards a goal

using its capabilities and infrastructure against a victim [CPB13]. Finally, the diamond

model presents some metafeatures which are not essential to evaluate an event but may

help the defender to understand the occurring event.

Adversary (one of the core features) is the actor responsible for the attack execution and

11

Data
Confidentiality

Physical Security Employee
Attack

Break In

Fire Escape

Window

Security Guard

Door Window

Reinforce ReinforceLock

Defeat Lock

Force Open Acquire
Keys

Defeat
Guard

Bribe Overpower Steal Keys Video Cameras

Out-number Use
Weapons

Network Security

Back Door

Lock

Defeat Lock

Force Open Acquire
Keys

... ...

and

and

Figure 2.2: ADT example, with the root node being ensuring data confidentiality, adapted from [KMRS10].
The green bordered rectangles are defense nodes and red bordered circles are attack nodes. The dotted lines

represent countermeasures.

accomplishment. The attack success probability highly relies on the attacker and, unlike

other features, it is challenging to classify the attacker knowledge. The attacker can be a

unique person or a group of persons and can be internal or external to the system.

The tools and techniques utilized during the intrusion event by the attacker are called ca

pability. All the procedures should be registered, even if the strategies used are clumsy.

Infrastructure describes the physical and logical structures of the adversary to deliver

its capabilities and extract information from the victim. This feature is where the adver

sary financial capacity is the main focus, and infrastructure increases if the adversary is a

group.

Finally, vulnerabilities are exploited against the target of the adversary (victim). This

victim could either be a persona or an asset, making this distinction crucial.

The DiamondModel mainly focuses on the attacker/adversary, meaning that it is decisive

in an intrusion event. It is imperative to design possible attackers to defend the system

better. Figure 2.3 shows a possible malware installation on the victim network (1), then

a specialist performs malware reversion to expose the command and control domain (2).

Resolution of the domain leads to the exposure of the underlying Internet Protocol (IP)

address hosting the controller (3). Firewall logs reveal other compromised hosts in the

12

network (4); finally, the IP address registration reveals the adversary details (5).

CapabilityInfrastructure

Victim

Adversary

(1) Victim
discovers
malware

(2) Malware
contains C2

domain

(3) C2 Domain
resolves to C2 IP

address

(4) Firewall logs reveal
further victims

contacting C2 IP
address

(5) IP address
ownership details
reveal adversary

Figure 2.3: Diamond model usage example, adapted from [CPB13].

2.4.3 Cyber Kill Chain

As the community develops countermeasures for simple attacks, these are evolving into

multiple stage attacks. These attacks can deceive the countermeasures, meaning that ana

lyzing an attack only by itself is not enough. The Cyber Kill Chain (CKC) model intends to

help fight against multistage attacks by defining the steps taken throughout an intrusion

event.

Reconnaissance, Weaponize, Delivery, Exploitation, Installation, Command and Con

trol, and Acts on Objective are the steps defined in CKC [YR15]. While a system is facing

an ongoing attack, thismodel can help intersecting those attacks. It also helps the security

analysts to have amindset closer to the attacker. As this model works precisely as a chain,

the attacker can not accomplish the following steps if the defender cuts out one step.

Reconnaissance is the process of collecting themaximumquantity of information about

the potential target. The attacker identifies the possible targets, evaluates the most suit

able victim, and profiles the target. Information gathered throughout this stage is used

in the following steps. Passive and active are the two types of reconnaissance an attacker

can perform, that differ from each other in the way the target perceives their occurrence.

While doing passive reconnaissance, the attacker is gathering informationwithout getting

noticed. However, performing active reconnaissance opens the possibility of detection by

the victim. Usually, attackers initially perform passive reconnaissance andmove to active

later on.

The next step is to utilize the information acquired during reconnaissance to design a

backdoor and a penetration plan (Weaponize). This stage involves two components:

client and serverside. The attacker designs a technique to deliver the first element to the

13

target, then execute it, and create a network connection to the server (that exists in the

attacker infrastructure). The serverside is used by the attacker to send commands to the

clientside and observe its results on the clientside.

At this point, the attacker only designed the application to implement in the client and

serverside. One critical stage of the CKC is to deliver this application to the target and

is responsible for an efficient and effective cyberattack. Contrary to the steps done be

fore, the Delivery stage is a risky task because it leaves traces, resorting often to using

anonymous services.

After the delivery completion, it is essential to trigger the exploit to install the payload

silently. The target must have the software or operating system with a version in which

the exploit still works, without any additional securitymechanism capable of detecting the

payload, and successfully triggering the exploit. Exploitationuses known vulnerabilities

to deliver the application silently.

The attacker already delivered the payload to the target computer, and the next step is

to install this application. Nowadays, malware is multistaged, and it heavily relies on

programs that install and run themalware on the victim system. During the Installation

phase, there is always the risk of the malicious programs being detected and reported to

defensive countermeasures.

CommandandControl systems are another critical part of theCKCand are responsible

for sending the attacker commands to other systems. There are various types of architec

tures, such as centralized, decentralized, and social networks. Making legitimate traffic

indistinguishable from malicious is one of the vital parts of the Command and Control

communications.

Finally, after gaining control of a system, the attacker can execute the intended com

mands. It can either perform a mass attack, affecting as many targets as possible, or a

targeted attack, where only critical systems are attacked (Act on Objective).

Figure 2.4 shows an example of early intrusion detection, specifically at the delivery stage.

For this specific intrusion, the defender should perform an analysis to understand why

the attacker could reach that stage before being detected. Also, equally necessary, the

defender must gather as much information from the unsuccessful intrusions to ease un

derstanding of the current defenses. This process might help in future attacks where the

attacker might circumvent the existing countermeasures.

Reconnaissance Weaponization Delivery Exploitation Installation
Command and

Control
Act on Objective

Analysis Detection Synthesis

Figure 2.4: CKC application example, adapted from [HCA11].

14

2.5 Vulnerabilities andWeaknesses

It is essential to consider both software and hardware vulnerabilities to identify IoT sys

tem threats. A vulnerability is described as “a hole or a weakness in the application (...)

that allows an attacker to cause harm to the stakeholders of an application.” according

to Open Web Application Security Project (OWASP). The main purpose of this work is to

identify which vulnerabilities threaten the IoT system being designed. Therefore, some

of the available databases presented in subsection 2.5.1 and scoring systems presented in

subsection 2.5.2 were considered.

2.5.1 Databases

Before 1999, identifying known vulnerabilities regarding a specific tool was an onerous

task, requiring that experts would acquire information from multiple databases and as

certain if the vulnerabilities were not repeated across these databases. Motivated by this

issue, Mann and Christey proposed a Common Vulnerability Enumeration that assigns a

unique vulnerability identifier to each publicly known vulnerability and is freely available,

whichprompted the creation of theCommonVulnerabilities andExposures (CVE) [Dav99,

MG02] database. It contains 153,955 entries and provides a description and an identifier

for each entry.

National Vulnerability Database (NVD) [Nat21, Len13]was instituted in 2005 and, in con

junctionwith other vulnerability databases such as CVE andCommonWeakness Enumer

ation (CWE), provides impactmetrics, namely the CVSS scores, references to remediation

assistance, description, and respective CVE identifier. In addition, National Institute of

Standards and Technology (NIST) does an ongoing analysis of the CVE database and as

signs each vulnerability the CVSS base metrics, helping users to understand each issue

severity and perform risk assessment analysis. NVD is updated daily and, at the time of

writing of this dissertation, it had 153,923 entries (very recent vulnerabilities do not have

a CVSS impact score).

VulDB [vul21b, vul21a] is a vulnerability database that combines experiencedmoderators

and the crowd to identify zeroday vulnerabilities. It allows the registration of any per

son who wants to access this information but with limited access. The user starts with a

free license, giving access to 10 Application Programming Interface (API) credits per day,

which can be upgraded to a commercial or enterprise license, containing 200 and 10,000

API credits per day, respectively. This database had 175,243 entries in june 2021. Each

database entry (referring to a vulnerability) contains the summary, details, CVSS version

3 and version 2 base and temp score.

CWE [The21b] is a catalog that contains commonweaknesses found in software and hard

ware components. A weakness is defined as a flaw, fault, bug, or other error injected

during the design and development phases that could result in a vulnerability if left un

addressed. The main objective of this database is to help developers and practitioners to

15

describe, identify, and prevent software and hardware vulnerabilities. Additionally, CWE

provides a top 25 most critical weaknesses found in software components, which helps

developers prioritize the weaknesses to tackle. Finally, each weakness has a type, such

as base, variant, class, category, presenting its relationship with other weaknesses, and

can have multiple CVE entries associated. As of this project, this catalog contains 918

weaknesses, which were revised in December 2020.

OWASP [OWA21b, OWA21a] is a nonprofit foundation that aims to improve software

security. One of their projects identifies vulnerabilities, namely onWeb applications, mo

tivating the identification of 60 distinct vulnerabilities. Additionally, they provide the top

10 vulnerabilities found on Web applications, which eases the prioritization of risks. Be

sides this, OWASPhas projects to identify attacks and countermeasures to help developers

and security experts build secure applications.

Open Source Software Foundation (OpenSSF) [The21a] Vulnerability Disclosures Work

ing Group is an emerging project that started in July 2020, which intends to help open

source software maintainers improve their software security. This project has the follow

ing objectives: 1) document andpromote proper vulnerability disclosure and coordination

practices; 2) encourage the development and adoption of an opensource software vulner

ability exchange system. However, the documentation and systems developed under this

project are not currently open access.

2.5.2 Scores

Each company had its scoring system for its products and followed its enterprise guide

lines without publicly saying how it scored its vulnerabilities [MSR06]. This generated a

significant problem for administrators who managed various systems and applications

(e.g., vulnerability prioritization for heterogeneous systems). To tackle this issue, US

National Infrastructure Assurance Council (NIAC) proposed using an interoperable scor

ing system – CVSS – that estimates and quantifies the impact of software vulnerabilities.

The previously described scoring system is divided into three metric groups: 1) Base, de

scribing the properties of a vulnerability that do not change over time; 2) Temporal, in

cluding the properties that change over time; 3) Environmental, considering the repre

sentative properties of the Information Technology (IT) environment. In addition, this

scoring system has two versions, version 2 and version 3, that differ from each other in

the metrics considered for each group. Figures 2.5 and 2.6 present the metrics found in

each metric group for version 2 and version 3, respectively.

Confidentiality, Integrity, and Availability Impact and Requirement are common met

rics between version 2 and version 3. The Impactmetrics evaluate the potential damage

that can be caused by that security property being violated. The Requirement metrics

are used on the environment group to give importance to a specific security property,

i.e., assuring the availability property is more important than the integrity property. Re

mediation Level and Report Confidence are also existent in both versions and are

16

Base Metric Group

Access
Complexity

Authentication

Access vector

Confidentiality
Impact

Integrity
Impact

Availability
Impact

Temporal Metric Group

Exploitability

Remediation
Level

Report
Confidence

Environmental Metric Group

Collateral
Damage
Potential

Target
Distribution

Confidentiality
Requirement

Integrity
Requirement

Availability
Requirement

Figure 2.5: CVSS version 2 metrics for each group, adapted from [oIRT21a].

Base Metric Group

Impact Metrics

Scope

Availability
Impact

Confidentiality
Impact

Integrity
Impact

Exploitability Metrics

Attack Vector

Attack
Complexity

Privileges
Required

User
Interaction

Environmental Metric Group

Modified Base
Metrics

Confidentiality
Requirement

Integrity
Requirement

Availability
Requirement

Temporal Metric
Group

Exploit Code
Maturity

Remediation
Level

Report
Confidence

Figure 2.6: CVSS version 3 metrics for each group, adapted from [oIRT21b].

components of the temporal metric group. The first one quantifies the possibility of fixing

the corresponding vulnerability, and the other one measures the degree of confidence in

the existence of the corresponding vulnerability.

Considering the exclusivemetrics in version 2 for the basemetric group, theAccess Vec

tor indicates how the attacker can access the system; the Access Complexity reflects

the complexity associated with the exploitation after having access to the system; the

Authentication quantifies the number of authentications the attacker has to do before

he can exploit the corresponding vulnerability. Additionally, the Exploitability met

ric quantifies the amount of code and techniques available to exploit the corresponding

vulnerability; the Collateral Damage Potential reflects the potential loss of life and

physical assets through damage; the Target Distribution evaluates the percentage of

the environment that is at risk.

As forCVSS version3, the basemetric groupwasdivided into two subgroups,Exploitabil

ity and Impact. The metrics under the Impact subgroup were described previously, and

the Exploitability group reflects the characteristics of the vulnerable component. Though

not included in these two subgroups, the Scope metric assesses if the vulnerability im

pacts the components beyond its security scope. The Attack Vector and Attack Com

plexitymetrics are similar to the Access Vector andAccess Complexitymetrics existent in

17

version 2, respectively. The Authentication metric was replaced by two other metrics that

evaluate the level of privileges the attacker needs to exploit a vulnerability (Privileges

Required) and if exploiting the vulnerability requires user interaction (User Interac

tion). Exploit Code Maturity evaluates the same characteristic as the Exploitability

metric from version 2, andModified Base Metrics allows the enduser to modify the

metrics from the base group.

The previously presented scoring system is designed explicitly for vulnerabilities and does

not apply to the weaknesses found on the CWE database. Therefore, the need to develop a

system to classify theseweaknesses prompted the implementation of a new scoring system

calledCommonWeakness Scoring System (CWSS). It helps developers prioritize common

bugs and mistakes found in their code by providing a consistent and flexible mechanism

that enables organizations to reflect their business context [eS14].

Like CVSS, this scoring system is divided into three metric groups: 1) Base Finding, 2)

Attack Surface, 3) Environmental [Cor18]. The first one classifies the inherent risk of

the weakness, the accuracy of the finding, and the attacker capacity when controlling this

weakness. The attack surface metrics evaluate the number of barriers and defenses the

attacker has to surpass to gain access. Finally, the environmental metric allows the devel

oper or system administrator to have the IT environment reflected on the scoring system.

The abovementioned metric groups are subdivided into smaller metrics, as presented in

figure 2.7, to ease the calculation of the CWSS score. Regarding the base finding group,

Technical Impact reflects the potential result of exploiting the system weakness, Ac

quired Privilege represents the privileges the attacker acquires, and Acquired Privi

lege Layer displays the operational layer towhich the attacker gains access when exploit

ing the weakness successfully. Additionally, Internal Control Effectiveness describes

the control ability to turn the weakness unable to exploit, and Finding Confidence in

dicates the confidence associated with the observed weakness being exploitable.

Attack Surface

Required
Privilege

Required
Privilege

Layer

Access
Vector

Authentication
Strength

Level of
Interaction

Deployment
Scope

Environmental

Business
Impact

Likelihood of
Discovery

Likelihood of
Exploit

External
Control

Effectiveness

Prevalence

Base Finding

Technical
Impact

Acquired
Privilege

Acquired
Privilege

Layer

Finding
Confidence

Internal
Control

Effectiveness

Figure 2.7: CWSS metrics for each group, used to prioritize weaknesses in a system. Adapted from [Cor18].

As previously mentioned, the attack surface conditions reflect the difficulties the attacker

has to surpass to gain access. In this case, Required Privilege and Required Privi

lege Layer refer to the type of privileges and the operational layer, respectively, that the

attackermust have to attack thisweakness successfully. Furthermore,AttackVectorhas

the same meaning as in the CVSS version 3 scoring system; Authentication Strength

18

defines the authentication procedures the attacker must surpass; Level of Interaction

describes the degree of interaction between the attacker and the user. Finally, the De

ployment Scope reflects the extension of the software or hardware that manifests the

weakness.

Providing the impact magnitude on the business domain, if the weakness is successfully

exploited, is provided by the Business Impact metric. Moreover, evaluating the envi

ronmental metric requires the determination of the Likelihood of Discovery, which

describes the probability of the attacker finding the weakness; the Likelihood of Ex

ploit, explaining the plausibility of the weakness being exploited by an attacker; the Ex

ternal Control Effectiveness, reflecting the mechanisms that hinder the attacker ex

ploitation; and thePrevalence, which represents the weakness recurrence in the system.

2.6 RelatedWork

Companies produced a significant amount of IoT devices without considering security,

leading to several problems lately, namely sensitive information breaches. Recently, re

searchers started developing frameworks to help businesses improve the security of IoT

systems. This section presents some of these frameworks.

2.6.1 Main Literature Contributions

Mohsin et al. [MAH+16] proposed a formal framework for security analysis in IoT, called

IoTSAT, focused in modeling the IoT system generic behavior. It uses the device con

figurations, network topologies, user policies, and IoT specific attack surface to perform

behavior modeling. This model is used to measure the system resilience against poten

tial attacks and identify threat vectors and specific techniques. This framework automat

ically reveals complex attack vector chains based on the adversary goals, which can be

flexibly chosen by the user considering essential security requirements and mission ob

jectives. IoTSAT develops two higherlevel models applicable to generic IoT systems: the

firstmodel formalizes interaction among different IoT entities, and the secondmodel cap

tures IoT specific threat classifications. The first model considers five critical sets of IoT

elements: environment features, sensors, controllers, actuators commands, and actua

tors. The techniques performed by the attacker depend on capabilities, device network

configurations, and exposed IoT vulnerabilities. The second model reports these proce

dures.

Casola et al. [CDRV19] proposed an automated framework to perform threat modeling

to different assets in IoT. It relies upon IoT system architectural components and secu

rity properties, enabling applicable threats identification, security risk analysis and eval

uation, and proper countermeasures selection. The required user pieces of information

are a highlevel architectural model of the IoT system and technical information on the

implementation/deployment. This framework performs its inference throughout three

19

steps, namely: system modeling, threat modeling and risk analysis, and security controls

identification. In system modeling, the user must specify each network device type and

its layer, designing a graph with the components, type, and connections. On the con

trary, threat modeling is an entirely automated process, made possible by using a security

knowledge database, which maps threats to assets, countermeasures, among others. In

this process, the tool classifies threats based on the asset and maps them to the standard

security controls representing the countermeasures to adopt. At this point, the framework

has identified all relevant threats to the system. This tool evaluates 16 parameters, such as

threat likelihood, threat agent factors, and business factors, to perform risk analysis and

security controls identification. In this stage, the analyst only has to evaluate the business

factors. This framework classifies threats as LOW, MEDIUM, or HIGH, outputting the

list of security controls to apply.

Alharbi et al. [AA18] proposed a framework to analyze the security associated with smart

cameras, covering five major components. The primary purpose of this framework is to

demonstrate vulnerabilities that exist on home monitoring smart cameras and how they

affect user security and privacy. A camera monitors its surroundings and sends notifica

tions to the user application whenever an event is detected. The user can log in to his/her

account and watch the camera video streams that can be sent directly from the camera

or through a server. Based on this, the video stream data, personally identifiable infor

mation, and smart cameras are assets that demand protection. While performing threat

modeling, the tool considers four types of threats: unauthorized video stream retrieval,

tamper with smart cameras, unauthorized account hijack, and unauthorized capture of

personally identifiable information. The fivemajor components considered in this frame

work are smart camera security, smart camera physical and network security, web inter

face security, mobile application vulnerability to information leakage and account hijack,

and privacy policy and agreements. With this information, the framework infers possible

attacks for each component based on the threats mentioned above. This framework con

siders android applications security analysis, smart camera applications analysis, OWASP

testing guide, Institute of Electrical and Electronics Engineers (IEEE) IoT security best

practices, and network attackers. As a result, this tool produces a set of test cases for each

major component that a smart camera must surpass to be considered secure.

Ge et al. [GHGK17] proposed a framework formodeling and assessing IoT security, which

identifies all the possible attack paths in an IoT system. It constructs a graphical security

model and a security evaluator to automate the security analysis of the IoT. The security

model captures potential attack paths in the network, and the security evaluator uses var

ious security metrics to assess the security and interacts with an analytic modeling and

evaluation tool to output the analysis results. This tool consists of five phases: data pro

cessing, security model generation, security visualization, security analysis, and model

updates. Through these stages, the framework can identify all possible attack paths, eval

uate the security level of IoT through security metrics, and assess multiple defense strate

gies. In data processing, security decisionmaker provides system information and secu

rity metrics. The system information includes the subnets, their network topology, and

20

vulnerability information for each node. In the next stage, the tool generates an extended

Hierarchical Attack RepresentationModel (HARM) of the IoT network to compute all the

potential attack paths. Security visualization produces a set of Attack Graph (AG) to visu

alize the three layers compounding the HARM. Attack path, security metrics, and other

information are the input for the security evaluator, which will output the analysis re

sults directly or generate a file that the user can employ in another tool. Finally, if the

IoT system has changed due to defense strategies, the model is updated. The framework

performs the previous phases to reanalyze the security and suggests which part of the

system is the most vulnerable.

2.6.2 Framework Comparison

The solution developed in the scope of this dissertation is automated and does not require

the intervention of a security expert. Initially, the proposed solution will ask questions

to a user regarding the IoT system to be designed, evaluating the user given answers to

present the threats regarding the system. Then, it considers the usage of Hardware De

scription Language (HDL) and the existence of hardware components by displaying a set

of hardwarespecific threats obtained from the CWE database. Finally, the CWSS score

to classify and prioritize threats is used in the proposed solution.

Table 2.1 highlights and summarizes the main differences between the proposed solution

and the ones found in the literature. It shows when the platform prioritizes the presented

threats, if it displays hardware threats, if a solution presents the threats without user in

tervention, and if it requires reduced security knowledge to obtain the results.

Solution Threat
Priorization

Hardware
Threats

Automated
Approach

Reduced
Security

Knowledge
Mohsin et al. ✓ ✓ ✓
Casola et al. ✓ ✓ ✓
Alharbi et al. ✓
Ge et al. ✓
Ours ✓ ✓ ✓ ✓

Table 2.1: Proposed framework comparison with related work. Empty cells correspond to component
unavailability.

The proposed solution uses the knowledge stored in the previously presented databases

to display a set of threats for software and hardware components. Specifically, the CWE

database was updated in December 2020, when hardware weaknesses were introduced

into their system, supporting this unique characteristic found in the proposed solution.

Furthermore, it considers the scoring systems to prioritize the threats displayed to the

user, allowing the user to define which threats to tackle first.

Some solutions require that a security specialist intercedes in the attackmodeling process.

However, hiring a security specialist is expensive for companies, meaning that they can

not continuously use platforms with this requirement. The proposed solution is designed

21

to help users with basic security knowledge and can be used by most IoT manufacturers.

Finally, the proposed solution is an automated approach that only needs the user to pro

vide data about the system through questions and correlates the acquired data with the

possible threats.

2.7 Conclusion

Regarding security issues, multiple tools and techniques can be used to perform attack

and threat modeling. Threat modeling consists of identifying threats that can be found in

a system. However, attack modeling consists of distinguishing steps that must be accom

plished to succeed in an attack. These two procedures are not independent since the at

tacker cannot performan attack if the underlying threat does not exist in the system. Thus,

the proposed solution only considers the identification of threats that commonly reside

in a system, reducing the success chances of the attacker. Specifically, only the OWASP

and CWE databases were considered and only weaknesses were displayed (vulnerabilities

were mapped to weaknesses). Finally, regarding similar tools, the main contribution of

the proposed solution is to present weaknesses considering hardware components.

22

Chapter 3

System Proposal

3.1 Introduction

The design phase is an essential step to ensure the proper development of a proposed

solution. Though the main idea behind what had to be done in this scope was approxi

mately delineated from the start, it was necessary to make it consistent and approached

in the proper manner in terms of software development. Therefore, section 3.2 describes

functional and nonfunctional requirements, section 3.3 exhibits the system integration

into Security Advising Modules (SAM), and section 3.4 details the threat selection and

question identification.

3.2 Scope and Requirements Analysis

The main objective of the solution proposed under the scope of this dissertation is to pro

vide information about typical threats found on the system the developer specifies. The

system under development is described by answering a series of questions across multi

ple modules and plugins in a security framework called SAM, developed under the scope

of the S E C U R I o T E S I G N project. Since it was to be incorporated into SAM, the sys

tem is a module of this framework (sometimes,module is also used to refer to this system

hereinafter).

Regarding functional requirements, the proposed solution must obtain the answers given

to previously available modules, namely the modules named Security Requirements Elic

itation (SRE) and Security Best Pratice Guidelines (SBPG) [SSS+20, SLA+20]. Addition

ally, if needed, this solution might have supplementary questions in order to more ade

quately infer underlying threats. The proposed solution needs to output recommenda

tions to the developer, which are either vulnerabilities or weaknesses that the system

might contain based on the given description. Moreover, the information outputted from

this solution must contain a unique identifier, allowing the developer to search for details

about the vulnerability or weakness. Furthermore, it also should provide a brief descrip

tion about the recommendation, enabling the developer to perceive the relation between

the vulnerability or weakness and the system characteristics. Finally, this solution should

prioritize vulnerabilities or weaknesses, allowing the developer to understand which of

these should be tackled first.

Regardingnonfunctional requirements, the proposedmodulewas developedusingPython.

Furthermore, the API provided by the SAM framework, built to ease the implementation

23

and deployment of modules, was widely adopted and extended. Additionally, it is ex

pected that the solution provides the results to the developer in realtime, meaning that

recommendations are givenwithin a reasonable timeframe (within seconds, notminutes).

Finally, this solution should follow a modular approach and remain functional even if

modules are added or updated.

3.3 System Design

The proposed solution was included in a wider security framework composed of several

modules or tools. Therefore, to thoroughly understand our solution, this framework and

already existent modules are described. According to this framework, amodule is defined

as a component related to a specific security topic that presents questions to the user and

provides recommendations. Additionally, a plugin is similar to a module but does not

provide questions to the user.

The existent modules cover various topics that allow the developer to understand which

security properties should be applied in their IoT and Cloud devices, which best prac

tices should be followed in these devices, and which lightweight cryptographic algorithms

can be used in systems with constrained resources and power. At the time of writing of

this dissertation, two other components were under development, whose purpose was to

complement the previously presented ones, displaying to the developer a set of threats

that might exist in their system and how they can test for its presence.

Security Requirements

Elicitation

Security Best Pratice

Guidelines

Threat Modeling Solution

Assessment of the Correct

Integration of Security

Mechanisms

Lightweight Cryptographic

Algorithm

Recommendation

Cloud Security

Requirements Elicitation

Cloud Security Best Pratice

Guidelines

Figure 3.1: Overview of finished and under development modules at the time of writing of this dissertation.
The blue rectangle represents the SAM platform,white rectangles represent the concluded modules, the
orange rectangle denotes the proposed module, and the red rectangle depicts a module being developed

concurrently.

Figure 3.1 shows an overview of the security framework components and their connec

tions. Analyzing this figure, it is possible to observe that the LightWeight Cryptographic

Algorithm Recommendation (LWCAR) receives the security properties outputted from

the SRE module. Additionally, the proposed module, called Threat Modeling Solution,

receives the answers to the questions used in the SRE and SBPG [SSS+20, SLA+20]mod

ules. Finally, the threats outputted from our module are an input for the Assessment of

24

the Correct Integration of Security Mechanisms (ACISM), which outputs system tests to

check for the presence of threats.

To carefully understand how these modules interact with the framework and the user, the

data flow is displayed in figure 3.2. The entry point is the framework frontend, withwhich

the user interacts and selects the security topic. After the user finishes the questionnaire

of a module, the frontend communicates with the backend to get the recommendations

from the selected security topic. Then, the backend gathers the available recommenda

tions and answers from the database and transfers this data to the respective module.

Based on the given answers, the module selects the strictly necessary recommendations

and sends them to the backend. Finally, the backend stores this data in the database

and transmits it to the frontend, displaying it to the user.

Threat

Modeling

Solution

Database

Back-end

Front-end

Figure 3.2: Framework frontend, backend, and proposed module data flow diagram. The orange
rectangle represents the proposed module.

3.4 Threat and Question Selection

As the primary purpose of the developedmodule is to provide a set of threats based on an

swers given by the user, themodeling process is divided into threat selection and question

selection.

3.4.1 Vulnerability and Weakness Selection

As presented in chapter 2, there aremultiple databases available fromwhich the intended

threats can be selected. However, the balance between the number of threats to display to

the user and their spread throughout multiple categories was considered in the proposed

solution. Furthermore, vulnerabilities listed on NVD, CVE, and VulDB are specific to the

software, vendor, and version. Data that might not be completely available during the

design phase of an IoT system. Besides this, there was the need to find threats regarding

the hardware components due to the presence of hardware modules in IoT environment.

The two finite lists that do not increase daily and are not specific to the software are

OWASPVulnerabilities andCWEWeaknesses. Furthermore, CWEpresents a set of weak

nesses that are specific to hardware. Therefore, opting to advise the enduser on what

weaknesses he/she can find in his/her IoT system.

25

First, the top 25 weaknesses found in software are presented to the user. Then, vulnera

bilities from OWASP were mapped to the top 25 weaknesses. This process was done by

searching for the OWASP vulnerability name or description and finding amatching weak

ness in the CWE catalog. With this, the 38 remaining vulnerabilities from the OWASP list

were submitted to the same searching process and clustered if they had the same par

ent. Finally, hardware weaknesses were added from CWE Hardware View, selecting only

weaknesses for System on a Chip platforms and withDoS: Amplification, DoS: Resource

Consumption (Other), and Gain Privileges or Assume Identity, common attacks in IoT

systems.

Finally, to help to identify which weaknesses to prioritize when enumerating the list of

weaknesses in an IoT system, the available CWSS score for the entries in CWE was used.

However, only the top 25 weaknesses contain an associated score. Therefore, the remain

ing weaknesses were classified using a methodology [Cor20] presented by The MITRE

Corporation to tackle this issue.

Since the aforementioned method is dependant on CVE information related to the weak

ness, only the weaknesses with associated CVE identifiers could be classified. Initially,

it is essential to gather information about the number of CVE identifiers associated with

the weaknesses. Therefore, information about the maximum and the minimum number

of CVE identifiers associated with one weakness was gathered. Additionally, the number

of CVE identifier for each weakness was calculated and the following formula (defined

in [Cor20]) was used to calculate the corresponding frequency:

Fr(ID) = (count(cve ∈ ID)−min(Freq))÷ (max(Freq)−min(Freq)), (3.1)

where ID is the CWE identifier for a specific weakness, cve are the CVE identifiers, and

Freq is the set containing the number of CVE associated with each weakness.

It is also crucial to calculate the severity of a specificweakness, which is doneby calculating

the severity score for each weakness in our set. Therefore, the following formula (defined

in [Cor20]) was applied to calculate the corresponding severity:

Sv(ID) = (average_ID −min(cvss))÷ (max(cvss)−min(cvss)), (3.2)

where ID is the CWE identifier for a specific weakness, average_ID is the CVSS score

average for all the CVE identifiers related to this weakness, and cvss is the set of CVSS

scores linked to this weakness.

The final score for each weakness is obtained by multiplying the frequency score (Fr) by

the severity score (Sv). Finally, to ease the interpretation of these scores, this final score

is multiplied by 100, allowing each CWSS score to have a value between 0 and 100. Weak

nesses that do not have associated CVE identifiers were ordered by their CWE identifier.

26

3.4.2 Question Selection and Formulation

As the proposedmodule works with an existing security framework, it is essential to reuse

questions already asked in other components of this framework. Specifically, and con

sidering previously described functional requirements, the selected questions were those

available on the SRE and SBPG modules [SSS+20, SLA+20].

From the SRE module, the answers to the following questions were used:

• Q1 “What is the domain type for your IoT system?”;

• Q2 “Will the system have a user?”;

• Q3 “Will the system have user login?”;

• Q4 “Will this information be sent to an entity?”;

• Q5 “Will it store data in a database?”;

• Q6 “Will the system receive regular updates?”;

• Q7 “Will the system work with thirdparty software?”;

• Q8 “Is there a possibility of the communications being eavesdropped?”;

• Q9 “Can someone try to impersonate a user to gain access to private information?”;

• Q10 “Can someone with bad intentions gain physical access to the location where

this software will be running and obtain private information?”;

• Q11 “Can someone gain physical access to the machine where the system oper

ates or some of the system components and perform some modification to its hard

ware?”.

Figure 3.3 displays an overview of the relation between the answers given to the previously

described questions and the CWE weakness identifier.

Besides the first question, that lets the user pick between seven possibilities of IoT do

mains, the remaining previous questions only have two possible answers: Yes or No. The
first question (Q1) allows the identification of the weakness that refers to uncontrolled

resource usage, based on the battery usage of the IoT devices on the considered domain.

The questions that are related to the existence of a user (Q2) and login (Q3) are relevant

towarn the developer about the possibility of poorlymanaging password storage, the need

for a proper authentication mechanism, and the plausibility of using the same credential

across multiple devices.

Regarding data exchanged between the system and an external entity (Q4), the user is ad

vised about insecure identifiermechanisms, unexpected behavior from the external entity,

and the possibility of the attackers using this channel to transmit encoded information.

Additionally, when storing data permanently in a database (Q5), it is essential to ensure

27

1294

Yes

200 327

Yes

287 522 798

Yes

1273

Yes

758 515

Yes

269 758 1294

Yes

1277

Yes

441

Yes

1255

Yes

1278 1319 12471263 12531334

400

Smart Healthcare

400

Smart Wearables

400

Smart Toy

862

Yes

200 306

Q1 Q2

Q3 Q4 Q5

Q6 Q7 Q8 Q9

Q10 Q11

Figure 3.3: Summary of the correlation between the questions gathered from the SRE module and
weaknesses. Blue rectangles represent the questions, orange rectangles depict the answer given to that

question, and the white rectangles denote the CWE identifier.

that only authorized users have access to it and that each user has the strictly necessary

permissions (e.g., if the user is reading from the database, it should only have reading

permissions).

If the system does not receive regular updates (Q6), it is critical to guarantee that the

developers can update or patch the system to avoid future exploitation in case of a vulner

ability exposure. In addition, whenworking with thirdparty software (Q7), the developer

must ensure that its behavior is known, does not give more than necessary permissions,

and has identifiers for the entity transactions.

If there is any chance that the communications might be eavesdropped on (Q8), the de

veloper should be informed to not use broken or risky cryptographic algorithms and that

he/she should be aware of the exposure of sensitive information to an unauthorized ac

tor. Furthermore, one of the main issues already encountered in IoT is the easiness of

user impersonation (Q9). Therefore, suggesting that the developers must implement a

mechanism that uniquely identifies the device to which the request was sent.

Finally, when the attacker might gain physical access to the system (Q10), he/she can

monitor a set of properties, such as power consumption and heat production, to identify

which actions are being performed by this system. This set of actionsmight include attack

known as SideChannel Attacks. Furthermore, if the attacker can perform modifications

to the hardware (Q11), the developers should be aware of multiple security procedures

that can be applied to prevent the attacker from gathering or altering data.

As previously referred, questions fromanother existentmodule (referred to as SBPG)were

also used. From all the available questions, the following were selected:

• Q1 “What is the type of data storage?”;

28

• Q2 “Which will be the programming languages used in the implementation of the

system?”;

• Q3 “Will the system allow user input forms?”;

• Q4 “Will the system allow file uploading?”;

• Q5 “Will the system store or communicate logs?”.

Figure 3.4 displays an overview of the relation between the answers given to the previously

described questions and the CWE weakness identifier.

89

SQL

269

Java

476 502 240

Python

502

Perl

625

PHP

502 625 98

JavaScript/Ruby

502

C#

476 248

79

Yes

20 352 78 2294 74

Yes

No

434

778

C/C++

787 115 119 416 476 469 170 248 479

Q1

Q4

Q5

Q2

Q3

Figure 3.4: Summary of the correlation between the questions gathered from the SBPG module and
weaknesses. Blue rectangles represent the questions, orange rectangles depict the answer given to that

question, and the white rectangles denote the CWE identifier.

Structured Query Language (SQL), No SQL, Local Storage, and Distributed Storage are

the possible answers to the first question. Meanwhile, the user may select C/C++, Java,

Python, Hypertext Preprocessor (PHP), Perl, JavaScript/Ruby, and C♯ for the program

ming languages. Like the previously presentedmodule, the remaining questions only have

the Yes or No options.

When the user selects SQL for the type of data storage used (Q1), it must be advised about

the plausibility of the attacker performing SQL injections in the queries and the incorrect

assignment of user permissions. C/C++ languages are more versatile, containing a signif

icant amount of weaknesses due to mishandling of memory, read and write procedures,

and mathematical operations. The NULL Pointer Dereference and Uncaught Exception

are weaknesses that affect both Java and C♯. Deserialization of Untrusted Data is a weak

ness found amongmultiple languages, without reference to its existence in C/C++, C♯, and

Perl languages. Additionally, it is essential to consider restricting userinputted informa

tion using a regular expression on PHP and Perl. The previously mentioned weaknesses

were explicitly related to a language because CWE supplies information about it (Q2).

Allowing the user to input data (Q3) into the application is the source for multiple weak

nesses to emerge and should only be applied when strictly necessary. For example, im

proper neutralization, validation, and limitation are weaknesses that arise from imple

menting this functionality in the system. Furthermore, it is crucial to define the pos

29

sible file extensions to upload into the system when allowing the file upload possibil

ity (Q4). Finally, if the developers do not implement the registration of operations made

by users (Q5), they are advised to do it following guidelines.

Along the work, it was concluded that the previously presented questions did not cover

the whole scope of the weaknesses considered as most relevant. Therefore, additional

questions were included to help identify other typical bugs that can be found in software

and hardware components.

Initially, some hardware flaws were grouped based on the language used due to the ex

istence of an associated HDL. Moreover, the two distinguished languages commonly ap

peared in all these weaknesses. Therefore, they were grouped in one larger category that

asks the developer the following question: “Will the system use a Hardware Description

Language?” (Q1).

Then, the weaknesses that are considered languageindependent were grouped based on

common keywords. Following this procedure, it was possible to identify which questions

should be asked the user. However, some of the keywords were not related to the design

phase of the system, which is assumed when using this platform. Therefore, a subsection

of questions related to the postdesign phases was created to tackle this issue, and the

user can choose if he/she wants to see them. This iterative procedure to devise questions

is important for this work, posing as a secondary contribution.

Concerning the design phase, the following keywords were identified: 1) cryptographic

algorithms; 2) privilege escalation; 3) Extensible Markup Language (XML); 4) standard

ized error handling; 5) documentation; 6) external hardware units; and 7) external events.

These keywords were reformulated as questions, namely to the following ones:

• Q2 “Will there be any cryptographic algorithms?”;

• Q3 “Will the system have functionalities that need privilege escalation?”;

• Q4 “Will the system use XML to store or transport data?”;

• Q5 “Will the platform have a standardized error handling mechanism?”;

• Q6 “Are all functionalities correctly documented?”;

• Q7 “Does the system depend on additional hardware units?”;

• Q8 “Is the system properly isolated/prepared to handle external events?”;

• Q9 “Will the system be outsourced to Outsourced Semiconductor Assembly and

Test (OSAT) entities?”.

Figure 3.5 displays an overview of the relation between the answers given to the previously

described questions and the CWE weakness identifier.

For the cryptographic algorithms (Q2), the most common mistakes are the usage of bro

ken and risky algorithms and insufficiently randomvalueswhen the algorithmdepends on

30

330

Yes

327

Q2

269
Yes

732

Q3

306 862 1268
Yes

611

Q4

No

544

Q5

1224

Yes

1221

Q1

1298 1251 1311 1279 1296 1297 1280

No

1242

Q6
Yes

1279

Q7

1338

No

1331

Q8

1261

Yes

1297

Q9

Figure 3.5: Summary of the correlation between the questions for the design phase and weaknesses. Blue
rectangles represent the questions, orange rectangles depict the answer given to that question, and the

white rectangles denote the CWE identifier.

the unpredictability of these values. Furthermore, as it is known, functionalities requiring

privilege escalation (Q3) present an easy way for attackers to gain higher privileges, so it

is crucial to secure these functionalities. Therefore, incorrect permission assignment, lack

of authentication, and inconsistent permissions are some of the weaknesses found while

implementing privilege escalation.

The usage of XML to store or transport data (Q4) represents an entry point for the at

tackers since it is possible to misuse the XML reading functionality to access unintended

places of the system. Additionally, it is essential to have a standardized error handling

mechanism (Q5) so that unexpected behavior does not unveil any information about the

system to the attacker.

Documenting all the available functionalities (Q6) is important to help system testing and

maintenance in assuring its security. Usually, undocumented functionalities end up being

an entry point for the attacker because they were not documented and, consequently, not

tested. In addition, if the system depends on external hardware units (Q7), it is necessary

to ensure that these units are not overheating and interact accurately with the system.

If the system is not adequately isolated (Q8), two significant weaknesses arise 1) infor

mation leakage from the communication between the hardware components; and 2) it is

possible to introduce errors in the circuit. Finally, if the system is going to be outsourced to

OSAT entities (Q9), sensitive information theft is possible, and the company must apply

the required security mechanisms before outsourcing their products.

Concerning the postdesign phases, the user is questioned about the testing specifications

of the system, code refactoring and maintenance, compliance with thirdparty software

stipulations, protection of sensitive code, and debug functionalities. Therefore, the fol

lowing questions originated:

• Q1 “Will the system be tested to evaluate the program behavior?”;

31

• Q2 “Will the code be actively reviewed and refactored?”;

• Q3 “Is assumedimmutable data stored in writeonce memory?”;

• Q4 “Does the code follow the specifications provided by the thirdparty software

to be used?”;

• Q5 “Is there anyprotectionmechanismassigned to sensitive code (e.g., boot code)?”;

• Q6 “Will unnecessary debug functionalities be removed fromproductiondevices?”.

Figure 3.6 displays an overview of the relation between the answers given to the previously

described questions and the CWE weakness identifier.

Q1

190

No

705 668 913 840 1109 252 1069 404 1280 1271 1281 1245 1276

No

477

Q2

330

Yes

327

Q3
No

573

Q4
Yes

1267

Q5
No

1274 1310 1326 1220 1299 1209 1262

No

1244

Q6

1291 1295 1296 1313

Figure 3.6: Summary of the correlation between the questions for postdesign phases and weaknesses. Blue
rectangles represent the questions, orange rectangles depict the answer given to that question, and the

white rectangles denote the CWE identifier.

If the developed system is not tested to evaluate if it behaves as expected (Q1), various

weaknesses may serve as the entry point for the attacker. Some common flaws such as

unchecked return values, usage of the same variables for different purposes, improper

resource shutdown were identified. Thus, testing is a critical phase before the system is

released to production and allows developers to fix unexpected behavior.

Code review and refactor (Q2) are necessary to assure that no obsolete code is found on

the production phase, serving as an entry point for the attacker. Additionally, if any piece

of code is assumed to be immutable (Q3), it should be written in writeonce memory so

that attackers can not erase this information. Furthermore, to avoid any attack coming

from an external party (Q4), the developers should rigorously obey the documentation

provided by the thirdparty software.

Sensitive code (Q5) such as certificates, boot, and security settings should have an addi

tional security mechanism associated, reducing the risk correlated with the attacker ob

taining sensitive information about the system. Finally, to ease the maintenance of the

code during production, developersmight leave debug functionalities (Q6) on the devices,

representing an entry point for the attackers to exploit amongmultiple systems fabricated

by the same enterprise.

32

3.5 Conclusion

With the identification of functional and nonfunctional requirements and the compre

hension of the interaction between SAM and the proposed module, the module imple

mentation and integration can be performed. Additionally, the displayed set of questions

andweaknesses and their association provide the suitable logic behind the proposedmod

ule reasoning. The identified threats resulted in the establishment of 15 questions to be

asked in this module and the selection of 16 questions asked in other modules. These are

the foundations that support the development of the proposed module.

33

34

Chapter 4

Module and Framework Implementations

4.1 Introduction

One objective of the proposed module was its integration into an existing security frame

work. Following this approach, the implementation details were divided into two sec

tions: module incorporation and platform enhancement. Therefore, the first section (sec

tion 4.2) details the functions and procedures adopted to integrate the proposed model

into the SAM environment – An API provided by SAM was employed to ease the imple

mentation and deployment of models and plugins. Finally, a set of improvements done in

the backend and frontend of the security platform is displayed in section 4.3.

4.2 Module Incorporation

When creating a new module in SAM, it is required to upload a Python file that contains

the logic of that module, comprising the mapping between the answers and the recom

mendations. Additionally, the existing platformwas designed to havemodularity inmind,

facilitating the integration of new modules. Therefore, it provides a sample code that can

be used as a guide for developing our code. This example contains one function, called run,
which receives the questions and answers given in one session and the recommendations

stored in the database with the respective description and unique identifier. Moreover,

functions and global variables can be implemented as long as the run function is consid

ered the entry point of the file. Finally, the file associated with a module is called after a

session for that module has finished.

Since the data exchanging between SAM and the modules is done using a JavaScript Ob

ject Notation (JSON) file, additional functions are required to be implemented as per

API, namely get_answer_content, get_recommendation_id, and get_module_answers,
which can be used in future modules. The headers for these functions can be seen in code

snippet 4.1.

The first one is responsible for retrieving a list containing the text of the answers, given the

question identifier and the current session information. The following function returns

the recommendation database identifier, given the recommendations JSON and the rec

ommendation text. Finally, the last function is essential to obtain the answers given in a

previous session for the dependencies of our module. This function receives the database

identifier for the dependency module and the dictionary containing the data for the cur

rent session, returning the set of answers given to that module.

35

Listing 4.1 Headers of the functions that can be used throughout different modules to
ease modification and maintenance.
...
def get_answer_content(questions, question_id):
...
def get_recommendation_id(recommendations, recommendation_name):
...
def get_module_answers(module_id, session):
...

Finally, considering that SAM stores the recommendations in the databasewith identifier,

name, and description, a dictionary that contained as key the CWE identifier and as value

the recommendation name was implemented. Therefore, allowing the obtainment of the

recommendation name needed to use in the get_recommendation_id function while only
providing the CWE identifier. Three additional functions were implemented, namely

add_recommendation, order_by_top_25, and retrieve_vulnerabilities, whose head
ers are displayed in code snippet 4.2.

Listing 4.2Headers of the functions specifically designed to assist in the proposedmod
ule maintenance.
...
def add_recommendation(recm_list, recm_abbv, recommendations):
...
def order_by_top_25(recm_list):
...
def retrieve_vulnerabilities(SRE_answers, SBP_answers, TMS_answers, recommendations):
...

The first function adds a recommendation identifier to a list of recommendation iden

tifiers, defined in the database. This function receives the previously mentioned list, the

recommendation CWE identifier, and the recommendations JSONprovided by SAM. The

order_by_top_25 function is responsible for prioritizing the weaknesses presented to the
user, using the formulas discussed in subsection 3.4.1. Finally, the last function imple

ments the logic described through subsection 3.4.2, returning an ordered list of recom

mendation identifiers to be sent back to SAM.

Listing 4.3 Example of the mapping between the CWE identifiers and the question “Will
there be any cryptographic algorithms?”.

...
if crypto_algo.lower() == "yes":

add_recommendation(recms, 'CWE-330', recommendations)
add_recommendation(recms, 'CWE-327', recommendations)

...

Code snippet 4.3 displays the process of mapping weaknesses to the question “Will there

be any cryptographic algorithms?”, which is also done with condition statements for the

remaining questions. After implementing the logic file, it can be uploaded through the

administration interface, and the proposed module is ready to be handled by endusers

using the SAM frontend. Figure 4.1 displays a brief demonstration of the platform work

flow when interacting with the proposed module. Initially, the enduser selects which

security topic to discuss regarding an IoT system. Then, it answers the questions pre

36

sented by the selected module. Finally, it receives the recommendations for that security

topic.

Front-end Back-end

Figure 4.1: Demonstration of the SAM platform workflow when selecting a module, answering questions,
and viewing the outputs and their correlation with the backend.

4.3 Framework Enhancement

SAM is a Web application that allows developers to obtain recommendations about their

underdevelopment systems (thought it can also be used for suggesting improvements to

already deployed systems). It is divided into frontend and backend, implemented in

React and Python, respectively. Since the proposed module is included in this framework

(currently in alpha version), some contributions to the underlying logic were also per

formed, implementing new functionalities and improving already developed ones. The

following sections describe these contributions.

4.3.1 Backend Improvements Overview

The adaptation of previously developed modules (as shown in figure 3.1), namely SRE,

SBPG, LWCAR, and Cloud Security Requirements Elicitation (CSRE), to work under the

framework specifications were part of the work performed in the scope of this project.

First, the implementation of the logic file for each of the previous modules and the ad

dition of the questions, answers, and recommendations to the database was performed.

Furthermore, it was discovered that the SBPG module needed support for multiple an

swers in the same multiplechoice question, leading to changes in the way SAM was pro

37

cessing questions. Finally, a bug was found on the file saving function where the file was

not being saved with the correct file name, which was solved by adding a standardized

naming scheme.

While developing the proposed module, the possibility of components that do not have

any questions associated and acquire information based on answers from other modules

emerged. At that time, SAM did not allow the creation of modules that did not have any

questions, so this functionality was introduced on the platform. To implement this new

feature, adding a service that returns if the module corresponding to the given database

identifier is a pluginwas the first step. Then, the validation procedures had to be changed

to support the creation of modules without questions, yet demanding dependencies.

Also, when trying to integrate the proposedmodule into SAM, an issuewith the deletion of

logic files was discovered, as they were not being deleted. This issue required changes to

the backend, where a function containing the file deletion process was added. This func

tion has validation steps for the HyperText Transfer Protocol (HTTP) request type, the

user authenticity, and the file existence. Moreover, the recommendations were not dis

played in the order reflected by the database. This issuewas related to one of the views that

were created, which had no order criteria, thus being ordered by the Database Manage

ment System (DBMS). It was solved by adding the recommendation database identifier

as an order criterion to the view.

With the increase of sessions done by a unique user, it was observed that there was a time

increase for creating a new session for the same user. This issue was happening due to two

verification mechanisms: 1) check if all previous sessions for this module were closed; 2)

check for sessions corresponding to the dependency modules. The first process verified

for each existing session if it was closed, which was far from optimum. However, if each

session ensures that the previous session is closed, it guarantees that all the sessions will

be closed recursively, whichwas the optimization done for the first validationmechanism.

The latter process was retrieving all session data from the database for a module and user

to count the number of sessions. However, since SQL has a function that counts the num

ber of rows in the query, it was possible to optimize this validation mechanism. Thus, a

function that returned the number of sessions found for a module and a user was imple

mented. These optimizations provided the capability to handle a significant amount of

sessions without experiencing idling time.

Additionally, a bug that was found in both database and backend implementation was

related to two modules having the same short and display name (which is the name that

is shown to the users). The application must not present two different modules with the

same name to the user, so this was considered a bug that needed to be fixed before the

application went into the production phase. This issue was solved by adding the UNIQUE
constraint in the columns referring to these names and implementing validation checks

when adding or editing a module.

Finally, to store the user recommendations and the corresponding guides for a session, we

implemented its storage in a .zip archive using the shutil library. This new function

38

ality required using a specific library called PyFPDF, allowing the generation of Portable

Document Format (PDF) documents in Python. Furthermore, the .zip was designed to

be downloaded immediately after finishing the module/plugin questionnaire. Therefore,

this functionality is divided into two main steps: 1) PDF production after the recommen

dation registration in the database and 2) archive creation after the PDF has been gener

ated.

4.3.2 Frontend Improvements Overview

Like the backend, the frontend was also enhanced to provide a better user experience.

Several qualityoflife features were also implemented. The list of enhancements is as

follows:

• Added the capability of the page to reload when a warning is closed;

• Enable the addition and edition of modules without questions, previously denom

inated as plugins, and creation of a column to specifically identify if a module is a

plugin or not;

• When creating the module question tree, the hint text presented on the value prop
erty of the input was replaced to its placeholder property;

• Attached the automatical closure of the formwhen adding and editing amodule and

introduced a loading animation to this process;

• Added Save buttons throughout multiple forms to increase the user perceptiveness

of having saved the previous modifications;

• Limited the upload file type for both module logic and question tree so that the user

gets a hint about which type he should upload;

• When using the module question tree for readonly and link operations, it is no

longer possible to alter the question and answer content;

• Graphical restriction of the amount of identifiers that the same dependency or rec

ommendation can have while adding or editing a module;

• The possibility to return to the home page, when clicking the platform icon, pre

sented in the top left corner;

• Added a custom error message when the user inserts an already existing short or

display name;

• Added automatic download of the .zip archive when displaying the recommen

dations, after concluding module/plugin questionnaire and when viewing previous

session recommendations.

39

4.4 Conclusions

While implementing the proposedmodule, themain challengeswere the adaptation to the

logic of the security framework and the ordered presentation of the weaknesses. How

ever, after developing and correctly integrating the proposed module into the security

framework, this module is ready to be automatically tested concerning its functionality.

Therefore, it should be validated by security specialists and provided to endusers, giving

feedback regarding the utility and simplicity of the platform.

40

Chapter 5

Documentation, Demonstration, and
Evaluation

5.1 Introduction

To evaluate the proposed module, it was necessary to think of and specify a method or

methods that could apply to this particular work. This chapter starts with the description

of those methods in section 5.2, to then describe a user guide and possible application

scenarios in section 5.3. These scenarios were part of the selected means to evaluate the

tool. At the end, the overall feedback from endusers and security specialists is presented

in section 5.4.

5.2 Methodology

The testingmethodology is divided into three distinct phases: 1) test the proposedmodule

behavior, 2) have the module validated by security specialists, and 3) retrieve enduser

feedback (not necessarily specialists) from the adequacy and clarity of themodule output.

First, to ensure that the module behaves as expected, automatic tests that this module

should pass were developed. Selenium [Sof21], a framework to test Web applications,

was used to perform these tests. Based on the selected questions and Selenium inputted

answers, a set of expected weaknesses the module should provide to the user was created

and configured in the framework.

As presented in subsection 3.4.2, the data is acquired from questions that come from al

ready existing modules or from specifically created ones. Thus, behavior testing was fur

ther divided into three different acts:

1. Test if the expected weaknesses were produced for the specific answers withdrawn

from the SRE, based on the mapping shown in figure 3.3;

2. Perform the same type of test for the SBPG module, based on the arrangement pre

sented in figure 3.4;

3. Test each possible answer for the questions proposed for the developed module,

based on the mapping shown in figures 3.5 and 3.6.

This testing process ensures that the proposedmodule is correctly outputting the intended

weaknesses to the developer.

41

The developed module was then shown to security specialists who gave their feedback

about the presented weaknesses adequacy and efficiency. This validation process was

done by directly interacting with the security specialists, which provided relevant sug

gestions and comments regarding the developed module. Additionally, the security spe

cialists completed a questionnaire provided to endusers, giving their feedback about the

module.

The last phase started with the planning of a set of IoT scenarios for the endusers, whose

main purpose was to simplify their interaction with the proposed module and guide them

in the testing task. Additionally, a user guide that contains explanations about the ques

tions presented and how they could use the security platform to view outputted recom

mendations was provided. Furthermore, a survey to retrieve enduser feedback was de

signed, which acquires data regarding the simplicity, adequacy, and efficiency of theweak

nesses, enduser knowledge, and previous experience with a similar tool, resulting in six

questions. Finally, the proposed module was ready to be tested by endusers, which was

the final phase of the testing plan. At this stage, the proposed module was provided to

endusers using the hosting security platform SAM (accessible anywhere from the Inter

net).

5.3 User Guide and IoT Scenarios

To ease the enduser testing phase, a user guide that describes potential interactions and

provides a brief description of the questions in the module was designed during this part

of the project. This user guide is presented in subsection 5.3.1. Additionally, a brief de

scription and a highlevel scheme for seven IoT scenarios, also provided to the user, is

shown in subsection 5.3.2.

5.3.1 User Guide

The user guide is divided into twomajor components: (i) the explanation about questions

(which provides a brief description of each question) and (ii), platform interaction (which

explains how the user can interact with the platform to retrieve the recommendations

from the proposed module). Notice that the text below is a wellformatted transcription

(delimited with lines) of the user guide developed in the scope of this work.

Question Explanation

The question “Will the system use a Hardware Description Language?” indicates if the

system functionalities will be implemented using Hardware Description Language. De

spite the existence of multiple Hardware Description Languages, they have similar flaws.

Thus, if the system uses at least oneHardware Description Language, the accurate answer

is Yes.

42

The question “Will there be any cryptographic algorithms?” refers to the usage of al

gorithms that provide data encryption, authentication, integrity, and digital signatures.

These algorithms are commonly applied in the communication between two devices, par

ticularly if it is over the Internet, in access control to the device, especially in user regis

tration and login, and in granting data cohesion among two devices or within one device,

specifically to ensure the data is not altered intentionally.

The question “Will the system have functionalities that need privilege escalation?” con

cerns the possibility of needing root/administrator privileges to perform a specific action

in the system. For example, when considering an insulin pump, the insulin injection func

tionality needs extra privileges since it interacts with the person healthcare.

The question “Will the system use XML to store or transport data?” regards the usage

of XML in any system operation. This file format is usually adopted to store information,

just like a database, since it has tags that outline its stored data. Additionally, it can also

be used in data exchange between two devices for the reasons previously presented.

The question “Will the platform have a standardized error handlingmechanism?” refers

to using a customized error mechanism for multiple errors that might appear in the sys

tem. One typical example is using the samemechanism for differentHTTP response codes

in a Web application, essentially without disclosing any information about the system.

The question “Are all functionalities correctly documented?” indicates that all the system

functionalities must be fully and rigidly documented. The developers must not leave any

functionality incorrectly documentedbecause thismay lead to inadequate interactionwith

other devices. This deficiency might reveal flaws in the interoperability with thirdparty

devices.

The question “Does the system depend on additional hardware units?” refers to the pos

sibility of the system having additional hardware units attached to its motherboard. Usu

ally, additional hardware units, called daughterboards, are developed and attached to the

motherboard to support hardware upgrades. For example, it is frequent to use an addi

tional hardware unit that performs cryptographic operations.

The question “Is the system properly isolated/prepared to handle external events?” re

gards the possibility of random external events modifying system or communication data

and interfere with the system operability. Additionally, the attacker intentionally caused

some external effects, so the capability of the system to handle these situations is required.

The question “Will the system be outsourced to OSAT entities?” considers the possibility

of outsourcing the assembly and testing of the system to an external entity. After the

design phase, information about the system schemes, functional and other requirements,

technologies applied are sent to an external entity responsible for assembling the final

product.

The question “Will the system be tested to evaluate the program behavior?” intends to

evaluate if the system will be properly tested. This question demands that the user is

sincere. If at least one of the implemented functionalities is not correctly examined, it

43

might cause the whole system to fail.

The question “Will the code be actively reviewed and refactored?” refers to revising and

refactoring the code after the preliminary versions of the system or throughout all ver

sions. Additionally, it considers if the code will be reviewed and refactored, accordingly,

before and during the production phase. It is crucial to ensure that the code has no flaws

and remains in that state throughout the production stage.

The question “Is assumedimmutable data stored in writeonce memory?” concerns the

storage of data that remains constant throughout the whole device life into memory that

can only be modified once. For example, data regarding the cryptographic keys of the

system should not be changed throughout the device lifetime.

The question “Does the code follow the specifications provided by the thirdparty soft

ware to be used?” considers the possibility of not rigorously following the specifications

for thirdparty software. Assuming that two different software use equivalent specifica

tions because the same company develops them is a possible mistake.

The question “Is there any protection mechanism assigned to sensitive code (e.g., boot

code)?” concerns the usage of defensive mechanisms that protect sensitive data found on

the system – for example, using cryptographic algorithms to assure confidentiality of the

system boot code or trusted entities.

The question “Will unnecessary debug functionalities be removed from production de

vices?” intends to ensure that the developers have removed all the unnecessary debug

functionalities, such as providing information about the system operations, using a de

fault password for different devices, leaving passwords storage in plaintext. This question

requires that the user is as sincere as possible.

Platform Interaction

This platform contains user registration, meaning that each user can get their separate

recommendations without conflicting with other possible users. Thus, the user must reg

ister using a valid email to start interacting with the platform. Then, it must authenticate

itself with the system using the registered email and password.

At this point, the user is presented with a set of security topics the platform is ready to

inform. All modules, except ACISM, display to the user a set of questions he must answer

before getting the intended recommendations. Additionally, the user can view previous

sessions and respective recommendations, change its account information, and sign out

through the upper bar.

Recommendations from the developedmodule are provided after answering the questions

under the “Let’s talk about Threat Modeling” option. However, the user must previously

answer the questions asked on the “Let’s talk about Security Requirements” and “Let’s

talk about Security Best Practices” to have access to the developed module. This require

ment results from the developedmodule acquiring data from the answers given to the two

44

previously presented topics.

After finishing the proposed module questionnaire, weaknesses with the respective CWE

identifier and description are shown. Additionally, each weakness references the source

of the information that shows additional information about it, such as relatedweaknesses,

system impact, and the extendeddescription. This information can be downloaded in PDF

format and is also registered in the previous user sessions section.

5.3.2 IoT Scenarios

It is essential to provide endusers with IoT scenarios to help them explore the platform

and the proposed module. These scenarios, in combination with the developed question

naire, are intended to help users evaluate the platform. Based on a security expert view,

the IoT cases were divided into seven main categories:

• Smart Transportation and Logistic;

• Smart Grid;

• Smart Environment;

• Smart Healthcare;

• Smart Agriculture and Environmental Monitoring;

• Smart Wearable;

• Smart Manufacturing.

Smart Transportation and Logistics comprise all the IoT scenarios whose primary pur

pose is to provide a better traffic flow and ondemand supplies. This process is done by

placing multiple sensors at strategic places, namely at crossroads, traffic lights, and using

identifier tags on the products being delivered to the consumer [ZKKK19, JFK+19]. The

incorporation of sensors and communication networks into the electric system is called

Smart Grid. The main objective is to provide a more flexible and responsive electric sys

tem, reducing costs and improving efficiency [Eh14].

Smart Environment is a category that encompasses intelligent components which repre

sent smaller environments, such as Smart Cities and Smart Cars. These environments can

supervise themselves automatically by scheduling preventive maintenance and monitor

ing security aspects while maximizing the services provided to people [CNW+12]. Smart

Healthcare comprises the complete set of technologies designed to provide customized

healthcare ormonitor personhealthiness. These systems can increase efficiencywhen act

ing in emergencies, provide better access to healthcare in rural areas, and enable elderly

independence [BXA17]. Smart Agriculture and Environmental Monitoring are the set of

technologies designed to provide healthier food and atmosphere. These methodologies

45

also consider the harm done to climate and benefits to human and animal health [GK+16,

IEBM15].

SmartWearable comprises a set of clothes or accessories that a person canwear to acquire

data about its current status. The most commonly used smart wearable is a smartwatch,

which acquires data about the person healthiness and provides a set of services that ease

communication with others. The difference between this category and Smart Healthcare

resides in the fact that no communication is done with healthcare entities, and it is de

signed for the person to gather data about itself [CEF+12]. Finally, Smart Manufactur

ing, also known as Industry 4.0, is a technology that aims at sustainable growth manage

ment and improvement of existent production agents. Its main objective is to respond

to complex and varied situations in realtime while maintaining reduced assets in ware

houses [KLC+16].

Below, an IoT scenario for each of the abovementioned classes is presented. The pro

posed situations were initially designed by the authors and might not exactly correspond

to actual scenarios. These scenarios were also provided to testers, and formatted to fit the

template of this dissertation.

Smart Transportation Monitoring

The Smart Transportation Monitoring scenario is included in the Smart Transportation

and Logistics category. Figure 5.1 shows a highlevel representation of the described sce

nario, displaying two main components: the Truck and the Container. The first one con

tains sensors that retrieve data about its location, velocity, and status, which is transmit

ted to the Cloud. Since the Truck is always in movement, it is essential to ensure that it

can communicate from different locations, so Fourth Generation (4G) or Fifth Genera

tion (5G) network technology is used. The Container has multiple sensors for the cargo

status, such as temperature, humidity, and position. Additionally, this data needs to be

sent to the Cloud while the Container is in movement, so it is equipped with 4G or 5G

network technology.

GPS

Truck Container

Velocity

Humidity

Temperature

Position

Cloud
4G/5G 4G/5G

Figure 5.1: Highlevel design of the Smart Transportation Monitoring scenario.

Sensitive information is transmitted from the Container and Truck to the Cloud through

the Internet, where a third entity can eavesdrop on the messages. Therefore, ensuring

secure communication through the implementation of cryptographic algorithms is essen

tial. Additionally, since the Truck and Container drive themselves on public roads, the

46

probability of a third entity having physical access to the components is high. The Con

tainer will be temporarily associated with the Truck transporting it, and the Truck is reg

istered within the company database. Hence, there is no user registration nor login within

the system. Finally, it is possible to order the Truck to change the route if an unexpected

event occurs. This command can have significant implications on the arrival time and

cargo conditions, so it demands that the person requiring it is properly authenticated and

has the correct authorization to do so.

Smart Electrical Vehicle Home Charging

The Smart Electric Vehicle Home Charging is specifically designed to improve the effi

ciency of the electric grid while maintaining sustainability. It is divided into three main

areas: Residential Area, Distribution, and Generation, as shown in figure 5.2. All these

areas are connected with electric cables, meaning that the communications between them

are donewith cables to keep a low latency response. In addition, every end component that

receives energy has a smart meter that allows reading and modifying the electric system.

Furthermore, it is possible to observe that each house is equipped with an electric vehicle

charger, which functions as a battery for the house demands. Regarding the Distribution

area, each electric tower contains a smart switch connected to a substation, where all pro

cessing is done. Finally, the Generation section provides data about electricity generation

from multiple sources, such as solar, wind, or fossil fuels.

Residential Area Distribution

Smart
Meter

Smart
Meter

Generation

Smart
Meter

Figure 5.2: Highlevel scheme of the Smart Electrical Vehicle Home Charging scenario.

Smartmeters are placed in an accessible location formaintenance purposes, making them

available for third entities besides the product company. These meters are also respon

sible for measuring the power consumption of the house. Therefore, some users might

try and impersonate others, avoiding paying taxes. Additionally, since communication is

done through cables and not wireless, it is harder for a third entity to intersect and mod

ify messages. Data about the house and its owner is considered sensitive content since it

might reveal residence location or workplace, leading to privacy leakage. This system will

store temporary information about the power consumption and outage in a database and

send its information periodically to the power company, which stores it in their servers.

Additionally, electric vehicle chargers can be used as electric grid power supplies during

47

power shortages on the grid. The decision to switch electric vehicle chargers operating

mode must be made by an authenticated person with proper authorization.

Smart Car

The Smart Car is considered a Smart Environment because it can operate independently

of other cars or contexts. Intelligent cars have multiple sensors to retrieve data from the

car and the environment surrounding it. Some examples of the sensors and environment

variables can be seen in figure 5.3. Themain idea behind implementing smart cars and in

telligent cities resides in improving efficiency and sustainability. This growth can be done

by conjugating multiple data in Cloud and convert them into valuable information. Ac

cordingly, this is the main reason why 4G and 5G network technologies are implemented

into the Car, to provide localindependent data communication. Additionally, to better

optimize this process, additional external factors to use the same technologies were con

sidered, providing realtime data about traffic.

GPS

Car

Velocity
Cloud

4G/5G

Tire Pressure

Engine Temperature

Dashboard Traffic Conditions

4G/5G

Figure 5.3: Highlevel design of the Smart Car scenario.

Like trucks, cars spend most of their life span in public spaces, meaning that third enti

ties can easily access them. The data exchange between the Car and Cloud must be done

reliably and without the possibility of being manipulated, suggesting the usage of cryp

tographic algorithms. For example, a malicious user might try and impersonate another

user to obfuscate their current location and expected course. Besides that, revealing the

expected route might be dangerous since it might reveal private information about the

user. If for any reason, it is imperative to change the Car route, the person doing it must

be correctly authenticated and have the necessary permissions.

Smart Pacemaker

A Smart Pacemaker is a standard technology implemented into a patient, allowing a cus

tomized healthcare service. As shown in a report published by The Guardian [Ale13],

some patients feared the usage of their pacemaker because it could be hacked and lead

to tragedies. Because this intelligent system interacts directly with human lives, it must

be correctly secured and tested. Figure 5.4 exhibits the entities involved in the Smart

Pacemaker system, as well as their connections. Communication between this device and

the Hospital might be essential in hostile conditions, so 4G or 5G network technologies

were chosen. Additionally, theHospital stores its data and information in a private Cloud,

48

communicating with WiFi technology.

Pacemaker

Heart Rate

Electric Discharge

Cloud

Hospital

Emergency

Monitoring

4G/5G Wi-Fi

Figure 5.4: Highlevel scheme of the Smart Pacemaker scenario.

Maintaining communication between the Hospital and Smart Pacemaker is vital since

every second counts when saving a life. Furthermore, it is necessary to guarantee that

no fake emergencies are notified, which could deviate resources from real emergencies.

These fake emergencies can be done by capturing messages and resending them to the

Hospital. In this specific case, it is impossible to get physical access to the Smart Pace

maker since it involves surgery and assuring that the patient survives. Despite the in

formation not being directly stored in the Smart Pacemaker, using a database, the type

of data exchanged with the Hospital is critical. Besides, exposing data about the patient

heart rate might reveal which activities the patient is performing, leading to privacy leak

age. Finally, based on the medical record and the current heart rate, if it is vital to change

electric discharge power, it must be done by an authenticated and authorized user.

Smart Irrigation System

Optimizing water usage, consequently increasing sustainability, can be done through a

Smart Irrigation System, like the one depicted in figure 5.5. This system is equipped with

sensors that try to acquire the most accurate data about the Crops, such as temperature,

humidity, and soil moisture. This scenario uses 4G or 5G network technology to com

municate with the Cloud, ensuring reliable communication and avoiding the burden of

constructing a WiFi or cable infrastructure. Additionally, data about the Weather Con

ditions in the next few days is also provided to the Cloud using WiFi technology. Thus,

processing and joining it with sensory data provides themost informed decision to irrigate

or not the Crops.

Crops

Temperature

Humidity

Soil Moisture

Irrigation System

Cloud
4G/5G

Predicted Weather

Wi-Fi

Figure 5.5: Highlevel design of the Smart Irrigation System scenario.

These irrigation systems are implanted in agricultural land, sometimes in remote loca

tions or with difficult access, which are not frequently revisited. The possibility of mali

cious users physically accessing the system is significant and must be considered. Addi

tionally, this system is designed to be entirely automatic, but its owner can alter its config

49

urations. Thus, a unique user exists in this system, which allows viewing Crops data, but

requires additional approval to change the system configuration. Data is sent through the

Internet, being plausible to be eavesdropped on, making it essential to use cryptographic

algorithms. Finally, a malicious user can capture messages and resend them to simulate

a genuine request, making it possible for this user to destroy the Crops.

Smart Watch

SmartWatches have currently replaced nearly all the ordinarywatches in developed coun

tries due to the humanneed to always being connected to others. These intelligentwatches

provide essential functionalities offered by the Smartphone and extra ones mainly related

to exercising. If the user wants to receive Smartphone notifications and alarms, it must

connect the Smart Watch to its Smartphone using Bluetooth technology, as shown in fig

ure 5.6. This device is not directly connected to the Cloud, receiving updates directly from

the Smartphone with the proper application installed.

Heart Rate

Oxymeter

Gyroscope

GPS

Emails

Messages

Calls

Meetings

Bluetooth

Figure 5.6: Highlevel scheme of the Smart Watch scenario.

This specific SmartWatch considers the possibility of usagewithout connecting to a Smart

phone, providing only the exercise related functionalities. Therefore, it needs to store de

tails about the user workout in a database included on the device. Additionally, this data

is sent to the Smartphone when it connects to the Smart Watch. The loss of the Smart

Watch is a plausible situation due to the removal of the watch for a leisure situation. This

device connects through Bluetooth to the Smartphone, in which the communications can

easily be eavesdropped on and captured. Usually, information exchanged between the

Smart Watch, and the Smartphone is not critical nor sensitive. Finally, impersonating a

user is possible due to Bluetooth technology actuating distance and the SmartWatch loss.

Smart Factory

The Smart Factory scenario is considered the Industry 4.0 peak when factory production

lines are connected to themarket supply chain. Therefore, it is included in the SmartMan

ufacturing category. A Smart Factory contains sensors and dashboards for eachMachine

on the production line, as exhibited in figure 5.7. These provide data about the product

and the production rate, such as temperature, pressure, and pieces per hour. This data is

exchanged across the factory floor using WiFi technology and allows the floor manager

to decide the Machine operating mode. Additionally, it provides information about fail

50

ures considering a specific Machine, which is stored in the factory server. Details about

factory operation mode and rate are sent to the Cloud and are shared with other supply

chain entities, which report Demand Fluctuationsmotivated by multiple factors.

Machines

Temperature

Humidity

Pressure

Dashboard

Cloud
Wi-Fi Wi-Fi

Demand
Fluctuations

Figure 5.7: Highlevel design of the Smart Factory scenario.

Assuming only the factory operators have access to the factory floor, it is impossible to

have access to the machine where the system operates. Additionally, most communica

tions are exchanged inside the Smart Factory, which means there is a reduced possibility

of eavesdropping. Considering that all factory employees are honest, there is no need to

raise awareness on the possibility of capturing and resendingmessages. Theweakest spot

regarding security is the communication with the Cloud and other supply chain entities,

which requires cryptographic algorithms. Since the factory stores information on their

servers, they will use a database system that must be correctly secured, preventing access

from unauthorized people. Finally, the communication with thirdparty entities must be

done following the specifications.

5.4 Results Discussion

The module behavioral evaluation was done using an automated approach, where the ex

pected results were provided according to the given inputs. As a result, the proposedmod

ule never outputted an error message for all the executed tests, as expected, and always

gave the intended recommendations (weaknesses) for all the input answers provided.

Regarding the security specialist feedback, they evaluated this tool as very useful and help

ful regarding detecting weaknesses found in the system. Additionally, they stated that

the proposed module was simple and straightforward. Finally, they added the suggestion

of presenting weaknesses in category groups, such as Authentication and Insecure Data,

which will be considered in future work.

A survey was designed to gather information about the threat simplicity, adequacy, effi

ciency, and existence awareness and the hardware threats relevance to retrieve user feed

back from developers. Each aspect was evaluated based on a scale from 1 to 7, with 1

being the most negative and 7 the most positive evaluations. The scale choice was based

on the human mind judgment capability [Mil56]. Additionally, developers were asked

51

about their previous experience with similar tools and were given the means to express

their suggestions and difficulties found while using the proposed module.

Figure 5.8 exhibits the responses received to the previously presented aspects regarding 18

different endusers with a background in Computer Science, which was the only recruit

ment requirement. Two out of the 18 endusers were security specialists, nine of these

users work in enterprise settings, and the remaining ones are students. The users were

recruited using online technologies to spread the solution between class colleagues and

exhibitions to IT companies. No personal and soft biometrics data were acquired during

the questionnaire.

Number of responses

Threat Simplicity

Threat Adequacy

Threat Efficiency

Threat Existence
Awareness

Hardware Threats
Relevance

0 5 10 15 20

Figure 5.8: Graph summarizing the answers given to the evaluation questionnaire of the proposed module
according to the scale from 1 to 7, where 1 is the most negative evaluation, and 7 is the most positive. Green,
Light Blue, and Dark Blue represent options 2, 3, and 4, respectively. Orange, Pink, and Cream represent

options 5, 6, and 7, respectively.

The Threats Existence Awareness category presents answers ranging from2 to 7, meaning

that developer security knowledge is volatile. This conclusion corroborates themotivation

presented that some developers do not have the required knowledge to develop secure

systems. Furthermore, by examining the Hardware Threats Relevance, it is possible to

deduce that hardware threats are considered a substantial contribution of the proposed

module.

Despite the simplicity associated with the threats, there is still a margin to improve them,

namely by detailing threat descriptions. Another possible enhancement, suggested by

security specialists, is to produce additional questions concerning specific IoT scenarios,

increasing Threat Efficiency (the capacity of a threat to identify particular problems). Fur

thermore, it is possible to conclude that, overall, the developers find the identified threats

to be adequate for the system they conceived in their heads.

Regarding the previous experience with similar tools, 16 out of 18 developers said they

52

had never interacted with related tools. The remaining two answers were given by se

curity specialists, affirming that they already had experienced a tool similar to the one

proposed in this dissertation. Since the developed module is designed to help develop

ers with limited knowledge in security topics, these results show that this module has a

novelty factor, with prominent advantages to enable the planning and implementation of

secure devices.

5.5 Conclusions

Automatically testing the proposed module to check if it provides the proper recommen

dations ensures that the developed module is qualified to be validated and approved by

security specialists. After this approval, the developed module is ready to be tested by

endusers, which provided valuable feedback regarding the novelty, quality, and require

ment of the proposed module. Finally, the developed module is duly tested and validated

after these steps, indicating it is prepared to work under production settings.

53

54

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The evident security problems of IoT, which might specially lead to potential leakage of

sensitive information of users, call for a strong move towards the inclusion of security

mechanisms in IoT devices. However, this process requires the intervention of security

specialists to specifically identify these security requirements, design and implement the

appropriate technology, which is expensive for companies. This dissertation provides a

solution that enables users with limited security knowledge to create secure IoT systems.

The main contribution of the work described in this dissertation is a solution that outputs

the weaknesses found on an IoT system or software that the user describes through ques

tions. The developed tool provides a straightforward way of presenting the weaknesses,

and its primary purpose is to support the design and implementation of secure systems

without the requirement of having vast security knowledge. Therefore, the objectives es

tablished for this dissertation project were accomplished.

During the development of the project leading to this dissertation, the following interest

ing conclusions were reached:

• There is no clear distinction between IoT domains, and there is no consensus in

how IoT layers are divided, regardless of most literature considering the threelayer

model. Thus, the deployment of standards is essential to define details regarding

IoT, which would later lead to better design of these systems and software;

• Literature alternately refers to threatmodeling or attackmodelingwhen discussing

the necessary steps to succeed in an attack. Unfortunately, this usage hinders the

comprehension of the difference between these two terms. Therefore, providing a

possible distinction for these processes is of utmost importance;

• Prioritization of vulnerabilities and weaknesses is still a manual process, where hu

mans describe each identified threat and specify the values for each group category.

This method still requires highly qualified experts and poses sometimes a severe

burden when classifying new vulnerabilities or weaknesses. This open issue lead to

the development of a CVSS calculator with embedded artificial intelligence, which

will be subject of a paper.

55

6.2 FutureWork

As future work, some improvements to the developed framework are suggested, mainly

regarding information disclosure. The first enhancement considers the clustering of the

presented weaknesses in category groups concerning the security requirements. Further

more, adding an optional extended description to each recommendation might help end

users understanding higher complexity weaknesses. Another possible improvement is to

thoroughly investigate IoT scenarios and provide questions that mold to the weaknesses.

Furthermore, another supplement is to add an automatic manner that supports the prior

itization of vulnerabilities found on theNVDdatabase, providing the vulnerabilities found

in the last 30 days. Finally, the addition of an Artificial Intelligence based approach that

can easily renew the logic of the proposed module is another possible future path.

Someof the steps of the aforementioned lines of futureworkwere already performed at the

time of writing of this dissertation. E.g., an analysis ofmachine learning algorithms suited

for binarymultioutput problems was done for the SREmodule, resulting in one accepted

for publication paper [LCS+21]. Furthermore, this analysis can easily be spread to other

platformmodules, namely the proposed one. Finally, a prototype tool that communicates

with the NVD API and gathers 30day vulnerabilities is also under development.

56

Bibliography

[AA18] R. Alharbi and D. Aspinall. An iot analysis framework: An investigation of

iot smart cameras’ vulnerabilities. In proceedings of Living in the Internet of

Things: Cybersecurity of the IoT 2018, pages 1–10, 2018. 20

[Ale13] Alex Hern. Hacking risk leads to recall of 500,000 pacemakers due to patient

death fears. https://www.theguardian.com/technology/2017/aug/31/
hacking-risk-recall-pacemakers-patient-death-fears-fda-firmware
-update, 2013. Online; accessed 30 June 2021. 48

[Bir05a] Alex Biryukov. Chosen Ciphertext Attack, pages 76–76. Springer US, Boston,

MA, 2005. Available from: https://doi.org/10.1007/0-387-23483-7_59.
8

[Bir05b] Alex Biryukov. Chosen Plaintext Attack, pages 76–76. Springer US, Boston,

MA, 2005. Available from: https://doi.org/10.1007/0-387-23483-7_60.
8

[Bir11a] Alex Biryukov. Adaptive Chosen Ciphertext Attack, pages 21–21. Springer

US, Boston, MA, 2011. Available from: https://doi.org/10.1007/
978-1-4419-5906-5_543. 8

[Bir11b] Alex Biryukov. Adaptive Chosen Plaintext Attack, pages 21–21. Springer

US, Boston, MA, 2011. Available from: https://doi.org/10.1007/
978-1-4419-5906-5_545. 8

[Bir11c] Alex Biryukov. CiphertextOnly Attack, pages 207–207. Springer US, Boston,

MA, 2011. Available from: https://doi.org/10.1007/978-1-4419-5906-5_
560. 8

[Bir11d] AlexBiryukov. KnownPlaintext Attack, pages 704–705. SpringerUS, Boston,

MA, 2011. Available from: https://doi.org/10.1007/978-1-4419-5906-5_
588. 8

[BXA17] Stephanie B. Baker, Wei Xiang, and Ian Atkinson. Internet of things for

smart healthcare: Technologies, challenges, and opportunities. IEEE Access,

5:26521–26544, 2017. 45

[CBA17] Yassine Chahid, M. Benabdellah, and A. Azizi. Internet of things security.

2017 International Conference onWireless Technologies, Embedded and In

telligent Systems (WITS), pages 1–6, 2017. 2

[CDRV19] Valentina Casola, Alessandra De Benedictis, Massimiliano Rak, and Umberto

Villano. Toward the automation of threat modeling and risk assessment in iot

systems. Internet of Things, 7:100056, 2019. Available from: http://www.
sciencedirect.com/science/article/pii/S2542660519300290. 19

57

https://www.theguardian.com/technology/2017/aug/31/hacking-risk-recall-pacemakers-patient-death-fears-fda-firmware
https://www.theguardian.com/technology/2017/aug/31/hacking-risk-recall-pacemakers-patient-death-fears-fda-firmware
-update
https://doi.org/10.1007/0-387-23483-7_59
https://doi.org/10.1007/0-387-23483-7_60
https://doi.org/10.1007/978-1-4419-5906-5_543
https://doi.org/10.1007/978-1-4419-5906-5_543
https://doi.org/10.1007/978-1-4419-5906-5_545
https://doi.org/10.1007/978-1-4419-5906-5_545
https://doi.org/10.1007/978-1-4419-5906-5_560
https://doi.org/10.1007/978-1-4419-5906-5_560
https://doi.org/10.1007/978-1-4419-5906-5_588
https://doi.org/10.1007/978-1-4419-5906-5_588
http://www.sciencedirect.com/science/article/pii/S2542660519300290
http://www.sciencedirect.com/science/article/pii/S2542660519300290

[CEF+12] Marie Chan, Daniel Estève, JeanYves Fourniols, ChristopheEscriba, andEric

Campo. Smart wearable systems: Current status and future challenges. Arti

ficial Intelligence in Medicine, 56(3):137–156, 2012. Available from: https:
//www.sciencedirect.com/science/article/pii/S0933365712001182. 46

[CNW+12] Hafedh Chourabi, Taewoo Nam, Shawn Walker, J. Ramon GilGarcia, Sehl

Mellouli, Karine Nahon, Theresa A. Pardo, and Hans Jochen Scholl. Under

standing smart cities: An integrative framework. In proceedings of 2012 45th

Hawaii International Conference on System Sciences, pages 2289–2297,

2012. 45

[Cor18] TheMITRECorporation. CWE CommonWeakness Scoring System (CWSS).

https://cwe.mitre.org/cwss/cwss_v1.0.1.html, 2018. [Last accessed in

7th June, 2021]. xv, 18

[Cor20] The MITRE Corporation. CWE 2020 CWE Top 25 Most Dangerous Soft

ware Weaknesses. https://cwe.mitre.org/top25/archive/2020/2020_
cwe_top25.html, 2020. [Last accessed in 7th June, 2021]. 26

[CPB13] Sergio Caltagirone, Andrew Pendergast, and Christopher Betz. The diamond

model of intrusion analysis. Technical report, Center For Cyber Intelligence

Analysis and Threat Research Hanover Md, 2013. xv, 11, 13

[Dav99] David E.Mann, StevenM. Christey. Towards a Common Enumeration of Vul

nerabilities. https://cve.mitre.org/docs/docs-2000/cerias.html, 1999.
Online; accessed 17 July 2021. 15

[DOL07] R.Derakhshan,M. E.Orlowska, andX. Li. Rfid datamanagement: Challenges

and opportunities. In proceedings of 2007 IEEE International Conference on

RFID, pages 175–182, 2007. 7

[DSLA17] Piergiuseppe Di Marco, Per Skillermark, Anna Larmo, and Pontus

Arvidson. Ericsson white paper: Bluetooth mesh networking. Tech

nical Report 284 233310 Uen, Ericsson, 7 2017. Available from:

https://www.ericsson.com/49d589/assets/local/reports-papers/
white-papers/wp-bluetooth-mesh_ver2_171115-c2.pdf. 6

[Eh14] Mohamed E. Elhawary. The smart grid—stateoftheart and future trends.

Electric Power Components and Systems, 42(34):239–250, 2014. 45

[eS14] Structured Threat Information eXpression (STIX™). Common Weakness

Scoring System — CWSS™. Technical report, International Organization for

Standardization, 202 Burlington Road, Bedford, MA 017301420, 2014. 18

[Far08] Shahin Farahani. Chapter 1 zigbee basics. In ZigBee Wireless

Networks and Transceivers, pages 1 – 24. Newnes, Burlington, 2008.

Available from: http://www.sciencedirect.com/science/article/pii/
B9780750683937000017. 6

58

https://www.sciencedirect.com/science/article/pii/S0933365712001182
https://www.sciencedirect.com/science/article/pii/S0933365712001182
https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://cve.mitre.org/docs/docs-2000/cerias.html
https://www.ericsson.com/49d589/assets/local/reports-papers/white-papers/wp-bluetooth-mesh_ver2_171115-c2.pdf
https://www.ericsson.com/49d589/assets/local/reports-papers/white-papers/wp-bluetooth-mesh_ver2_171115-c2.pdf
http://www.sciencedirect.com/science/article/pii/B9780750683937000017
http://www.sciencedirect.com/science/article/pii/B9780750683937000017

[FPAF18] M. Frustaci, P. Pace, G. Aloi, and G. Fortino. Evaluating critical security is

sues of the iot world: Present and future challenges. IEEE Internet of Things

Journal, 5(4):2483–2495, 2018. 5

[fS18] International Organization for Standardization. Information technology —

Internet of Things (IoT) — Vocabulary. Standard, International Organization

for Standardization, Geneva, CH, December 2018. 5

[GHGK17] Mengmeng Ge, Jin B. Hong, Walter Guttmann, and Dong Seong Kim.

A framework for automating security analysis of the internet of things.

Journal of Network and Computer Applications, 83:12 – 27, 2017.

Available from: http://www.sciencedirect.com/science/article/pii/
S1084804517300541. 20

[GK+16] Nikesh Gondchawar, RS Kawitkar, et al. Iot based smart agriculture. In

ternational Journal of advanced research in Computer and Communication

Engineering, 5(6):838–842, 2016. 46

[HCA11] Eric Hutchins, Michael Cloppert, and Rohan Amin. Intelligencedriven com

puter network defense informed by analysis of adversary campaigns and in

trusion kill chains. Leading Issues in Information Warfare & Security Re

search, 1, 01 2011. xv, 14

[IEBM15] Mohannad Ibrahim, Abdelghafor Elgamri, Sharief Babiker, and Ahmed Mo

hamed. Internet of things based smart environmental monitoring using the

raspberrypi computer. In proceedings of 2015 Fifth International Con

ference on Digital Information Processing and Communications (ICDIPC),

pages 159–164, 2015. 46

[JDSTN19] Dan Bergh Johnsson, Daniel Deogun, Daniel Sawano, and Daniel Terhorst

North. Secure by design. Manning Publications Co., 2019. 1

[JFK+19] Bilal Jan, Haleem Farman, Murad Khan, Muhammad Talha, and Ikram Ud

Din. Designing a smart transportation system: An internet of things and big

data approach. IEEE Wireless Communications, 26(4):73–79, 2019. 45

[KLC+16] Hyoung Seok Kang, Ju Yeon Lee, SangSu Choi, Hyun Kim, Jun Hee Park,

Ji Yeon Son, Bo Hyun Kim, and Sang Do Noh. Smart manufacturing: Past re

search, present findings, and future directions. International Journal of Pre

cision Engineering and ManufacturingGreen Technology, 3:111–128, 2016.

Available from: https://doi.org/10.1007/s40684-016-0015-5. 46

[KMRS10] Barbara Kordy, Sjouke Mauw, Sasa Radomirovic, and Patrick Schweitzer.

Foundations of attack–defense trees. Inproceedings of LectureNotes inCom

puter Science, volume 6561, pages 80–95, 09 2010. xv, 10, 12

59

http://www.sciencedirect.com/science/article/pii/S1084804517300541
http://www.sciencedirect.com/science/article/pii/S1084804517300541
https://doi.org/10.1007/s40684-016-0015-5

[KS17] R. Kumar and M. Stoelinga. Quantitative security and safety analysis with

attackfault trees. In proceedings of 2017 IEEE 18th International Sympo

sium on High Assurance Systems Engineering (HASE), pages 25–32, 2017.

11

[LCS+21] Carolina Lopes, Joana C. Costa, João B. F. Sequeiros, Tiago M. C. Simões,

Mário M. Freire, and Pedro R. M. Inácio. Machine learning applied to secu

rity requirements elicitation: Learning from experience. In proceedings of

Atas do 12º Simpósio de Informática (INForum 2021), pages 0–12, Septem

ber 2021. (accepted for publication). 3, 56

[Len13] Elizabeth B. Lennon. The national vulnerability database (nvd): Overview.

Technical report, National Institute of Standards and Technology, December

2013. Available from: https://tsapps.nist.gov/publication/get_pdf.
cfm?pub_id=915172. 15

[MAH+16] M. Mohsin, Z. Anwar, G. Husari, E. AlShaer, and M. A. Rahman. Iotsat:

A formal framework for security analysis of the internet of things (iot). In

proceedings of 2016 IEEE Conference on Communications and Network Se

curity (CNS), pages 180–188, 2016. 19

[MAL+19] I. Makhdoom, M. Abolhasan, J. Lipman, R. P. Liu, and W. Ni. Anatomy of

threats to the internet of things. IEEE Communications Surveys Tutorials,

21(2):1636–1675, 2019. 9

[MG02] Peter Mell and Tim Grance. Use of the common vulnerabilities and expo

sures (cve) vulnerability naming scheme. Technical Report NSN 754001

2805500, National Institute of Standards and Technology, January 2002.

Available from: https://apps.dtic.mil/sti/pdfs/ADA407728.pdf. 15

[Mil56] George A. Miller. The magical number seven, plus or minus two: some lim

its on our capacity for processing information. Psychological Review, 63:17,

1956. 51

[MQT20] MQTT.org. MQTT The Standard for IoTMessaging, 2020. [Last accessed in

4th December, 2020]. Available from: https://mqtt.org/. 6

[MSR06] Peter Mell, Karen Scarfone, and Sasha Romanosky. Common vulnerability

scoring system. IEEE Security Privacy, 4(6):85–89, 2006. 16

[Nat21] National Institute of Standards and Technology. NVD Search and Statistics.

https://nvd.nist.gov/vuln/search, 2021. Online; accessed 17 July 2021.

15

[oIRT21a] Forum of Incident Response and Security Teams. CVSS v2 Complete Docu

mentation. https://www.first.org/cvss/v2/guide, 2021. [Last accessed

in 21th May, 2021]. xv, 17

60

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=915172
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=915172
https://apps.dtic.mil/sti/pdfs/ADA407728.pdf
https://mqtt.org/
https://nvd.nist.gov/vuln/search
https://www.first.org/cvss/v2/guide

[oIRT21b] Forum of Incident Response and Security Teams. CVSS v3.1 Specification

Document. https://www.first.org/cvss/specification-document, 2021.
[Last accessed in 21th May, 2021]. xv, 17

[OWA21a] OWASP Foundation. About Us | The OWASP Foundation. https://owasp.
org/about/, 2021. Online; accessed 17 July 2021. 16

[OWA21b] OWASP Foundation. Vulnerabilities | OWASP. https://owasp.org/
www-community/vulnerabilities/, 2021. Online; accessed 17 July 2021. 16

[PIS+17] P. Patni, K. Iyer, R. Sarode, A.Mali, andA.Nimkar. Maninthemiddle attack

in http/2. In proceedings of 2017 International Conference on Intelligent

Computing and Control (I2C2), pages 1–6, 2017. 8

[pt14] Wireless Sensor Networks project team. Internet of things: Wireless sensor

networks. Technical report, International Electrotechnical Commission, 11

2014. Available from: https://www.ericsson.com/49d589/assets/local/
reports-papers/white-papers/wp-bluetooth-mesh_ver2_171115-c2.
pdf. 7

[PTC16] Ed. P. Thubert and R. Cragie. Pv6 over LowPower Wireless Personal Area

Network (6LoWPAN)PagingDispatch. RFC8025, RFCEditor, 11 2016. Avail

able from: https://www.rfc-editor.org/rfc/rfc8025.txt. 7

[RKT10] Arpan Roy, Dong Seong Kim, and Kishor S Trivedi. Cyber security analysis

using attack countermeasure trees. In proceedings of Proceedings of the Sixth

AnnualWorkshop on Cyber Security and Information Intelligence Research,

pages 1–4, 2010. 11

[Sch99] Bruce Schneier. Attack trees. Dr. Dobb’s journal, 24(12):21–29, 1999. xv, 10,

11

[Sch01] Bruce Schneier. Attack trees. Dr. Dobb’s journal, 2001. 10

[SLA+20] M. G. Samaila, C. Lopes, E. Aires, J. Sequeiros, T. Simões, M. Freire, and

P.R.M. Inácio. A Preliminary Evaluation of the SRE and SBPGComponents of

the IoTHarPSecA Framework. In proceedings of Global Internet of Things

Summit, Endorsed by IEEE Global IoT Summit GIoTS, pages –, June 2020.

23, 24, 27

[SOBG19] Amar Seeam, Ochanya Ogbeh, Xavier Bellekens, and Shivanand Guness.

Threat modeling and security issues for the internet of things. In pro

ceedings of 2019 Conference on Next Generation Computing Applications

(NextComp), 10 2019. 1

[Sof21] Software Freedom Conservancy. About Selenium. https://www.selenium.
dev/about/, 2021. Online; accessed 17 July 2021. 41

61

https://www.first.org/cvss/specification-document
https://owasp.org/about/
https://owasp.org/about/
https://owasp.org/www-community/vulnerabilities/
https://owasp.org/www-community/vulnerabilities/
https://www.ericsson.com/49d589/assets/local/reports-papers/white-papers/wp-bluetooth-mesh_ver2_171115-c2.pdf
https://www.ericsson.com/49d589/assets/local/reports-papers/white-papers/wp-bluetooth-mesh_ver2_171115-c2.pdf
https://www.ericsson.com/49d589/assets/local/reports-papers/white-papers/wp-bluetooth-mesh_ver2_171115-c2.pdf
https://www.rfc-editor.org/rfc/rfc8025.txt
https://www.selenium.dev/about/
https://www.selenium.dev/about/

[SP18] Douglas Robert Stinson and Maura Paterson. Cryptography: theory and

practice. CRC press, 2018. 8

[SSS+20] Musa G Samaila, João B. F. Sequeiros, Tiago Simões, Mário M. Freire, and

Pedro R. M. Inácio. IoTHarPSecA: A framework and roadmap for secure

design and development of devices and applications in the IoT space. IEEE

Access, 8:16462–16494, 2020. 23, 24, 27

[Tea20] The HiveMQ Team. Getting Started with MQTT, 4 2020. [Last accessed

in 4th December, 2020]. Available from: https://www.hivemq.com/blog/
how-to-get-started-with-mqtt/. 6

[Tew20] Tewari, Aakanksha andGupta, B. B. AnAnalysis of Provable Security Frame

works for RFID Security, pages 635–651. Springer International Publishing,

2020. Available from: https://doi.org/10.1007/978-3-030-22277-2_25.
7

[The21a] The Linux Foundation. Home Open Source Security Foundation. https:
//openssf.org/, 2021. Online; accessed 17 July 2021. 16

[The21b] The MITRE Corporation. CWE About CWE Overview. https://cwe.
mitre.org/about/index.html, 2021. Online; accessed 17 July 2021. 15

[vul21a] vuldb.com. Vuldb vulnerability and threat intelligence. Technical report,

VulDB, 2021. Available from: https://vuldb.com/download/whitepaper/
vuldb_vulnerability_and_threat_intelligence.pdf. 15

[vul21b] vuldb.com. Vulnerability Database. https://vuldb.com/?, 2021. Online;

accessed 17 July 2021. 15

[WTB+12] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,

R. Struik, JP. Vasseur, and R. Alexander. RPL: IPv6 Routing Protocol for

LowPower and Lossy Networks. RFC 6550, RFC Editor, March 2012. Avail

able from: https://www.rfc-editor.org/rfc/rfc6550.txt. 6

[YR15] Tarun Yadav and Arvind Mallari Rao. Technical aspects of cyber kill chain.

In proceedings of International Symposium on Security in Computing and

Communication, pages 438–452. Springer, 2015. 13

[Yu14] Shui Yu. Distributed denial of service attack and defense. Springer, 2014. 9

[ZKKK19] Fotios Zantalis, Grigorios Koulouras, Sotiris Karabetsos, and Dionisis Kan

dris. A review of machine learning and iot in smart transportation. Future

Internet, 11(4), 2019. Available from: https://www.mdpi.com/1999-5903/
11/4/94. 45

[ZMKd17] Bruno Bogaz Zarpelão, Rodrigo Sanches Miani, Cláudio Toshio Kawakani,

and Sean Carlisto de Alvarenga. A survey of intrusion detection in internet

62

https://www.hivemq.com/blog/how-to-get-started-with-mqtt/
https://www.hivemq.com/blog/how-to-get-started-with-mqtt/
https://doi.org/10.1007/978-3-030-22277-2_25
https://openssf.org/
https://openssf.org/
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/about/index.html
https://vuldb.com/download/whitepaper/vuldb_vulnerability_and_threat_intelligence.pdf
https://vuldb.com/download/whitepaper/vuldb_vulnerability_and_threat_intelligence.pdf
https://vuldb.com/?
https://www.rfc-editor.org/rfc/rfc6550.txt
https://www.mdpi.com/1999-5903/11/4/94
https://www.mdpi.com/1999-5903/11/4/94

of things. Journal of Network and Computer Applications, 84:25 – 37, 2017.

1

63

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation and Scope
	Problem Statement and Objectives
	Proposed Approach and Main Contributions
	Document Organization

	Background and Related Work
	Introduction
	State of IoT
	Perception Layer
	Transportation Layer
	Application Layer

	Attack Types
	Cryptography
	Communications
	IoT Systems

	Attack and Threat Models
	Attack Tree
	Diamond Model
	Cyber Kill Chain

	Vulnerabilities and Weaknesses
	Databases
	Scores

	Related Work
	Main Literature Contributions
	Framework Comparison

	Conclusion

	System Proposal
	Introduction
	Scope and Requirements Analysis
	System Design
	Threat and Question Selection
	Vulnerability and Weakness Selection
	Question Selection and Formulation

	Conclusion

	Module and Framework Implementations
	Introduction
	Module Incorporation
	Framework Enhancement
	Back-end Improvements Overview
	Front-end Improvements Overview

	Conclusions

	Documentation, Demonstration, and Evaluation
	Introduction
	Methodology
	User Guide and IoT Scenarios
	User Guide
	IoT Scenarios

	Results Discussion
	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

