
Numerical simulation of a stroke: numerical problems

and methodology

Stéphane Descombes, Thierry Dumont

To cite this version:

Stéphane Descombes, Thierry Dumont. Numerical simulation of a stroke: numerical problems
and methodology. 2007. <hal-00150951>

HAL Id: hal-00150951

https://hal.archives-ouvertes.fr/hal-00150951

Submitted on 4 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-ENS-LYON

https://core.ac.uk/display/52329142?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00150951

NUMERICAL SIMULATION OF A STROKE : NUMERICAL

PROBLEMS AND METHODOLOGY

STÉPHANE DESCOMBES AND THIERRY DUMONT

Contents

1. Introduction 1
2. A Reaction–Diffusion system 2
3. The 0-dimensional case: a stiff system of ODE 3
3.1. Stiff ODE and stiff systems of ODE 3
3.2. An example of stiff system : The stroke system 6
3.3. Numerical methods for stiff systems of ODE 6
4. The n-dimensional case 7
4.1. Spatial discretization 7
4.2. Time discretization 8
4.3. Implementation 10
5. Numerical Results 10
5.1. One dimensional simulations 10
5.2. Two dimensional simulations 10
6. Perspectives: toward three dimensional more realistic simulations 16
7. Conclusion 16
References 16

1. Introduction

The numerical simulation of a stroke is a challenging problem, with many sources
of numerical difficulties: a complex geometry, a large number of nonlinear partial
differential equations (PDE) to be solved; moreover some important difficulties are
a consequence of the mathematical structure of the problem.

For the non specialists of scientific computing it could be surprising that there
exist no ready made software solutions to this problem: but nonlinear PDE are
actually too complicated mathematical objects to allow it. But for the mathemati-
cian, specialist of the theory of PDE and of their numerical approximation, there
is a general framework to which the equations of the model belong: the so called
systems of Reaction–Diffusion equations. These systems occur very often in the
nature, from chemistry to pattern formation and predator–prey models. The au-
thors have been working for some years on the mathematical analysis of numerical
methods for Reaction-Diffusion systems, as well as on developing numerical soft-
ware. The “stroke problem” has been and remains a constant and enlighting source
of questions and problems, both from the mathematical point of view and from the

1

2 S. DESCOMBES AND T. DUMONT

software engineering side; thus it will contribute to the elaboration of numerical
tools for problems occuring in other parts of Science.

We often use simplified problems in spatial dimension 1 or 2. The reason is that
such models can be solved very quickly, but the most part of the mathematical and
numerical difficulties remains; from an other point of view they allow parameter
fitting and numerical experimentations in a simplified way. On the other side,
multi dimensional simulations are, nowadays, too expensive to allow such parameter
experimentations.

The paper is organized as follows : In section 2, we define Reaction-Diffusion
systems, in section 3, we analyze the 0-dimensional case which gives a system of
ordinary differential equations. We show the numerical difficulties and give some
definitions of stability. Section 4 is devoted to the n-dimensional case and we define
the Alternate Direction Methods. Numerical simulations of an ischemic stroke are
given in section 5.

2. A Reaction–Diffusion system

Let m = 1, 2, or 3 be the spatial dimension and let Ω be a subset of R
m.

Reaction-Diffusion systems are PDE systems of the form:

(1)

∂ui

∂t
(~x, t) − εi∆ui(~x, t) = fi(u1(~x, t), . . . un(~x, t)), ~x ∈ Ω,

ui(~x, 0) = u0
i (~x), ~x ∈ Ω.

εi, i = 1, . . . , n, belongs to R, (εi > 0) and the functions u0
i , i = 1, . . . , n, are the

initial conditions; ~x = (x, y, z) in dimension 3, ~x = (x, y) in dimension 2 (and ~x = x
in dimension 1).

Let us explain the origin of such systems and the notations :

(1) Most of the diffusion phenomenas are modelled by the heat equation (Joseph
Fourier, 1822):

dT (~x, t)

dt
− ε∆T (~x, t) = 0.

which describes the propagation of the temperature in an homogeneous
media, as well as the mixing of gas and many other diffusion processes.
The Laplacian operator ∆ is defined (in dimension n = 3) by :

∆T =
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
.

In dimension 1, ∆T (x) is the second order derivative of u at x.
(2) Chemical reactions, without spatial effects (for example in perfectly mixed

reactors), are modelled by systems of ordinary differential equations (ODE),
which describe the time evolution of the concentrations of the different
reactants ui:

dui(t)

dt
= fi(u1(t), . . . un(t)), i = 1, 2, ...n.

(if we have n reactants).
(3) Let us now imagine chemical products which react together and diffuse

(like pollutants in the atmosphere, for example): they will be governed by
Reaction–Diffusion systems like (1).

NUMERICAL SIMULATION OF A STROKE 3

A derivation of the heat equation and many examples of Reaction–Diffusion based
models in biology can be found in [12] and [13].

A system like (1) must be equipped with boundary conditions : we will be
interested only by no flux (homogeneous Neumann) boundary conditions. In this
paper, Ω will be the brain. In the stroke model, n is equal to 20 (or more); some
equations (about 10) do not have diffusion (that is to say that εi = 0). The model
is defined by the functions fi and we refer to [7] (and [6]) for more details.

Actually, ∆ must be replaced by a more complicated operator, since the diffusion
is not constant in the brain; we will keep ∆ in the whole paper for the sake of
simplicity, with no loss of generality.

A mathematical study of such systems of equations is out of the scope of this
paper, but let us mention the existence in some systems of progressive waves: given
an initial condition ui(~x, 0) = φi(~x), i = 1 . . . n, there exist solutions of the form
ui(~x, t) = φi(~x+t~c) (~c is thus a speed (and a direction) of propagation of the wave);
this seems to be relevant of the depolarization waves observed in real strokes.

3. The 0-dimensional case: a stiff system of ODE

The 0-dimensional case is the most simplified model as possible: all the spa-
tial effects are neglected and we focus on the solution of the system of ordinary
differential equations :

(2)
dui

dt
= fi(u1, . . . un),

with the initial conditions ui(t = 0) = u0
i , for all i belonging to {1, · · · , n}. We

point out that ui, i = 1, . . . , n, only depends on the time and that the most part of
the modelling is actually in these equations [6] !

But even here, the numerical solution is not trivial, even if, in this case, efficient
tools are available : the reason is the stiffness of the system.

3.1. Stiff ODE and stiff systems of ODE. Let us start by a very classical
example, with one ordinary differential equation :

du

dt
= f(u),

with u(t = 0) = φ. Let h be a time step, the most simple method available is the
Explicit Euler method:

uj − uj−1

h
= f(uj−1),

with u0 = φ. We hope that uj will approximate u(jh), the exact solution at time
t = jh. The word explicit means that we only need to apply f to some known
quantities when computing with this method. Thus, the method is very simple and
not computationally expensive. But the reader should look at the case

du

dt
= −100 u

and φ = 1. The exact solution is u(t) = e−100t; let us forget that we know it, and
apply the Explicit Euler method with h = 1. We obtain: uj+1 = (1 − 100 h) uj ,
that is to say uj = (−99)j ! The computed solution is clearly not bounded, and
thus not acceptable.

4 S. DESCOMBES AND T. DUMONT

Alternatively, we can also use Implicit Euler method :

uj − uj−1

h
= f(uj)

that is to say: (uj − h f(uj)) = uj−1. The method is said to be implicit because f
is applied to unknown quantities and thus, a (possibly) non linear equation must
be solved at each step. If we apply it to the preceding example, we obtain: uj =
uj−1/101, which is a bounded sequence, decreasing, even if it is not a very accurate
approximation of the exact solution.

We recall that, if f is not linear, an algebraic equation must be solved at each
step, which is computer time consuming.

In the case of the single linear equation

du

dt
= −λ u,

the value 1/λ is the time constant of the equation, a measure of the time needed
by the solution to relax. With the Explicit Euler method, the instability is a
consequence of the choice of the time step h which is very large when compared to
the time constant of the equation (1/100 with λ = 100). If we had choosen a very
small time step in the preceding example (h < 1/100), the solution would have been
acceptable. But actually, when solving true problems with the explicit method, the
time step will be so small that the computing time will be much greater than with
the implicit method.

If we want to solve systems of ODE, we will have to face with the problem
that the different equations will have different time constants, for example 1 and
1/100000, and that we do not want to be restricted in our choice of the time step
by the “fastest” equation.

Let now λ be a complex number with a negative real part, the reader can keep
in mind the example of λ = −100. We consider the ODE

du

dt
= λ u,

with u0 = 1. The solution of this ODE is still explicit and is given by u(t) = eλ t.
For this equation, the Explicit Euler method gives

uj − uj−1

h
= λ uj−1,

thus

uj = (1 + hλ) uj−1.

The Implicit Euler method gives

uj =
uj−1

(1 − hλ)
.

Most of common numerical methods can be written in the form

uj = R(hλ)uj−1

with R a rational function. Following the previous remark, we do not want to be
restricted in our choice of the time step. We then impose that |R(hλ)| ≤ 1, without
any restriction on h, thus the sequence can not explode and has the same behavior
as the exact solution since for t ≥ 0,

∣

∣eλ t
∣

∣ ≤ 1.

NUMERICAL SIMULATION OF A STROKE 5

This property is called A-stability. An example of A-stable method is the Implicit
Euler method. But we can do more: when the real part of λ is strictly negative,
then

∣

∣eλ t
∣

∣ < 1

and

lim
t→+∞

∣

∣eλ t
∣

∣ = 0.

When R satisfies

lim
ℜz→−∞

|R(z)| < 1,

the method is strongly A-stable and when, in addition, R satisfies

lim
ℜz→−∞

|R(z)| = 0,

the method is said to be L-stable. To summarize when a numerical method is L-
stable we have the behavior nearest to the exact solution and this independently of
λ. This is why the L-stability is so important when the system has very different
time constants and a L-stable method can be very efficient on a problem of the
form

du

dt
= Au,

with A a matrix with several eigenvalues of different scales.
The property to show very different time constants in the systems of ODE is

known as stiffness (see [9]). It can be checked by looking at the eigenvalues λi, i =
1, · · · , n of the jacobian matrix J of fi(x1, · · · , xn), i = 1, · · · , n defined by

Jij =
∂fi

∂xj
, 1 ≤ i, j ≤ n.

If the ratio
maxi |λi|

minj |λj |

is large, the system is said to be stiff.
To get an intuitive idea of stiffness in ODE systems, the reader can think to a

system of two coupled springs, with very different stiffness, submitted to a time
varying force F:

A B

F

the interesting dynamics of the system is the dynamic of the spring B (if the stiffness
of A is very large, the movements of A will be approximatively 0). If we try to
integrate the system of ODE associated to this system of springs with an explicit
method, we will need to use time steps small enough to integrate the dynamic of the
the strong spring A; but with methods adapted to stiff systems of ODE (which are
all implicit methods) we will be able to choose time steps governed by the dynamics
of B.

6 S. DESCOMBES AND T. DUMONT

3.2. An example of stiff system : The stroke system. We have computed the
eigenvalues of the Jacobian (J was approximated numerically by finite differences),
near the equilibrium (that is to say for u such that fi(u) is about zero, for all
i = 1, · · · , n).

We found (in increasing order):
(−115191,−26522.1,−439.861,−346.076,−63.0174,−51.6393,
−17.5434,−0.0859597) ... plus some values near zero and thus, the system is

very stiff.
We also computed the associated eigenvectors; we could then verify that none

of them is parallel to one axis: there is consequently no hope to eliminate some
unknowns, and the full system of ODE must be solved.

3.3. Numerical methods for stiff systems of ODE. Suppose that we want to
solve the stroke’s system of ODE for t ≤ 4000 (seconds). With an explicit method,
like the Explicit Euler method which is not L-stable, we would have to choose a
time step h less than 10−6 seconds, and consequently perform about 4.109 time
steps, which is not acceptable, even if each step is not numerically expensive.

Different methods can be used for such stiff systems but all are implicit (and
thus, algebraic systems of equations must be solved), and consequently they are
computationally expensive, but it is the price to pay to be A-stable and eventually
L-stable. The Implicit Euler method is L-stable but with a poor precision : at time
T = nh, one can measure some norm || || of the difference between the computed
solution uh and the real solution u. If

||u(t) − uh(nh)|| = O(hp)

the method is said to be of order p. We naturally want p as large as possible
(because this implies that a reduction of the time step by 2 (for example) will
improve the solution by about 2p), with a given computing cost. Unfortunately the
Implicit Euler method is only of order 1. Getting stability and high order with the
same method is a challenging mathematical numerical problem. An answer is given
by the so called RadauIIA methods. For our ordinary differential equation :

du

dt
= f(u),

with u(t = 0) = φ, the RadauIIA method of order 3 which is A-stable is given by
by the resolution of the two-stages non linear problem

k1 = f

(

uj−1 +
h

12
(5k1 − k2)

)

,

k2 = f

(

uj−1 +
h

4
(3k1 + k2)

)

and
uj − uj−1

h
=

3k1 + k2

4
.

The most performant method that we tried is the so called Radau5 method, the
RadauIIA method of order 5 with step size control, which belongs to the category
of A-stable and L-stable methods (see [9]) and is built with a three-stages non linear
problem. Actually, classical ODE toolboxes (like in Matlab) are robust enough to
solve this problem, and simulations can be found in [6].

NUMERICAL SIMULATION OF A STROKE 7

x
0

x
2

x
i−1

x
i

x
i+1

x
m

u
0

u
i+1

u
1

u
2

u
i−1

u
i

u
m

x
1

Figure 1. Finite differences in dimension 1.

The key idea is that A-stable (or L-stable) method + high precision allow to
choose large time steps: as a result, the method, even if each step is expensive, will
be much less computer time demanding then the explicit methods.

4. The n-dimensional case

PDEs have no explicit solutions and it is necessary to approximate them with
discrete computable counterparts.

4.1. Spatial discretization. All the spatial derivatives must be replaced by dis-
crete versions: the most simple possibility (which is the one we use) is finite differ-
ences: given an n-dimensional mesh, derivatives are approximated by quotients. For
example, in dimension 1 (see figure 1), ∂u/∂x(xi) will be replaced by (ui+1 −ui)/τ
where the xi’s are the nodes of the mesh, τ = xi+1 − xi, and ui the approximated
values of u at xi.

In the same way, second order derivatives are approximated by

ui+1 − 2ui + ui−1

τ2
,

and the Laplacian in dimension 2 (see figure 2) will be approximated by

ui−1,j − ui+1,j − 4ui,j + ui,j−1 − ui,j+1

τ2
,

and so on.
The continuous unknown u is replaced by a vector of unknowns at the points xi

and the laplacian ∆ is replaced by a matrix A. The matrix A has only 3 non zero
coefficient in dimension 1 (5 in dimension 2, 7 in dimension 3).

As result a PDE like the heat equation :

du

dt
− ε∆u = f

will be replaced by a (linear) system of ODEs :

d~U

dt
− εA~U = ~F

with ~U a vector of all the discrete unknowns on the finite difference mesh.

Concerning the complexity, we can make the two following remarks :

• if the mesh is built on the pixels of a MNR picture, the number of nodes in
the mesh will generally be more than 105 in dimension 2 and the resulting
number of unknowns (for 20 equations) will be about 2106. In dimension
3 such a fine resolution seems untractable, but one must be prepared to
manage a set of 108 unknowns.

8 S. DESCOMBES AND T. DUMONT

u
i,j+1

u
i−1,j

u
i,j

u
i,j−1

u
i+1,j

Figure 2. Finite differences in dimension 2.

• for the heat equation, the system of ODEs is stiff and consequently implicit
method must be used.

4.2. Time discretization. The finite difference approach applied to the stroke’s
system of Reaction–Diffusion equations will create a large system of ODE’s to be
solved (about 2106 unknowns in 2d). Let us first present two approaches which
cannot be used:

4.2.1. The method of lines. If we look at one Reaction-Diffusion equation, we need
to solve, after spatial discretization, a system of the form:

d~U

dt
= εA~U + ~F (~U)

One can think to use directly a solver of systems of ODEs (this is the so called
method of lines), but let us recall that the system is stiff and, due to the term
~F (~U), it is non-linear. At each time step, a large system of algebraic equations will
be solved and that is very time consuming. But moreover, as we want to solve a
system of 20 Reaction-Diffusion equations the numerical cost would be largely too
expensive, even on supercomputers: we need some sort of “divide and conquer”
approach.

4.2.2. Implicit–Explicit Methods. Let us present the simplest of these methods, for

the case of one Reaction-Diffusion equation. ~Uk denoting the approximated solution
at time kh, the method is:

~Uk+1 − ~Uk

h
− εA~Uk+1 = ~F (~Uk).

NUMERICAL SIMULATION OF A STROKE 9

One must solve a linear system (because diffusion is taken implicitly) at each
step:

(h−1Id − εA)~Uk+1 = some known quantity.

but the nonlinear term is taken explicitly.
More precise (but not really more expensive) methods of the same type are

described and analyzed in [1].
The main advantage of these methods is that only linear system must be solved

and, in the case of systems of Reaction–Diffusion systems, these systems of linear
equations are decoupled (“divide and conquer”!), which result in a very time efficient
algorithm.

But the drawback is that, due to the explicit computation of the reaction terms,
these method are adapted only to systems with non stiff reaction terms. Let us
recall that the stroke’s system is very stiff, and these method can only work with
very small time steps (about 10−6), which would result in an prohibitive computing
time (about 4 109 steps for one hour of simulation: remember that if each step is
not very time consuming, we need to solve n large linear systems!).

Finally, the only possible methods which can (and proved to be able to) solve
the stroke’s problem seems to be one of :

4.2.3. The “alternate direction methods”. The idea is as old as numerical analysis
and was used and analyzed by the Soviet school in the years 60 (see for example
[11]). In these times, the main interest was the economy of computer memory.
The idea, applied to spatially discretized Reaction–Diffusion equations is to solve
alternatively problems Rh (the Reaction) and Dh (the Diffusion) defined by :

• Rh : starting from some initial condition, solve for a time step of h :

d~U

dt
= ~F (~U),

• Dh : starting from some initial condition, solve for a time step of h :

d~U

dt
= εA~U.

One can define different numerical methods :

• in the Lie methods one apply successively Dh and Rh (or Rh and Dh)

to ~Uk to get ~Uk+1 (ie ~Uk+1 = RhoDh
~Uk, where o denotes the classical

composition of functions).
• in the Strang method [16] one apply successively, Rh/2, Dh and Rh/2 (or

Dh/2, Rh and Dh/2) to ~Uk to get ~Uk+1 (ie ~Uk+1 = Rh/2oDhoRh/2
~Uk).

Let us quote the main advantages of these methods :

(1) A “divide and conquer” approach:

• Reaction and Diffusion are decoupled,
• The solution of the Dh problems, in the case of a system of n Reaction–

Diffusion equations is reduced to the solution of n independant heat
equations, and thus the complexity is reduced. One must keep in mind
that the cost (measured in number of multiplications and additions) of
the solution of a linear system of equations of size m grows much faster
than m; consequently, the solution of n systems of size m is much less
expensive than the solution of one system of size nxm.

10 S. DESCOMBES AND T. DUMONT

• Concerning the Rh problems, one immediately see that they are de-
coupled in systems of ODEs (as many systems of size n as nodes in
the finite difference mesh) and that all these systems are independant.

• We deduce that the Rh problems can be treated very efficiently in
parallel (on shared memory machines, as well as on distributed memory
machines),

• The Dh problems being decoupled in n independant problems, paral-
lelism is possible with at most n processors. A higher level of paral-
lelism would need more sophisticated techniques, like domain decom-
position.

(2) Robustness: If the solvers used for Dh and Rh problems are adapted to
stiff problems, these methods are also adapted to stiff systems of Reaction–
Diffusion (see [5], [3], [4] and [14]).

Concerning the precision, the Lie methods are of order 1, and the Strang methods
are of order 2. Following [3], it seems better to use the Rh/2oDhoRh/2 method than
the Dh/2oRhoDh/2 one (as the Reaction term is stiff).

4.3. Implementation. We have implemented the alternate directions methods
into a comprehensive software for the solution of Reaction–Diffusion systems (pub-
licly available, see [8]). Nowadays the code solves 1 dimensional and 2 dimensional
problems. The adaptation for 3d problems is a work in progress.

• For the solution of the Dh problems, the time discretization must be of order
2 in order to keep the second order of Strang method; we tried different
methods : mainly the Crank-Nicolson method and L-stable methods.

• For the solution of the Rh problems, one must use methods adapted to
stiff problems, of order at least 2. As each Rh problem is a Cauchy type
problem, musltistep methods are not adapted and implicit Runge–Kutta
methods can be used (see [9]). Here, we got the best performances with
the Radau5 method [9], both from the robustness point of vue and for the
computing time.

The code is multi-threaded and well adapted to shared memory machines.

5. Numerical Results

5.1. One dimensional simulations. One dimensional simulations are a precious
help for exploring the effect of constants in the model, avoiding biases due to the
geometry. They are a necessity for the fitting of some parameters, such as diffusion
coefficients. Actually, the values of diffusion coefficients that one can find in the
literature [15] is varying by a factor of more than 10 ! In [7] the model and our
code where used to explore the effect of the diffusion on the evolution of glutamate
concentrations, allowing to find where, and in which cases, the diffusion introduces
significant differences with the 0-dimensional model.

5.2. Two dimensional simulations. For these simulations, the finite difference
mesh was modeled on a MNR image which results in a set of about 1.25 105 nodes.
We have used the Strang Rh/2oDhoRh/2 method, Dh being solved by the Crank-
Nicolson method and Rh/2 by the radau5 method.

The unknowns are described in [7]. Let us recall that, in this modelisation the
brain is divided in 3 components at small scale: the neurons medium, the glial cells
and the extracellular domain. The unknowns are modelized at medium scale. The

NUMERICAL SIMULATION OF A STROKE 11

proportion of neurons is ρn; the proportion of glial cells is ρa and 0 ≤ ρn + ρa ≤ 1.
ρn and ρa are among the unknowns of the problem. Other unknowns are the electric
potential in neurons and astrocytes (Vn and Va), and for each of the 3 components
the concentration of the ions K+, Na+, Ca2+, Cl− and the glutamate glu−.

12 S. DESCOMBES AND T. DUMONT

Figure 3. Evolution of the density of Cl− ions in the astrocytes domain.

NUMERICAL SIMULATION OF A STROKE 13

Figure 4. Evolution of the density of K+ ions in the extra cellular domain.

14 S. DESCOMBES AND T. DUMONT

Figure 5. Evolution of the density of Ca2+ ions in the extra cel-
lular domain.

NUMERICAL SIMULATION OF A STROKE 15

Figure 6. Evolution of the ratio of ADCW.

16 S. DESCOMBES AND T. DUMONT

6. Perspectives: toward three dimensional more realistic simulations

Nowadays, the code [8] gives satisfactory results in dimension 2 (and 1). The
computing time on a 4 core Opteron computer (2.6 Ghz) is about one hour for
a simulation time of one hour. Three dimensional simulations will be much more
demanding:

• the number of nodes in the discretization will grow up to more than 106,
and thus, the computation time for the Rh problems will grow in the same
manner,

• concerning the solution of the Dh problems , we have used a direct method
[2] in dimension 2. In dimension 3, the amount of necessary memory would
become too large1 with the same method.

We are currently implementing the following strategy :

(1) try to determine in which parts of Ω the solution is “smooth” (that is to
say that the gradients are small), and do not solve Rh on all the nodes in
these parts; do it adaptively in time;

(2) use Domain Decomposition for the Dh problems: many iterative strategies
are known, see for example [10], to turn the solution of Dh into iterative
solutions on sub-domains, which can be computed in parallel.

(3) use also an adaptative discretization for Dh, on the sub-domains.

The code will then be really parallel and will be exploitable on distributed mem-
ory computers.

More realistic simulations also need a more elaborated model with certainly more
unknowns.

7. Conclusion

We have obtained the first dimensional simulations of ischemic strokes, which,
even if simplified, are sufficient enough to show that a useful numerical model can
be, and will be obtained, even if a lot of work remains to be done. We want to
emphasis that only the use of innovative and sophisticated numerical methods can
lead to this result. Also, the experience accumulated in the numerical software will
certainly be used in other fields.

References

[1] Georgios Akrivis, Michel Crouzeix, and Charalambos Makridakis. Implicit-explicit multistep
methods for quasilinear parabolic equations. Numer. Math., 82(4):521–541, 1999.

[2] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W. H. Liu.
A supernodal approach to sparse partial pivoting. SIAM J. Matrix Analysis and Applications,
20(3):720–755, 1999.

[3] S. Descombes, T. Dumont, and M. Massot. Operator splitting for stiff nonlinear reaction-
diffusion systems: order reduction and application to spiral waves. In Patterns and waves
(Saint Petersburg, 2002), pages 386–482. AkademPrint, St. Petersburg, 2003.

[4] Stéphane Descombes. Convergence of a splitting method of high order for reaction-diffusion
systems. Math. Comp., 70(236):1481–1501 (electronic), 2001.

[5] Stéphane Descombes and Marc Massot. Operator splitting for nonlinear reaction-diffusion
systems with an entropic structure: singular perturbation and order reduction. Numer. Math.,
97(4):667–698, 2004.

[6] Marie-Aimee Dronne, J-P. Boissel, and Grenier E. A mathematical model of ion movements
in grey matter during a stroke. J. of Theoritical Biology, 2006.

1we need about 5 Giga bytes in dimension 2

NUMERICAL SIMULATION OF A STROKE 17

[7] Marie-Aimee Dronne, Grenier Emmanuel, Dumont Thierry, Hommel Marc, and Boissel Jean-
Pierre. Role of astrocytes in grey matter during a stroke: A modelling approach. Brain
Research, 1138:231–242, 2007.

[8] T. Dumont. Numerical software for reaction–diffusion systems. Source code and documenta-
tion at: http://ciel.ccsd.cnrs.fr/, 2007.

[9] E. Hairer and G. Wanner. Solving ordinary differential equations. II, volume 14 of Springer
Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 1996. Stiff
and differential-algebraic problems.

[10] L. Halpern. Absorbing boundary conditions and optimized Schwarz waveform relaxation.
BIT, 46(suppl.):S21–S34, 2006.

[11] G. I. Marchuk. Splitting and alternating direction methods. In Handbook of numerical anal-
ysis, Vol. I, Handb. Numer. Anal., I, pages 197–462. North-Holland, Amsterdam, 1990.

[12] J. D. Murray. Mathematical biology. I, volume 17 of Interdisciplinary Applied Mathematics.
Springer-Verlag, New York, third edition, 2002. An introduction.

[13] J. D. Murray. Mathematical biology. II, volume 18 of Interdisciplinary Applied Mathematics.
Springer-Verlag, New York, third edition, 2003. Spatial models and biomedical applications.

[14] David L. Ropp and John N. Shadid. Stability of operator splitting methods for systems with
indefinite operators: reaction-diffusion systems. J. Comput. Phys., 203(2):449–466, 2005.

[15] B.E. Shapiro. Osmotic forces and gap junctions in spreading depression: a computational
model. J. Comput. Neurosci., 10:877–896, 2001.

[16] Gilbert Strang. On the construction and comparison of difference schemes. SIAM J. Numer.
Anal., 5:506–517, 1968.

Unité de Mathématiques Pures et Appliquées - CNRS UMR 5669 - Ecole Normale
Supérieure de Lyon, 46, Allée d’Italie, 69364 LYON Cedex 07 France

E-mail address: sdescomb@umpa.ens-lyon.fr

Université de Lyon, Université Claude Bernard Lyon 1, Institut Camille Jordan and
CNRS (UMR 5028) 43 boulevard du 11 novembre 1918 69622 Villeurbanne cedex France

E-mail address: tdumont@math.univ-lyon1.fr

