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Resumo

No presente trabalho são apresentados dois métodos distintos de identificação de modelos de
voo longitudinal, na representação no espaço de estados. A dissertação começa por introduzir as
diferentes etapas que levam ao desenvolvimento e obtenção das diferentes equações do movi-
mento que regem o voo sob uma forma genérica. Seguidamente apresenta-se a teoria na qual os
métodos de identificação assentam. De forma a ilustrar os métodos propostos consideram-se o
caso de uma aeronave comercial, suficientemente genérica, com o modelo conhecido de modo
a puder validar os conceitos apresentados. Os resultados obtidos mostraram que os métodos
propostos conseguem identificar com sucesso o modelo da aeronave alvo.
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Abstract

In the present work two distinct methods for the identification of the longitudinal flight model,
in the state-space representation, are presented. Firstly, this dissertation introduces the dif-
ferent steps that lead up to the development and attainment of the flight equations of motion
for a generic aircraft. Next, the theoretical background on which both identification methods
are based upon is presented. In order to describe the proposed methods a sufficiently generic
commercial aircraft is considered, which model is known, so the validation of the proposed con-
cepts may be performed. The results obtained show that both proposed identification methods
successfully achieve the model of the chosen aircraft.

Keywords

System Identification, Equations of Motion, Parameter Estimation, Savitzky-Golay Smoothing
Filter, Radial Basis Functions, Linear Regression
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Chapter 1

Introduction

1.1 Motivation

In the design process of an aircraft, the longitudinal and lateral-directional models that describe
the aircraft dynamics are determined. Alongside the stability and control derivatives which con-
stitute a measure of the change in the aerodynamic forces and moments acting on aircraft when
there is a small change in a flight condition parameter or when there is a deflection of control
surface, respectively, the geometric properties of the aircraft (e.g.: the aspect ratio (AR),
wing area (S), ...) and the flight conditions (e.g., flight Mach number (Ma)) are considered in
order to obtain said models. In other words, in the design of an aircraft system identification,
which is discussed in the next subsection, is performed.
Whether for prediction or inference purposes, system identification constitutes a powerful tool
since it allows the determination of a model for describing the dynamics of an aircraft. How-
ever, in order to perform system identification flight data is required and it is often the case that
it is recorded at equally spaced time intervals. Consequently, it is being performed discretiza-
tion of a continuous physical process. Furthermore, as will be seen later, the determination
of the previously discussed models requires the determination of time derivatives of the state
variables involved. Due to the discretization mentioned above, there aren’t analytical formu-
las representing the state variables against time which implies that time derivatives must be
determined in a discrete fashion thus allowing this way errors to occur.
Furthermore, the flight data is quite often corrupted by disturbances, commonly known as noise,
and if nothing is done to suppress it any prediction or inference done based upon this flight data
set will be biased. Although system identification offers filtering and smoothing techniques in
order to overcome the noise it is, however, restrained to a discrete setting.
Having all the above into consideration, it is desirable to have an approach to the problem of
system identification of an aircraft in which the derivation of the state variables involved may
be obtained in a continuous setting thus eliminating the errors incurred otherwise and also to
have an approach which allows performing system identification in the continuous domain.

1.2 Identification

When presented before a physical system it is often necessary to identify it, that is, to construct
a mathematical model, based upon (sometimes disrupted) observations capable of describing
it, whether prediction or inference be the final goal. This activity is what is known as system
identification [1, 2]. A definition of system identification might be the following:

”System identification is the determination, on the basis of observation of input and output,
of a system within a specified class of systems to which the system under test is equivalent”
[1].

1



1.2. Identification

Considering the above citation it follows that system identification concerns itself with the
determination of a system (consequently, a mathematical model) equivalent to the system un-
der observation which implies that broad possibilities of different mathematical models may
describe the system. Consequently, for the same physical system, different models may be ob-
tained and a question that naturally arises may be which model represents the system best. A
widely used concept underlying theory building and model selection is that of the principle of
parsimony [1]. The principle of parsimony aids to discard variables that may not be that use-
ful to explain a given phenomenon (system), having this way less probability of the developed
mathematical model having inconsistencies and ambiguities [3], or in other words, whenever
between two competing equivalent models choose the one which is simpler [1]. A system is an
object where different variables interplay with each other and as a result produce signals that
may be observed [2, 4].

The variables commonly present in a system are defined as:

• u: represents the external and measurable input (signal) given to the system and can be
manipulated by the observer;

• w: is a disturbance and represents an exogenous signal which may be directly measurable
or its influence can be detected in the output of the system, but it cannot be manipulated;

• x: represents the state of the system and describes all the effects which the inputs u and
the disturbances w had had on the system;

• v: represents the noise introduced by the sensor. It is an exogenous signal that cannot be
manipulated by the user;

• y: represents the output of the sensors.

A diagram representing a generic system and the variables defined above is shown in Figure 1.1.

Figure 1.1: Representation of a generic system [4].

The particular case of an aircraft system identification constitutes one of three main problems
with which the subject of aircraft dynamics and control is concerned with [1]. Observing Figure
1.2 one notices that at the left of the system an input u, in this case, the elevator is deflected
(as depicted by the small graph right above the input arrow), the system S (the aircraft) is
known but the output (change in the angle of attack as shown by the small graph right above
the output arrow) is unknown (depicted by the question mark) and is required to be determined.
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1.2. Identification

Another subject problem is that of the input determination, i.e., the system S is known as well
as the output y but the input u is unknown, as depicted in Figure 1.3, and therefore this subject
area is concerned with the determination of the latter.

Figure 1.2: Representation of a simulation problem for the case of an airplane, adapted from [1, 5].

Figure 1.3: Representation of a control problem for the case of an airplane, adapted from [1, 5].

In the case of the problem of system identification (the subject matter of the present disserta-
tion) both input, u, and output, y, are known but the system, S, is unknown as shown in Figure
1.4. It is then necessary to perform system identification on the aircraft in order to find the
system S.

Figure 1.4: Representation of a system identification problem for the case of an airplane, adapted from
[1, 5].

3



1.3. Objectives

1.3 Objectives

This dissertation has henceforth as an objective the presentation of a method that allows the
performance of system identification without incurring in errors due to the consideration of a
continuous physical process as a discrete one.

1.4 Structures

The present dissertation is composed of five Chapters. The first one is the introduction where
an explanation of the subject matter, motivation, objective and structure for the present work
are presented.
In turn, the second chapter presents the derivation of the non-linear equations of motion (EOM)
with six degrees of freedom (DOF) for a sufficiently generic aircraft, their linearisation, decou-
pling into longitudinal and lateral-directional motion and finally their representation in the
state-space format in order to give the reader an overview of the role played by the sev-
eral different variables and parameters that ultimately constitute de longitudinal and lateral-
directional models that describe the dynamics of an aircraft.
Chapter 3 introduces the theoretical background needed to implement the two proposed differ-
ent methods (e.g., numerical differentiation, regression analysis,...). Then, Chapter 4 presents
a detailed explanation of both methods and the respective analysis.
Finally, in conclusion, an assessment of the overall works is performed and a discussion about
possible future work is presented. Appendix A presents formulae for the stability and control
derivatives, in a concise format, that build up the state and input matrices of the state-space
representation of linearised 6 DOF EOM; additionally, these were retrieved and slightly modified
from reference [6].

4



Chapter 2

Flight Dynamics Model

In the present Chapter, a derivation of the 6 DOF EOM for a general aircraft is presented. How-
ever, before proceeding to the development of these equations it is firstly required to define
the frames of references, angles and sign conventions.

2.1 Reference Frames

Aerodynamic axes

The aerodynamic reference frame, ℜA = (O, x⃗A, y⃗A, z⃗A), has its origin at the centre of gravity
of the aircraft even though the reference point for the aerodynamic velocity of the aircraft
being the aerodynamic centre. The OxA axis is parallel to the aircraft’s aerodynamic velocity.
If the atmosphere is assumed to be at rest relative to the earth (as is in the derivation of the 6
degrees of freedom equations of motion) the aerodynamic and body axes are considered to be
the same [7, 8].

Body axes

The origin of the body axes is fixed at the centre of gravity of the aircraft; Ox points towards
the front of the aircraft through the nose, Oz points downwards being orthogonal to the plane
formed by OxByB, that is the horizontal plane of the aircraft and Oy points towards the right
through the right-wing. Furthermore, the plane OxBzB commonly constitutes the plane of
symmetry of the aircraft. Then it can be written as ℜB = (O, x⃗B , y⃗B , z⃗B) [1, 7].

Earth axes

Earth axes, ℜE = (O, x⃗E , y⃗E , z⃗E), is a frame of reference, assumed to be inertial, whose origin
can be set anywhere on earth’s surface; axis OxE points toward the geographic north, OyE
is pointing toward east and OzE points towards the centre of the earth. The plane OxEyE

is designated as the local horizon plane. Due to its orientation this frame is also called NED
(North-East-Down) [1, 7, 8].

Stability axes

The stability axes, ℜS = (O, x⃗S , y⃗S , z⃗S) is a particular type of body axes and like the latter, it
has its origin at the centre of gravity of the aircraft and its orientation is defined with respect to
a reference flight condition. It can be obtained from the aircraft’s body axes by rotating about
the lateral axis by an angle of magnitude equal to the angle of attack α. Consequently, OxS has
the same direction as the aerodynamic velocity vector, OyS is aligned with OyB, and the angle
between OzS these and OzB equals the angle of attack α. If the aerodynamic velocity vector is
in the plane of symmetry at the reference condition then the stability axes can be considered
to be equal to the wind axes, however, if this condition is not verified and a disturbance occurs
this equality won’t persist [1, 7, 8].
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2.2. Aircraft Orientation

Wind axes

Wind axes, ℜw = (O, x⃗W , y⃗W , z⃗W ), is a frame of reference whose origin is fixed at the aircraft’s
centre of gravity. Axis Oxw is directed along the aerodynamic velocity vector, Oyw is directed
along the right-wing of the aircraft and Ozw points downwards. This frame of reference can be
obtained from the stability axes by rotating about the vertical axis of the body axes by an angle
equal to sideslip angle β. Assuming that the atmosphere is at rest, Oxw depicts the aircraft’s
trajectory relative to the earth being always tangent to it [1, 7, 8].

For the rest of this dissertation and specifically for the development of the 6 DOF EOM the earth
axes and body axes will be used as reference frames.

2.2 Aircraft Orientation

2.2.1 Sign Convention

The sign convention regarding the moments and angular velocities of the aircraft is that of the
right-hand rule. Pointing the thumb in the positive direction of a given axis the fingers curling
defines the positive rotation for moments and angular velocities (Figure 2.1). On the other
hand, pointing in the thumb in the negative direction of an axis the fingers curling defines the
negative rotation as depicted in Figure 2.2.

Figure 2.1: Positive rotation [7]. Figure 2.2: Negative rotation [7].

Figure 2.3 depicts the nomenclature used throughout the text to denote the several forces,
moments, linear velocities as well as the angles described by the aircraft.

Figure 2.3: Aircraft nomenclature, adapted from [1, 6].

Additionally, Figure 2.4 depicts the different control surfaces. These encompass the rudder,
elevators and the ailerons.
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2.2. Aircraft Orientation

Figure 2.4: Notation of the aerodynamic controls [6].

2.2.2 Aerodynamic Angles

The aerodynamic forces and moments applied on the aircraft can be related to the aerodynamic
velocity vector. To define this vector two angles are of fundamental importance: the sideslip
angle βe and the angle of attack αe (where the subscript ”e” denotes the equilibrium conditions)
[9]. Observing Figures 2.3 and 2.5, one sees that the longitudinal (Ue), lateral (Ve) and vertical
(We) speeds of the aircraft are functions of the components of the aerodynamic velocity vector
and they can be written as:

Ue = V0 cos(αe) cos(βe) (2.1)

Ve = V0 sin(βe) (2.2)

We = V0 sin(αe) cos(βe) (2.3)

From the above equations, the sideslip angle (βe) and the angle of attack (αe) are defined by

αe = arctan

(
We

Ue

)
(2.4)

βe = arcsin

(
Ve
V0

)
(2.5)

Figure 2.5: Aerodynamic velocity vector resolved into its components [6].
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2.2. Aircraft Orientation

Since the aerodynamic velocity vector can be written as V0 =
√
U2
e + V 2

e +W 2
e , the sideslip

angle β can be written as in equation 2.6.

tan(βe) =
Ve√

U2
e +W 2

e

(2.6)

2.2.3 Euler Angles

The attitude of an aircraft is described by the angular orientation of the aircraft body axes with
respect to earth axes, i.e., it is defined by the attitude angles, which are in turn a particular
application of the Euler angles [6, 9]. This way the velocity components, measured relative to
the body axes, can be determined with respect to the Earth axes [10]. The Euler angles are
represented by the Greek letters ϕ, θ and ψ describing the roll angle, pitch angle and the yaw
angle, respectively [7, 9]. They describe sequential rotations from the earth axis to the body
axes and the other way around. The way the sequence is ordered is arbitrary but since these
angles do not obey the commutative law once the sequence is defined it then must be retained
[6, 9].

Consequently, the orientation of the aircraft can be determined by the following sequence (Fig-
ure 2.6):

• 1st Rotation: The aircraft’s longitudinal and lateral axes, xf and yf , are rotated by a yaw
angle ψ to x1 and y1 respectively;

• 2nd Rotation: The aircraft’s longitudinal and vertical axes, x1 and z1, are rotated by a
pitch angle θ to x2 and y2 respectively;

• 3rd Rotation: The aircraft’s lateral and vertical axes, y2 and z2, are rotated by a roll angle
ϕ to y3 and z3 respectively.

Figure 2.6: Sequential rotations from one frame of reference to the other [10].

The sequential rotations, i.e., Euler angles are defined, in radian units, on the intervals 2.7
through 2.9.

−π ≤ψ ≤ π (2.7)

−π
2
≤θ ≤ π

2
(2.8)

−ϕmin ≤ϕ ≤ ϕmax (2.9)
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2.2. Aircraft Orientation

It is, however, important to notice that ϕmin < 0 and ϕmax > 0 depending on the individual
aircraft. The sequential rotations (or transformations) depicted in Figure 2.6 can be described
using the following matrices Tϕ 2.10, Tθ 2.11 and Tψ 2.12 representing the roll, pitch and yaw
rotation matrices, respectively [7].

Tϕ =

1 0 0

0 cos(ϕ) sin(ϕ)

0 −sin(ϕ) cos(ϕ)

 (2.10)

Tθ =

cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 (2.11)

Tψ =

 cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1

 (2.12)

Subsequently, any given vector represented in Earth axes can be transformed into a vector in
body axes as described by equation 2.13 [11],

X⃗1 ⇒ Tψ ⇒ X⃗2 ⇒ Tθ ⇒ X⃗3 ⇒ Tϕ ⇒ X⃗B (2.13)

where X⃗1 is a vector represented in earth axes, X⃗B is the X⃗1 vector transformed into body axes,
X⃗2 and X⃗3 are vectors resulting from the transformations Tψ and Tθ, respectively. The above
transformations are computed in 3 steps. For instance, the transformation X⃗1 ⇒ Tψ ⇒ X⃗2 is
computed as X⃗2 = TψX⃗1, described by matrix equation 2.14.

x2y2
z2

 =

 cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1


x1y1
z1

 (2.14)

The transformation X⃗2 ⇒ Tθ ⇒ X⃗3 is computed through matrix equation 2.15

x3y3
z3

 =

cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)


x2y2
z2

 (2.15)

and the transformation X⃗3 ⇒ Tϕ ⇒ X⃗B is computed as shown in matrix equation 2.16.

xByB
zB

 =

1 0 0

0 cos(ϕ) sin(ϕ)

0 −sin(ϕ) cos(ϕ)


x3y3
z3

 (2.16)
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2.2. Aircraft Orientation

In order to transform a vector represented in earth axes directly into body axes, it is required to
compute X⃗B = TϕTθTψX⃗1. Defining a matrix R as begin the dot product between the rotation
matrices then it follows that X⃗B = RX⃗1.

R =

 cos(ψ) cos(θ) sin(ψ) cos(θ) −sin(θ)
cos(ψ) sin(θ) sin(ϕ)− sin(ψ) cos(ϕ) sin(ψ) sin(θ) sin(ϕ) + cos(ψ) cos(ϕ) cos(θ) sin(ϕ)

cos(ψ) sin(θ) cos(ϕ) + sin(ψ) sin(ϕ) sin(ψ) sin(θ) cos(ϕ)− cos(ψ) sin(ϕ) cos(θ) cos(ϕ)

 (2.17)

Since the rotations matrices Tϕ, Tθ and Tψ are invertible [7] and orthogonal [11], then matrix R
is also orthogonal and its inverse equals its transpose. Hence to transform a vector from body
axes directly to earth axes it is only required to compute X⃗1 = RT X⃗B. Consequently, if the
aircraft’s velocity vector is needed in Earth axes, it can be rotated from the Body axes as

dx/dtdy/dt

dz/dt

 = RT

UeVe
We

 (2.18)

From the above matrix equation 2.18, the manoeuvrable rates p, q and r can determined as
described by equation 2.19 through 2.21 [7].

p = ϕ̇− ψ̇ sin(θ) (2.19)

q = θ̇ cos(ϕ) + ψ̇ cos(θ) sin(ϕ) (2.20)

r = ψ̇ cos(ϕ) cos(θ)− θ̇ sin(ϕ) (2.21)

Further manipulation of equations 2.19 to 2.21 yields ϕ̇, θ̇ and ψ̇, equations 2.22, 2.23 and 2.24,
respectively.

ϕ̇ = p+ (q sin(ϕ) + r cos(ϕ)) · tan(θ) (2.22)

θ̇ = q cos(ϕ)− r sin(ϕ) (2.23)

ψ̇ =
q sin(ϕ) + r cos(ϕ)

cos(θ)
(2.24)

Perusing equations from 2.22 to equation 2.24, when θ assumes values near 90◦ the terms tan(θ)
and 1/cos(θ) become ∞ [7], i.e., there exists a singularity. Although the usage of Euler angles
aids the visualisation of the physical state of the aircraft when θ ≈ 90◦ others methods must be
employed such as quaternions [7] or direction cosines [12].

10



2.3. 6 Degree of Freedom Equations of Motion

2.3 6 Degree of Freedom Equations of Motion

The derivation of the 6 DOF EOM describing the dynamics of a general aircraft commonly con-
siders flight in non-stationary air, varying mass, the elastic properties of the body, where the
aerodynamic surfaces are subjected to bending and twisting motions, and the forces applied on
the aircraft, which are in turn functions of its shape and motion. Such derivation would be very
complex and outside the scope of this dissertation. Hence the derivation presented in this text
is in accordance with the following simplifying assumptions [1, 10, 12]:

• the aircraft is assumed to be a rigid body where the mass remains constant throughout the
flight;

• the air is at rest with respect to the earth and consequently wind shears and gusts are
neglected;

• the flight’s duration is small and close the earth’s surface which allows the curvature of
the earth to be dismissed;

• the gravity field is considered to be constant and non-varying with respect to the altitude
thus the centre of gravity and centre of mass can be assumed to be coincident;

• the earth’s rotation is neglected and it is considered to be an inertial space.

For the derivation of the equations of motion it is required the application of Newton’s second
law of motion which in turn can only be applied on an inertial frame of reference and conse-
quently in the present case earth axes is chosen. However, the aerodynamic velocity and other
parameters must be computed with respect to the body axes otherwise the complexity of the
derivation would increase. Hence the following derivation of the aircraft’s equations of motion
requires two frames of reference namely the earth axes and the aircraft body axes (Figure 2.7)

Figure 2.7: Definition of the aircraft body axes and the earth axes, adapted from [10].
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2.3. 6 Degree of Freedom Equations of Motion

Newton’s second law of motion states that 2.25

∑
F⃗ =

d

dt
(mV⃗1) (2.25)

the summation of all external forces acting on a body is equal to the time derivative of its mass
times its velocity (V⃗1). As previously stated, it is assumed that the mass of the aircraft remains
constant throughout the flight. Thus equation 2.25 reduces to equation 2.26.

F⃗ = m
dV⃗1
dt

(2.26)

Decomposing equation 2.26 into the body axes yields equation 2.27 through 2.29.

X =
d

dt
(m · U) (2.27)

Y =
d

dt
(m · V ) (2.28)

Z =
d

dt
(m ·W ) (2.29)

Considering the aircraft in Figure 2.7, δm denotes an infinitesimal element of mass of the air-
craft. Then applying Newton’s second law yields equation 2.30.

δF⃗ = δm
dV⃗1
dt

(2.30)

The total external force applied to the aircraft equals the sum of the individual external forces
applied on each element of mass

F⃗ =
∑

δF⃗ (2.31)

The velocity of δm with respect to earth axes, V⃗1, is described by equation 2.32 which states
that the velocity of element of mass, δm, is the vectorial sum of the velocity of the aircraft’s
centre of mass and of the time derivative of the position vector r⃗.

V⃗1 = V⃗c +
dr⃗

dt
(2.32)

Thus, the total external force applied to the aircraft can be written as described by equation
2.33.

F⃗ =
d

dt

∑(
V⃗c +

dr⃗

dt

)
δm (2.33)
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2.3. 6 Degree of Freedom Equations of Motion

Expanding equation 2.33 yields equation 2.34

F⃗ = m
dV⃗c
dt

+
d2

dt2

∑
r⃗ δm (2.34)

and since
∑
r⃗ δm = 0 equation 2.34 can be rewritten as in 2.35 which gives a relationship

between the total external force applied on the aircraft and the velocity of its centre o mass.

F⃗ = m
dV⃗c
dt

(2.35)

Proceeding in a similar manner to that undertaken from equation 2.25 up until this point a
relationship between the moments applied on the aircraft and the velocity of its centre o mass
can be described using equation 2.36 where H⃗ denotes the angular momentum.

∑
M⃗ =

d

dt
(H⃗) (2.36)

Since the angular moment can be written as H⃗ = r⃗×V⃗1 and considering an infinitesimal element
of mass equation 2.36 can be rewritten as in equation 2.37.

δM⃗ =
d

dt

(
δH⃗
)
=

d

dt

[(
r⃗ × V⃗1

)
δm
]

(2.37)

Similarly to equation 2.32, the velocity of the element of mass can be expressed as a vectorial
sum of the velocity of the aircraft’s centre of mass but with the cross product between the
angular velocity and position of the element of mass. Then, the velocity of the element of mass
can be written as in equation 2.38.

V⃗1 = V⃗c +
dr⃗

dt
⇔

⇔ V⃗1 = V⃗c + w⃗ × r⃗

(2.38)

Substituting equation 2.38 into equation 2.37 yields equation 2.39.

H⃗ =
∑

δH⃗

=
∑(

r⃗ × V⃗c

)
δm+

∑
[r⃗ × (w⃗ × r⃗)] δm

=
∑

r⃗ δm× V⃗c +
∑

[r⃗ × (w⃗ × r⃗)] δm

(2.39)

Since,
∑
r⃗ δm = 0 equation 2.39 can be rewritten as in equation 2.40 which represents the

angular momentum with respect to the earth (inertial) frame of reference.

H⃗ =
∑

r⃗ × (w⃗ × r⃗) δm (2.40)
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2.3. 6 Degree of Freedom Equations of Motion

Decomposing the position (r⃗) and the angular velocity (w⃗) vectors into the respective compo-
nents yields equations 2.41 2.42, respectively.

w⃗ = p î+ q ĵ + r k̂ (2.41)

r⃗ = x î+ y ĵ + z k̂ (2.42)

Substituting equations 2.41 and 2.42 into equation 2.40 and computing the cross-products it can
then be shown that the components of equation 2.40 can be written as in equation 2.43.

Hx = p
∑

(y2 + z2)δm− q
∑

xy δm− r
∑

xz δm

Hy = −p
∑

xy δm+ q
∑

(x2 + z2)δm− r
∑

yz δm

Hz = −p
∑

xy δm− q
∑

yz δm+ r
∑

(x2 + y2)δm

(2.43)

As stated at the beginning of section 2.3 it is advantageous to work with the body axes because
it is fixed, that is, it rotates as the aircraft rotates and consequently the moments of inertia
won’t vary. However, Newton’s second law can only be applied to inertial frames of reference.
To overcome this situation it is assumed that the Body axes are fixed to the aircraft, that is, as
the aircraft moves so does this reference frame. However, due to such assumption, the time
derivatives of the vector quantities corresponding to the velocity of the infinitesimal element
of mass and the angular momentum must be taken with respect to Earth axes. Consequently,
it is assumed that the derivative of an arbitrary vector quantity, A⃗, with respect to an inertial
axes, in this case with respect to Earth axes, equals the derivative of that very same vector
with respect to the Body axes plus the cross product of the angular velocity of the body times
that very same vector which is clearly described by equation 2.44 (where the subscripts E and
B refer to the Earth and Body fixed frames of reference).

dA⃗

dt

∣∣∣∣
E

=
dA⃗

dt

∣∣∣∣
B

+ w⃗ × A⃗ (2.44)

Thus applying identity 2.44 to the force and moment equation equations yields 2.45 and 2.46.

F⃗ = m
dV⃗c
dt

∣∣∣∣
B

+m(w⃗ × V⃗c) (2.45)

M⃗ =
dH

dt

∣∣∣∣
B

+ w⃗ × H⃗ (2.46)
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2.3. 6 Degree of Freedom Equations of Motion

From equation 2.45 it follows that the components of the total force applied to the aircraft are
described by the force equations (equation 2.47 through 2.49).

X = m
[
U̇ − rV + qW

]
(2.47)

Y = m
[
V̇ − pW + rU

]
(2.48)

Z = m
[
Ẇ − qU + pV

]
(2.49)

And considering that Ixy = Iyz = 0, due the aircraft symmetry, from equation 2.46 the moment
equations are constituted by equations 2.50 through 2.52.

L = Ixxṗ− (Iyy − Izz)qr − Ixz(pq + ṙ) (2.50)

M = Iyy q̇ + (Ixx − Izz)pr + Ixz(p
2 − r2) (2.51)

N = Izz ṙ − (Ixx − Iyy)pq + Ixz(qr + ṗ) (2.52)

The above equations 2.47 and 2.52 constitute the six non-linear DOF EOM for a generic aircraft.
These can be, however, further developed by the specification of the applied forces and mo-
ments on the aircraft. Considering the approach depicted in reference [6] it is assumed that
the applied forces and moments are due to aerodynamic, gravitational, aerodynamic controls,
power and atmospheric disturbances (henceforth the subscripts: a, g, c, p and d are used to
denote each one of these effects, respectively). Hence the force equations (2.47 through 2.49)
and the moment equations (2.50 through 2.52) can be rewritten as in equations 2.53 through
2.55 and as in 2.56 through 2.58, respectively.

m
[
U̇ + qW − rV

]
= Xa +Xg +Xc +Xp +Xd (2.53)

m
[
V̇ + rU − pW

]
= Ya + Yg + Yc + Yp + Yd (2.54)

m
[
Ẇ + pV − qU

]
= Za + Zg + Zc + Zp + Zd (2.55)

Ixxṗ− (Iyy − Izz)qr − Ixz(pq + ṙ) = La + Lg + Lc + Lp + Ld (2.56)

Iyy q̇ + (Ixx − Izz)pr + Ixz(p
2 − r2) =Ma +Mg +Mc +Mp +Md (2.57)

Izz ṙ − (Ixx − Iyy)pq + Ixz(qr + ṗ) = Na +Ng +Nc +Np +Nd (2.58)

The above force and moment equations are non-linear and hence cannot be solved to obtain an
analytical solution. One way to solve such type of equations is to linearise them. The lineari-
sation of non-linear equations is restricted to an application where these represent motions of
small displacement from the equilibrium point, which was assumed previously in the develop-
ment of the non-linear 6 DOF EOM for a generic aircraft [6, 13].
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2.4 Linearised Equations of Motion

In this section, the non-linear six DOF EOM of an aircraft, derived in the previous section are
linearised using the small-disturbance theory. The application of this theory assumes that the
aircraft is flying in a steady and level flight and that its motion consists of small deviations
from the steady condition, as said previously, and consequently it cannot be applied to situa-
tions in which motions of large amplitude occur. Despite this constraint, it yields results with
enough accuracy for engineering purposes [10, 12]. Furthermore, it is also considered rolling,
yawing and sideslip motions do not occur and that the atmosphere is assumed to be stable and
undisturbed and consequently equation 2.59 can be applied.

Xd = Yd = Zd = Ld =Md = Nd = 0 (2.59)

Considering that the aircraft deviates only a small amount from the steady flight condition
due to a perturbation, the equations describing the linear velocity are written as in equations
2.60 through 2.62 where the subscript ”e” denotes the equilibrium or steady condition and the
lower-case letters represent the linear disturbance velocities.

U = Ue + u (2.60)

V = Ve + v = v (2.61)

W =We + w (2.62)

In a similar manner, p, q and r in equations 2.63 through 2.65 represent the angular distur-
bance velocities and their time derivatives in equations 2.66 through 2.68. Since the perturbed
quantities are small the product between these and its powers are assumed very small and are
consequently discarded. Then substituting equations 2.59, 2.60, 2.61 and 2.62 into equations
2.53 through 2.58 yields the linearised equations of motion (equation 2.63 to equation 2.68).

m(u̇+ qWe) = Xa +Xg +Xc +Xp (2.63)

m(v̇ − p We + r Ue) = Ya + Yg + Yc + Yp (2.64)

m(ẇ − q Ue) = Za + Zg + Zc + Zp (2.65)

Ixxṗ− Ixz ṙ = La + Lg + Lc + Lp (2.66)

Iyy q̇ =Ma +Mg +Mc +Mp (2.67)

Izz ṙ − Ixz ṗ = Na +Ng +Nc +Np (2.68)

The further development of the equations 2.63 through 2.68 requires the determination of the
several right-hand side terms which represent the applied forces and moments on the aircraft
due to a variety of factors. Firstly, considering the effects due to the force of gravity, i.e., the
weight force whose contribution can be added to equations 2.63 through 2.68 by decomposing
it into the disturbed body axes. Perusing Figure 2.8 it can be seen that the origin of the aircraft
body axes is coincident with its centre of gravity which implies that no moments are created
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2.4. Linearised Equations of Motion

due to the aircraft’s weight [6]. Hence it is assumed that

Lg =Mg = Ng = 0 (2.69)

Considering that the aircraft is flying in steady and level flight the y-component of the weight
force is consequently considered to be null.

Figure 2.8: Weight force decomposition in the plane of symmetry [6].

Hence, the weight force is decomposed into body axes as described in equations 2.70 through
2.72.

Xge = −mg sin(θe) (2.70)

Yge = 0 (2.71)

Zge = mg cos(θe) (2.72)

Considering the transformation matrix 2.17 the weight components described previously can be
transformed into the disturbed body axes through matrix equation 2.73,

Xg

Yg

Zg

 =

 1 ψ −θ
−ψ 1 ϕ

θ −ϕ 1


Xge

Yge

Zge

 (2.73)

thus yielding this way the equations 2.74 through 2.76.

Xg = −mg sin(θe)−mgθ cos(θe) (2.74)

Yg = mgψ sin(θe) +mgϕ cos(θe) (2.75)

Zg = mg cos(θe)−mgθ sin(θe) (2.76)

Secondly the terms corresponding to the aerodynamic effects also need to be considered. In
order to specify the interactions present due to the aerodynamic effects, it is assumed that
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2.4. Linearised Equations of Motion

in equations 2.53 through 2.58, the aerodynamic force and moment terms are only dependent
on the disturbed motion variables (u, v, w, p, q, r) and their derivatives. For example, the axial
forceXa (equation 2.77) is given by a constantXae plus several Taylor series, each one involving
a different variable [6].

Xa = Xae +

(
∂X

∂u
u+

∂2X

∂u2
u2

2!
+
∂3X

∂u3
u3

3!
+
∂4X

∂u4
u4

4!
+ · · ·

)
+

(
∂X

∂v
v +

∂2X

∂v2
v2

2!
+
∂3X

∂v3
v3

3!
+
∂4X

∂v4
v4

4!
+ · · ·

)
+

(
∂X

∂w
w +

∂2X

∂w2

w2

2!
+
∂3X

∂w3

w3

3!
+
∂4X

∂w4

w4

4!
+ · · ·

)
+

(
∂X

∂p
p+

∂2X

∂p2
p2

2!
+
∂3X

∂p3
p3

3!
+
∂4X

∂p4
p4

4!
+ · · ·

)
+

(
∂X

∂q
q +

∂2X

∂q2
q2

2!
+
∂3X

∂q3
q3

3!
+
∂4X

∂q4
q4

4!
+ · · ·

)
+

(
∂X

∂r
r +

∂2X

∂r2
r2

2!
+
∂3X

∂r3
r3

3!
+
∂4X

∂r4
r4

4!
+ · · ·

)
+

(
∂X

∂u̇
u̇+

∂2X

∂u̇2
u̇2

2!
+
∂3X

∂u̇3
u̇3

3!
+ · · ·

)
+

(
∂X

∂v̇
v̇ +

∂2X

∂v̇2
v̇2

2!
+
∂3X

∂v̇3
v̇3

3!
+ · · ·

)
+ terms in ẇ, ṗ, q̇ and ṙ

+ terms of higher order derivatives

(2.77)

Since the motion variables have very small magnitudes the higher terms can be ignored with the
exception of the first term (on each Taylor series). Conversely, ẇ is considered since it is the
only significantly higher-order derivative that usually comes across [6]. Hence equation 2.77
can be rewritten as in equation 2.78 where the several partial derivatives are known as the
aerodynamic stability derivatives.

Xa = Xae +
∂X

∂u
u+

∂X

∂v
v +

∂X

∂w
w +

∂X

∂p
p+

∂X

∂q
q +

∂X

∂r
r +

∂X

∂ẇ
ẇ (2.78)

In a similar way to that of the determination of the mathematical formula (above) for the axial
force X due to aerodynamic effects, the remaining aerodynamic terms present in equations
2.53 through 2.58 are derived. Other terms to be specified are those relating to the deflections
of aerodynamic surfaces, i.e., ailerons, elevator and rudder (Figure 2.4). Again, assuming that
the force and moments are only dependent on the disturbed motion variables the case pitching
moment can be described as in equation 2.79.

Mc =
∂M

∂ξ
ξ +

∂M

∂η
η +

∂M

∂ζ
ζ (2.79)
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Notice that the aileron, elevator and rudder angles (ξ, η, ζ) are measured with respect to the
corresponding trim angles (ξe, ηe, ζe). In a similar fashion the remaining control terms present
in equations 2.53 through 2.58 are determined. Lastly, there only remains the power terms to
be specified. The thrust of an aircraft is controlled by the throttle setting, that is, by setting
the throttle lever angle (ε).

The throttle contribution is commonly accounted for as in equation 2.80. As in the control
terms, thrust is also measured with respect to the corresponding trim settings.

Zp =
∂Z

∂τ
τ (2.80)

The other power terms present in equations 2.53 through 2.58 are determined in the same way
as in equation 2.80.

After the determination of all the remaining terms present in equations 2.53 through 2.58 it
then remains to substitute the expressions obtained into these thus obtaining the linearised
equations of motion accounting for the several effects discussed above thus yielding this way
the EOM for small perturbations (equations 2.81 through 2.86).

m(u̇+ qWe) =Xae +
∂X

∂u
u+

∂X

∂v
v +

∂X

∂w
w +

∂X

∂p
p+

∂X

∂q
q +

∂X

∂r
r +

∂X

∂ẇ
ẇ

−mg sin(θe)−mgθ cos(θe) +
∂X

∂ξ
ξ +

∂X

∂η
η +

∂X

∂ζ
ζ +

∂X

∂τ
τ

(2.81)

m(v̇ − pWe +RUe) =Yae +
∂Y

∂u
u+

∂Y

∂v
v +

∂Y

∂w
w +

∂Y

∂p
p+

∂Y

∂q
q +

∂Y

∂r
r +

∂Y

∂ẇ
ẇ

+mgψ sin(θe) +mgϕ cos(θe) +
∂Y

∂ξ
ξ +

∂Y

∂η
η +

∂Y

∂ζ
ζ +

∂Y

∂τ
τ

(2.82)

m(ẇ − qUe) =Zae +
∂Z

∂u
u+

∂Z

∂v
v +

∂Z

∂w
w +

∂Z

∂p
p+

∂Z

∂q
q +

∂Z

∂r
r +

∂Z

∂ẇ
ẇ

+mg cos(θe)−mgθ sin(θe) +
∂Z

∂ξ
ξ +

∂Z

∂η
η +

∂Z

∂ζ
ζ +

∂Z

∂τ
τ

(2.83)

Ixxṗ− Ixz ṙ =Lae +
∂L

∂u
u+

∂L

∂v
v +

∂L

∂w
w +

∂L

∂p
p+

∂L

∂q
q

+
∂L

∂r
r +

∂L

∂ẇ
ẇ +

∂L

∂ξ
ξ +

∂L

∂η
η +

∂L

∂ζ
ζ +

∂L

∂τ
τ

(2.84)

Iyy q̇ =Mae +
∂M

∂u
u+

∂M

∂v
v +

∂M

∂w
w +

∂M

∂p
p+

∂M

∂q
q

+
∂M

∂r
r +

∂M

∂ẇ
ẇ +

∂M

∂ξ
ξ +

∂M

∂η
η +

∂M

∂ζ
ζ +

∂M

∂τ
τ

(2.85)
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Izz ṙ − Ixz ṗ =Nae +
∂N

∂u
u+

∂N

∂v
v +

∂N

∂w
w +

∂N

∂p
p+

∂N

∂q
q

+
∂N

∂r
r +

∂N

∂ẇ
ẇ +

∂N

∂ξ
ξ +

∂N

∂η
η +

∂N

∂ζ
ζ +

∂N

∂τ
τ

(2.86)

However, in steady-state it is considered that the perturbation variables and their derivatives
are zero (equation 2.87).

Xae = mg sin(θe) Yae = 0 Zae = −mg cos(θe)
Lae = 0 Mae = 0 Nae = 0

(2.87)

Considering the above assumptions equations 2.81 through 2.86 are rearranged into equations
2.88 through 2.93.

mu̇− ∂X

∂u
u− ∂X

∂v
v − ∂X

∂ẇ
ẇ − ∂X

∂w
w − ∂X

∂p
p−

(
∂X

∂q
q −mWe

)
q

−∂X
∂r

r +mgθ cos(θe) =
∂X

∂ξ
ξ +

∂X

∂η
η +

∂X

∂ζ
ζ +

∂X

∂τ
τ

(2.88)

−∂Y
∂u

u+mv̇ − ∂Y

∂v
v − ∂Y

∂ẇ
ẇ − ∂Y

∂w
w −

(
∂Y

∂p
p+mWe

)
p− ∂Y

∂q
q −

(
∂Y

∂r
r +mUe

)
r

−mgϕ cos(θe)−mgψ sin(θe) =
∂Y

∂ξ
ξ +

∂Y

∂η
η +

∂Y

∂ζ
ζ +

∂Y

∂τ
τ

(2.89)

−∂Z
∂u

u− ∂Z

∂v
v +

(
m− ∂Z

∂ẇ

)
ẇ − ∂Z

∂w
w − ∂Z

∂p
p−

(
∂Z

∂q
+mUe

)
q

−∂Z
∂r

r +mgθ sin(θe) =
∂Z

∂ξ
ξ +

∂Z

∂η
η +

∂Z

∂ζ
ζ +

∂Z

∂τ
τ

(2.90)

−∂L
∂u

u− ∂L

∂v
v − ∂L

∂ẇ
ẇ − ∂L

∂w
w + Ixxṗ−

∂L

∂p
p− ∂L

∂q
q

−Ixz ṙ −
∂L

∂r
r = −∂L

∂ξ
ξ +

∂L

∂η
η +

∂L

∂ζ
ζ +

∂L

∂τ
τ

(2.91)

−∂M
∂u

u− ∂M

∂v
v − ∂M

∂ẇ
ẇ − ∂M

∂w
w − ∂M

∂p
p+ Iyy q̇ −

∂M

∂q
q

−∂M
∂r

r =
∂M

∂ξ
ξ +

∂M

∂η
η +

∂M

∂ζ
ζ +

∂M

∂τ
τ

(2.92)

−∂N
∂u

u− ∂N

∂v
v − ∂N

∂ẇ
ẇ − ∂N

∂w
w − Ixz ṗ−

∂N

∂p
p− ∂N

∂q
q + Izz ṙ

−∂N
∂r

r =
∂N

∂ξ
ξ +

∂N

∂η
η +

∂N

∂ζ
ζ +

∂N

∂τ
τ

(2.93)
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2.4. Linearised Equations of Motion

The above linear differential equations, from 2.88 through 2.93, constitute the small pertur-
bations equations of motion, which describe the small amplitude response of the aircraft, at a
trim condition, to a perturbation [6, 11]. Although these allow the description of longitudinal
and lateral coupled motions of the aircraft since only small disturbances are considered a com-
mon simplification is to rearrange these into two different groups, one describing longitudinal
motion and the other describing lateral-directional motion [6, 12].

2.4.1 Decoupled Equations of Motion

The decoupled longitudinal equations of motions describe the motion restricted the OxBOzB
plane of symmetry. Therefore only the axial force X, the normal force Z and the pitching
moment M are considered, which in turn implies that lateral motion variables, aerodynamic
coupling derivatives and aerodynamic control derivatives can be assumed to be zero [6] as de-
scribed in equation 2.94.

∂X

∂v
=
∂X

∂p
=
∂X

∂r
=
∂Z

∂v
=
∂Z

∂p
=
∂Z

∂r
=
∂M

∂v
=
∂M

∂p
=
∂M

∂r
=
∂X

∂ξ
=
∂X

∂ζ
=

∂Z

∂ξ
=
∂Z

∂ζ
=
∂M

∂ξ
=
∂M

∂ζ
= 0

(2.94)

Thus, the dimensional decoupled equations of longitudinal symmetric motion (equations 2.95
through 2.97) , with respect to the aircraft body axes, are obtained by considering the several
equalities of equation 2.94 and by plucking out the equations corresponding the axial force X,
the normal force Z and pitching moment M from equations 2.88 through 2.93.

mu̇− ∂X

∂u
u− ∂X

∂ẇ
ẇ − ∂X

∂w
w −

(
∂X

∂q
q −mWe

)
q +mgθ cos(θe) =

∂X

∂η
η +

∂X

∂τ
τ (2.95)

−∂Z
∂u

u+

(
m− ∂Z

∂ẇ

)
ẇ − ∂Z

∂w
w −

(
∂Z

∂q
+mUe

)
q +mgθ sin(θe) =

∂Z

∂η
η +

∂Z

∂τ
τ (2.96)

−∂M
∂u

u− ∂M

∂ẇ
ẇ − ∂M

∂w
w + Iyy q̇ −

∂M

∂q
q =

∂M

∂η
η +

∂M

∂τ
τ (2.97)

Opposed to the decoupled longitudinal equations of motions the decoupled lateral-directional
motion takes into account the rolling, yawing and sideslip motion alone. Therefore only the
side force Y , the rolling moment L and the yawing moment N are considered whilst longitu-
dinal motion variables and aerodynamic coupling derivatives and aerodynamic coupling control
derivatives are set to be equal to zero [6].

∂Y

∂u
=
∂Y

∂ẇ
=
∂Y

∂w
=
∂Y

∂q
=
∂L

∂u
=
∂L

∂ẇ
=
∂L

∂w
=
∂L

∂q
=
∂N

∂u
=
∂N

∂ẇ
=

=
∂N

∂w
=
∂N

∂q
=
∂Y

∂η
=
∂Y

∂τ
=
∂L

∂η
=
∂L

∂τ
=
∂N

∂η
=
∂N

∂τ
= 0

(2.98)
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2.4. Linearised Equations of Motion

Similarly to the decoupled longitudinal motion, the dimensional decoupled equations of lateral
directional asymmetric motion (equations 2.99 through 2.101), with respect to body axes, are
obtained by considering equation 2.98 and by plucking out the equations corresponding to the
side force Y , the rolling moment L and yawing moment N from equations 2.88 through 2.93
[6].

(
mv̇ − ∂Y

∂v
v −

(
∂Y

∂p
+mWe

)
p−

(
∂Y

∂r
−mUe

)
r −mgϕ cos(θe)−mgψ sin(θe)

)
=
∂Y

∂ξ
ξ +

∂Y

∂ζ
ζ (2.99)

−∂L
∂v

v + Ixxṗ−
∂L

∂p
p− Ixz ṙ −

∂L

∂r
r =

∂L

∂ξ
ξ +

∂L

∂ζ
ζ (2.100)

−∂N
∂v

v + Ixz ṗ−
∂N

∂p
p− Izz ṙ −

∂N

∂r
r =

∂N

∂ξ
ξ +

∂N

∂ζ
ζ (2.101)

2.4.2 State Space Representation of the Linearised Equations of Motion

In the previous sections, a mathematical model representing the dynamics of a generic aircraft
with six DOF was developed, which culminated with the determination of the decoupled longi-
tudinal and lateral-directional EOM. If only small disturbances are to be considered, as was in
the development of the linearised EOM, the aircraft can be considered as a linear dynamic sys-
tem. Hence it can then be classified as being a linear time-invariant system (LTI) or as a linear
time-varying system (LTV) depending on whether the differential equations which describe the
system have constant or time-dependent coefficients. Since the decoupled equations of motion
(2.95, 2.96, 2.97, 2.99, 2.100 and 2.101) are linear and have constant coefficients the dynamic
system (aircraft) is said to be LTI. The motion (state) of a linear dynamic system is described by
state variables, that is, it is described by a set with the least amount of variables with which
the state of a dynamic system can be described. The motion of a dynamic system is represented
in a n-dimensional space called state space and each state of the system is represented by a
point in this space. The state-space equations model the dynamics of the system and differ
upon whether the system is considered to be LTI or LTV. If the system is LTV the state equations
are written as in 2.102 and 2.103 [6, 14].

ẋ(t) = A(t)x(t) +B(t)u(t) (2.102)

y(t) = C(t)x(t) +D(t)u(t) (2.103)

Conversely, equations 2.104 and 2.105 represent a LTI system.

ẋ(t) = Ax(t) +Bu(t) (2.104)

y(t) = Cx(t) +Du(t) (2.105)

The equations 2.102 and 2.104 are the state equations whereas equations 2.103 and 2.105 are
the output equations of the respective dynamic systems where:

• x(t) is the state vector constituted by n state variables;

• u(t) is the input vector constituted by m input variables;

• y(t) is the output vector constituted by r output variables;
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2.4. Linearised Equations of Motion

• A or A(t) is the (n× n) state matrix;

• B or B(t) is the (n×m) input matrix;

• C or C(t) is the (r × n) output matrix;

• D or D(t) is the (r ×m) direct matrix.

Since the aircraft is a LTI dynamic system, equations 2.104 and 2.105 describe its dynamics. It
now remains to rearrange the decoupled EOM to such format. For convenience purposes, it is
common practice to choose for the output variables, for most aircraft, to be the state variables
as described by equation 2.106

y(t) = x(t) and r = n (2.106)

which implies that the output matrix C equals to the (n × n) identity matrix and the direct
matrix D is equal to the (n×m) zero matrix. Consequently, the output equation can be written
as in 2.107. Perusing the latter it can be concluded that it is only required to determine the
state equation.

y(t) = Ix(t) = x(t) (2.107)

In order to rewrite the decoupled longitudinal EOM (equations 2.95, 2.96 and 2.97) in matrix
format an additional differential equation needs to be considered since the aircraft’s longitudi-
nal motion is described by four state variables. As such it considered that the time derivative
of the pitch angle θ is equal to the pitch rate q (equation 2.108).

θ̇ = q (2.108)

Hence, considering equations 2.95, 2.96, 2.97 and 2.108 we have

Mẋ(t) = A′x(t) +B′u(t) (2.109)

with

x(t) =


u

w

q

θ

 (2.110)

u(t) =

[
η

τ

]
(2.111)
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M =


m −∂X

∂ẇ 0 0

0 (m− ∂Z
∂ẇ ) 0 0

0 −∂M
∂ẇ Iyy 0

0 0 0 1

 (2.112)

A′ =


∂X
∂u

∂X
∂w (∂X∂q −mWe) −mg cos(θe)

∂Z
∂u

∂Z
∂w (∂Z∂q +mUe) −mg sin(θe)

∂M
∂u

∂M
∂w

∂M
∂q 0

0 0 1 0

 (2.113)

B′ =


∂X
∂η

∂X
∂τ

∂Z
∂η

∂Z
∂τ

∂M
∂η

∂M
∂τ

0 0

 (2.114)

Multiplying equation 2.109 by the M−1 yields equation 2.115.

ẋ(t) = Ax(t) +Bu(t) (2.115)

Consequently the state matrix and input matrix are determined as in equations 2.116 and 2.117,
respectively. The terms that form matrices A and B are the aerodynamic stability and control
derivatives, respectively, with respect the body axes written in a concise form. The complete
expressions of these derivatives, adapted from reference [6], are in appendix A.

A =M−1A′ =


xu xw xq xθ

zu zw zq zθ

mu mw mq mθ

0 0 1 0

 (2.116)

B =M−1B′ =


xη xτ

zη zτ

mη mτ

0 0

 (2.117)

Consequently, the longitudinal state equation is written as given by matrix equation 2.118.


u̇

ẇ

q̇

θ̇

 =


xu xw xq xθ

zu zw zq zθ

mu mw mq mθ

0 0 1 0



u

w

q

θ

+


xη xτ

zη zτ

mη mτ

0 0


[
η

τ

]
(2.118)
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In turn, the output equation is written as described in matrix equation 2.119.

y(t) = Ix(t) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



u

w

q

θ

 (2.119)

In a similar manner to the longitudinal state equation, the lateral-direction state equation is
obtained from the decoupled lateral-directional EOM (equation 2.99 through equation 2.101)
with respect to body axes thus yielding matrix equation 2.120.


v̇

ṗ

ṙ

ϕ̇

ψ̇

 =


yv yp yr yϕ yψ

lv lp lr lϕ lψ

nv np nr nϕ nψ

0 1 0 0 0

0 0 1 0 0




v

p

r

ϕ

ψ

+


yξ yζ

lξ lζ

nξ nζ

0 0

0 0


[
ξ

ζ

]
(2.120)
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Chapter 3

Parameters Estimation Methods

3.1 Numerical Differentiation

As previously stated in sub-subsection 2.4.2 the aircraft is an LTI system whose state equation
is described by equation 2.104 (here rewritten in equation 3.1 for convenience purposes).

ẋ(t) = Ax(t) +Bu(t) (3.1)

Later on Chapter 4 it will be shown the necessity of having the time derivative of the flight
data. However, the flight data is recorded (in the present dissertation it will be generated) at
discrete time intervals and consequently, an analytical derivative for each state variable that
constitutes the term ẋ in equation 3.1 is not available. To overcome this predicament, in the
present section, it will be derived three formulae for computing the first time derivative at a
given for discrete flight.

It is often necessary to compute the value of a derivative at some point of a generic function
whose expression is difficult to differentiate or is not available. As an alternative, an approach
to obtain an approximation to the value of the derivative at some point of a generic function is
through the usage of Taylor series expansions. Given the value of a function and the value of its
derivatives at some point, a, the Taylor series allows to determine a function value at another
point, x [13, 15].

Taylor Polynomial If the function f and its n+1 first derivatives exist and are continuous within
an interval that contains x and a then there exists an ξ between x and a such that the value of
f at x is given by equation 3.2

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · ·+ f (n)(a)

n!
(x− a)n +Rn(x) (3.2)

where Rn(x) is the rest of n-th order and it is obtained by computing equation 3.3

Rn(x) =
f (n+1)(ξ)

(n+ 1)!
(x− a)n+1 (3.3)

The Taylor series expansion or Taylor polynomial, equation 3.2, will only yield an exact estimate
of the function value at some point a if an infinite number of terms is added. This is however
not feasible and for practical purposes, the inclusion of only a few terms in the Taylor series
expansion will return a good approximation of the true value at some point of the function.
Substituting in equation 3.2 a = xi and x = xi+1 yields equation 3.4.
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3.1. Numerical Differentiation

f(xi+1) = f(xi) + f ′(xi)(xi+1 − xi) +
f ′′(xi)

2!
(xi+1 − xi)

2 + · · ·

+
f (n)(xi)

n!
(xi+1 − xi)

n

+
f (n+1)(ξ)

(n+ 1)!
(xi+1 − xi)

n+1

(3.4)

Let h = xi+1 − xi, equation 3.4 is then simplified to

f(xi+1) = f(xi) + f ′(xi)h+
f ′′(xi)

2!
h2 + · · ·+ f (n)(xi)

n!
hn +

f (n+1)(ξ)

(n+ 1)!
hn+1 (3.5)

If equation 3.5 is truncated at n = 1 it then assumes the form of equation 3.6 with ξ ∈]xi, xi+1[.

f(xi+1) = f(xi) + f ′(xi)h+
f ′′(ξ)

2!
h2 (3.6)

Then, rearranging 3.6 yields the formula for the first derivative at xi as is described by equation
3.7.

f ′(xi) =
1

h
(f(xi+1)− f(xi))−

f ′′(ξ)

2!
h (3.7)

The second term of the right-hand side of equation 3.7 is the truncation error of order h, O(h).
Using equation 3.7, the value of the derivative at some point xi can be determined by knowing
the value of the function at a point xi and at the following point xi+1. This is shown by Figure
3.1(a). Similarly, a formula can be derived using a previous point to xi. Substituting in equation
3.2 a = xi and x = xi−1, letting h = xi−1 − xi and truncating the resulting equation at n = 1

yields equation 3.8 with ξ ∈]xi−1, xi[.

f(xi−1) = f(xi)− f ′(xi)h+
f ′′(ξ)

2!
h2 (3.8)

Rearranging equation 3.8 yields equation 3.9.

f ′(xi) =
1

h
(f(xi)− f(xi−1))−

f ′′(ξ))

2!
h (3.9)

Using equation 3.9 the value of the first derivative of the function is computed using the value
of the function at the previous point the actual point as shown in 3.1(b). The error estimates
associated with equations 3.7 and 3.9 are of order O(h), however, better estimates can be
determined if when deriving the expression of the derivatives of the function terms of higher-
order in the Taylor series expansion are considered. Proceeding in a similar manner, if this time
equation 3.5 is truncated at n = 2 we have:

f(xi+1) = f(xi) + f ′(xi)h+
f ′′(xi)

2!
h2 +

f ′′′(ξ1)

3!
h3 (3.10)
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with ξ1 ∈]xi, xi+1[, and

f(xi−1) = f(xi)− f ′(xi)h+
f ′′(xi)

2!
h2 − f ′′′(ξ2)

3!
h3 (3.11)

with ξ2 ∈]xi−1, xi[.

Rearranging equations 3.10 and 3.11 yields equations 3.12 and 3.13, respectively.

f ′(xi) =
1

2h
[−3f(xi) + 4f(xi+1)− f(xi+2)] +

h2

3
f ′′′(ξ) (3.12)

f ′(xi) =
1

2h
[f(xi−2)− 4f(xi−1) + 3f(xi)] +

h2

3
f ′′′(ξ) (3.13)

Similarly to equations 3.7 and 3.9, equations 3.12 and 3.13 allow to compute the derivative at
some point xi of the function however equations 3.12 and 3.13 require the knowledge of one
more point hence reducing therefore the error committed in the approximation from order O(h)

to order O(h2) thus improving the accuracy of the approximation. Additionally, another type of
finite-divided-difference formula can be derived from subtracting equation 3.11 from equation
3.10 gives equation 3.14.

f(xi+1)− f(xi−1) = 2f ′(xi)h+
h2

6
f ′′′(ξ) (3.14)

Hence,

f ′(xi) =
1

2h
[−f(xi−1) + f(xi+1)]−

h2

6
f ′′′(ξ) (3.15)

Equation 3.15 gives the centered finite-divided-difference formula of order O(h2) depicted in
Figure 3.1(c).

Figure 3.1: Visual representation of the foward (a), backward (b) and centered (c) finite-divided
difference approximation of the first derivative of a generic function [13].
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3.2. Numerical Methods for Solving Ordinary Differential Equations

3.2 Numerical Methods for Solving Ordinary Differential Equa-

tions

A differential equation is defined as begin an equation that involves an unknown function and
its derivatives. If only one independent variable is present, the differential equation would
be classified as an ordinary differential equation (ODE) whereas if more than one independent
variable was present the equation would be called a partial differential equation (PDE).
A differential equation can often be solved through integration techniques, in which case, an an-
alytical exact solution (a function with the independent variable and parameters as arguments)
that satisfies the equality of the differential equation is found. However, many problems involve
differential equations that are non-linear and thus an exact analytical solution isn’t available. As
such a different approach may be to solve it through linearisation or through numerical methods.
Although linearisation can be used to solve differential equations its applicability is constrained
to problems where the dependent variable only assumes small values.

For example, consider the pendulum of Figure 3.2. Applying Newton’s second law to the above
system yields equation 3.16 which is a non-linear ODE.

d2θ

dt2
+
g

l
sin(θ) = 0 (3.16)

However, 3.16 can be solved through linearisation if it is considered that the pendulum only
moves a small amount from the equilibrium, in which case, it can be assumed that sin(θ) ≈ θ

and consequently equation 3.16 can be rewritten as in equation 3.17

d2θ

dt2
+
g

l
θ = 0 (3.17)

thus obtaining, this way, a linear ODE which can now be solved through analytical methods.
However, the application linearisation to non-linear differential equations is constrained when
only small displacements (from the equilibrium position) are considered. When that is not the
case numerical methods must be employed [13]. There is a wide range of numerical methods to
solve a differential equation but, in the present work, the 6th order Butcher algorithm is used
since it yields high accuracy.

Figure 3.2: Pendulum and the geometrical descriptive parameters of its motion [13].
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Butcher’s Algorithm[16]

Given the initial value x0 the states of the system in t1, t2, · · · , tk, · · · are determined by com-
puting equation 3.18.

xk+1 = xk +
1

90
(7k1 + 32k3 + 12k4 + 32k5 + 7k6) (3.18)

where

k1 = h · f (xk, uk)

k2 = h · f (xk + k1/4, uk)

k3 = h · f (xk + k1/8 + k2/8, uk)

k4 = h · f (xk − k2/2 + k3, uk)

k5 = h · f (xk + 3k1/16 + 9k4/16, uk)

k5 = h · f (xk − 3k1/7 + 2k2/7 + 12k3/7− 12k4/7 + 8k5/7, uk)

3.3 Savitzky-Golay Smoothing Filter

When in an experiment, data has to be collected, whether by direct measurements or through
analogue or electronic measuring instruments, it is often the case that random errors, commonly
known as noise, are superimposed on the collected data. Hence, to analyse the data and draw
conclusions from it one wants to reduce as much noise as possible. One method that may be
employed to reduce the noise is the moving average.

From the set of collected data one chooses an uneven numbered interval of data points ranging
from −nL to nR, where nL and nR represent the number of points to the left and to the right
of the central data point, respectively. Then their values are added, fi−nL

+ · · · + fi+nR
, and

divided by the number of points, N. The value of middle point of the interval, fi, is then
replaced by the computed average, gi, given by equation 3.19 [17, 18]

gi =

nR∑
n=−nL

cnfi+n (3.19)

where cn = 1/(nL+nR+1). To obtain the next interval of data points, the first interval is slid in
such a way that the first data point of the first interval is dropped and the data point adjacent
to the last data point of the first interval is added thus creating a new interval and then the
averaging process is repeated.

Consequently, the moving average procedure is based on the concept of convolution. Each data
value that is added in the interval is multiplied by one and then divided by the number of points
added. The set of ones multiplied is what is known as the convolution function whereas the
number of points by which the sum of products is divided by is what is known as the normalizing
factor. It is however important to notice that the experimental data, when plotted a continuous
and slowly varying smooth function, must be depicted otherwise the results obtained would be
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3.3. Savitzky-Golay Smoothing Filter

biased, that is, although the moving average will reduce the noise present in the data, if a peak
(a maximum or minimum) is present it’s height will be reduced since the same weight is given
to each data point. Furthermore, the data points must be equally-spaced contrarily some data
points would be left unchanged [17, 18].
Alternatively, in order to avoid the introduction of bias into the data set the Savitzky-Golay
Smoothing Filter may be considered. Similarly to the moving average, a convolution function,
i.e., a set of coefficients cn is determined but in such a way that the fitted function is considered
to be the best fit to the data set in accordance to the least-squares criterion. For example, if a
given cubic polynomial is to be fitted to a data set its coefficients are determined, through the
Ordinary Least Squares (OLS), in such a way that the sum of the squared values between each
observed value and the data point obtained with the estimated polynomial, at the same abscissa,
is minimized. After the polynomial coefficients are determined, the value at the centre of the
interval is computed and it then replaces the corresponding observed value. The window is then
slid as in the moving average procedure. Hence, in this way for every interval, it is necessary
to compute a new set of coefficients for a given polynomial which would be a burdensome and
time-consuming process.
Since performing OLS is just a means of replacing the observed value fi at the centre of the
interval by the value given by the fitted polynomial gi, a procedure using OLS can be derived
in such way that a set of coefficients is determined and then convoluted with the data values
as in the moving average procedure [17] [18]. In this way, each observed value is replaced by
a data point, using the least-squares criteria, without determining a new polynomial for every
interval thus making this procedure more efficient.

Consider a matrix A(nL+nR+1)×(M+1)(R), the vector of unknowns a(M+1)×1(R) and the vector of
independent terms f(nL+nR+1)×(1)(R)

A =



1 −nL · · · (−nL)M
...

...
...

1 0 · · · 0
...

...
...

1 nR · · · (nR)
M


a =


a0

a1
...
aM

 f =



fi−nL

...
fi
...

fi+nR


the normal equations are given by 3.20

(AT ·A) · a = AT · f (3.20)

or by equation 3.21

a = (AT ·A)−1 · (AT · f) (3.21)

32



3.4. Linear Regression Analysis

The dot product between the transpose of matrix A and itself, depicted in equation 3.20 and
3.21 , is given by equation 3.22.

{
AT ·A

}
ij
=

nR∑
k=−nL

AkiAkj =

nR∑
k=−nL

ki+j (3.22)

In a similar manner, the dot product between the transpose of matrix A and the vector of
observations f, depicted in equation 3.20 and 3.21 , is given by equation 3.23.

{
AT · f

}
j
=

nR∑
k=−nL

Akjfk =

nR∑
k=−nL

kjfk (3.23)

Since the coefficient cn is the component a0 when f is replaced by the unit vector en, −nL ≤
n ≤ nR, then it can be computed as in equation 3.24.

cn =
{(
AT ·A

)−1 ·
(
AT · en

)}
0
=

M∑
m=0

{(
AT ·A

)−1
}
0m

nm (3.24)

Equation 3.24 states that only one row from the inverse matrix is then necessary. A question
that may arise when applying the Savitzky-Golay Smoothing Filter is that of which length to
define the window with and that of which order to choose for the polynomial to be fitted to
the data set. Accordingly to reference [19], the window length q is always uneven numbered,
as previously stated since this algorithm always requires a data point to be at the centre of
the window. Letting p denote the order of the polynomial the window length q can then be
computed as in equation 3.25.

q = 2p+ 1 (3.25)

Furthermore, the window length q should always assume a value between seven and eleven
since if it was to assume a value less than seven the noise would not be filtered by the Savitzky-
Golay smoothing filter procedure. Conversely, if q was to assume a value greater than eleven
this procedure would filter too much noise, that is, it would distort the ”true signal”.

3.4 Linear Regression Analysis

In science and engineering it is often needed to determine, through the analysis of data, the
relationship between variables and moreover generate a model that describes and predicts the
process’s outcome where those variables interplay [20]. The analysis of data, and consequently
the attainment of a model, can be performed aided by a subfield of statistics named statistical
learning.

Statistical learning is a series of tools used for drawing conclusions from a set of data and is
divided into two different groups: supervised and unsupervised statistical learning. The first
involves the derivation of a statistical model for prediction or estimation of a quantitative or
qualitative output given one or more inputs, a problem known as regression or classification,
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respectively; whereas the latter comprises the development of a statistical model where there
are one or more inputs but there isn’t any output and consequently no prediction or estimation
is made, instead relationships are drawn from the data set by the organisation of data into clus-
ters based upon a given criteria, or by the reduction of the data’s dimensionality, a problem
known as clustering [21].

As stated previously, supervised statistical learning provides the tools with which a relationship
between an observed response Y and one or more predictors X1, X2, . . . , XK can be estimated
as in equation 3.26

Y = f (x1, . . . , xk, β0, . . . , βk) + ε (3.26)

where f represents an unknown function and the error term is a stochastic term, independent
of x and with zero mean, which implies the inexact relationship between the dependent and
independent variables.

The two main reasons for trying to assess the functional form of f is to make predictions or
inference. In the first case the main objective is to make accurate predictions of the values
which the independent variable Y can assume in the future, for example, to predict the resale
price of a vehicle given the number of kilometres travelled, the initial price and so on; in the
latter case the objective is to understand what effect a given predictor has on the outcome
variable, i.e., using the above example, what is the effect on resale price of a vehicle if the
initial price of the same vehicle is increased by a thousand euros, other things being equal.

Furthermore, statistical learning methods encompass a broad scope of methods for estimating
the functional form of f and this can be divided into two different categories: parametric
and non-parametric. The main difference between these is that parametric methods make an
assumption about the functional form of f, that is, it simplifies the problem of estimating the
functional form by reducing it to the estimation of a set of parameters. A potential disadvantage
of this approach is that the estimated functional form of f won’t match perfectly its true form.
On the other hand, if a non-parametric functional form were to be chosen the assumption of
the functional form of f is discarded and a wider variety of functional forms are available
and consequently, a better match to the data may be achieved. There are however major
disadvantages regarding non-parametric models: a far larger number of observations is required,
compared with the parametric model, in order to estimate an accurate form of f and since a
more flexible form of f may be chosen a phenomenon named overfitting may occur.

Overfitting occurs when the estimated function f represents very accurately the training data
and the noise that it contains and therefore it will fail to accurately represent new observations
made on the system of interest. For these reasons, in the present work, a parametric form for
f is chosen [21]. Additionally, since the present work only focuses on problems whose answers
are quantitative values then only regression is discussed.

Regression analysis is a set of statistical techniques used to model relationships between a re-
sponse variable (or dependent variable) and one or more explanatory variables (or independent
variables) [1, 3, 20]. Suppose that data is collected on a system of interest (commonly called
training data) where Y is the outcome random variable that depends on k independent variables
x = (x1, x2, . . . , xk).
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Since the chosen statistical learning method was regression analysis the relationship between
the dependent and independent variables can be written as described by 3.27.

Y = β0 + β1x1 + · · ·+ βkxk + ε (3.27)

The relationship is the assumed to be linear in the parameters, i.e., the partial derivatives of
the function f with respect to the parameters, ∂f

∂βi
do not depend on the parameters, βi for

i = 0, . . . , k, themselves. Then the statistical model given by equation 3.27 is therefore known
when the parameters βi are determined. The estimation of the parameters can be performed
through several different methods such as the principle of least squares, the maximum likeli-
hood, method of moments and others [22]. For the present work, only the principle of least
squares is employed in order to estimate the parameters mentioned above.

The principle of least squares, also known as the ordinary least squares (OLS), is a method for
estimating the parameters β0, . . . , βk by minimizing the squared distance between the obser-
vations and corresponding values predicted by the fitted model (estimated regression line) as
shown in Figure 3.3 [3, 22]. Henceforth, fitted model, regression line or estimated regression
line denote the same concept and are used interchangeably.

Figure 3.3: Deviation between the observations and the estimated regression model, adapted from [20].

3.4.1 Simple Linear Regression

In this subsection, it is discussed the simple linear regression model which considers a model
with one dependent variable and only one independent variable [20, 23]. Hence it is assumed
that the true relationship between the dependent variable Y and the independent variable X
may be described by a straight line (equation 3.28).

E(Y |x) = β0 + β1x (3.28)

where E(Y |x), depicted in Figure 3.4, represents the expected value of Y as a linear function
of x and the parameters β0 and β1 are known as the regression coefficients, representing the
interception of the straight line with the y-axis and the slope of line, respectively. However
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every observation of the training data do not fall precisely on fitted line (equation 3.28) and
consequently, every data point of the training data can be obtained as in equation 3.29.

Y = β0 + β0x + ε (3.29)

The term ε in equation 3.29 is the a random error term assumed to be independent and iden-
tically distributed (i.i.d) from a normal distribution with zero mean and unknown variance σ2,
i.e., N(0, σ2) [20, 22, 23].

Figure 3.4: Distribution of Y as a function of xi for the simple linear regression model, adapted from [23].

As previously stated at the beginning of section 3.4, in order to estimate the line (equation
3.28), that is, the line that represents the best fit to the training data OLS is used. Using the
least-squares principle the sum of the squared vertical deviations between the observations and
the line in Figure 3.5 is minimized. Hence to estimate the parameters the partial derivatives of
the equation describing the sum of squares of the deviations of the observations with respect
to β0 and β1 are taken and set equal to zero as described by equation 3.30 [20, 23].

Figure 3.5: Distances between the data points of the training set and the corresponding estimated data
point by the model, adapted from [23].
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L =

n∑
i=1

ε2i =

n∑
i=1

(yi − β0 − β1xi)
2 (3.30)

Taking the partial derivatives of equation 3.30 with respect to the model’s parameters yields
equations 3.31 and 3.32.

∂L

∂β0
= −2

n∑
i=1

(yi − β̂0 − β̂1xi) = 0 (3.31)

∂L

∂β1
= −2

n∑
i=1

(yi − β̂0 − β̂1xi) = 0 (3.32)

Simplifying equations 3.31 and 3.32 results in what are known as the least squares normal equa-
tions (equations 3.33 and 3.34).

nβ̂0 + β̂1

n∑
i=1

xi =

n∑
i=1

yi (3.33)

β̂0

n∑
i=1

xi + β̂1

n∑
i=1

x2
i =

n∑
i=1

yixi (3.34)

The solution to the above equations are the least squares estimators, equations 3.35 and 3.36,

β̂0 = ȳ − β̂1x̄ (3.35)

β̂1 =

∑n
i=1 yixi −

(
∑n

i=1 yi )(
∑n

i=1 xi )

n∑n
i=1 x2

i − (
∑n

i=1 xi )2

n

(3.36)

where ȳ =(1/n)
∑n

i=1 yi and x̄=(1/n)
∑n

i=1 xi .

Assuming, for convenience purposes, the notation described in equations 3.37 and 3.38

Sxx =

n∑
i=1

(xi − x̄)
2
=

n∑
i=1

x2i −
(
∑n
i=1 xi)

2

n
(3.37)

Sxy =

n∑
i=1

(yi − ȳ) (xi − x̄) =

n∑
i=1

xiyi −
(
∑n
i=1 xi) (

∑n
i=1 yi)

n
(3.38)

equation 3.36 can be rewritten as

β̂1 =
Sxy
Sxx

(3.39)
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Then, the estimated fitted line on the training data assumes the functional form of equation
3.40.

ŷ = β̂0 + β̂1x (3.40)

For particular values of xi and yi equation 3.40 is written as in equation 3.41.

yi = β̂0 + β̂1xi + ei (3.41)

3.4.2 Multiple Linear Regression

The multiple linear regression model is an extension of the simple linear regression model where
two or more independent variables are considered. The general form of a model with k inde-
pendent variables is given by

Y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε (3.42)

where β0, . . . , βk are the regression coefficients. The coefficient β0 is the bias term of the model
and the remaining regressions coefficients, β1, . . . , βk, are called the partial regression coeffi-
cients which measure the expected change in the dependent variable Y per unit change in a
particular independent variable while all the other independent variables remain constant [20].
The equation 3.42 produces an hyperplane in the k-dimensional space of the independent vari-
ables. The shape of the fitted regression function may be non-linear but the multiple regression
model is considered to be linear as long as the model is linear in the parameters as stated at
the beginning of section 3.4.

In the previous subsection 3.4.1 the OLS method was derived from a calculus point of view.
However, in the case of multiple regression, it will be derived from the perspective of linear
algebra since computations are greatly eased using matrix notation [20].

For n observations the equation 3.42 can be written in matrix form as [20]

Y = Xβ + ε

with

Y =


y1

y2
...
yn

 X =


1 x11 x12 . . . x1k

1 x21 x22 . . . x2k
...

...
...

. . .
...

1 xn1 xn2 . . . xnk

 β =


β0

β1
...
βk

 ε =


ε0

ε1
...
εk


where X is the design matrix, β is the vector of parameters and Y is the vector of observations
[24]. The system of equations Y = Xβ is consistent if and only if a vector y is in the span spanned
by the columns of X, i.e., if y is a linear combination of the columns X. However, when the
matrix X has more rows than columns, that is, there are more equations than unknowns this
matrix equation doesn’t have a solution. Nevertheless there are still problems that require a
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solution even though the corresponding matrix equation Y = Xβ is inconsistent so in order
to solve such a system of equations it is needed to find a vector in the column space of the
matrix X that is the best approximation of the vector y, i.e., it is necessary to find the least-
squares solution of the system of equations. Consequently the least-squares problem consists
in minimizing ∥Y −Xβ∥ [24, 25]. However, before proceeding any further the concept of best
approximation needs to be first defined.

The Best Approximation Theorem Let W be a subspace of Rn, let y be any vector in Rn, and
let ŷ be the orthogonal projection of y onto W . Then ŷ is the closest point in W to y, in the
sense that

||y − ŷ|| < ||y − v||

for all v in W distinct from ŷ [26].

Hence, the best approximation theorem states that the vector in W that is the closest, i.e.,
which is the best approximation to the vector y is the unique vector inW that is the orthogonal
projection of the vector y onto W , denoted by ŷ in Figure 3.6.

Figure 3.6: The orthogonal projection of y onto W , ŷ, is the closest point in W to y, adapted from [26].

Since ŷ is in the Col X the matrix equation Xβ = ŷ is consistent and the vector β̂ is the least
squares solution of matrix equation Y = Xβ if and only if Xβ̂ = ŷ as depicted in Figure 3.7 [26].
Also notice that y −Xβ̂ is orthogonal to each column of matrix X and considering that xk and
xTk represent the kth column and a row of matrix X, respectively, then xk · (y − Xβ̂) = 0 and
xTk (y −Xβ̂) = 0. Since xTk is a row of the transpose matrix X then it can be written that

X T (y −Xβ̂) = 0 (3.43)

Figure 3.7: The least-squares solution β̂ is in Rn [26].
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Multiplying the terms on the left-hand side of equation 3.43 yields ultimately equation 3.46.

XT y −XTXβ̂ = 0 (3.44)

XTXβ̂ = XT y (3.45)

XTXβ = XT y (3.46)

The matrix equation 3.46 is a system of equations known as the normal equations. Further
developing equation 3.46 yields the least squares solution of Y = Xβ, denoted by β̂, and given
by equation 3.47.

β̂ =
(
XTX

)−1
XT y (3.47)

3.4.3 Radial Basis Functions

At the beginning of this chapter statistical learning methods and the choice of parametric and
non-parametric forms were briefly discussed. The choice of a parametric form may compromise
predictive power since it restricts the functional form of a chosen model to be linear. On the
other hand, if a non-parametric functional form were to be chosen higher predictive power
may be achieved, however, at the expense of loss of interpretation ability. Nonetheless, a
parametric model can be extended so a higher predictive model may be attained while still
retaining the most of the interpretation ability [21]. In order to implement this approach the
independent variables in equation 3.42 can be replaced, that is, transformed by basis functions,
φ1(·), φ2(·), . . . , φk(·), described by equation 3.48.

Y = β0 + β1φ1(x) + β2φ2(x) + · · ·+ βkφk(x) + ε (3.48)

Once the basis functions are chosen the coefficients of the regression model can be computed
using OLS just as discussed in the previous subsections. For the present work as a basis function
it will be chosen a specific type of radial basis functions. Radial basis functions were first used
in the nineteen-sixties to interpolate scattered data [27] and display a good performance when
the interpolation function is itself a function of many parameters or variables [28]. These are
defined by a large dataset giving the same values as the original data at the same location
being its behaviour between the original scattered data dependent on the type of radial basis
function chosen to perform the interpolation [27]. The interpolation function to be fitted into
the scattered data, s, can be written as

s(x) =

N∑
i=1

γi φ (∥x− xk∥) (3.49)

where

• s(·) is a scalar function;

• γi is the relative weight of the source points;
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• φ(·) is a function depicting the radial interaction between the evaluation points and source
points;

• x is a evaluation point;

• xk is a source point.

The radial interaction function φ(·) evaluates therefore the euclidean distance between a point
x with a data centre (source point), xk. In a two-dimensional plane this interaction could be
described as in Figure 3.8.

Figure 3.8: Interaction between a point x and several source points xk [27].

For the scalar function s(·) it can be chosen one of several types of radial basis functions. For
example, a Gaussian 3.50, an exponential 3.51, a multiquadric 3.52, an inverse multiquadric
3.53, among others radial basis functions.

Gaussian

φ(x) = exp

(
−∥x− xk∥2

2σ2

)
(3.50)

Exponential

φ(x) = exp

(
−∥x− xk∥

2σ2

)
(3.51)

Multiquadric

φ(x) =

√
σ2 + ∥x− xk∥2 (3.52)

Inverse Multiquadric

φ(x) =
1√

σ2 + ∥x− xk∥2
(3.53)
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Although radial basis function started out as an interpolation method there are a few situations
in which they can be employed in a regression set-up. In the case of interpolation the number
of centres (source points), xk, of radial basis function and the number of scattered points in
the n-dimensional plane are the same whereas in the case of regression the number of cen-
tres is usually inferior to that of scattered points which consequently implies an error in the
approximation. Despite this error, regression may be preferred over interpolation since it dis-
plays a better performance when compared to interpolation when the data set is corrupted by
noise and, additionally, it also reduces computability effort since the size of the design matrix
would be reduced compared with its interpolation counter-part [27]. For these reasons only re-
gression is considered and the multiquadric radial basis functions are chosen for basis function.
Consequently equation 3.48 can be rewritten as

Y = β0 + β1

√
σ2 + ∥x− x1∥2 + β2

√
σ2 + ∥x− x2∥2 + · · ·+ βk

√
σ2 + ∥x− xk∥2 + ε (3.54)

or in matrix equation form


1

√
σ2 + (x0 − x1)2

√
σ2 + (x0 − x2)2 . . .

√
σ2 + (x1 − xN )2

1
√
σ2 + (x1 − x1)2

√
σ2 + (x1 − x2)2 . . .

√
σ2 + (x2 − xN )2

...
...

...
. . .

...
1
√
σ2 + (xN − x1)2

√
σ2 + (xN − x2)2 . . .

√
σ2 + (xN − xN )2




β0

β1
...

βN+1

 =


y1

y2
...
yN

 (3.55)

3.4.3.1 Choice of the Shape Parameter

After the selection of the particular radial basis functions, in the present work the multiquadric
is chosen, perusing equation 3.52 one realizes that the term σ is yet to be defined. The latter is
known as the shape parameter of the multiquadric RBF. For example, Figure 3.9 depicts equation
3.52 for different values of σ. It can be seen that as the value of σ increases the multiquadric
RBF gets narrower. In conclusion, different values of σ will ultimately yield different predicted
values. Having this, one may choose to base the choice of the shape parameter upon given
criteria. For the present work, σ will be chosen accordingly to the minimization of the RMSE,
i.e., the σ chosen is the one which minimizes the distance between the data values and the
data values predicted by 3.54.

Figure 3.9: Effect of sigma in the multiquadric RBF’s shape.
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3.4.4 Accessing the Model’s Accuracy

In order to assess the accuracy of the estimated model, it is required that a formal and pragmatic
analysis are performed.

3.4.4.1 Formal Analysis

The significance of the regression, i.e., the quality of adjustment of the fitted model can be
determined through a method named analysis of variance (ANOVA) which is based upon on the
partition of the total variation present in the dependent variable of the fitted model. Figure
3.10 depicts a data set whereupon the mean of the data is fitted as a model. The total sum of
the squared distances, SST , between each observation (data point) and the corresponding data
point on the model describes the total variation present in the dependent variable Y [20, 29].

Figure 3.10: Total sum of squares [23].

Perusing Figure 3.11 it is seen that another model (in this case a first-order polynomial) is fitted
to the data set. Similarly as before, the sum of squared distances between the data points and
the corresponding data points of the first-order polynomial describes the amount of variability
present in Y that is accounted by this model, that is, the amount of variability by which the
variability in Y is eliminated when this model is used to predict Y [20, 29].

Figure 3.11: Regression sum of squares [23].
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On the other hand Figure 3.12 depicts the sum of squared distances, SSE, between the first-
order polynomial of the mean of the data set, or in other words, it accounts for the amount of
variability in Y that is unknown, i.e., that cannot be predicted by the first-order polynomial
[20, 29].

Figure 3.12: Error sum of squares [23].

Therefore, the total amount of variability in the independent variable Y equals the sum be-
tween the variability in Y explained by the regression model and the variability in Y that is
not accounted by the regression model. Hence, the previously described relationship can be
written mathematically as described by equation 3.56. This equation is known as the analysis
of variance identity [20].

SST = SSR + SSE (3.56)

The individual terms in equation 3.56 are computed as in equations 3.57 and 3.58.

SSR =

N∑
i=0

(
ŷ(i) − ȳ

)2
=
(
ŷ(0) − ȳ

)2
+
(
ŷ(1) − ȳ

)2
+
(
ŷ(2) − ȳ

)2
+ · · ·+

(
ŷ(N) − ȳ

)2
(3.57)

SST =

N∑
i=0

(
y(i) − ȳ

)2
=
(
y(0) − ȳ

)2
+
(
y(1) − ȳ

)2
+
(
y(2) − ȳ

)2
+ · · ·+

(
y(N) − ȳ

)2
(3.58)

The mean of the observations, ȳ, in equations 3.57 and 3.58 are computed as described by
equation 3.59.

ȳ =
1

N + 1

N∑
i=0

y(i) =
y(0) + y(1) + y(2) + · · ·+ y(N)

N + 1
(3.59)

The assessment of the adequacy of the regression model is then measured, using the above
quantities, by the coefficient of determination R2 defined as in equation 3.60.

R2 =
SSR
SST

= 1− SSE
SST

(3.60)
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The coefficient of determination measures the amount of variation present in the data set that
is explained by the regression line, plane or hyperplane with respect to the whole data set
[20, 29]. Since R2 denotes a proportion it assumes a value between zero and one; if it assumes
a value close to one then the fitted model explains a large amount of variability present in the
dependent variable whereas a value near zero suggests that the regression model only explains a
very small amount of the variance present in Y [21]. Apart from this statistic another commonly
used measure of the accuracy of prediction of the regression model is the mean square error
(MSE) given by equation 3.61.

MSE =
1

N + 1

N∑
i=0

(
y(i) − ŷ(i)

)2
(3.61)

The MSE represents the average value of the squared distances between the observed values
and the correspondingly predicted ones. Hence the lower values of MSE correspond to more
accurate predictions. Conversely, MSE will assume larger values as the predicted values and the
values of the observations diverge [21]. However, if the individual errors were to double the
MSE would quadruple due to the squaring operation in equation 3.61 thus making this measure
more difficult to interpret. On the other hand, if MSE is squared rooted then a new measure
named root mean square error (RMSE), equation 3.62, can be used instead of using the MSE [30].

RMSE =

√√√√ 1

N + 1

N∑
i=0

(
y(i) − ŷ(i)

)2
(3.62)

The RMSE, as opposed to the MSE, exhibits a linear relationship between itself and the individual
errors in the sense that doubling the individual errors doubles the RMSE thus making it a more
interpretable measure relative to the MSE. However, the RMSE is constrained to the units of
measure used in the problem where it is computed from, i.e., if two different values of RMSE
are to be compared then the units must be the same [30]. In order to overcome this constrain
the RMSE can be divided by the mean of the observations as in equation 3.63.

σ̃ (y, ŷ) =
RMSE

ȳ
(3.63)

Equation 3.63 represents the relative RMSE, denoted by σ̃ (y, ŷ), but it can only be used if every
single observation is greater than zero. If at least one observation equals or is less than zero
equation 3.64 is used instead.

σ̃ (y, ŷ) =

√√√√ 1

N + 1

∑N
i=0

(
y(i) − ŷ(i)

)2∑N
i=0

(
y(i) − ȳ

)2 (3.64)
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As an alternative to the relative RMSE the mean absolute percent error (MAPE), equation 3.65,
can be used.

σ̃ (y, ŷ) =

√√√√ 1

Ñ

∑
i:y(i) ̸=0

∣∣∣∣y(i) − ŷ(i)

y(i)

∣∣∣∣ (3.65)

If these above defined measures verify the conditions described by equation 3.66 the formal
analysis is considered to be ”very good”.

R2 > 0.8 or σ̃ (y, ŷ) ≤ 0.1 (3.66)

However, in order to fully conclude that the regression model is adequate, the formal analysis
must be complemented by the pragmatic analysis and, additionally, it shouldn’t be used as a
standalone form of assessing the model’s adequacy [19].

3.4.4.2 Pragmatic Analysis

The pragmatic analysis of the linear regression procedure consists of computing a previously
chosen performance measure on different data sets. In the present work three data sets are
used: a training set, a test set and a global set. The reason why this is so is as follows.

Let us consider that an experiment is conducted and data is recorded every five seconds and it
is required to fit a model to the collected data. However, the fitted model must have a good
prediction capability, i.e., not only it is required that the model performs well on the available
data but that it also performs well on yet unknown data (future data). Consequently, the data
set of collected data may be partitioned into a training set and a test set, where the model can
be trained on the first set and its prediction ability can be tested on the latter. However, if two
different models were to be fitted and compete among themselves a question that may arise
is that of which of the previously mentioned data set (training and test sets) to compare the
model’s performance measure on. If the performance measures of the respective models were
computed and compared based upon the training set then the performance measure computed
on the test set would be considered as an unbiased estimate of the expected future performance,
which constitutes a very good property. But, if this approach were to be followed and if the
observed data were corrupted by noise then a problem might occur.

Consider that a model A will perform averagely and a model B will have an excellent perfor-
mance. This naturally leads up to the conclusion that the second model is better with respect
to the first model. However, by definition the noise patterns are not repeatable, that is, they
aren’t expected to occur again in the future. Consequently, since model B will learn the noise it
will overfit the data. As a consequence, its performance, in the future, will probably be inferior
to the performance of the model A. This fact introduces a training bias. On the other hand, if
the comparison of the performances measures were based upon the test set a selection bias
would be introduced instead.

Consequently, if the models are compared on the training set overfitting will probably occur and
if they are compared based upon the test set then we no longer will have an unbiased estimate
of the expected future performance. Then, in order to overcome both training and selection
bias, the original set of observed data is partitioned not into two but three data set: a training
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set, a test set and a validation (global) set. This way the models are trained on the training
set which will introduce training bias as previously discussed; then, unbiased estimates of the
performance measure can be computed on the validation set and the model which presents the
best figure is the chosen one. However, its measure will still be amplified by the selection bias.
So to eliminate the selection bias the selected model is evaluated on the test set. The resulting
figure of this analysis is an unbiased estimate of the future capabilities of the selected model
[31].

Thus to conduct the pragmatic analysis the relative errors, previously discussed in this section,
are computed on all three data sets as described in equation 3.67 through 3.69.

0 ≤ σ̃0 (y, ŷ) ≤ 0.1 (3.67)

0 ≤ σ̃I (y, ŷ) ≤ 0.2 (3.68)

0 ≤ σ̃II (y, ŷ) ≤ 0.1 (3.69)

In the above equations, σ̃0 represents the relative error computed on the training set, σ̃I is
the relative error computed on the test set and, finally, σ̃II is the one computed on the global
(validation) set. It is, however, important to notice that the validation set corresponds to the
original data set of observed data whereas the training set will represent from 70% up to 80%
and the test set represents from 20% up to 30% [19]. For the present work, a proportion of 70%
and 30% is chosen for performing the pragmatic analysis in the next chapter.
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Chapter 4

Validation

In the present chapter numerical simulations are performed using Python 3.6.7 and the results
obtained are presented. Python is a general-purpose programming language, clear and object-
oriented, which includes a standard library that supports common programming tasks, e.g.,
connecting to web servers, reading and modifying files and others. It can also be extended
through the addition of modules in compiled language [32]. A few modules were used in the de-
velopment of the numerical simulations presented in this work such as ”NumPy”, ”SciPy library”
and the ”matplotlib”. ”NumPy” is a scientific package used for scientific computing where n-
dimensional arrays objects, linear algebra, among other tools are available [33]. In turn, ”SciPy
library” is a collection of numerical algorithms with applications in fields like signal processing,
statistics and others [34]. The module ”matplotlib” is used in Python to produce publication-
quality 2D Figures [35]. As previously mentioned in the introduction, the main objective of this
dissertation is the development of two identification methods for determining the longitudinal
equations of motion in state-space form for a sufficiently generic airplane given that flight data
is available or, in other words, the objective is to find all elements of the state matrix A and of
the input matrix B in matrix equation 4.1.


u̇

ẇ

q̇

θ̇

 =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 1 0



u

w

q

θ

+


b1

b2

b3

0

 η (4.1)

In the next couple sections different methods will be presented where, from flight data for a
given airplane, the above state matrix A and the input B are determined.

4.1 Method 1: Based on Savitzky-Golay Smoothing Filter

As previously stated, the state and control matrices for a given airplane are to be determined
from existing flight data. Hence, from reference [6] the longitudinal equations of motion in
state-space form for a particular airplane are selected and depicted in matrix equation 4.2.


u̇

ẇ

q̇

θ̇

 =


7.181× 10−4 4.570× 10−3 −29.072 −9.678

−0.0687 −0.2953 174.868 −1.601

1.73× 10−3 −0.0105 −0.4462 1.277× 10−3

0 0 1 0



u

w

q

θ

+


1.041

−6.294

−4.888

0

 η (4.2)

The above matrix equation 4.2 is composed of four ordinary differential equations whose solution
can be found through the application of a numerical method for solving ODEs. However, to
specify the solution four initial conditions are needed. For demonstration purposes, it is assumed
the initial conditions in equation 4.3.
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x(0) =


u(0)

w(0)

q(0)

θ(0)

 =


5

0

0.8

0

 (4.3)

Furthermore, different inputs on the control variable η are entered as times elapses, as de-
scribed on the piecewise function 4.4 and as depicted on Figure 4.1.

η(t) =



0◦ if 0 ≤ t < 20

10◦ if 20 ≤ t < 40

−10◦ if 40 ≤ t < 60

0◦ if 60 ≤ t < 80

10◦ if 80 ≤ t < 100

−10◦ if 100 ≤ t < 110

0◦ if 110 ≤ t < 120

(4.4)

Figure 4.1: Elevator deflection as function of time.

Consequently, a numerical simulation is carried out, using Butcher’s algorithm (equation 3.18),
which yields the flight data in table 4.1. Note that the data depicted in table 4.1 is only partially
shown due to space constraints and the same applies to subsequent tables throughout this work.

t u w q θ

0 5 0 0.8 0
0.01 4.76762 1.39038 0.79645 0.00798
0.02 4.53558 2.77039 0.79277 0.01593
...

...
...

...
...

119.98 153.09193 24.00607 0.08779 2.08373
119.99 152.86693 23.95012 0.08756 2.08461

Table 4.1: Flight Data
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Plotting the flight data in table 4.1 against time generates the four different graphs shown in
Figures 4.2 through 4.5.

Figure 4.2: Longitudinal Speed, u. Figure 4.3: Vertical Speed, w.

Figure 4.4: Pitch Rate, q. Figure 4.5: Pitch Angle, θ.

However, the acquisition of data in a real-world environment would yield data corrupted by
noise. In order to introduce noise, it is imported from the Python’s module ”Numpy” the follow-
ing function random.normal(µ, σ, size). For instance, let a vector v be defined as in equation
4.5 where µ represents the mean of a normal distribution, σ is the standard deviation and the
size denotes the length of the of vector v.

v = random.normal(µ, σ, size) (4.5)

For the present work, it is assumed that the noise comes from a normal distribution with zero
mean and standard deviation of one. Consequently, it follows that equation 4.5 can be rewritten
as equation 4.6.

v = random.normal(0, 1, 12000) (4.6)
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Then, four different vectors, appropriately scaled, are created as described by equations 4.7
through 4.10.

v1 = 0.1× v (4.7)

v2 = 0.2× v (4.8)

v3 =
2π

180
× v (4.9)

v4 =
2π

180
× v (4.10)

These are then added to their corresponding state variable’s data on table 4.1, that is, u+ v1,
w + v2, q + v3 and θ + v4 thus obtaining, in table 4.2, flight data corrupted by noise.

t uN wN qN θN

0 4.92335 -0.15330 0.77324 -0.01338
0.01 4.86374 1.58262 0.83000 0.02476
0.02 4.68121 3.06166 0.84360 0.04135
...

...
...

...
...

119.98 153.11636 24.05492 0.09632 2.08799
119.99 152.82513 23.86651 0.07297 2.07731

Table 4.2: Noisy Flight Data

In order to grasp ’how much’ noise is added into the flight data four different plots, Figure 4.6
through 4.9, are given, each one representing a state variable against time and the corrupted
state variable’s data against time.

Figure 4.6: Longitudinal Speed, u, and Noisy
Longitudinal Speed, uN .

Figure 4.7: Vertical Speed, w, and Noisy Vertical
Speed, wN .

Having obtained the noisy flight data, it is now necessary to filter out the noise. To do so the
”Savitzky-Golay Smoothing Filter” is applied. Consequently, from the module ”SciPy library”,
the function savgol_filter is used to filter out the noise previously added to the flight data.
In order to do so, this function is applied to the last four columns of table 4.2. Besides the
selection of data to be filtered, the savgol_filter function requires the user to insert which
window length to be used as well as the degree of the polynomial. In order to choose both
parameters, the information presented in the final part of section 3.3 is recalled.
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Figure 4.8: Pitch Rate, q, and Noisy Pitch Rate, qN .
Figure 4.9: Pitch Angle, θ, and Noisy Pitch Angle,

θN .

It is stated that the window length should contain between seven and eleven data points and
that the window length value is twice the degree of the polynomial’s value plus one. As such and
considering the constraint imposed on the number of data points enclosed by the window the
degree of the polynomial can be readily determined. Consequently, there are three different
choices:

• 1st: Choose a window of length 7 and a polynomial of degree 3;

• 2nd: Choose a window of length 9 and a polynomial of degree 4;

• 3rd: Choose a window of length 11 and a polynomial of degree 5.

q p uRMSE wRMSE qRMSE θRMSE

7 3 0.05795 0.11590 0.02023 0.01011
9 4 0.06471 0.12941 0.02259 0.01129
11 9 0.05794 0.11587 0.02022 0.01011

Table 4.3: RMSE for different combinations of window length and polynomial degree (the minimum RMSE
are written in red)

Hence a criterion must be established in order to choose between the three above possibili-
ties. Since the noiseless flight data is available in table 4.1 one criteria could be to minimize
the distance between the noiseless flight data and the filtered flight data. As such, a metric
previously defined in sub-subsection 3.4.4.1 is chosen, namely the RMSE metric. Consequently,
each state variable’s data in table 4.2 is filtered three times, each time corresponding each
possible choice of the values of the parameters as presented above resulting in twelve RMSE
values which are then displayed in table 4.3 where the minimum values of RMSE are written in
red. The final choice of parameters for each state variable’s data is the one that minimizes the
chosen criteria. For the present problem, the filtered flight data uF , wF , qF and θF , where the
”F” subscript denotes filtered data, is obtained by choosing a window length containing eleven
data points and a polynomial of degree 9 for all the state variables u, w, q and θ. The filtered
flight data is shown in table 4.4.
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t uF wF qF θF

0 4.90389 -0.19221 0.76645 -0.01677
0.01 4.92887 1.71288 0.85274 0.03613
0.02 4.62058 2.94040 0.82244 0.03076
...

...
...

...
...

119.98 153.07937 23.98094 0.08341 2.08154
119.99 152.83247 23.88118 0.07553 2.07859

Table 4.4: Filtered Flight Data

Plotting the filtered flight data against time yields Figures 4.10 through 4.13. Afterwards, it is
necessary to differentiate the filtered data as follows: for t = 0 s the equation 3.12 is applied,
the derivative at t = 119.99s is computed through equation 3.13 and for the rest of data between
equation 3.15 is employed. This yields the time derivative flight data as shown in table 4.5.

Figure 4.10: Longitudinal Speed, u, and Filtered
Longitudinal Speed, uF .

Figure 4.11: Vertical Speed, w, and Filtered Vertical
Speed, wF .

Figure 4.12: Pitch Rate, q, and Filtered Pitch Rate,
qF .

Figure 4.13: Pitch Angle, θ, and Filtered Pitch Angle,
θF .
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t u̇ ẇ q̇ θ̇

0 19.16037 181.78979 14.45753 8.20299
0.01 -14.16552 154.64518 2.79933 2.37694
0.02 -33.03124 132.94064 -3.81196 -0.92577
...

...
...

...
...

119.98 -22.34215 -3.09595 0.03105 0.11518
119.99 -27.03853 0.67917 -1.60729 -0.70438

Table 4.5: Time Derivatives of the Filtered Flight Data

It is now necessary to do three different linear regressions using OLS. Each regression has a
common design matrix M12000×5, matrix (equation 4.11), having the filtered flight data as the
first four columns and as for the fifth column the input vector η, i.e., the elevator deflection’s
data.

M =



4.90389 −0.12839 0.76645 −0.01677 0

4.92887 1.55378 0.85274 0.03613 0

4.62058 2.96451 0.82244 0.03076 0
...

...
...

...
...

153.07937 23.92288 0.08341 2.08154 0

152.83247 23.91079 0.07553 2.07859 0


(4.11)

Having defined the matrixM, the three unknown vectors to be determined are composed by the
elements of the state matrix A and of the input matrix B. Let xi denote the unknown column
vectors with i = 1, · · · , 3. Then the three coefficient column vectors are represented as

x1 =
[
a11 a12 a13 a14 b1

]T
...

x3 =
[
a31 a32 a33 a34 b3

]T
Subsequently, three linear regressions are performed, as discussed in section 3.4.2, using as
observation vectors the columns u̇, ẇ, q̇ and θ̇ in the table 4.5. The unknown vectors are
computed as follows:

x1 =
(
MTM

)−1
MT [u̇]

...

x3 =
(
MTM

)−1
MT [q̇]

where [u̇] and [q̇] represent the vectors, whose values correspond to u̇ and q̇ for all samples, thus
yielding all the elements of matrix equation 4.12
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
u̇

ẇ

q̇

θ̇

 =


1.910× 10−4 5.379× 10−3 −28.436 −9.658

−0.0667 −0.2985 172, 410 −1.692

1.69× 10−3 −0.0104 −0.3989 2.216× 10−3

0 0 1 0



u

w

q

θ

+


2.152

−10.795

−4.807

0

 η (4.12)

Comparing matrices equations 4.2 and 4.12 it can be seen that some elements assume a numer-
ical value closer to their corresponding values in matrix equation 4.2 than others. However,
a proper analysis must be carried out and, consequently, the analysis procedure presented in
subsection 3.4.4 is performed. In sum, there are three separate analysis for the three linear
regressions just performed to be conducted, each one subdivided into a formal and a pragmatic
analysis as described in subsection 3.4.4.

4.1.1 First Regression Analysis

Formal Analysis

The results obtained through performing the formal analysis are the following:

ȳ = 1.233 R2 = 0.968

SSR = 3967447.141 RMSE = Not Applicable
SST = 4096587.586 σ̃ = 0.002

The measure RMSE assumes ’Not Applicable’ due to the fact that at least one observation values
equal or is less than zero which implies, as seen in subsection 3.4.4, 3.64 is computed rather
than equation 3.63 thus defeating the purpose of computing RMSE. The same reasoning is applied
in the forthcoming analysis whenever RMSE depicts ”Not Applicable”. Analysing the results
obtained above it can be seen that both conditions are shown in 3.66 are verified and as such the
first regression passes the formal analysis and it is considered to be ”very good”. Subsequently,
pragmatic analysis is performed.

Pragmatic Analysis

Since that the first regression performed previously passed the formal analysis, that is, it was
considered as ”very good” linear regression then the pragmatic analysis is readily conducted
and the following results were obtained:

σ̃0 (y, ŷ) = 0.002

σ̃I (y, ŷ) = 0.002

σ̃II (y, ŷ) = 0.002

Comparing these results with the conditions given in sub-subsection 3.4.4.2 one sees that all
the three relative errors above verify the established conditions of equations 3.67 through 3.69.
Consequently, the first linear regression also passes the pragmatical analysis and is therefore
considered to be ”excellent”.
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4.1.2 Second Regression Analysis

Formal Analysis

The results obtained through performing the formal analysis are as follows.

ȳ = 0.211 R2 = 0.943

SSR = 10671806.785 RMSE = Not Applicable
SST = 11313725.592 σ̃ = 0.002

It can be be seen that the results of second linear regression agree with the conditions given in
3.66. As such the formal analysis is considered to be ”very good”.

Pragmatic Analysis

The pragmatic analysis was conducted the following results were obtained:

σ̃0 (y, ŷ) = 0.003

σ̃I (y, ŷ) = 0.004

σ̃II (y, ŷ) = 0.002

These also agree with the conditions given sub-subsection 3.4.4.2 and consequently the second
linear regression is considered to be ”excellent”.

4.1.3 Third Regression Analysis

Formal Analysis

The results obtained through performing the formal analysis are the following:

ȳ = −0.005 R2 = 0.045

SSR = 709.386 RMSE = Not Applicable
SST = 15845.536 σ̃ = 0.009

It can be seen that the results of third linear regression agree with those stated in 3.66. As such
the formal analysis is considered to be very good.

Pragmatic Analysis

The pragmatic analysis was conducted the following results were obtained:

σ̃0 (y, ŷ) = 0.011

σ̃I (y, ŷ) = 0.006

σ̃II (y, ŷ) = 0.009
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The above results are also in agreement with the conditions previously defined which conse-
quently leads the conclusion that the third linear regression is excellent.

4.2 Method 2: Based on Multiquadric Radial Basis Functions

As for the first method, presented earlier, the objective of the second method is also the esti-
mation of the elements of the state and input matrices of matrix equation 4.2 (here reproduced
for convenience purposes).


u̇

ẇ

q̇

θ̇

 =


7.181× 10−4 4.570× 10−3 −29.072 −9.678

−0.0687 −0.2953 174.868 −1.601

1.73× 10−3 −0.0105 −0.4462 1.277× 10−3

0 0 1 0



u

w

q

θ

+


1.041

−6.294

−4.888

0

 η (4.13)

As stated previously the above matrix equation is composed by four ordinary differential equa-
tions whose solution is found by applying Butcher’s algorithm (equation 3.18) with the initial
conditions described in equation 4.14,

x(0) =


u(0)

w(0)

q(0)

θ(0)

 =


5

0

0.8

0

 (4.14)

and with inputs (elevator deflections) defined by by the piecewise function 4.15.

η(t) =



0◦ if 0 ≤ t < 20

10◦ if 20 ≤ t < 40

−10◦ if 40 ≤ t < 60

0◦ if 60 ≤ t < 80

10◦ if 80 ≤ t < 100

−10◦ if 100 ≤ t < 110

0◦ if 110 ≤ t < 120

(4.15)

Additionally Figure 4.14 shows the control variable η against time.

Similarly to the first method, a numerical simulation Butcher’s algorithm (equation 3.18) is
promptly applied and the flight data is generated. Conversely, however, the numerical simu-
lation here performed considers a time step h = 0.5s instead of the time step h = 0.01s used
in the first method. The results of the numerical simulation, that is, the flight data is shown in
table 4.6
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Figure 4.14: Elevator deflection as function of time.

t u w q θ

0 5 0 0.8 0
0.5 -5.48118 53.70860 0.49483 0.33300
1.0 -11.57355 69.34135 0.08312 0.47722
...

...
...

...
...

119.0 163.86582 26.46482 0.10283 2.03759
119.5 152.62890 23.91640 0.08742 2.08485

Table 4.6: Flight Data

and the four state variables are graphed against time in Figures 4.15 through 4.18.

Figure 4.15: Longitudinal Speed, u. Figure 4.16: Vertical Speed, w.
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Figure 4.17: Pitch Rate, q. Figure 4.18: Pitch Angle, θ.

To simulate a real-world scenario white noise is added to the flight data. In order to do so
from Numpy’s module the function random.normal(u, σ, size) is retrieved and used to define
the vector v as

v = random.normal(0, 1, 240) (4.16)

Similarly, four different vectors (equations4.17), appropriately scaled, are created as:

v1 = 0.1× v

v2 = 0.2× v

v3 =
2π

180
× v

v4 =
2π

180
× v

(4.17)

and are added to each state variable’s corresponding vector thus yielding this way the flight
data corrupted by noise in table 4.7.

t uN wN qN θN

0 4.92335 -0.15330 0.77324 -0.02676
0.5 -5.38506 53.90084 0.52838 0.36655
1.0 -11.42792 69.63262 0.13396 0.52806
...

...
...

...
...

119.0 163.78636 26.30589 0.07510 2.00985
119.5 152.65862 23.97584 0.09780 2.09523

Table 4.7: Noisy Flight Data

The flight data in the above table 4.7 is plotted against time, Figures 4.19 through 4.22, so a
visual comparison between the noiseless and corrupted flight data can be performed.
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Figure 4.19: Longitudinal Speed, u, and Noisy
Longitudinal Speed, uN .

Figure 4.20: Vertical Speed, w, and Noisy Vertical
Speed, wN .

Figure 4.21: Pitch Rate, q, and Noisy Pitch Rate, qN .
Figure 4.22: Pitch Angle, θ, and Noisy Pitch Angle,

θN .

Up until this point, the sequence of steps performed for both the first and second methods
are fairly similar. However, going further along the present method diverges from the first one.
Being the flight data, at this point, corrupted by the noise it is crucial to eliminate as much noise
as possible. On the previous method, this was achieved by using the ”Savitzky-Golay Smoothing
Filter”. Here, however, in order to remove all the noise from the flight data RBF, namely,
multiquadric RBF are used. As stated previously, in subsection 3.4.3, performing regression
using radial basis functions in order to filter out the noise of data is preferred over interpolation
using radial basis functions. However, instead of using all data points as data centres only a
smaller part (for the present problem it will only be used half of the data points) of them will be
used while the number of observations remains the same. That is, instead of using the matrix
equation 4.18 corresponding to centring a multiquadric on each data centre
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
1

√
σ2 + (0− 0)2

√
σ2 + (0− 0.5)2 . . .

√
σ2 + (0− 119.5)2

1
√
σ2 + (0.5− 0)2

√
σ2 + (0.5− 0.5)2 . . .

√
σ2 + (0.5− 119.5)2

...
...

...
. . .

...
1
√
σ2 + (119.5− 0)2

√
σ2 + (119.5− 0.5)2 . . .

√
σ2 + (119.5− 119.5)2

 (4.18)

as depicted in Figure 4.23

Figure 4.23: Multiquadric centred on every data point.

the matrix equation 4.19 is preferred corresponding to centring on only half of the data set


1

√
σ2 + (0− 0.5)2

√
σ2 + (0− 1.5)2 . . .

√
σ2 + (0− 119.5)2

1
√
σ2 + (0.5− 0.5)2

√
σ2 + (0.5− 1.5)2 . . .

√
σ2 + (0.5− 119.5)2

...
...

...
. . .

...
1
√
σ2 + (119.5− 0.5)2

√
σ2 + (119.5− 1.5)2 . . .

√
σ2 + (119.5− 119.5)2

 (4.19)

as depicted in Figure 4.24.

Figure 4.24: Multiquadric centred on half of data points.

After the choice of the design matrix, the shape parameter σ has still to be defined. Since
changing the value of sigma changes the shape of the multiquadric function as shown in sub-
subsection 3.4.3.1 it is desirable to define a criterion so that the choice of sigma is based upon
the minimization of the distance between each the noiseless flight data and the filtered flight
data. Consequently, it is defined that the sigma to be chosen in the four different regressions
are those which display the smallest RMSE and, consequently, the RMSE is computed for different
values of σ and plotted in Figures 4.25 through 4.28. Perusing these it can be seen that the RMSE
values do not change rapidly especially in the last two Figures but they decrease as σ increases
except for the case of the third regression in which the RMSE is minimum when σ assumes a
value of 0.4.
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Figure 4.25: RMSE for different values of sigma for
the case of the longitudinal speed u.

Figure 4.26: RMSE for different values of sigma for
the case of the vertical speed w.

Figure 4.27: RMSE for different values of sigma for
the case of the pitch rate q.

Figure 4.28: RMSE for different values of sigma for
the case of the pitch angle θ.

In table 4.8 a correspondence is made for the RMSE values for different values of σ for all the
state variables. The RMSE values in red represent the minimum value for each column. Hence,
in order to have the least RMSE possible, for the first, second and fourth regression a σ = 1.0 is
chosen whereas for the third regression σ = 0.4 is chosen instead.

σ uRMSE wRMSE qRMSE θRMSE

0.4 0.29451 1.47579 0.03032 0.02695
0.5 0.27809 1.37006 0.03039 0.02674
0.6 0.26583 1.29948 0.03057 0.02660
0.7 0.25567 1.24893 0.03080 0.02651
0.8 0.24669 1.20986 0.03103 0.02645
0.9 0.23847 1.17759 0.03127 0.02640
1.0 0.23085 1.14955 0.03149 0.02636

Table 4.8: RMSE for different sigmas for each one of the state variables
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Considering the definition of the design matrices and that of the shape parameter σ the matrix
equations for the four different regressions to be assumed in order to remove as much noise as
possible are as follows:

• First Regression


1

√
1.02 + (0− 0.5)2

√
1.02 + (0− 1.5)2 . . .

√
1.02 + (0− 119.5)2

1
√
1.02 + (0.5− 0.5)2

√
1.02 + (0.5− 1.5)2 . . .

√
1.02 + (0.5− 119.5)2

...
...

...
. . .

...
1
√
1.02 + (119.5− 0.5)2

√
1.02 + (119.5− 1.5)2 . . .

√
1.02 + (119.5− 119.5)2



β0

β1
...

β120

 =


uN0

uN1

...
uN239


• Second Regression


1

√
1.02 + (0− 0.5)2

√
1.02 + (0− 1.5)2 . . .

√
1.02 + (0− 119.5)2

1
√

1.02 + (0.5− 0.5)2
√

1.02 + (0.5− 1.5)2 . . .
√
1.02 + (0.5− 119.5)2

...
...

...
. . .

...
1
√

1.02 + (119.5− 0.5)2
√
1.02 + (119.5− 1.5)2 . . .

√
1.02 + (119.5− 119.5)2



β0

β1
...

β120

 =


wN0

wN1

...
wN239


• Third Regression


1

√
0.42 + (0− 0.5)2

√
0.42 + (0− 1.5)2 . . .

√
0.42 + (0− 119.5)2

1
√
0.42 + (0.5− 0.5)2

√
0.42 + (0.5− 1.5)2 . . .

√
0.42 + (0.5− 119.5)2

...
...

...
. . .

...
1
√

0.42 + (119.5− 0.5)2
√
0.42 + (119.5− 1.5)2 . . .

√
0.42 + (119.5− 119.5)2



β0

β1
...

β120

 =


qN0

qN1

...
qN239


• Fourth Regression


1

√
1.02 + (0− 0.5)2

√
1.02 + (0− 1.5)2 . . .

√
1.02 + (0− 119.5)2

1
√
1.02 + (0.5− 0.5)2

√
1.02 + (0.5− 1.5)2 . . .

√
1.02 + (0.5− 119.5)2

...
...

...
. . .

...
1
√
1.02 + (119.5− 0.5)2

√
1.02 + (119.5− 1.5)2 . . .

√
1.02 + (119.5− 119.5)2



β0

β1
...

β120

 =


θN0

θN1

...
θN239


It is now necessary to find the coefficients β for all four regressions above and as such OLS
is applied. Afterwards four different functions, each corresponding to one state variable, are
formed (equation 4.20).


uF (t) = β0 + β1

√
1.02 + (t− 0.5)2 + β2

√
1.02 + (t− 1.5)2 + · · ·+ β120

√
1.02 + (t− 119.5)2

wF (t) = β0 + β1
√

1.02 + (t− 0.5)2 + β2
√

1.02 + (t− 1.5)2 + · · ·+ β120
√
1.02 + (t− 119.5)2

qF (t) = β0 + β1
√
0.42 + (t− 0.5)2 + β2

√
0.42 + (t− 1.5)2 + · · ·+ β120

√
0.42 + (t− 119.5)2

θF (t) = β0 + β1
√
1.02 + (t− 0.5)2 + β2

√
1.02 + (t− 1.5)2 + · · ·+ β120

√
1.02 + (t− 119.5)2

(4.20)

Consequently, through these equations, the filtered flight data is obtained and is shown in table
4.9.
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t uF wF qF θF

0 4.72098 0.80464 0.74750 -0.01244
0.5 -5.22441 53.06721 0.50442 0.35371
1.0 -11.21208 68.63189 0.22790 0.50669
...

...
...

...
...

119.0 162.55428 31.65384 0.17641 2.07469
119.5 153.25591 21.31285 0.20743 2.05944

Table 4.9: Filtered Flight Data

In order to reach the final step of this method, it is necessary to determine the time derivative
of all equations given by equation 4.20. Since the general form of the used basis functions is
given by equation 4.21

φk(t) =
√
σ2 + (t− tk)2 (4.21)

deriving the above equation yields equation 4.22.

dφk(t)

dt
=

t− tk√
σ2 + (t− tk)2

(4.22)

Hence the time derivatives of equations 4.20 are defined as:



u̇F (t) = β1
t−0.5√

1.02+(t−0.5)2
+ β2

t−1.5√
1.02+(t−1.5)2

+ · · ·+ β120
t−119.5√

1.02+(t−119.5)2

ẇF (t) = β1
t−0.5√

1.02+(t−0.5)2
+ β2

t−1.5√
1.02+(t−1.5)2

+ · · ·+ β120
t−119.5√

1.02+(t−119.5)2

q̇F (t) = β1
t−0.5√

0.42+(t−0.5)2
+ β2

t−1.5√
0.42+(t−1.5)2

+ · · ·+ β120
t−119.5√

0.42+(t−119.5)2

θ̇F (t) = β1
t−0.5√

1.02+(t−0.5)2
+ β2

t−1.5√
1.02+(t−1.5)2

+ · · ·+ β120
t−119.5√

1.02+(t−119.5)2

(4.23)

From equations 4.23 the time derivative of the filtered flight data are obtained and shown in
table 4.10.

t u̇ ẇ q̇ θ̇

0 -22.98257 136.27300 -0.39782 0.90881
0.01 -16.29028 68.66303 -0.65864 0.53028
0.02 -7.44779 -3.94567 -0.86268 0.08494
...

...
...

...
...

119.98 -24.90770 4.79971 -0.08969 0.14356
119.99 -10.19205 -54.19671 0.09415 -0.25786

Table 4.10: Time Derivatives of the Flight Data

The last step is to obtain all elements of the matrix equation 4.1 for this particular problem.
Consequently, it is necessary to do three different linear regressions. Each regression has a
common design matrix M240×5 (equation 4.24) having the filtered flight data as the first four
columns and as for the fifth column the input vector η, i.e., the elevator deflection’s data.
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M =



4.72098 0.80464 0.74750 −0.01244 0

−5.22441 53.06721 0.50442 0.35371 0

−11.21208 68.63189 0.22790 0.50669 0
...

...
...

...
...

162.55428 31.65384 0.17641 2.07469 0

153.25591 21.31285 0.20743 2.05944 0


(4.24)

Having now defined the matrix M, the three unknown vectors to be determined are composed
by the elements of the state matrix A and of the input matrix B. Let xi denote the unknown
column vectors with i = 1, · · · , 3. Then the three coefficient column vectors are represented
as:

x1 =
[
a11 a12 a13 a14 b1

]T
...

x3 =
[
a31 a32 a33 a34 b3

]T
Using OLS in order to perform the linear regressions, as discussed in section 3.4.2, using as
observation vectors the columns u̇, ẇ, q̇ and θ̇ on the table 4.10 the unknown vectors are given
by computing

x1 =
(
MTM

)−1
MT [u̇]

...

x3 =
(
MTM

)−1
MT [q̇]

where [u̇] and [q̇] represent the vectors, whose values correspond to u̇ and q̇ for all samples.
The coefficients obtained by performing OLS are the resulting elements are depicted in matrix
equation 4.25.


u̇

ẇ

q̇

θ̇

 =


3.590× 10−3 3.650× 10−2 −37.638 −9.353

−0.0868 −0.4927 229.080 −3.377

1.79× 10−3 −0.0107 −0.3684 6.664× 10−3

0 0 1 0



u

w

q

θ

+


14.536

−86.699

−4.784

0

 η (4.25)

Looking at the above matrix equation it is seen that a few elements are more close to the
corresponding elements in matrix equation 4.13 than others. However, to draw any conclusions
as to the quality of any of the regressions a formal and a pragmatic analysis are carried out as
in the first method.
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4.2.1 First Regression Analysis

Formal Analysis

The results obtained through performing the formal analysis are the following:

ȳ = 1.169 R2 = 0.990

SSR = 78752.209 RMSE = Not Applicable
SST = 79548.656 σ̃ = 0.007

Perusing the results obtained above it can be seen that both condition shown in 3.66 are verified.
Therefore, it is concluded that the first regression passes the formal analysis and it is considered
to be ”very good”.

Pragmatic Analysis

The pragmatic analysis was conducted and the following results were obtained:

σ̃0 (y, ŷ) = 0.008

σ̃I (y, ŷ) = 0.013

σ̃II (y, ŷ) = 0.007

Comparing these results with the conditions given in sub-subsection 3.4.4.2 it is seen that all
three relative errors above verify the conditions describe by the equation 3.67 through 3.69.
Consequently, the first linear regression also passes the pragmatical analysis and is therefore
considered to be excellent.

4.2.2 Second Regression Analysis

Formal Analysis

The results obtained through performing the formal analysis are the following:

ȳ = 0.331 R2 = 0.889

SSR = 200638.014 RMSE = Not Applicable
SST = 225589.203 σ̃ = 0.021

It can be be seen that the results of the second linear regression analysis agree with those stated
in 3.66. As such the formal analysis is considered to be very good.

Pragmatic Analysis

The pragmatic analysis was conducted the following results were obtained:

σ̃0 (y, ŷ) = 0.023

σ̃I (y, ŷ) = 0.031

σ̃II (y, ŷ) = 0.021
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These also agree with the conditions given sub-subsection 3.4.4.2 and consequently the second
linear regression is considered to be excellent.

4.2.3 Third Regression Analysis

Formal Analysis

The results obtained through performing the formal analysis are as follows:

ȳ = −0.006 R2 = 0.823

SSR = 11.489 RMSE = Not Applicable
SST = 13.958 σ̃ = 0.027

Similarly to the first and second linear regressions cases, the third formal analysis also verifies
the conditions stated in 3.66. Hence, formal analysis is considered to be very good.

Pragmatic Analysis

The pragmatic analysis was conducted the following results were obtained:

σ̃0 (y, ŷ) = 0.031

σ̃I (y, ŷ) = 0.049

σ̃II (y, ŷ) = 0.027

The above results are also in agreement with the conditions previously defined which conse-
quently leads the conclusion that the third linear regression is excellent.
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Chapter 5

Conclusion

The present work started out with the objective of building a method which allowed to perform
system identification without incurring in errors due to the way in which flight data is obtained,
that is, given the fact of considering a natural continuous system as a discrete one. To address
this problem two distinct methods were proposed.
Firstly, it was necessary to have access to a model of an aircraft with which one could generate
flight data. After the attainment of said model, flight data was promptly generated through
an application of a method for solving ODE’s, namely Butcher’s algorithm. Subsequently, it was
necessary to reproduce as much as possible a real-life situation, meaning that when recording
flight data it is almost certain that it will be corrupted by disturbances (noise) however how
little that it may be. Consequently, a disturbance is introduced into the generated flight data.
Up until this point, both methods are similar, however, a different approach is undertaken from
this point on.
As for the first method, any analysis of the flight data requires that the noise is eliminated as
much as possible. To do so, the Savitzky-Golay Smoothing Filter was applied thus obtaining this
way the filtered flight data. All that was left was to obtain the first time derivative of the latter.
Thus, the derivation is conducted aided by numerical methods based upon the Taylor polynomial.
Consequently, linear regression was conducted and the longitudinal dynamic model was obtained
and its accuracy accessed. Afterwards, it is concluded, that even though the derivation and
smoothing were conducted in a discrete-time setting the method proposed successfully achieved
the objective.
The second method proposed diverges from the first one in a way that from the discrete fil-
tered flight data continuous functions were obtained, through the usage of multiquadric radial
basis functions, achieving this way the possibility of differentiating on a continuous setting thus
eliminating the errors mentioned in the introduction. Next, the second model was accessed
regarding its accuracy and it was concluded that it also successfully achieves the objective of
the present work.
As for future works, it would be interesting to undertake a similar approach considering non-
linear methods as opposed to the linear ones considered in the present dissertation. Further-
more, it would also be compelling to implement these methods in a real-time setting, that is,
aboard a flying aircraft.
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Appendix A

Aerodynamic Stability and Control Derivatives In
Concise Format
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