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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Etude des interactions de gros flux TCP dans des réseaux partagés à
haut-débit à l’aide de Grid’5000 et de GtrcNet-10

Résumé :Dans ce rapport, nous étudions le problème de transferts massifs de données et du partage
de bande passante dans les contextes où il est requis d’avoirdes temps de transfert bornés. Nous
présentons une étude des interactions de larges flux dans desréseaux très haut-débits et ainsi contribuer
à l’évaluation de variantes de TCP, adaptée à ce contexte, enproposant des mesures précises. Nous
donnerons aussi un aperçu du comportement de protocoles alternatifs émulé dans des environnements
expérimentaux à 10 Gbps sous diverses conditions de congestions et de latences.

Mots-clés : partage de bande passante, expérimentation de protocole detransport, prédiction de
temps de transfert total, transferts en masse de données
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1 Introduction

The data volumes of future distributed applications such asdata and computing grids, distance visu-
alisation and high-end collaborative environment are in the order of terabytes and will likely reach
petabytes in some cases. The movement of these data have demanding performance requirements
such as reliable and predictable delivery [FFR+04]. This generates specific challenges on the trans-
port protocol and its related mechanisms. The enhancement of TCP/IP is being intensively pursued
to tackle limits that classical congestion control solutions encounter in large bandwidth-delay product
environment [WHVBPa05]. A range of solutions is proposed and their properties have been anal-
ysed by simulation. However, few studies have measured the performance of these proposals in real
high speed networks [MFVBP04,C+]. It is acknowledged that more real and systematic experiments
are needed to have a better insight on the relevance of metrics, representative scenarii for protocol
evaluation and on the potential usage of these protocols in particular applications [Flo06b].

This report contributes to this challenge by exploring several high data transfer scenarii in two ex-
perimental environments: the Grid50001 testbed and the AIST GtrcNET-10-based2 testbed [KKT+04].
Grid5000, is an experimental grid platform gathering more than 3000 processors over nine geograph-
ically distributed sites in France (see figure 1), interconnected by a dedicated private high-speed net-
work [Ca05]. The particularity of this testbed is to provideresearchers with a fully reconfigurability
feature to dynamically deploy any OS image or protocol stackon any host of the testbed. The other
experimental environment we used is the GtrcNET-10-based emulated and controlled testbed con-
nected within the AIST Super Cluster. Hosts of both testbedshave similar hardware and software
configuration.

This report explores how the transport protocol enhancements could benefit to high-end appli-
cations in terms of data transfer efficiency and predictability in two environments. It is centred on
elephant-like bulk data transfers in very high-capacity (1Gbps, 10 Gbps) networks like grids are sup-
posed to benefit from today. The systematic evaluation of theprotocols in our controlled and realistic
environment provides a set of measurements of several metrics proposed by [Flo06a]. In this context,
we investigate, the different congestion control proposals as well as the fair sharing optimisation ob-
jective and their impact on the network resource utilisation and on individual application utility that
have to be simultaneously optimised.

In cluster interconnection context, hundreds of hosts may simultaneously generate large flows
through their gigabit interfaces. But as the access links between cluster networks and wide area
networks currently offer between 1 to 10 Gbps rates, they constitute a strong bottleneck that may
drastically increase the transfer delays and impact the overall distributed environment performance.
In the Internet, the endpoints’ access rates are generally much smaller (2 Mbps for DSL lines) than
the backbone link’s capacity (2.5 Gbps for an OC48 link). According to the law of large numbers,
coexistence of many active flows smoothes the variation of load, and a link is not a bottleneck unless
the load approaches its full capacity [Rob04]. To curb the load, distributed congestion control pro-
tocols such as TCP statistically share available bandwidthamong flows in a “fair” way. In contrast,
for high-end applications, the bandwidth demand of a singleendpoint (1 Gbps, say) may be com-
parable to the capacity of bottleneck link. In such a low multiplexing environment, if no pro-active
admission control is applied, a transient burst of load can easily cause active transfers have very long
duration, miss their deadline or even fail. In addition, to complete more tasks before their respective
deadlines, sharing instantaneous bandwidth fairly among all active flows is not optimal [GR06]. This

1http://www.grid5000.org
2http://projects.gtrc.aist.go.jp/gnet/gnet10p3e.html
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is the reason why researchers [?] propose to introduce access control and flow scheduling. This could
harmonise network resource management with other grid resources management and serve the global
optimisation objective. The ultimate goal of this researchis, in different scenarii, to answer questions
such as: which transport protocol to use in a given context? How many flows to schedule to obtain
minimum interaction and maximum throughput? When startingthem to avoid bad interactions during
slow start phase?...

The rest of the report is organised as follows. Section?? gives some insights on parameter space
and metrics. Scenario and experiments are described in section 3. Results are discussed in section 4.
The article concludes in section 5.

2 Methodology

When the 10 Gbps infrastructure has been set up in Grid5000, very simple experiments, that any
grid user could do, were run to see how grid applications could benefit from the deployed network.
These tests have shown very disappointing results [GHPS06]. The hosts were not able to obtain
correct throughput (45 to 100 Mbps) when competing and the aggregate throughput was very low
(about 3 to 6 Gb/s). We then choose to investigate three typesof scenario to understand these bad
results and improve them in this 10Gb/s context. This work has been inspired by the results and
methodologies proposed by [LLS06,Flo06b,HLRX06]. [Flo06b] identifies several characteristics and
describes which aspect of evaluation scenario determine these characteristics and how they can affect
the results of the experiments. This helped us in defining workloads and metrics that are going to be
presented in the following section.

2.1 Traffic characteristics

According to [Flo06b], the aggregated traffic on a link is characterised by:

a) the distribution of per-packet round-trip time

b) the file sizes

c) the packet sizes

d) the ratio between forward-path and reverse-path traffic

e) the distribution of peak flow rates

f) the distribution of transport protocols

Despite no extensive study of grid traffic exists, we assume the specific context we study here
presents the following specificities:

a) The distribution of per-packet round-trip time is multi-modal. Nodes are generally clustered, con-

sequently, several modes may appear (about
N ∗ (N − 1)

2
modes forN sites), each mode of the

distribution representing the set of given site to site connections.

b) File sizes are not exponentially distributed. For example, in Data Grid like LCG (for LHC) file
size and data distribution is defined by the sampling rate of data acquisition. The traffic profile is
then highly uniform.

INRIA
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c) Packet sizes are also mostly constant, with a large proportion of packets having the maximum size
(the Ethernet MTU).

d) The ratio between forward-path and reverse-path traffic is unknown and depends on the location
of the storage elements within the global grid.

e) Distribution of peak flow rates may also be uniform.

f) Today, most of grid applications need reliable transportand use TCP-based protocols. The distri-
bution of transport protocols is modal.

In the rest of the paper, we call these specific conditions, the "grid context". The next section presents
the various scenarii we implemented in this context to studythe interactions of large TCP flows.

2.2 Scenarii

We examine two types of features that can help users to obtaingood performance in such context:
parallel streams and TCP variants.

We investigate the two following types of scenarii:

• Range of TCP variants in the Grid5000 real testbed and in theAIST-GtrcNET10 testbed with
Grid5000 latency.

• Range of TCP variants with a range of emulated latency in theAIST-GtrcNET-10 testbed.

Different TCP variants have been proposed to improve the response function of AIMD congestion
control algorithm in high bandwidth delay product networks. All these protocols are not equivalent
and not suited for every context. We investigate here their behaviours in our "grid context" in two
different testbeds and we also provide comparison grounds between our two testbeds.

The following section describes the various parameters andmetrics that have been used to char-
acterise the behaviour of the TCP flows.

2.3 Measured parameters and metrics

We design and configure our experimental testbeds to have a direct access to the following variable
measurements during experiments:

a) Goodput usingiperf on the receiver side, that corresponds to the actual amount of bandwidth that is
available for the high-end applications, i.e. retransmissions and headers are not taken into account.

b) Aggregated throughput via the GtrcNET-10 on the 10 Gbps shared link.

c) TCP kernel variables with the Web100 patch on senders and receivers.

The parameters are evolving along the three following axis:

1) TCP variant, among {Reno, BIC, CUBIC, HighSpeed, H-TCP and Scalable}

2) RTT, ranging from 0 ms to 200 ms

3) congestion level, the ratio between the sum of sources’ access link capacity and the bottleneck size
ranging from 0 to 120 %

RR n° 6034
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Every test for a given RTT, has been repeated for a given congestion control method and for a
given number of nodes. We took great care of fine measurement precision: 0.5 s foriperf ’s goodput,
20 ms for the GtrcNET-10’s throughput and Web100’s variables. Even though we specifyiperf to
performread()/write()of 8 kB, we still observe burstiness in goodputs due to delay variation between
packets arrivals andread() returns, which explains why we sometimes observe goodput larger than
link capacity.

To analyse all the data acquired, several metrics have been used to synthetically characterise the
behaviour of different TCP variants. These metrics are:

• mean goodput:gi = 1
T

∑T
t=0 gi(t)

• aggregate goodput:G(t) =
∑N

i=1 gi(t)

• standard deviation of goodput:σ =
√

1
T

∑T
t=0(gi(t) − gi)2

• goodput distribution:{pi,k = p( k
100 ∗ 1 Gbps ≤ gi(t) < k+1

100 ∗ 1 Gbps)|k ∈ [[0; 100[[}

• fairness [JMW84]:J =
(
∑

N

i=1
gi)2

N(
∑

N

i=1
gi

2)

• aggregate throughput:X(t) =
∑N

i=1 xi(t)

whereN is the number of nodes involved in the experiment (typically12 in this report),T is the
total duration of the experiment (typically 2800 s),gi(t) theith node’s goodput over timet averaged on
the iperf sampling interval, andxi(t) theith node’s throughput over timet averaged on the GtrcNET-
10 sampling interval.

We have now defined the methodology of our research paper by describing the traffic characteris-
tics, the scenarii that will be explored and the parameters and metrics that will help us to characterise
the behaviour of TCP variants. The following section is dedicated to presenting the configurations
that were used to perform our experiments.

3 Experiment description

3.1 System and service description

We used two similar experimental systems, composed of a classical dumbbell topology with twelve
1 Gbps source workstations connected to a 10 Gbps bottlenecklink and twelve sink workstations on
the other side as described in figure 2. In the first testbed (testbed 1) (Grid5000, France), the backbone
of the Grid5000 platform is composed of a private 10 Gbps Ethernet over DWDM dumbbell with a
bottleneck at 10 Gbps between Rennes and Nancy hubs (see figure 1). The average RTT is 11.5 ms
that gives a bandwidth-delay product of 1.507 Mbytes for 1 Gbps connections.

The second testbed (testbed 2) (AIST-GtrcNET-10, Japan), is fully controlled. It is built around
the GtrcNET-10p3 equipment that allows latency emulation,rate limitation and precise bandwidth
measurements at 10 GbE wire speed. GtrcNET-10p3 is a fully programmable network testbed, which
is a 10 Gbps successor of a well-established network testbed, GtrcNET-1 [KKT+04] for 1 Gbps
Ethernet. GtrcNET-10p3 consists of a large-scale Field Programmable Gate Array (FPGA), three
10 Gbps Ethernet XENPAK ports, and three blocks of 1 GB DDR-SDRAM. The FPGA is a Xilinx
XC2VP100, which includes three 10 Gbps Ethernet MAC and XAUIinterfaces. By re-programming
FPGA configuration, its functions are easily added and modified with keeping 10 GbE wire speed.

INRIA
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Nancy
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  1 GbE Links
10 GbE Links

Orsay

Figure 1: Grid5000 backbone

GtrcNET-10p3 provides many functions such as traffic monitoring in millisecond resolution, traf-
fic shaping, traffic generation and WAN emulation at 10 GbE wire speed. In WAN emulation functions
it adds latency, controls the transmission rate from port, generates random packet losses at the spec-
ified rate. The step of adding latency is 25.6 ns and maximum latency is 54 seconds. There is no
packet loss if the latency is less than 858 ms. It also controls the transmission rate from 154 Mbps to
10 Gbps by changing IFG (Inter Frame Gap) in proportion to theframe length, so traffic is well paced.

In the testbed 2, nodes are interconnected by a layer 2 (Ethernet) switch3, like on figure 2. As it
shared by all the PCs in the testbed, separate VLANs were defined. All PCs also have a second Eth-
ernet NIC unto which all the control traffic is sent so that there is no perturbation on the experiments’
traffic. The output port of the switch acts as the bottleneck of the system.

In the testbed 1, we used Dell PowerEdge 1950 and HP ProLiant DL145G2 servers, while IBM
e-server 325 were used in thetestbed 2.

In both testbed, the nodes were all equiped with 2 AMD64 Opteron 246 on which we deployed
GNU/Linux 2.6.17 kernels patched with the Web100 [MHR03]. The Linux kernels were compiled
with HZ set to 250. The NIC used were all using thetg3driver.

Tests were performed using theiperf4 utility. We used a large enough buffer size (50 MBytes for
testbed 2and 4 MBytes fortestbed 1) on both receiver and sender buffers ofiperf5 to provision for
the various latencies we performed experiments with.

We also set the following kernel variables to tune the size ofthe TCP buffers:

net.core.rmem_max = 107374182
net.core.wmem_max = 107374182
net.core.rmem_default = 107374182

3Cisco Catalyst 4948 10GE
4version 2.0.2 compiled with gcc 3.2.2
5the value used is actually doubled by the Linux kernel

RR n° 6034
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PC
Switch Switch

10Gbps

1Gbps1Gbps
PC

Figure 2: Topology of the experiments, the cloud representseither the Grid5000 or the AIST-
GtrcNET-10 backbone

net.core.wmem_default = 107374182
net.core.optmem_max = 107374182
net.ipv4.tcp_rmem = 107374182 107374182 107374182
net.ipv4.tcp_wmem = 107374182 107374182 107374182
net.ipv4.tcp_mem = 107374182 107374182 107374182

net.core.netdev_max_backlog = 1000
net.ipv4.tcp_no_metrics_save = 1

The txqueuelenwas set to 10000 for each network interface card (NIC) to prevent any packet
losses in theqdisc, as it larger than the number of packets that we can send during a RTT period. The
*memwere set to these values accommodate the maximum intended value for the buffers requested
by iperf. Thenetdev_max_backlogvariable specifies the maximum length of the input queues forthe
processors. It has an impact on networking performance, as the buffer can only be flushed in a sched-
ule slot. As we are using a Linux timer (HZ) of 250 and 1500 bytes’ packet size, the max bandwidth
would be about 375 MBps, which is large enough to use 1 Gbps NICs. Thetcp_no_metrics_save
variable specifies that the kernel isn’t supposed to remember the TCP parameters corresponding to a
network route and so ensures the Independence of each successive experiment.

Please note that, even though we have tried to provide the best experimental environment possible,
it appears that there was a bad interaction between the Base Board Management controller firmware of
the nodes used at the AIST testbed with the firmware version ofthe NICs, which caused extra losses
in the flows and downgraded the results we might have achievedwith this testbed.

There are also two bugs with the kernel version we didn’t known about at the time we performed
our experiments, which impacted the measures we made for CUBIC and the Highspeed protocols.
For CUBIC, the congestion window was increased properly, which accounts for the bad results that
we observed under high latencies in section 4.2.1. For Highspeed, the bugs6 can cause instabilities in
certain conditions.

With this configuration and these two testbeds, we tried to provide the best situation to perform
our tests, whose results will be detailed in the following section.

6seehttp://www.cs.caltech.edu/~weixl/technical/ns2linux/known_linux/index.html

INRIA
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4 Results analysis

This section presents the results that were obtained duringour experiments following the test plan
given in section 2.2.

4.1 Single flows experiment with TCP variants

4.1.1 Experiment description

In this experiment, we evaluate different TCP variant protocols (HS-TCP [Flo03], H-TCP [SL04],
Scalable TCP [Kel03], BIC TCP [XHR04], CUBIC [RX05]) with the same latency: 11.5 ms, both on
the Grid5000 and the AIST-GtrcNET-10 testbed. This will help us in characterising how each protocol
is able to adjust for a given congestion level and how they areable to take advantage of the available
resources.

For a given TCP variant and a given RTT, the first tests series were performed as follows:

• At time 0, we start the first couple of client-server.

• A iperf client is started 4 seconds after the correspondingiperf server to prevent overlap due to
sshconnexion delay.

• Everytimer, we start a new couple till all twelve nodes are started.

• As eachiperf client is set to lastmax_duration− nb_nodes_already_started ∗ timer, they
gradually stop around timemax_duration.

The interval between each flow’s start is important to avoid flows’ interactions during their slow
start phase. In this case, we make sure that flow interactionsdo not occur during any slow start phase
by choosing atimer value that is large enough, typically 200 s here. After more than 10 nodes have
been started, we start to have congestion as we have reached the bottleneck’s size.

The next section is dedicated to present the results of this experiment and compare them in the
two testbeds used.

4.1.2 Results

For each protocol, the figures on the left shows the individual flow goodput for the first and the tenth
flow, while the corresponding figures at right gives the aggregate goodput value. The two figures
on the top correspond to the tests performed in the Grid5000 testbed, while the ones on the bottom
were done in the AIST-GtrcNET10 testbed. At this latency, all the protocols manage to fully use the
network as the max aggregate throughput is close to 9843 Mbpswhen all the nodes are present.

All the figures are displaying sharp steps (as far as the 0.5 s mean provided byiperf allow us to
see), except for Reno (figure 3), CUBIC (figure 5) and H-TCP (figure 7) protocols which are starting
to display heavy perturbations, even though there is no congestion in the system yet, starting from the
arrival of a fifth node. At the arrival of the tenth node, we start to observe a change in the behaviour
of all the protocols even though we aren’t over the nominal capacity of our network and we enter
a state where the nodes aren’t able to maintain a “stable” goodput, which might be caused by the
“background noise” caused by other users and the inter-sitecontrol traffic of the Grid5000 testbed.

We can also notice that some protocols have huge and quick individual variations in goodput such
as BIC (figure 4) or HighSpeed (figure 6), which have an impact on the mean aggregate goodput.

RR n° 6034
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Figure 3: Reno, 11.5 ms RTT
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Figure 4: BIC, 11.5 ms RTT
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Figure 5: CUBIC, 11.5 ms RTT
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Figure 6: HighSpeed, 11.5 ms RTT
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Figure 7: H-TCP, 11.5 ms RTT

 0

 200

 400

 600

 800

 1000

 1200

 1800  1850  1900  1950  2000

G
oo

dp
ut

 (
M

bp
s)

Time (s)

First Scalable flow
Tenth Scalable flow

(a) Individual goodputs in Grid5000

 0

 2000

 4000

 6000

 8000

 10000

 0  500  1000  1500  2000  2500  3000

G
oo

dp
ut

 (
M

bp
s)

T (s)

scalable Aggregate Goodput
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Figure 8: Scalable, 11.5 ms RTT
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HighSpeed(figure 6) and Scalable (figure 8) are the only protocols in our benchmark in the AIST-
GtrcNET-10 testbed that displayed a clear unfairness to thelast nodes that are started when there is
congestion in the system. For instance, the last node started in the AIST-GtrcNET-10 stays stuck at
around 400 Mbps during its whole presence in the system, whenmost of the others are emitting at
800 Mbps. Due to the randomness added by control traffic and the agitated aspect of the Grid5000
figures, it is less noticeable in the other testbed.

One of the main differences between our two testbeds is that in Grid5000, we can experience
perturbations coming from the control traffic (or even otherusers’ traffic), which might account for the
agitation that appears regularly in several figures. It can also explain the differences that were observed
between the AIST-GtrcNET-10 and Grid5000 figures for CUBIC (figure 5), even though the Web100’s
logs report more retransmissions than expected in non-congested state. But these interferences aren’t
inevitably bad as the CUBIC figure (or the Reno figure) in the Grid5000 seems to yield better intra-
flow fairness and display more stability as seen later in thisreport, on figure 17.

These results allowed us to observe that we are able to obtainvery similar results with the two
different testbed, showing that an emulated testbed such asAIST-GtrcNET-10 can indeed help to
have a acceptable environment/provides a good first approximation to simulate a real testbed with less
infrastructure cost.

In the following sections, we will compare the behaviour of the TCP variants for different values
of latencies to assert the impact of this parameter on the performance of flows.

4.2 Exploration of TCP variants behaviour in various latency conditions

We experiment the various TCP protocols by applying the sameexperimental procedure we used for
Grid5000 in the AIST-GtrcNET-10 testbed. In this emulated testbed, we explore the impact of the
latency on the protocols using this scenario.

4.2.1 Impact of the latency

First, we are going to verify the expected impact of an increasing latency on the various TCP variants
we tested, which is a deterioration of the performances.

The figures were generated with the GtrcNET-10 logs for 11 ms and 100 ms RTT and so what is
displayed in the figure 9 is the throughput measured after thebottleneck of the 10 Gbps link. From
left to right, we present Reno, BIC, CUBIC, HighSpeed, H-TCPand Scalable TCP variants.

In our case, we can notice that the steps due to the addition ofanother couple of nodes get sloppier
when we increase the latency. The effect is particularly noticeable on Reno (first column) and CUBIC
(third column) as these protocols aren’t able to fill the link. The deficiency observed for Reno is
the well-known fact that Reno congestion control method isn’t adapted to networks with high BDP
product due to the slow evolution of the congestion windows in this condition.

The fact that CUBIC seems to need more time than BIC to achievea full utilisation of the link,
is also a consequence of the construction of this algorithm as stated in [RX05], because the growth
of the congestion windows is slower when it gets closer to theupper target value, which might be a
drawback if we want a TCP variant that is able to react fast to networking conditions and to get quickly
advantage of available resources. CUBIC is less aggressivebut is less efficient in such conditions.

4.2.2 Impact of the protocol

The figures in this section display the results we obtained for individual flows and for aggregate
goodput as in the previous section. Figure 11 exhibits synchronisation effects, large number of flows
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Figure 9: Reno, BIC, CUBIC, HighSpeed, H-TCP and Scalable with various RTT in AIST-GtrcNET-
10
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Figure 10: Reno in AIST-GtrcNET-10 with 100 ms RTT
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Figure 11: BIC in AIST-GtrcNET-10 with 100 ms RTT
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Figure 12: CUBIC in AIST-GtrcNET-10 with 100 ms RTT
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Figure 13: HighSpeed in AIST-GtrcNET-10 with 100 ms RTT
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Figure 14: HTCP in AIST-GtrcNET-10 with 100 ms RTT
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Figure 15: Scalable in AIST-GtrcNET-10 with 100 ms RTT
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are dropping packets at the same time, when there is congestion in the system. This problem might
also explain some of the strange behaviours in the observed fairness on figure 17.

Figure 10 confirms the expected bad behaviour7 of TCP Reno in large BDP environments as it is
unable to achieve a goodput above 3.5 Gbps, when new TCP variants such as BIC (figure 11) are able
to achieve goodputs closer to the capacity of the link. We canclearly see the AIMD mechanism behind
TCP Reno by looking at the individual goodputs, from the slowincrease in congestion avoidance to
the sharp decrease when a packet loss occurs.

Figure 12 presents the results for the CUBIC protocol, whichjust like Reno, isn’t able to fill
completely the link before the end of the experiment. We can see that all the nodes aren’t able to
stay around the maximum goodput achievable, even when thereis no congestion in the system. It
also seems that some of the nodes, for instance, the two first started nodes, had difficulties during
their slow-start and were stuck around 300 Mbps for more than400 s. We also notice that some of
the nodes are very conservative, for instance the third node, as they slowly decrease the congestion
window as other nodes enter the system, even when there is no actual congestion.

Figure 13 seems to have some difficulties during the earlier phase of the test as the two first nodes
that were started aren’t able to reach the maximum goodput achievable, which might indicate that
HighSpeed require a certain amount of congestion or competition to start working normally. Figure 14
and figure 15 - respectively H-TCP and Scalable - are quite similar except that Scalable seems to be a
bit more agitated and blurry. They still display, like BIC infigure 11, the same kind of steps than with
lower RTTs, which shows that there are still able to react rather quickly to congestion level changes.

As already stated in section 3, please note that some of the bad behaviours observed in this section
may have been caused by some firmware incompatibilities in the AIST-GtrcNET-10, which cause
extra-losses in the nodes.

The work in this section showed that the different TCP variants start behaving differently as soon
as they are used in high BDP conditions. It highlights the fact that one need to choose carefully its
TCP variant according to the current RTT condition, as we will try to point in the following section.

4.2.3 Individual goodputs and fairness as a function of latency and protocol

In this section, we tried to aggregate the data acquired fromour previous experiments to represent
them as function of latency and congestion control method. We used the three following metrics:
mean of goodputs, Jain’s index and standard deviation to themean of goodputs. In the last part of this
section, we also study the distribution of goodputs as it is agood way to synthesize the three other
metrics.

The figures on the left side correspond to the case when only five nodes are emitting, while the
ones on the right are the case with twelve nodes, that is to saywithout and with congestion.

Mean goodput Figure 16 presents the mean of the goodput means on the periodof time where 5
or 12 nodes are active. We can see that RTT has an important effect on the goodput as it can cause a
diminution of more than 50 % of the mean goodput. The global tendency is a decrease of the mean
goodput, even though there are a few exceptions such as H-TCPwhich seems to have somehow an
erratic behaviour around the 100 ms RTT value in the non-congestioned case or such as Scalable
which seems to take back the lead if the RTT goes above 170 ms when 12 nodes are active.

For small values of RTT, the protocols are yielding equivalent results but there are more discrep-
ancies as the RTT increases as we experience more than 100 Mbps mean goodput difference between

7as already stated in section 4.2.1
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Figure 16: Mean goodputs for TCP variants when 5 or 12 nodes are active in AIST-GtrcNET-10
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Figure 17: Fairness for TCP variants when 5 or 12 nodes are actives in AIST-GtrcNET-10
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Figure 18: Mean of goodputs’ standard deviation for TCP variants when 5 or 12 nodes are actives in
AIST-GtrcNET-10
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Figure 19: Normalised mean standard deviation for TCP variants when 12 nodes are actives in AIST-
GtrcNET-10

the different protocols. Most noteworthy, Reno is not able to keep up with up with the other TCP
variants as soon as RTT is close to 30 ms.

If our criteria was to optimise the mean throughput achieved, figure 16 indicates that if we were in
the non-congestioned case, a reasonable pick would be to choose Scalable for every RTT lower than
170 ms and perhaps changing to H-TCP afterwards. In the othercase, the logical choice would be to
pick CUBIC for RTTs ranging from 0 ms to 80 ms, then switching to any TCP variants among BIC or
HighSpeed as they have very similar results for the 80 ms-170ms RTT values and finally use Scalable
for RTT above 170 ms.

This information could help us determine the most adequate TCP variant for a given RTT value,
if the mean goodput is the only criteria we have in mind in thisparticular configuration.

Fairness Figure 17 shows the evolution of the fairness for several TCPvariants with respect to the
RTT. In the non-congested case, the fairness is decreasing when the RTT is increasing, it is mainly
due to the fact that the flows need more time to increase their throughput and that they tend to stay for
rather long times around the same throughput value generating kind of stratas such as can be seen on
figure 10. In the other case, except for a few exceptions (BIC and H-TCP), the fairness remains close
to 0.95 in the congested case, which is a rather good value.

If our main criteria was to maximise the fairness, in the non-congested case, the best solution
would be to use Scalable for every RTT values. In the other case, it seems that using CUBIC all along
is the most reasonnable choice.

Standard deviation Figure 18 shows the level of variation of the goodputs aroundthe mean goodput
achieved, which is an indicator of the stability of a protocol in a given situation. Here we can notice
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Normalised standard deviation
0 ms 11.5 ms 20 ms 50 ms 75 ms 100 ms 150 ms 200 ms

Reno 0.150 0.222 0.249 0.293 0.298 0.233 0.285 0.160
BIC 0.269 0.178 0.258 0.130 0.148 0.301 0.212 0.191
CUBIC 0.170 0.144 0.150 0.126 0.106 0.139 0.142 0.081
HS-TCP 0.041 0.067 0.094 0.131 0.173 0.233 0.240 0.163
H-TCP 0.149 0.231 0.252 0.280 0.312 0.256 0.376 0.366
Scalable 0.186 0.337 0.258 0.215 0.255 0.317 0.369 0.228

Table 1: Mean standard deviation normalized, AIST-GtrcNET-10 experiments

that when there is no congestion and the RTT is low, all the procols are displaying similar standard
deviations. For medium RTT values (20 ms to 75 ms), the behaviour is still very similar, even though
the maximal difference between protocols reaches up to 100 Mbps. It gets worse for some TCP
variants for high RTT values as we can reach more than 200 Mbpsvariation, even though some
protocols such as BIC are behaving better when the RTT increases. This last point might be explained
by the fact that with high RTT values, the fifth node is disadvantaged by its slow start period and
requires more time to join when slow-evolving protocols such as Reno or CUBIC are used.

Please note that having a small standard deviation is perhaps not a good stand-alone criteria, as for
instance Reno is displaying very low standard deviation forhigh RTTs values, but at the same time, it
is unable to achieve good mean goodput results.

When there is congestion, the behaviour is more erratic since BIC is showing more than 200 Mbps
of variation for low RTT values and is more stable (less than 50 Mbps) in high RTT conditions. It is
quite hard to find similar patterns in their behaviour, especially when the RTT is low, but it seems that
we have two categories of protocols in high RTT conditions, those with low standard deviation (BIC
and CUBIC) and those with high standard deviation (Reno, HighSpeed, H-TCP and Scalable)

Similar to our previous discussion with the mean goodput, ifour main criteria were to minimise
this metric, we could easily decide with figure 18 which protocol is most suited to a given RTT value.
The reasonable choice in the non-congested case would be to pick any protocol for RTTs lower than
20 ms, to take HighSpeed for the 20 ms-75 ms range and than switch to Reno for the rest of the time.
In the congested case, a good solution would be to choose HighSpeed on the 0 ms-50 ms RTT range,
CUBIC and finally Reno for the rest of the time.

Figure 19 uses the same result as the previous figure. The onlydifference is that we have nor-
malised the goodput mean standard deviation by the mean goodput.

This metric is helpful as it allows us to avoid potential problems such as the one observed with
Reno with an high RTT, as it has the lowest standard deviationbut also the lowest goodput. If we are
only looking at the standard deviation, we might overlook the fact that the performances are rather
bad.

Obviously, the more interesting TCP variants are those which have an almost constant normalised
standard deviation, as it ensures that the variability property to be almost independent from the RTT.
For instance, CUBIC seems to have such a property.

The global tendency of all protocols seems to be an increase of the normalised standard deviation
with the RTT. It is noticeable for example, for the H-TCP TCP variant.

If our our was to minimise the normalised mean standard deviation, then a likely choice would be
HighSpeed for RTTs smaller than 50 ms, then switch to CUBIC

Tables 2, 3 and 1 presents the actual values that were measures during our tests and that were used
to draw the figures 17, 19 and 16.
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(a) Goodput distribution for Reno
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(b) Goodput distribution for BIC
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(c) Goodput distribution for CUBIC
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(d) Goodput distribution for HighSpeed
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(e) Goodput distribution for H-TCP
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(f) Goodput distribution for Scalable

Figure 20: Examples of Goodput distribution for 0 ms RTT when12 nodes are active, in AIST-
GtrcNET-10
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(a) Goodput distribution for Reno
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(b) Goodput distribution for BIC
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(c) Goodput distribution for CUBIC
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(d) Goodput distribution for HighSpeed
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(e) Goodput distribution for H-TCP
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(f) Goodput distribution for Scalable

Figure 21: Examples of Goodput distribution for 11.5 ms RTT when 12 nodes are active, in AIST-
GtrcNET-10
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(a) Goodput distribution for Reno
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(b) Goodput distribution for BIC
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(c) Goodput distribution for CUBIC
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(d) Goodput distribution for HighSpeed

 0

 10

 20

 30

 40

 50

 0  200  400  600  800  1000

D
en

si
ty

 (
%

)

Goodput (Mbps)

line 1

 0

 10

 20

 30

 40

 50

 0  200  400  600  800  1000

D
en

si
ty

 (
%

)

Goodput (Mbps)

line 1

(e) Goodput distribution for H-TCP
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(f) Goodput distribution for Scalable

Figure 22: Examples of Goodput distribution for 100 ms RTT when 12 nodes are active, in AIST-
GtrcNET-10
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Flow mean goodput
0 ms 11.5 ms 20 ms 50 ms 75 ms 100 ms 150 ms 200 ms

Reno 784.4 756.0 721.3 422.2 302.0 234.3 150.6 102.4
BIC 784.5 769.8 692.6 712.2 655.5 663.7 670.1 520.8
CUBIC 784.4 784.5 780.7 764.2 730.9 534.3 514.4 359.4
HS-TCP 784.6 752.4 728.7 744.1 695.9 671.9 656.2 541.8
H-TCP 784.6 722.2 636.5 668.8 576.3 686.1 634.1 589.7
Scalable 784.6 674.0 734.8 673.2 608.8 540.4 537.8 741.6

Table 2: Mean flow goodput measures, AIST-GtrcNET-10 experiments

Mean fairness
0 ms 11.5 ms 20 ms 50 ms 75 ms 100 ms 150 ms 200 ms

Reno 0.978 0.951 0.947 0.919 0.918 0.884 0.881
BIC 0.929 0.969 0.950 0.985 0.986 0.919 0.968 0.928
CUBIC 0.972 0.974 0.973 0.982 0.985 0.962 0.966 0.992
HS-TCP 0.977 0.960 0.961 0.962 0.975 0.962 0.962 0.936
H-TCP 0.978 0.953 0.952 0.952 0.939 0.926 0.834 0.871
Scalable 0.955 0.870 0.890 0.962 0.963 0.955 0.930 0.970

Table 3: Mean fairness measures, AIST-GtrcNET-10 experiments

Goodput distributions The figures 20, 21 and 22 correspond to the goodput distributions that were
created by using theiperf logs on the period where all the 12 nodes were active.

The analysis of goodput distributions shows two flow densities among the twelve. The figure 21
is representative of the different behaviours observed at 11.5 ms. We can see that the CUBIC dis-
tributions show an important mode close to the maximal goodput achievable (941 Mbps) for more
than 30 % of the time, but there is an heavy tail. HighSpeed distributions look more like an Gaussian
distribution, which shows that the HighSpeed goodput tendsto be less variable than the one obtained
with CUBIC.

When the RTT is low (figure 20), BIC and CUBIC tend to perform rather well as they are able to
maintain a goodput close the maximum achievable (941 Mbps) for more than 40 % of the time, even
though CUBIC shows a more important tail. The goodput distributions for HighSpeed look more
like a Gaussian distribution with a peak. When the RTT is high(figure 22), the distributions are more
widespread, failing to reveal a dominant mode, which suggest that all the protocols tested in this report
doesn’t perform well under high latency with congestion.
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5 Conclusion

In this research report, we have explored the real behaviourof TCP variants in the context of grid-like
high-speed networks. We have presented a few metrics that helped us characterise different variants
of TCP in various RTT conditions and we have proposed a simplemethodology that could be easily
reproduced everywhere. This work also permitted to ensure that the AIST-GtrcNET-10 testbed, even
tough we had some technical difficulties with firmwares, is a good approximation of a real testbed like
the one we used in Grid5000 with interesting extra functionalities like precise bandwidth measurement
and latency emulation. Finally, we have provided a set of experimental measurements that allowed us
to give a first insight of the performance of several TCP variants and to provide a few hints if we were
to choose to use one of them in given conditions, according tothe RTT or the congestion level, even
though for the moment, there is no universal solution.

In the future, we plan to extend further our work by studying other aspects that could help us to
improve and/or find the most suitable solution for a given setof networking conditions and objectives.
To do so, we intend to perform the same kind of tests with parallel streams, which is considered to be
an “effective” solution for bulk data transfers [HNA04] andto conduct the study of the evolution of
transfer time according to our parameters as well as the RTT fairness problem in the “grid context”.
Moreover, we will also need to check the impact of other parameters such as reverse and background
traffics to be as close as possible to real networking conditions. Not to forget that we are currently
only working on memory to memory transfers and that we will also need to tackle the problem of disk
to disk transfers.
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