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Abstract— This paper aims at surveying multipliers based on
Horner’s rule for finite field arithmetic. We present a generic
architecture based on five processing elements and introduce
a classification of several algorithms based on our model. We
provide the readers with a detailed description of each scheme
which should allow them to write a VHDL description or a VHDL
code generator.
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I. INTRODUCTION

This paper proposes a survey of Horner’s rule-based mul-
tipliers over Fp and GF(pm), where p is a prime number.
Multiplication over Fp is a crucial operation in cryptosystems
such as RSA or XTR. Multiplication over GF(pm) is a fun-
damental calculation in elliptic curve cryptography, pairing-
based cryptography, and implementation of error-correcting
codes.

In the following, the modulus F is either an n-bit (prime)
integer whose most significant bit is set to one (i.e. 2n−1+1 ≤
F ≤ 2n−1) or a monic degree-n irreducible polynomial over
Fp. Three families of algorithms allow one to compute the
product AB modulo F , where A and B are either elements
of Z/FZ or Fpn . In parallel-serial schemes, a single digit
or coefficient of the multiplier A is processed at each step.
This leads to small operands performing a multiplication in
n clock cycles. Parallel multipliers compute the product AB
(2n-bit integer or degree-(2n− 2) polynomial) and carry out
a final modular reduction. They achieve a higher throughput
at the price of a larger circuit area. Song and Parhi introduced
array multipliers as a trade-off between computation time and
circuit area [1]. Their idea consists in processing D digits
or coefficients of the multiplier at each step. The parameter
D is sometimes referred to as digit size and parallel-serial
schemes can be considered as a special case with D = 1. In
such architectures, the multiplier A can be processed starting
with the least significant element (LSE) or the most significant
element (MSE). This survey is devoted to MSE operators
and we refer the reader to [2], [3], [4] for details about
parallel modular multipliers and LSE operators, which are
often based on the celebrated Montgomery algorithm [5]. Note
that Kaihara and Takagi introduced a novel representation of
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residues modulo F which allows the splitting of the multiplier
A [6]: its upper and lower parts are processed independently
using an MSE scheme and an LSE implementation of the
Montgomery algorithm respectively. Such an approach could
potentially divide the computation time of array multipliers by
two.

After a brief description of the five number systems consid-
ered in this survey (Section II), we outline the architecture of
a modular multiplier based on Horner’s rule (Section III). We
then introduce a classification of several MSE schemes accord-
ing to our model, and provide the reader with all the details
needed for writing a VHDL description or designing a VHDL
code generator (Sections IV, V, and VI). We conclude this
survey by a comparison of the most promising algorithms on
a typical field-programmable gate array (FPGA) architecture
(Section VII).

II. NUMBER SYSTEMS

This section describes the number systems involved in the
algorithms we survey in this paper. We also outline addition
algorithms and describe how to compute a number or polyno-
mial Ã congruent to A modulo F .

A. Radix-2 Integers

1) Addition of Radix-2 Integers: Let A and B be two n-bit

unsigned integers such that A =
n−1∑
i=0

ai2i and B =
n−1∑
i=0

bi2i.

A carry-ripple adder (CRA), whose basic building blocks are
the full-adder (FA) and the half-adder (HA) cells, returns
the (n + 1)-bit sum R = A + B (Figure 1). Since a CRA
consists of a linearly connected array of FAs, its delay grows
linearly with n, thus making this architecture inadvisable for
an ASIC implementation of high-speed applications. Modern
FPGAs being mainly designed for digital signal processing
applications involving rather small operands (16 up to 32
bits), manufacturers chose to embed dedicated carry logic
allowing the implementation of fast CRAs for such operand
sizes. The design of modular multipliers taking advantage of
such resources is therefore of interest. An application would
for instance be the FPGA implementation of the Montgomery
modular multiplication algorithm in a residue number sys-
tem [7].
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2) Modular Reduction: Modulo F reduction can be imple-
mented by means of comparisons and subtractions. It is some-
times easier to compute an (n + 1)-bit number Ã congruent
to an (n+ q)-bit number A modulo F . Let us define Ak:j =

k∑
i=j

ai2i−j , where k ≥ j. Using this notation, A is equal to

An+q−1:n2n + An−1:0. If q is small enough, we can store in
a table all values of (An+q−1:n2n) mod F and compute Ã by
means of a single CRA: Ã = (An+q−1:n2n) mod F+An−1:0.

Note that some algorithms studied in this survey also
involve negative integers. We encode such numbers us-
ing the two’s complement system. An n-bit number A ∈
{−2n−1, . . . , 2n−1− 1} is represented by A = −an−12n−1 +
n−2∑
i=0

ai2i.

B. Carry-Save Numbers

1) Addition of Carry-Save Numbers: Figure 1b describes a
carry-save adder (CSA). This operator computes in constant
time the sum of three n-bit operands by means of n FAs. It
returns two n-bit numbers R(s) and R(c) containing the sum
and output carry bits of the FAs respectively. We have:

R = 2R(c) +R(s)

= r
(s)
0 +

n−1∑
i=1

(
r
(s)
i + r

(c)
i−1

)
2i + r

(c)
n−12

n

=
n∑

i=0

ri2i,

where r0 = r
(s)
0 , rn = r

(c)
n−1, and ri = r

(s)
i + r

(c)
i−1, 1 ≤ i ≤

n− 1. Each digit ri belonging to {0, 1, 2}, we obtain a radix-
2 redundant number system. Unfortunately, comparison and
modular reduction require a carry propagation and we would
lose all benefits from this number system by introducing such
operations in modular multiplication algorithms.

2) Modular Reduction: Let A be an n-bit two’s comple-
ment number whose carry-save representation is given by
A = A(s)+2A(c). Koç and Hung introduced a sign estimation
technique which enables computing a number congruent to A
modulo F by inspecting a few most significant bits of A(s)

and A(c) [8], [9], [10]. They define the truncation function
Θ(A) as the operation which replaces the least significant τ
bit of A with zeroes. The parameter τ control the cost and
the quality of the estimation. Let k be the two’s complement
sum of Θ(A(s)) + Θ(2A(c)). The sign estimation function
ES(A(s), A(c)) is then defined as follows [10]:

ES(A(s), A(c)) =


(+) if k ≥ 0,
(−) if k < −2τ ,
(±) otherwise.

Koç and Hung proved that, if ES(A(s), A(c)) = (+) or (−),
then X ≥ 0 or X < 0, respectively [10]. If ES(A(s), A(c)) =
(±), then −2τ ≤ A < 2τ . One can therefore add −F , 0, or F
to A according to the result of the sign estimation to compute
a number Ã congruent to A modulo F .

3) Modular Reduction when the Modulus is a Constant:
Assume now that the n-bit modulus F is known at design time
and consider a carry-save number A such that A(s) and A(c)

are ns- and nc-bit integers respectively (ns and nc are usually
greater than or equal to n). Let α ≤ n. Since

A =
(
A(s) div 2α + (2A(c)) div 2α

)
· 2α +

A(s) mod 2α + (2A(c)) mod 2α

=
(
A

(s)
ns−1:α +A

(c)
nc−1:α−1

)
· 2α +A

(s)
α−1:0 + 2A(c)

α−2:0,

we compute a number Ã congruent to A by means of a CSA
and a table addressed by max(ns + 1 − α, nc + 2 − α) bits.
Let k′ = (A(s)

ns−1:α +A
(c)
nc−1:α−1) · 2α. We have:

A ≡ k′ mod F +A
(s)
α−1:0 + 2A(c)

α−2:0 (mod F ). (1)

We easily compute an upper bound for Ã. Since k mod F ≤
F − 1, we have:

Ã ≤ F − 1 + 2α − 1 + 2(2α−1 − 1) = F + 2α+1 − 4. (2)

C. High-Radix Carry-Save Numbers

Carry-save adders do not always take advantage of the
dedicated carry logic available in modern FPGAs [11]. To
overcome this problem, modular multiplication can be per-
formed in a high-radix carry-save number system, where a
sum bit of the carry-save representation is replaced by a sum
word. A q-digit high-radix carry-save number A is denoted by

A = (aq−1, . . . , a0) =
((
a
(c)
q−1, a

(s)
q−1

)
, . . . ,

(
a
(c)
0 , a

(s)
0

))
,

where the jth digit aj consists of an nj-bit sum word a
(s)
j

and a carry bit a(c)
j such that aj = a

(s)
j + a

(c)
j 2nj . Let us

define A(s) = a
(s)
0 + a

(s)
1 2n0 + . . . + a

(s)
q−12

n0+...+nq−2 and
A(c) = a

(c)
0 2n0 + a

(c)
1 2n0+n1 + . . .+ a

(c)
q−12

n0+...+nq−1 . With
this notation, a number A is equal to A(s)+A(c). This number
system has nice properties to deal with large numbers on
FPGAs:

• Its redundancy allows one to perform addition in constant
time (the critical path of a high-radix carry-save adder
only depends on max

0≤j≤q−1
nj).

• The addition of a sum word a
(s)
j , a carry bit a(c)

j−1, and
an nj-bit unsigned binary number is performed by means
of a CRA.

Unfortunately, MSE first algorithms involve left-shift opera-
tions which modify the representation of an operand. Figure 2
describes a 4-digit high-radix carry-save number A = 2260
with n0 = n1 = 3, n2 = 4, and n3 = 3. By shifting A, we
obtain B = 2A, whose least significant sum word is now a
4-bit number.

D. Borrow-Save Numbers

1) Addition of Borrow-Save Numbers: A radix-r signed-
digit representation of a number A ∈ Z is given by A =

n∑
i=0

air
i. The digits ai belong to Dr = {−ρ,−ρ+ 1, . . . , ρ−
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Fig. 1. Carry-ripple adder and carry-save adder.
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(a) Encoding of A = 2260 (b) Encoding of B = 2A = 4520

Carry
bits

01 00 0

1

11 1

1

00 01 000 0

1

0 1

1

00 10 0

1

00 0

1

1

Fig. 2. High-radix carry-save numbers.

1, ρ}, where ρ ≤ r − 1 and 2ρ+ 1 ≥ r. The second condition
guarantees that every number has a representation (2ρ+1 = r).
When 2ρ+1 > r, the number system becomes redundant and
allows one to perform addition in constant time under certain
conditions [12].

In this survey, we will consider only radix-2 signed-digits.
Thus, we take advantage of the borrow-save notation intro-
duced by Bajard et al.[13]: each digit ai is encoded by a
positive bit a+

i and a negative bit a−i such that ai = a+
i −a

−
i .

A modified FA cell, called PPM cell, allows one to compute
two bits r+i+1 and r−i such that 2r+i+1 − r−i = a+

i + b+i − a−i .
Note that the same cell is also able to return r−i+1 and r+i such
that 2r−i+1 − r+i = a−i + b−i − a+

i . In this case, it is usually
referred to as MMP cell. The addition of two borrow-save
numbers can be performed in constant time using the operator
described by Figure 3a [13].

2) Modular Reduction: Assume that A is an (n + 2)-
digit borrow-save number such that −2F < A < 2F .
Takagi and Yajima proposed a constant time algorithm which
returns an (n+ 1)-digit number Ã congruent to A modulo F
(Figure 3b) [14]. First, we add the three most significant digits
of A and get a 4-bit two’s complement number k = 4an+1 +
2an + an−1. Our hypotheses guarantee that −4 ≤ k ≤ 4 and

−2F < A < 0, if k < 0,

−2n−1 < A < 2n−1, if k = 0, and
0 < A < 2F , if k > 0.

Thus, it suffices to add F , 0, or −F to A according to k in
order to get an (n+1)-digit number Ã such that −F < A < F .
Since we assumed that the most significant bit of F is always

set to one, we have

−F = −2n−1 −
n−2∑
i=0

fi2i

= −2n + 2n−1 −
n−2∑
i=0

fi2i

= −2n +
n−2∑
i=0

(1− fi)2i + 1.

Consider now the (n+1)-digit borrow-save number U defined
as follows:

U =



F =
n−1∑
i=0

fi2i if k < 0,

0 if k = 0,

−F − 1 = −2n +
n−2∑
i=0

(1− fi)2i if k > 0,

and note that most significant digit un is the only one which
can take a negative value. The (n+ 1)-digit sum Ã = A+U
can therefore be computed by a single stage of PPM cells and
glue logic (Figure 3b). Since U = −F − 1 when k is greater
than 0, a small table generates ã+

0 according to the following
rule:

ã+
0 =

{
1 if k > 0,
0 otherwise.

Consider now the addition of a+
n−1, a−n−1, and un−1 by means

of a PPM cell. It generates two bits v and ã−n−1 such that
2v− ã−n−1 = a+

n−1− a
−
n−1 + un−1. The most significant digit

ãn is then defined as follows:

ãn =

{
2an+1 + an + v − 1 if k > 0,
2an+1 + an + v otherwise.
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ã+
5

U , ã5, and ã+
0

a) Borrow-save adder b) Computation of a number Ã congruent with A modulo F (n = 5)

Fig. 3. Arithmetic operations in the borrow-save number system.

Thus, ãn only depends on k. Instead of explicitly computing
v, we build a table addressed by an+1, an, and an−1 (Table I).

TABLE I
COMPUTATION OF THE MOST SIGNIFICANT DIGIT OF Ã.

an+1 an an−1 ãn

0 0 0 0
0 0 1 0
0 1 −1 0
1 −1 −1 0
0 1 0 0
1 −1 0 0
0 1 1 1
1 0 −1 1
1 −1 1 1
1 0 0 1

an+1 an an−1 ãn

0 0 −1 0
0 −1 1 0
−1 1 1 0
0 −1 0 0
−1 1 0 0
0 −1 1 −1
−1 0 −1 −1
−1 1 1 −1
−1 0 0 −1

E. Elements of Fpn

There are several ways to encode elements of an extension
field. In this paper, we will only consider the well-known
polynomial representation, which is for instance often faster
than normal basis in pairing-based applications [15]. Let
F (x) = xm + fm−1x

m−1 + . . .+ f1x+ f0 be an irreducible
polynomial over Fp, where p is a prime. Then, GF(pn) =
GF(p)[x]/F (x), and an element a(x) ∈ GF(pn) can be
represented by a degree-(m− 1) polynomial with coefficients
in Fp: a(x) = am−1x

m−1 + . . .+ a1x+ a0.
Note that the irreducible polynomials used in cryptographic

applications are commonly binomials or trinomials, thus mak-
ing modulo F operations easy to implement. F = x97+x12+2
is for instance irreducible over GF(3). Assume that A is a
degree-97 polynomial. It suffices to remove a97 ·F = a97x

97+
a97x

12 + 2a97 from A to get A mod F and this operation
involves only two multiplications and two subtractions over
GF(3), namely a12 − 1 · a97 and a0 − 2 · a97. Elements of
GF(3) are usually encoded with two bits and such a modular
reduction is performed by means of two 4-input tables.

III. HORNER’S RULE FOR MODULAR MULTIPLICATION

Recall that the celebrated Horner’s rule suggests to compute
the product of two n-bit integers or degree-(n−1) polynomials
A and B as follows:

AB = (. . . ((an−1B)�1 + an−2B)�1 + . . .)�1 + a0B,

where �1 denotes the left-shift operation (i.e. multiplication
by two for integers and multiplication by x for polynomials).

This scheme can be expressed recursively as follows:

R[i] = R[i+ 1]�1 + aiB, (3)

where the loop index i goes from n − 1 to 0, R[n] = 0, and
R[0] = AB. By performing a modular addition at each step,
one easily determines the product AB mod F [16]. However,
computing a number or polynomial R[i] congruent to R[i +
1]�1 + aiB modulo F by inspecting a few most significant
digits or coefficients may lead to a smaller and faster iteration
stage. Thus, besides a register storing the intermediate results,
a modular multiplier based on Horner’s rule consists of four
blocks (Figure 4):

• A partial product generator (PPG), whose architecture de-
pends on the number system, computes aiB. If operands
are radix-2 integers, a PPG comprises for instance n AND
gates. For elements of Fpn , a PPG consists of n modulo
p multipliers. Since p is generally equal to two or three
in elliptic curve or pairing-based cryptography, these
modulo p multiplications are efficiently implemented by
means of AND gates or small tables.

• The Modshift block computes a number (or a polynomial)
S[i] which is congruent to R[i + 1]�1 modulo F . We
suggest in this survey a classification of Horner’s rule-
based modular multipliers according to the architecture
of this block. Since

R[i+ 1]�1 ≡ R[i+ 1]�1 − k1F (mod F )

≡ (R[i+ 1]− k2F )�1 (mod F ),

where k1 and k2 are integers or polynomials, we consider
three families of algorithms. In left-shift schemes, S[i] is
equal to R[i+1]�1. The left-shift and modular reduction
approach returns a number or polynomial S[i] congruent
to R[i+ 1]�1 modulo F . Finally, the modular reduction
and left-shift solution consists in left-shifting a number
or polynomial congruent to R[i+ 1] modulo F . Table II
summarizes the algorithms we consider in this survey
according to this model.

• The Modsum module is responsible for the computation
of a new intermediate result R[i] congruent to S[i]+aiB
modulo F .

• A final modular reduction is required when the algorithm
returns a number (or a polynomial) congruent to AB mod
F . Furthermore, a conversion from a redundant number
system to a standard radix-2 representation is sometimes
required. The Modred module performs these tasks.
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TABLE II
CLASSIFICATION OF MODULAR MULTIPLIERS BASED ON HORNER’S RULE ACCORDING TO THE ARCHITECTURE OF THE Modshift BLOCK.

Left-shift and Left-shift Modular reduction
modular reduction left-shift

Borrow-save Takagi and Yajima [14]
Takagi [17]

Jeong and Burleson [18] Koç and Hung [9] Bunimov and Schimmler [19]
Carry-save Koç and Hung [10] Peeters et al. [20]

Kim and Sobelman [21]
Amanor et al. [22]

High-radix Beuchat and Muller [11]
carry-save
Radix 2 Beuchat and Muller[23]

Fpn Shu et al. [24] Song and Parhi [1]

B

ai aiB

R[i]
AB mod F

S[i]

R[i+ 1]

Register
Modulo F

Compute S[i] such that
S[i] ≡ R[i+ 1]�1 (mod F )

Compute R[i] such that

R[i] ≡ aiB + S[i] (mod F ) conversion

Modred

Modshift

Modsum

reduction and

PPG

Fig. 4. Modular multiplication based on Horner’s rule.

IV. FIRST ARCHITECTURE: LEFT-SHIFT OPERATION
FOLLOWED BY A MODULAR REDUCTION

A. Borrow-Save Algorithms

Let A and B be two (n+1)-digit borrow-save numbers with
−F < A,B < F . Takagi and Yajima proposed an algorithm
computing an (n+1)-digit number R[0] ∈ {−F+1, . . . , F−1}
congruent to AB modulo F [14] (Figure 5). At each step,
the Modshift block returns an (n + 1)-digit number S[i] ∈
{−F + 1, . . . , F − 1} congruent to the (n+ 2)-digit number
2R[i + 1] according to the scheme described in Section II-
D. The Modsum block contains a borrow-save adder which
computes the sum T [i] ∈ {−2F + 1, . . . , 2F − 1} of S[i]
and a partial product aiB. The same approach allows one to
determine a number R[i] ∈ {−F + 1, . . . , F − 1} congruent
to T [i] modulo F . A nice property of this algorithm is that
both inputs and output belong to {−F + 1, . . . , F − 1}. The
conversion from borrow-save to integer involves at most two
additions:

R = AB mod F

=

{
R+[0]−R−[0] if R+[0]−R−[0] ≥ 0,
R+[0]−R−[0] + F otherwise,

where R+[0] =
n−1∑
i=0

r+i [0]2i and R−[0] =
n−1∑
i=0

r−i [0]2i. The

number of iterations can be reduced by considering a higher
radix. Radix-4 modular multipliers based on signed-digits are
for instance described in [14], [17].

B. Carry-Save Algorithm

Jeong and Burleson described a carry-save implementation
of the algorithm by Takagi and Yajima [14] in the case where
the modulus F is known at design time [18] (Figure 6). The
intermediate result R[i] is represented by two n-bit unsigned

integers R(s)[i] and R(c)[i]. The Modshift block implements
Equation (1) and returns a carry-save number S[i] congruent
to 2R[i + 1], while the Modsum block requires two CSAs to
determine a number R[i] congruent to S[i] + aiB. According
to Equation (2), R[i] is smaller than or equal to F +2n+1− 4
and the Modred block has to remove up to 4F to R[0] in order
to get AB mod F .

Kim and Sobelman proposed an architecture based on four
fast adders (e.g. carry-select adders or parallel-prefix adders) to
perform this final modular reduction and to convert the result
from carry-save to integer [21] (Figure 7). They first compute
an (n + 1)-bit integer U such that U = R(s)[0] + 2R(c)

n−2:0.
Then, a second adder and a table addressed by r

(c)
n−1[0] and

un return an (n + 1)-bit integer V = Un−1:0 + ((r(c)n−1[0] +
un) · 2n) mod F . Since V ≤ 2n + F − 2 < 3F , it suffices
to compute in parallel V − 2F and V − F , and to select the
result.

−F

Vn:0

((R(c)
n−1[0] + un) · 2n) mod F

2R(c)
n−2:0[0]

Un−1:0

R(s)[0]

r
(c)
n−1[0]

un

−2F

AB mod F

Sign

Fa
st

ad
de

r

evaluation

Fa
st

ad
de

r

R
O

M

Fa
st

ad
de

r

Fa
st

ad
de

r

Fig. 7. Architecture of the Modred block proposed by Kim and Sobel-
man [21].

C. Multiplication over Fpn

Shu et al. designed an array multiplier processing D coef-
ficients of the operand A at each clock cycle [24] (Figure 8a).
The intermediate result R[i] is a degree-(n − 1) polynomial,
thus avoiding the need for a final modular reduction. At each
step, the Modshift block returns a degree-(n− 1) polynomial
S[i] equal to xDR[i + 1] mod F . A (D + 1)-operand adder
computes the sum of S[i] and D partial products reduced



6 HORNER’S RULE-BASED MULTIPLICATION OVER FP AND FP N : A SURVEY

PPG

B ai

F

V = ϕ(F, k)
k = 4t7 + 2t4 + t5

k = 4r6[i+ 1]+
2r5[i+ 1] + r4[i+ 1]

U = ϕ(F, k)

+

−+
−+

−

+−+
−+

r+ 6
[i

+
1]

+−+
−+

r− 4
[i

+
1]

+−+
−+

r+ 4
[i

+
1]

s0[i]s6[i] s5[i] s4[i] s3[i] s2[i] s1[i]

t+5 t−5t+7 t−7 t+6 t−6

r+ 0
[i
]

r+ 1
[i
]

r+ 2
[i
]

r+ 3
[i
]

r+ 4
[i
]

r+ 5
[i
]

r+ 6
[i
]

r− 6
[i
]

+−+
−+

r− 5
[i
]

+−+
−+

r− 4
[i
]

+−+
−+

r− 3
[i
]

+−+
−+

r− 2
[i
]

+−+
−+

r− 1
[i
]

r− 0
[i
]

+−+
−+

M
od

su
m

+−+
−+

M
od

sh
if
t

+−+
−+

r+ 0
[i

+
1]

+−+
−+

r− 0
[i

+
1]

+−+
−+

r+ 1
[i

+
1]

+−+
−+

r− 1
[i

+
1]

+−+
−+

r+ 2
[i

+
1]

−+−
+−

r− 2
[i

+
1]

−+−
+−

r− 3
[i

+
1]

−+−
+−

r+ 3
[i

+
1]

−+−
+−

r− 5
[i

+
1]

−+−
+−

r+ 5
[i

+
1]

−+−
+−

r− 6
[i

+
1]

−+−

+

Fig. 5. Architecture of the iteration stage proposed by Takagi and Yajima [14] for n = 6.
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Fig. 6. Architecture of the iteration stage proposed by Jeong and Burleson [18] for n = 6.

modulo F : R[i] = S[i] +
D−1∑
j=0

(
(xjaDi+jB) mod F

)
.

V. SECOND ARCHITECTURE: LEFT-SHIFT OPERATION

A. Carry-Save Algorithms
1) First Case: the Modulus is an Input of the Operator:

Koç and Hung designed a modular multiplier based on their
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sign estimation technique outlined in Section II-B [10]. They
chose the parameter τ = n − 1 to control the quality of the
estimation and introduced a slightly different function defined
as follows:

ES’(R(s)[i+ 1], R(c)[i+ 1]) =


(+) if k ≥ 2n,
(−) if k < −2n+1,
(±) otherwise,

(4)

where R(s)[i + 1] and R(c)[i + 1] are (n + 4)- and (n + 3)-
bit two’s complement numbers respectively. The two’s com-
plement number k is therefore computed as follows: k =
R

(s)
n+3:n−1[i + 1] + R

(c)
n+2:n−2[i + 1]. Koç and Hung estab-

lished that all intermediate results of their algorithm belong
to {−6F,−6F + 1, . . . , 7F − 1, 7F}. Thus the computation
of k does not generate an output carry and k is a 5-bit
two’s complement number. At each step, the Modsum block
computes R[i] such that

R(s)[i]+2R(c)[i] =



2R(s)[i+ 1] + 4R(c)[i+ 1] + aiB − 8F
if ES’(k) = (+),

2R(s)[i+ 1] + 4R(c)[i+ 1] + aiB + 8F
if ES’(k) = (−),

2R(s)[i+ 1] + 4R(c)[i+ 1] + aiB

otherwise.

After n clock cycles, we get R[0] = AB+ 8αF , with α ∈ Z.
Koç and Hung suggested to perform three additional iterations
with a−1 = a−2 = a−3 = 0 in order to obtain R[−3] =
8AB + 8βF ∈ {−6F, . . . , 7F}, with β ∈ Z. Since R[−3] is
a multiple of eight, a right-shift operation returns a number R
congruent to AB modulo F , where −F < R < F . After the
conversion to two’s complement, the Modred module has to
perform at most one addition.

Figure 9 describes the iteration stage. We propose here
an improved architecture which is based on the following
observation: r(s)n+3[i], r

(c)
n+2[i], and r

(s)
n+2[i] only depend on k.

We can therefore compute these bits while performing the
sign estimation (recall that the same idea was exploited for
the design of the borrow-save operator introduced by Takagi
and Yajima [14] (Section IV-A)). The first step consists in
computing the sum T [i] of a partial product aiB and 2R[i+1].

Note that r(c)0 [i+ 1] is always equal to zero. Thus, the adder
consists of a 5-bit CRA and an (n−1)-input CSA (n−3 FAs
and 2 HAs):

T
(s)
n+4:n[i] = R

(s)
n+3:n−1[i+ 1] +

R
(c)
n+2:n−2[i+ 1] = k,

T
(s)
n−1:1[i] + 2T (c)

n−1:1[i] = R
(s)
n−2:0[i+ 1] +

2R(c)
n−3:0[i+ 1] + aiBn−1:1,

t
(s)
0 [i] = aib0.

The sign estimation defined by Equation (4) is then computed
as follows:

ES’(R(s)[i+ 1],R(c)[i+ 1]) =
(+) if k̄4(k3 + k2 + k1) = 1,
(−) if k4(k̄3 + k̄2 + k̄1k̄0) = 1,
(±) otherwise.

These logic equations can be computed using Karnaugh maps.
Let us define where es+ = k̄4(k3 + k2 + k1) = 1 and es− =
k4(k̄3 + k̄2 + k̄1k̄0). If the sign estimation block returns (+)
(i.e. es+ = 1), we have to subtract 8F from T [i]. Recall that
the most significant bit of F is always set to one. Therefore,
−8F − 1 is encoded by an (n + 4)-bit two’s complement
number (10 f̄m−2f̄m−3 . . . f̄1f̄0︸ ︷︷ ︸

n − 1 bits

111)2. We suggest to represent

−8F as follows (Figure 9):

−8F = (10 f̄m−2f̄m−3 . . . f̄1f̄0︸ ︷︷ ︸
n − 1 bits

000)2+22es++2(es++es+).

Finally, Table III summarizes the logic equations defining
r
(c)
n+2[i], r

(s)
n+3[i], and r(s)n+2[i].

2) Second Case: the Modulus is a Constant: If the modulus
is known at design time, an architecture introduced by Kim and
Sobelman [21] allows one to replace the sign estimation unit
with a table addressed by four bits (Figure 10). The authors
suggest to compute a first carry-save number T [i] such that

T
(s)
n−1:0[i]+2T (c)

n−1:0[i] = aiB+2R(s)
n−2:0[i+1]+4R(c)

n−3:0[i+1].
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Fig. 9. Architecture of the iteration stage proposed by Koç and Hung [10] for n = 6.

TABLE III
ITERATION STAGE PROPOSED BY KOÇ AND HUNG [10]: COMPUTATION OF

r
(c)
n+2[i], r

(s)
n+3[i], AND r

(s)
n+2[i].

es+ es− r
(c)
n+2 r

(s)
n+3 r

(s)
n+2

1 0 0 t̄
(s)
n+3 t

(s)
n+2

0 1 t̄
(s)
n+3 + t̄

(s)
n+2 t̄

(s)
n+3 t̄

(s)
n+2 t̄

(s)
n+2

0 0 0 t
(s)
n+3 t

(s)
n+2

Thus,

2R[i+ 1] + aiB = T
(s)
n−1:0[i] + 2T (c)

n−1:0[i] +(
R

(s)
n−1[i+ 1]+

R
(c)
n−1:n−2[i+ 1]

)
· 2n

= T
(s)
n−1:0[i] + 2T (c)

n−2:0[i] +(
R

(s)
n−1[i+ 1] +R

(c)
n−1:n−2[i+ 1]+

t
(c)
n−1[i]

)
· 2n

Let k = R
(s)
n−1[i+ 1] +R

(c)
n−1:n−2[i+ 1] + T

(c)
n−1[i]. We easily

check that 0 ≤ k ≤ 5. In order to compute a carry-save number
R[i] congruent to 2R[i+1]+aiB modulo F , it suffices to store
the six possible values of U [i] = (k · 2n) mod F in a table
and to add this unsigned integer to T (s)

n−1:0[i] + 2T (c)
n−2:0[i] by

means of a second CSA. Note that the least significant bit of
T (c)[i] is always equal to zero and that R[i] ≤ 2n+1 +F − 5.
This operator seems more attractive than the one by Jeong
and Burleson [18]: at the price of a slightly more complex
table, the iteration stage requires two CSAs instead of three.
The final modular reduction remains unfortunately expensive
and can be computed with the Modred block illustrated on
Figure 7.

Amanor et al. showed that, if both B and F are constants

known at design time, the iteration stage consists of a table and
a single CSA [22] (Figure 11). Since the original algorithm
requires an even more complex final modulo F reduction, we
describe here a slightly modified version which allows one
to perform this operation with the Modred block depicted by
Figure 7. R(s)[i+1] and R(c)[i+1] are again two n-bit integers
and the computation of a number R[i] congruent to 2R[i +
1] + aiB is carried out according to Equation (1) with α =
n − 1. The table is addressed by ai and the 3-bit sum k =
R

(c)
n−1:n−2[i + 1] + r

(s)
n−2[i + 1], and returns an n-bit integer

(aiB + k2n) mod F .

B. Radix-2 Algorithms

Beuchat and Muller proposed two non-redundant radix-2
versions of Kim and Sobelman’s recurrence in [23]. These
algorithms are designed for the modular multiplication of
operands up to 32 bits on FPGAs embedding dedicated carry
logic. The first scheme carries out (AB+C) mod F according
to the following iteration:

S[i] = 2R[i+ 1],
T [i] = S[i] + ci + aiB,
R[i] = ϕ(T [i] div 2n) + T [i] mod 2n,

(5)

where ϕ(k) = (2n ·k) mod F (Figure 12). The main problem
consists in finding the maximal values of R[i] and T [i], on
which depends the size of the table implementing the ϕ(k)
function. Contrary to algorithms in redundant number systems,
for which one can only compute a rough estimate by now,
the nonlinear recurrence relation defined by Equation (5)
has been solved. This result allows one to establish several
nice properties of the algorithm. Assume that A ∈ N, B ∈
{0, . . . , F−1}, and C ∈ N. Then T [i] is an (n+2)-bit number,
∀F ∈ {2n−1 + 1, . . . , 2n − 1}, and the table is addressed by
only two bits [23]. Furthermore, ϕ(k) is defined recursively
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Fig. 11. Architecture of the iteration stage proposed by Amanor et al. [22] for n = 6.

on N∗ as follows:

ϕ(k) =

{
ϕ(k − 1)− 2F + 2n if ϕ(k − 1)− 2F + 2n ≥ 0,
ϕ(k − 1)− F + 2n otherwise,

(6)
with ϕ(0) = 0. Note that two CRAs, an array of n AND gates,
and three registers implement the above equation (Figure 12).
Thus, the critical path is the same as the one of the circuit
implementing the iteration stage. Note that, at the price of
an additional clock cycle, one can build the table on-the-
fly without impacting on the computation time (Figure 12).
The algorithm returns a number R[0] congruent to (AB+C)
modulo F and a final modular reduction is required. The ar-
chitecture of the circuit responsible for this operation depends

on F : if 2n−1 + 1 ≤ F ≤ 2n−1 + 2n−2 − 1, one shows that
R[0] < 3F ; if 2n−1 + 2n−2 ≤ F ≤ 2n − 1, then R[0] < 2F
(Figure 12).

And yet, this first radix-2 algorithm has a drawback in the
sense that R[0] is not a valid input. Since both right-to-left
and left-to-right modular exponentiation algorithms involve
the computation of (R[0]2) mod F , a modulo F reduction is
required at the end of each multiplication. A straightforward
modification of the algorithm solves this issue: it suffices to
compute R[i] = ψ(T [i] div 2n−1) + T [i] mod 2n−1, where
ψ(k) = (2n−1 · k) mod F . Let Bmax = 2n+2+11−4·(n mod 2)

3 .
Assume that A ∈ N, B ∈ {0, . . . , Ymax}, and C ∈ N. Then,
one can establish the following properties [23]:
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• T [i] is an (n+2)-bit number, ∀F ∈ {2n−1 +1, . . . , 2n−
1}, and the ψ table is addressed by three bits. Further-
more, one can also build the table on-the-fly at the price
of an extra clock cycle (Figure 13).

• R[0] is smaller than 2F and at most one subtraction is
required to compute AB mod F from R[0] .

• R[0] is smaller than Bmax. Therefore modular exponenti-
ation can be performed with R[0] instead of R.

Further optimizations are possible when the modulus F is
known at design time. Figure 14a describes the implementation
of the ϕ function on Xilinx FPGAs. In this example, the
operator is able to perform multiplication-addition modulo F1

or F2 according to a Select signal. Thus, each bit of ϕ is
computed by means of a 3-input table addressed by Tn+1[i],
Tn[i], and Select. Such tables are embedded in the LUTs of
the CRA returning R[i]. The ψ function is implemented the
same way (Figure 14b). However, since it depends on three
bits, the operator handles a single modulus F .

VI. THIRD ARCHITECTURE: MODULAR REDUCTION
FOLLOWED BY A LEFT-SHIFT OPERATION

The third family of algorithms aims at simplifying the final
modular reduction at the price of an additional iteration. This
elegant approach was introduced by Peeters et al. [20] and
can be applied to both prime fields and extension fields. Let
us consider multiplication over Fp to illustrate how such archi-
tectures work out the product AB mod F . The Modshift block
computes a number U [i] congruent to R[i+1] modulo F and
returns an even number S[i] = 2U [i]. Recall that algorithms
based on Horner’s rule compute a number R[0] = AB + αF
congruent to AB modulo F , where α ∈ N. Let us perform an
additional iteration with a−1 = 0. We have R[−1] = S[−1] =
2(R[0] − βF ) = 2(AB + (α − β)F ). Since R[−1] is even,
we can shift it to get R[−1]/2 = AB + (α − β)F , which is
congruent to AB modulo F . Furthermore, the upper bound of
R[−1] turns out to be smaller than the one of R[0].

A. Carry-Save Algorithm

The first carry-save modular multiplier featuring such a
Modshift block was probably proposed by Bunimov and
Schimmler [19]. However, this algorithm requires an (n+ 2)-
bit integer R(s)[i] and an (n+1)-bit integer R(c)[i] to encode
the intermediate result R[i]. Since the authors do not perform
an additional iteration, the final modular reduction proves to
be more complex than the one of the carry-save modular mul-
tipliers studied in Section V. Peeters et al. designed a carry-
save architecture which returns either R[−1] = AB mod F or
R[−1] = (AB mod F )+F [20]. The carry-save intermediate
result R[i] consists of an (n + 1)-bit word R(s)[i] and an n-
bit word R(c)[i], whose least significant bit is always equal to
zero (i.e. R(c)[i] ≤ 2n − 2). Therefore, we have

R[i] =
(
R

(s)
n:n−2[i] +R

(c)
n−1:n−3[i]

)
· 2n−2 +

R
(s)
n−3:0[i] + 2R(c)

n−4:0[i].

Let us define the four bit integer U [i] such that U [i] =
R

(s)
n:n−2[i] + R

(c)
n−1:n−3[i]. The Modshift block computes an

number

S[i] = 2
(
U [i+ 1] · 2n−2

)
mod F +

2R(s)
n−3:0[i+ 1] + 4R(c)

n−4:0[i+ 1],

which is congruent to R[i + 1] modulo F . However, Peeters
et al. do not compute S[i] explicitly. They suggest to evaluate
(k · 2n−2) mod F and 2R(s)

n−3:0[i+ 1] + 4R(c)
n−4:0[i+ 1] + aiB

in parallel in order to shorten the critical path (Figure 15). The
modulus must be known at design time in order to build the
table storing the 15 possible values of (U [i+1]·2n−2) mod F .
Note that aiB ≤ F − 1, (U [i + 1] · 2n−2) mod F ≤ F − 1,
R

(s)
n−3:0[i+1] ≤ 2n−2−1, and R(c)

n−4:0 ≤ 2n−3−2. The number
R[0] is therefore smaller than or equal to 3F+2n−13 and the
Modred block would have to subtract up to 4F to get the final
result. Let us perform an additional iteration with a−1 = 0.
We obtain an even number R[−1] ≤ 2F + 2n − 12 which is
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Fig. 13. Architecture of the second iteration stage proposed by Beuchat and Muller [23].
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congruent to 2AB modulo F . Therefore, we have to reduce
R[−1]/2 ≤ F + 2n−1 − 6 < 2M . This operation requires at
most one subtraction.

B. High-Radix Carry-Save Algorithm

Since carry-save addition does not take advantage of the
dedicated carry-logic available in several FPGA families,
Beuchat and Muller [11] proposed a high-radix carry-save
implementation of the algorithm by Peeters et al. [20] pre-
viously described. Assume that R[i + 1] and S[i] are now
high-radix carry-save numbers. By shifting R[i+1], we define
a new internal representation for S[i]. It is therefore necessary
to perform a conversion while computing a number R[i]
congruent to S[i] + aiB modulo F . Beuchat and Muller
showed that the amount of hardware required for this task
depends on the encoding of R[i] and the modulus F [11].
They also proposed an algorithm which selects the optimal
high-radix carry-save number system and generates the VHDL
description of the modular multiplier. Such operators perform
a multiplication in (n+1) clock cycles and return a high-radix
carry save number R[−1] which is smaller than 2F . Thus, the

final modulo F correction requires at most one subtraction.

C. Multiplication over Fpn

The same approach allows one to design array multipliers
over Fpn . Song and Parhi suggested to compute at each step
a degree-(n+D− 2) polynomial T [i] which is the sum of D
partial products, i.e. T [i] =

∑D−1
j=0 aDi+jx

jB [1] (Figure 8b).
A degree-(n+D−1) polynomial S[i] allows one to accumulate
these partial products: S[i] = T [i]+xD(S[i+1] mod F ). After
dn/De iterations, S[0] is a degree-(n + D − 1) polynomial
congruent to AB modulo F . Song and Parhi included specific
hardware to carry out a final modular correction. However, we
achieve the same result by performing an additional iteration
with a−1 = 0 [25]. Since T [−1] is equal to zero, we obtain
R[−1] = S[−1] = xD(AB mod F ) and it suffices to right-
shift this polynomial to get the result.

VII. CONCLUSION

In order to compare the algorithms described in this survey,
we wrote a generic VHDL library as well as automatic code
generators, and performed a series of experiments involving
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a Spartan-3 XC3S1500 FPGA. Whereas the description of
operators whose modulus is an input is rather straightforward,
the computation of the tables involved in the algorithms
for which the modulus is a constant known at design time
proves to be tricky in VHDL. Since the language does not
allow one to easily deal with big numbers, a first solution
consists in writing a VHDL package for arbitrary precision
arithmetic. Note that this approach slows down the synthesis
of the VHDL code. Consider for instance the computation
of the ϕ(k) function involved in the radix-2 algorithm (see
Equation (6) in Section V-B). Synthesis tools have to interpret
the code of the recursive function ϕ(k) in order to compute
the constants (k · 2n) mod F . In some cases, it seems more
advisable to write a program which automatically generates the
VHDL description of the operator according to its modulus:
the selection of a high-radix carry-save number system for the
algorithm outlined in Section VI-B consists for instance in
finding a shortest path in a directed acyclic graph [11].

Figure 16 describes a comparison between carry-save and
radix-2 iteration stages when the modulus is a constant.
Among carry-save algorithms, the one by Kim and Sobel-
man [21] leads to the smallest iteration stage. However, recall
that it involves a complex Modred block and the architecture
introduced by Peeters et al. [20] proves to be the best choice.
The operator introduced by Jeong and Burleson [18] requires a
larger area and is even slower than other carry-save implemen-
tations. Radix-2 algorithms take advantage of the dedicated
carry logic and embed the ϕ(k) table in the LUTs of a CRA
(Figure 13). This approach allows one to roughly divide by
two the area on Xilinx devices at the price of a slightly lower
clock frequency. Since these results do not include the Modred
block, the delay of carry-save operators is underestimated.
However, these results indicate that radix-2 algorithms are
efficient for moduli up to 32 bits. For larger moduli, the high-
radix carry-save approach allows significant hardware savings
without impacting on the computation time on Xilinx FPGAs
(Figure 17). Note that borrow-save algorithms always lead to

larger circuits on our target FPGA family. Experiment results
indicate that the choice between the multipliers over GF(pm)
studied in this paper depends on the irreducible polynomial F
(see also [26]).
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