
Engenharia

A zeroshot learning method for recognizing
objects using lowpower devices

Cristiano Pires Patrício

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática
(2º ciclo de estudos)

Orientador: Prof. Doutor João Carlos Raposo Neves
Coorientador: Prof. Doutor Hugo Pedro Martins Carriço Proença

Covilhã, junho de 2021



ii



Acknowledgements

Firstly, I would like to express my deepest gratitute to my supervisor João Neves, for his

invaluable guidance, support, and useful advises during these months. I am also grateful

to him for the valuable knowledge transfer in each meeting, that inherently fostered the

thriving of the work carried out in this dissertation, whilst improving my skills.

A word of gratitute is also addressed to NOVALINCS Laboratory for providing the hard

ware resources where the work of this dissertation was developed.

To my family, especially my parents João and Helena I would like to express my sincere

gratitute for their continuous encouragement and support throughout my studies. My

special thanks to my brother Gonçalo for all the amazing moments and the great laughs.

To my girlfriend Carolina, words are not enough to express how grateful I am for all your

support, inspiration and endless love during this journey. My work always goes further

thanks to the extra motivation that you place in me.

Finally, I would like to thankmy classmates, in particular Ricardo, Pedro and Diandre for

all the good times we spent in these two years, but mostly for the great friendship. I also

wish to thank my laboratory partner Luís for all the good moments and conversations in

the hundred of coffee breaks.

iii



iv



Resumo

O ZeroShot Learning (ZSL) tem sido uma área de interesse crescente devido ao seu

paradigma revolucionário que visa simular o comportamento humano na tarefa de re

conhecimento de objetos que nunca foram vistos anteriormente. Os modelos de ZSL de

vem ser capazes de reconhecer classes de objetos que nunca tenham sido vistos durante o

treino do classificador, tendo apenas como auxílio para a previsão de classes desconheci

das, descrições textuais das mesmas.

Apesar da vasta literatura existente em torno da temática do ZSL, são poucos os trabal

hos que avaliam o desempenho computacional dos métodos desenvolvidos, no que diz

respeito ao tempo dispendido na fase de inferência. Até à data, nenhum trabalho avaliou

o impacto do uso de arquiteturas menos complexas e com menor custo computacional

nos métodos de ZSL, para além da arquitetura padrão de facto ResNet101. Além do mais,

a viabilidade de implementar os métodos de ZSL em aplicações do mundo real, particu

larmente fazendo uso de dispositivos de baixa capacidade computacional, ainda não foi

estudada.

Assim, esta dissertação faz a avaliação de diferentes métodos de ZSL no que respeita ao

impacto do uso de arquiteturas menos complexas de redes neuronais convolucionais no

desempenho geral dos métodos de ZSL. Desta forma, é possível ficar ciente do compor

tamento dos métodos de ZSL em cenários reais, principalmente quando implementados

em dispositivos de baixa capacidade computacional.

Os resultados obtidos demonstraram que o impacto no valor da precisão dos métodos de

ZSL não é significativo quando são adotadas arquiteturas menos complexas para efeitos

de extração de caraterísticas das imagens, sendo possível inferir que os métodos de ZSL

são capazes de operar em tempo real em dispositivos de baixa capacidade computacional.

Palavraschave

Zeroshot learning, Dispositivos de baixa capacidade computacional, Modelos genera

tivos
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Resumo alargado

A área da aprendizagem automática dividese em três paradigmas fundamentais: apren

dizagem supervisionada, aprendizagem nãosupervisionada e aprendizagem por reforço.

Relativamente à aprendizagem supervisionada, no que respeita ao problema de classifi

cação de imagens, a abordagem típica é treinar um classificador com uma grande quanti

dade de images do conjunto de treino, onde existem exemplos para todas as classes que se

pretendem prever, posteriormente. No entanto, há situações onde pode não ser possível

recolher uma vasta amostra de exemplos de treino para todas as classes. Um exemplo

clássico é a classificação de espécies raras de pássaros, por exemplo, onde recolher uma

grande amostra de imagens para todas as classes pode ser díficil. Todavia, pode acontecer

também que determinado classificador de imagens seja confrontado com uma imagem de

teste pertencente a uma classe que nunca apareceu durante o treino. Neste caso, a pre

visão da classe será sempre incorreta, uma vez que o classificador não tem capacidade de

generalizar para além das classes que apareceram no treino. É neste sentido que surge

um novo paradigma, com o objetivo de colmatar os problemas discutidos anteriormente.

O ZeroShot Learning (ZSL) é um paradigma de aprendizagem promissor no qual não

são necessários exemplos de imagens para as classes que se pretendem prever, ou seja, as

classes de treino e as classes de teste são disjuntas. Esta abordagem é possível graças à in

trodução de um espaço adicional, denominado espaço semântico ou espaço de atributos.

Cada classe será descrita através de uma descrição semântica, que pode ser em formato

de texto ou numérico (atributos). É através destes atributos, ou anotações textuais, que

os algoritmos de ZSL aprendem a generalizar para as classes que nunca foram vistas pelo

classificador, uma vez que a informação semântica das classes de teste pode ser acedida

durante o treino. Dada uma imagem de teste, uma abordagem típica é fazer uso de um

classificador para prever os atributos da imagem, que posteriormente são comparados

com os atributos existentes no espaço dos atributos (ou semântico), por forma a fazer

corresponder a classe do atributo que for mais similar ao atributo previsto.

Durante a revisão da literatura, foram estudados os conceitos fundamentais acerca da

temática do ZSL, nomeadamente, a caraterização dos diferentes espaços semânticos, os

principaismétodos de ZSL, os desafios e problemas, os datasetsmais usados e os protoco

los de avaliação. As abordagens usadas para resolver o problema do ZSL incluemmétodos

baseados em classificadores de atributos, métodos baseados em projeção e, mais recente

mente, métodos generativos.

Apesar da vasta literatura existente em torno da temática do ZSL, são escassos os trabal

hos que avaliam as abordagens propostas em termos de eficiência computacional, mais

concretamente, uma análise do desempenho dos modelos em termos de tempo de infer

ência em cada uma das fases, nomeadamente a fase de extração de caraterísticas e a fase

de previsão da classe. Além do mais, a grande maioria dos trabalhos existentes usa Con

volutional Neural Networks (CNN) para a extração de caraterísticas visuais da imagem,

onde a arquitetura ResNet101 se tornou o padrão de facto. No entanto, e até à data, ainda

ninguém avaliou o impacto que arquiteturas menos complexas e com menor custo com
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putacional, como aMobileNet ou aMobileNetV2, teriam no desempenho geral das abor

dagens ZSL, assim como ainda ninguém estudou como explorar estas arquitecturas para

produzir sistemas de reconhecimento de objetos capazes de operar em tempo real em dis

positivos de baixa capacidade computacional, comopor exemplo oRaspberry Pi e o Jetson

Nano. É neste sentido que, nesta dissertação, fornecemos um extenso estudo compara

tivo do desempenho computacional de várias abordagens ZSL fazendo uso de diferentes

tipos de arquiteturas, a operar em dispositivos de baixa capacidade computacional. Os

resultados obtidos permitiram concluir que o uso de uma arquitetura mais leve para fins

de extração de caraterísticas não representa um impacto significativo no desempenho dos

modelos de ZSL, indicando que o uso de dispositivos como o Jetson Nano e o Raspberry

Pi é viável em ambientes de produção.

Além disso, propomos também uma nova abordagem de ZSL, que resultou da fusão de

duas estratégias promissoras. Os resultados evidenciam que o método proposto é efi

caz quando aplicado em datasets que incluem anotações de atributos visualmente inter

pretáveis, como é o caso do dataset CelebA. Por outro lado, quando aplicado aos datasets

tradicionais do ZSL, não se registam melhorias.

Por fim, o trabalho resultante desta dissertação permitiu a escrita de um artigo científico

onde é analisado o impacto do uso de arquiteturas mais leves no desempenho geral de

vários métodos ZSL, bem como estudada a viabilidade de implementação dos métodos

em dispositivos de baixa capacidade computacional.
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Abstract

ZeroShot Learning (ZSL) has been a subject of increasing interest due to its revolution

ary paradigm that simulates human behavior in recognizing objects that have never seen

before. The ZSL models must be capable of recognizing classes that do not appear during

training, using only the provided textual descriptions of the unseen classes as an aid.

Despite the vast benchmarking around the ZSL paradigm, few works have assessed the

computational performance of the developed strategy regarding inference time. Further

more, no work has evaluated the effects of using different CNN architectures, such as

lightweight architectures, apart from the de facto standard ResNet101 architecture, and

the feasibility of deploying zeroshot learning approaches in a realworld scenario, partic

ularly when using lowpower devices.

Consequently, in this dissertation, we carried out an extensive benchmarking toward an

alyzing the impact of using lightweight CNN architectures on ZSL performance, allowing

us to perceive how the ZSL methods perform in realworld scenarios, mainly when run

in lowpower devices. Our experimental results demonstrate that the impact on the ZSL

accuracy is not significant when a lightweight architecture is adopted, indicating the ef

fectiveness of such lowpower devices in performing ZSL methods.

Keywords

Zeroshot learning, Lowpower devices, Generative models

ix



x



Contents

1 Introduction 1

1.1 Motivation and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement and Objectives . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 State of the Art 3

2.1 Semantic Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Engineered Semantic Spaces . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Learned Semantic Spaces . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Attribute ClassifierBased Methods . . . . . . . . . . . . . . . . . . 7

2.2.2 Projection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Generative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 DomainShift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.3 Hubness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 Top1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.2 Harmonic Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.3 Flat Hit@K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.4 Hierarchical Precision@K . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Proposed Method 35

3.1 Work Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Evaluation of ZSL Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.3 Custom Feature Extractor . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.4 Optimizing Models using TensorRT . . . . . . . . . . . . . . . . . . 38

3.2.5 Computational Performance . . . . . . . . . . . . . . . . . . . . . . 38

3.2.6 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.7 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Proposed SemanticGuided Attention Model . . . . . . . . . . . . . . . . . 40

3.3.1 Attribute Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Gradientweighted Class Activation Mapping . . . . . . . . . . . . . 42

3.3.3 Calculate Discriminative Features . . . . . . . . . . . . . . . . . . . 43

xi



3.3.4 Generative Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Results and Discussion 45

4.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Evaluation Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.2 ZSL Methods: Visual Feature Extraction Cost . . . . . . . . . . . . 46

4.2.3 ZSL Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.4 ZSL Methods: Inference Time . . . . . . . . . . . . . . . . . . . . . 51

4.2.5 ZSL Methods: Computational Analysis . . . . . . . . . . . . . . . . 52

4.3 Results of the Proposed Strategy . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Conclusion 61

5.1 Contributions and Achievements . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography 63

xii



List of Figures

2.1 TSNE visualization of the semantic word space. Each point corre

sponds to each of the 50 classes of the Animals with Attributes 2 dataset

[1]. We can easily infer that the word representation of “gorilla” and “chim

panzee” (at bottom right corner) are close to each other because they are

semantically related. However, the representations of the words “gorilla”

and “seal” are far apart due to their semantic dissimilarities. . . . . . . . . 4

2.2 Classification of semantic spaces. . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Examples from Animals with Attributes 2 [2] dataset of object

classes with perclass attribute annotation. The presence (“yes”) or

absence (“no”) of an attribute is denoted respectively by “0” and “1” in the

binary attribute vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Direct Attribute Prediction (DAP). During training, given the image

features x of the training instances, the perattribute parameters βm are

learned. At test time, with the learned probabilistic attribute classifiers, a

class prediction is performed by combining scores of the learned attribute

classifiers that establish a relationship with the seen (y) and unseen (z)

classes. The class label that attains the most similar set of attributes is then

assigned to the test image. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Indirect Attribute Prediction (IAP). The parameters αk are learned

for each training class. At test time, the posterior distribution of the train

ing class labels induces a distribution over the unseen class labels through

the classattribute relationship. . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Zeroshot learning using Projectionbased methods. The pipeline

for this type of method is as follows: given an image from the test set,

the feature representation vector is obtained through any feature extrac

tion method. It is then projected into a projection space using the learned

projection function. The classification is then performed in the projection

space by a distance metric method or a nearest neighbor classifier (kNN). 10

2.7 Overview of CMT model [3]. Given the test image from the unknown

classes, the novelty detectionmethodwill determine whether the image be

longs to seen or an unseen class. Then, the image will be classified accord

ing to the result of the novelty detector. If the image is “novel”, it will be

classified with the help of the other unknown classes; otherwise, the known

classes are taken into account to perform the classification. . . . . . . . . 12

xiii



2.8 Overview of DeViSE model [4]. The visual model (left) is trained to

produce the class probabilities of a given image. The skipgram language

model (right) is trained to learn the vector representation for each input

word. Then, DeViSEmodel (center) is initializedwith these twopretrained

models. Given a test image, the visual model will calculate its vector repre

sentation using the transformation layer and then the classification is per

formed by searching for the nearest labels in the embedding vector space.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.9 Overview of ConSE model. The test image “Cougar” is fed into a CNN,

then the softmax toplayer returns the topT probabilistic predictions. Given

these predictions, the semantic vector f(x) for the test image x is estimated,

by using equation 2.6. The semantic vector will be “placed” something be

tween lion and tiger in the semantic space. Finally, the predicted label

“Cougar” is obtainedby the equation2.7, ŷ(x, 1) = argmaxy′∈Yu
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Chapter 1

Introduction

This document describes thework developed in the scope of the dissertation project for the

attainment of the master’s degree in Computer Science and Engineering at the University

of Beira Interior (UBI). The first section presents the motivation and scope of the work,

followed by section 1.2where the problem statement and objectives are discussed. Finally,

section 1.3 describes the organization of the remainder of this dissertation.

1.1 Motivation and Scope

Nowadays, Artificial Intelligence (AI) is part of our daily lives and has a wide range of

application scenarios. Creating solutions that learn from experience to make accurate de

cisions or predictions is the focus of Machine Learning (ML), a branch of AI. One of the

most popular applications of ML is image recognition  a technique used to identify and

classify objects, people, and actions in images (data). The image recognition systems are

based on one of the ML paradigms  supervised learning  and have specific applications

in fingerprint identification systems, medical image analysis, and selfdriving cars [14].

In supervised learning paradigm, the typical approach is to train amodelwith a large num

ber of images (training data) containing all the classes intended to be recognized during

the test phase. However, in many practical scenarios, it may not be possible to collect a

wide variety of training data for each target class. For example, considering the problem

of recognizing bird species, it may not be easy to obtain sufficient number of examples for

each category. There could also be scenarios in which novel classes that are not covered

by training examples appear in the testing phase. In addition, the learned model can only

classify instances belonging to classes that are covered by the training instances, which

results in the lack of ability to generalize to novel classes. To overcome these problems,

methods under more promising learning paradigms have been proposed.

In machine learning, ZeroShot Learning (ZSL), also known as zerodata learning, is a

promising learning method, in which the classes covered by the training instances and

the classes to be classified are disjoint [15]. Thereby, samples from unknown classes are

classified based on a highlevel description of these classes, such as textual description or

a set of attributes that distinguishes those classes [15]. This assumption extends the ap

plications of recognition systems significantly. The training phase does not depend on the

entire set of classes to be recognized, contributing to reduce the human effort in collecting

a large number of examples for each target class.

This dissertation addresses the problem of ZSL. In particular, it studies the feasibility of
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using stateoftheart ZSL approaches for recognizing objects not seen during the training

phase, through a textual description, and using lowcomputational devices.

The research carried out in this dissertation is part of the project “Perception for a Service

Robot” and the research grant UIDB/04516/2020/TRA/BIL/08 from the research unit

NOVA Laboratory for Computer Science and Informatics (NOVA LINCS).

1.2 Problem Statement and Objectives

Themain problem addressed in this work is the task of recognizing objects from their tex

tual descriptions, based on a ZSL approach. ZSL intends to simulate human behavior in

object recognition tasks even without ever having seen the object before, however provid

ing only some type of auxiliary information, e.g., a textual description of the object. For

example, a child will have no problem recognizing a zebra if she has seen horses before

and has also read that the zebra looks like a horse but has black stripes. A concrete appli

cation where ZSL can be used is the development of a recognitionmodule to be integrated

in a moving robot that should be capable of classify unknown objects by using its textual

description.

Thus, themain objective of this work is the development of a ZSLbased approachmethod

capable of recognizing unknown objects using only its textual description. In addition,

the developed strategy should be suitable to be embedded into a moving robot using low

power devices.

1.3 Dissertation Outline

The remainder of this dissertation is organized as follows: chapter 2 presents a detailed

overview of the zeroshot learning taxonomy. Moreover, we describe and analyse a col

lection of stateoftheart zeroshot methods and also evaluate their performance on the

most widely used datasets in the task of zeroshot learning. Chapter 3 provides a descrip

tion of the adopted methodology for the development of this work. This way, we provide

the details of the developed evaluation framework for assessing ZSL methods in terms of

computational performance, and at the end we describe our proposed SemanticGuided

AttentionModel that aims to learnmore discriminative visual features conditioned on the

most dominant semantic attributes regarding the input image. In chapter 4 are presented

an extensive benchmark regarding the computational performance of the ZSL methods

and the results obtained after applying our proposed method on two datasets. Finally,

conclusions are drawn in chapter 5, where the main contributions and the future work

are also discussed.
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Chapter 2

State of the Art

In this chapter, we provide an overview of relevant stateoftheart methods to address

zeroshot learning. We start by describing and enumerating different kinds of semantic

spaces used in existing zeroshot learningworks. In Section 2.2, we introduce an overview

of zeroshot methods, where its general pipeline is described, followed by Section 2.3 that

discusses the main challenges in these methods and some techniques to solve them. Sec

tion 2.4 summarizes themost widely used datasets in the task of zeroshot recognition. In

section 2.5, we describe the evaluationmetrics used to benchmark the zeroshotmethods.

Finally, we report the results of experiments in commonly used datasets to compare the

performance of the methods.

2.1 Semantic Spaces

A semantic space can be defined as a multidimensional space in which each point repre

sents the meaning of a word. The relationship between words is given by measuring the

distance between them in the semantic space, which means that if two points are close to

each other, they are semantically related.

In the context of zeroshot learning, semantic spaces contain semantic information about

classes, denoted as class prototypes (vectors) with a specific dimension. It is common

to refer to this semantic information as auxiliary information. The name “semantic” is

employed here because the semantic space is the space of meaning, composed by a set

of related nodes (that can be words or something with a numerical representation  vec

tor) where the distance between two nodes represents its semantic relation [16]. Figure

2.1 depicts the semantic space constructed from the 85 dimensional classes prototypes of

Animals with Attributes 2 [1] dataset. The mapping from 85 to 2 dimensions was done

using the tSNE technique [17].

According to how a semantic space is constructed, we can distinguish them as (1) engi

neered semantic spaces and (2) learned semantic spaces [15]. Figure 2.2 shows the dif

ferent kind of semantic spaces in a more depthdetailed categorization.

2.1.1 Engineered Semantic Spaces

The “engineered” term is used here to suggest that each dimension is designed by humans.

There are different kinds of engineered semantic spaces, each of which is characterized by

the uniqueness in the data source and how to construct them.
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Figure 2.1: TSNE visualization of the semantic word space. Each point corresponds to each of the
50 classes of the Animals with Attributes 2 dataset [1]. We can easily infer that the word representation of
“gorilla” and “chimpanzee” (at bottom right corner) are close to each other because they are semantically
related. However, the representations of the words “gorilla” and “seal” are far apart due to their semantic

dissimilarities.
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Figure 2.2: Classification of semantic spaces.

2.1.1.1 Attribute Spaces

Attribute spaces are composed by a set of attributes, i.e., a list of terms describing the class

properties, denoted as attributes, and they are the most widely used semantic spaces in
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zeroshot learning. Each attribute can be aword or a phrase, and these can be represented

as real values (continuous attribute space) or binary values (binary attribute spaces) [15].

It can also be expressed as ameasure that relates the relative degree of having an attribute

among different classes (relative attribute spaces). For example, in the context of ani

mal recognition problem, a zebra can be characterized by the color of body (e.g. “black”,

“brown”, “yellow”), the habitat (e.g. “desert”, “forest”) or other attribute properties, like

shape, part or material attributes [18]. For real value attributes, each of the properties

can be expressed by the strength/confidencelevel of having this attribute, e.g., −1 if the

attribute is not present, 1 if the attribute is strongly noticeable, and a value between [−1, 1]

chosen if a specific attribute is slightly present. For binary attributes, each value denotes

the presence or absence of a specific attribute.

2.1.1.2 Lexical Spaces

Lexical spaces are formedby a set of lexical items. This kind of spaces is based on the labels

of the classes that can provide semantic information [15]. An example of a dataset that

can be used to construct such spaces is the structured lexical database WordNet [19], in

which the words are grouped together based on theirmeaning. The class prototype for the

class ci is a vector in which each dimension corresponds to one class, and the jdimension

represents the relation between class ci and class cj . Along with the structured databases,

the datasets could also be some corpora. For example, each class can be represented as a

cooccurrence vector of the class label with the N most frequent words from the corpus.

2.1.1.3 Textkeyword Spaces

Textkeyword spaces are semantic spaces composed of a set of textkeywords extracted

from textual descriptions of each class, with each dimension corresponding to a keyword.

In this kind of spaces, the most common source of information is websites, likeWikipedia

[20]. For example, if we are interested in the task of recognizing flowers from their tex

tual descriptions, we can extract a set of textkeywords from Wikipedia by searching for

the name of the respective class. Then, the class prototypes can be constructed by the n

keywords extracted from the Wikipedia. Some approaches are used to construct the text

keyword spaces, for example, [20] uses BagofWords (BoW) representation for each text

description.

2.1.2 Learned Semantic Spaces

Learned semantic spaces are not produced by humans, instead the class prototypes are

obtained through machine learning models. The kind of models that are used to extract

the prototypes for each class can be pretrained models in other problems or trained par

ticularly for the task of zeroshot learning. In the following sections, we introduce the

learned semantic spaces used in zeroshot learning.
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2.1.2.1 LabelEmbedding Spaces

In the labelembedding spaces, the prototypes of each class are obtained through the em

bedding of class labels. In word embedding, the words are embedded into a space defined

in R as vectors. The embedding space contains semantic information in which the em

bedded word vectors are close to each other if they are semantically related or far apart

if they are semantically dissimilar. In existing works, different approaches have been

adopted to the embedding task, such as Word2Vec [21] and GloVe [22]. As a footnote,

both Word2Vec and GloVe take as input a text corpus and produce the word vectors as

output. First, a vocabulary from the training text data is constructed and then the word

representation vector is learned.

2.1.2.2 TextEmbedding Spaces

Similar to the labelembedding spaces, but make use of other type of embedding, in the

textembedding spaces the class prototypes are obtained by embedding the text descrip

tions for each class. The semantic information in these spaces comes from text descrip

tions like in textkeyword spaces butwith somemajor differences. A textkeyword space is

comprised through extracting keywords and using each of them as a dimension in the con

structed space, whereas a textembedding space is formed through some learningmodels.

The text descriptions of each class are used as input of a suitable model, and the outputs

are regarded as the prototypes of this class. For example, in the context of image object

recognition, if the dataset provides the text descriptions for each sample, these ones are

fed into a model and the output vectors of that model are the class prototypes.

2.2 Methods

We can classify existing zeroshot learning methods into three categories: (1) attribute

classifierbased methods; (2) projection methods and (3) generative methods [15].

The attribute classifierbased methods aim to predict the attributes of an input and then

infer the class label by searching the class that attains the most similar set of attributes.

The projectionmethods focus on how to obtain labeled instances for the unseen classes by

projecting the instances of the feature space or the instances of the semantic space into a

projection space, which can be the semantic space or the feature space. More recently, the

problem of zeroshot learning has been converted into a data missing problem, in which

the goal is to generate some synthetic data of unknown classes using their semantic infor

mation [1]. Then, these generated data can be used to train a generic classifier, converting

the zeroshot problem in a common classification problem. Therefore, generative models

aim to learn a generator that can be used to randomly sample data from it.

Before describing eachmethod, it is important to standardize the keynotationused through

out this document. We summarize the key notations in Table 2.1.
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Table 2.1: Key notations used in this document.

Notation Description
X Feature space, which is ddimensional
Xs Set of images belonging to seen classes, available during training
Xu Set of images belonging to unseen classes, available during test stage
S Semantic space, which is mdimensional
A Attribute space, which is mdimensional
Ys Set of seen classes
Yu Set of unseen classes

2.2.1 Attribute ClassifierBased Methods

Early works of zeroshot learning [23] make use of a twostage approach to infer the label

of a given image. First, the attributes of a given image are estimated, and then the class

label is inferred by determining the class that attains the most similar set of estimated at

tributes. In the following two sections, we describe two attribute classifierbasedmethods

for being the most widely used methods in the literature [10].

2.2.1.1 Direct Attribute Prediction

Direct Attribute Prediction (DAP) was introduced by Lampert et al. in [23] to tackle the

zeroshot learning problem. They propose the attributebased classification that allows

object detection based on a highlevel description of these objects, called attributes, in

stead of making use of training samples. The semantic space used in this work falls into

the category of attribute spaces, described in section 2.1.1.1. Specifically, in this work they

only consider binary attributes. Figure 2.3 shows examples of perclass attribute annota

tion.

To make use of such attributes, the aim is to learn a classifier α : X → Yu if we dispose

of an attribute representation au, as ∈ A for each class yu ∈ Yu and ys ∈ Ys, transferring

information between Ys and Yu through A.

DAP [23] is illustrated in Figure 2.4. During training, the perattribute parameters βm are

learned, using any supervised learningmethod. At test time, with the learned probabilistic

attribute classifiers a class prediction is performed by combining scores of the learned

attribute classifiers. The class label that attains the most similar set of attributes is then

assigned to the test image.

A novel image is assigned to one of the unknown classes using:

f(x) = argmax
yu

M∏
m=1

p(ayum |x)
p(ayum )

(2.1)

where M is the number of attributes, ayum the mth attribute of class yu, p(a
yu
m |x) is the

attribute probability given the image feature x, which is obtained from the attribute clas

sifiers. The p(ayum ) is the attribute prior computed by the empirical mean of attributes over

training classes.
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Figure 2.3: Examples from Animals with Attributes 2 [2] dataset of object classes with
perclass attribute annotation. The presence (“yes”) or absence (“no”) of an attribute is denoted

respectively by “0” and “1” in the binary attribute vectors.

x

.	.	.

.	.	. .	.	.

Figure 2.4: Direct Attribute Prediction (DAP). During training, given the image features x of the
training instances, the perattribute parameters βm are learned. At test time, with the learned probabilistic
attribute classifiers, a class prediction is performed by combining scores of the learned attribute classifiers
that establish a relationship with the seen (y) and unseen (z) classes. The class label that attains the most

similar set of attributes is then assigned to the test image.

2.2.1.2 Indirect Attribute Prediction

Indirect Attribute Prediction (IAP) also uses the attributes to transfer knowledge between

classes. In contrast toDAP, the attribute layer is placed between two label layers: the layer

of known classes and the layer of unknown classes. IAP is depicted in Figure 2.5.

During training, the aim is to learn a classifier for each training class, that is, predicting the

probabilities of each training class given an image. In this way, IAP indirectly estimates
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the probabilities of attributes for a given image x by the following equation:

p(am|x) =
K∑
k=1

p(am|yk)p(yk|x) (2.2)

where K is the number of training classes, p(am|yk) is the probability of such class at
tribute given its class and p(yk|x) is the training class posterior obtained from the multi

class classifier. With the estimate of p(am|x) obtained from Equation 2.2, we can predict

the class label in the same way as in for DAP using the Equation 2.1.

x

.	.	.

.	.	.

.	.	.

Figure 2.5: Indirect Attribute Prediction (IAP). The parameters αk are learned for each training class.
At test time, the posterior distribution of the training class labels induces a distribution over the unseen

class labels through the classattribute relationship.

2.2.2 Projection Methods

The insight of projectionmethods is to learn a projection function that is used later tomap

the image features and the semantic attributes (class prototypes) into a projection/em

bedding space, which can be the feature space or semantic space. In the training phase,

the projection function can be learned using an iterativemethod or, in some cases, using a

direct method when the problem is cast as a system of linear equations [8]. At test phase,

the classification is performed in the projection space using a distance metric method,

to assign the closest class label to the projected image as the class prediction, or simple

measuring the compatibility between the image feature and the correspondent class em

bedding vector. The class that attains greater compatibility value is then assigned to the

test image. The figure 2.6 shows the block diagram of a common projectionbased zero

shot method.
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Figure 2.6: Zeroshot learning using Projectionbased methods. The pipeline for this type of
method is as follows: given an image from the test set, the feature representation vector is obtained through
any feature extraction method. It is then projected into a projection space using the learned projection
function. The classification is then performed in the projection space by a distance metric method or a

nearest neighbor classifier (kNN).

The feature space contains the training image features belonging to the seen class data

and also the test image features, which belong to the unseen classes. The semantic space

includes the class prototypes of both seen and unseen classes. Both spaces are defined in

R with instances and class prototypes as vectors. As we can notice by figure 2.6, the pro

jected feature vector (black parallelogram in figure) is nearest to the “cat” class prototype

than others. Then, by performing the kNN classification, the “cat” label is the class that

will be assigned to the image.

In the following sections, we describe several stateoftheart projection methods.

2.2.2.1 Semantic Output Codes

The Semantic Output Codes (SOC) classifier was proposed by Palatucci et al. [24] for the

neuronal decoding task, i.e., the ability for predictingwords that people are thinking based

on the analysis of functional magnetic resonance images (fMRI), without having training

examples for those words. To this end, SOC classifier uses the knowledge provided by the

semantic properties of the unseen classes to transfer to novel classes.

Briefly, the SOC classifier is a twostage process: (1) the training phase consists of learn

ing the matrixW , which is used to map from the feature space to the semantic space; and

(2) for the test phase, a 1NN classifier is used. In other words, it returns the nearest point

to the projected point in the semantic space according to the Euclidean distance.

To learn the mapping between the feature space and semantic space, the model uses a

regression function, which is defined as follows:

Ŵ = (XTX + λI)−1XTY (2.3)
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where I is the identity matrix and λ a regularization parameter. Formally, given a novel

fMRI image x ∈ Xu, the semantic features prediction ŝ for this image is the result of mul

tiplication of the image feature x by the learned Ŵ : ŝ = x.Ŵ . Then, a 1NN classifier will

return the closest point to the estimated semantic feature ŝ in the semantic space, which

is then mapped to the correspondent class label.

2.2.2.2 CrossModal Transfer

The CrossModel Transfer (CMT) zeroshot model [3] implements a twolayer neuronal

network to learn the nonlinearmapping of image features to semantic space. It then uses

a novelty detection mechanism to determine whether the test image belongs to seen or an

unseen class. Thus, if the image belongs to the seen classes, then it is classified using a

probabilistic classifier; otherwise, it is assigned to the class represented by the closest se

mantic word vector of the unseen classes.

During training, a set of training images x(i) ∈ Xs ismapped to a lowerdimensional space

(semantic word space). Themapped image is represented by the word vectorwy. To learn

the mapping of images into semantic word space, the following objective function needs

to be minimized:

J(Θ) =
∑
y∈Ys

∑
x(i)∈Xs

∣∣∣∣∣∣wy − θ(2)f(θ(1)x(i))
∣∣∣∣∣∣2 (2.4)

where f = tanh and Θ = (θ(1), θ(2)) are the parameters to be learned.

Due to the inability of standard classifiers predict a class that has no training examples,

Socher et al. [3] propose a novelty detection strategy for predicting whether an image

is of a seen or unseen class. Depending on the output of this detection method, each

type of image can then be classified in two manners: (1) using a stateoftheart softmax

classifier, in case of the novelty detector predicts that the image is part of seen classes; or

(2) using a Gaussian discriminator that compares the distances between word vectors of

unseen classes and the word vector of the mapped image in the semantic space. Then, the

predicted class is the one that is closest to the mapped image. Figure 2.7 illustrates the

CMT model.

2.2.2.3 Deep VisualSemantic Embedding Model

Frome et al. [4] present the Deep VisualSemantic Embedding (DeViSE) model that

learns semantic relationships between labels based on the textual data and adopt the se

mantic space as space where the classification is performed. Given a test image, the pre

dicted class is the one with the highest compatibility with this image.

Conventionally, DeViSE model is a fusion of two modules: (1) a pretrained neural lan
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Figure 2.7: Overview of CMTmodel [3]. Given the test image from the unknown classes, the novelty
detection method will determine whether the image belongs to seen or an unseen class. Then, the image will
be classified according to the result of the novelty detector. If the image is “novel”, it will be classified with
the help of the other unknown classes; otherwise, the known classes are taken into account to perform the

classification.

guage model and (2) a pretrained visual model. For this reason, we can say that DeViSE

is a hybrid model. Figure 2.8 illustrates the architecture of DeViSE model.

core 
visual 
model

core 
visual 
modelparameter

initialization

image

softmax layer

class probabilities

Traditional
Visual Model

image

transformation

embedding 
vector 

lookup table

embedding 
vector 

lookup tableparameter
initialization

class label (e.g. "dog") source word

similarity metric

softmax layer

nearby word

Skip-gram
Language Model

Deep Visual Semantic
Embedding Model

Figure 2.8: Overview of DeViSE model [4]. The visual model (left) is trained to produce the class
probabilities of a given image. The skipgram language model (right) is trained to learn the vector

representation for each input word. Then, DeViSE model (center) is initialized with these two pretrained
models. Given a test image, the visual model will calculate its vector representation using the

transformation layer and then the classification is performed by searching for the nearest labels in the
embedding vector space.

The language model aims to learn the vector representation for each term (word) of tex

tual data. A skipgram text language model architecture is used due to its effectiveness

in learning meaningful representations (embedding vectors) of terms from unannotated

text [25, 21].

The visual model architecture is based on the winning model for the 1000class ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) 2012 [26], since the ILSVRC 1K 2012

dataset [13] was used to pretrain the model. DeViSE is then initialized with these two
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pretrained neural networks models. The output embedding vectors produced by the lan

guage model are used to map label terms into target vector representations. The authors

of [4] replaced the softmax layer of the visualmodel by a custom linear layer (“transforma

tion” layer in figure 2.8), which maps the output of the last layer to a lowerdimensional

output, enabling the comparison with the target vector (embedding vector) from the lan

guage model.

The chosen loss function is a fusion of dotproduct similarity with hinge rank loss, such

that the model is trained to produce a greater similarity between the output of the visual

model and the correct vector representation of the image label than between the output

of the visual model and other randomly text terms [4].

L(x, y) =
∑
j ̸=y

max[0,margin− syWθ(x) + sjWθ(x)] (2.5)

where θ(x) is the output of the top layer of the visual network for the given image x,W is

the matrix of parameters in the transformation layer, sy is the embedding vector for the

provided text label, and sj are the embedding vectors of other text terms. A ranking loss

was used instead of an L2 loss because the evaluation of the nearest neighbor is mainly a

ranking problem [4].

In the test phase, when a new image is presented, its vector representation is computed

using the visualmodel; afterwards, the classification is achieved by searching for the near

est labels in the embedding space. The k closest labels are then assigned to the image. To

measure the quality of predicted labels, an evaluation metric is used.

For the evaluation phase, Frome et al. [4] used the “flat” hit@k metric  a generalization

of the top1 accuracy with the difference that “flat” considers the topk predictions. On the

other hand, to measure the quality of predictions, in terms of semantic, the authors em

ployed a hierarchical precision@kmetric which is based on the label hierarchy presented

in the ImageNet dataset [13]. Further on section 2.5, we describe these evaluationmetrics

in a more detailed manner.

2.2.2.4 Convex Combination of Semantic Embeddings

Convex Combination of Semantic Embeddings (ConSE) [27] is a simplemethod based on

DeViSE [4], with the difference that the way to map an image into the semantic embed

ding space is done through convex combinations of the class label embedding vectors.

Definition 1. A point x ∈ Rn is a convex combination of the points x1, x2, ..., xr in Rn

if for some real number c1, c2, ..., cr which satisfy
∑r

i=1 ci = 1 and ci ≥ 0, 1 ≤ i ≤ r,

x =
∑r

i=1 cixi. The convex combination operator is denoted by “·”.
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From the definition 1, we deduce that a convex combination is a fundamentally a linear

combination of points (which can be vectors) where all coefficients are nonnegative and

its sum total 1 [28].

In the training phase, a softmax classifier is trained to estimates the probability of an im

age x belongs to a class label y ∈ Ys, that is, p0(y|x), where
∑n0

y=1 p0(y|x) = 1. As well, a

skipgram model was trained on a corpus of billion words extracted from Wikipedia.org

to create the word embedding vectors that define the semantic space, similar to DeViSE

[4]. The objective is then to transfer the probabilistic predictions of the classifier to a set

of test labels.

In the test phase, given a test image, the softmax classifier will return the T top predictions

of the model (probability values). Then, the convex combination of the corresponding T

embedding semantic vectors is calculated and the semantic vector f(x) for the test image

x is estimated. Formally,

f(x) =
1

Z

T∑
t=1

p(ŷ0(x, t)|x) · s(ŷ0(x, t)), (2.6)

where Z represents a normalization factor T is a hyperparameter that controls the num

ber of embedding vectors to be considered, p(ŷ0(x, t)|x) denotes the probabilistic predic
tions given by softmax classifier and s(ŷ0(x, t)) is the semantic representation vector for

each seen class label.

Given the predicted semantic embedding vector in the semantic space for an image x,

i.e., f(x), the zeroshot classification is performed by finding the class labels with closest

embeddings to f(x) in the semantic space. The top1 prediction of the model for an image

x from the test label set, denoted by ŷ1(x, 1), is given by

ŷ1(x, 1) = argmax
y′∈Y1

cos(f(x), s(y′)) (2.7)

where cos(.) denotes the cosine similaritymetric, defined by cos(f(x), s(y′)) = f(x)·s(y′)
∥f(x)∥∥s(y′)∥

[29]. The cosine similarity was chosen as similarity metric to measure closeness in the

semantic space, which means that a greater value of cosine similarity indicates a higher

similarity between two vectors.

As an example, the figure 2.9 illustrates the overview of the ConSE method in predicting

the class label for a test image.

In the same manner as DeViSE, the authors of [27] make use of “flat” hit@k and “hierar

chical” precision@k evaluation metrics to measure the quality of predictions provided by

the ConSE method.
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Figure 2.9: Overview of ConSEmodel. The test image “Cougar” is fed into a CNN, then the softmax
toplayer returns the top T probabilistic predictions. Given these predictions, the semantic vector f(x) for

the test image x is estimated, by using equation 2.6. The semantic vector will be “placed” something
between lion and tiger in the semantic space. Finally, the predicted label “Cougar” is obtained by the

equation 2.7, ŷ(x, 1) = argmaxy′∈Yu
cos(f(x), s(y′)), which returns the closest test label.

2.2.2.5 Attribute Label Embedding

Attribute Label Embedding (ALE) [5] is an approach in which the class labels are incor

porated into an attribute vector space. Akata et al. [5] propose a function to evaluate

the compatibility between an image x and a label y. The parameters of this compatibil

ity function are learned to guarantee that the correct class returns a higher compatibility

value than the incorrect one, when an image is presented. Given a test image, classifica

tion consists of searching for the class which reaches the highest compatibility value with

the presented image.

During training, the aim is to learn a matrixW that bridges between the image features

and the attributes. For this purpose, is defined a compatibility function F , formally:

F (x, y;W ) = θ(x)′Wφ(y) (2.8)

where θ(x) is the visual feature vector of image x and φ(y) is the attribute embedding

vector in the attribute vector space. The objective function used in ALE is very similar to

the unregularised structured SVM (SSVM) objective [30]:
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L =
1

N

N∑
n=1

max
y∈Y

∆(yn, y) + F (xn, y;W )− F (xn, yn;W ) (2.9)

where F (.) is the compatibility function andW is the model parameter to be learned.

At test stage, given a test image x, the predicted class label y is obtained by:

f(x;w) = argmax
y∈Y

F (x, y;w) (2.10)

where w is the model parameter learned during training and F (x, y;w) measures how

compatible is x and y given w. Thus, the predicted class is the one with the highest com

patibility with the presented image x. We illustrate the ALE model in Figure 2.10.

Images Features Attributes Labels

chimpanzee

panda

black

white

Figure 2.10: Attribute Label Embedding model. The idea is to leverage the attributes as side
information for the label embedding and then measure the compatibility between the inputs (image feature)
and outputs (class label) with the equation 2.10. It is desired that there is a higher compatibility between
the feature vector θ(xi), which represents a “chimpanzee”, and its respective attribute vector φ(yi). The

same logic is applied to the “panda” example. Adapted from [5].

2.2.2.6 Embarrassingly Simple Approach to ZeroShot Learning

Embarrassingly Simple Approach to ZeroShot Learning (ESZSL) [6] is a twolayer ap

proach to model the relationship between features, attributes, and classes, with the help

of a linear model. This approach follows the same guidelines as ALE [5], however, with a

different loss function and regularizer, which makes the whole process simpler and effi

cient, leading to better results.

The training stage consists of learning the weights that describe the relationship between

the image features and the attributes.

The second layer allows establishing the connection between the attributes and the classes

using the final linear model obtained from the learned weights and the attributes.
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At training stage, to learn the matrix V , which relates the features with the attributes, the

authors of ESZSL consider the following problem:

minimizeV ∈Rd×aL(XTV S, Y ) + Ω(V ) (2.11)

whereW = V S, L is the loss function and Ω a regularizer.

To solve the problem, Romera Paredes et al. [6] introduce a better regularizer and opti

mize a close form solution objective function in a bilinear manner:

Ω(V ;S,X) = γ ∥V S∥2Fro + λ
∥∥XTV

∥∥2
Fro

+ β ∥V ∥2Fro (2.12)

where γ, λ and β are the hyperparameters of this regularizer, and ∥.∥2Fro denotes the

Frobenius norm. Themain benefit of this approach is that the objective function is convex

and has a closed form solution [6]:

V = (XXT + γI)−1XY ST (SST + λI)−1 (2.13)

After learning the matrix V , at inference stage, the aim is to predict an unseen class label

ŷ by using its semantic attributes Su weighted by matrix V . Then, given a new test image

x′, the predicted label is given by:

ŷ = argmax
i

x′TV S′
i (2.14)

where V S′ denotes the final linear modelW ′ = V S′. To better visualize the problem, fig

ure 2.11 summarizes the ESZSL framework.

The main advantages of this approach are that it can be implemented with one line of

code, and is also computational efficient at both training and inference stages, due to the

closedform solution.

2.2.2.7 Latent Embeddings for ZeroShot Learning

Another compatibilitybased method is the Latent Embedding for ZeroShot Classifica

tion (LatEm) [7], which is fundamentally a multimodal method that learns several linear

compatibility models in order to maximize the compatibility between an image and the

respective class label.

During training, a bilinear compatibility function is learned such that the images belong
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Figure 2.11: Summary of ESZSL framework. There are zs classes in the training stage, each one
described by as attributes. At the training stage, the matrix S, denoting the semantic attributes, is used
together with the training instances to learn the matrix V , which corresponds to mapping from feature
space to attribute space. On the other hand, at the inference stage, the matrix V is used jointly with the
semantic attributes of test classes, S′, to obtain the final linear modelW ′ = V S′. The predicted label is

given by ŷ = argmaxi x
TV S′

i. Adapted from [6].

ing to the same class are all grouped together and the images of different classes are far

away from each other. Once learned, the bilinear function can be used to predict the class

of a test image. For better visualization, figure 2.12 shows the overview of LatEm frame

work.

Image	Space

Text	Space

Label	Space

pine
grosbeak

cardinal

cerulean
warbler

Figure 2.12: Overview of LatEm framework. The main purpose of LatEm is learning multiple models,
Wi, towards maximizing the compatibility between the input embedding (image, text space) and the
predicted class label. The various learned models,Wi, may capture distinct visual aspects of objects,

enabling the model to enhance the classification accuracy. This way, the idea is to choose the model,Wi,
that adequately classifies a given test example. Adapted from [7].

More formally, at training stage, the compatibility function takes the form:
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F (x, y) = xTWy (2.15)

whereW is the matrix intended to be learned, x the image feature, and y the class label.

However, assuming that we want to learn multiple Wi, we need to rewrite the equation

2.15 as follows:

F (x, y) = max
1≤i≤K

xTWiy (2.16)

where i = 1, ...,K, withK ≥ 2. To this end, the aim is to learn a set of compatibility spaces

that minimizes the following loss function:

1

N

|T |∑
n=1

L(xn, yn) (2.17)

where L is the rankingbased loss function, expressed as:

L(xn, yn) =
∑
y∈Y

max{0,∆(yn, y) + F (xn, y)− F (xn, yn)} (2.18)

where∆(yn, y) = 1 if y ̸= yn and 0 otherwise. Thus, the model is trained to returns a high

compatibility value between an image embedding and the respective class embedding.

At the inference stage, once learned the models,Wi, zeroshot classification is performed

by using the following prediction function that returns the class with the maximum com

patibility:

f(x) = argmax
y∈Y

F (x, y) s.t. F (x, y) = max
1≤i≤K

xTWiy (2.19)

with y ∈ Y being one of the unseen classes.

2.2.2.8 Semantic Autoencoder

Kodirov et al. [8] proposed a model based on the learning of a semantic autoencoder

(SAE). According to the encoderdecoder paradigm, the encoder aims to project a visual

feature vector into the semantic space. The decoder comprises an additional constraint  it

must be capable to reconstruct the original visual feature vector. This assumption makes

the model more capable in generalizing to unknown classes. Since both the encoder and

decoder are symmetric and linear models, they enable an extremely efficient learning al

gorithm with a low computational cost.
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The proposed semantic autoencoder is illustrated in figure 2.13.
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Figure 2.13: Proposed Semantic Autoencoder for ZSL.The encoder,W , aims to project a given input
X to a hidden layer S (semantic space) that has a lower dimension, and the decoder,WT , projects the

learned projection back into the feature space, reconstructing the original feature X̂. Then, the
classification can be performed in feature space or in semantic space. Adapted from [8].

More formally, given an input data matrixX, each feature vector is projected into a latent

representation S through the projection matrix W , that is, S = XW . The latent repre

sentation S is projected back into the feature space through the projection matrix W T ,

and the result is the reconstructed input X̂ = SW T . To this end, is desirable that X̂ be as

similar as possible toX, then the following objective function should be minimized:

min
W

∥∥X −W TS
∥∥2
F

s.t. WX = S (2.20)

After few optimization techniques we fall in the following formulation:

AW +BW = C (2.21)

withA = SST ,B = λXXT , andC = (1+λ)SXT , which is the formulation of the Sylvester

equation and it can be solved by the BartelsStewart algorithm [31].

At the inference phase, given the semantic representation S and the training dataXs, the

encoderW and decoderW T are firstly learned by BartelsStewart algorithm. Afterward,

zeroshot classification can be performed in two spaces:

1. Semantic space – With the encoder matrix W , the training example xi is pro

jected into the semantic space by ŝi = Wxi. Then, the classification is performed by

calculating the distance between the estimated semantic representation ŝ and the
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projected prototypes Su:

Φ(xi) = argmin
j

D(ŝi, Suj ) (2.22)

where D denotes for a distance function and Φ(.) returns the predicted class given

the example xi.

2. Feature space–With the decodermatrixW T , the class prototypes si are projected

into the feature space by x̂i = W T si. After that, the classification can be performed

in the feature space by calculating the distance between the estimated feature rep

resentation x̂i and the projected prototypesXu:

Φ(xi) = argmin
j

D(x̂i, Xuj ) (2.23)

where D denotes for a distance function and X̂uj is the jth unseen class prototype

projected in the feature space.

Despite this flexibility at test phase, the authors of SAE [8] reported that the two strategies

described earlier yield very similar results.

2.2.3 Generative Methods

The main shortcoming with projectionbased methods is that they suffer from two prob

lems: bias and domain shift [8]. Due to the fact that the projection function is learned

using solely seen classes during training, the projection method will be biased to predict

seen class labels as the output owing to the imbalance between seen and unseen classes

[1]. There is no guarantee that the learned projection function will map unseen class im

age features to the corresponding semantic space accurately at test time. This is because

the learning method has only learned to map seen class image features to semantic space

during training and might not generalize for unseen novel classes at test time. Thereby,

most of existing stateoftheart approaches fail to achieve reasonable results for the gen

eralized zeroshot learning. To overcome this drawback, generativebased methods come

into the picture. Generative methods aim to generate image features for unseen classes

using any auxiliary information, such as semantic attributes or word vectors [1, 9]. Typ

ically, this is achieved by using a conditional generative adversarial network [1, 10] or

a conditional variational autoencoder [9, 10, 32] that leverages auxiliary information to

generate image features for the unseen classes.

The figure 2.14 shows the diagram of a typical generativebased zeroshot method.

Similar to the projectionbased methods, a feature extractor network is used to get a N

dimensional feature vector. First, any type of auxiliary information (e.g attributes, word

vectors) is fed into the generative model, as shown in the figure 2.14. The generator mod

ule generates an Ndimensional output vector conditioned on the attribute vector (aux

iliary information). The generative model is trained to synthesize feature vectors that
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Figure 2.14: Zeroshot learning using generativebased methods. By generating some synthetic
image features, belonging to unseen classes, conditioned on the side information (e.g. attributes), using a

pretrained generator, we can use these synthetic features to train a softmax classifier.

compared to the original Ndimensional feature vectors. Having this synthetic data, we

can train a discriminative classifier, such as a softmax classifier, to predict the class labels

of the test data. In other words, this family of approaches casts the zeroshot learning

problem as a data missing problem and the view is to generate some synthetic data (data

augmentation mechanism) to tackle this issue.

The main insight of this kind of methods is that by feeding additional synthetic features

of unseen classes, the learned classifier will also explore the embedding space of unseen

classes. Hence, the key is the ability to generate semantically meaningful features condi

tioned on a class specific semantic vector, without access to any images of that class.

In the following sections we describe some generativebasedmethods for zeroshot learn

ing.

2.2.3.1 fCLSWGAN

As stated above, most of existing projectionbased methods fail to achieve reasonable re

sults for the task of zeroshot classification due to the imbalance between seen and unseen

classes, since they not have access to test classes during training. To surpass this issue,

Xian et al. [1] propose a novel attribute conditional feature generating adversarial net

work (GAN) approach  namely fCLSWGAN  that synthesizes features for the unseen

classes conditioned on semantic information of unseen classes. By using a Wasserstein

GAN with a classification loss, their approach is able to generate discriminative features

to train a discriminative classifier to perform zeroshot classification. The fCLSWGAN is

depicted in figure 2.15.

During training, the generative network is trained to generate discriminative featureswith

the help of the discriminator and the classification loss. Shortly, the objective function is

expressed as:
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Figure 2.15: fCLSWGANmodel. The generator G aims to generate discriminative features conditioned
on unseen class attributes, such that the generated features looks real for the discriminatorD. When this
assumption is achieved, the generated features can be used as unseen class data to train a discriminative
classifier. The authors of fCLSWGAN propose to minimize both the classification loss, LCLS , over the

generated features x̃ and the Wasserstein distance LWGAN . Adapted from [1].

min
G

max
D

LWGAN + βLCLS (2.24)

where β is a hyperparameter that weights the classifier.

At the classification time, once we have features to all of classes, seen and unseen classes,

we only have to train a softmax classifier in order to predict the class labels. More formally,

the prediction function is written as follows:

f(x) = argmax
y

P (y|x; θ) (2.25)

where in ZSL setting, y ∈ Y u and in GZSL setting, y ∈ Y s ∪ Y u.

Additionally, with the generated features for the unseen classes, it is possible to train

some methods described in the previous section, which learn a model to relate the im

age features with the class label, such as ALE [20], DEVISE [4], ESZSL [6] and LATEM

[7]. However, the standard softmax classifier was the one that achieved better results in

their experiments.
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2.2.3.2 CVAEZSL

The idea behind the proposed approach  namely CVAEZSL  by Mishra et al. [9] is to

generate samples for the unseen classes based on the given attributes using a Conditional

Variational Autoencoder (CVAE).

A CVAE uses an additional input to both encoder and decoder that is called a condition

[33]. This condition represents a property related to the example intended to be gener

ated. For instance, if the purpose is to generate some images of dogs, a good condition

is the set of attributes allowing generator synthesize images or features related to class

“dog”. Now, the idea is exactly to train a CVAE to learn a probability distribution of the

image featuresX conditioned on the class embedding vectorA. Furthermore, the authors

of [9] pointed that such an approach reduces the domain shift problem.

Figure 2.16 illustrates the network architecture of CVAEZSL approach that is fundamen

tally the CVAE architecture.

E
ncoder D

ec
od
er

Figure 2.16: CVAEZSL network architecture. The inputX, i.e., the image feature, and the semantic
class embedding vector Ay are concatenated and passed through the encoder, composed of dense layers,
that outputs a mean vector µz and a standard deviation vector Σz . A z is sampled from the variational
distributionN(µz,Σz). The sampled z is then concatenated with the class embedding vector Ay and the
result is passed through the decoder, which outputs the reconstructed image featureX ′. Adapted from [9].

During training, CVAE generates image features x̃, given the conditional variable Ay. To

this end, the loss function that is minimized is composed by a “reconstruction term” and

a “regularization term”, and it is defined as:

L(θ, ϕ;x,Ay) = Lreconstruct(x, x̃) +KL(N(µz,Σz), N(0, 1)) (2.26)

whereKL denotes the KullbackLeibler divergence, x is the input to the encoder and x̃ is

the reconstruction output.

After training the CVAE, it is possible to generate examples for the unseen classes, since

their semantic class embedding vectors are available. More formally, decoder operates as
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a sample generator using the following procedure: 1) sample z from a standard normal

N(0, 1) and concatenate it withAy, which is the attribute embedding; 2) the concatenation

is used as the input to the decoder that outputs the reconstructed x; and 3) the generated

samples can be used to train any classifier. In this work, Mishra et al. [9] trained an SVM

classifier [34]. The pipeline of the zeroshot classification algorithm is the follow:

1. UsingXtrain, Ytrain and A to train the CVAE.

2. For each unseen class yu, generateN samples for that class, concatenating the latent

vector z ∼ N(0, 1) and Ayu and use it as the input to the decoder.

3. Train an SVM classifier using the generated samples for the unseen classes.

Depending on the setting where the model is evaluated, the test set contains only unseen

classes (standard zeroshot learning) or both seen and unseen classes (generalized zero

shot learning).

2.2.3.3 fVAEGAND2

The above two sections describe two generative methods that rely solely on GANs and

VAEs. However, Xian et al. [10] developed a conditional generative model that combines

the strength of VAE and GANs by bringing them together in a conditional feature gener

ative model, namely fVAEGAND2, which generates image features from classlevel side

information, such as attributes or word vectors. In addition, they employed an additional

discriminator (D2) that distinguishes real and generated features from unlabeled data of

unseen classes, which leads tomore discriminative features. In zeroshot learning, the use

of unlabeled test instances fromunseen classes during training time is known as transduc

tive setting, which inherently improves the model’s performance, as they contain useful

information of unseen classes [2]. However, most existing ZSLmethods lay on the induc

tive setting, in which only labeled instances of seen classes are considered at the training

phase [2].

The fVAEGAND2 model consists of a conditional encoder, a shared decoder/generator,

a conditional discriminator, and a nonconditional discriminator that grant to the model

the ability to act in anyshot learning scenarios. Figure 2.17 illustrates the model. Once

trained, the model generates discriminative image features for unseen classes that can be

used to train a softmax classifier.

At training time, the generator G(z, c) and the decoder D(z, c) are trained in a way such

that the generated features are discriminative enough to fool the discriminator D1(x, c).

Moreover, if unlabeled data of novel classes are available, the nonconditional discrim

inator D2 comes into play to distinguish between real and generated features of unseen

classes.

Hence, fVAEGAND2 model optimizes the following objective function:
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Figure 2.17: Anyshot feature generating network (fVAEGAND2). The presented architecture
consists of a feature generating VAE (fVAE), a feature generating WGAN (fWGAN) with a conditional
discriminator (D1), and a transductive feature generator with a nonconditional discriminator (D2) that
learns from labeled data of seen classes jointly with unlabeled data of unseen classes. Both the feature
generating VAE and WGAN are used to generate features from a random noise z and a condition c, such
that the generator G(z, c) of the GAN and decoderD(z, c) of the VAE share the same parameters. Adapted

from [10].

min
G,E

max
D1,D2

Ls
V AEGAN + Ln

WGAN (2.27)

At test time, with the generated discriminative CNN features for the unseen classes, and

in the same way as fCLSWGAN [1] and CVAEZSL [9], we can simply train a softmax

classifier to distinguish between seen and unseen classes.

To conclude, the major strength of this approach is the generation of semantically rich

CNN features, generalized to anyshot learning scenarios. The results showed that this

robust generative model improves the stateoftheart in anyshot learning, i.e., inductive

and transductive zeroshot learning.

2.2.3.4 SemanticGuided MultiAttention

All above methods ignore the importance of learning discriminative visual features, espe

cially in the finegrained scenarios. Usually, the features learned from the whole image

using a common feature extractor hardly capture the subtle differences between classes.

To capture such discriminative regions, Zhu et al. [35] propose a semanticguided at

tention localization model (SGMA) for zeroshot recognition, which discovers the crucial

regions.

The framework consists of three modules: (1) the multiattention subnet, (2) the region

cropping subnet, and (3) the joint feature embedding subnet. The multiattention subnet

aims to generate multiple attention maps that correspond to discriminative parts of the

object. The region cropping subnet performs the cropping of these discriminative parts.

The joint feature embedding subnet is fed by the cropped parts and the original image to

learn the global and local visual feature.
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Themodel is trained to produce attentionmaps that assemble multiple discriminative re

gions of the images. Then, the local features are obtained through the cropping of such

regions. To perform the classification, the local features are concatenated with the global

feature, and the result is used to rank the compatibility of the image feature with the true

class label. The other way is to infer the class label based on the similarity between the

final feature and the prototypes of unseen classes, similar to [7] and [5].

This method clearly shows the importance of capture discriminative parts of images to

enhance the zeroshot recognition in finegrained datasets.

2.3 Challenges

Despite the success of the above methods in addressing the zeroshot learning problem,

some of them are faced with inherent issues that affect the performance of the model.

In the following sections, we describe some of the major challenges discovered in zero

shot learning that have a crucial impact in the model’s performance.

2.3.1 DomainShift

The domainshift problem was firstly identified by Fu et al. [36]. Domainshift concerns

the problem of having training and test data stemming from different distributions. This

is a common problem in the projectionbased methods since the projection functions

learned from the training data are biased when applied directly to the test data, which

contains disjoint classes, i.e. Ys ∩ Yu = ∅ [36]. Since the projection function is learned

using only seen classes during training, it might not generalize well on unseen classes at

test time. To overcome this problem, a reconstruction constraint [8] and a data generation

technique [9] proved to be efficient in reducing the domainshift problem.

2.3.2 Bias

In the inductive zeroshot learning setting, the model has only access to images and re

spective class labels of seen classes and semantic class information of both seen and un

seen classes during the training phase. This strong assumption makes the model biased

to the seen classes in the test phase since it usually predicts the seen classes as the correct

class. This problem becomes critical when the model’s evaluation is under the general

ized zeroshot learning setting, in which the search space contains both seen and unseen

classes. In this way, themodel tends tomisclassifymost unseen class images, significantly

reducing classification accuracy [37]. Mishra et al. [9] used the data generated from both

the seen and unseen classes to train a SVM classifier to reduce the bias towards the seen

data.

2.3.3 Hubness

The problem of “hubness” emerges when a vector is projected from a high dimensional

space into a low dimensional space [38]. As stated in [38], in projection methods, when

27



the semantic space is adopted as projection space, the instances of the feature space are

projected into the semantic space. This operation can lead to some projected prototypes

being nearest neighbors of a significant number of instances of different classes [15].

These prototypes are called “hubs”, hence the name “hubness”. It is known that the pres

ence of hubs often hurts the classification performance. Then, to alleviate the hubness

effect, some methods choose other projection space [8, 39], such as the feature space.

In contrast, others consider using the unlabeled testing instances to increase the perfor

mance of the model [38].

2.4 Datasets

Among the most widely used datasets for zeroshot learning, we select the ones that were

used to evaluate the abovereviewed methods, namely Animals with Attributes 1 (AWA1)

[23], Animals with Attributes 2 (AWA2) [2], CaltechUCSDBirds (CUB2002011) [40],

Attribute Pascal and Yahoo (aPascalaYahoo) [18], Stanford Dogs [41], CIFAR10 [42],

CIFAR100 [42], PubFig [43], OSR dataset [44] and ImageNet [13]. Due to copyright

issues on the AWA1, the original images are not available, and thus, Xian et al. [2] intro

duced the AWA2 dataset, which has more 6847 images than the original AWA1. Details

of dataset statistics are present in Table 4.2.

Table 2.2: Statistics for datasets.

Dataset No. Classes No. Instances No. Attributes
CUB2002011 [40] 200 11, 788 312

Oxford 102 Flower [45] 102 8, 189 None
SUN Attibutes [46] 717 14, 340 102

Stanford Dogs [41] 120 20, 580 None
AWA [23] 50 30, 475 85

AWA2 [2] 50 37, 322 85

aPascalaYahoo [18] 32 15, 339 64

PubFig [43] 200 58, 797 None
PubFigsub [43] 8 772 11

OSR [44] 8 2, 688 6

ImageNet [13] 22, 000 15million None
ImageNet 2012 1K [47] 1, 000 1.2million None

CIFAR 10 [42] 10 60, 000 None
CIFAR 100 [42] 100 15, 339 None

It is common to use a pretrained deep neural network (DNN) for image feature extrac

tion; however, the data used to train these DNN should not include any test classes used

to evaluate the zeroshot learning model. Xian et al. [10] noticed that, from the stan

dard split (SS) of aPascalaYahoo and AWA1 datasets, more than half of test classes were

among the classes used to pretrain the DNN, which violates the zeroshot assumption.

In addition, the reported accuracy for all methods on the standard split (SS) is generally

higher than the others. Therefore, Xian et al. [10] proposed new dataset splits, denoted

proposed splits (PS), to ensure that none of the test classes appear in the dataset used

to pretrain the DNN model, specifically ResNet, which is trained with ImageNet 1K [47]
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dataset. Further on, in Section 2.6, we can compare the zeroshot learning results on SUN,

CUB, AWA1, AWA2 and aPY using the standard split (SS) and the proposed split (PS). We

also provide some reported results for the largescale ImageNet dataset.

2.5 Evaluation Metrics

Thepublished results by existingworks are oftennot comparable and tend to be inaccurate

due to some lack of care in maintaining the zeroshot assumption [2]. Therefore, Xian

et al. [2] propose a unified evaluation protocol that aims to standardize the zeroshot

learning benchmark. Typically, zeroshot learning methods are evaluated in two settings:

• ZeroShot Learning Setting (ZSL) – It is the standard evaluation setting, in

which at test time only unseen classes are present, i.e. y ∈ Yu. However, this setting

is considered restricted and somewhat unrealistic [2, 9].

• GeneralizedZeroShotLearningSetting (GZSL)– It is amore challenging and

also a more realistic setting since, at test time, the search space contains both seen

and unseen classes, i.e., y ∈ Yu∪Ys [48]. Consequently, the performance under this

setting degrades significantly compared to conventional zeroshot learning. Since

themodel is trained only with seen class images, therefore its predictions are biased

towards seen classes, leading to wrong classification of some unseen classes, which

drastically reduce the performance [2].

In order to measure the performance of zeroshot learning methods using the above two

settings (ZSL and GZSL), we provide a description of four evaluation metrics suitable for

each type of setting.

2.5.1 Top1 Accuracy

To measure the accuracy in image classification problems, top1 accuracy is used, i.e., the

prediction is correct when it corresponds to the true class label. This approach is encour

aged if the classes are densely populated since the accuracy is averaged for all images.

Conversely, if the dataset is imbalanced, which drives the classes being sparsely popu

lated, the better approach is to measure the average perclass top1 accuracy as follows:

accy =
1

|Y |

|Y |∑
c=1

#correct predictions in c

#samples in c
(2.28)

where Y is the total number of classes. Xian et al. [2] observed that due to the class

imbalance in the dataset AWA1, there is a significant difference (about 4%) in the top1

accuracy perimage and the average perclass top1 accuracy.
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2.5.2 Harmonic Mean

In the GZSL setting, the search space contains both train and test classes, hence this set

ting ismore realistic. Thus, after computing the average perclass top1 accuracy on train

ing and test classes, the harmonic mean [49] is computed for the training and test accu

racies:

H =
2 ∗ accytr ∗ accyts
accytr + accyts

(2.29)

where accytr and accyts denote the accuracy of images from seen and unseen classes, re

spectively. The choice of the harmonic mean is due to the fact that it provides more real

istic results, since the arithmetic mean overestimates the real performance of the method

[2].

2.5.3 Flat Hit@K

The flat hit@kmetric is a generalization of the top1 accuracymetric. Themajor difference

is that flat hit@k considers the topk predictions of the model compared to top1 accuracy

metric, which only takes into account the top1 prediction [4]. This metric was used in

[4] and [27] to measure the performance of the model on a test set taken from ImageNet

ILSVRC 2012 1K, a largescale dataset with 1000 classes. The results show that the larger

k is, the better is the performance of the model.

2.5.4 Hierarchical Precision@K

To assess the semantic quality of predictions beyond the correct label, Frome et al. [4]

employ a hierarchical precision@k metric, hp@k, to evaluate the accuracy of model pre

dictions in relation to the object category hierarchy of the ImageNet dataset. For each

image in the test set, the model returns its top k predicted labels of the ImageNet ob

ject category. The hp@k is computed as the fraction of the top k predictions returned by

the model, and that are part of the hCorrectSet, averaged across the total number of test

samples [4]:

hp@k =
1

N

N∑
i=1

number of model’s top k predictions in hCorrectSet for image i
k

(2.30)

To construct the hCorrectSet, it is necessary adding nodes from the ImageNet hierarchy

in a specific radius around the true label until hCorrectSet has size ≥ k.

2.6 Experiments

To compare the aforementioned methods, we provide both ZSL and GZSL results on the

SUN [46], CUB [40], AWA1 [23], AWA2 [2], and aPY [18] datasets. Finally, we present
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results on the largescale ImageNet [13] dataset.

Table 2.3 presents the zeroshot learning results on standard split (SS) and proposed split

(PS) for all above described methods, except for SOC [24] method, which does not report

any values for the above mentioned datasets. Whenever available, the reported results

are taken from the original publications. However, since not all methods provide results

for all mentioned datasets, we fill the gaps with the results reported in [2]. Furthermore,

the works [6] and [8] were reevaluated using the proposed splits provided by [2] and

code from original papers, when available. To reevaluate the ESZSL [6] method, the

code available in [50] was run, with some modifications to evaluate the method under

the generalized zeroshot setting. The same was made for SAE [8] method, which was

reimplemented using Python language, since the original code was written inMatlab. To

compare the original results and the reproduced ones, the values followed by an asterisk,

in the table 2.3, represent the results that we obtained from the method’s code execution.

In the same way, the generalized zeroshot learning results are showed in Table 2.4.

The presented results in zeroshot and generalized zeroshot configurations emphasize

the effectiveness and superiority of generative methods in almost all datasets. As ex

pected, generativemethods performbetter since they generate data for the unseen classes,

which significantly increases the performance of the method in recognizing novel classes.

Regarding the reimplemented methods, we can conclude that the reproduced results are

very similar to the values reported in original papers. However, there are slightly differ

ent results obtained with the SAE [8] method on AWA1 [23] and AWA2 [2] datasets in

standard split (63.6% and 65.9%) compared with the reported results (80.6% and 80.7%),

which can be explained by the improvement of visual featuresmade by the authors of SAE

[8], as confirmed by Xian et al. [2], which inherently leads to better results in assessing

zeroshot learning.

To evaluate performance in the ImageNet [13] dataset and fairly compare the methods

that report results for this dataset, distinct dataset class splits were considered, as shown

in table 2.5. Thereby, “2H” means that classes are 2hops away from the original classes

concerning the label hierarchy existing in ImageNet [13], which corresponds to 1509 dif

ferent classes. Analousgly, “3H” means that classes are 3hops away from the original

classes, which makes a total of 7678 different classes. The most challenging split falls in

all the remaining approximately 20.000 (All) classes of ImageNet [13] with at least 1 image

perclass. As we can notice from the table 2.5, generativebased methods perform better

in largescale scenarios, which clearly indicates that they are a good option to tackle the

problem of zeroshot learning. Nevertheless, when the number of classes increases, the

performance of all methods tends to reduce.
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Table 2.3: Zeroshot learning results on SUN, CUB, AWA1, AWA2, and aPY datasets using standard split
(SS) and proposed split (PS).The symbol (“”) means that there are not reported results for that

measure/dataset. The values followed by an asterisk are the result of methods reevaluation task, all others
are taken from [2] and from original publications. The results report top1 accuracy in %.

ZeroShot Learning
SUN CUB AWA1 AWA2 aPY

Method SS PS SS PS SS PS SS PS SS PS
DAP [23] 38.9 39.9 37.5 40.0 57.1 44.1 58.7 46.1 35.2 33.8

IAP [23] 17.4 19.4 27.1 24.0 48.1 35.9 46.9 35.9 22.4 36.6

CMT [3] 41.9 39.9 37.3 34.6 58.9 39.5 66.3 37.9 26.9 28.0

DeViSE [4] 57.5 56.5 53.2 52.0 72.9 54.2 68.6 59.7 35.4 39.8

ConSE [27] 44.2 38.8 36.7 34.3 63.6 45.6 67.9 44.5 25.9 26.9

ALE [5] 59.1 58.1 53.2 54.9 78.6 59.9 80.3 62.5 30.9 39.7

ESZSL [6] 57.3 54.5 55.1 53.9 74.7 58.2 75.6 58.6 34.4 38.3

ESZSL* [6] 53.9∗ 52.3∗ 54.6∗ 51.3∗ 76.3∗ 56.2∗ 75.2∗ 54.5∗ 34.0∗ 38.5∗

LatEm [7] 56.9 55.3 49.4 49.3 74.8 55.1 68.7 55.8 34.5 35.2

SAE [8] 42.4 40.3 33.4 33.3 80.6 53.0 80.7 54.1 8.3 8.3

SAE* [8] 47.8∗ 43.1∗ 39.2∗ 38.9∗ 63.6∗ 46.7∗ 65.9∗ 45.6∗ 30.1∗ 28.8∗

fCLSWGAN [1] − 60.8 − 57.3 − 68.2 − − − −
CVAEZSL [9] − 61.7 − 52.1 − 71.4 − 65.8 − −
fVAEGAND2 [10] − 65.6 − 72.9 − − − 71.1 − −
SGMA [35] 70.5 71.0 83.5 68.8 − − − − − −

Table 2.4: Generalized zeroshot learning on all reviewed methods for the SUN, CUB, AWA1, AWA2, and
aPY datasets. Measure ts = Top1 Accuracy on Yu, tr = Top1 Accuracy on Ys, H = Harmonic Mean. The

symbol (“”) means that there are not reported results for that measure/dataset. The values followed by an
asterisk are the result of methods reevaluation task, all others are taken from [2] and from original

publications. The results report top1 accuracy in %.

Generalized ZeroShot Learning
SUN CUB AWA1 AWA2 aPY

Method ts tr H ts tr H ts tr H ts tr H ts tr H
DAP [23] 4.2 25.1 7.2 1.7 67.9 3.3 0.0 88.7 0.0 0.0 84.7 0.0 4.8 78.3 9.0

IAP [23] 1.0 37.8 1.8 0.2 72.8 0.4 2.1 78.2 4.1 0.9 87.6 1.8 5.7 65.6 10.4

CMT [3] 8.7 28.0 13.3 4.7 60.1 8.7 8.4 86.9 15.3 8.7 89.0 15.9 10.9 74.2 19.0

DeViSE [4] 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 22.4 17.1 74.7 27.8 4.9 76.9 9.2

ConSE [27] 6.8 39.9 11.6 1.6 72.2 3.1 0.4 88.6 0.8 0.5 90.6 1.0 0.0 91.2 0.0

ALE [5] 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 14.0 81.8 23.9 4.6 73.7 8.7

ESZSL [6] 11.0 27.9 15.8 12.6 63.8 21.0 6.6 75.6 12.1 5.9 77.8 11.0 2.4 70.1 4.6

ESZSL* [6] 13.1∗ 27.3∗ 17.7∗ 11.8∗ 63.0∗ 20.0∗ 16.5∗ 91.1∗ 27.9∗ 6.5∗ 92.8∗ 12.2∗ 2.3∗ 79.7∗ 4.6∗

LatEm [7] 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 11.5 77.3 20.0 0.1 73.0 0.2

SAE [8] 8.8 18.0 11.8 7.8 54.0 13.6 1.8 77.1 3.5 1.1 82.2 2.2 0.4 80.9 0.9

SAE* [8] 12.3∗ 23.1∗ 16.1∗ 11.3∗ 52.6∗ 18.5∗ 1.6∗ 90.7∗ 3.2∗ 1.2∗ 93.3∗ 2.4∗ 0.2∗ 86.0∗ 0.3∗

fCLSWGAN [1] 42.6 36.6 39.4 43.7 57.7 49.7 57.9 61.4 59.6 − − − − − −
CVAEZSL [9] − − 26.7 − − 34.5 − − 47.2 − − 51.2 − − −
fVAEGAND2 [10] 50.1 37.8 43.1 63.2 75.6 68.9 − − − 57.1 76.1 65.2 − − −
SGMA [35] − − − 36.7 71.3 48.5 37.6 87.1 52.5 − − − − − −

2.7 Conclusions

This chapter provided an overview of the zeroshot learning taxonomy, where a detailed

description of the crucial components of the zeroshot problem was focused on. The re

view of the methods from a temporal perspective, i.e., starting with the oldest and ending

with the more recent ones, allowed us to establish a timeline that gives us the perception

of how the adopted approaches have evolved. More recently, the generative approaches

have proven to be effective in addressing the zeroshot problem, as demonstrated in sec
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Table 2.5: Zeroshot learning results on ImageNet dataset [13]. 2/3 H = Classes with 2/3 hops away from
the original classes of ImageNet [13]. All = The remanining 20K classes of ImageNet. The symbol (“”)

means that there are not reported results for that measure/dataset.

ZeroShot Learning Generalized ZeroShot Learning
Method 2H 3H All 2H 3H All
DeViSE [4] 5.25 1.29 0.49 − − −
ConSE [27] 7.63 2.18 0.95 − − −
CMT [3] 2.88 0.67 0.29 − − −
LatEm [7] 5.45 1.32 0.50 − − −
ALE [5] 5.38 1.32 0.50 − − −
ESZSL [6] 6.35 1.51 0.62 − − −
SAE [8] 4.89 1.26 0.56 − − −
fCLSWGAN [1] 11 2.4 1 4.2 1.3 0.5

fVAEGAND2 [10] 13 3.2 1.8 5 1.9 0.9

tion 2.6. In addition, the most widely used datasets for zeroshot learning were also pre

sented and characterized by the number of classes, number of instances, and attributes.

Moreover, the importance of choosing a dataset split that does not violate the zeroshot

learning assumption was underlined. Finally, a concise benchmark was drawn for each

reviewed method on the described datasets, supporting the thesis of the generative ap

proache’s superiority on both evaluating settings: ZSL and GZSL.
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Chapter 3

Proposed Method

This chapter describes the proposed method for developing the zeroshot learningbased

approach to recognize unknown objects using only its textual description. Section 3.1

presents the work plan overview and the description of the tasks to achieve the objectives

stated in section 1.2. In section 3.2, we provide the details of the developed evaluation

framework for assessing ZSL methods in terms of computational performance. Finally,

in section 3.3 we describe our proposed SemanticGuided Attention Model that aims to

learn more discriminative visual features conditioned on the most dominant semantic

attributes regarding the input image.

3.1 Work Plan

In order to meet the main objectives of this work, a list of several tasks is proposed. An

approximate scheduling for the execution of these tasks is included in table 3.1. The exe

cution of a given task in a given month is marked with a cross (x).

Table 3.1: Work plan scheduling.

Task
Month

Oct Nov Dec Jan Feb Mar Apr May Jun

T1  State of the Art on ZSL x x x
T2  Implementation of ZSL Methods x x x x
T3  Evaluation of ZSL Methods x x x
T4  Development of a ZSL Method for Lowpower Devices x x
T5  Dissertation Writting x x x x x x x

Following, we provide a detailed description of each task included in table 3.1.

T1  State of The Art on ZSL. The initial task consists of the revision of the zeroshot

learning literature and taxonomy. This study comprehends the analysis of the accuracy

and the computational complexity of the reviewedmethods and also the knowledge about

the datasets used to evaluate the zeroshot strategies. Furthermore, the major challenges

in the ZSL and the evaluation protocols and its metrics are covered in this task.

T2  Implementation of ZSL Methods. After having the knowledge about the re

viewed literature of zeroshot learning, which should give the insights about the most

suitable and promising methods for the concerned problem, the implementation of ZSL

methods is followed. In particular, the accuracy and the computational complexity of the

methods will be taken into account.
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T3  Evaluation of ZSL Methods. The evaluation process of ZSL methods must fol

low some guidelines to avoid misleading results that can induce a poor evaluation of the

models’ performance. For this purpose, a study of the evaluation protocol of ZSL ap

proaches is necessary, as stated in task T1. Then, the evaluation of the ZSL methods must

be performed on the reviewed datasets to provide the accuracy and time executionmetrics

under the ZSL and GZSL settings.

T4  Development of a ZSL Method for Lowpower Devices. The ZSL meth

ods’ development phase for lowpower devices is the union of all acquired knowledge and

experiments performed until this phase. The developed strategy should combine all re

viewed methods’ strengths to overcome the major challenges in zeroshot classification,

described in section 2.3. Moreover, the ZSL method must be optimized to run on low

power devices.

3.2 Evaluation of ZSL Methods

In chapter 2, an extensive review of the stateoftheart in ZSL was performed so that we

can identify the crucial points of the ZSL. This way, it was possible to became aware of

the main challenges in the ZSL scenarios that can affect the model’s performance. On

the other hand, we became familiar with the recent advances made towards improving

the performance of the models on the most challenging scenarios (GZSL setting) and the

efforts that have been made to mitigate the inherent problems that the ZSL methods are

faced.

Despite the vast benchmarking that has been done around each novel ZSL method, few

works havemeasured the computational performance of the developed strategy regarding

inference time. In addition, we argue that the choice of the CNNbased architecture to ex

tract the visual features may have an impact on the model’s performance in terms of both

accuracy and image processing speed. Although a vast majority of ZSL works adopt only

the ResNet101 architecture as the feature extractor network for benchmarking purposes,

we are interested in evaluating the impact of using lightweight CNN architectures in the

ZSL accuracy. Consequently, we decided to develop an opensource evaluation framework

for analyzing the accuracy/speed tradeoff in the problem of ZSL, allowing us to perceive

how the ZSLmethods perform in realworld scenarios, specifically when run in lowpower

devices.

In the next sections, the details of the evaluation frameworkwith regard to its functionality

and also the available options are described.

3.2.1 Methods

A set of six stateoftheart ZSL methods is available to be tested in the developed frame

work, including ESZSL [6], SAE [8], DEM [39], fCLSWGAN [1], TFVAEGAN [51], and
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CEGSZL [52]. The first four methods were covered in chapter 2, however the last two

methods, TFVAEGAN[51] andCEGSZL [52], are two recent strategies that have achieved

impressive results particularly on themost challenging scenario (GZSL). TFVAEGAN[51]

combines the strengths of VAEs and GANs and introduces a feedback module that uti

lizes a semantic embedding decoder (SED) to improve the generated features during all

stages of ZSL framework: training, feature synthesis, and classification. CEGZSL [52] is

a hybrid model that integrates a feature generation model with a Contrastive Embedding

(CE) model, and maps both real and synthesized features into a new embedding space,

where the GZSL classification is performed. In particular, a Contrastive Embedding (CE)

is proposed to exploit the classwise supervision and also the instancewise supervision

for GZSL.

Regarding the projection methods (ESZSL, SAE, and DEM), we implemented them by

ourselves. However, for the generative methods (fCLSWGAN, TFVAEGAN, and CE

GZSL) we used the original implementation code available in the GitHub repository [53,

54, 55]. Moreover, we made the necessary changes to adapt the code to the datasets’ re

quirements and provide the output results in a specific format.

3.2.2 Datasets

Among the most widely used datasets for zeroshot learning, we considered the Animals

with Attributes 1 (AWA1) [23], Animals with Attributes 2 (AWA2) [2], CaltechUCSD

Birds (CUB2002011) [40],Attribute Pascal andYahoo (APY) [18], SUNAttributes (SUN)

SUN [46] ,and the most recent Largescale Attribute Dataset (LAD) [56] dataset for our

experiments.

For each of these datasets, we provide a set of files with a standardized data structure

necessary to run the different ZSL methods. Specifically, we followed the same file pat

tern of the data provided by [2], which is based on a simple dictionary of objects. Con

cretely, there are two dictionaries (provided in a Matlab format) to be considered: (1)

att_splits.mat  a dictionary for storing the class attribute vectors and the instances in

dexes of the splits for training, validation, and test purposes; and (2) ResNet101.mat  a

dictionary to store the visual features vectors extracted from a specific CNN architecture

and the correspondent class labels. However, if the visual features were extracted from

theMobileNet architecture, the nomenclature for the dictionary file isMobileNet.mat.

3.2.3 Custom Feature Extractor

As stated above, the majority of ZSL works rely on the ResNet101 architecture for the fea

ture extraction process. However, we want to perceive and analyze the impact of using

lightweight networks, such asMobileNet andMobileNetV2, in the ZSL method’s perfor

mance compared to the reported results on the ResNet101 architecture.

Thereby, a set of CNNarchitectures, includingMobileNet,MobileNetV2,ResNet101,Xcep

tion, and EfficientNEtB7 were considered to provide a robust analysis of the performance

of the ZSL methods in different datasets using stateoftheart methods, including the
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most recent ones.

Although we provide the features for the five abovedescribed CNN architectures, there is

an option in our framework for extracting CNN features using one of the available archi

tectures so that can be evaluated in the desired ZSL method.

3.2.4 Optimizing Models using TensorRT

After developing a deep learning model, the deployment phase regards the integration

of the developed strategy in any platform or hardware device. However, we should be

concerned about the computational performance of the method when the evaluation is

performed in a lowpower device. Due to the inherent limitations in terms of processing

speed in the lowpower devices, some techniques should be used to optimize the model

towards high performance in the inference stage. One of these techniques is called Ten

sorRT optimization [11]. In a nutshell, TensorRT [11] is a tool designed byNvidia Corpora

tion for optimizing deep learning models in order to run quickly and efficiently on a GPU,

achieving high performance on the inference phase. Moreover, TensorRT works with the

most popular deep learning frameworks, such as Tensorflow, PyTorch, and MXNet. To

optimize the models, TensorRT performs several transformations and matrix optimiza

tions around the model graph. In the case of TensorFlow is adopted as the development

framework, TensorRT operates in the named TFTRTmode. For example, layers with un

used outputs are removed, multiple layers are fused into a single layer (when possible),

and normalization and conversion to optimized matrix math are performed according to

the specified precision mode: FP32, FP16, or INT8. The precisions lower than FP32 im

prove the performance of the inference phase.

As depicted in figure 3.1, the top image shows the typical workflow when TensorRT is

adopted to optimize a DNN model. The bottom image shows examples of realworld ap

plications when TensorRT is used, including Robots (using a Jetson Nano), Autonomous

Vehicles, and largescale applications.

3.2.5 Computational Performance

Since our primary purpose is to provide a concise benchmarking regarding ZSL method’s

accuracy and processing speed using visual features obtained through distinct architec

tures, the measure of elapsed time in both the feature extraction process and inference

phase is paramount.

Inference Time in Image Preprocessing Considering that the visual feature ex

traction process is the first phase in the ZSL pipeline, we are interested in analyzing the

time spent in this operation. Moreover, this task is performedusingCNNbased networks,

which means that the processing speed is directly related to the complexity of the model.

In general, the more complex the model the larger the time spent for computing the fea
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Figure 3.1: The typical workflow of the TensorRT integration (above) and applications in realworld
production environments (below) [11].

ture vector. Furthermore, we assume that the preprocessing phase includes all the steps

from when the image is acquired until it is transformed into the feature vector format.

The inference time regarding the image preprocessing is computed by the average time

that the CNNbased model takes to extract the visual feature for a given input image over

N iterations. In order to perceive the variation of the results, the standard deviation was

also measured in our essays.

InferenceTime inClass Prediction In a similarmanner, we evaluate the time spent

in the class prediction task considering distinct feature dimensions, ranging from 512 to

4,032. The inference time is calculated as the time spent to predict the class of a single

test sample. We averaged the results after N iterations and also computed the standard

deviation.

3.2.6 Statistics

For all evaluated ZSL algorithms, we provide the results on both ZSL and GZSL settings.

For the standard ZSL setting, we measure the Top1 accuracy, whereas in the generalized

setting we compute the Harmonic mean, following the proposed evaluation protocol in

[2].
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3.2.7 Usability

One of the goals of the proposed evaluation framework is to provide an easy way to evalu

ate the various ZSL algorithms. Consequently, we adapted each of the ZSLmethods so that

it is possible to execute them from a single line of code. It will only be necessary to invoke

the desired method, either with or without configuration parameters, since all methods

have a set of parameters assigned by default. Following, there is an example of how to run

SAE algorithm using the visual features extracted fromMobileNetV2 architecture:

from utils.engine import SAE

SAE(dataset="CUB", filename="MobileNetV2")

Output:

Evaluating on CUB...
Mode: V2S
[ZSL] Top-1 Accuracy (%): 34.73 %
[GZSL] Accuracy (%) - Seen: 43.77 %, Unseen: 9.21 %, Harmonic: 15.22 %

3.3 Proposed SemanticGuided Attention Model

Generative approaches have proven to be effective in addressing the zeroshot learning

problem [10, 39, 52]. Furthermore, it has been discovered that the learning of discrimi

native visual features, especially in finegrained scenarios, improves significantly the per

formance of zeroshot classification [35].

The work done by Zhu et al. [35] brings a new approach for learning discriminative visual

features guided by the semantic attributes annotated per image. They propose a multi

attention localization model for producing attention maps that capture the discrimina

tive parts of the image regarding the semantic attributes. Then, these crucial regions are

cropped and fed into a CNNbased network to extract the visual feature vector for each

discriminative part. However, cropping such parts requires an additional network for

learning the approximate region to perform the cropping operation. Inspired by the work

done by Liu et al. [57], we argue that the GradCAM [58] technique can be exploited

for producing classdiscriminative localization maps that assembles the regions where a

specific class attribute is present. Therefore, we can obtain an Attribute Attention Map

(AAM) through the maximum operation over each produced GradCAM map. Then, the

new semanticguided featuremap is obtainedwith both global categorylevel and the local

attributelevel discrimination feature map.

In order to combine the strengths of generative methods with the idea of producing more

classdiscriminative visual features using the GradCAM technique, we propose the fu

sion of a SemanticGuided Attention Model (SGAM) with a stateoftheart generative

approach. In addition, the visual features produced by the semanticguided attention

model will enable the generation ofmore accurate and classdiscriminative visual features
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for the unseen classes using the generative model. Consequently, the major challenges in

ZSL that were discussed in section 2.3 can be notably alleviated, namely domainshift,

bias, and hubness.

The proposed method is depicted in figure 3.2, and it consists essentially of three main

phases: (1) Attribute Prediction, (2) Attribute AttentionMapGeneration, and (3) Training

of a generative ZSL approach using semanticguided features. In the following sections,

we will discuss the details behind each phase.

Generative
Method

CNN
ModelInput Image

Attribute Attention Map
(AAM)

Semantic-Guided Attention Module

Semantic-Guided 
Feature Vector

GAP

...

Grad - CAMs

Attribute Prediction

Attribute Attention Map
Generation

Training phase

Figure 3.2: Proposed SemanticGuided Attention Model. The input image is fed into a CNN
architecture with a custom top layers model that acts as an attribute classifier. After predicting the N
attributes for the input image, the GradCAMmaps are generated regarding the N most influential
attributes. The Attribute Attention Map (AAM) is computed as the maximum operation over theN

GradCAMmaps. Finally, a new feature maps is calculated by weighting the original feature maps over the
produced AAM. The final semanticguided feature vector is the result of the average pooling operation over
the new feature maps. The generative method is trained using the semanticguided feature vectors. Hence,
the trained generator is used to synthesize the classdiscriminative samples for the unseen classes. Finally, a
softmax classifier is trained with the instances of both seen and unseen classes to infer the final predictions.

3.3.1 Attribute Prediction

The first stage of our proposedmethod consists of learning an attribute predictionmodel.

The idea is to obtain the confidence score for each attribute given an input image, so that

the final convolutional layers of the network can learn to identify the important parts of

the image related to the predicted attributes [58].

We adopted the VGGFace model as the backbone, however we reconstructed the model

top layers tomatch the size of the attribute predictionmodel layers. The first layer has the

size of the channels of the last convolutional layer, followed by a sigmoid activation layer

with N neurons, where N corresponds to the number of the attributes to be predicted.

As depicted in figure 3.2, the input image is fed into the CNNbased network, and the

result is a feature map with the size of C ×H ×W . The feature map is downsampled to

C×1×1 by averagepooling operation and reshaped intoC×1 to match the dimension of

the first layer of the attribute prediction model. The output vector is then normalized by
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a sigmoid activation layer, and it gives the probability confidence score of each attribute.

The model was optimized by the Adadelta algorithm with the default hyperparameters.

Furthermore, we performed dataaugmentation on both training and validation set. The

chosen loss function was the binary crossentropy loss, which is defined as:

Loss = − 1

N

N∑
i=1

yi · log ŷi + (1− yi) · log(1− ŷi) (3.1)

where N is the output size, ŷi is the predicted value, and yi is the corresponding target

value.

3.3.2 Gradientweighted Class Activation Mapping

Gradientweighted Class Activation Mapping (GradCAM) [58] is a technique that al

lows generating a classdiscriminative localization map using any CNNbased network.

Through the use of the gradient information of any target class, GradCAM produces a

kind of visual explanation regarding the decisions taken by the network in predicting a

specific target class. This technique is a generalization of the Class Activation Mapping

(CAM) [59] approach. Themain difference between GradCAM and CAM is that the CAM

requires a particular kind of CNN architecture. Specifically, an architecture that performs

global average pooling (GAP) over convolutional maps, followed by the prediction layer

(i.e., conv feature maps → GAP → softmax layer) [58]. In contrast, GradCAM can be

applied to a wide range of CNN networks without requiring modifications in the network

architecture.

The pipeline for producing a classdiscriminative localization map GradCAM for any im

age embraces three main steps, which are summarized below.

1. Calculate the gradient. The gradient is calculated for the score yc of the class c

with respect to feature maps Ak of the last convolutional layer. The gradient matrix

G for the class c is defined as follows:

Gk =
∂yc

∂Ak
(3.2)

with Gk ∈ Ru×v, Ak ∈ Ru×v, and k ∈ N.

2. Calculate the neuron importanceweightsαc
k. The gradients are then average

pooled in order to obtain the neuron importance weights αc
k that captures the “im

portance” of the feature map k regarding the class c.

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
(3.3)

42



and αc
k ∈ R1×1.

3. Calculate the finalGradCAMmap. The computedweightsαc
k are thenweighted

with each of the feature maps, followed by a (Rectified Linear Unit) ReLU operation

to obtain the final GradCAMmap:

GradCAM c = ReLU

(∑
k

αc
kA

k

)
(3.4)

and GradCAM c ∈ Ru×v.

The ReLU is applied to the linear combination due to the fact that final GradCAM map

only captures the features that “have a positive influence on the class of interest” [58].

Moreover, the final GradCAM map can be viewed as a heatmap that highlights the re

gions where the target class is present. Figure 3.3 shows the generated GradCAM map

for an image taken from CelebA [12] dataset.

Grad-CAM "Wavy Hair"Original Image

Figure 3.3: Original image (at left) representing a woman’s face. Modified image (at right) overlapped with
the generated GradCAM highlighting the face attribute “Wavy Hair”. The highlighted regions on the
heatmap evidence that the network “focused” on the “hair” region to predict the “Wavy Hair” class.

However, the process of generating GradCAMs for each of the attributes can be com

putationally expensive. A suitable way to obtain good results is to select only the topD

most influential attributes [57]. In this way, it is guaranteed that the final attribute at

tention map (AAM) contains the sensitive information of the topD most discriminative

attributes. Figure 3.4 shows the generated GradCAMs for the top10most influential at

tributes regarding the input image. It is interesting to observe that the final generated

AAM is an almost perfect outline of the face image due to the maximum operation per

formed along the produced GradCAMmaps.

3.3.3 Calculate Discriminative Features

The Attribute Attention Map (AAM) is used jointly with the feature maps of the last con

volutional layer to compute a new featuremap to obtain the final semanticguided feature

vector.
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Attribute Attention Map

Wearing_Lipstick
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Heavy_Makeup
0.92

Blond_Hair
0.88

Attractive
0.84
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No_Beard
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Wavy_Hair
0.71

Pointy_Nose
0.59

Arched_Eyebrows
0.58

Bangs
0.51

Figure 3.4: Pipeline for generating the Attribute Attention Map (AAM) for an example face
image of the CelebA [12] dataset. Each of the generated GradCAM focuses on the face region that is
visually closest to the attribute prediction. The final AAM captures all the GradCAM highlighted regions,

resulting in an almost perfect face outline.

Actually, the new feature maps F ′ = (F
⊗

AAM)
⊕

F are an improvement of the orig

inal feature maps F , since discriminative information is added by the AAM. Thus, the

semanticguided feature vector f is calculated by the global average pooling operation to

F ′ in order to match the dimension of the input layer of the generative method (C × 1).

More formally:

f = GAP
((

F
⊗

AAM
)⊕

F
)

(3.5)

where GAP stands for Global Average Pooling operation.

3.3.4 Generative Method

After computing the discriminative visual features, these can be used as input for a ZSL

model. As discussed before, generative methods are currently the stateoftheart in ZSL

due to their effectiveness particularly in the generalized scenario. For this reason, our

model is flexible to incorporate any generativemethod. However, a nongenerativemethod

can also be used. Despite the original purpose of theGANnetworks is relatedwith the pro

cess of generating images, in ZSL problems, the generative approaches aim to synthesize

visual feature vectors conditioned on the given attributes. Furthermore, Xian et al. [1]

proved that generating CNN features instead of images leads to a significant increase in

performance of both ZSL and GZSL settings since visual features retain more discrimina

tive information than a synthesized image produced by a GAN.

Finally, the synthesized feature vectors are then assigned to each unseen class to train a

softmax classifier jointly with the samples of seen classes to infer the final predictions.

44



Chapter 4

Results and Discussion

This chapter presents an extensive benchmark regarding the computational performance

of the ZSL approaches in lowpower devices. The experiments results under the ZSL and

GZSL settings on the testbed datasets using the proposed evaluation framework are dis

cussed along the section 4.2. Furthermore, the results of the proposed SemanticGuided

Attention strategy are also discussed in section 4.3.

4.1 Materials

4.1.1 Hardware

Experiments were performed in a Desktop Computer without GPU, and two small low

power devices, namely a Raspberry Pi 4 Model B and a Jetson Nano Developer Kit. The

hardware specifications are given in table 4.1.

Table 4.1: Hardware Specification.

Desktop Raspberry Pi 4B Jetson Nano Dev Kit

CPU
Intel® Core™ i710700U
CPU@ 2.90GHz × 16

Broadcom BCM2711
Quad core CortexA72 (ARM v8)

64bit SoC @ 1.5GHz
Quadcore ARM A57 @ 1.43 GHz

GPU Intel UHD Graphics 630  128core Maxwell
RAM 32GB 4GB 4 GB

Storage 1TB SSD 64GB microSD 64GB microSD
OS Pop_OS! 20.10 64bit Raspbian Ubuntu 18.04.5 LTS

4.1.2 Methods

A set of six stateoftheart ZSL methods, including ESZSL [6], SAE [8], DEM [39], f

CLSWGAN [1], TFVAEGAN [51], and CEGSZL [52] were selected to our essays, as pre

viously mentioned in section 3.2.1.

4.1.3 Datasets

As described in section 3.2.2, six benchmark datasets for ZSL were used (AWA1 [23],

AWA2 [2], CUB [40], APY [18], SUN [46], and LAD [56]). Among the selected datasets,

LAD [56] is the most recent dataset, comprising 78, 017 images and 359dimensional at

tribute annotations. Details of dataset statistics are present in Table 4.2.

Visual features are extracted for all datasets with ResNet101, MobileNet, MobileNetV2,

Xception, and EfficientNetB7 pretrained on ImageNet1K without finetuning. How

ever, it is not possible for AWA1 dataset due to the unavailability of the original images.
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Table 4.2: Statistics for datasets.

Dataset No. Classes No. Instances No. Attributes
CUB2002011 [40] 200 11, 788 312

SUN Attibutes [46] 717 14, 340 102

AWA1 [23] 50 30, 475 85

AWA2 [2] 50 37, 322 85

aPascalaYahoo [18] 32 15, 339 64

LAD [56] 230 78, 017 359

Moreover, we adopt the Proposed Split (PS) [2] to ensure that none of the test classes

appear in the dataset used to pretrain the DNN model. For semantic embeddings, we

adopt the classlevel attributes provided by [2] for AWA1 (85dim), AWA2 (85dim), SUN

(102dim), CUB (312dim), and APY (64dim). In case of the LAD dataset, we use the

359dimensional binary attribute annotations provided by the authors. We conduct all

experiments under the inductive setting, in which only labeled instances of seen classes

are considered at the training phase [2].

4.2 Results

4.2.1 Evaluation Protocols

In order to measure the performance of ZSL methods, we follow the unified evaluation

protocol [2] to assess the methods in the ZSL and GZSL settings. We adopt the Top1

accuracy to measure the average perclass top1 accuracy under the ZSL setting. In the

GZSL setting, the average perclass top1 accuracy is computed on training (ytr) and test

(yts) classes. Thus, harmonic mean is computed for the training and test accuracies as

H =
2∗accytr∗accyts
accytr+accyts

.

4.2.2 ZSL Methods: Visual Feature Extraction Cost

The first step in a typical computer vision approach is the description of an image using

compact representation. To this end, a common approach uses a Convolutional Neural

Network (CNN) to extract the visual information of the image. A feature vector is ex

tracted from one of the last convolutional layers, followed by a pooling operation. Among

the vast panoply of the CNNbased networks, a set of distinct CNNs, including lightweight

networks, was evaluated in terms of computational cost regarding the time consumed

in the feature extraction process using different hardware devices. The results are re

ported in table 4.3 and show that depending on the architecture chosen, the execution time

varies significantly. However, it is possible to perform feature extraction on Raspberry Pi

4B in less than 400 ms if either MobileNet or MobileNetV2 architecture is chosen. The

widely used architecture in the ZSL problem, the ResNet101, takes more 1, 200 ms than

lightweight networks, which is a considerable difference. As expected, the scenario re

verses when Jetson Nano is used. Due to its GPU addon, it is possible to perform feature

extraction in less than 40ms usingMobileNet andMobileNetV2 architectures. Moreover,

it is worth mentioning that the CNN models were optimized using TensorRT in the case
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of Jetson Nano in order to effectively run it on GPU, which significantly boosts the speed

on inference time, as mentioned in chapter 3. Nevertheless, even some TensorRT opti

mized models fail to run in Jetson Nano for a particular type of CNN architectures due to

memory issues.

Table 4.3: Elapsed time in the visual feature extraction process on Desktop, Raspberry Pi 4B
(RPI 4B) and Jetson Nano devices. Execution time is presented in milliseconds (ms) with the format

AVG ± STD. The feature dimension and the size occupied in the disk by the model is also reported.

Execution Time
Architecture Desktop RPI 4B Jetson Nano Features Dimension Size (MB)
MobileNet 25.57±3.17 310.52±9.80 29.58±3.14 1024 16

MobileNetV2 27.59±3.38 297.63±8.54 33.04±20.11 1280 14

InceptionV3 33.80±2.81 609.23±3.54 143.28±29.19 2048 92

ResNet50V2 38.07±3.13 887.86±5.27 160.87±1.78 2048 98

NASNetMobile 39.67±2.35 370.10±5.79 111.81±20.40 1056 23

ResNet50 40.25±3.15 968.05±17.31 164.69±3.28 2048 98

Xception 43.43±3.29 1081.18±11.07 155.75±23.21 2048 88

ResNet101V2 54.13±3.09 1655.37±15.72  2048 171

DenseNet201 54.79±2.86 1404.16±39.72  1920 80

ResNet101 57.46±2.99 1639.46±76.71  2048 171

VGG16 59.73±4.10 2046.51±15.03 221.75±16.96 512 528

VGG19 69.15±2.42 2557.60±6.12  512 549

EfficientNetB7 86.54±0.85 2436.62±106.28  2560 256

NASNetLarge 95.67±2.98 2115.31±16.84  4032 343

In conclusion, the lightweight architectures have superior performance using lowpower

devices to perform the feature extraction. However, it is essential to assess how this par

ticular type of network impacts ZSL accuracy in the testbed datasets.

4.2.3 ZSL Benchmarking

As previously mentioned, most ZSL works adopt the ResNet101 as the standard archi

tecture for visual feature extraction. Despite that, we report the performance of ZSL ap

proaches when trained with visual features obtained from different CNN architectures,

including lightweight architectures, to perceive how the accuracy balances when adopt

ing a different CNN for the feature extraction process.

Accordingly, five different CNN architectures were selected to conduct the experiments,

namely MobileNet, MobileNetV2, Xception, ResNet101, and EfficientNetB7. The Mo

bileNet and MobileNetV2 are two lightweight architectures; the Xception is the most

lightweight architecture with a feature dimension of 2,048; the ResNet101 is the most

used network in the ZSL benchmarking, and EfficientNetB7 is a recent proposed CNN

architecture with superior complexity.

The ZSL methods were retrained using the features extracted from the abovereferred

networks, when possible. The hyperparameters of each approach were adjusted in the

trainingphase using the validationdata. Finally, eachmethodwas evaluated in six datasets

commonly used in ZSL (AWA1, AWA2, CUB, APY, SUN, and LAD) under the standard and

generalized settings.

AWA1 The results on AWA1 are depicted in Figure 4.1. We carried out the experiments

using only the ResNet101 features provided by [2], due to the unavailability of original
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images of AWA1, asmentioned in section 4.1.3. The results show the superiority of the TF

VAEGANmodel, which achieves a top1 accuracy of 71.56% in recognizing unseen classes.

In the GZSL setting, the best Harmonic mean is also attained by the TFVAEGAN model

with the value of 65.72%.
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Figure 4.1: ZSL and GZSL performance (%) on AWA1 dataset.

AWA2 Conversely, the AWA2 dataset provides all the original images used to construct

the dataset, allowing the extraction of visual features.

According to the results shown in figure 4.2a, in standard setting, it is highlighted the

performance of the TFVAEGAN model, which reaches the best performance (73.55%)

when the features extracted from EfficientNetB7 architecture are considered. However,

the features from the EfficientNetB7 perform worse, on average (56.83% vs 60.97% of the

ResNet101).

Regarding the generalized setting, figure 4.2b shows that TFVAEGAN method achieves

the best performance (65.66%) by a large margin compared to the other methods. The

higher value is also achieved when the EfficientNetB7 features are considered.
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(a) ZSL performance (%) by classification model
and CNN architecture on AWA2 dataset.

ESZSL SAE DEM f-CLSWGAN TF-VAEGAN CE-GZSL
Classification Model

0

20

40

60

80

100

Ha
rm

on
ic

 M
ea

n 
(%

)

GZSL on AWA2
ResNet101
MobileNet
MobileNetV2
Xception
EfficientNetB7

(b) GZSL performance (%) by classification
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Figure 4.2: Accuracy of ZSL approaches on the AWA2 dataset when using different CNN architectures for
visual feature extraction.

CUB Figure 4.3a presents the ZSL results for the CUB dataset. Once again, the TF

VAEGAN method attains the best results (66.92% considering the ResNet101 features,

61.87%withMobileNetV2 features, and 68.39% using the EfficientNetB7 features). There
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is a significant discrepancy between our results and the reported results in [52] for the

CUBdataset. Nevertheless, this gap can be explained by the fact that authors in [52] adopt

1,024dimensional class embeddings generated from textual descriptions as the seman

tic descriptors for the CUB dataset instead of working with the original 312dimensional

semantic attributes provided by [2].

Concerning the GZSL results on the CUB dataset, the two most recent generative models

(TFVAEGAN and CEGZSL) take higher performance. TFVAEGAN model achieves a

Harmonic mean of 61.04%. The secondbest model, the CEGZSL, attains a Harmonic

mean of 52.43%. These two results are obtained through the use of ResNet101 features.
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(a) ZSL performance (%) by classification model
and CNN architecture on CUB dataset.
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Figure 4.3: Accuracy of ZSL approaches on the CUB dataset when using different CNN architectures for
visual feature extraction.

SUN Figure 4.4a shows the results on the SUN dataset under the standard evaluation

setting. The ResNet101 features have a better performance in all classification models,

with a Top1 accuracy higher than 50% in all cases. The TFVAEGAN achieves better re

sults (61.29%, on average), followed by the DEMmodel (57.35%, on average).

About the GZSL results on the SUN dataset, figure 4.4b shows the superiority of the gen

erative models, as expected. Once again, the ResNet101 features reach the best results in

all ZSL methods, except for the fCLSWGAN model, in which the MobileNetV2 features

achieve high performance.

APY According to the authors of the LAD dataset, the APY dataset can be considered

unsuitable for validating ZSL methods because it only contains 32 different categories of

objects. However, we evaluate the methods on the APY dataset to provide a more con

cise benchmark. The results presented in figure 4.5a evidence that only the DEMmethod

achieves a top1 accuracy higher than 40%. Even generative methods perform worse be

cause it is hard to synthesize discriminative features for the unseen classes when there are

few training classes, and consequently training samples, to finetune the classifiers.

However, in the generalization setting, CEGZSLmodel achieves anharmonicmean closer

to 40%, surpassing the rest of the models by a large margin.
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(a) ZSL performance (%) by classification model
and CNN architecture on SUN dataset.
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Figure 4.4: Accuracy of ZSL approaches on the SUN dataset when using different CNN architectures for
visual feature extraction.
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(b) GZSL performance (%) by classification
model and CNN architecture on APY dataset.

Figure 4.5: Accuracy of ZSL approaches on the APY dataset when using different CNN architectures for
visual feature extraction.

Apart from the graphical view of the results, we provide the numerical results for all the

evaluated methods in the table 4.4.

LAD In contrast to the remaining datasets, the performance value of the LAD dataset

corresponds to the average accuracy on all superclasses (Aminals, Fruits, Vehicles, Elec

tronics, and Hairstyles) on the given five splits. Since the data provided by the authors

of the LAD dataset does not include the appropriate data splits for evaluating the dataset

under the GZSL setting, we have created the required data splits to this end. The splits are

available at https://github.com/CristianoPatricio/zsl-methods, following the same
data structure of the splits provided by [2].

In this dataset, we only conduct experiments using visual features extracted from Mo

bileNetV2 architecture, due to its reduced computational cost, and for surpassing theMo

bileNet regarding the ZSL accuracy.

The results in table 4.5 evidence that for all ZSL methods, both the “Animals” and “Vehi

cles” classes attain the best accuracy in the standard setting. On the other hand, the ZSL

algorithms have more difficulty in recognizing fruits, electronics or hairstyles, for being

more finegrained classes.
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Table 4.4: ZSL and GZSL accuracy for all ZSL methods evaluated on the AWA2, CUB, SUN and APY
datasets using different CNN architectures for the visual feature extraction.

AWA2 CUB SUN APY
Methods Architecture ZSL GZSL ZSL GZSL ZSL GZSL ZSL GZSL

MCA U S H MCA U S H MCA U S H MCA U S H
ResNet101 55.11 4.66 87.07 8.86 53.02 14.29 63.73 23.35 52.99 12.15 28.22 16.99 33.62 1.07 72.24 2.11

MobileNet 50.91 8.04 79.32 14.60 45.45 14.22 52.13 22.34 49.58 10.49 22.64 14.33 36.00 1.65 66.23 3.21

ESZSL [6] MobileNetV2 55.89 4.56 83.94 8.65 47.02 9.96 55.71 16.89 50.83 10.76 23.37 14.74 33.41 1.81 68.91 3.52

Xception 54.68 3.44 86.67 6.61 47.83 9.55 56.23 16.33 49.58 9.44 25.93 13.85 35.39 2.32 69.75 4.48

EfficientNetB7 55.16 3.42 87.41 6.57 55.35 13.45 63.37 22.19 51.60 11.25 26.98 15.88 29.92 1.50 69.62 2.93

ResNet101 51.71 4.34 85.39 8.26 40.55 14.10 52.55 22.24 50.35 15.97 23.10 18.89 17.41 0.6 18.02 1.16

MobileNet 47.49 3.40 77.62 6.51 28.47 15.87 55.74 24.70 29.72 5.69 8.76 6.90 10.86 0.69 8.32 1.27

SAE [8] MobileNetV2 52.89 4.66 87.07 8.86 34.73 9.21 43.77 15.22 39.44 9.93 15.89 12.22 12.3 0.71 5.25 1.25

Xception 51.59 1.25 87.64 2.47 33.06 8.84 44.32 14.74 41.11 9.65 16.32 12.13 9.75 0.71 6.68 1.28

EfficientNetB7 51.94 3.59 85.70 6.89 43.07 10.59 57.61 17.90 48.89 12.71 22.05 16.12 26.93 0.93 53.70 1.83

ResNet101 63.29 29.21 84.60 43.42 47.02 21.56 46.66 29.49 62.57 20.0 36.94 25.95 41.98 11.54 71.28 19.86

MobileNet 60.66 26.59 81.87 40.14 46.48 20.21 49.61 28.72 59.58 18.61 36.78 24.72 36.91 10.59 67.87 18.31

DEM [39] MobileNetV2 59.68 27.25 84.37 41.19 47.43 20.30 44.59 27.89 61.32 18.26 32.91 23.49 32.13 10.27 66.71 17.80

Xception 57.73 21.98 86.09 35.02 41.6 15.78 31.66 21.06 55.9 13.89 27.52 18.46 29.86 9.61 59.53 16.54

EfficientNetB7 59.95 19.14 87.04 31.38 37.1 11.49 26.41 16.02 47.36 12.15 20.58 15.28 25.54 6.37 44.10 11.14

ResNet101 61.87 9.69 90.89 17.52 49.92 20.93 62.45 31.35 56.32 28.47 32.71 30.46 28.1 2.64 76.92 5.11

MobileNet 61.87 10.07 89.46 18.10 45.89 27.13 53.39 35.98 52.92 33.13 25.85 29.04 29.81 2.71 76.14 5.24

fCLSWGAN [1] MobileNetV2 62.73 11.94 89.73 21.07 51.75 38.46 49.22 43.18 55.83 36.81 26.59 30.87 26.43 2.45 78.61 4.76

Xception 49.78 7.11 89.96 13.17 47.13 27.78 53.39 36.54 53.54 29.03 30.89 29.93 24.29 2.99 64.41 5.71

EfficientNetB7 48.56 0.50 90.12 1.0 38.73 5.96 55.39 10.76 46.53 25.69 23.26 24.41 22.41 0.5 75.82 0.98

ResNet101 69.34 57.60 74.04 64.79 66.92 57.91 64.52 61.04 63.96 46.60 38.10 41.92 40.1 11.15 76.54 19.46

MobileNet 65.93 52.61 70.06 60.09 60.02 48.14 56.76 52.10 61.88 45.63 33.80 38.83 38.83 10.24 68.57 17.82

TFVAEGAN [51] MobileNetV2 66.32 53.33 74.65 62.22 61.87 50.55 56.43 53.33 62.5 46.88 34.26 39.59 36.75 10.99 70.28 19.0

Xception 67.64 53.90 78.76 64.00 58.37 44.52 53.24 48.49 60.21 39.51 30.35 34.33 37.11 11.81 72.20 20.21

EfficientNetB7 73.55 54.92 81.62 65.66 68.39 51.43 65.77 57.72 57.92 36.04 32.75 34.32 39.44 12.05 78.25 20.88

ResNet101 64.5 23.03 90.46 36.71 60.72 56.75 48.72 52.43 60.14 45.14 35.85 39.96 39.3 31.07 50.69 38.53

MobileNet 62.66 20.39 86.98 33.04 52.71 39.89 49.17 44.04 55.0 40.14 32.83 36.12 38.15 29.40 53.67 37.99

CEGZSL [52] MobileNetV2 64.73 20.18 88.56 32.87 56.24 48.37 45.38 46.83 57.22 44.10 32.83 37.64 36.23 30.82 44.72 36.49

Xception 61.8 16.71 89.80 28.18 52.34 39.22 53.14 45.13 56.39 38.33 30.31 33.85 35.82 11.81 72.20 20.21

EfficientNetB7 55.96 19.76 90.35 32.43 57.39 50.24 51.14 50.68 53.54 37.15 31.36 34.01 36.85 25.87 49.19 33.91

In general, the best accuracy on both evaluation settings is obtained by the TFVAEGAN

model. However, disregarding the performance of SAE, the remaining accuracy results

are well balanced.

Concerning the generalized setting, the generative methods, except fCLSWGAN, outper

forms the remaining ZSLmethods significantly, achieving a harmonicmean upper to 40%.

Table 4.5: ZSL and GZSL results on LAD dataset using MobileNetV2 features.

Animals Fruits Vehicles Electronics Hairstyles Average
Methods ZSL GZSL ZSL GZSL ZSL GZSL ZSL GZSL ZSL GZSL ZSL GZSL

MCA U S MCA U S MCA U S MCA U S MCA U S MCA U S H
ESZSL [6] 65.72 1.33 75.28 40.03 4.31 65.12 65.90 5.22 74.25 37.80 1.85 73.18 41.19 7.02 20.76 50.13 3.95 61.72 7.42

SAE [8] 45.09 4.26 76.85 27.67 6.15 49.06 55.73 5.49 70.78 34.76 5.19 68.66 38.04 9.04 13.51 40.26 6.03 55.77 10.88

DEM [39] 62.10 17.14 74.21 42.12 8.12 53.08 65.50 20.68 65.13 40.53 8.06 68.76 41.71 6.26 15.21 50.39 12.05 55.28 19.79

fCLSWGAN [1] 58.12 10.19 84.22 35.49 2.15 73.28 61.77 5.77 83.56 33.61 2.94 80.33 38.48 0.5 31.65 45.49 4.31 70.61 8.12

TFVAEGAN [51] 64.53 55.90 60.57 48.07 33.89 57.49 67.06 53.21 63.80 40.62 26.93 67.05 40.93 30.68 12.23 52.24 40.12 52.23 45.38

CEGZSL [52] 64.27 57.50 56.3 37.79 27.25 52.57 60.70 45.22 59.2 33.75 25.38 60.31 38.90 30.79 10.47 47.08 37.22 47.77 41.84

Finally, and according to the authors of the LAD dataset, the evaluation of the perfor

mance of the ZSL algorithms under different data splits, each of them containing different

seen/unseen classes, is more reliable due to the distinctive correlations of the classes.

4.2.4 ZSL Methods: Inference Time

This section intends to analyze the time consumedbydifferent ZSLmethods for classifying

a single test image without including the elapsed time in the feature extraction process.

The experiments were conducted in different hardware devices using six ZSL methods,

and considering visual features of variable dimensions. The results are reported in table

4.6, and we can deduce that, in general, ZSL approaches are extremely fast when the fea

ture extraction phase is omitted. It can be observed that the elapsed time of class predic

tion of the attributebasedmethods (DAP and IAP) and also the projectionbasedmethods

(SAE, ESZSL) vary slightly. However, in DEM, the consumed time for predicting the class
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label appears to be increasing proportionally with the dimension of the visual feature. Ac

tually, in DEM, the visual features space is adopted as the embedding space, where the

class prediction is performed, and in general, the visual features space has a larger di

mension than the semantic space, indicating that the consumed time in class prediction

task increases with the visual feature dimension.

On the other hand, a typical approach for class prediction in generative approaches (f

CLSWGAN) is the use of a softmax classifier, which can be extremely fast when optimized

to run on GPU. The results show that Jetson Nano has a very competitive performance

compared to the results on Desktop since the evaluated models were optimized using

TensorRT. As expected, Jetson Nano excels the performance of the Raspberry Pi 4B, in

general.

Table 4.6: Elapsed time in class prediction considering several visual features dimensions. In
general, ZSL approaches are extremely fast when the feature extraction phase is omitted. As expected,
Jetson Nano has a greater performance when compared to Raspberry PI 4B. The results are reported in

milliseconds with the format: AVG ± STD.

Visual Features Dimension
512 1024 2048 4032

Method Desktop RPI 4B Jetson Nano Desktop RPI 4B Jetson Nano Desktop RPI 4B Jetson Nano Desktop RPI 4B Jetson Nano
DAP 0.74±0.00 18.72±0.45 5.11±0.05 0.43±0.00 19.05±0.31 5.24±0.15 0.45±0.01 18.82±0.32 5.20±0.10 0.44±0.02 18.61±0.35 5.28±0.11

IAP 0.74±0.00 18.61±0.20 5.11±0.03 0.44±0.00 18.85±0.07 5.28±0.13 0.45±0.02 18.70±0.08 5.24±0.09 0.43±0.00 18.49±0.06 5.19±0.11

SAE 0.12±0.00 1.11±0.13 1.21±0.05 0.12±0.00 1.35±0.09 1.57±0.02 0.13±0.00 1.66±0.07 1.88±0.05 0.13±0.00 2.29±0.07 2.42±0.04

ESZSL 0.03±0.00 0.81±0.09 0.49±0.05 0.03±0.00 1.08±0.10 0.75±0.06 0.04±0.00 1.40±0.15 0.97±0.07 0.06±0.00 1.89±0.05 1.37±0.02

DEM 0.83±0.05 4.15±0.03 9.43±0.49 1.54±0.12 7.35±0.12 13.33±0.32 3.11±0.14 26.74±0.80 24.28±1.47 6.25±0.23 44.69±1.28 40.29±2.94

fCLSWGAN 0.71±0.06 3.95±0.07 2.02±0.12 0.83±0.09 4.40±0.09 1.98±0.09 0.96±0.10 5.72±0.12 1.79±0.05 1.26±0.11 7.03±0.14 2.55±0.13

4.2.5 ZSL Methods: Computational Analysis

Theprevious sections analyzed the performance of theZSLapproaches on various datasets

and the consumed time in the inference phase of ZSL approaches. As stated in section

4.2.2, the first phase involves the processing of the image to get its descriptions in a com

pact format, typically performed using CNNs, and the last phase corresponds to the class

prediction task.

However, the analysis of the impact of using a lightweight architecture in ZSL accuracy

was not discussed yet. Consequently, this section intends to answer the following two

questions: (1) How much the accuracy varies when using lightweight architectures in

stead of the de facto standard ResNet101 architecture?, and (2)What is the throughput

of the ZSL method considering the elapsed time in both the preprocessing phase and the

class prediction phase?.

4.2.5.1 Performance of ZSL methods in different CNN architectures

Regarding the first question, we show in figure 4.6 and figure 4.7 the accuracy of different

ZSL approaches when using different CNNs.

As established in section 4.2.3, ResNet101 is the architecture with the best performance

in all assessed datasets. Based on the observation of graph plots in figure 4.6, we can

conclude that in the AWA2 dataset, the loss of accuracy is 0.6% when adopting the fastest
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CNN architecture on Raspberry Pi 4B:MobileNetV2. This value increases to 2.72% ifMo

bileNet is adopted. Regarding the generalized setting, the performance drops 0.79% in

the case ofMobileNetV2 is used and 1.8% ifMobileNet architecture is adopted.

For CUB dataset, the results indicate that the loss is 3.19% ifMobileNetV2 is used. This

loss value doubles in case ofMobileNet. In the case of the generalized setting,MobileNet

surpasses theMobileNetV2 performance, and the loss is 2% and 2.76%, respectively.

Regarding the SUN dataset, the accuracy drops 3.20% and 6.27% in MobileNetV2 and

MobileNet, respectively. For the GZSL setting, the loss value is 2.60% in the case ofMo

bileNetV2 is used, and 4.04% ifMobileNet is adopted.

Finally, for the APY dataset, the loss of accuracy is 3.88% in MobileNetV2 and 1.66% if

MobileNet is adopted. However, the performance drop is less than 0.6% for MobileNet

andMobileNetV2 in the generalized setting.

Similarly, the results obtained through Jetson Nano are depicted in the figure 4.7. Since

the fastest architecture is theMobileNet, in the case of Jetson Nano, the accuracy drop is

slightly higher than in MobileNetV2, as stated above. Although the consumed time dis

crepancy between the two lightweight architectures is 5.46 ms, this does not represent

a significant performance drop in general. Therefore, MobileNetV2 architecture can be

considered for a higher accuracy value.

In general,MobileNetV2 architecture appears to be a good choice as a successor ofResNet101

since the accuracy drop is less than 4% in all evaluated datasets. This means that using

lightweight architectures does not represent a significant performance drop in overall. On

the other hand, the accuracy does not necessarily improve with the rising complexity of

the model. For example, the results obtained from Xception and EfficientNetB7 architec

tures are slightly worse when compared to theMobileNetV2 results in most datasets.

4.2.5.2 Accuracy/Speed tradeoff in ZSL methods

In order to provide an answer for the second question, an analysis regarding the accura

cy/speed tradeoff in ZSL methods was conducted. To this end, we measure the Frame

Rate per Second as being FPS = 1000/(FEtime + CPtime), where FEtime denotes the

elapsed time in feature extracting task, and CPtime stands for the consumed time in the

class prediction task. This metric allows us to perceive how many class predictions per

second are made by the ZSL method.

The results for the AWA2, CUB, SUN, and APY datasets in the six stateoftheart ZSL

methods performed on Raspberry Pi 4B are depicted in figure 4.9. We can observe that

the points in the four plotted graphs can be clustered into two distinct groups, where one

of the groups contains the lightweight architectures and the other group is composed of

the remaining architectures. As expected, the lightweight architectures have a better per

formance due to their reduced inference time. Even though, the consumed time by these

53



MNetV2
(297.63)

MNet
(310.52)

Xception
(1081.18)

Res101
(1639.46)

ENetB7
(2436.62)

Execution Time (ms)

40

45

50

55

60

65

70

75

80
To
p-
1 
Ac
cu
ra
cy
 (
%)

AWA2 (ZSL)
ESZSL
SAE
DEM

f-CLSWGAN
TF-VAEGAN
CE-GZSL

MNetV2
(297.63)

MNet
(310.52)

Xception
(1081.18)

Res101
(1639.46)

ENetB7
(2436.62)

Execution Time (ms)

0

20

40

60

80

100

Ha
rm
on
ic
 M
ea
n 
(%
)

AWA2 (GZSL)
ESZSL
SAE
DEM

f-CLSWGAN
TF-VAEGAN
CE-GZSL

MNetV2
(297.63)

MNet
(310.52)

Xception
(1081.18)

Res101
(1639.46)

ENetB7
(2436.62)

Execution Time (ms)

20

30

40

50

60

70

80

To
p-
1 
Ac
cu
ra
cy
 (
%)

CUB (ZSL)
ESZSL
SAE
DEM

f-CLSWGAN
TF-VAEGAN
CE-GZSL

MNetV2
(297.63)

MNet
(310.52)

Xception
(1081.18)

Res101
(1639.46)

ENetB7
(2436.62)

Execution Time (ms)

0

10

20

30

40

50

60

70

80

Ha
rm
on
ic
 M
ea
n 
(%
)

CUB (GZSL)
ESZSL
SAE
DEM

f-CLSWGAN
TF-VAEGAN
CE-GZSL

MNetV2
(297.63)

MNet
(310.52)

Xception
(1081.18)

Res101
(1639.46)

ENetB7
(2436.62)

Execution Time (ms)

20

30

40

50

60

70

80

To
p-
1 
Ac
cu
ra
cy
 (
%)

SUN (ZSL)
ESZSL
SAE
DEM

f-CLSWGAN
TF-VAEGAN
CE-GZSL

MNetV2
(297.63)

MNet
(310.52)

Xception
(1081.18)

Res101
(1639.46)

ENetB7
(2436.62)

Execution Time (ms)

0

10

20

30

40

50

60

Ha
rm
on
ic
 M
ea
n 
(%
)

SUN (GZSL)
ESZSL
SAE
DEM

f-CLSWGAN
TF-VAEGAN
CE-GZSL

MNetV2
(297.63)

MNet
(310.52)

Xception
(1081.18)

Res101
(1639.46)

ENetB7
(2436.62)

Execution Time (ms)

0

10

20

30

40

50

60

To
p-
1 
Ac
cu
ra
cy
 (
%)

APY (ZSL)
ESZSL
SAE
DEM

f-CLSWGAN
TF-VAEGAN
CE-GZSL

MNetV2
(297.63)

MNet
(310.52)

Xception
(1081.18)

Res101
(1639.46)

ENetB7
(2436.62)

Execution Time (ms)

0

10

20

30

40

50

60

Ha
rm
on
ic
 M
ea
n 
(%
)

APY (GZSL)
ESZSL
SAE
DEM

f-CLSWGAN
TF-VAEGAN
CE-GZSL

Figure 4.6: Performance of ZSL methods with respect to the used CNN architecture on
Raspberry PI 4B. Six stateoftheart ZSL approaches were trained using visual features obtained from
CNN architectures with significantly variable complexity. The top1 accuracy of the evaluated approaches in
four ZSL datasets evidences that lightweight architectures do not significantly reduce the performance of

ZSL approaches.

networks in feature extraction process when performed on Raspberry Pi 4B is close to 300

ms. Considering the best scenario, disregarding the class prediction time, FPS achieves a

maximum value of 3.36 FPS, since the FEtime forMobileNetV2 is 297.63ms.

Similarly, the results for the ZSL methods performed on Jetson Nano are shown in figure
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Figure 4.7: Performance of ZSL methods with respect to the used CNN architecture on Jetson
Nano. Although the MobileNet architecture is fastest than the MobileNetV2, the later can be considered

instead of MobileNet architecture for a higher accuracy value.

4.9. Because Jetson Nano is almost ten times faster than Raspberry Pi 4B in the visual

features extracting phase, the computed FPS is also ten times superior for the ZSL meth

ods, as we can observe from the analysis of the figure 4.9. This suggests that Jetson Nano

has greater performance than Raspberry Pi 4B, as expected.
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Figure 4.8: Accuracy/Speed tradeoff of ZSL methods with respect to the CNN architecture
used when executed on Raspberry PI 4B. The low FPS values are due to the considerable elapsed time

by Raspberry Pi 4B in the visual feature extraction process.
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Figure 4.9: Accuracy/Speed tradeoff of ZSL methods with respect to the CNN architecture
used when executed on Jetson Nano. The results evidence that FPS is ten times superior compared to

the results on Raspberry Pi 4B.
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4.3 Results of the Proposed Strategy

The developed strategy was tested on the CelebA [12] dataset. CelebA is a largescale face

attributes dataset with 202, 599 face images divided by 10, 177 identities. Each image is

annotated with 40 binary attributes. Furthermore, we decided to split the dataset into

two different splits, each one containing a different number of classes. Table 4.7 provides

the detailed statistics for the CelebA dataset.

Table 4.7: Statistics for CelebA [12] dataset in terms of Number of Attributes (Att), Number of Classes in Ytr

and Yts, and Number of Images at Training and Test Time.

Number of Images At Training Time At Test Time
Dataset Att Y Ytr Yts Total Ytr Ytr Yts

CelebA(All) 40 10177 8142 + 814 1221 202599 143597 34912 24090

CelebA(500) 40 500 300 + 100 100 15038 11232 800 3006

For the attribute prediction classifier model, we adopt the VGGFace architecture as the

backbone and reconstruct the top layers, as specified in section 3.3.1.

The proposedmethod was trained as described along the section 3.3, in order to allow the

generation of semanticguided visual feature vectors.

To evaluate the proposed approach, four ZSL methods were selected, including SAE [8],

ESZSL [6], DEM [39], and the stateoftheart TFVAEGAN generative method. Based

on the results presented in table 4.8, the use of the proposed Semantic Guided Attention

model (SGAM) increases the classification accuracy by 13.7%, on average, if we consider

the most populated 500 classes. On the other hand, the classification accuracy is boosted

by 6.45%, on average, if the total of classes is considered. Due to the richness and visual

interpretability of attributes, the attention model is very suitable for this dataset.

Table 4.8: ZeroShot Learning Results on CelebA [12]. 500 = Most populated 500 classes. All = All
CelebA classes (10177). The results obtained without the proposed SGAM are reported in the column
marked with “w/o. SGAM”, whereas the results using the SGAM are along the column marked with “w.
SGAM”. SGAM refers to Semantic Guided Attention Model. The results report top1 accuracy in %.

CelebA(500) CelebA(All)
Method w/o. SGAM w. SGAM w/o. SGAM w. SGAM
SAE 7.2 19.1 1.3 3.8

ESZSL 15.7 32.5 4.1 10.2

DEM 13.1 25.6 2.0 8.5

TFVAEGAN 7.9 21.5 6.8 17.5

However, when we apply the same strategy on traditional ZSL datasets, the results pre

sented in table 4.9 evidence that there is no improvement over the standard features. In

case of SAE, the improvement is 0.04%, compared to the result without using discrim

inative features. On the other hand, in ESZSL the results are worse, with no space for

improvement, likewise for DEM and TFVAEGAN methods. We argue that the proposed

method is effective when the annotated attributes are visually interpretative enough for

learning a robust attribute predictionmodel, which inherently allows generatingmore ac
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curate classdiscriminative GradCAMmaps so that the obtained attribute attention map

captures more important regions that enhance the quality of the final semanticguided

feature vector.

Table 4.9: ZeroShot Learning Results on AWA2 using the proposed method. The results
obtained without the proposed SGAM are reported in the column marked with “w/o. SGAM”, whereas the
results using the SGAM are along the column marked with “w. SGAM”. SGAM refers to Semantic Guided

Attention Model. The results report top1 accuracy in %.

AWA2
Method w/o. SGAM w. SGAM
SAE 52.89 52.93

ESZSL 55.89 51.94

DEM 59.68 48.07

TFVAEGAN 66.32 66.56

To support this assumption, we provide in figure 4.10 the generated GradCAM maps

for a horse image. The visual inspection of the figure show that the attribute predictions

are quite random and meaningless regarding the horse class. As a result, the obtained

AAM has a lot of noise information instead of having discriminative information of the

regions related to the attributes. Therefore, the resulting feature vector is not discrimina

tive enough to enhance the method’s performance in making accurate predictions.

Attribute Attention Map

insects
0.79

montains
0.72

smelly
0.66

tree
0.65

big
0.64

Figure 4.10: Attribute Attention Map for a horse image. The predicted attributes are not visually
interpretable enough for generating a classdiscriminative GradCAM. Instead of the generated AAM

focusing on the horse class important regions, it highlights other useless parts.

4.4 Discussion

An extensive benchmark regarding the computational performance of the ZSL methods

in lowpower devices using lightweight architectures was carried out in this chapter. The

obtained results showed that using a lightweight architecture, such asMobileNetV2, does

not significantly reduce overall performance compared to the results on the standard

ResNet101 architecture. As expected, the generative approaches significantly outperform
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the other strategies, in particular TFVAEGAN method. Furthermore, the obtained re

sults evidence that Jetson Nano allows running the ZSL methods in realtime (about 30

FPS), but only when the visual feature extraction models are optimized to run on GPU.

Finally, the results in the proposed approach reveal that it can be effective when applied to

the datasets with visually interpretable attribute annotations, such as the CelebA dataset.
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Chapter 5

Conclusion

Themain goal of this work was the development of a ZSLbased approachmethod capable

of recognizing unknown objects using only its textual description. In addition, the devel

oped strategy should be suitable to be embedded into a moving robot using lowpower

devices.

For this, in chapter 2 an extensive review on ZSL stateoftheart was carried out in order

to identify the statusquo of the ZSL paradigm, as well as the major challenges and the

most promising strategies to address the ZSL problem. Also, several ZSL approaches were

implemented and evaluated using the unified evaluation protocol that comprehends the

assessment of the methods under two different settings: standard ZSL and GZSL.

Althoughmost ZSL works adopt the ResNet101 architecture as feature extractor network,

this type of network is unsuitable for running on lowpower devices. Hence, we pro

posed an evaluation framework for building an extensive benchmark on the impact of

using lightweight CNN architectures in the ZSL performance in terms of accuracy/speed.

Then, several types of CNN architectures were selected, including lightweight architec

tures, for evaluating the performance on four benchmark datasets using six stateofthe

art approaches. The used testbed devices included a Raspberry Pi 4B and a Jetson Nano.

The results presented in chapter 4 allowed us to conclude that when a lightweight archi

tecture is used, the impact on the ZSL accuracy is not significant. Moreover, Jetson Nano

outperforms the Raspberry Pi 4B in terms of processing speed, indicating that it can be

considered a suitable device to perform the ZSL task. However, to take advantage of the

GPU capabilities, it is crucial optimizing the models to effectively run on GPU, as stated

in section 3.2.

Finally, beyond the robust computational performance analysis described above, we de

veloped a ZSLbased approach to combine two promising concepts under the scope of

ZSL research. The idea was to fuse a SemanticGuided Attention Model with a generative

model to take the best of both worlds. The results evidenced that our proposed method

is valid when applied to the datasets with visual interpretable attribute annotations. As a

result, the model does not improve the performance when applied to the traditional ZSL

datasets, such as AWA2.

To conclude, our main objectives were fulfilled successfully, and we are convinced that

our opensource evaluation framework will be helpful in the ZSL research area.

5.1 Contributions and Achievements

The major contribution of our work is an extensive benchmark across four widely known

ZSL datasets regarding the accuracy and processing speed of stateoftheart ZSL meth
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ods using visual features obtained from lightweight architectures. Furthermore, we de

veloped an opensource evaluation framework for analyzing the accuracy/speed tradeoff

in the problem of ZSL (https://github.com/CristianoPatricio/zsl-methods). More
over, we provided a comparative analysis of the processing speed of ZSL algorithms using

lightweight architectures when run in different lowpower devices.

The results on the proposed SGAMmethod demonstrated that by learning discriminative

visual features, it is possible to improve the classification accuracy of the ZSL methods,

however depending on the attribute properties of the used dataset.

Additionally, the work described in this dissertation has allowed the writing of a scientific

paper describing a concise benchmarking on the computational performance of ZSL in

lowpower devices, allowing to perceive how the accuracy of stateoftheart approaches

is impacted when lightweight architectures are adopted.

5.2 FutureWork

The work described in this dissertation can be complemented with the analysis of other

lightweight architectures and also a broader range of ZSL methods to find the maximum

balance between accuracy and inference speed. On the other hand, we believe that the

proposed ZSL method can be improved in order to be employed in datasets that lack vi

sually interpretable attribute annotations.
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