
Engenharia

Development of a Python Library for
Processing Seismic Time Series

Versão final após apresentação

Eduardo Rodrigues de Almeida

Dissertação para a obtenção do grau de Mestre em

Engenharia Informática
(2º ciclo de estudos)

Orientador: Professor Doutor Paul Andrew Crocker
Co­orientador: Doutor Hamzeh Mohammadigheymasi

Covilhã Novembro 2021

Development of a Python Library for Processing Seismic Time Series

ii

Development of a Python Library for Processing Seismic Time Series

Contents

List of Figures vi

List of Tables vii

Listings ix

Acronims 1

1 Introduction 11

1.1 Problem Statement . 11

1.2 Objectives . 11

1.3 Contributions . 12

1.4 Document Organisation . 12

2 Seismic Time­Series: Background and Tools 15

2.1 Introduction . 15

2.2 Fundamental Techniques and Concepts . 15

2.2.1 Seismic Waves . 15

2.2.2 Data Providers . 18

2.2.3 Seismic time­series . 20

2.2.4 Digital Signal Processing . 20

2.2.5 Fourier Series . 21

2.2.6 Discrete Fourier Transform . 21

2.2.7 Wavelet Transform . 21

2.3 Python Libraries and Seismic Frameworks 22

2.3.1 Python Libraries . 22

2.3.2 Python Seismic Frameworks . 23

2.4 Conclusions . 25

3 Literature Review 27

3.1 Introduction . 27

3.2 Signal Analysis Using Rectilinearity and Direction of Particle Motion . . . 28

3.3 Enhancement of Teleseismic Body Phases with a Polarisation Filter 29

3.4 Complex Polarization Analysis of Particle Motion 29

3.5 Polarization Analysis of Three­component Array Data 30

3.6 Polarization Filtering for Automatic Picking of Seismic Data and Improved

Converted Phase Detection . 30

3.7 Polarization Analysis and Polarization Filtering of Three­Component Sig­

nals with the Time–Frequency S Transform 31

3.8 Body Wave Separation in the Time­Frequency Domain 31

3.9 Discussions on the Processing of the Multi­Component Seismic Vector Field 32

iii

Development of a Python Library for Processing Seismic Time Series

3.10 Conclusions . 32

4 Implementation 33

4.1 Introduction . 33

4.2 Implemented Algorithms . 33

4.2.1 Flinn Method . 33

4.2.2 Vidale Method . 34

4.2.3 Pinnegar Method . 36

4.2.4 RS­TFR Method . 38

4.3 Developed Library . 40

4.3.1 Implemented Functions . 44

4.3.2 Building and Installation . 47

4.4 Conclusions . 47

5 Results 49

5.1 Introduction . 49

5.2 Synthetic Data Generation . 49

5.2.1 IRIS Syngine and ObsPy . 49

5.2.2 SPECFEM3D Globe . 51

5.3 Obtained Results . 55

5.3.1 Results of Flinn Module . 55

5.3.2 Results of Pinnegar Module on Synthetic Data 57

5.3.3 Results of Vidale Module . 59

5.3.4 Results of Rstfr Module . 61

5.4 Library Test Module . 62

5.5 Conclusions . 63

6 Main Conclusions and Future Work 65

6.1 Main Conclusions . 65

6.2 Future Work . 65

Bibliography 67

Appendix A SeisPolPy Library File Structure 73

Appendix B Sparsity­Promoting Approach to Eigenvalue Decomposition

PolarizationAnalysis of SeismicSignals in theTime­FrequencyDomain 75

Appendix C Eigenvalue Decomposition Polarization Analysis: A regular­

ized sparsity­based approach 87

iv

Development of a Python Library for Processing Seismic Time Series

List of Figures

2.1 Wavefronts are the points in a wavewith the same phase and rays the direc­

tion of propagation corresponding to a wave, as represented in this image

the rays are always perpendicular to the wavefronts. The wavefronts are

all equally distanced, being that same distance represented in the image by

the λ symbol. 16

2.2 The motion of particles in rock during P and S waves is seen in this figure.

The vibration of the rock, known as P or compressional waves, travels in

the direction of propagation. Furthermore, with S or shear waves, the rock

oscillates perpendicular to the wave propagation direction. This image was

taken from USGS [a]. 17

2.3 A Love wave is a surface wave possessing a horizontal motion which is

transverse to the direction of the wave. This image was taken from USGS [b]. 18

2.4 A Rayleigh wave is a seismic surface wave that causes the ground to move

in an elliptical motion without a perpendicular or transverse motion. This

image was taken from USGS [b]. 18

2.5 Seismic monitor web service provided by IRIS available at IRIS [a]. 19

2.6 EPOS web service for data search and download EPOS [2019]. 19

2.7 Examples of some of the possible plot visualisations using Matplotlib li­

brary. This image was taken from Hunter et al. [2012]. 23

4.1 Read the Docs platform page for building the documentation of the Seis­

PolPy library. 42

4.2 Web page containing the SeisPolPy documentation hosted by Read the Docs. 43

4.3 Web page, in the Read the Docs platform, to specify environment variables

to be accessed during the documentation build. 44

5.1 Seismic waveform, pertaining to the ACRG station, generated using the

Incorporated Research Institutions for Seismology (IRIS) syngine service

implemented in ObsPy. 50

5.2 Seismic waveform, pertaining to the ACRG station, generated using the

IRIS syngine service implemented in ObsPy after performing pre­processing. 51

5.3 Seismicwaveform, pertaining to the II.ABKT station, generated bySPECFEM3D

Globe on the Virtual Machine (VM) containing the NVIDIA Tesla Graphics

Processing Unit (GPU). 53

5.4 Seismicwaveform, pertaining to the II.ABKT station, generatedbySPECFEM3D

Globe on the computer containing the two NVIDIA Titan Black GPU. . . . 54

5.5 Seismicwaveform, pertaining to the II.ABKT station, generated bySPECFEM3D

Globe on the VM containing the NVIDIA Tesla GPU after performing pre­

processing. 54

5.6 Flinn method results for the IRIS generated synthetic data. 56

v

Development of a Python Library for Processing Seismic Time Series

5.7 Flinn method results for the SPECFEM3D Globe generated synthetic data. 57

5.8 Pinnegar method semi­major results for the IRIS generated synthetic data. 57

5.9 Pinnegar method semi­minor results for the IRIS generated synthetic data. 58

5.10 Pinnegarmethod semi­major results for the SPECFEM3DGlobe generated

synthetic data. 58

5.11 Pinnegarmethod semi­minor results for the SPECFEM3DGlobe generated

synthetic data. 59

5.12 Vidale method results for the IRIS generated synthetic data regarding dip,

strike an and elliptical component of polarization. 60

5.13 Vidale method result for the IRIS generated synthetic data concerning the

polarization strength of the signal. 60

5.14 Vidale method results for the SPECFEM3DGlobe generated synthetic data

regarding dip, strike and and elliptical component of polarization. 61

5.15 Vidale method result for the SPECFEM3D Globe generated synthetic data

concerning the polarization strength of the signal. 61

5.16 RSTFRmethod results presenting Love and Rayleigh waves trace and filter

results for the sparse short time Fourier transform (STFT) algorithm. In

(1), (3) and (5) correspond to the Love wave filtered components, and (2),

(4) and (6) to the Rayleigh wave filtered components. 62

C.1 Poster for the 2021 European Geosciences Union (EGU) conference. 88

vi

Development of a Python Library for Processing Seismic Time Series

List of Tables

5.1 Table containing the station codes, station names, latitude and longitude

values. 49

5.2 Table containing the execution times, maximum Random Access Mem­

ory (RAM) usage and maximum Central Processing Unit (CPU) core usage

regarding each module execution with the synthetic data generated using

IRIS syngine service. 55

5.3 Table containing the execution times and maximum RAM usage regarding

eachmodule executionwith the synthetic data generatedusing SPECFEM3D

Globe software. 55

5.4 Table containing the execution times and maximum RAM usage regard­

ing the Rstfr module execution on the same data set as the one present

in the article accepted by the Institute of Electrical and Electronics Engi­

neers (IEEE) Transactions on Geoscience and Remote Sensing (Moham­

madigheymasi et al. [2021a]). This article is also present in annex B. . . . 55

vii

Development of a Python Library for Processing Seismic Time Series

viii

Development of a Python Library for Processing Seismic Time Series

Listings

4.1 Header of the function used in the Flinn script. 44

4.2 Header of the function used in the Vidale script. 44

4.3 Header of the functions used in the Pinnegar script. 45

4.4 Header of the functions used in the RS­TFR script. 45

4.5 Headers of the functions present in the shared C libraries. 46

5.1 Environment variables required in order to configure SPECFEM3DGLOBE

for GPU acceleration. 52

5.2 Required commands for creating the mesh and running the main program. 52

libstruct.tex . 73

ix

Development of a Python Library for Processing Seismic Time Series

x

Development of a Python Library for Processing Seismic Time Series

Acronyms

ARIMA AutoRegressive Integrated Moving Average

ASDF Adaptable Seismic Data Format

ASP Analog Signal Processing

CPU Central Processing Unit

CSS Cascading Style Sheets

CWT Continuous Wavelet Transform

C4G Collaboratory for Geosciences

DSP Digital Signal Processing

EPOS European plate observing system

EGU European Geosciences Union

FT Fourier transform

FFT Fast Fourier Transform

FWI full waveform imaging

GPU Graphics Processing Unit

GUI Graphical User Interface

HDF Hierarchical Data Format

HT Hilbert Transform

HTML HyperText Markup Language

IEEE Institute of Electrical and Electronics Engineers

IFFT Inverse Fourier Transform

IRIS Incorporated Research Institutions for Seismology

KKT Karush­Kuhn­Tucker

MPI Message Passing Interface

ORFEUS Observatories and Research Facilities for European Seismology

P primary

pP pulse P

S secondary

SAC Seismic Analysis Code

SLI Scalable Link Interface

ST S transform

STFT short time Fourier transform

SHAZAM Seismicity and HAzards of the sub­saharian Atlantic Margin

xi

Development of a Python Library for Processing Seismic Time Series

TF Time­Frequency

UBI Universidade da Beira Interior

RAM Random Access Memory

VM Virtual Machine

VRAM Video Random Access Memory

xii

Development of a Python Library for Processing Seismic Time Series

Acknowledgments

I want to start by thankingmy entire family for everything that they have done for me and

mainly for all the support I received from each one of them. In the end, I have no doubt

that was one of themain factors for helpingme endure and overcome every hardship faced

during these last years which have been rough on everyone.

Furthermore, I would like to give a very special thank you to my supervisor, Paul Crocker,

andmy co­supervisor, HamzehMohammadigheymasi, for always being available, positive

and supportive in every step of this dissertation development. It was a pleasure to work

with both. I truly believe that I’ve grown a lot in the last year from their experience in life,

and for that, I’ll be forever in debt with them.

Also, I want to thank all my friends who have been accompanying me so far. Thank you

all for always being there not just for the good parts of this journey but also, and most im­

portantly, for helping me through the bad parts as well. Thank you all for being amazing.

I really couldn’t ask for more.

Finally, I want to express my undivided gratitude to the two persons who are the closest

to me and the best thing that university has given me. To Patricia Almeida, and my best

friend, Carolina Lopes, I want to apologise for my putting up with me on the bad days

when nothing goes right and thank you for all the love and support I’ve received. You are

truly amazing and achieving this wouldn’t be possible without you. I hope you know that.

In sum, I hope that I’vemade everyone proud and that I keepmaking you all feel that way.

Thank you for everything.

This work is funded by the SHAZAM, Seismicity andHAzards of the sub­saharian Atlantic

Margin project (02/SAICT/2017/31475) and also FCT/MCTES through national funds

and when applicable co­funded EU funds under the project UIDB/EEA/50008/2020.

1

Development of a Python Library for Processing Seismic Time Series

2

Development of a Python Library for Processing Seismic Time Series

Abstract

Earthquakes occur around the world every day. This natural phenomena can result in

enormous destruction and loss of life. However, at the same time, it is the primary source

for studying Earth, the active planet. The seismic waves generated by earthquakes prop­

agate deep into the Earth, carrying considerable information about the Earth’s structure,

from the shallow depths in the crust to the core. The information transferred by seismic

waves needs advanced signal processing and inversion tools to be converted into useful in­

formation about the Earths inner structures, from local to global scales. The ever­evolving

interest for investigating more accurately the terrestrial system led to the development of

advanced signal processing algorithms to extract optimal information from the recorded

seismic waveforms. These algorithms use advanced numerical modeling to extract opti­

mal information from the different seismic phases generated by earthquakes. The devel­

opment of algorithms from a mathematical­physical point of view is of great interest; on

the other hand, developing a platform for their implementation is also significant.

This research aims to build a bridge between the development of purely theoretical ideas

in seismology and their functional implementation. In this dissertation SeisPolPy, a high

quality Python­based library for processing seismic waveforms is developed. It consists

of the latest polarization analysis and filter algorithms to extract different seismic phases

in the recorded seismograms. The algorithms range from themost common algorithms in

the literature to a newly developed method, sparsity­promoting time­frequency filtering.

In addition, the focus of the work is on the generation of high­quality synthetic seismic

data for testing and evaluating the algorithms. SeisPolPy library, aims to provide seis­

mology community a tool for separation of seismic phases by using high­resolution po­

larization analysis and filtering techniques. The research work is carried out within the

framework of the Seismicity andHAzards of the sub­saharian AtlanticMargin (SHAZAM)

project that requires high quality algorithms able to process the limited seismic data avail­

able in the Gulf of Guinea, the study area of the SHAZAM project.

Keywords

Library, Synthetic Data, Methods, Python, Signal Processing, Time Series, Seismology,

Seismic Signal.

3

Development of a Python Library for Processing Seismic Time Series

4

Development of a Python Library for Processing Seismic Time Series

Resumo

Terramotos ocorrem todos os dias em todo o mundo. Esta fenomeno natural pode vir

a resultar numa enorme destruição e perda de vidas. No entanto, ao mesmo tempo, é a

principal fonte para o estudo da Terra, o planeta activo. As ondas sísmicas geradas pe­

los terramotos propagam­se profundamente na Terra, levando informação considerável

sobre a estrutura da Terra, desde as zonas de menor profundidade da crosta até ao nú­

cleo. A informação transferida por ondas sísmicas necessita de processamento avançado

de sinais e ferramentas de inversão para ser convertida em informação util sobre a es­

trutura interna da Terra, desde escalas locais a globais. O interesse sempre crescente em

investigar com maior precisão o sistema terrestre levou ao desenvolvimento de algorit­

mos avançados de processamento de sinais para extrair informação óptima das formas de

ondas sísmicas registadas. Estes algoritmos fazem uso de modelos numéricos avançados

para extrair informação óptima das diferentes fases sísmicas geradas pelos terramotos. O

desenvolvimento de algoritmos de um ponto de vista matemático­físico é de grande in­

teresse; por outro lado, o desenvolvimento de uma plataforma para a sua implementação

é também significativo.

Esta investigação visa construir uma ponte entre o desenvolvimento de ideias puramente

teóricas em sismologia e a sua implementação funcional. Com o decorrer desta disser­

tação foi desenvolvido o SeisPolPy, uma biblioteca de alta qualidade baseada em Python

para o processamento de formas de ondas sísmicas. Consiste na mais recente análise de

polarização e algoritmos de filtragem para extrair diferentes fases sísmicas nos sismogra­

mas registados. Os algoritmos variam desde os algoritmos mais comuns na literatura até

ummétodo recentemente desenvolvido, que promove a frequência de filtragempor tempo

e frequência. Além disso, o foco do trabalho é a geração de dados sísmicos sintéticos de

alta qualidade para testar e avaliar os algoritmos. A biblioteca SeisPolPy, visa fornecer à

comunidade sismológica uma ferramenta para a separação das fases sísmicas, utilizando

técnicas de análise de polarização e filtragemde alta resolução. O trabalho de investigação

é realizado no âmbito do projecto SHAZAM que requer algoritmos de alta qualidade que

possuam a capacidade de processar os dados sísmicos, limitados, disponíveis no Golfo da

Guiné, a área de estudo do projecto.

Palavras­chave

Biblioteca, Dados Sintéticos, Métodos, Python, Processamento de Sinais, Séries tempo­

rais, Sismologia, Sinais Sísmicos.

5

Development of a Python Library for Processing Seismic Time Series

6

Development of a Python Library for Processing Seismic Time Series

Resumo Alargado

Ao colocar sensores sísmicos em locais adequados, as ondas sísmicas geradas por desliza­

mentos de terra, fluxos de magma, ondas do mar e terramotos são registadas como uma

função discreta do tempo em amostras de tempo regulares, as chamadas séries de tempo

sísmicas. A série temporal é uma combinação de efeitos de diferentes parâmetros, in­

cluindo os parâmetros da fonte sísmica, ambiente de propagação, efeitos do local, etc.

O estudo de séries de tempo sísmicas oferece aos cientistas uma visão profunda desses

parâmetros críticos, o que requer o desenvolvimento e design de algoritmos de processa­

mento bem definidos para analisar as séries de tempo e extrair informações importantes

dasmesmas. Neste sentido, embora odesenvolvimento de algoritmosmatemáticos robus­

tos seja um aspecto fundamental, a plataforma computacional e as versáteis linguagens

de programação para a implementação dos algoritmos desenvolvidos são de particular

importância. Consequentemente, foram publicados vários programas de última geração,

entre eles, ObsPy uma das ferramentas de softwaremais prevalentes na comunidade sis­

mológica. ObsPy, é uma framework baseada em Python e de código aberto, permitindo

que a comunidade sismológica contribua livremente com seu desenvolvimento.

Várias bibliotecas de processamento foramdesenvolvidas combase na plataforma de soft­

ware ObsPy, por exemplo as plataformas MsNoise, Noisi e NoisePy, implementadas por

Lecocq, Ermert e Jiang, respectivamente.

ObsPy fornecemódulos de pré­processamento para leitura e conversão de vários formatos

de dados em servidores locais ou remotos, aplicando filtros band­pass para o aumento do

sinal e cancelamento de ruído, remoção de tendência, deconvolução da resposta do in­

strumento. Este apresenta a série temporal como umamatriz compatível com bibliotecas

matemáticas padrão como por exemplo NumPy, SciPy, Matplotlib.

Este trabalho de pesquisa tem como objectivo desenvolver uma biblioteca Python de úl­

tima geração consistente com ObsPy para a implementação de ideias desenvolvidas para

processamento de séries temporais sísmicas. Como o trabalho de pesquisa combina ciên­

cias da computação e sismologia teórica, uma apresentação abstracta de conceitos básicos

em ambos os campos também é apresentada e também um conjunto de referencias serão

indicadas para os leitores não familiarizados com todos estes tópicos.

Os objectivos da presente tese são os que se seguem:

1. Implementar e aprimorar os algoritmos introduzidos por Flinn [1965]; Vidale [1986];

Pinnegar [2006] para melhoria do sinal e recuperação de séries temporais sísmicas.

Isso envolve estudar e analisar esses algoritmos e o desenvolvimento e implemen­

tação de código de computador de alta qualidade capaz de processar grandes conjun­

tos de dados, possivelmente usando técnicas de computação de alto desempenho;

2. Desenho de um novo algoritmo;

3. Desenvolver umpacote de biblioteca Python para processamento de séries de tempo

sísmicas com os algoritmos descritos acima. Esta etapa inclui estudar os desafios

técnicos para construir novos módulos de processamento, testá­los e avaliá­los.

7

Development of a Python Library for Processing Seismic Time Series

As principais contribuições que se originaram desta pesquisa de tese as seguintes:

• Estudo, implementação e optimização de métodos de processamento de sinais sís­

micos introduzidos na secção 3;

• Desenvolvimento de uma biblioteca Python de alta qualidade Almeida [2021] para

processamento de séries temporais sísmicas;

• Publicação e apresentação do artigo Almeida et al. [2021] na conferência EGU em

Abril de 2021;

• Artigo submetido e aceite para publicação por IEEE Transações em Geociência e

Sensing Remoto.

Scimago Journal & Country Rank, Quartiles (2021): Q1 (Engenharia Eletrotécnica

e Eletrónica & Ciências

da Terra e Planetárias). Este está atualmente disponível como pré­impressão Mo­

hammadigheymasi et al. [2021a]

e no anexo B.

Esta tese apresenta umavisão geral sobre conceitos e técnicas consideradas fundamentais,

assim como bibliotecas e frameworks utilizadas para o desenvolvimento da biblioteca

proposta.

Como tal, é feita uma descrição de conceitos básicos de ondas sísmicas, provedores de

informação apresentando as plataformas mais conhecidas, IRIS e Observatories and Re­

search Facilities for European Seismology (ORFEUS). A plataforma ORFEUS é uma das

mais antigas e importantes para a divulgação de wave forms. Actualmente muitas das

plataformas como o ORFEUS encontram­se integradas na plataforma European plate ob­

serving system (EPOS) que agrega o acesso a muitos fornecedores de dados e serviços

Europeus.

De seguida, é feita uma descrição de dois conceitos e três técnicas fundamentais no con­

texto deste trabalho, nomeadamente, processamento de sinais sísmicos, séries temporais

sísmicas, séries de Fourier, transformada discreta de Fourier e transformadawavelet, re­

spectivamente. Por fim, naúltima secção são apresentadas três bibliotecas que se assemel­

ham ao trabalho que se pretende desenvolver, e que por sua vez, serviram como base para

o desenvolvimento domesmo, ObsPy, Noisi, NoisePy. Nesta secção, são tambémdescritas

as bibliotecas utilizadas na fase de implementação dos diferentes métodos, NumPy, Mat­

plotlib, SciPy, Cython, Pytest.

É, também, apresentada uma revisão de literatura descrevendo os métodos e algoritmos

que cada artigo contém. Os artigos escolhidos como mais relevantes para o trabalho de­

senvolvido foram organizados de forma cronológica e abordam diferentes tópicos rela­

tivos ao processamento de series temporais sísmicas: análise de sinais, análise de polar­

ização, filtros de polarização e processamento de sinais sísmicos. Relativamente ao tópico

de análise de sinais é apresentada a publicação feita por Flinn, em 1965, no que respeita

o tópico de análise de sinal usando rectilinearidade e direcção do movimento das partícu­

las. No tópico de análise da polarização destacam­se os artigos publicados por Vidale, em

8

Development of a Python Library for Processing Seismic Time Series

1986, e Jurkevics, em 1988, onde é explorada a análise da polarização complexa do movi­

mento das partículas e análise da polarização de dados de matriz com três componentes,

respectivamente. De seguida no tópico de filtros de polarização foram escolhidas as pub­

licações de Montalbetti e Kanasewich, em 1970, e Reading, em 2001, nestas é explorado

o aumento da percepção das fases body tele­sísmicas com um filtro de polarização e fil­

tragem da polarização para recolha automática de dados sísmicos e melhoria na detecção

da fase convertida, respectivamente. Quanto aos tópicos de análise e filtros de polariza­

ção foi também escolhido o artigo publicado por Pinnegar, em 2006, que, por sua vez,

se insere nos dois. Este explora a análise da polarização e filtro da polarização de um

sinal com três componentes implementando a transformada S de frequência de tempo.

Por fim, relativamente ao processamento de sinais sísmicos são de realçar as publicações

de Bensen, em 2007, em que é explorado o processamento de dados de ruído ambiente

sísmico para obter medições confiáveis de dispersão de ondas de superfície broadband e

Wang, em 2019, que por sua vez apresenta discussões sobre o processamento do campo

vectorial sísmico de multi­componentes.

No capítulo 4 é apresentada uma visão geral dos métodos implementados e sua incorpo­

ração na biblioteca Python desenvolvida. A primeira secção deste capítulo apresenta um

resumo matemático do processo de implementação dos métodos publicados por Flinn,

Vidale, Pinnegar e ainda o novo método desenhado no contexto do projecto SHAZAM.

A segunda secção descreve a biblioteca desenvolvida nomeando as bibliotecas utilizadas

e a sua finalidade, descrevendo as funções presentes em cada módulo presente na bib­

lioteca desenvolvida, SeisPolPy Almeida [2021], e descrevendo o processo de distribuição

e instalação da mesma.

O capitulo 5, por sua vez, apresenta uma discussão sobre a geração dos dados sintéticos

usados, os resultados obtidos e o modulo de testes implementado na biblioteca desen­

volvida. A primeira secção, apresenta o processo de geração e pre­processamento dos

dados sintéticos para cada ferramenta utilizada, SPECFEM3D Globe e IRIS syngine ser­

vice, descrevendo em detalhe cada passo tomado. De seguida, são explicados os resulta­

dos obtidos com a execução de cada modulo, usando os dados sintéticos gerados e pre­

processados. Para cada resultado é também indicado o tempo de execução de cada mod­

ulo implementado para cada conjunto de dados. Por fim, na ultima secção, é apresentado

o módulo de testes implementado. Neste, são descritos os testes efectuados à biblioteca

que, por sua vez, vêm validar o seu bom funcionamento.

Em conclusão, o objectivo deste documento foi fornecer uma perspectiva detalhada sobre

o desenvolvimento de software para análise de séries temporais sísmicas e uma descrição

detalhada do trabalho desenvolvido. Com os resultados obtidos e os testes realizados, é

possível verificar que todos os objectivos propostos foram alcançados com sucesso.

9

Development of a Python Library for Processing Seismic Time Series

10

Development of a Python Library for Processing Seismic Time Series

Chapter 1

Introduction

1.1 Problem Statement

By deploying seismic sensors at suitable sites the seismic waves generated by sources of

seismic waves are recorded as a discrete function of time on regular time samples, the

so­called seismic time series. The time series is a combination of effects of different pa­

rameters including the seismic source parameters, propagation environment, site effects,

etc. Richards and Aki [1980]; Hutchings and Viegas [2012].

The study of seismic time series gives scientists a deep insight into these critical param­

eters but requires the development and design of well­defined processing algorithms to

analyse the time series and extract the key information Bensen et al. [2007]; Wüstefeld

and Bokelmann [2007]. In this regard, although the development of robust mathemat­

ical algorithms is a fundamental aspect, the computer platform and versatile program­

ming languages for implementing the developed algorithms are of particular importance.

Several state­of­art computer codes have been published, among them, ObsPy, a Python

based and open­source framework, allowing the seismological community to contribute

to its further development freely.

Several processing libraries have been developed based on the ObsPy software platform

Lecocq et al. [2014]; Ermert et al. [2020]; Jiang and Denolle [2020]. ObsPy provides pre­

processing modules for reading and converting various data formats on local or remote

servers, applying band­pass filters for signal enhancement and noise cancellation, trend

removal, deconvolution of the instrument response. It presents the time­series as an ar­

ray compatible with the standard mathematical libraries like NumPy, SciPy, Matplotlib.

Moreover, ObsPy compatibility for wrapping external shared C or FORTRAN libraries

makes it an ideal toolbox to develop signal processing tools.

This research work aims to develop a state­of­art Python library consistent with ObsPy

for implementing developed ideas to process seismic time series and, in this way, capaci­

tate seismologists with a basis for further developing their ideas by building a bridge be­

tween pure ideas and their implementation. As the research work combines computer

sciences and theoretical seismology, a presentation of the basic concepts in both fields is

also presented in this thesis. The reader can refer to the book Ingle and Proakis [2016] and

glossary USGS [b] which provides a more extensive and specific background knowledge

relating to the subjects of signal processing and seismic events.

1.2 Objectives

The objectives of this thesis are as follows:

11

Development of a Python Library for Processing Seismic Time Series

1. To implement and enhance the algorithms introducedbyFlinn [1965]; Vidale [1986];

Pinnegar [2006] for signal enhancement and recovery of seismic time­series. This

involves studying and analysing these algorithms and the development and imple­

mentation of high­quality computer code capable of processing large data sets, pos­

sibly using high­performance computing techniques;

2. Design of a new algorithm;

3. To develop a Python library package for processing seismic time­series with the al­

gorithms described above. This step includes studying the technical challenges for

building new processing modules, testing and evaluating them.

1.3 Contributions

This thesis project was undertaken within the context of the SHAZAM project which aims

to solve problems arising from the limited seismic data available in the study region,

namely the Gulf of Guinea, and the need to develop sophisticated data processing algo­

rithms for extracting optimal information from the available seismic data. The present

research work includes the study of existing methods and their techniques, to improve

and optimise their accuracy and efficiency and the development of a new algorithm.

The main contributions from this thesis are:

• Study, implementation and optimisation of seismic signal processing methods in­

troduced in section 3;

• Development of a high­quality Python library Almeida [2021] for processing seismic

time­series available for the community on GitHub;

• An article, Almeida et al. [2021], published and presented at the EGU conference in

April 2021. TheAbstract, Poster andother digitalmaterials are available at https://doi.org/10.5194/egusphere­

egu21­15267. The poster is also available in annex C;

• An article submitted and accepted for publication by IEEE Transactions on Geo­

science and Remote Sensing. Scimago Journal & Country Rank, Quartiles (2021):

Q1 (Electrical and Electronic Engineering & Earth and Planetary Sciences). This is

currently available as a preprint Mohammadigheymasi et al. [2021a] and in annex

B.

1.4 Document Organisation

The present document is comprised of six chapters.

1. First chapter (Introduction) Presents the problem statement, the objectives to be

achieved, expected contributions and the organisation of this document.

12

Development of a Python Library for Processing Seismic Time Series

2. Second chapter (Seismic Time­Series: Background and Tools) presents a discus­

sion of seismic time­series, in particular the scientific background and tools avail­

able.

3. Third chapter (Literature Review) Presents an overview of concepts and existing

tools related to Seismic Time­Series. In this chapter, the focus is on presenting the

techniques already applied, tools to be used in their implementation, and a review of

selected papers related to this research work. The concepts presented, while crucial

to the subject and its techniques understanding, are presented in more contextual­

ising forms.

4. Fourth chapter (Implementation) introduces the implemented algorithms, de­

scribes the implemented functions and the building and installation process for the

developed library.

5. Fifth chapter (Results) describes the steps undertaken to generate synthetic data,

the results obtained with each implemented module and the implemented tests.

6. Sixth chapter (Main Conclusions and Future Work) Contains the main conclu­

sions obtained during this thesis.

13

Development of a Python Library for Processing Seismic Time Series

14

Development of a Python Library for Processing Seismic Time Series

Chapter 2

Seismic Time­Series: Background and Tools

2.1 Introduction

This chapter presents an overview of seismic time­series. Section 2.2 describes the basic

concepts of seismic waves, seismic signal processing, and the time­series techniques re­

quired to analyse the seismic time­series. Section 2.3 reviews open­source libraries and

frameworks related to the subject giving some insight over their individual applications

and usefulness in developing the proposed Python library.

2.2 Fundamental Techniques and Concepts

2.2.1 Seismic Waves

The shifting rock due to faulting in an earthquake, or the expanding medium due to an

explosion, results in vibrations called seismic waves that propagate inside the earth or

along its surface. Scientists use seismic sensors to record seismic waves. The recorded

data can help scientists study the source of the seismic wave and the structure of the earth

itself. In earthquake terminology, the placewhere the energy is released is called theHypo

center. It’s normal projection to the earth surface is called Epicenter. There are three

more crucial words of terminology namely, phase, rays, and wavefronts. Phase refers to

a segment in a full­wave cycle in which a change occurs, for example, a reflection. A ray

corresponds to the wave’s direction. Wavefronts are the points in a wave with the same

phase. Both of these, rays andwavefronts, are used separately to describe the propagation

of a wave as described in Fig. 2.1.

15

Development of a Python Library for Processing Seismic Time Series

Figure 2.1: Wavefronts are the points in a wave with the same phase and rays the direction of propagation
corresponding to a wave, as represented in this image the rays are always perpendicular to the wavefronts.
The wavefronts are all equally distanced, being that same distance represented in the image by the λ symbol.

Depending on the type of particle motion due to the seismic wave, the so­called polariza­

tion, and the wave propagation environment, seismic waves are categorised into twomain

types, body waves, and surface waves.

2.2.1.1 BodyWaves

In contrast to surface waves 2.2.1.2, which travel near the planet’s surface, a body wave

travels through the interior of the earth. This type of wave is further classified into two

different types, P waves, and S waves USGS [b].

primary (P) waves, as described in Bent [2013a], are seismic body waves that propa­

gate through the interior of the Earth. Primary waves get their name from the fact that

they’re usually the first waves a seismograph records. This type of wave particle motion is

similar to a sound wave particle motion in that it consists of a series of compressions and

dilatations parallel to the wavefront’s propagation direction as shown in Fig. 2.2. P waves

are recorded by the vertical (Z) and radial (R) components of the seismograph. They can

move through liquids and gases, but at a far slower rate than they can through solids. In

comparison to S waves and surface waves, P waves usually have smaller amplitude.

16

Development of a Python Library for Processing Seismic Time Series

Figure 2.2: The motion of particles in rock during P and S waves is seen in this figure. The vibration of the
rock, known as P or compressional waves, travels in the direction of propagation. Furthermore, with S or
shear waves, the rock oscillates perpendicular to the wave propagation direction. This image was taken

from USGS [a].

secondary (S) , like the P waves, are seismic body waves meaning they travel through

the interior of the Earth. Their velocity is lower than of P waves, and they are usually

the second major phase seen on a seismogram, earning them the designation secondary

waves. S waves have a greater amplitude than P waves, and they can cause significant

shaking and/or damage. As described in Fig. 2.2, these waves have particle motion that

is perpendicular to the propagation direction. Furthermore, S waves are classified into

two categories: SV waves, which occur on the vertical (Z) and radial (R) components of

seismographs, and SH waves, which are registered on the transverse (T) component. The

fact that S waves cannot travel through liquids or gases aided in the discovering that the

outer core was liquid, Bent [2013b].

2.2.1.2 Surface Waves

Surface waves are classified as directed and dispersed waves. Their propagation is hori­

zontal to the Earth’s surface. The phase velocities of these waves is faster and these act

like stationarywaves in the vertical coordinate. Over a specified time period surfacewaves

have the lowest velocity as written by V. Babuska in 1991 Babuska and Cara [1991].

The surface waves can be divided in two types, Love waves and Rayleigh waves.

Love wave these type of waves particle motion is rectilinear and purely horizontal and

perpendicular to the direction of propagationwhichmeans the Lovewave is only recorded

in the Tranverse (T) and Radial (R) components, as shown in Fig. 2.3. SH waves are what

make up Love waves.

17

Development of a Python Library for Processing Seismic Time Series

Figure 2.3: A Love wave is a surface wave possessing a horizontal motion which is transverse to the
direction of the wave. This image was taken from USGS [b].

Rayleigh wave this type of wave is depicted in Fig. 2.4 below. These waves origi­

nate from interfering P and Sv waves. Their particle motion is elliptical which makes the

Rayleigh wave occur only in the Vertical (Z) component of a seismograph that contains

the wave propagation direction.

Figure 2.4: A Rayleigh wave is a seismic surface wave that causes the ground to move in an elliptical motion
without a perpendicular or transverse motion. This image was taken from USGS [b].

2.2.2 Data Providers

Currently, there are several ways to access data related to seismic events due to the estab­

lishment of several platforms that make such information available.

The most commonly used platform is IRIS [b] which is a consortium of more than 100

US universities devoted to operating science facilities to acquire, manage and distribute

seismic data. This platform offers many many services, for instance a seismic monitor

IRIS [a] which allows the daily tracking of seismic events as shown in Fig. 2.5.

Another well known project and platform is the EPOS, which at the start of its devel­

opment integrated the much older ORFEUS, shares data from many different earth sci­

ence communities. EPOS much like IRIS makes seismology data and products available

through web services integrated within its data portal. An example of these services is

shown in Fig. 2.6. EPOS also has a data portal EPOS [2019] which allows its users to

access a workspace, after logging into their account, as well as data search and download

interactive tools. Integrated tools to process data within the EPOS workspace are cur­

rently in development.

18

Development of a Python Library for Processing Seismic Time Series

Figure 2.5: Seismic monitor web service provided by IRIS available at IRIS [a].

Figure 2.6: EPOS web service for data search and download EPOS [2019].

The data stored and made available by these platforms can be extracted for research pur­

poses via requests to someAPI or byusinghigh level frameworks (such asObsPyBeyreuther

et al. [2009] described in the 2.3.2.1 section). Data requests are made by giving input in­

formation like the seismic event name, time period, seismic station, and other optional

details.

For this thesis, most of the data used has already been published and made accessible

through platforms like the previously mentioned IRIS. In particular, information was col­

lected from countries bordering the Gulf of Guinea and specifically Cameroon. More seis­

mic data is being acquired from seismic stations located in São Tomé and Principe un­

der the SHAZAM project, and which is expected to be stored on Collaboratory for Geo­

sciences (C4G) (Universidade da Beira Interior (UBI)) servers.

19

Development of a Python Library for Processing Seismic Time Series

2.2.3 Seismic time­series

A time­series is no more than a series of data points ordered in time where time is usually

the independent variable (independent in the sense that its variation does not depend on

any another variable) Peixeiro [2019].

When dealing with time­series, there are a few aspects to consider, such as seasonality,

auto­correlation, and stationary. Seasonality refers to the periodic fluctuation in the data

(and can be derived from auto­correlation) and if the time­series plot has a sinusoidal

shape. To identify seasonality it is enough to look at the period of some given effect, which

gives us the season’s length.

Auto­correlation indicates the similarity between the data points as a function of the time

separating them.

The last aspect to consider is the term “stationary”, which is attributed to a time­series if

the statistical properties do not change over time, which is the same as saying that mean

and variance are constant and co­variance is independent of time.

Many modelling techniques are employed to predict “trends” in a time­series, such as

moving average, exponential smoothing, and AutoRegressive Integrated Moving Average

(ARIMA). These are some of the modelling techniques presented and explained in the

article Kehtarnavaz [2008].

These will not be further explained since they are not the focus of this thesis and are here

only to provide an example of what is available in this field of study.

2.2.4 Digital Signal Processing

Nowadays, we are surrounded by an incredible spectrum of signals in various forms, with

a natural or human­made source. Most often, the desired signals are contaminated by

unwanted or unnecessary signals called noise. The goal in science and engineering is to

extract the information from a mix of useful and unwanted signals. Signal processing is

a tool to obtain this goal. In the other words, signal processing is an operation designed

to extract, enhance, store, and transmit useful information. The signals we encounter in

practice are often an analog and continuous function of time (or space). Two basic meth­

ods of signal processing have been introduced. The traditional Analog Signal Process­

ing (ASP) by using electrical active and passive circuits, and the more advance method,

Digital Signal Processing (DSP). DSP is applied on a digital signal, which is a binary val­

ued form of analog signals at specific instances in time Ingle and Proakis [2016]. DSP

operations are based numerical methods methods.

DSP is done through the implementation of mathematical techniques like the Fourier

transform (FT) and the wavelet transform. Since the information in every signal is differ­

ent the usefulness of each employed technique is subjective to the specific implementation

goals Ingle and Proakis [2016].

20

Development of a Python Library for Processing Seismic Time Series

2.2.5 Fourier Series

The Fourier series was introduced originally by Jean­Baptiste Joseph Fourier as a tool to

expand a time­ or space­domain signal in terms of pure sine and cosine functions. The

orthogonal property of the base function in the Fourier series is used to make the trans­

formation invertible and lossless.

2.2.6 Discrete Fourier Transform

Here, we shortly review themathematical formula of the Fourier transform. Suppose that

x ∈ RL×1, (2.1)

is a seismic time­series which samples the wavefield arriving at a sensor along the time

axis on tk = kδt, δt is the sampling interval and k = 0, 1, ..., 2n is the time index assuming

an odd length L = 2n + 1 for the seismogram. Then, the discrete Fourier domain, xf =

FT {x} = f ∈ RL×1, is obtained by modulating x, with pure sinusoids having discrete

frequencies as follows,

f(l) =
1

2n+ 1

2n∑
k=0

x(k)exp(
−2πȷkl

2n+ 1
). (2.2)

Here, l = −n, ..., n, is the frequency index giving frequency content of the signal on dis­
crete frequencies ωf = f

(2n+1)δt , and ȷ is the imaginary symbol. The original signal is

obtained by applying the inverse Fourier transform, x = IFT {f},

x(k) =
2n∑
l=0

f(l)exp(
2πȷkl

2n+ 1
). (2.3)

The FT therefore consists of a mathematical technique to expand the signal in order to

facilitate its analysis on system performance and representation. Using this technique,

we obtain an alternative representation of the signal Madisetti and Vijay [2018]; Sevgi

[2014] and this can then be used to decompose a given signal into different components

so that the signal processing can run more effectively.

2.2.7 Wavelet Transform

The ordinary FT presents a frequency spectrum for the stationary signals, however, it can

not resolve the non­stationary characteristics of real­world signals. To circumvent this,

several time­frequency representation methods have been introduced in the literature

Stockwell [2007,?]. The Wavelet Transform is a tool to extract the local time­frequency

information of the signal. It brings a new perspective over signal processing not just for

the improvements achieved but also for being simple to implement Chun­Lin [2010].

21

Development of a Python Library for Processing Seismic Time Series

Wf(s, u) =

∫ ∞

−∞
f(t)

1√
s
ψ∗(

t− u

s
) dt. (2.4)

The wavelet function is designed to obtain an equilibrium between time and frequency

domain. Due to this functions ability of multi­resolution it outperforms Fourier­based

transforms. This is achieved by locating time and frequency withmore precision as stated

by Chun­Lin [2010].

2.3 Python Libraries and Seismic Frameworks

Quite a few libraries and frameworks are currently available in Python that are related to

implementing and using the methods presented so far.

There are libraries which are used to facilitate the implementation of mathematical func­

tions, such as the Fast Fourier Transform, or facilitate the implementation of testing and

third party library integration. These are in particular NumPy,SciPy, Pytest and Cython.

Others serve as tools for presenting the results from processing the raw data, Matplotlib

is one widely used such library.

There are many Python frameworks specific to seismology. In particular ObsPy which

contains many important tools for fetching and processing data and is in fact almost a

standard for Python software development in the seismology field. Other frameworks

studied were Noisi, NoisePy, andMSNoise, these served as a basis for the development of

SeisPolPy, in that they served as a way of learning and studying best practices in the field

of library development and documentation.

The libraries and frameworks presented in the following subsectionswere essential for the

development of the seismic time­series processing software and will now be described.

2.3.1 Python Libraries

2.3.1.1 NumPy

Numpy was created by Oliphant [2010] and currently serves as the basic open­source

package for scientific computing using the Python programming language. It offers its

users a powerfulN­dimensional array object, sophisticated (broadcasting) functions, tools

for integrating C/C++ and Fortran code, as well as numerical algorithms for linear alge­

bra, Fourier transforms, and random number generation.

2.3.1.2 Matplotlib

Matplotlib is a library for creating static, animated, and interactive visualisations inPython,

as shown by the Fig. 2.7 plots taken from the website referenced at the beginning of this

subsection, Hunter et al. [2012].

22

Development of a Python Library for Processing Seismic Time Series

Figure 2.7: Examples of some of the possible plot visualisations using Matplotlib library. This image was
taken from Hunter et al. [2012].

2.3.1.3 SciPy

SciPy is an important open­source package for signal processing, SciPy [2012a]. It makes

use of other packages, such asNumPy,Matplotlib, SymPy and the Pandas packages. From

each of these itmakes use of some features, like theNumPyN­dimensional array, theMat­

plotlib comprehensive 2D plotting, and the SymPy symbolic mathematics pandas data

structures and analysis algorithms. SciPy can be summed up as a collection of mathe­

matical algorithms and functions built on NumPy , SciPy [2012b]. Through these, it adds

power to Python by entrusting to the user high­level commands and classes for visualisa­

tion and manipulation of data.

2.3.1.4 Cython

Cython is a Python extension that allows explicit type declarations and the direct compila­

tion of Python to C code. Using this library it’s possible to address Pythons large overhead

for numerical loops, as well as the difficulty in making efficient and simplified use of ex­

isting C or Fortran code Behnel et al. [2010].

2.3.1.5 Pytest

Pytest is a Python testing tool which can be used for all types and levels of software testing.

It contains powerful features such as “assert” rewriting, a third­party plugin module and

a simple but powerful fixture model Okken [2017].

This tool, being a software test framework, is a command­line tool that automatically finds

any tests written by its users, runs them, and reports the results. It also has a library

containing various functions to make testing more effective. Furthermore, Pytest can be

extended by writing new plugins or installing third­party plugins.

2.3.2 Python Seismic Frameworks

2.3.2.1 ObsPy: A Python toolbox for Seismology

ObsPy, as a toolbox for seismology, has the objective of filling the existing gap between

analysis and automatic data acquisition systems. This tool is open­source and extends

Python by supplying the users basic seismological routines and by storing data in NumPy

n­dimensional arrays. This allows the use of powerful modules for numerical array pro­

gramming such as, Numpy (2.3.1.1) and SciPy (2.3.1.3).

23

Development of a Python Library for Processing Seismic Time Series

ObsPy provides a unified access to read/write seismograms with MiniSEED, GSE2, SAC,

SEISAN, Seismic Handler formats Q and ASCII format. All the data regarding this as­

pect is stored as a stream object, which means that multiple seismic data records can be

stored in one file. Each record can be accessed separately. Furthermore, the data can then

be processed after being stored or, via Python Ctypes library, the ObsPy routines can be

shared to any C or FORTRAN library.

Among many modules provided by this tool, one of the most important is XSEED. This

module provides users with the capability of converting data from Dataless SEED, Full

SEEDvolumes, andXML­SEEDandback, thus supporting the IRIS data supplier formats.

ObsPy supports many different formats and this gives it the possibility of connecting to

different kinds of servers used by data­centers (IRIS, ORFEUS, etc.) and to read data

from local files or to import data directly from data centers by only specifying the desired

combination of labels.

Beyreuther et al. [2010] state that ObsPy contains only basic signal processing routines.

These do however allow data centers to process some of the most common processing

steps and visualise the results obtained via the Matplotlib (2.3.1.2) package.

2.3.2.2 Noisi

Noisi is an open­source Python tool which allows (forward and inverse) modelling of am­

bient seismic cross­correlations that contain a spatially varying source spectra Ermert

et al. [2020]. This becomes possible by making use of pre­computed databases for the

representation of seismic wave propagation between the ambient seismic source and re­

ceivers. This tool also depends onObsPymodule for accessing the seismologicalwaveform

data.

The main purpose of Noisi is the study of ambient seismic sources while taking into ac­

count the effects of realistic wave propagation. Moreover, it can be used for guidance in

terms of interpreting ambient seismic auto and cross­correlations.

2.3.2.3 MSNoise: APythonPackage forMonitoringSeismicVelocityChanges

Using Ambient Seismic Noise

MSNoise is also an open­source, well commented and documented Python integrated so­

lution. It is designed to be fully cross­platform and has a processing workflow separated

into steps for any user to replace the code in any step. However, after the replacements,

inputs, and outputs must be respected for the tool to still function properly.

The article published by Lecocq et al. [2014] aims to present an overview of all the pro­

cessing workflow steps from the computer scientist’s perspective. It has also shown a

validation of the proposed toolbox (MSNoise) using archived seismic data related to a vol­

cano where precursory changes in seismic velocity had been observed before two known

eruptions.

As stated in the reviewed document and citing T. Lecocq in 2014, ”MSNoise is the first

complete software package for computing and monitoring relative velocity variations us­

ing ambient seismic noise. MSNoise is a fully integrated solution that automatically scans

24

Development of a Python Library for Processing Seismic Time Series

data archives and determines which jobs need to be done whenever the scheduled task is

executed”.

The authors also affirm that the testing results have verified the usefulness of the tool.

These results show that MSNoise is extensible and a useful tool for researchers by allow­

ing them to focus only on implementing the codes related to processing and benefit from

the framework. Furthermore, they claim that, although the presented validation is in a

volcanic environment, this does not mean that its application is restricted to this specific

case.

2.3.2.4 NoisePy

NoisePy is defined as a new Python open­source, high­performance tool design to target

large­scale ambient noise seismology in the reviewed article. This tool provides most of

the current processing techniques developed for ambient field data and literature corre­

lations, parallel download routines, dispersion analysis, and monitoring subroutines.

NoisePy, as stated by Jiang and Denolle [2020], overcomes MSNoise (2.3.2.3) by achiev­

ing a 4­time improvement in computational timeover the computing of cross­correlations.

After undergoing successful testing, this tool has proved capable of handling data with

sizes ranging from gigabytes to terabytes. This is achieved by taking advantage of a paral­

lel input/output enabled Hierarchical Data Format (HDF) 5 data format designed specif­

ically for seismology. The use of this data format results in a structured organisation of

cross­correlation data. Furthermore, NoisePy obeys the computation of noise correla­

tions over time windows parallelism by using Message Passing Interface (MPI) and thus

achieving strong scaling based on the number of available cores. It also takes advantage

of some Python libraries’ functionalities to achieve its goals. These libraries are ObsPy

(2.3.2.1), as well as Numpy (2.3.1.1), SciPy (2.3.1.3), mpi4py, pyASDF and Numba.

In the present document, the authors present the workflow, functionalities, and compu­

tation performance of the tool. It is also presented a single­core analysis made on an iMac

and other performance tests. These originated good computational times even for tasks

with a data size of 10+terabytes. The authors expect to reduce the computation time of

the tool when they achieve the use of GPUs for the correlation step. Thus, satisfying the

growing influence of architectures combining CPUs and GPUs in large, more recent clus­

ters.

2.4 Conclusions

In this chapter a description of the fundamental seismic concepts required for this disser­

tation has been presented. A description of the data providers concerning seismic events

was given. A brief overviewof seismic time­series, and crucial techniques regarding digital

signal processingwere also discussed. This chapter also contained an overview of libraries

and frameworks most commonly used for implementing the methods described through­

out the present document. All of these libraries and frameworks will be used throughout

this research in order to achieve the proposed goals in 1.2.

25

Development of a Python Library for Processing Seismic Time Series

26

Development of a Python Library for Processing Seismic Time Series

Chapter 3

Literature Review

3.1 Introduction

Aseismicwave is amechanical disturbance or energy packet generated by a sudden release

of energy such as that from an earthquake, volcanic eruption, or explosion. The waves

propagate through the layers inside the Earth Aki andRichards [2002]. Due to the Earth’s

non­homogeneous and anisotropic characteristics, the generated seismic waves undergo

different physical phenomenons, including reflection, refraction, dispersion, and diffrac­

tion Udias and Buforn [2017]. As a result, different seismic phases are generated and

propagated throughout the Earth’s physical layers. The propagated wave­field is recorded

by seismic sensors installed in specific seismic stations. These sensors usually consist of

three components, each component records particle motion in a particular orientation

(usually East, North, and Upwards).

The recorded wave­field provides input data for studying the Earth in different scales,

from shallow depth explorations to large­scale studies that aim to image the core, crust or

mantle mechanisms. Extracting information from these seismic time series demands so­

phisticated processing and inversion methods to convert the raw data to a physical model

that seismologists and geologists can interpret Bensen et al. [2007]; Jurkevics [1988];

Yilmaz [2001]. These numerical methods often have high computational costs and need

up­to­date hardware and software facilities. Developing new numerical methods on one

hand and using new programming languages and software platforms on the other pro­

foundly facilitates the optimal extraction of information from the raw data.

This research aims to address both needs by developing a Python based library in the Ob­

sPy platform to implement and optimize time series processing algorithms. Taking advan­

tage of all the available pre­processing modules of ObsPy and its compatibility with the

numerical libraries like SciPy, Numpy, and Matplotlib, the aim is to develop high­quality

algorithms that can be used on real and synthetic seismic data for optimal extraction of

desired information. This thesis is part of the SHAZAM project, which studies the Gulf of

Guinea as the target area.

Each section of the present chapter will review the literature on methods and algorithms.

The literature chosen as the most relevant for this research work are, in chronological

order, as follows:

• E. Flinn, “Signal analysis using rectilinearity and direction of particle motion”, Pro­

ceedings of the IEEE, 53(12):1874–1876, 1965.18,19; Flinn [1965]

• J. F.Montalbetti andErnestRKanasewich, “Enhancement of teleseismic bodyphases

with a polarization filter”, Geophysical Journal International,21(2):119–129,1970.17,18,19;

Montalbetti and Kanasewich [1970]

27

Development of a Python Library for Processing Seismic Time Series

• J. E. Vidale, “Complex polarization analysis of particle motion”, Bulletin of the Seis­

mological society of America, 76(5):1393–1405, 1986. 22. Vidale [1986]

• A. Jurkevics, “Polarization analysis of three component array data”, Bulletin of the

seismological society of America, 78(5):1725–1743, 1988; Jurkevics [1988]

• A. Reading, et al. “Polarization filtering for automatic picking of seismic data and

improved convertedphase detection”, Geophysical Journal International 147.1 (2001):

227–234; Reading et al. [2001]

• R. Pinnegar, “Polarization analysis andpolarization filtering of three component sig­

nalswith the time—frequency S transform”, Geophysical Journal International,165(2):596–

606, 2006; Pinnegar [2006]

• R. H. Herrera, et al. “Body wave separation in the time­frequency domain”, IEEE

Geoscience and Remote Sensing Letters,vol. 12, no. 2, pp. 364–368, 2014; Herrera

et al. [2014]

• C. Wang, et al. “Discussions on the Processing of the Multi­Component Seismic

Vector Field.” Applied Sciences 9.9 (2019): 1770; Wang et al. [2019]

3.2 SignalAnalysisUsingRectilinearity andDirectionofPar­

ticle Motion

In this paper a processor for three­component seismic records designed to enhance parti­

cle motion both in rectilinear and in any particular direction in a three­dimensional space

is discussed, Flinn [1965].

This processor has the advantage of separating the body waves motion from the surface

waves motion when both distance and azimuth to the seismic source is specified. The

processor is able to isolate and identify the pulse P (pP) that propagates practically the

same path as the first arrival detected by the three­component sensors and arrives simul­

taneously as a compressional pulse. The pP referred previously is the one that propagated

vertically, directly from the seismic source, and was reflected from the surface. Identify­

ing this pulse is essential due to the time interval’s dependence between pP and P with the

source’s burial.

This scheme’s application has some details that need to be considered, such as the slight

frequency­dependent phase shift. This problem, while it should be considered since the

records have been linearly processed to achieve a high ratio of signal to ambient noise,

it’s to be expected that the mutations of the data on the original seismogram into particle

motionpolarization resultswill be useful andmore importantlymeaningful to the scientist

analysing them.

Even though the work related to this document has been implemented, as will be seen in

the following sections 3.3 3.5, what E. Flinn in fact describes in this paper is a general idea

and not an actual algorithm.

28

Development of a Python Library for Processing Seismic Time Series

3.3 Enhancement of Teleseismic Body Phaseswith a Polar­

isation Filter

The article proposes amodification to the previously describedpolarization filter described

by Flinn [1965]. The authorsmodified the filter to increase the signal to noise ratio of seis­

mic body phases, Montalbetti and Kanasewich [1970].

The authors obtain rectilinearity and direction of particle motion by applying the covari­

ance matrix to the three components data of ground movement during a small interval of

time. By diagonalizing the matrix and creating a function that contains the ratio of the

intermediate and most extensive principle axes J. Montalbetti and E. Kanasewich find

the estimation of rectilinearity. On the other hand, the polarization direction is obtained

from the eigenvector largest principle axis. With these, a set of time­varying operators is

obtained through which control is achieved to modify the digital seismic records.

With these filters, it is possible to enhance most of the compressional or shear phases.

According to the authors of this article, and the resulting data, applying the filter to an

array of three­component stations makes it possible to identify multiple events on the

source of some earthquakes. It is then possible to conclude that this polarization filter

enhances phases with well­defined properties, making it very useful in processing tele­

seismic data by making these events easier to correlate and interpret due to the signal

character distortion being reduced over time.

3.4 Complex Polarization Analysis of Particle Motion

In this article the author, J. E. Vidale, proposes a method that identifies the problem re­

garding multiple arrivals by presenting a low degree of polarization and by being able to

handle elliptical polarization. With the reviewed article the author essentially aims to ex­

tend the scheme presented by Montalbetti and Kanasewich [1970], reviewed in 3.3, to

analytic three­component seismograms. This is achieved by having the imaginary part of

the signal has the Hilbert transform of the real part. The author affirms that obtaining

elliptical polarization was only made possible by making use of the analytic signal.

Furthermore, the complex polarization filter shown throughout this paper allows three­

component seismogram routine analysis to yield the wave type of the arrivals. The data

presentwithin the obtained analysiswill aid in the interpretation of strongmotions recorded

in a given seismic event Vidale [1986].

With the results, obtained and presented by the author, he concludes that S body waves,

which are converted into surface waves upon striking basin structures, supply energy that

makes the basins shake for a longer duration of time when compared to surrounding

mountains.

29

Development of a Python Library for Processing Seismic Time Series

3.5 Polarization Analysis of Three­component Array Data

A technique for polarization analysis which can be applied to data recorded from a three­

component sensors array or a single sensor Montalbetti and Kanasewich [1970]. This

technique is also based on the original algorithm proposed by Flinn [1965].

The importance of three­component recordings is the importance of monitoring regional

seismic activity as the regional phases can exhibit large horizontal motions. Moreover,

while simple three­component seismograms help interpret these events, a more complete

and accurate analysis requires processing the signals and extracting/enhancing the polar­

ization content.

The author describes two different approaches to analysing three­component data. The

first is the application of a non­linear filter based on the data polarization content and

output the modified seismograms. The second comprises in estimating parameters of

some model already fitted to the data in a time­varying manner.

The extensions to E. Flinn presented in the paper were the application to an array of sen­

sors (three­component) and frequency decomposition. This technique consists in filter­

ing the signals into a series of small frequency bands applying short time windows and

finally computing, for each window, the polarization ellipse from the covariance matrix.

Through this process are produced a series of attributes representing particle motion as

time and frequency. The covariance matrices are averaged for all arrays before finding

the eigenproblem solution to apply this technique to an array of sensors.

The objective when using this technique was to examine the polarization properties of

regional seismic phases by exploiting signal to noise advantage gained by using an array

of sensors.

The results, obtained by the author, showed that crucial factors were the chosen time

and frequency, as well as the purest polarised motions, in a given phase. According to A.

Jurkevics in 1988, “The use of an array of three­component sensors was found to reduce

the estimation variance of polarization attributes by 1/M, where M is the number of

sensors when the noise and scattering distortions are uncorrelated between sensors.”

Jurkevics [1988].

3.6 Polarization Filtering for Automatic Picking of Seismic

Data and Improved Converted Phase Detection

With the published document, it is proposed the improvement of picking speed, of the

already developedmethods, and converted phase yield, Reading et al. [2001]. The authors

also indicate that this work is most beneficial when dealing with data sets used for multi­

phase tomography.

This improvement came since, after phase conversion, the data analysts had to handpick

the information related to the converted arrivals from extensive data sets, which was very

time­consuming due to the interference of P­coda waves, which lead to the fact that many

converted arrivals could not be picked. To be able to improve the picking process as well

30

Development of a Python Library for Processing Seismic Time Series

as pick correct converted phase arrival times, the authors applied automatic picking as

well as polarization filtering.

Polarization filtering is applied to three­component data to improve phase identification

and facilitate automatic detection. For different types of problems, the are differentmeth­

ods to apply in order to separate the waves arriving, methods like the ones applied in

Jurkevics [1988], and Montalbetti and Kanasewich [1970] and reviewed in the previous

sections. In this paper, the application of a polarization filter is made to improve the auto­

matic picking of direct waves and mode converted PS waves and SP waves arrivals. With

this goal, A. Reading in 2001 applied the data­adaptive filters, which may be built un­

der the premise that the noise is less polarised than that signal of interest. A time­domain

picking­method follows these filters to improve the automatic detection of direct and con­

verted phase arrivals.

According to the authors, “98 percent of the P arrivals and 95 percent of S arrivals picked

manually from high­pass­filtered records were successfully picked automatically after po­

larization filtering. Many more intermediate arrivals can be seen on the polarization fil­

tered data compared to those on the manually picked traces. Without polarization filter­

ing, they number 455 SP and 83 PS phases; with filtering, this count improves to 528 SP

and 482 PS phases.”. The converted waves’ energy is more linearly polarised than the

scattered energy, making them easier to identify and pick.

3.7 PolarizationAnalysis andPolarizationFilteringofThree­

Component Signals with the Time–Frequency S Trans­

form

With the article, here reviewed, the author presents an application of windowed Fourier

transforms, such as the S transform, to design a signal­adaptive polarization filter. The S

transform contributes to the filter to be designed by obtaining the time­frequency spectra

of the polarization characteristics from three­component seismic signals. The obtained

spectra can thenbe used to separate the entire signal in “circular” and “linear” parts. Using

this Fourier transform and the obtained parts it is possible to design a filter which targets

specific polarization properties, Pinnegar [2006].

In the paper the author presents, in detail, the mathematics regarding developing the

signal­adaptive polarization filter. Furthermore, it is also included three similar examples

in which the designed filter aims to remove the Rayleigh wave from a three­component

seismic signal, which, has shown by the results, is achieved with success.

3.8 BodyWave Separation in the Time­Frequency Domain

Dividing a seismogram into its constituent phases has long been a challenge. In a way to

overcome this challenge, the authors employ a high­resolution time­frequency transform

and recreate their individual waveforms in the time domain. Due to the employed trans­

31

Development of a Python Library for Processing Seismic Time Series

form, named synchrosqueezing transformwhich consists in a derivation of theContinuous

Wavelet Transform (CWT), they obtained high­resolution decomposition’s map in the

time­frequency domain which enabled the identification and separation of P and S waves.

The transform algorithm used can be inverted like any other Fourier transform which

means that after the separation the signal can be reconstructed in the time domain. Fur­

thermore, Herrera et al. [2014], state that due to blurring in the frequency domain the

previously mentioned contents would not be recoverable using STFT. After obtaining the

results, and analysing them, was concluded that the employed method brings out addi­

tional useful information that until now the traditional methods could not obtain. Fur­

thermore, the authors highlight the fact that their proposed method can also be utilized

successfully when the different phases present in a seismic waves overlap in time. Al­

though, these need to be separated in terms of their frequency content.

3.9 Discussions on the Processing of theMulti­Component

Seismic Vector Field

Multi­component seismic data contain considerable information about the medium the

seismic waves propagate through. The methods developed for processing the vector field

information have been developed but still lack effectively retaining and using it. One of

the reasons this is yet to be achieved relates to the fact that the processing techniques

currently treat the individual agents independently as a scalar field. While correct, this

approach creates the problem of restricting potential utilities of the information by not

excavating the vector characteristics of the wavefield.

The article’s focus, written by Wang et al. [2019], is to present a summarised discussion

of the already developed pre­processing techniques, such as polarization filtering, de­

noising using vector order statistics, group sparse representation, and vector separation

of compressional waves and shear waves. With this, the authors hope to help researchers

developmore field processingmethods and also incite the development of vector process­

ing techniques for multi­component seismic data.

3.10 Conclusions

In this chapter, the techniques and methods for processing and pre­processing data from

seismic events were described. Through each reviewed paper has become possible to per­

ceive the basis of the currently employed techniques and the improvementsmade to over­

come the difficulties faced by researchers, such as efficiency, accuracy, or even the appli­

cation of these techniques.

32

Development of a Python Library for Processing Seismic Time Series

Chapter 4

Implementation

4.1 Introduction

This chapter is an overview of the methods implemented and their incorporation into our

Python library. The first section 4.2 presents amathematical summary of the implementa­

tion process for the different algorithms. The second section 4.3, describes the developed

library by naming the libraries utilised, describing the functions present in each module

and describing the library building and installation process.

4.2 Implemented Algorithms

The methods introduced by Flinn [1965], Pinnegar [2006], and Vidale [1986] were cho­

sen as the main modules of SeisPolPy library. Furthermore, a newly developed seismic

polarization analysis method, a regularised sparsity­based approach (RS­TFR) Moham­

madigheymasi et al. [2021a], was implemented in SeisPolPy library. This new method

was developed as part of the SHAZAM project with the purpose of improving on separa­

tion of the different seismic phases. In the following, we give an in­detailed explanation

of the algorithms implemented, accompanied by some numerical examples.

4.2.1 Flinn Method

The present method was designed by Flinn [1965] to perform signal analysis by making

use of rectilinearity and direction of particle motion, as described previously in 3.2. This

method, unlike any other here mentioned, obtains the information necessary without the

need to transform the signal from the time domain to the time/frequency domain. For

thismethod, the first step is to separate the three components of the signal. Next, a rolling

window is applied to each component of the data to obtain samples. For this second step,

a Gaussian window is used, which is defined as

w(n) = e−
1
2
(n
σ
)2 . (4.1)

The third step for the implementation of the Flinn method consists in a part procedure.

Firstly we obtain the covariance matrix, C, by examining the N­dimensional sample,X =

[x1, x2, x3]
T (inwhich eachx corresponds to one of three components). Thuswe can obtain

the covariance matrix elements Cij (which are the covariance of xi and xj) as follows,

33

Development of a Python Library for Processing Seismic Time Series

C =
XTX
N

. (4.2)

The second step consists in finding the eigenvalues (λ1λ2, λ3) and eigenvectors (u1u2u3),

which are nontrivial solutions to,

(C− λ2I)u = 0, (4.3)

where (.)T denotes the transpose operator, I a three­by­three identity matrix, and 0 a

column vector containing zeros only.

The fourth, and final step, consists of creating rectilinearity and direction of particle mo­

tion arrays. For rectilinearity, this is done for each sample and after obtaining the respec­

tive eigenvectors and eigenvalues, by calculating

Rec[i] = (1− (
λ2
λ1

)), (4.4)

with i = 0, 1, ..., N (being N the total number of samples), and adding the result to the

rectilinearity vector, Rec. As for the direction of polarization motion, the process is sim­

ilar, but instead, we have a vector for each component and a coordinate transformation

operator for each component,

Ctox1 = [cos(inc), sin(inc)× sin(π), sin(inc)× cos(π)], (4.5)

Ctox2 = [sin(inc), cos(inc)× sin(π), cos(inc)× cos(π)], (4.6)

Ctox3 = [0, cos(π), sin(π)], (4.7)

with inc as (0
180)π. Then at each sample the following operations are performed,

Dirx1 [i] = uT1 × (Ctox1)
T , (4.8)

Dirx2 [i] = uT1 × (Ctox2)
T , (4.9)

Dirx3 [i] = uT1 × (Ctox3)
T , (4.10)

with i = 0, 1, ...,N . With the previous operations finished, we then obtain the direction of

particle motion for each component and the rectilinearity.

4.2.2 Vidale Method

Ananalytic­signal­basedpolarization analysiswas introducedbyVidale [1986]. Themethod

has the advantage of having only one free parameter, the time­window length, in which

the polarization parameter is estimated. The azimuth and the dip of the direction of parti­

34

Development of a Python Library for Processing Seismic Time Series

cle polarization are calculated with a high degree of precision. This method distinguishes

itself from every other method here presented by making use of the Hilbert transform.

Both this method as the previously described method designed by Flinn [1965], although

very old, still posses an immense value not just historically but also in terms of the validity

of the information we can can extract from the signals.

The first step for implementing this method is very similar to the process described in

4.2.1, in which we start by separating the three­components of the seismic signal. How­

ever, in the present method, the separated components undergo the Hilbert transforma­

tion.

The Hilbert Transform (HT) is defined as,

x̂t = H[x(t)] =

∫∞
−∞

x(t)
t−τ dτ

π
= x(t) ∗ 1

πt
, (4.11)

for any signal x(t), where “*” corresponds to the convolution operation.

The second step for the Vidale method implementation consists of windowing the signal

components data to obtain samples, which is achieved by making use of the Gaussian

window (4.1), in the same way as described in the previous section 4.2.1.

We compute the covariancematrix for the third step of implementation to obtain the three

eigenvalues λi and the eigenvectors (xi, yi, zi). The computed eigenvector (x0, y0, z0)

corresponding to the largest eigenvalue λ0 points in the direction of themost considerable

amount of polarization. Nonetheless, the phase in the complex plane of an eigenvector is

arbitrary.

The fourth step is to obtain the length of the eigenvectors real component, where

X =
√
(Re(x0cisα))2 + (Re(y0cisα))2 + (Re(z0cisα))2 (4.12)

and,

cisα = cosα+ isinα (4.13)

and Re(x) the real part of x. To maximise the value of X, before computing the equation

in (4.12), the eigenvector is normalised to have length 1, and then the eigenvector (x0, y0,

z0) must be rotated by 0º to 180º. Through this rotation in the complex plane, the largest

real component can be found. The rotation in question can be found by searching the

values α = 0º to 180º.

The fifth and final step is implementing the equations that will generate the final polar­

ization results, which will enable the analysis of the seismic signal. For the first equation

the eigenvector (x0, y0, z0), after being rotated by the angle α, is utilised to compute the

elliptical component of polarization defined as,

35

Development of a Python Library for Processing Seismic Time Series

PE =

√
1−X2

X
. (4.14)

If PE is 1, then we have a circularly polarised motion. If this value is 0 then, we have a lin­

early polarised motion. In cases of ambiguity, these resulting values are usually used for

defining the direction of propagation corresponding to the Rayleigh waves. The second

equation implemented corresponds to the strike of the direction of maximum polariza­

tion, which is defined by Vidale as,

ϕ = tan−1

(
Re(y0)

Re(x0)

)
. (4.15)

The third equation corresponds to the dip of the direction of maximum polarization and

has been defined as,

δ = tan−1

(
Re(z0)√

Re(x0)2 +Re(y0)2

)
. (4.16)

The author states that the dip and strike equations range from ­90º to 90º, and 0º rep­

resenting a vector that points horizontally in the direction of the epicenter. Comparably,

the intermediate and smallest eigenvectors λ2 and λ1 both point in the direction of the

intermediate and minimal amount of polarization, correspondingly.

The last equation measures the strength of polarization in the given seismic signal. This

equation was defined by the author as follows,

Ps = 1− λ1 + λ2
λ0

. (4.17)

If the result is close to 1, it is possible to conclude that the signal is entirely polarised,

which means that only one component of polarization exists. On the other hand, if the

result from Ps equals then the most significant component of polarization size equals the

other two components size.

4.2.3 Pinnegar Method

The third method implemented, designed by Pinnegar [2006], aims to analyze and fil­

ter the polarization of three­component signals by making use of the time­frequency S

transform. This method presents a very intuitive methodology to extract polarization in­

formation from monochromatic waves. This method although extremmely important is

blind in terms of extracting linear polarization motion.

The first step, similarly to the previous method 4.2.1, consists of separating the three­

component signal data for it to be prepared for the next step. Having the data separated

36

Development of a Python Library for Processing Seismic Time Series

its now time to apply the S transform algorithm defined as,

X(τ, f) =

∫ ∞

−∞
x(t)

{
|f |√
2π
exp

[
−f2(τ − t)2

2

]}
× exp(−2πift) dt, (4.18)

to change the data domain for the time to the time­frequency domain.

In the second step, we begin with separating the real (XRYRZR) and imaginary (XIYIZI)

parts for each component. Which is followed by obtaining a (semi­major), b (semi­minor),

I (inclination), Ω, and ω values. For this, we proceed as follows,

A = X2
R +X2

I + Y 2
R + Y 2

I + Z2
R + Z2

I , (4.19)

B = X2
R −X2

I + Y 2
R − Y 2

I + Z2
R − Z2

I , (4.20)

C = −2(XRXI + YRYI + ZRZI), (4.21)

then

a =
1√
2

√
A+

√
B2 + C2, (4.22)

b =
1√
2

√
A−

√
B2 + C2, (4.23)

I = arctan

{
[(ZRYI − ZIYR)

2 + (ZRXI − ZIXR)
2]

1
2

(YRXI − YIXR)

}
, (4.24)

Ω = arctan

{
(ZRYI − ZIYR)

(ZRXI − ZIXR)

}
, (4.25)

ω = ω0 − π

(
sign(ω0)− 1

2

)
, (4.26)

where

ω0 = arctan

{
b[ZR cosϕ0 − ZI sinϕ0]

−a[ZR sinϕ0 − ZI cosϕ0]

}
, (4.27)

ϕ = ϕ0 + π

(
sign(ω0)− 1

2

)
sign(ϕ0), (4.28)

where

ϕ0 =
1

2
arctan

(
C

B

)
. (4.29)

Having obtained all the necessary values, we can now analyse the polarization of the three­

component signal.

37

Development of a Python Library for Processing Seismic Time Series

4.2.4 RS­TFR Method

The fourth method implemented consists of a sparsity­promoting approach to eigenvalue

decomposition polarization analysis in the time­frequency domain. Thismethod has been

developed in the context of this dissertation as part of the SHAZAM project. It improves

the deficiency of the Pinnegar method in analysing the linear particle motion and refor­

mulates the eigenvalue decomposition polarization analysis in the frequency and time fre­

quency domain.

For the present method, the implementation begins the same way as the methods previ­

ously described in 4.2.1 4.2.3. It starts by separating the three­component seismic data.

After the first step is completed, there are then two different approaches that can be taken,

and the first is the implementation of the STFT algorithm defined as,

TFSTFT (k, l) =
2n∑
k=0

x(k̂)e
−π(k̂−k)2

σ2 exp(
−2πjk̂l

2n+ 1
), (4.30)

where e
−π(k̂−k)2

σ2 consists in a Gaussian window centered around the k index with a stan­

dard deviation of σ, l = −n, ...,−1, 0, 1, ..., 2n and k = 0, 1, ..., 2n.

The second approach is as an extension of the STFT to the S transform (ST) as,

TFST (k, l) =
2n∑
k=0

x(k̂)|l|e−πl2(k̂−k)2 exp

(
−2πjk̂l

2n+ 1

)
, (4.31)

with k and l defined the same as in equation (4.30).

With both the approaches implemented, it is now possible to obtain the time­frequency

of the three components of the signal by using one of the algorithms. The third step is

consists in implementing auto­ and cross­correlation, which terms are obtained by im­

plementing

Cij(k, l) =

gij(k,−l) + gij(k, l) l ̸= 0,

gij(k, l) l = 0,
(4.32)

with k = 0, 1, ..., 2n+ 1 as a time index and l = 0, 1, ..., n as a frequency index.

The forth step in implementing this method consists in obtaining the time­frequency de­

pendent eigenvectors (u1(k, l)u2(k, l)u3(k, l)), and their corresponding eigenvalues (λ1(k, l)λ2(k, l)λ3(k, l)).

These values are calculated by solving,

(C(k, l)− λi(k, l)I)u(k, l) = 0, (4.33)

Achieving a higher resolution has always been a big concern in the scientific community

Mohammadi Gheimasi et al. [2010]; Gholami and Gheymasi [2016]; Gheymasi [2009]

38

Development of a Python Library for Processing Seismic Time Series

Here, we use a sparsity based regularized approach to obtain the Time­Frequency (TF) of

the signal. The desired TFmap can be obtained by using some formof a priori information

under the frame of regularization techniques [Gheymasi and Gholami, 2013; Gheymasi

et al., 2016]. A sparsity­promoting regularization enables selecting a TF model with a

minimum number of non­zero coefficient by solving a constrained optimization problem

I = argmin

{
1

2
||GI − x||22 + λ||I||1

}
, (4.34)

with,

x = GI,G ∈ RL×L2
, I ∈ RL2×1, (4.35)

with λ being a suitable defined lagrangian multiplier, having as a reference the Karush­

Kuhn­Tucker (KKT) condition Kyparisis [1985].

4.2.4.1 Adaptive filtering in the TF­domain

The last step of the implementation of adaptive filtering to separate the seismic phases

Heravi et al. [2012]. It has been extensively applied in seismologyMontalbetti andKanasewich

[1970]; Vidale [1986]; Jurkevics [1988];Mohammadigheymasi et al. [2021b]. Themethod

consists in the design of a TF domain filter based on the rectilinearity, directivity, and am­

plitude attributes obtained for each time and frequency value in a given signal to either

remove or extract different phases of a seismic wave.

Firstly, the rectilinearity attributes are obtained by calculating a degree of rectilinearity,

Re(k, l) = 1− λ2(k, l) + λ3(k, l)

λ1(k, l)
, (4.36)

defined as a measure to differentiate the rectilinear motion of body and Love waves from

the elliptical motion of Rayleigh waves. Next is the application of the obtained degree to

the rectilinearity filter designed in the TF domain as

ΨRe(Re(k, l)) =


1 −1 < Re(k, l) < α,

cos
(
π(Re(k,l)−α

2(β−α)

)
α < Re(k, l) < β,

0 β < Re(k, l) < 1,

(4.37)

with α and β being the defined adjusting parameters.

Secondly, the directivity attributes are obtained by calculating a directivity measure,

Di(k, l) = |uT1 (k, l)ei|, i ∈ T,R,Z. (4.38)

39

Development of a Python Library for Processing Seismic Time Series

And then applying the obtainedmeasure to the directivity filter designed in the TF domain

as

ΨD(Di(k, l)) =


1 0 < Di(k, l) < γ,

cos
(
π(Di(k,l)−γ

2(λ−γ)

)
γ < Di(k, l) < λ,

0 λ < Di(k, l) < 1,

(4.39)

with γ and λ being the defined adjusting parameters and e the base vectors.

Thirdly, the amplitude attributes are obtained by defining an amplitude measure,

A(k, l) = λ3, (4.40)

And then applying the definedmeasure to the amplitude filter, designed in the TF domain,

as

ΨA(A(k, l)) =


0 0 < A(k, l) < ζ,

cos
(
π(A(k,l)−ζ
2(η−ζ)

)
ζ < A(k, l) < η,

1 η < A(k, l) < 1,

(4.41)

with ζ and η being the defined adjusting parameters.

After obtaining all the rectilinearity, directivity, and amplitude attribute values, the next

step is to combine these attributes properties by implementing the total TF reject filter,

ΨR = 1− 1−ΨRe ◦ 1−ΨD ◦ 1−ΨA, (4.42)

and the total TF extract filter,

ΨE = 1−ΨRe ◦ 1−ΨD ◦ 1−ΨA. (4.43)

Finally, the last step in implementing the RS­TFR method is to perform an element­wise

multiplication of Ψ with the RS­TFR of a given seismic signal three components. After

finishing this last step it now becomes possible to reject and extract a particular seismic

phase.

4.3 Developed Library

As stated by the title, the SeisPolPy library developed for this thesis aims to assist develop­

ers with which goal is to process seismic time series. The developed library is structured

40

Development of a Python Library for Processing Seismic Time Series

as shown in annex A.

The chosenprogramming language for the development of the SeisPolPy librarywasPython.

We took advantage of five main Python libraries,

• SciPy 2.3.1.3 because it efficiently implements sparsematrix operations. It also con­

tains a class named “signal” which makes available several functions for develop­

ment in the field of signal analysis from which we used the,

– Fast Fourier Transform (FFT) function,

– HT function,

– Inverse Fourier Transform (IFFT) function,

– Gaussian window function;

• Numpy 2.3.1.1. Here we use Numpy functions that implement and deal with array

operations, their creation and data type definition and alsomore importantly for the

functions that calculate the covariance matrix and its eigenvalues and eigenvectors;

• Matplotlib 2.3.1.2, for its plotting functions which allowed us to analyze the outputs

of each method, and, depending on the quality of the plotted data, ascertain the

quality of the written code;

• Cython 2.3.1.4, which allowed us to overcome the memory issues inherent in signal

processing by writing “C­like code” which could be compiled into a C shared library

then called inside the Python scripts;

• Sphinx, was used to assist in writing the documentation for the developed library

and generate an HyperText Markup Language (HTML) and Cascading Style Sheets

(CSS) file containing all the information documen+ted previously in each Python

script written.

For hosting the previously mentioned HTML, it was used the platform Read the Docs. Af­

ter linking the GitHub project repository, we chose to build the project documentation to

have the platform host the generated web page, as shown in the Fig.s 4.1 and 4.2, respec­

tively.

41

Development of a Python Library for Processing Seismic Time Series

Figure 4.1: Read the Docs platform page for building the documentation of the SeisPolPy library.

42

Development of a Python Library for Processing Seismic Time Series

Figure 4.2: Web page containing the SeisPolPy documentation hosted by Read the Docs.

Furthermore, in order to make the change log automatically synchronzie with the GitHub

repository, an additional configuration was required to allow the Sphinx library to obtain

such information when built. Sphinx also needed the generation of a GitHub OAuth2

tokenwoth only read permissions to the SeisPolPy repository and its addition, as a private

environment variable, in the Read the Docs platform, as shown in Fig. 4.3.

43

Development of a Python Library for Processing Seismic Time Series

Figure 4.3: Web page, in the Read the Docs platform, to specify environment variables to be accessed
during the documentation build.

4.3.1 Implemented Functions

The developed library implements the Flinn, Vidale, Pinnegar and Rstfr methods previ­

ously described in 4.2.1, 4.2.2, 4.2.3, 4.2.4 respectively.

The Flinn module holds just a single function, 4.3.1, to obtain the rectilinearity and di­

rection of particle motion in a three­component signal by implementing the method de­

signed by Flinn [1965]. This function takes as input two parameters, data (a given signal

three­component data) and window_size (defines the size of the samples), and outputs

two arrays with rectilinearity and direction of particle motion data.

Listing 4.1: Header of the function used in the Flinn script.

def f l i nn (data , window_size) :

The Vidale module, similarly to the previous module, only contains one function, 4.3.1,

to obtain the elliptical component of polarization, strike, inclination (dip) and polariza­

tion strength of the signal by implementing the method designed by Vidale [1986]. These

function parameters are the same as the previously described function, which implements

the Flinn method, and outputs six arrays with the data about elliptical component of po­

larization, strike, inclination (dip) and polarization strength of the signal.

Listing 4.2: Header of the function used in the Vidale script.

44

Development of a Python Library for Processing Seismic Time Series

def v ida l e (data , window_size) :

The Pinnegar module obtains the semi­major, semi­minor, inclination, pitch, phase, and

strike by implementing the method designed by C. R. Pinnegar Pinnegar [2006]. This

Python script includes three functions and imports two shared C libraries.

The main function, Pinnegar, presented in 4.3.1, receives as input data which, as in the

two previous methods, corresponds to a given signal three­component data and s which

must be a value between 1 and the length of the data. This function outputs six arrays

with semi­major, semi­minor, inclination, pitch, phase and strike data. To obtain these

outputs, the Pinnegar function has to perform a variation of the STFT, not present in

the SciPy library. This variation is implemented through the functions stft and forward,

shown in 4.3.1, and the C shared libraries adjoint.so and diags.so created through the use

of the Cython package.

Listing 4.3: Header of the functions used in the Pinnegar script.

def pinnegar (data , s =100):

def s t f t (x , s) :

def forward (N, s) :

The stft function receives, as the first parameter, the data corresponding to one compo­

nent of the signal and the s defined by the user and it calls, firstly, the forward function

with the component length and s has its parameters. The called function will return a

sparse diagonalsmatrix created through the diags function present in the diags.so library.

This library consists of a source­code adaptation from a SciPy library function to perform

the specific task required by the present method STFT algorithm adaptation and takes as

parameters the component data diagonals, the offsets and the resulting matrix desired

size, as shown in 4.3.1. Upon receiving the sparse diagonals matrix from the forward

function the stft calls the adjoint function present in the shared C library adjoint.so and

sends the sparse matrix, length of the component and the component has parameters, as

presented in 4.3.1. The adjoint function then returns the component data in the frequency

domain.

The Rstfr module obtains the semi­major and semi­minor by implementing an adapta­

tion of the pinnegar method, which takes advantage of sparsity. This method allows for

the choice between the standard STFT and the use of STFT with Sparsity Matrices. This

script main function, presented in 4.3.1 takes as input parameters, data which, same as

the previously implemented method, is the three­component data, alg with the options,

“stft” and “s_stft” that allows the user to specify which algorithm should be executed (this

parameter defaults to “stft”), swhichmust be a value between 1 and the length of the data,

and n_it that defines the number of iterations to be run when executing the soft thresh

holding (this value defaults to 100). The last parameter, n_it, is only considered when the

chosen algorithm is the sparse STFT. The main function for the RS­TFR method outputs

two arrays corresponding to the semi­major and semi­minor.

Listing 4.4: Header of the functions used in the RS­TFR script.

def r s t f r (data , a lg=” s t f t ” , s=100, n_it =400):

45

Development of a Python Library for Processing Seismic Time Series

def sof t_threshhold ing (z , T) :

def cross (x1 , x2) :

def semimm(t , r , z) :

def forward (N, s) :

def s t f t _ s_ i s t (x , y , z , s , n_it , mu) :

def s t f t (x , s) :

def r e c t i l i n e a r i t y (alpha , beta , e ig_values) :

def d i r e c t i v i t y_ r a y l e i g h (gamma, lamb_da , eig_vec3) :

def d i r e c t i v i t y_ l o v e (gamma, lamb_da , eig_vec3) :

def amplitude (zeta , eta , e ig_values) :

If the chosen algorithm is the STFT, then the rstfr function calls the stft function and ex­

ecutes the same as described previously in the pinnegar function. However, if the the

algorithm chosen is the sparse STFT then the rstfr functions calls the stft_s_ist function

that takes has parameters the data corresponding to each of the components of the given

signal, s, n_it, and mu which is a statically defined value of 1e−3. This function during its

executions calls the diags and adjoint functions from the shared C libraries, previously

described, and the forw_op function present in the forw_op.so shared C library. The lat­

ter function takes has parameters a sparse diagonals matrix, length of the component and

the component has parameters, as presented in 4.3.1. The forward function, after per­

forming a series of operations, then returns the component data in the time domain. The

stft_s_ist function also calls the function soft_threshholdingwhich receives twomatrices

obtained in the calling function, has parameters and outputs a value corresponding to the

threshold of the given data.

After receiving the output from the stft_s_ist or the stft function, depending on the choice

made by the user, the rstfr function calls the semimm functionwhich takes as parameters,

three matrices corresponding to each component data after being processed by one of the

previous algorithms, STFT or the sparse STFT, as shown presented in 4.3.1. And outputs

two arrays with the semi­major and semi­minor values.

Listing 4.5: Headers of the functions present in the shared C libraries.

cpdef forw_o (G, N, x) :

cpdef adjo in (G, N, x) :

cpdef np . ndarray [double , ndim=2] diagonal (l i s t diagonals ,

np . ndarray [int , ndim=1] o f f s e t s , int m, int n , dtype=None) :

Having now obtained the semi­major and semi­minor values and have the RS­TFR/STFT

of the three components the functions rectilinearity, directivity_rayleigh or directiv­

ity_love (which will depend on choice made by the user), and amplitude are then called.

The first function, rectilinearity, receives as parameters the values alpha and beta, and

an array containing eigenvalues and returns the rectilinearity value obtained. The second

and third functions, directivity_rayleigh and directivity_love, both receive as parame­

ters the values gamma and lambda as well as an array with the biggest eigenvector and

return their respective directivity value. The last function, amplitude, similarly to previ­

46

Development of a Python Library for Processing Seismic Time Series

ous functions, receives as parameters zeta and eta values, and an array of eigenvalues and

returns the amplitude value obtained.

Furthermore, all the modules main functions also return a base64 encoded string of bytes

corresponding to the resulting data plots of each of the implemented methods.

4.3.2 Building and Installation

The SeisPolPy library developed as part of this master’s thesis is currently running and

tested on Linux in Ubuntu version 20.04 and CentOS 8 with the latest Python3 release.

To build the library, the user, in the root folder, has to install the Python3 setuptools

package used for Python library packaging and then run

Python3 −m bui ld

which will generate the .whl and .tar.gz files and place them inside the “dist” folder. Hav­

ing generated these files to install the library, while still in the root folder, the user has to

use the Python package installer (pip) to install the previously generated files during the

building phase by executing,

pip3 i n s t a l l d i s t / SeisPolPy −** \

rep lacewi thcurrentvers ion**−py3−none−any . whl

or

pip3 i n s t a l l d i s t / SeisPolPy −** \

rep lacewi thcurrentvers ion ** . t a r . gz .

Furthermore, the user can also install SeisPolPy via the PyPi repository which serves as

a software distributor for software developed using Python. PyPi contains the previously

generated distribution .whl file for the latest stable version of the developed library and

allow for it to be installed through the commands,

pip3 i n s t a l l s e i spo lpy

or

python3 −m pip i n s t a l l se i spo lpy .

After finishing the library installation, the last step is to download the folder “sharedClib”

present in the library repository Almeida [2021], and place the shared object (.so) files in

the folder where the SeisPolPymodules are imported. Although code efficiency was one of

the priorities whenwriting the differentmodules, it was still required to create shared C li­

braries in order to optimise the code further. These were created with the Cython package

to improve the efficiency of the scripts, which was necessary due to the high complexity

present in the matrix operations performed.

4.4 Conclusions

In the present chapter, the implemented functions and the library developed were de­

scribed in detail. Each section in this chapter describes the process and choices made,

47

Development of a Python Library for Processing Seismic Time Series

during the implementation of the SeisPolPy library, in order to deliver an high quality

Python library for processing seismic time series. Apart from the Pinnegar method, due

to its ongoing patent and the unsuccess in contacting the author, each of themethods pre­

sented in this chapter are available publicly in GitHub at the SeisPolPy library repository

Almeida [2021].

48

Development of a Python Library for Processing Seismic Time Series

Chapter 5

Results

5.1 Introduction

The current chapter presents a discussion on the generation and pre­processing of the

synthetic data used for testing themethods and implementations and the results obtained.

Section 5.2, starts by describing in detail the steps taken to generate and pre­process the

synthetic data, the tools and software necessary. Section 5.3, displays and explains the

obtained results from each implemented function and finally, in section 5.4, are described

the implemented tests module.

5.2 Synthetic Data Generation

Although the final goal of developing a library is to implement it on real data sets, the

evaluation of the accuracy of an algorithm is only possible by testing on synthetic data

sets, which have been generated by a controlled and known forward modellings. As a

result, synthetic data generation is an unavoidable step in every numerical development

research work.

There are several ways to generate synthetic data Li et al. [2014]; Herrmann [2013]; Kaser

et al. [2010]; Afanasiev et al. [2017]; Reinarz et al. [2020]. In this project, two different

methodswere used, the IRIS syngine combinedwith theObsPy library and the SPECFEM3D

Globe software. Both of these methods will now be described in detail. Also, in table 5.1,

are presented the chosen stations information and important values, such as latitude, lon­

gitude, and data centers regarding the seismic waveforms presented.

Station Code Station Name Latitude Longitude Source Distance (km)

ACRG
Accra,
Ghana

5.64 ­0.20 6886.59

II ABKT
Alibek,

Turkmenistan
37.93 58.11 5985.87

Table 5.1: Table containing the station codes, station names, latitude and longitude values.

5.2.1 IRIS Syngine and ObsPy

The IRIS Synthetics Engine (Syngine), IRIS [2015], is a web service to generate and re­

turn fully three­dimensional synthetic seismograms for different one­dimensional earth

models.

To generate the necessary synthetic data we created a Python script and took advantage of

theObsPy library, which implements, not just the “ObsPy.client.syngine”module to trans­

49

Development of a Python Library for Processing Seismic Time Series

fer the seismograms created by the IRIS syngine service but also provides other modules

for pre­processing seismic waveforms.

For the creation of this script, after initialising the syngine client, the first step was to per­

form a request to the IRIS service, using the previously initialised client object, to down­

load the generated data. Next, a seismic data collection station, model and source param­

etersmust then be specified. A full description and tutorial for using Syngine can be found

online at Nissen­Meyer et al. [2015].

In our case, the seismic station ACRG was used with the ak135f_5s model. This returned

the data shown in Fig. 5.1.

Figure 5.1: Seismic waveform, pertaining to the ACRG station, generated using the IRIS syngine service
implemented in ObsPy.

Having downloaded the generated seismic waveform from IRIS, the second step was to

rotate the horizontal components to change the signal orientation from north and east to

radial and transverse to have the generated data in the same orientation as expected in

the implemented methods.

The third step was to perform some pre­processing to the seismic signal generated by

using the necessary ObsPy functions. In particular we began by rotating the horizontal

components to change the signal orientation from north and east to radial and transverse

in order to have the generated data in the sameorientation as expected in the implemented

methods. Next we applied trend removal on the signal by calling the detrend function,

then, by calling the decimate function twice, we down­sampled the data, firstly, by an

integer factor of 2 and, secondly, by a factor of 3, and lastly, the data was trimmed by

calling the trim function, this produces the seismic waveform presented in Fig. 5.2.

50

Development of a Python Library for Processing Seismic Time Series

Figure 5.2: Seismic waveform, pertaining to the ACRG station, generated using the IRIS syngine service
implemented in ObsPy after performing pre­processing.

Furthermore, after the signal pre­processing was finished, the data was converted from

the ObsPy trace object to a NumPy array and saved in a .mat file.

5.2.2 SPECFEM3D Globe

This software, written in Fortran2003, is considered to be the most advanced in terms

of generating complex synthetic data in seismology due to all the features it contains.

It simulates three­dimensional global and regional seismic waves propagation and per­

forms adjoint tomography or full waveform imaging (FWI) based on the spectral element

method. Furthermore, SPECFEM3DGlobe uses parallel programming based on theMPI,

and it supports GPU acceleration, as well as OpenCL.

For this project, we took advantage of GPU acceleration by setting up two infrastructures

supporting advancedGPU’s. Both infrastructureswere utilised to run the computationally

demanding SPECFEM3D software.

• The first infrastructure was a server, provided by C4G laboratory, containing an

NVIDIA Tesla v100 graphics to install a CentOS 7 operating system on a VM. At

the time of writing this dissertation this model of GPUwas state­of­art hardware for

this specific numerical modelling.

• The second infrastructurewas amachine running theCentOS 7 operating systemput

together using components facilitated by using components from the two PC’s from

theRELEASE laboratory each one containing anNVIDIATitan Black graphics cards

One PC was used with an external power supply from the second PC. The second

PC’s graphic card was removed to create a machine with two Titan Black graphics

cards were wired together by using two Scalable Link Interface (SLI) cables to run

in parallel.

51

Development of a Python Library for Processing Seismic Time Series

For the software configuration and execution, the tutorialmadebyNVIDIANVIDIA [2018]

was followed on how to run SPECFEM3D Globe when using Tesla graphics cards. This

tutorial was made specifically for running SPECFEM3D Globe on the NVIDIA Tesla GPU

and so it had to be adapted to using the Titan graphics cards.

The configuration steps, although quite straightforward, require some attention as some

steps are not explicitly mentioned in the tutorial. For example, the user, before executing

the commands “make” and “./configure”, has to define manually the environment vari­

ables shown in 5.1. The configuration steps used are the same for both GPUs.

Listing 5.1: Environment variables required in order to configure SPECFEM3D GLOBE for GPU

acceleration.

export PATH=/usr / local /cuda −11 .3/ bin :$PATH

export LD_LIBRARY_PATH=/usr / local /cuda −11 .3/

l ib64 :$LD_LIBRARY_PATH

export CUDA=/usr / local /cuda

export CUDA_LIB=/usr / local /cuda/ t a r g e t s /

x86_64−l inux / l i b

export PATH=$PATH:/ usr / l ib64 /openmpi/

export PATH=$PATH:/ usr / l ib64 /openmpi/ bin

The execution, as a whole, of SPECFEM3DGlobe, consists of a three step process. Firstly,

the user must update a parameters file according to his needs. In this file the GPUmodel

present in the machine that and number of processes that will execute the software are

specified as well as the seismic source parameters and other parameters regarding the

final solution. In this first step is crucial, if the user intends to utilise a GPU, to set the

GPU_MODE parameter to .true. Secondly, the program needs to be rebuilt using the

“make” command, since it uses static array sizes which then require the same to be rebuilt

when any changes are made to the parameters file. The next stage consists of the creation

of a computational mesh. This is followed by the final stage where the user can now run

the solver to generate the final output. These two stages are achieved by running the

commands listed in 5.2, for all of the commands presented the number of processes needs

to be specified, this value will vary according to the number of GPUs.

In this project, we did not use the parallel processing feature of the MPI since neither of

the machines could handle the toll imposed by this feature on its components. And so,

the commands listed bellow 5.2 match the ones utilised on the execution of SPECFEM3D

Globe.

Listing 5.2: Required commands for creating the mesh and running the main program.

mpirun −np 1 bin /xmeshfem3D

mpirun −np 1 bin /xspecfem3D

After generating the final solution the user is presented with files in the Seismic Analysis

Code (SAC) format which contain the waveforms generated for each seismic station. To

organise better the resulting waveforms it was then decided to use the Adaptable Seismic

Data Format (ASDF) file format. The ASDF file format allows the gathering of all the

52

Development of a Python Library for Processing Seismic Time Series

information inside a possibly “infinite” number of SAC or miniSEED data files and put it

together in a new ASDF file. The advantage of this file format is not just the possibility of

having tomanage just one single file but also the fact that bymaking use of the padswe can

get, more efficiently, not just the waveform but also specific metadata information, such

as event date and name, stations list, and coordinates regarding each waveform Krischer

et al. [a]. For the conversion of the SAC files to the ASDF format and for obtaining all

the information regarding the generated event was written a Python script, that uses the

pyasdf library, in order to automate the process. For plotting the converted ASDF file the

ASDF­Sextant experimental Graphical User Interface (GUI) Krischer et al. [b] was used.

The TitanGPUs computer spectral elements had to be reduced, while still honing the earth

curvature, to 96 due to the computation cost present in executing with the 128 defined in

the Tesla GPU VM. This change might not seem significant but it changed the resolution

and accuracy diminishing the quality of the generated waveforms as it is possible to see in

Fig. 5.3 and 5.4. Due to these changes present in the data generated for this project was

only used the seismicwaveformobtained by the Tesla GPUvirtualmachine. Furthermore,

both machines generated data for thirty stations with an, almost equal, execution time

of approximately one hour and thirty minutes for the Tesla GPU and one hour and fifty

minutes for the two Titan GPUs.

Figure 5.3: Seismic waveform, pertaining to the II.ABKT station,
generated by SPECFEM3D Globe on the VM containing the

NVIDIA Tesla GPU.

53

Development of a Python Library for Processing Seismic Time Series

Figure 5.4: Seismic waveform, pertaining to the II.ABKT station,
generated by SPECFEM3D Globe on the computer containing the

two NVIDIA Titan Black GPU.

By usingObsPymodules, a set of pre­processing steps, similar to ones described in section

5.2.1, was applied on the generated seismic data (shown in Fig. 5.3) to attain the pre­

processed waveform shown in Fig. 5.5. In this case, the down­sampling was applied by a

factor of 8 to attain the final data by the sampling frequency of 0.5 Hz.

Figure 5.5: Seismic waveform, pertaining to the II.ABKT station, generated by SPECFEM3D Globe on the
VM containing the NVIDIA Tesla GPU after performing pre­processing.

54

Development of a Python Library for Processing Seismic Time Series

5.3 Obtained Results

The synthetic data generated in sections 5.2.1 and 5.2.2 is processed by implementing the

written modules described in the previous chapter 4. The written library was installed on

a VMmade available by the C4G laboratory. This virtual machine contained the CentOS 8

operative system, NVIDIA Tesla V100 GPU with 16GB of Video Random Access Memory

(VRAM), a 4 cores CPU (from which we took advantage of only one core for processing,

since the implemented modules do not support multiprocessing) and 64GB of RAM. In

tables 5.2 and 5.3, the execution time for the obtained results as well as the maximum

RAM usage and CPU core usage for each executed module is discussed. In following, we

briefly explain the obtained results.

SeisPolPy Modules
Execution Time

(seconds)
Maximum RAMUsage (GB) Maximum CPU Usage (%)

Flinn 1.75 3.85 40.05
Pinnegar 4.02 8.45 96.3
Vidale 2.85 2.85 81.8

Table 5.2: Table containing the execution times, maximum
RAM usage and maximum CPU core usage regarding each module

execution with the synthetic data generated using
IRIS syngine service.

SeisPolPy Modules
Execution Time

(seconds)
Maximum RAMUsage (GB) Maximum CPU Usage (%)

Flinn 2.68 1.78 28.6
Pinnegar 4.34 2.85 81.8
Vidale 3.09 2.02 78.8

Table 5.3: Table containing the execution times and maximum RAM
usage regarding each module execution with the synthetic data

generated using SPECFEM3D Globe software.

Rstfr Module
Execution Time

(seconds)
Maximum RAMUsage (GB) Maximum CPU Usage (%)

STFT algorithm 14.98 14.7 100
sparse STFT algorithm 292.83 30.8 100

Table 5.4: Table containing the execution times and
maximum RAM usage regarding the Rstfr module
execution on the same data set as the one present
in the article accepted by the IEEE Transactions

on Geoscience and Remote Sensing (Mohammadigheymasi et al. [2021a]).
This article is also present in annex B.

5.3.1 Results of Flinn Module

The time­domain rectilinearity and directivity information of the generated data by the

syngine and SPECFEM3D software is extracted by implementing the Flinn module. The

information is illustrated in Fig.s 5.6 and 5.7, respectively.

55

Development of a Python Library for Processing Seismic Time Series

As the Rectilinearity panel of this Fig. 5.6 shows, a sequence of body waves has been

recorded in the time interval around 30 to 200 seconds before the surfaces waves reach

the sensor and become the dominant recorded waves.

The other panels, the Particlemotion in Z, R, andTdirections, give information onparticle

motion in the time­domainwhen the seismicwavefield arrives in the station. It shows that

the particle motion is dominantly in the T direction, corresponding to the Love waves.

Likewise, the direction of particle motion in the R and Z directions shows a combination

of vertical and radial particle motion corresponding to the Rayleigh waves. As it is seen,

by using the polarization attributes, one can effectively discriminate between different

phases of seismic waves.

Similarly, the Rectilinearity panel of this Fig. 5.7 shows the rectilinearity information of

the arrival wavefield in the station. As the synthetic data was generated by more sophis­

ticated software, by considering more realistic assumptions of the propagating environ­

ment, including non­homogeneity and anisotropy, the seismic wavefield is more compli­

cated andmore similar to the waveforms being recorded by real sensors. There is no exact

and sharp boundary between the arrival phases for this case. However, the obtained re­

sults can be utilised for designing adaptive filters to filter or amplify specific phases. This

step is out of the scope of this research work and can be studied in future works.

The execution time for this module was 1.75 seconds for the syngine, and 2.68 for the

SPECFEM3D Globe generated data.

Figure 5.6: Flinn method results for the IRIS generated synthetic data.

56

Development of a Python Library for Processing Seismic Time Series

Figure 5.7: Flinn method results for the SPECFEM3D Globe generated synthetic data.

5.3.2 Results of Pinnegar Module on Synthetic Data

The results obtained by executing the Pinnegar module on the data set generated from

the IRIS service are presented in Fig.s 5.8 and 5.9. The execution time for obtaining these

results was of 4.02 seconds.

Figure 5.8: Pinnegar method semi­major results for the IRIS generated synthetic data.

57

Development of a Python Library for Processing Seismic Time Series

Figure 5.9: Pinnegar method semi­minor results for the IRIS generated synthetic data.

Figures 5.10 and 5.11, show the results from this module execution using the data set gen­

erated with SPECFEM3D. The execution time was 4.34 seconds.

Figure 5.10: Pinnegar method semi­major results for the SPECFEM3D Globe generated synthetic data.

58

Development of a Python Library for Processing Seismic Time Series

Figure 5.11: Pinnegar method semi­minor results for the SPECFEM3D Globe generated synthetic data.

In the previouslymentioned figures, it is presented the results obtained for both generated

synthetic data sets regarding the seismogram semi­major axis S spectrum, in Fig.s 5.8 and

5.10, and the semi­minor axis S spectrum, in Fig.s 5.9 and 5.11.

The semi­major S spectrum depicts the time–frequency dependency of the polarization

ellipse’s long axis. Moreover, the semi­minor S spectrum represents the time–frequency

interdependence of the short axis of the polarization ellipse and thus can be conceived as

the spectrum of the ‘circular’ component of the elliptical motion.

5.3.3 Results of Vidale Module

The Vidale module implemented when executed with the data from the IRIS service had a

execution time of 2.85 seconds and the obtained results are shown in Fig.s 5.12 and 5.13.

These, describe the results of polarization analysis for the three­component generated

waveform.

In Fig. 5.12 the results show the dip, strike and elliptical component of polarization ob­

tained through the defined equations (4.16), (4.15) and (4.14), respectively. Moreover,

Fig. 5.13 describes the result obtained for the polarization strength of the signal (4.17).

59

Development of a Python Library for Processing Seismic Time Series

Figure 5.12: Vidale method results for the IRIS generated synthetic data regarding dip, strike an and
elliptical component of polarization.

Figure 5.13: Vidale method result for the IRIS generated synthetic data concerning the polarization strength
of the signal.

Furthermore, Fig.s 5.14 and 5.15 present the results attained through this module exe­

cution using the SPECFEM3D generated data. The module had a execution time of 3.09

seconds. The obtained results, in the same way of the ones described by Fig.s 5.12 and

5.13, present the seismogram polarization analysis results concerning dip, strike, ellipti­

cal component of polarization and polarization strength of the signal.

60

Development of a Python Library for Processing Seismic Time Series

Figure 5.14: Vidale method results for the SPECFEM3D
Globe generated synthetic data regarding dip,

strike and and elliptical component of polarization.

Figure 5.15: Vidale method result for the SPECFEM3D
Globe generated synthetic data concerning the

polarization strength of the signal.

5.3.4 Results of Rstfr Module

The Rstfr module, implemented in SeisPolPy, when executed with the synthetic data used

in the published article (Mohammadigheymasi et al. [2021a]) regarding the seismic event

that occurred in 101 km SSW of Tres Picos, Mexico with a source mechanism value of

Mw = 8.2 resulting of a normal faulting at an intermediate depth of 47.4 km, the module

had an execution time of 14.98 seconds with the STFT and 292.83 when using the sparse

STFT.

In Fig. 5.16, the results obtainedwhen executing the presentmodule with the sparse STFT

algorithm are presented. Through the obtained results it becomes possible to clearly iden­

tify the filtered Love and Rayleigh waves for each component of the signal (T, R, Z) and

in this way perceive their arrival times, among other information there present. In panels

(1), (3) and (5) the filtered Love wave in the transverse, radial and vertical components,

respectively, are shown and panels (2), (4) and (6) describe the filtered Rayleigh wave

61

Development of a Python Library for Processing Seismic Time Series

also in the transverse, radial and vertical components. The filtered waves in each panel

are highlighted in black.

Figure 5.16: RSTFR method results presenting Love and Rayleigh waves trace and filter results for the
sparse STFT algorithm. In (1), (3) and (5) correspond to the Love wave filtered components, and (2), (4)

and (6) to the Rayleigh wave filtered components.

5.4 Library Test Module

The main goal of creating a module for software tests is to create a battery of tests that

evaluates the methods in the developed library’s current state of development and so that

in the future, as this library scales, there is no concern for the integration of a testing

library as it is already available.

In this way, there is no need for further configuration due to the implementation of new

methods. All that is required is to write new tests and add them to the already existing

battery. These tests also mean that whoever downloads and rebuilds the software library

also has a set of tests that may be run that validate any new changes to the already existing

codes.

For the testing phase of the implemented methods the Pytest Python library, described

previously in 2.3.1.5, was used.

62

Development of a Python Library for Processing Seismic Time Series

For the SeisPolPy library, it is only possible to write ten tests due to how the functions of

the modules execute. Seven of these tests aim to assert that the implemented methods

always return the same values if given the same data and parameters i.e that there are no

deviations during the execution of the code. Furthermore, these seven tests also verify

that the if conditions present in the Rstfr module perform as expected when verifying the

choice made by the user in selecting the algorithm to be used (STFT or sparse STFT) and

thewaves to be filtered (Love or Rayleigh). For the last three tests, the objective is to verify

if conditions raise the implemented exceptions.

The expected results for this battery of tests is for the first seven to pass with success,

validating the consistency of the results, the choice of algorithms, and choice for the type

of wave to be filtered, and the final three tests to fail, raising the implemented exceptions.

5.5 Conclusions

The present chapter was firstly discussed, in detail, two approaches to generate synthetic

seismic data. Furthermore, the obtained results, validatedby this dissertation co­supervisor

and geophysics specialist, were presented along with their respective execution times. In

this section, it is also shown two tables, in which are present the values of execution time,

the maximum RAM usage and CPU (core) usage for each of the modules present in the

SeisPolPy library. Finally, was described the tests module present within the SeisPolPy

library.

63

Development of a Python Library for Processing Seismic Time Series

64

Development of a Python Library for Processing Seismic Time Series

Chapter 6

Main Conclusions and Future Work

6.1 Main Conclusions

This document presented a thesis for a masters dissertation concerning the development

of a Python library for the processing of seismic time series. An overview of the fundamen­

tal topics, such as basic concepts of seismology, signal processing and time series analysis

was presented in chapters 2 and 3, as well as a literature review of important papers pre­

sented in a chronological order to be able to view the developments over time concerning

seismic time series analysis. In chapter 1, an introduction is given, regarding the problems

to be addressed by this project, the objectives expected to be achieved, and the contribu­

tions that were made. Even though some of the original goals seemed very challenging

at first, as they involve several areas of science and engineering, some of which relatively

unknown to the author, they were overcome with success. Chapter 4, describes, in de­

tail, the implemented methods and functions existing in each developed module of the

SeisPolPy software library, as well as how to build the package locally and install it locally

or through the online Python repository. A selection of important methods were imple­

mented, as well as a newmethod RS­TFR developed within the SHAZAMproject. Finally,

chapter 5, presents the techniques and processes used for generating synthetic data, in

itself a non trivial procedure. The results obtained in each module present in the library,

and the test module implemented to validate the codes written are also described.

In conclusion, this documents objective was to provide insights into the development of

software for seismic time series analysis and provide a detailed description of the work

developed. With the obtained results and tests performed, it is possible to ascertain that

every objective proposed was achieved with success.

6.2 Future Work

Possible future work to be developed in order to improve and extend the library is as fol­

lows,

• Implementation of more methods for processing of seismic time series;

• Improve execution times by redesigning the algorithms to take better advantage of

multiprocessing;

• Implementation of a pre­processing framework within the library to expand its ca­

pabilities.

65

Development of a Python Library for Processing Seismic Time Series

66

Development of a Python Library for Processing Seismic Time Series

Bibliography

USGS. v, 17

——, “Earthquake glossary,” [Online] https://earthquake.usgs.gov/learn/glossary/. Last

accessed in 21 May 2021. v, 11, 16, 18

IRIS, “Seismicmonitor,” [Online] http://ds.iris.edu/seismon/index.phtml. Last accessed

in 2 December 2020. v, 18, 19

EPOS, “Epos integrated core services (ics),” 2019, [Online] https://www.ics­c.epos­eu.

org/data/search. Last accessed in 2 December 2020. v, 18, 19

J. Hunter, D. Dale, E. Firing, M. Droettboom et al., “Matplotlib,” 2012, [Online] https:

//matplotlib.org/. Last accessed in 11 November 2020. v, 22, 23

H. Mohammadigheymasi, P. Crocker, M. Fathi, E. Almeida, G. Silveira, A. Gholami,

and M. Schimmel, “Sparsity­promoting approach to polarization analysis of seismic

signals in the time­frequency domain,” IEEE Transactions on Geoscience and Remote

Sensing, 7 2021. [Online]. Available: https://doi.org/10.36227/techrxiv.14910063.v1

vii, 8, 12, 33, 55, 61

E. Flinn, “Signal analysis using rectilinearity and direction of particle motion,” Proceed­

ings of the IEEE, vol. 53, no. 12, pp. 1874–1876, 1965. 7, 12, 27, 28, 29, 30, 33, 35,

44

J. E. Vidale, “Complex polarization analysis of particle motion,” Bulletin of the Seismo­

logical society of America, vol. 76, no. 5, pp. 1393–1405, 1986. 7, 12, 28, 29, 33, 34, 39,

44

R. Pinnegar, “Polarization analysis and polarization filtering of three­component signals

with the time—frequency s transform,” Geophysical Journal International, vol. 165,

no. 2, pp. 596–606, 2006. 7, 12, 28, 31, 33, 36, 45

E. Almeida, “Seispolpy a python library for polarization analysis and filtering of seismic

waves,” 2021, [Online] https://github.com/EduardoAlm/SeisPolPy. Last accessed in

28 June 2021. 8, 9, 12, 47, 48

E. Almeida, H. Mohammadigheymasi, M. Fathi, P. Crocker, and G. Sil­

veira, “Eigenvalue decomposition polarization analysis: A regularized sparsity­

based approach,” EGU General Assembly 2021, 2021. [Online]. Available:

https://doi.org/10.5194/egusphere­egu21­15267 8, 12

P. Richards and K. Aki, Quantitative seismology: theory and methods. Freeman New

York, 1980, vol. 859. 11

67

https://earthquake.usgs.gov/learn/glossary/
http://ds.iris.edu/seismon/index.phtml
https://www.ics-c.epos-eu.org/data/search
https://www.ics-c.epos-eu.org/data/search
https://matplotlib.org/
https://matplotlib.org/
https://doi.org/10.36227/techrxiv.14910063.v1
https://github.com/EduardoAlm/SeisPolPy
https://doi.org/10.5194/egusphere-egu21-15267

Development of a Python Library for Processing Seismic Time Series

L. Hutchings and G. Viegas, “Application of empirical green’s functions in earthquake

source, wave propagation and strong ground motion studies,” Earthquake Research

and Analysis­New Frontiers in Seismology, 2012. 11

G. Bensen, M. Ritzwoller, M. Barmin, A. Levshin, F. Lin, M. Moschetti, N. Shapiro, and

Y. Yang, “Processing seismic ambient noise data to obtain reliable broad­band surface

wave dispersion measurements,” Geophysical Journal International, vol. 169, no. 3,

pp. 1239–1260, 2007. 11, 27

A. Wüstefeld and G. Bokelmann, “Null detection in shear­wave splitting measurements,”

Bulletin of the Seismological Society of America, vol. 97, no. 4, pp. 1204–1211, 2007.

11

T. Lecocq, C. Caudron, and F. Brenguier, “Msnoise, a python package for monitoring seis­

mic velocity changes using ambient seismic noise,” Seismological Research Letters,

vol. 85, no. 3, pp. 715–726, 2014. 11, 24

L. Ermert, J. Igel, K. Sager, E. Stutzmann, T. Nissen­Meyer, and A. Fichtner, “noisi: A

python tool for ambient noise cross­correlation modeling and noise source inversion,”

Solid Earth Discussions, vol. 2020, pp. 1–27, 2020. 11, 24

C. Jiang and M. Denolle, “Noisepy: A new high­performance python tool for ambient­

noise seismology,” Seismological Research Letters, vol. 91, no. 3, pp. 1853–1866, 2020.

11, 25

V. Ingle and J. Proakis, Digital signal processing using matlab: a problem solving com­

panion. Cengage Learning, 2016. 11, 20

A. Bent, “Primary Wave (P­Wave),” in Encyclopedia of Natural Hazards, P. T.

Bobrowsky, Ed. Dordrecht: Springer Netherlands, 2013, pp. 777–777. [Online].

Available: https://doi.org/10.1007/978­1­4020­4399­4_278 16

——, “SecondaryWave (S­Wave),” in Encyclopedia of Natural Hazards, P. T. Bobrowsky,

Ed. Dordrecht: Springer Netherlands, 2013, pp. 901–901. [Online]. Available:

https://doi.org/10.1007/978­1­4020­4399­4_311 17

V. Babuska and M. Cara, Seismic anisotropy in the Earth. Springer Science & Business

Media, 1991, vol. 10. 17

IRIS, “Mission statement,” [Online] https://www.iris.edu/hq/about_iris#vision. Last ac­

cessed in 2 December 2020. 18

M. Beyreuther, R. Barsch, L. Krischer, T. Megies, Y. Behr, and J. Wassermann, “Obspy a

python framework for seismology,” 2009, [Online] https://github.com/obspy/obspy/

wiki. Last accessed in 11 November 2020. 19

M. Peixeiro, “The complete guide to time series analysis and

forecasting,” 2019, [Online] https://towardsdatascience.com/

68

https://doi.org/10.1007/978-1-4020-4399-4_278
https://doi.org/10.1007/978-1-4020-4399-4_311
https://www.iris.edu/hq/about_iris#vision
https://github.com/obspy/obspy/wiki
https://github.com/obspy/obspy/wiki
https://towardsdatascience.com/the-complete-guide-to-time-series-analysis-and-forecasting-70d476bfe775
https://towardsdatascience.com/the-complete-guide-to-time-series-analysis-and-forecasting-70d476bfe775

Development of a Python Library for Processing Seismic Time Series

the­complete­guide­to­time­series­analysis­and­forecasting­70d476bfe775. Last

accessed in 11 November 2020. 20

N. Kehtarnavaz, “Chapter 7 ­ frequency domain processing,” inDigital Signal Processing

System Design (Second Edition), N. Kehtarnavaz, Ed. Burlington: Academic Press,

2008, pp. 175 – 196. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/B9780123744906000076 20

Madisetti and K. Vijay, The Digital Signal Processing Handbook­3 Volume Set. CRC

press, 2018. 21

L. Sevgi, Electromagnetic Modeling and Simulation. John Wiley & Sons, 2014. 21

R. G. Stockwell, “A basis for efficient representation of the s­transform,” Digital Signal

Processing, vol. 17, no. 1, pp. 371–393, 2007. 21

L. Chun­Lin, “A tutorial of the wavelet transform,” NTUEE, Taiwan, 2010. 21, 22

T. Oliphant, “Numpy,” 2010, [Online] https://github.com/numpy/numpy. Last accessed

in 11 November 2020. 22

SciPy, “Scipy,” 2012, [Online] https://www.scipy.org/. Last accessed in 11 November

2020. 23

——, “Scipy tutorial,” 2012, [Online] https://docs.scipy.org/doc/scipy/reference/

tutorial/. Last accessed in 11 November 2020. 23

S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. Seljebotn, and K. Smith, “Cython: The best

of both worlds,” Computing in Science & Engineering, vol. 13, no. 2, pp. 31–39, 2010.

23

B. Okken, Python testing with Pytest: simple, rapid, effective, and scalable. Pragmatic

Bookshelf, 2017. 23

M. Beyreuther, R. Barsch, L. Krischer, T. Megies, Y. Behr, and J. Wassermann, “Obspy:

A python toolbox for seismology,” Seismological Research Letters, vol. 81, no. 3, pp.

530–533, 2010. 24

K. Aki and P. Richards, Quantitative seismology. University Science Books, 2002. 27

A. Udias and E. Buforn, Principles of seismology. Cambridge University Press, 2017. 27

A. Jurkevics, “Polarization analysis of three­component array data,” Bulletin of the seis­

mological society of America, vol. 78, no. 5, pp. 1725–1743, 1988. 27, 28, 30, 31, 39

Yilmaz, Seismic data analysis: Processing, inversion, and interpretation of seismic data.

Society of exploration geophysicists, 2001. 27

J. Montalbetti and E. Kanasewich, “Enhancement of teleseismic body phases with a po­

larization filter,” Geophysical Journal International, vol. 21, no. 2, pp. 119–129, 1970.

27, 29, 30, 31, 39

69

https://towardsdatascience.com/the-complete-guide-to-time-series-analysis-and-forecasting-70d476bfe775
https://towardsdatascience.com/the-complete-guide-to-time-series-analysis-and-forecasting-70d476bfe775
http://www.sciencedirect.com/science/article/pii/B9780123744906000076
http://www.sciencedirect.com/science/article/pii/B9780123744906000076
https://github.com/numpy/numpy
https://www.scipy.org/
https://docs.scipy.org/doc/scipy/reference/tutorial/
https://docs.scipy.org/doc/scipy/reference/tutorial/

Development of a Python Library for Processing Seismic Time Series

A. Reading, W. Mao, and D. Gubbins, “Polarization filtering for automatic picking of

seismic data and improved converted phase detection,” Geophysical Journal Interna­

tional, vol. 147, no. 1, pp. 227–234, 2001. 28, 30

R. H. Herrera, J. B. Tary, M. Van der Baan, andD.W. Eaton, “Body wave separation in the

time­frequency domain,” IEEE Geoscience and Remote Sensing Letters, vol. 12, no. 2,

pp. 364–368, 2014. 28, 32

C. Wang, Y. Wang, P. Sun, and Y. Li, “Discussions on the processing of the multi­

component seismic vector field,” Applied Sciences, vol. 9, no. 9, p. 1770, 2019. 28,

32

H.Mohammadi Gheimasi, H. R. Siahkoohi, and K. Lucas, “Improvement of temporal res­

olution of seismic data using singular spectrum analysis and autoregressive methods,”

Journal of the Earth and Space Physics, vol. 36, no. 3, 2010. 38

A. Gholami and H. M. Gheymasi, “Regularization of geophysical ill­posed problems by

iteratively re­weighted and refined least squares,” Computational Geosciences, vol. 20,

no. 1, pp. 19–33, 2016. 38

H. M. Gheymasi, “Using singular spectrum analysis and autoregressive methods for im­

provement of temporal resolution of seismic data,” in Shiraz 2009­1st EAGE Interna­

tional Petroleum Conference and Exhibition. European Association of Geoscientists

& Engineers, 2009, pp. cp–125. 38

H. M. Gheymasi and A. Gholami, “A local­order regularization for geophysical inverse

problems,” Geophysical Journal International, vol. 195, no. 2, pp. 1288–1299, 2013.

39

H. M. Gheymasi, A. Gholami, H. Siahkoohi, and N. Amini, “Robust total­variation based

geophysical inversion using split bregmanandproximity operators,” Journal of Applied

Geophysics, vol. 132, pp. 242–254, 2016. 39

J. Kyparisis, “On uniqueness of kuhn­tucker multipliers in nonlinear programming,”

Mathematical Programming, vol. 32, no. 2, pp. 242–246, 1985. 39

M. Heravi, H. Mohamadi, andH. Hashemi, “A curvelet based wavefield separation in ver­

tical seismic profiling,” in Istanbul 2012­International Geophysical Conference andOil

& Gas Exhibition. Society of Exploration Geophysicists and The Chamber of Geophys­

ical …, 2012, pp. 1–4. 39

H. Mohammadigheymasi, M. R. Ebrahimi, G. Silveira et al., “A sparsity­based adaptive

filtering approach to shear wave splitting,” in EGU General Assembly Conference Ab­

stracts, 2021, pp. EGU21–13 988. 39

D. Li, D. Helmberger, R. Clayton, and D. Sun, “Global synthetic seismograms using a 2­d

finite­differencemethod,”Geophysical Journal International, vol. 197, no. 2, pp. 1166–

1183, 2014. 49

70

Development of a Python Library for Processing Seismic Time Series

R. B. Herrmann, “Computer programs in seismology: An evolving tool for instruction and

research,” Seismological Research Letters, vol. 84, no. 6, pp. 1081–1088, 2013. 49

M. Kaser, C. Castro, V. Hermann, and C. Pelties, “Seissol–a software for seismic wave

propagation simulations,” in High Performance Computing in Science and Engineer­

ing, Garching/Munich 2009. Springer, 2010, pp. 281–292. 49

M. Afanasiev, C. Boehm,M. VanDriel, L. Krischer, D.May,M. Rietmann, and A. Fichtner,

“Salvus: a flexible high­performance and open­source package for waveformmodelling

and inversion from laboratory to global scales,” in EGU General Assembly Conference

Abstracts, 2017, p. 9456. 49

A. Reinarz, D. Charrier, M. Bader, L. Bovard, M. Dumbser, K. Duru, F. Fambri, A. Gabriel,

J. Gallard, S. Koppel et al., “Exahype: an engine for parallel dynamically adaptive sim­

ulations of wave problems,” Computer Physics Communications, vol. 254, p. 107251,

2020. 49

IRIS, “Data services products: Synthetics engine,” 2015. [Online]. Available: https:

//doi.org/10.17611/DP/SYNGINE.1 49

T. Nissen­Meyer, L. Van Driel, M.and Krischer, S. Stähler, K. Hosseini, A. Hutko, and

E. Zürich, “Data services products: synginem,” 2015, [Online] https://ds.iris.edu/ds/

products/synginem/. Last accessed in 29 June 2021. 50

NVIDIA, “Gpu­accelerated specfem3d­globe,” 2018, [Online] https://www.nvidia.com/

en­au/data­center/gpu­accelerated­applications/specfem3d­globe/. Last accessed in

10 April 2021. 52

L. Krischer, P. Dirk, E. Andrade, C. Cui, J. Parker, M. White, C. Deil, and Z. Vasović,

“pyasdf,” [Online] https://github.com/SeismicData/pyasdf/. Last accessed in 24 May

2021. 53

L. Krischer, L. Neeley, and A. Cooper, “Asdf­sextant,” [Online] https://github.com/

SeismicData/asdf_sextant. Last accessed in 24 May 2021. 53

71

https://doi.org/10.17611/DP/SYNGINE.1
https://doi.org/10.17611/DP/SYNGINE.1
https://ds.iris.edu/ds/products/synginem/
https://ds.iris.edu/ds/products/synginem/
https://www.nvidia.com/en-au/data-center/gpu-accelerated-applications/specfem3d-globe/
https://www.nvidia.com/en-au/data-center/gpu-accelerated-applications/specfem3d-globe/
https://github.com/SeismicData/pyasdf/
https://github.com/SeismicData/asdf_sextant
https://github.com/SeismicData/asdf_sextant

Development of a Python Library for Processing Seismic Time Series

72

Development of a Python Library for Processing Seismic Time Series

Appendix A

SeisPolPy Library File Structure

In this appendix, we present the files structure of the SeisPolPy library.

d i s t / SeisPolPy −0.0.1 −py3−none−any . whl

d i s t / SeisPolPy −0.0.1 −py3 . 8 . egg

d i s t / SeisPolPy −0 .0 . 1 . t a r . gz

docs / bui ld / doctrees

docs / bui ld /html

docs / source / _s t a t i c / css / de f au l t . css

docs / source /_templates

docs / source /img / png

docs / source / conf . py

docs / source / index . r s t

docs / source /modules . r s t

docs / source / SeisPolPy −Modules . r s t

docs / requirements . t x t

docs /Makefi le

examples / fl inn_example . py

examples/pinnegar_example . py

examples/ rs t f r_s_st f t_example . py

examples/ rs t f r_s t f t_example . py

examples/ vidale_example . py

examples/ACRG.mat

SeisPolPy / t e s t s / outputb64f i l e s / t x t

SeisPolPy / t e s t s /ACRG.mat

SeisPolPy / t e s t s / t e s t_ f l i nn . py

SeisPolPy / t e s t s / test_pinnegar . py

SeisPolPy / t e s t s / t e s t _ r s t f r . py

SeisPolPy / t e s t s / t e s t_v ida l e . py

SeisPolPy /__init__ . py

SeisPolPy / Fl inn . py

SeisPolPy /Pinnegar . py

SeisPolPy / Rs t f r . py

SeisPolPy / Vidale . py

sharedCl ib / ad jo in t . so

sharedCl ib / diags . so

sharedCl ib / forw_op . so

. read_the_docs . yaml

LICENSE .md

pypro jec t . toml

README. r s t

setup . c fg

setup . py

73

Development of a Python Library for Processing Seismic Time Series

74

Development of a Python Library for Processing Seismic Time Series

Appendix B

Sparsity­Promoting Approach to Eigenvalue
Decomposition Polarization Analysis of
Seismic Signals in the Time­Frequency
Domain

In the present section of the appendix the submitted and accepted article for publication

by IEEE Transactions on Geoscience and Remote Sensing is made available.

75

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. , NO. , MAY 2021 1

Sparsity-promoting approach to polarization analysis
of seismic signals in the time-frequency domain
Hamzeh Mohammadigheymasi, Paul Crocker, Maryam Fathi, Eduardo Almeida, Graça Silveira,

Ali Gholami, and Martin Schimmel

Abstract—Time-frequency (TF)-domain polarization
analysis (PA) methods are widely used as a pro-
cessing tool to decompose multi-component seismic
signals. However, as a drawback, they are unable
to obtain sufficient resolution to discriminate be-
tween overlapping seismic phases, as they generally
rely on a low-resolution time-frequency representa-
tion (TFR) method. In this paper, we present a new
approach to the TF-domain PA methods. More pre-
cisely, we provide an in-detailed discussion on rearrang-
ing the eigenvalue decomposition polarization analysis
(EDPA) formalism in the frequency domain to obtain
the frequency-dependent polarization properties from
the Fourier coefficients owing to the Fourier space
orthogonality. Then, by extending the formulation to
the TF-domain and incorporating sparsity-promoting
time-frequency representation (SP-TFR), we allevi-
ate the limited resolution when estimating the TF-
domain polarization parameters. The final details of the
technique are to apply an adaptive sparsity-promoting
time-frequency filtering (SP-TFF) to extract and filter
different phases of the seismic wave. By processing
earthquake waveforms, we show that by combining
amplitude, directivity, and rectilinearity attributes on
the sparse TF-domain polarization map of the signal,
we are able to extract or filter different phases of seismic
waves. The SP-TFF method is evaluated on synthetic
and real data associated with the source mechanism of
the Mw = 8.2 earthquake that occurred in the south-
southwest of Tres Picos, Mexico. A detailed discussion
on the results of these experiments is given, approving
the efficiency of the technique in separating not only the
Rayleigh from the Love waves but also to discriminate
them from the body and coda waves.

Index Terms—Eigenvalue decomposition, Polariza-
tion analysis and filtering, Sparsity-promoting time-
frequency representation, Rayleigh and Love waves
elimination, adaptive filtering

H. Mohammadigheymasi and E. Almeida, are with the Depart-
ment of Computer Sciences, University of Beira Interior, Covilhã,
Portugal e-mail: (hamzeh@ubi.pt).
P. Crocker is with the Instituto de Telecomunicações and Univer-

sity of Beira Interior, Covilhã, Portugal
M. Fathi is with Islamic Azad University, Science and Research

Branch, Tehran, Iran.
G. Silveira is with the Dom Luiz Institute, Faculty of Science, Uni-

versity of Lisbon, and Instituto Superior de Engenharia de Lisboa,
Lisbon, Portugal.
A. Gholami is with the Institute of Geophysics, University of

Tehran, 14155/6466 Tehran, Iran.
M.Schimmel is with the Institute Of Earth Sciences Jaume Almera,

Barcelona, Spain

I. Introduction

A Seismic wavefield recorded as a seismogram is a
superposition of overlapping direct, reflected, refracted,
converted, and scattered body and surface waves, con-
taminated by various background sources and the signal
generated noise [1]. It is well known that surface and
body waves can carry considerable information about the
subsurface structure. Depending on the research scope,
any of these seismic phases can be studied, while their
detection and extraction require advanced processing and
analysis tools. Accordingly, multicomponent processing
techniques have been developed to analyze the nonlinear
and time-varying processes behind the seismic sources and
the propagating environment [Refer to [2] as a rigorous
survey]. Among these techniques, polarization analysis
methods have attracted significant attention.
Generally, the polarization analysis methods can be

divided into three broad categories: time, frequency, and
time-frequency (TF) domain methods. As a pioneer, Flinn
[3] introduced the eigenvalue decomposition polarization
analysis in the time-domain. Likewise and in the realm
of Hilbert transform, Vidale [4] introduced the analytic
signal polarization technique. Although these methods are
equipped by time-windowing to extract the non-stationary
signal properties, they cannot discriminate between over-
lapping events with different frequencies. Comparatively,
studies were carried out on achieving polarization prop-
erties of the seismic time-series in the frequency domain.
Primarily developed by [5], the propagation direction of
surface waves was obtained using the amplitude and phase
spectrum of seismic waves. Likewise, Samson and Olson
[6] proposed a technique to provoke the polarization state
based on eigenvalue decomposition of the spectral matrix
in different frequency narrow bands. However, these tech-
niques are incapable of analyzing non-stationary signals in
the time domain.
Due to the non-stationary nature of seismic signals

with overlapping phases in time and frequency, pure
time- or frequency-domain methods are often difficult to
discriminate between the non-stationary seismic phases
adequately. To alleviate this, Jurkevics [7] proposed fil-
tering the signals into a series of narrow frequency bands,
applying short sliding time windows, and then estimating
the polarization ellipse from the covariance matrix in each
window at each band. Despite providing a TF-domain
insight to polarization analysis, the resolution was still

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. , NO. , MAY 2021 2

limited in the frequency domain due to the restricted func-
tionality of the bandpass filtering. Therefore, by applying
different time-frequency representation (TFR) methods
[8, 9, 10] and using various polarization estimation crite-
ria, several TF-based polarization analysis methods were
proposed to analyze the non-stationary seismic signals.
These TF-domain polarization estimation tools range from
eigenvalue decomposition of the covariance matrix [11, 12]
and complex trace analysis [4, 13, 14], to fitting the
particle motion to a parametric polarization ellipse [15].
Despite attaining a TF-domain estimation these methods
are not yet able to resolve closely-spaced overlapping
seismic events in both time and frequency domains.

Obtaining a high-resolution TFR has always been a
challenge for the scientific community and a variety of
methods have been introduced, including synchrosqueez-
ing transform (SST) [16], sparse transforms [17], SP-TFR
[18, 19, 20], to name but a few. Remarkably, by for-
mulating the TFR as an inverse problem, and taking
advantages of sparsity-promoting (SP) regularization as
a promising tool to obtain a high-resolution solution,
several methods have been developed to improve the TFR
resolution [18, 19, 20]. SP-TFR found many applications
in seismology, including the denoising of microseismic data
[20] and attenuation of seismic ground roll noise [19].

On the other hand, filtering or extracting different
phases of seismic waves is a concerning challenge in the
seismic community. Although in a laterally homogeneous
structure, the Love wave appears mainly on the transverse
and the Rayleigh wave on the vertical and radial compo-
nents, due to the lateral heterogeneity and anisotropy, it is
seldom the case in real data [4]. Likewise, this assumption
fails in miss-oriented horizontal sensor components, which
is a global problem even for the best-installed seismic net-
works [21]. Hence, it is always challenging to discriminate
between the body and Rayleigh waves on the vertical
and radial components as well as SH and Love waves
on the transverse component. Accordingly, polarization
filtering techniques have been developed to extract or filter
a specific phase from other phases using the analyzed po-
larization information. As pioneers, Flinn [3], Montalbetti
and Kanasewich [22], and Vidale [4] utilized time-domain
rectilinearity and directivity attributes to amplify body
wave phases teleseismic data. In like manner, Samson and
Olson [6] applied these criteria to filter ultra low-frequency
magnetic field signal fluctuations in the frequency domain.
Similarly, Schimmel et al. [14] designed a TF domain filter
based on the degree of polarization (DOP) extracted from
the semi-major and semi-minor axis of the elliptical motion
of the three-component ambient noise data to filter the
elliptical particle motion. In an intuitive method, Pinnegar
[15] utilized semi-major, semi-minor, inclination, and az-
imuth parameters to discriminate between the circular and
linear polarization to filter the Rayleigh waves. Although
the introduced filtering scheme is efficient in filtering the
elliptically polarized phases like Rayleigh waves, it still
faces challenges in filtering the linear phases because the
method attains a null value of azimuth and inclination

angles analyzing linear particle motions.
This article begins with an elaborative review of the

eigenvalue decomposition polarization analysis EDPA; we
formulate EDPA as a function of frequency. On this basis,
we obtain high-resolution TF-domain polarization param-
eters by extending the formulation from frequency to the
TF-domain and combining with the SP-TFR. Afterward,
by extending the polarization filtering method of Pinnegar
[15] to incorporate high-resolution TF-domain information
of directivity, rectilinearity, and amplitude properties, we
design suitably defined filters to accept (or reject) linear
and elliptical seismic phases, including Rayleigh and Love,
making it possible to separate them from body and coda
waves. The main focus of the paper is to discriminate
between the Love and Rayleigh from the body and coda
waves.
This paper is organized in the following manner. First,

in section II we elaborate the theory behind the EDPA in
the time, frequency, and TF domains. We show that EDPA
can be applied independently for every single frequency
by taking advantage of the orthogonality of the Fourier
domain. This property can be extended to the TF-domain,
making it possible to obtain TF-domain polarization pa-
rameters. Then, by reviewing the SP-TFR and combining
with EDPA, we obtain a high-resolution TF-domain polar-
ization map of the signal. Afterward, by implementing TF-
domain rectilinearity, directivity, and amplitude attribute
and combining them with SP-TFR we introduce sparsity-
promoting time-frequency filtering (SP-TFF) method to
be used for filtering different phases of seismic signal.
Next, in section III by conducting numerical experiments
on synthetic and real earthquake data examples, we show
that SP-TFF can efficiently extract and filter Rayleigh and
Love waves and discriminate between linearly polarized
seismic phases like Love and body and coda waves. Finally,
in sections IV we discuss the results and conclude the
paper.

II. Theory
To keep this paper self-contained, we rearrange the

EDPA formalism in the frequency and TF domain to be
combined by SP-TFR. Furthermore, to be consistent with
the numerical algorithms, we exclusively present a discrete
version of the mathematical equations.

A. Polarization analysis using eigenvalue decomposition
Suppose that

X = [x1,x2,x3] ∈ RL×3, (1)

is a seismic time-series recorded with three compo-
nents aligned with the base vectors of a right-handed
coordinate system {eE , eN , eZ} (east-north-vertical),
{eT , eR, eZ} (transverse-radial-vertical), or {eL, eQ, eT }
(tangent-normal-binormal or Frenet wave). The latter co-
ordinate systems are obtained from the ordinary east-
north-vertical system by rotation [see [23] for more de-
tails]. Each component, xi ∈ RL×1 (i = 1, 2, 3), sam-
ples the wavefield arriving to the sensor along the time

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. , NO. , MAY 2021 3

axis on tk = kδt, with δt being sampling interval and
k = 0, 1, ..., 2n being the time index assuming an odd
length L = 2n+ 1 of seismogram.

Then, the polarization properties ofX can be extracted
by the eigenvalue decomposition of the covariance matrix

V =

V11 V12 V13
V21 V22 V23
V31 V32 V33

 ∈ R3×3 (2)

[22, 3, 7, 24]. The elements of the symmetric and real-
valued matrix V in (2) are auto- and cross-variances of
the components of the time-series defined as

Vij =
[

1
2n+ 1

2n∑
l=0

(xi(l)− µi)(xj(l)− µj)
]
,

i, j = 1, 2, 3.
(3)

In (3), µ is the mean or expected value of components
and is defined as

µi = Ψ{xi} = 1
2n+ 1

2n∑
l=0

xi(l) (4)

[22]. Assuming a weakly stationary condition for all the
components of the time series, Ψ{xi} ∼= 0, i = 1, 2, 3, (3)
can be rewritten as

Vij =
[

1
2n+ 1

2n∑
l=0

xi(l)xj(l)
]

= Cij , (5)

which simplifies the definition of elements in (2) to auto-
and cross-correlations,

C =

C11 C12 C13
C21 C22 C23
C31 C32 C33

 ∈ R3×3, (6)

or equally,

C = XTX

N
, (7)

where (.)T in (7) denotes the transposition operator.
The weakly stationary assumption in (5) is satisfied by
applying DC removal or detrending.

The quadratic matrix of correlation coefficient, C, fits
the particle motion ellipsoid in a least-squares sense; the
parameters of this ellipsoid are obtained by solving the
system of equations

(C− λiI)u = 0, (8)

[7]. Geometrically, solutions to (8) give directions (eigen-
vectors, (u1, u2, u3)) that the linear transformation
by operator C merely elongates or shrinks; the ratio
of elongation/shrinkage is given by eigenvalues, (λ1, λ2,
λ3). Indeed, the eigenvectors direct principal axes of the
polarization motion ellipsoid, and the eigenvalues are the
size of those axes; eigenvalues are sorted such that λj ≥ λk
for j < k.

1) Eigenvalue decomposition in the frequency domain:
The first implementations of the eigenvalue decomposition
on the frequency domain were proposed by [25, 6]; the
spectral matrix corresponding to a perturbation around
the central frequency [ω − δω, ω + δω] was decomposed
using eigenvalue decomposition to provoke the polariza-
tion states of the signal. This decomposition scheme is
more compatible with natural signals, which are rarely
composed of single-frequency polarized elements. However,
by decomposing to a strictly polarized single frequency
state, one can benefit from the orthogonality of the Fourier
transform to extract frequency-dependent polarization
properties. Here, we review and simplify the process.
The discrete Fourier domain counterpart of (1), Xf =

FT {[x1,x2,x3]} = [f1,f2,f3] ∈ RL×3, is obtained by
modulating xi, i = 1, 2, 3, with pure sinusoids having
discrete frequencies as follows

fi(l) = 1
2n+ 1

2n∑
k=0

xi(k)exp(−2πkl
2n+ 1), i = 1, 2, 3. (9)

Here, l = −n, ..., n, is the frequency index giving frequency
content of the signal on discrete frequencies ωl = l

(2n+1)δt ,
and  is the imaginary unit. The original signal is re-
constructed by applying the inverse Fourier transform,
X = IFT {[f1,f2,f3]},

xi(k) =
2n∑
l=0

fi(l)exp(
2πkl
2n+ 1), i = 1, 2, 3. (10)

Accordingly, the frequency-domain counterpart of (5) is
defined as

Cij = ZL{IFT (f i ◦ f
∗
j)}, (11)

in which, (.)∗, and ◦ are complex conjugate and Hadamard
or element-wise product operator, respectively, and ZL{.}
is a function that picks the zero-lag element. By taking
advantage of the orthogonality property of the Fourier
domain, (11) can be written as

Cij =
n∑
l=0

Cij(l) =
n∑
l=0

ZL{IFT (f̂ li ◦ f̂
l
j

∗
)}, (12)

with

f̂ lk(j) =
{
fk(j) j = l

0 j 6= l
(13)

Hence, the auto- and cross-correlation terms for every
single frequency can be decomposed via (13). Instead of
applying operation in (13) to obtain Cij(l), it is attainable
from gij = f i ◦ f

∗
j as

Cij(l) =
{
gij(−l) + gij(l) l 6= 0
gij(l) l = 0

, l = 0, 1,, n (14)

gives the frequency-dependent auto- and cross-
correlation elements. Solving system of equations (8) for
the frequency-dependent elements Cij(l),

(C(l)− λi(l)I)u(l) = 0, (15)
gives the eigenvectors, (u1(l), u2(l), u3(l)) and eigenval-
ues, (λ1(l), λ2(l), λ3(l)), as a function of frequency.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. , NO. , MAY 2021 4

2) Eigenvalue decomposition in the time-frequency do-
main: The process described in section (II-A1) effec-
tively decomposes stationary signals into it’s frequency-
dependent polarization components (eigenvectors and
eigenvalues). Having to deal with the non-stationary na-
ture of seismic data, the same definition is extended to
give polarization components that depend on time and
frequency by substituting a TFR in place of the ordinary
Fourier transform. Much research has been devoted to
finding efficient TF analysis methods and many power-
ful methods have been developed in the past decades,
including the wavelet transform [26], the Wigner-Ville
distribution [27], short time fourier transform (STFT) [8],
Stockwell transform (ST) [9], etc. As an instance, the
STFT representation of signal xi in (1) is obtained by

TFSTFT (k, l) =
2n∑
k̂=0

x(k̂)w(k̂ − k)exp(−2πk̂l
2n+ 1),

l = −n, ...,−1, 0, 1, ..., 2n, k = 0, 1, ..., 2n

(16)

with

w(k̂ − k) = 1
σ
√

2π
e−(k̂−k)2/2σ2

(17)

being a Gaussian window with standard deviation σ,
centered on the time index k. The definition in (16) can
be extended to the ST [9] by applying a time–frequency
spectral localization using a window function scalable with
frequency as

w(k̂ − k, l) = l

σ
√

2π
e−l

2(k̂−k)2/2σ2
(18)

with k and l are defined the same as (16). The parameter σ
in (17) and (18) controls the resolution of the transform in
the time and frequency domain; higher values of σ attains
higher frequency resolution, while lower values improves
the time resolution.
By obtaining TF of the 3-components of the signal, the

TF-domain auto- and cross-correlation terms is obtained
as

Cij(k, l) =
{
gij(k,−l) + gij(k, l) l 6= 0
gij(k, l) l = 0

(19)

for time and frequency indexes , k = 0, 1,, 2n + 1, l =
0, 1,, n. Consequently, the TF-dependent eigenvectors,
(u1(k, l), u2(k, l), u3(k, l)) and eigenvalues, (λ1(k, l),
λ2(k, l), λ3(k, l)), is obtained by solving

(C(k, l)− λi(k, l)I)u(k, l) = 0, (20)

giving a TF map of polarization state of signal. This
decomposition process is similar to the method introduced
by Pinnegar [15]. However, as we will discuss in the
following sections, it can be used to filter the linearly
polarized seismic phases, which is not able to be done with
the Pinnegar [15] method.

B. Regularized sparsity-promoting TF decomposition
The system of equations for STFT and ST linear which

allows us to define the TF coefficients as a solution of a
linear system equations

x = Gα, G ∈ RL×L
2
, α ∈ RL

2×1 (21)

where α is a vectorized rearrangement of TF coefficients
in (16) [see [20, 19] for more details about the structure of
the forward operator G]. Since the linear system in (21) in
under-determined, there exists an infinite number of TF
maps for representing the signal. The desired TF map can
be obtained by using some form of a priori information
under the frame of regularization techniques [20, 19]. A
sparsity-promoting regularization enables selecting a TF
model with a minimum number of non-zero coefficient by
solving a constrained optimization problem

α = arg min
α

1
2‖Gα− x‖

2
2 + µ‖α‖1 (22)

where ‖α‖p = (
∑
i |α(i)|p)1/p is the `p norm of a vector x

and µ > 0 is the sparsity parameter [20, 19]. By choosing
a proper µ, one can control the resolution of the TF map
and allows us to being able to discriminate between closely
spaced events in time and frequency, while reconstructing
the data.
The optimization problem (22) can be solved by a

variety of methods such as the split Bregman method [19]
or fast iterative soft thresholding algorithm (FISTA) [28].
In this study, we utilized the FISTA method to solve (22).
The obtained SP-TFR through (22) is used to design

an adaptive filtering for extracting (or filtering) different
phases of seismic waves. In the next section, we briefly
review the adaptive filtering approach in the TF domain.

C. Adaptive filtering in the TF domain
Adaptive filtering has been extensively applied in seis-

mology [22, 4, 7, 14]. In an intuitive scheme, Pinnegar
[15] utilized a combination of inclination, azimuth, and
rectilinearity attributes in the TF domain to filter the
Rayleigh waves. However, his method is not able to scru-
tinize the pure linear polarization because of an undefined
inclination angle for linear particle motions [see section
(III) for more details]. As a result, the method is not
applicable to filter the Love wave or any other seismic
phase with a linear polarity. Here, we extend his methodol-
ogy by combining rectilinearity, directivity, and amplitude
attributes [7, 22] with the TF-domain polarization param-
eters obtained from SP-TFR of 3-components of the signal
to introduce SP-TFF method.
1) Rectilinearity attribute: Rectilinearity is a critical

parameter for discriminating between the elliptical and
linear particle motion states. The purely rectilinear ground
motion is modeled by one nonzero eigenvalue in the TF
plane

λi(k, l) = 0, i > 1. (23)

Nevertheless, due to the presence of contaminating noise,
out-of-plane energy, and scattering distortions, it is seldom

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. , NO. , MAY 2021 5

the case for the real data [29]. To circumvent this, a degree
of rectilinearity

Re(k, l) = 1− λ2(k, l) + λ3(k, l)
λ1(k, l) , (24)

is defined as a rectilinearity measure to discriminate be-
tween the rectilinear motion of Love and body waves and
elliptical motion of Rayleigh waves [7], [13], [30].

Accordingly, a rectilinearity filter is designed in the TF
domain as

ΨRe(Re(k, l)) =


1 −1 < Re(k, l) < α,

cos(π(Re(k,l)−α)
2(β−α)) α < Re(k, l) < β,

0 β < Re(k, l) < 1,
(25)

while to avoid the Gibbs phenomenon caused by abrupt
frequency cut-off, the accept or reject regions are cosine
tapered in (23) by incorporating suitably defined adjusting
parameters α and β. The proposed filter is similar to the
TF filter introduced by Pinnegar [15], whereas it can be
designed to filter the linear polarization particle motion.
2) Directivity attribute: Directivity is another cru-

cial parameters to discriminate between different seismic
phases based on the direction of particle motion. More
precisely, a directivity measure is defined as the absolute
value of the dot product of the first eigenvector by the
base vectors

Di(k, l) = |uT1 (k, l)ei|, i ∈ {T,R,Z}, (26)

then normalizing the measure in the TF plane. Cor-
respondingly, a directivity filter is designed in the TF
domain as

ΨD(Di(k, l)) =


1 0 < Di(k, l) < γ,

cos(π(Di(k,l)−γ)
2(λ−γ)) γ < Di(k, l) < λ,

0 λ < Di(k, l) < 1,
i ∈ {T,R,Z}.

(27)

The adjusting parameters γ and λ have the role of both
cosine tapering to avoid the Gibbs phenomenon and
threshholding as a percentage of the maximum measure.
In the next section we present the combination of these
attribute to filter seismic data.
3) Amplitude attribute: Although generally surface

waves manifest themselves with higher amplitude than
the body and coda waves [31], it is challenging in prac-
tice to work with amplitude attributes to discriminate
them. Having a TF-domain insight to analyze the signal,
enforced by SP-TFR to present it with a few sparse
coefficients, accentuates the amplitude difference between
the surface and coda waves. In other words, the energy
of surface waves is extracted locally with a few sparse
coefficients, while the body and coda waves are distributed
to a broader range of coefficients due to having a broader
frequency content. Hence, an amplitude attribute can be
more efficiently used to discriminate surface waves from
body and coda waves. Specifically, it can be employed as

a tool to separate Love and SH waves, which have the same
type of polarization directivity and rectilinearity. Defining
an amplitude attribute as

A(k, l) =
√

2λ1(k, l)
L

, (28)

a corresponding amplitude filter is designed in the TF
domain as

ΨA(A(k, l)) =


0 0 < A(k, l) < ζ,

cos(π(A(k,l)−ζ)
2(η−ζ)) ζ < A(k, l) < η,

1 η < A(k, l) < 1,
(29)

normalized in the whole TF plane. The adjusting pa-
rameters ζ and η acts as a measure to pass (or reject)
the coefficient in the TF plane, while applying the cosine
tapering. In the next section we present the combination
of these attribute to filter seismic data.
4) Regularized Sparsity-promoting Time Frequency Fil-

tering : To combine the properties of different attributes,
a similar methodology to [15] can be followed. More
precisely, the total TF reject filter to reject a phase is
obtained by combining the rectilinearity, directivity, and
amplitude filters, as

ΨR = 1− {1−ΨRe} ◦ {1−ΨD} ◦ {1−ΨA}. (30)

Similarly, a special seismic phase can be extracted by
defining an extract filter as ΨE = 1 − ΨR. Finally, the
filtering process is applied by element-wise multiplication
of Ψ with the SP-TFR of the three components; then,
the filtered signal is reconstructed in the time domain by
applying (21) giving the SP-TFF.
Besides all the defined criteria, subjective information

can be incorporated as a constraint to control the filtering
domain while rejecting or extracting seismic phases. As an
example, in the case of filtering or extracting the surface
waves, an approximate initial time of the Love wave can
be introduced to the algorithm to limit the domain of
filtering in (30). It can be picked visually on the transverse
component or estimated by using the standard global
dispersion curves.
In the next section, we examine the application of the

proposed filtering method to filter different seismic wave
phases.

III. Numerical examples
To evaluate the SP-TFF method, we test it with syn-

thetic and real data examples by extracting and filtering
the Love and Rayleigh waves. The implementation results
are compared with those of the method introduced in
Pinnegar [15].

A. Synthetic examples
The synthetic data corresponds to the source mecha-

nism of the Mw = 8.2 earthquake occurred in the 101km
SSW of Tres Picos, Mexico, on September 8th, 2017,
04:49:19 (UTC), as a result of normal faulting at an
intermediate depth of 47.4 km [see Table. I]. The source

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. , NO. , MAY 2021 6

-0.05

0

0.05

(a)

-0.05

0

0.05

(c)

500 1000 1500

-0.05

0

0.05

(e)

V
e
lo

c
it
y
 (

m
/s

)

-0.05

0

0.05

(b)

-0.05

0

0.05

(d)

500 1000 1500

-0.05

0

0.05

(f)

V
e
lo

c
it
y
 (

m
/s

)

Time (s)

Figure 1. The background gray color waveforms in top, middle,
and bottom panels corresponds to transverse, radial, and vertical
components of a 3D synthetic seismogram generated for the source
mechanism of Mw = 8.2 south-southwest of Tres Picos, Mexico [see
text and Table. I]. The foreground black color diagram in panels (a),
(c), and (e) are Love wave filtered transverse, radial, and vertical
components by using the SP-TFF, and the panels (b), (d), and (f) are
Rayleigh wave filtered waveforms of the corresponding components.

mechanism and the source-receiver geometry were chosen
such that the amplitude of body and coda waves is almost
comparable to the surface waves making separation more
challenging.

A three-dimensional synthetic seismic data was gener-
ated through the 1D ak135f earth model [32] with spectral-
element method assuming 3D (an-)elastic, anisotropic and
acoustic wave propagation in spherical domains. The sim-
ulation was run by using the AxiSEM library through the
IRIS Synthetics Engine (Syngine) client of ObsPy software
[33, 34].

In the simulation, the seismic wavefield is recorded in
the College Outpost, Alaska, USA [see Table. I for more
details], at the azimuth of 61.56◦ to the epicenter.

The generated data were preprocessed; detrended and
decimated by a factor of 8 to attain a data set with a
sampling rate of 2 sec. Then, the traces were rotated to
the transverse-radial-vertical coordinate system. To make
the simulation more realistic, the data was contaminated
by a Gaussian noises, n ∈ RL×1 (bandpass-filtered in the
range of [0.02, 0.5] Hz) to give a signal to noise ratio (SNR)
of 10. The Transverse, Radial, and Vertical components of
the total motion are shown in gray color in Fig. 1.

To evaluate the efficiency of SP-TFF, the results are
compared with those obtained by Pinnegar [15]. In this
method, the ordinary ST is used as the TFR, and the TF-
domain polarization parameters are obtained by fitting the
particle motion to a parametric ellipse by incorporating
the TFR of 3-components. More precisely, a set of the

(a)

0 500 1000 1500
0

0.2

0.4

0

1

2

10 -4 (b)

0 500 1000 1500
0

0.2

0.4

0

0.01

0.02

0.03

0.04

(c)

0 500 1000 1500
0

0.2

0.4

0

1

2

3

10 -4 (d)

0 500 1000 1500
0

0.2

0.4

0

0.01

0.02

0.03

(e)

0 500 1000 1500
0

0.2

0.4

0

1

2

3

10 -4 (f)

0 500 1000 1500
0

0.01

0.02

0.03

F
re

q
u
e
n
c
y
(H

z
)

Time (s)

Figure 2. The TFR of the transverse, radial and vertical compo-
nents of the synthetic data obtained by the ordinary ST (applied
by Pinnegar [15]) are shown in the panels (a), (c), and (e). The
corresponding TFR for the SP-TFR method are shown in the panels
(b), (d), and (f) [Refer to the text for more explanations].

polarization parameters including a(k, l) (the length of
Semi-major (SM) axis of the parametric ellipse), b(k, l)
(the length of Semi-minor (Sm) axis of the parametric
ellipse), I(k, l) (the inclination of the ellipse to the hori-
zontal), Ω(k, l) (the azimuth of the ascending node, ω(k, l)
(the angle between the ascending node and the position of
maximum displacement) and φ(k, l) (the phase, measured
with respect to the time of maximum displacement) are
obtained, with k = 0, ..., 2n + 1 being the time and
l = 0, ..., n being the zero and positive frequency indices.
The TFR of the transverse, radial and vertical compo-

nents of the synthetic data obtained by the ordinary ST
(applied by Pinnegar [15]) are shown in the panels (a), (c),
and (e) of Fig. 2; the corresponding TFR for the SP-TFR
method are shown in the panels (b), (d), and (f). The
SP-TFR attains a highly compact TFR with a maximum
amplitude higher than the ST, while ST distributed the
energy in the TF plane in a wider area. The up-chirp
characteristics of surface waves are obvious in both TFRs.
The TF domain SM and Sm axes of the particle motion

obtained by Pinnegar [15] method are depicted in (a) and
(c) panels of Fig. 3; the corresponding TF domain SM and
Sm axes for EDPA using SP-TFR are shown in in (b) and
(d) panels. The SM and Sm axes for EDPA is obtained as

SM(k, l) = ||SM(k, l)||2 =
√

2λ1
L ||u1(k, l)||2,

Sm(k, l) = ||Sm(k, l)||2 =
√

2λ2
L ||u2(k, l)||2,

(31)

with k and l are defined similar to (16). By considering
the left panels of Figs. 2 and 3 it is evident that by
applying the ordinary ST, the Rayleigh and Love waves are
inseparably overlapping both in time and frequency. It can

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. , NO. , MAY 2021 7

Table I
Information of synthetic and real data example correspond to Mw = 8.2 earthquake occurred near Coast Of Chiapas,

Mexico recorded at COLA station, IU network Alaska, USA.

Date Time Hypo-lat Hypo-Lon Hypo-dep Station-lat Station-lon Station-ele Dis Azimuth
2017-09-08 04:49:20(UTC) 15.022 -93.899 47.4km 64.87° -147.86° 200m 61.56° -22.98°

be deduced either from the TFR maps or from the SM and
Sm maps. In contrast, for the SP-TFR (Right panels), the
high-resolution TFR successfully separated the wavefields,
giving the possibility of discriminating between different
seismic wave phases. It is also seen in the SM and Sm
maps in Fig. 3. Another interesting feature is the SH and
Love wave pattern in the TFR. The Love wave has been
concentrated around the dispersion curve; however, the
SH wave has been spread in a wider frequency bandwidth
around the time 800 secs. It makes using amplitude at-
tribute more efficient in separating them. Subsequently,
by incorporating the obtained TF domain polarization
parameters, we process the data to filter different seismic
phases.
1) Love and Rayleigh wave filtering using SP-TFF:

The TF domain polarization parameters obtained form
SP-TFR, are used to define and adaptive filter according
to section (II-C) to filter Love and Rayleigh waves.

To extract and filter the Love waves, we design a
directivity filter by defining the directivity measure with
respect to the transverse axis eT in (26), and a set of
adjusting parameters γ = 0.13 and λ = 0.16 for amplitude
threshholding and cosine tapering of the directivity mea-
sure. An amplitude filter by the set of parameters ζ = 0.26
and η = 0.23 was combined to define a Love-reject filter
accroding to (30). The results of applying the filter on the
SP-TFRs of the transverse, radial and vertical components
are shown in panels (a), (c), and (d) of Fig. 4. As is
shown, the energy corresponds to the Love wave in the TF
plane has been significantly removed, and only scattered
energy remains, which corresponds to the body and coda
waves, and noise (top panel). The SP-TFRs of the radial
(panel (c)) and vertical (panel (e)) components have not
been affected by filtering. The black color waveform in
(a), (c), and (e) panels of Fig. 1 depict reconstructed
transverse, radial and vertical components after filtering
in the time domain; the Love wave is almost entirely
removed in the time domain, while the other phases,
including the body and coda wave, and also the noise
has remained in the seismogram. It is a promising feature
of the SP-TFF algorithm compared to the Pinnegar [15]
method, which attains a null value for the inclination
and azimuth parameters corresponding to a linear particle
motion. The filtering process has not affected other phases
in the radial and vertical components, except a minor
effect on the Rayleigh phase around the time 700s, in
which the SP-TFR of the Rayleigh and Love phases fully
overlaps. An interesting result of applying SP-TFF in
this example is that a SH phase around 800 sec masked
by high-amplitude Love waves has been recovered after
filtering.

(a)

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0

1

2

3

4

10
-7

(c)

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0

1

2

3

4

10
-7

(b)

0 500 1000 1500
0

1

2

3

4

5

10
-4

(d)

0 500 1000 1500
0

1

2

3

4

5

10
-4

F
re

q
u
e
n
c
y
(H

z
)

Time (s)

Figure 3. Panels (a) and (c): TFR of measure of SM and Sm axis of
particle motion obtained by using the Pinnegar [15] method. Panels
(b) and (f): The corresponding TFR of measure of SM and Sm axis of
particle motion obtained by by implementing EDPA on the SP-TFR.
[Refer to the text for more explanations].

To filter the Rayleigh phase, the directivity measure is
computed with respect to the radial-vertical plane com-
puted as

D(k, l) =
√
DR(k, l)2 +DZ(k, l)2. (32)

The adjusting parameters are set to γ = 0.25 and λ = 0.3.
Furthermore, a rectilinearity filter is defined by setting
the parameters α = 0.1 and β = 0.12. The results of
applying the filter on the SP-TFRs of 3-components are
shown in the panels (b), (d), and (f) of Fig. 1. Similar to
the Love wave filtering, the filtered SP-TFR only contains
scattered energy of the noise, body, and coda waves in
the radial and vertical components. The reconstructed
filtered components are shown in the right panels shown in
the right panel of Fig. 1. As shown, SP-TFF successfully
filtered the Rayleigh wave without affecting the body and
coda waves in the radial and vertical components and
substantially affected the other phases in the transverse
components. The same as for the Love wave filtering,
around 800s, the Love wave has slightly been filtered. The
results obtained from the SP-TFF are superior to those
from Pinnegar [15] by having a very high-resolution TFR
enable to separate the Rayleigh and Love waves, while in
the ordinary ST the TF resolution is limited.
As a final test to assess the SP-TFF method, the Love

and Rayleigh phases are extracted by applying (30) on the
SP-TFR of three components. The extracted Love wave is
shown in the (a) panel of Fig. 5. Similarly, panels (b) and
(c) of this figure show the radial and vertical components
of Rayleigh waves. Both the Love and Rayleigh phases
have been cleanly extracted from the entire waveform. The
extracted surface waves can be used as an input to other

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. , NO. , MAY 2021 8

(a)

0 500 1000 1500
0

0.2

0.4

0

0.02

0.04

(c)

0 500 1000 1500
0

0.2

0.4

0

0.01

0.02

0.03

0.04

(e) Love-filtered

0 500 1000 1500
0

0.2

0.4

0

0.02

0.04

(b)

0 500 1000 1500
0

0.2

0.4

0

0.02

0.04

(d)

0 500 1000 1500
0

0.2

0.4

0

0.01

0.02

0.03

(f)

0 500 1000 1500
0

0.2

0.4

0

0.01

0.02

F
re

q
u
e
n
c
y
(H

z
)

Time (s)

Figure 4. Left panel: Adaptively Filtered SP-TFRs of the transverse,
radial, and vertical components of synthetic data to eliminate the
Love wave. Right panel: Adaptively Filtered SP-TFRs of components
to eliminate the Rayleigh wave.

-0.05

0

0.05

(a)

-0.05

0

0.05

(b)

200 400 600 800 1000 1200 1400 1600

-0.05

0

0.05

(c)

V
e

lo
c
it
y
 (

m
/s

)

Time (s)

Figure 5. Panel (a): extracted Love wave by applying SP-TFF
method on the synthetic data. Panel (b) and (c): the radial and
vertical component of extracted Rayleigh wave by applying SP-TFF
method.

processing methods like dispersion curve inversion. In the
following subsection, we examine the performance of the
method on real data.

B. Real data example
The real seismogram corresponds to the real data

recorded for the same earthquake and station of the
synthetic model. The waveform was pre-processed includ-
ing detrending, decimation, deconvolving the instrument
response, and converting to velocity with a sampling rate
of 2 sec. The traces were mapped to the transverse-radial-
vertical coordinate system. The pre-processed transverse,
radial, and vertical components are shown in gray color in
the top, middle, and bottom panels of Fig. 6.
The obtained TFR by applying [15] and SP-TFR meth-

ods are shown in the left and right panels of Fig. 7; similar
to the synthetic example, the SP-TFR (right panels)
presents a highly compact TFR comparing to the ordinary
ST implemented by Pinnegar [15] (left panels). Although
there is no sharp up-chirp pattern for the surface waves
like in the synthetic data, there are still two separate
energy panels in the SP-TFR of different components
showing an increasing value of frequency by time. These
two panels marked by dash-dot and continuous line ellipsis
correspond to Love and Rayleigh waves, respectively. Two
other panels shown by dashed ellipsis contain mostly body
and coda waves. On the other hand, the TFR obtained
by ST and shown in the left panel of Fig. 7 depicts
a mixed and inseparable pattern of Love and Rayleigh
waves. The distinct polarization pattern between the Love
and Rayleigh waves is better visible in the TF domain SM
and Sm axes of particle motion as shown in the right panel
of Fig. 8. The elliptical particle motion of Rayleigh waves
is separable from the Linear particle motion of Love, body,
and coda waves in the SM and Sm axes figures. Contrarily,
they have been mixed in time and frequency in the results
obtained by Pinnegar [15] method, as shown in the left
panel of Fig. 8. In the following subsection, we perform
the adaptive filtering method to reject or extract Love and
Rayleigh waves.
1) Love and Rayleigh wave filtering using SP-TFF:

The TF domain polarization parameters obtained from
SP-TFR are used to design an adaptive filter to filter Love
and Rayleigh waves. For the real data, similar adjusting
parameters of γ = 0.1, λ = 0.13, α = 0.03, and β = 0.04
to the ones defined for the synthetic example were set to
design directivity and rectilinearity attributes. We only
slightly changes the for amplitude filtering parameters
by setting ζ = 0.16 and η = 0.19. A visual assessment
chose an initial time of 630 seconds as a constraint to
limit the filtering region. It affects to discriminate between
the high amplitude of SH waves and Love waves. domain
while rejecting or extracting seismic phases The (a), (c),
and (e) panels of Fig. 9 show the filtered SP-TFRs of
the transverse, radial, and vertical components of the
data, respectively. As it can be seen, the focused energy
corresponding to the Love waves [shown by blue oval in

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. , NO. , MAY 2021 9

-1

0

1

10
-3 (a)

-1

0

1

10
-3 (c)

500 1000 1500

-1

0

1

10
-3 (e)

V
e
lo

c
it
y
 (

m
/s

)

-1

0

1

10
-3 (b)

-1

0

1

10
-3 (d)

500 1000 1500

-1

0

1

10
-3 (f)

V
e
lo

c
it
y
 (

m
/s

)

Time (s)

Figure 6. The background gray color waveforms in top, middle,
and bottom panels corresponds to transverse, radial, and vertical
components of Mw = 8.2 earthquake [see text and Table. I]. The
foreground black color diagram in panels (a), (c), and (e) are Love
wave filtered transverse, radial, and vertical components by using the
SP-TFF, and the panels (b), (d), and (f) are corresponding Rayleigh
wave filtered components.

Figure 7. Left panel: The TFR of the transverse, radial, and
vertical compenents of Mw = 8.2 earthquake obtained by applying
conventional ST. Right panel: The SP-TFR of the components.

Figs. 8 and 7] are highly damped as a result of filtering,
and only a scattered signal corresponding to body and
coda waves remained in the transverse component. The
SP-TFRs of the radial (panel (c)) and vertical (panel
(e)) components have not significantly affected by filtering.
The black color waveforms at the (a), (e), and (e) panels of
Fig. 6 depict reconstructed signal for the transverse, radial,
and vertical components in the time domain. The results
confirm that the SP-TFF filtering significantly canceled
the Love wave in the time domain without affecting other
phases, including the body and coda waves.

To filter the Rayleigh phase, the adjusting parameters

Figure 8. Left panel: The TFR of the length of the SM and Sm axis
of particle motion of the transverse, radial, and vertical components
of Mw = 8.2 earthquake obtained by using the Pinnegar [15] method.
Right: SM and Sm axes by implementing EDPA on the SP-TFR.

of the directivity measure are set to γ = 0.1 and λ = 0.13,
and the rectilinearity filter is set to have α = 0.03 and
β = 0.04 adjusting parameters. The results of applying
the filter on the SP-TFRs of 3-components are shown in
the right panels of Fig. 9. Like the Love wave filtering,
the filtered SP-TFR only contains scattered energy of the
noise, body, and coda waves in the radial and vertical
components. The reconstructed filtered components are
shown in the right panels shown in the right panel of Fig.
6. As shown, SP-TFF successfully filtered the Rayleigh
wave without affecting the body and coda waves in the
radial and vertical components and substantially affected
the other phases in the transverse components.
Finally, we extracted the Love and Rayleigh phases for

the real data set by applying (30) on the SP-TFR of
three components. The extracted Love wave is shown in
the (a) panel of Fig. 10. Similarly, panels (b) and (c) of
this figure show the radial and vertical components of
Rayleigh waves. Both the Love and Rayleigh phases have
been cleanly extracted from the entire waveform, without
any inclusion of body and coda waves. In the following sub-
section, we present a discussion on the SP-TFF method.

IV. Discussion and Conclusions

We presented a SP-TFF method by combining SP-TFR
and EDPA methods as a robust seismic processing tool
to separate different phases of seismic waves according
to their polarization state. Taking advantage of SP-TFR,
high-resolution polarization information is attained to be
analyzed by TF-domain polarization attributes for resolv-
ing closely spaced seismic events in time and frequency.
Conducting numerical examples on synthetic and real
earthquake data, we showed that the SP-TFF can be
used as a sophisticated tool to filter elliptical and linear
particle motion by designing suitably defined directivity,
rectilinearity, and amplitude attributes. Remarkably, not
only SP-TFF is efficient to filter Love and Rayleigh waves
from the other seismic phases, but it also can handle a
more challenging problem of discrimination between the
Love and SH and coda waves. This is a promising feature
of this method.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. , NO. , MAY 2021 10

(a)

0 500 1000 1500
0

0.2

0.4

0

0.5

1

10 -3

(c)

0 500 1000 1500
0

0.2

0.4

0

0.5

1

1.5

10 -3

(e)

0 500 1000 1500
0

0.2

0.4

0

0.5

1

1.5

10 -3

(b)

0 500 1000 1500
0

0.2

0.4

0

0.5

1

10 -3

(d)

0 500 1000 1500
0

0.2

0.4

0

0.5

1

1.5

10 -3

(f)

0 500 1000 1500
0

0.2

0.4

0

0.5

1

1.5

10 -3

F
re

q
u

e
n

c
y
(H

z
)

Time (s)

Figure 9. Left panel: Adaptive Filtered SP-TFRs of the transverse,
radial, and vertical components of the Mw = 8.2 earthquake to
eliminate the Love wave. Right panel: Adaptive Filtered SP-TFRs
of components to eliminate the Rayleigh wave.

-1

0

1

10
-3 (a)

-1

0

1

10
-3 (b)

200 400 600 800 1000 1200 1400

-1

0

1

10
-3 (c)

V
e
lo

c
it
y
 (

m
/s

)

Time (s)
Figure 10. Panel (a): extracted Love wave by applying SP-TFF
method on the synthetic data. Panel (b) and (c): the radial and
vertical component of extracted Rayleigh wave by applying SP-TFF
method.

SP-TFF can find application in various seismic pro-
cessing methods like anisotropy parameters estimation
using the Shear Wave Splitting method [35], surface waves
extraction for dispersion curve inversion [36] and sensor
miss-orientation test [21], and elimination of the surface
waves to extract the coda waves.
The highest computational cost of the algorithm is due

to solving the regularized inverse problem (22). As a result,
considerable memory space and high computation time
are required for a massive input data set. Furthermore,
the weakly stationary condition assumption in (5) violates
for very low frequencies. Notwithstanding, these are draw-
backs of SP-TFF methods.
This paper intended to present the methodology of

SP-TFF; only processing earthquake waveforms evaluated
the efficiency. The research is ongoing with studying
other critical issues, including (a) stability of SP-TFF at
different SNR levels, (b) evaluation of the efficiency of
SP-TFF for processing ambient noise data, (c) application
of SP-TFF for extraction of low amplitude seismic phases,
and (d) extraction of surface wave dispersion curves using
SP-TFF.

V. Code and data availability
The numerical results from the synthetic and real data

examples presented in this paper are reproducible by
running a set of computer codes available at the Github
account ("Will be inserted when the manuscript is ac-
cepted").

VI. Acknowledgments
This research was funded by Fundação para a Ciên-

cia e a Tecnologia (FCT) in the content of SHAZAM
(Ref. PTDC/CTA-GEO/31475/2017) project. This work
is funded by FCT/MCTES through national funds and
when applicable co-funded EU funds under the project
UIDB/EEA/50008/2020.

References
[1] K. Aki and P. G. Richards, Quantitative seismology,

2002.
[2] C. Wang, Y. Wang, P. Sun, and Y. Li, “Discussions on

the processing of the multi-component seismic vector
field,” Applied Sciences, vol. 9, no. 9, p. 1770, 2019.

[3] E. Flinn, “Signal analysis using rectilinearity and
direction of particle motion,” Proceedings of the IEEE,
vol. 53, no. 12, pp. 1874–1876, 1965.

[4] J. E. Vidale, “Complex polarization analysis of par-
ticle motion,” Bulletin of the Seismological society of
America, vol. 76, no. 5, pp. 1393–1405, 1986.

[5] R. Simons, “A surface wave particle motion discrimi-
nation process,” Bulletin of the Seismological Society
of America, vol. 58, no. 2, pp. 629–637, 1968.

[6] J. Samson and J. Olson, “Some comments on the
descriptions of the polarization states of waves,” Geo-
physical Journal International, vol. 61, no. 1, pp. 115–
129, 1980.

[7] A. Jurkevics, “Polarization analysis of three-
component array data,” Bulletin of the seismological

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. , NO. , MAY 2021 11

society of America, vol. 78, no. 5, pp. 1725–1743,
1988.

[8] J. Allen, “Short term spectral analysis, synthesis,
and modification by discrete fourier transform,” IEEE
Transactions on Acoustics, Speech, and Signal Pro-
cessing, vol. 25, no. 3, pp. 235–238, 1977.

[9] R. G. Stockwell, “A basis for efficient representation
of the s-transform,” Digital Signal Processing, vol. 17,
no. 1, pp. 371–393, 2007.

[10] S. Ventosa, C. Simon, M. Schimmel, J. J. Dañobeitia,
and A. Mànuel, “The s-transform from a wavelet
point of view,” IEEE Transactions on Signal Process-
ing, vol. 56, no. 7, pp. 2771–2780, 2008.

[11] M. Kulesh, M. Diallo, M. Holschneider, K. Kuren-
naya, F. Krüger, M. Ohrnberger, and F. Scherbaum,
“Polarization analysis in the wavelet domain based on
the adaptive covariance method,” Geophysical Jour-
nal International, vol. 170, no. 2, pp. 667–678, 2007.

[12] Y.-Y. Tan, C. He, Y.-D. Wang, and Z. Zhao, “Ground
roll attenuation using a time-frequency dependent
polarization filter based on the s transform,” Applied
Geophysics, vol. 10, no. 3, pp. 279–294, 2013.

[13] M. Schimmel and J. Gallart, “The use of instanta-
neous polarization attributes for seismic signal detec-
tion and image enhancement,” Geophysical Journal
International, vol. 155, no. 2, pp. 653–668, 2003.

[14] M. Schimmel, E. Stutzmann, F. Ardhuin, and J. Gal-
lart, “Polarized earth’s ambient microseismic noise,”
Geochemistry, Geophysics, Geosystems, vol. 12, no. 7,
2011.

[15] C. Pinnegar, “Polarization analysis and polariza-
tion filtering of three-component signals with the
time—frequency s transform,” Geophysical Journal
International, vol. 165, no. 2, pp. 596–606, 2006.

[16] I. Daubechies, J. Lu, and H.-T. Wu, “Syn-
chrosqueezed wavelet transforms: An empirical mode
decomposition-like tool,” Applied and computational
harmonic analysis, vol. 30, no. 2, pp. 243–261, 2011.

[17] S. S. Chen, D. L. Donoho, and M. A. Saunders,
“Atomic decomposition by basis pursuit,” SIAM re-
view, vol. 43, no. 1, pp. 129–159, 2001.

[18] O. Portniaguine and J. Castagna, “Inverse spectral
decomposition,” in SEG Technical Program Expanded
Abstracts 2004. Society of Exploration Geophysicists,
2004, pp. 1786–1789.

[19] A. Gholami, “Sparse time–frequency decomposition
and some applications,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 51, no. 6, pp. 3598–
3604, 2012.

[20] I. Vera Rodriguez, D. Bonar, and M. Sacchi, “Mi-
croseismic data denoising using a 3c group sparsity
constrained time-frequency transform,” Geophysics,
vol. 77, no. 2, pp. V21–V29, 2012.

[21] A. O. Ojo, L. Zhao, and X. Wang, “Estimations of
sensor misorientation for broadband seismic stations
in and around africa,” Seismological Research Letters,
vol. 90, no. 6, pp. 2188–2204, 2019.

[22] J. F. Montalbetti and E. R. Kanasewich, “Enhance-

ment of teleseismic body phases with a polarization
filter,” Geophysical Journal International, vol. 21,
no. 2, pp. 119–129, 1970.

[23] A. Plešinger, M. Hellweg, D. Seidl et al., “Interac-
tive high-resolution polarization analysis of broad-
band seismograms,” Journal of Geophysics| IF 32.18,
vol. 59, no. 1, pp. 129–139, 1986.

[24] J. P. Jones, D. W. Eaton, and E. Caffagni, “Quantify-
ing the similarity of seismic polarizations,” Geophysi-
cal Journal International, vol. 204, no. 2, pp. 968–984,
2016.

[25] J. Samson, “Descriptions of the polarization states of
vector processes: applications to ulf magnetic fields,”
Geophysical Journal International, vol. 34, no. 4, pp.
403–419, 1973.

[26] S. Mallat, A wavelet tour of signal processing. Else-
vier, 1999.

[27] P. Flandrin, Time-frequency/time-scale analysis.
Academic press, 1998.

[28] A. Beck and M. Teboulle, “A fast iterative shrinkage-
thresholding algorithm for linear inverse problems,”
SIAM journal on imaging sciences, vol. 2, no. 1, pp.
183–202, 2009.

[29] H. Sato, M. C. Fehler, and T. Maeda, Seismic wave
propagation and scattering in the heterogeneous earth.
Springer Science & Business Media, 2012.

[30] M. Schimmel and J. Gallart, “Degree of polarization
filter for frequency-dependent signal enhancement
through noise suppression,” Bulletin of the Seismolog-
ical Society of America, vol. 94, no. 3, pp. 1016–1035,
2004.

[31] B. A. Bolt and B. A. Bolt, Inside the Earth: Evidence
from earthquakes. WH Freeman San Francisco, 1982.

[32] J.-P. Montagner and B. Kennett, “How to reconcile
body-wave and normal-mode reference earth models,”
Geophysical Journal International, vol. 125, no. 1, pp.
229–248, 1996.

[33] M. Beyreuther, R. Barsch, L. Krischer, T. Megies,
Y. Behr, and J. Wassermann, “Obspy: A python tool-
box for seismology,” Seismological Research Letters,
vol. 81, no. 3, pp. 530–533, 2010.

[34] M. van Driel, A. Hutko, L. Krischer, C. Trabant,
S. Stähler, and T. Nissen-Meyer, “Syngine: on-
demand synthetic seismograms from the iris dmc
based on axisem & instaseis,” in EGU General Assem-
bly Conference Abstracts, 2016, pp. EPSC2016–8190.

[35] P. G. Silver and W. W. Chan, “Shear wave splitting
and subcontinental mantle deformation,” Journal of
Geophysical Research: Solid Earth, vol. 96, no. B10,
pp. 16 429–16 454, 1991.

[36] M. Maraschini and S. Foti, “A monte carlo multi-
modal inversion of surface waves,” Geophysical Jour-
nal International, vol. 182, no. 3, pp. 1557–1566, 2010.

Development of a Python Library for Processing Seismic Time Series

Appendix C

Eigenvalue Decomposition Polarization
Analysis: A regularized sparsity­based
approach

In the present appendix it is shown, in Fig. C.1, the poster used for presenting the sub­

mitted and accepted abstract for the 2021 EGU conference.

87

Development of a Python Library for Processing Seismic Time Series

F
igu

re
C
.1:

P
oster

for
th
e
20
21
E
G
U
con

feren
ce.

88

	List of Figures
	List of Tables
	Listings
	Acronims
	Introduction
	Problem Statement
	Objectives
	Contributions
	Document Organisation

	Seismic Time-Series: Background and Tools
	Introduction
	Fundamental Techniques and Concepts
	Seismic Waves
	Data Providers
	Seismic time-series
	Digital Signal Processing
	Fourier Series
	Discrete Fourier Transform
	Wavelet Transform

	Python Libraries and Seismic Frameworks
	Python Libraries
	Python Seismic Frameworks

	Conclusions

	Literature Review
	Introduction
	Signal Analysis Using Rectilinearity and Direction of Particle Motion
	Enhancement of Teleseismic Body Phases with a Polarisation Filter
	Complex Polarization Analysis of Particle Motion
	Polarization Analysis of Three-component Array Data
	Polarization Filtering for Automatic Picking of Seismic Data and Improved Converted Phase Detection
	Polarization Analysis and Polarization Filtering of Three-Component Signals with the Time–Frequency S Transform
	Body Wave Separation in the Time-Frequency Domain
	Discussions on the Processing of the Multi-Component Seismic Vector Field
	Conclusions

	Implementation
	Introduction
	Implemented Algorithms
	Flinn Method
	Vidale Method
	Pinnegar Method
	RS-TFR Method

	Developed Library
	Implemented Functions
	Building and Installation

	Conclusions

	Results
	Introduction
	Synthetic Data Generation
	IRIS Syngine and ObsPy
	SPECFEM3D Globe

	Obtained Results
	Results of Flinn Module
	Results of Pinnegar Module on Synthetic Data
	Results of Vidale Module
	Results of Rstfr Module

	Library Test Module
	Conclusions

	Main Conclusions and Future Work
	Main Conclusions
	Future Work

	Bibliography
	Appendix SeisPolPy Library File Structure
	Appendix Sparsity-Promoting Approach to Eigenvalue Decomposition Polarization Analysis of Seismic Signals in the Time-Frequency Domain
	Appendix Eigenvalue Decomposition Polarization Analysis: A regularized sparsity-based approach

