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Abstract: Many Ground-Based Synthetic Aperture Radar (GBSAR) applications demand 

preliminary analysis to select areas with high-quality signal. That is, areas in which the phase can 

be processed to extract the desired information. The interferometric coherence and the amplitude 

dispersion index are important tools widely used in the literature to assess the quality of GBSAR 

images. So far, no direct relation has been found between the two. Indeed, they are parameters of 

different natures: amplitude dispersion index is calculated with only amplitude values, while 

coherence provides information also on the signal phase. The purpose of this article is to find a 

relation between the two parameters. Indeed, the amplitude dispersion index provides some 

practical advantages if compared to coherence estimators, especially to perform fast preliminary 

analysis. In this article, a theoretical relation between amplitude dispersion index and coherence is 

retrieved. GBSAR measurements acquired in different scenarios, at different working frequencies 

are presented and used to validate such a relation. 

Keywords: coherence estimation; temporal decorrelation; ground-based synthetic aperture radar; 

amplitude dispersion index; radar statistics; spectral density 

1. Introduction

Ground-Based Synthetic Aperture Radar (GBSAR) [1] interferometry is a powerful 

tool that enables the measurement of target displacements with sub-wavelength 

precision. This popular technique is currently applied for monitoring natural and urban 

scenarios. Interferometry techniques exploit the signal phase information and give 

reliable results only when applied to signals with a sufficient phase quality. Therefore, 

preliminary studies to single out areas of the investigated scene characterized by high-

quality signal are demanded. 

One of the main problems that affects radar interferometry is the temporal 

decorrelation of the radar echoes [2]. In fact, there are several factors that can degrade the 

phase information as changes in atmospheric conditions or modifications in the physical 

properties of the scene between acquisitions. This effect is particularly evident in 

vegetated scenarios, where (due to wind, vegetation growth, etc.) targets are subject to 

non-coherent displacements between successive acquisitions. For instance, authors of [3] 

showed that the short-term variable reflectivity induced by wind, typical of vegetated 

scenarios, can be theoretically characterized and modeled. In [4] different theoretical 

models for the temporal decorrelation of GBSAR images in vegetated scenarios are 

examined. For the short-term signal variability, a model with dependence on the wind 

speed is presented and validated for experimental data acquired in different scenarios. 

To estimate the decorrelation degree of GBSAR images, the interferometric coherence 

[5] and the amplitude dispersion index [6] parameters are largely employed.

The interferometric coherence of radar images is a benchmark of the achievable

interferogram quality [5] and is widely used to select image pixels with a sufficiently 

stable phase. 
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The amplitude dispersion index (D�) [6,7] was introduced for the determination of 

the so-called permanent scatterers, i.e., targets whose signal amplitude remains stable 

over time, and it is a popular tool currently employed in interferometric analysis. 

Whereas the coherence is calculated on complex image values, the D� is based only 

on the signal amplitudes and seems to provide no information on phase content. 

Nevertheless, the authors of [7] showed that the amplitude dispersion index can provide 

an estimate for the phase dispersion, under the hypothesis of high signal-to-noise ratio. 

As will be further discussed in the following section of this paper, the D� provides 

practical advantages with respect to the interferometric coherence in assessing the image 

quality. For instance, being based on amplitude values, it is less sensitive to changes in 

the atmospheric parameters. Thus, it does not require atmospheric phase compensation 

before calculation, which implies less computational effort. Furthermore, the amplitude 

dispersion index parameter gives reliable results if calculated on a limited measurement 

time series. 

Given the paramount importance and theoretical relevance of the coherence 

parameter on the one hand, and the practical advantages provided by amplitude 

dispersion index on the other, it would be interesting to find a way to relate them. Up to 

now, no direct relation has been established between the two parameters. The aim of this 

article is to find a theoretical relation between coherence and D�. 

In order to give the D� a theoretical formulation, the authors of this paper start from 

the theory of radar scattering statistics [8–10]. Indeed, as the amplitude dispersion index 

involves first and second momenta of the amplitude distribution, it is possible to retrieve 

an analytic expression of this parameter. 

The analytic expression retrieved, which relates D� and coherence, is tested using 

GBSAR experimental data resulting from three measurement campaigns performed in 

different scenarios. 

2. Materials and Methods 

In this section, after having reviewed the theoretical definition of the signal 

coherence, some estimators commonly used to evaluate the phase quality of radar images 

are introduced and discussed. Then, to theoretically relate the amplitude dispersion index 

to the coherence, a statistical description of the radar backscattered signal is introduced, 

and an analytic formula that relates the two parameters is derived for the most common 

signal distributions. Finally, the theoretical relation is validated by simulations. 

2.1. The Coherence Estimator 

Given two zero-mean complex signals I� and I�, the complex coherence is defined 

as follows [5]: 

γ�� =
E[I�I�

∗ ]

�E[|I�|�]E[|I�|�]
, (1)

where E[∙] is the expectation value operator. The magnitude of this quantity is called the 

degree of coherence. The coherence is defined within [0, 1]. High values of γ�� 

correspond to high coherent signals. Generally, a signal is considered coherent when 

γ�� > 0.75 ÷ 0.9. 

In the context of GBSAR analysis, we are interested in evaluating the coherence 

between radar images of the same scenario, acquired at different times, say at time t�, and 

t� . Then, the above expression is called temporal or interferometric coherence and 

quantifies the signal quality of the image’s pixel value I, between time t�, and t�. 

There are several factors that lead to a degradation of a radar image in terms of phase 

information, such as thermal effects, noise, atmospheric phase screen or physical changes 

in the scene [2,3,11,12]. In GBSAR applications, we are particularly interested in the 
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degradation related to physical changes in the scene. Indeed, these changes could fatally 

affect the interferometric image. 

Other sources of de-coherence, such as the atmospheric condition, could be 

compensated during the signal analysis. Indeed, these contributions are not related with 

the quality of the signal and can be removed by using specific techniques [13–18] before 

coherence computing. 

Throughout the last decades, different models [2,19–21] and estimators for the 

temporal coherence have been defined, mostly for SAR applications [4,5,22,23]. 

An efficient tool for retrieving information on the signal autocorrelation and 

coherence is provided by the signal spectral analysis. In the frequency domain, the 

coherence is usually computed as the amplitude of normalized cross spectral density [24–

26]. 

The signal power spectral density function can provide important information also 

about the characterization of GBSAR signals. For instance, in [27] the power spectral 

density is proposed in the context of synthetic aperture radar (SAR) processing as a tool 

for the statistical characterization of the different SAR modes and interferograms. 

To understand how the signal power spectral density is related to the coherence, let 

us write the autocorrelation function C(τ), for a certain time interval τ, of a signal time 

series I(t), acquired at generic times t, and its power spectral density S(f), respectively, 

as, 

C(τ) = E[I(t)I∗(t + τ)], (2)

S(f) = |FT[I]|�, (3)

where f is the conjugate variable of τ. 

The Wiener–Kinchin theorem states that, under the assumption of a stationary 

random process, the Fourier transform (FT) of the autocorrelation signal (2) is equal to the 

signal power spectral density, 

FT[C(τ)] = S(f). (4)

Under the assumption of stationary processes, the spectral density itself can provide 

information on the overall coherence degree of the time series images. Indeed, the 

autocorrelation, if properly normalized is a common coherence estimator. For a stationary 

process it is E[|I�|�] = constant, for any t�, and normalization factors in Equation (1) do 

not depend on time. Therefore, by applying the Fourier transform to Equation (1), and 

combining Equations (2) and (4), we have 

γ�(f) = FT[γ(τ)] ∝ S(f). (5)

Equation (5) provides us with an expression of the signal coherence, in the frequency 

domain. If only one frequency dominates the spectral density S(f), then, the peak value 

of the spectral density, properly normalized, is an estimator for the coherence degree, 

relative to that frequency in the spectrum. Indeed, if the investigated area is stationary, or 

subject to a constant uniform movement, the spectrum will be characterized by a single 

peak at zero or at a constant frequency, respectively. This method provides us with an 

estimate of the temporal coherence averaged over the time interval. 

It is worth noting that almost regular sampling times are required to properly 

calculate the Fourier transform, hence, the signal spectral density. The GBSAR systems 

usually acquire long time series of images of the same scenario, with regular return times 

in the order of minutes. Thus, Equation (5) may represent an excellent tool for estimating 

the signal coherence in GBSAR applications. 

Finally, it is worth saying that the coherence estimate of Equation (5) presents great 

sensitivity to changes in atmospheric conditions, since the variations of the signal phase 

values over time influence the evaluation of the Fourier transform. 
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2.2. The Amplitude Dispersion Index 

The amplitude dispersion index is an important tool for evaluating the signal stability 

over time, and was introduced in the context of permanent scatterers determination for 

interferometric analysis [6,7,28,29]. It is defined as 

D� =
STD�

m�

, (6)

where A = |I| is the image amplitude, and STD�, m� are the standard deviation and the 

mean value of the amplitude time series, respectively. Low values of D� correspond to 

high coherent signals. Generally, the threshold below which a pixel is considered a per-

manent scatterer is set to 0.25. 

Since the D�  evaluation is based on amplitude values, it is not very sensitive on 

changes in atmospheric conditions. Indeed, a time variation of the air refractive index pro-

foundly changes the atmospheric phase contribution, hence, the signal phase information. 

Conversely, amplitude values are almost insensitive to these effects, and the D� evalua-

tion does not demand atmospheric phase corrections. 

As already said, despite being calculated with amplitude values, it has been shown 

that the D� provides a good estimate of the phase dispersion in the hypothesis of high 

signal-to-noise ratio [7]. This result was obtained investigating the statistical properties of 

the signal amplitude. As it suggests a connection between D� and coherence of the inter-

ferometric phase, in the following section a statistical description of radar signal ampli-

tudes is reviewed. 

2.3. Amplitude Statistics of Radar Data 

Statistical descriptions of radar signals have been studied at the very beginning of 

this technology [8–10,30–33]. Depending on the radar signal characteristics or the physi-

cally investigated scenario, different statistics have been proposed for both the interfero-

metric phase and the signal amplitude. In what follows, we review basic concepts related 

to the statistical properties of the backscattered signal from distributed targets. Indeed, 

the signal amplitude statistics can provide important insights on the amplitude dispersion 

index and on its relation to the other parameters of interest. 

Let us start modelling the response of the so-called Gaussian scatterers, i.e., scatterers 

that can be decomposed into a sufficiently high number of random independent scatterers 

within a resolution cell [33]. If no scatterer dominates the others, for the central limit the-

orem, the radar image pixel value I(t) is a zero mean complex circular Gaussian random 

variable, arising from the contribution of independent scatterers located in the same res-

olution cell. Thus, the joint probability density function for the real and imaginary part of 

I(t) reads 

pdf(Re(I), Im(I)) =
1

2πσ�
e

�
��(�)����(�)�

��� , (7)

where σ is the standard deviation. By performing a change of variables, one can derive a 

joint probability distribution for the amplitude A and phase φ of the signal. Specifically, 

by substituting 

�
Re(I) = A cos(φ)

Im(I) = A sin(φ)
, (8)

into Equation (7), and after integration over the variable φ, we get the following expres-

sion for the signal amplitude statistics, 

pdf(A) =
A

σ�
e

�
��

���. (9)

Equation (9) is a Rayleigh distribution [8], with scale parameter σ. Given the assump-

tions made (large number of independent contributions and no scatterer that dominates 



Remote Sens. 2022, 14, 3039 5 of 16 
 

 

the others), this model has been regarded in the literature as that describing the speckle 

pattern [8]. Good agreement with the Rayleigh distribution has been observed for the am-

plitude of SAR experimental data in homogeneous regions with coarse spatial resolution 

[9]. Conversely, it fails in describing the radar statistics of heterogeneous areas imaged 

with fine spatial resolution. 

Let us now consider the case when a coherent background signal is summed to the 

independent scatterers contributions [8]. That is, a part of the scatterers within the resolu-

tion cell remains stable over time. Indeed, this may be the case in natural scenarios, when 

investigating land partially covered by vegetation. In this case the signal can be modeled 

as the sum of a random circular Gaussian variable and a constant complex phasor. In the 

following, we assume that the Gaussian scatterers are completely independent from the 

coherent background. Without loss of generality, we also assume the coherent back-

ground image value to be real, equal to A�. As a result, the real part of the image pixel 

I(t) has mean value equal to A�. Under these hypotheses, the joint probability distribu-

tion for the real and imaginary part of the image pixel value I(t), reads 

pdf�Re(I), Im(I)� =
1

2πσ�
e

�
(��(�)���)����(�)�

��� . (10)

By performing the change of variables defined in Equation (8), and after integration 

over the phase variable φ, we retrieve the following relation: 

pdf(A) =
A

σ�
e

�
�����

�

��� I� �
AA�

σ�
� , (11)

which is called the Rice distribution [8]. The Rician model was found appropriate to de-

scribe low resolution SAR images [10], where strong scatterers are embedded into the sur-

rounding weak clutter environment. Our intent is to understand whether this simple 

model can account for GBSAR amplitude images, acquired in vegetated scenarios. 

2.4. Relation between Amplitude Dispersion Index and Coherence 

An a-priori expression of the amplitude dispersion index can be retrieved by consid-

ering the first (m�) and the second (STD�) moment of the proper amplitude radar statistic. 

For example, considering the Rayleigh distribution (9), the value of dispersion index 

is constant, equal to 

D�
��������

=
STD�

��������

m�
��������

= �
4 − π

π
≃ 0.52. (12)

Indeed, this value corresponds to the dispersion index of radar clutter, which typi-

cally follows the Rayleigh distribution. 

If the amplitude signal is instead Rice distributed, it depends on the parameters A�, 

and σ, according to 

D�
���� =

STD�
����

m�
����

= �
4

π
�1 +

A�
�

2σ�
� L�

�

�� �−
A�

�

2σ�
� − 1 , (13)

where L�
��

�� (⋅) is the Laguerre polynomial of degree 
�

�
. Equation (13) relates the amplitude 

dispersion index values to the ratio 
��

�

���. Under the same assumptions on the statistical 

distribution, it is possible to retrieve an expression for the coherence of radar images, as a 

function of the parameters A�, and σ. Let us recall the expressions of the first and second 

distribution moment for the variables Re(I) and Im(I), 

E[Re(I)] = A�,

 E[Im(I)] = 0,

 var[Re(I)] = var[Im(I)] = σ�.

 (14)
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where, without loss of generality, we assumed the coherent background image value to 

be real, equal to A� (see Section 2.3). 

By writing Equation (1) in terms of real and imaginary parts of the image I, and using 

the expressions in (14), we end with 

γ =
1

1 +
2σ�

A�
�

 . 
(15)

Then, by combining Equations (13) and (15), we obtain an expression that relates the 

coherence with the amplitude dispersion index. 

D�
���� = �

4

π
�1 +

γ

1 − γ
� L�

�

�� �−
γ

1 − γ
� − 1 . (16)

This equation establishes a direct relation between the D� and the coherence, under 

the hypothesis of Rician amplitude statistics. As will be shown in the next section, for 

GBSAR systems, in rural environments where low vegetation is present, this condition is 

met, and Equation (16) successfully reproduces the parameters relation. 

It is worth noting that the method used to retrieve Equation (16) is rather general and 

could also be used for signals characterized by different statistics. 

2.5. Simulations 

With the aim to provide solid basis for the above formulation, and to assess the va-

lidity of Equation (16), the two models considered in the above section have been simu-

lated. 

The echo of a continuous wave stepped frequency signal operative in Ku-band were 

simulated. For the sake of simplicity, we limited the analysis in one dimension, by simu-

lating the signal of a monostatic radar. The echo reflected from 100 scatterers, uniformly 

distributed inside the same one-dimensional resolution cell, was simulated. The ampli-

tude reflectivity of each scatterer was uniformly distributed between 0 and 1. 

All the scatterers were subject to random displacements inside the resolution cell, 

between each acquisition, in order to simulate a model, in which the signal amplitude 

mimics the Rayleigh distribution. The Rice statistics were instead reproduced by fixing 

the position of a certain number of scatterers, while moving randomly the others, always 

inside the resolution cell. In the following we refer to these two models to as the “Ray-

leigh” and “Rice” model, respectively. We simulated acquisitions of N�  consecutive 

measurements. For the Rice model, the simulation was replicated for different values of 

the ratio of stable to total scatterers, which was tuned from 0 to 1. 

To collect statistics and averaging over the initial positions of the scatterers, in every 

run of the simulation, the time series was repeated 100 times; before starting any new time 

series, the scatterers position inside the resolution cell was changed randomly. 

Figure 1 shows the obtained results concerning the amplitude values, both for Ray-

leigh (a), and Rice model (b). Histograms in gray represent simulated data, while the red 

and green curves are the Rayleigh and Rice functions (Equations (9) and (11), respec-

tively), that result from a fit of the simulated data. 

It is worth noting that, in Figure 1a, when only random scatterers are present, the 

Rice distribution that best fits the data, reduces to the Rayleigh one. On the other hand, if 

both fixed and random scatterers are present (Figure 1b), the Rayleigh distribution no 

longer fits simulated data. Simulated models successfully reproduced the expected theo-

retical amplitude distributions. 



Remote Sens. 2022, 14, 3039 7 of 16 
 

 

 
(a) (b) 

Figure 1. Comparison between amplitude histograms and theoretical distributions for simulated 

data: (a) represents the model where only random scatterers are present; in (b) both random and 

fixed scatterers are present. The red curve is the Rayleigh function resulting from the fitting of sim-

ulated data, while the green curve is the Rice function. 

For each time series, the coherence and the D� were computed. The coherence was 

calculated by using the spectral density estimator defined in Equation (5). Indeed, this 

expression provides a coherence value for the whole time series, as the amplitude disper-

sion index, thus enabling the parameter comparison. Hence, for each run of the simula-

tion, a single value of D� and coherence is calculated. Specifically, we evaluated the spec-

tral density of the signal and set the coherence equal to the peak value, properly normal-

ized. 

Figure 2 shows the results obtained regarding the relationship between D� and co-

herence for the Rayleigh model (red circles), and for the Rice model (blue circles). Each 

circle corresponds to a different run of the simulation. For the Rice model each circle cor-

responds to the simulated result obtained for a specific value of the ratio of stable to total 

scatterers. If almost all scatterers are stable, low (high) values of D� (coherence) are ob-

tained. If instead nearly 100% of scatterers are subject to random displacements, values of 

D� correspond to that of the Rayleigh model. Good agreement between simulations and 

theoretical curves was obtained. 

 

Figure 2. Relation between amplitude dispersion index D� and coherence γ obtained in simulated 

data: red circles are obtained for the Rayleigh model where only random scatterers are present; blue 

circles for the Rice model with different values for the ratio of stable to total scatterers. The 
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theoretical curves correspond to the analytic expressions obtained in Equations (12) and (16) for the 

Rayleigh and for the Rice model, respectively. 

3. Results 

Given the promising results obtained with simulations, authors of this paper aimed 

to validate Equation (16) for experimental data acquired in natural scenarios. That is, de-

termining whether the simplified model introduced in Section 2, could effectively describe 

the scattering properties of different physical scenarios. To give solid basis to the relation 

between amplitude dispersion index and coherence, data from three GBSAR measure-

ment campaigns were analyzed. This enabled us to test the relation in different scenarios 

and with different working frequencies. 

The image was focused on a range–azimuth grid using a backpropagation algorithm 

[34]. Using this algorithm, each range–azimuth resolution cell was covered by several pix-

els. The amplitude statistics were evaluated by averaging over an ensemble of the pixels 

whose overall size is approximately equal to that of a single resolution cell. Indeed, this 

ensemble of pixels properly represents the backscattered signal of the physical illumi-

nated target. For each measurement series, we selected only resolution cells where the 

scatterers were present. Then, the amplitude dispersion index and the coherence were 

calculated to test the theoretical relation (16). 

3.1. Formigal Measurement Campaign 

For our scope, we analyzed GBSAR measurements acquired in Formigal, Spain, from 

13th  to 22th November 2006. The purpose of this campaign was to monitor a vegetated 

slope, subject to a landslide. The radar used was a C-band GBSAR able to acquire an image 

about every hour. Figure 3 shows an amplitude radar image (a) and a picture (b) the illu-

minated scene. The area was characterized by the presence of rocks, grass, and low vege-

tation. 

 

(a) (b) 

Figure 3. (a) Amplitude GBSAR image on the monitored slope, in Formigal, Spain; the red box 

highlights the area chosen for analysis. (b) Picture of the illuminated area. 

Figure 4 shows the histogram of signal amplitude values, obtained for the resolution 

cells in the region highlighted by the red box in Figure 3a. This region was a vegetated 

area characterized by meadows. The colored curves correspond to the theoretical distri-

butions that best fit the experimental data. One can notice a good agreement between the 

experimental data and the Rice distribution. 
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Figure 4. Histogram of the signal amplitude values of the GBSAR image, compared with theoretical 

Rayleigh (red curve) and Rice (green curve) distributions. 

On such areas, amplitude dispersion index and coherence were calculated for each 

resolution cell. As done with simulated data, coherence was computed by using the spec-

tral density function (5). As already stressed, changes in the atmospheric parameters affect 

the coherence values. Thus, a processing to remove the atmospheric phase screen was 

implemented. Results concerning D� and coherence values are shown in Figure 5a. Ex-

perimental data appear to be arranged according to the theoretical curve, thus, validating 

the relation (16) in this specific case. To quantify the agreement between experimental and 

theoretical data, we calculated the squared deviation between the theoretical (16) and ex-

perimental value of D�, by averaging on a group of almost one hundred targets with sim-

ilar coherence. Figure 6b shows the obtained results. 

(a) (b) 

Figure 5. (a) Values of the amplitude dispersion index D� as function of the coherence γ, calculated 

for resolution cells of the investigated area, in Formigal. (b) Deviation of D� values from the theo-

retical ones. 
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(a) (b) 

 
(c) (d) 

Figure 6. Amplitude GBSAR images of a vegetated dam, acquired at Aquilonia (Avellino), Italy, in 

S-band (a), C-band (b), and Ku-band (c). (d) shows a top view of the investigated area. The area 

highlighted in red was chosen for the analysis. 

3.2. Aquilonia Test Site: Validation with Different Frequencies 

To investigate the relation between D� and coherence for different frequency bands, 

measurements of a multi-frequency GBSAR campaign, acquired in Aquilonia, Italy, were 

analyzed. During this measurement campaign, three GBSAR systems working in C, S, and 

Ku-band illuminated a vegetated tailing dam [35]. The acquisition rate of the radars in C 

and S-band were about 580 s. The acquisition rate of the Ku-band radar was 240 s. 

For the present analysis, measurements acquired from 12th March to 3rd April 2022 

were studied, for a total of almost 4000 radar images. 

In Figure 6 amplitude images acquired in the three bands are shown, together with a 

picture of the illuminated scene. As can be seen in Figure 6d, the dam body is covered by 

grass and low vegetation. 

We focused the analysis on the dam body highlighted in red in Figure 6d. First, we 

tested the Rician statistics of the amplitude distribution. Areas for which we obtained ex-

cellent agreement are those characterized by meadows, without higher vegetations. 

In order to test whether Equation (16) could also apply for the other parts of the dam 

body, amplitude dispersion index and coherence have been calculated for each resolution 

cell in the area contoured in red. Figures 7a, 8a, and 9a show the results concerning the 

relation between the two parameters obtained for S, C, and Ku-band data, respectively. 

Each blue dot corresponds to a specific resolution cell. It is worth noting good agreement 

between experimental data and the theoretical curve (16), represented by the red line, at 
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least for high values of coherence. Figures 7b, 8b, and 9b show the deviation of the exper-

imental D� values from the theoretical ones, for each value of coherence measured. 

 

(a) (b) 

Figure 7. Results obtained for S-band data. (a) Relation between amplitude dispersion index D� 

and coherence γ of experimental data compared to the theoretical red curve, Equation (14). Each 

dot represents a resolution cell in the analyzed area. (b) Deviation of experimental D� values from 

theoretical ones. 

(a) (b) 

Figure 8. Results obtained for C-band data. (a) Relation between amplitude dispersion index D� 

and coherence γ of experimental data compared to the theoretical red curve, Equation (14). Each 

dot represents a resolution cell in the analyzed area. (b) Deviation of experimental D� values from 

theoretical ones. 
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(a) (b) 

Figure 9. Results obtained for Ku-band data. (a) Relation between amplitude dispersion index D� 

and coherence γ of experimental data compared to the theoretical red curve, Equation (14). Each 

dot represents a resolution cell in the analyzed area. (b) Deviation of experimental D� values from 

theoretical ones. 

3.3. Measurements in Urban Scenario: Validation with Different Frequencies 

Finally, to further test the relation in an environment with different characteristics, a 

measurement series acquired in an urban scenario in the premises of the University of 

Florence is presented. In this case, the same GBSAR systems employed in the test site at 

Aquilonia, acquired images for 5 days. Figure 10 shows an amplitude image (a) and a 

picture (b) the illuminated scene. As can be observed, various kinds of targets are present 

in the area; namely, grass, some bushes, a tree, and buildings. 

(a) (b) 

Figure 10. (a) Amplitude GBSAR image acquired in C-band of the illuminated urban area, in Flor-

ence, Italy; (b) a picture of the illuminated scene. 

In this case, the previous analysis was computed for the area corresponding to the 

whole focused image in Figure 10a. Results obtained are shown in Figures 11–13 for the 

S, C, and Ku-band, respectively. For all the three bands, good agreement with the theoret-

ical curve is found. 
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(a) (b) 

Figure 11. Results obtained for S-band data. (a) Values of D� as function of the coherence, calcu-

lated for resolution cells of the investigated area, in the urban scenario, in Florence. (b) Deviation of 

experimental D� values from theoretical ones. 

(a) (b) 

Figure 12. Results obtained for C-band data. (a) Values of D� as function of the coherence, calcu-

lated for resolution cells of the investigated area, in the urban scenario, in Florence. (b) Deviation of 

experimental D� values from theoretical ones. 
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(a) (b) 

Figure 13. Results obtained for Ku-band data. (a) Values of D� as function of the coherence, calcu-

lated for resolution cells of the investigated area, in the urban scenario, in Florence. (b) Deviation of 

experimental D� values from theoretical ones. 

4. Discussion 

Amplitude dispersion index and coherence are widely used in GBSAR interferomet-

ric analysis as tools for selecting high quality pixels in the image. Since the coherence eval-

uation demands preprocessing analysis to give reliable results, the amplitude dispersion 

index could represent a precious efficient tool. Starting from simple general assumptions, 

we found a theoretical relation between the two parameters. 

The purpose of the experimental data analysis was to determine whether such theo-

retical relation would apply for GBSAR images acquired in scenarios with different char-

acteristics. The three measurement campaigns considered for the analysis were performed 

in the following environments: on a slope characterized by the presence of rocks and par-

tially covered by grass; on a dam, covered by low vegetation; on an urban scenario, char-

acterized by the presence of both buildings and vegetation. 

For each data set, the agreement between experimental data and Rice statistics was 

tested for several areas in the wide range of scenarios considered. Excellent agreement 

was found for areas characterized by the presence of meadows. Then, both amplitude 

dispersion index and coherence were evaluated for all these areas. Results reported in 

Figures 5, 7, 8, 9, 11, 12, and 13 seem to confirm the relation between amplitude dispersion 

index and coherence retrieved analytically in Equation (16). Specifically, good agreement 

is found for low values of coherence (high values of D�), that is, for targets characterized 

by high signal-to-noise ratio. 

Indeed, as can be noted in Figures 7–9 and Figures 11–13, some points close to γ = 0, 

overcome the Rayleigh threshold (D� ≃ 0.52). These results were obtained by performing 

the analysis for the whole dam body (Figures 7–9) and for the entire focused image in the 

urban scenario (Figures 11–13). The points with γ ≃ 0, probably correspond to the targets 

of wooded areas, or in any case where there is more incoherent scatterers, and low signal-

to-noise ratio. 

Anyway, results obtained using data acquired at Formigal (Figure 5) in C-band, also 

show good agreement with the theoretical ones for low values of coherence. This is prob-

ably because the analysis has been carried out for a homogeneous area characterized by 

high signal-to-noise ratio. 

The results shown suggest the use of this relation as a quantitative reference to relate 

coherence and amplitude dispersion index, for targets with D� < 0.5, that is, with a suffi-

ciently high signal-to-noise ratio. This method can represent a powerful tool when 
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searching for high-signal quality pixels in GBSAR images, in a wide range of scenarios. 

The validation with different frequency bands also contributes to give solid basis to the 

relation. 

5. Conclusions 

In this paper, the estimation of the coherence of GBSAR images has been addressed. 

First, we reviewed some common estimators used to evaluate the phase stability of pixels 

in the radar image. Then, a statistical description of the backscattered signal amplitude is 

presented, and a relationship between the so-called amplitude dispersion index and the 

interferometric coherence was analytically found. 

The preliminary estimation of the targets signal quality usually performed in inter-

ferometric analysis, could benefit from this relation. Indeed, the amplitude dispersion in-

dex provide practical advantages, and represent an efficient tool for estimating the signal 

quality. A theoretical quantitative relation between coherence and amplitude dispersion 

index can give solid basis to the D�  parameter: it relates a threshold on coherence to 

thresholds on D�. Thus, such a relation allows the obtaining of information on the coher-

ence of the image, greatly simplifying the processing. 

Some simulations have been implemented to test the reliability of such a function 

under specific hypotheses. The theoretical relation was confirmed by experimental data 

acquired in different environments and with different working frequencies. Obtained re-

sults suggest the general character of this quantitative relation and its applicability in a 

wide range of situations. 

Author Contributions: Conceptualization, A.B. and M.P.; methodology, A.B. and A.M.; validation, 

A.B., L.M. and M.P.; formal analysis, A.B.; data curation, A.B. and L.M.; writing—original draft 

preparation, A.B.; writing—review and editing, L.M.; visualization, A.M.; supervision, M.P.; project 

administration, M.P.; funding acquisition, M.P. All authors have read and agreed to the published 

version of the manuscript 

Funding: This research was funded by IDS Georadar Pisa 56121, Italy. 

Data Availability Statement: Data available on request. 

Acknowledgments: The authors would like to thank DIAN s.r.l., Matera, Italy, especially Giovanni 

Nico and Olimpia Masci, for their valuable support and cooperation. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Wang, Y.; Hong, W.; Zhang, Y.; Lin, Y.; Li, Y.; Bai, Z.; Zhang, Q.; Lv, S.; Liu, H.; Song, Y. Ground-Based Differential Interferom-

etry SAR: A Review. IEEE Geosci. Remote Sens. Mag. 2020, 8, 43–70. https://doi.org/10.1109/mgrs.2019.2963169. 

2. Zebker, H.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. 

https://doi.org/10.1109/36.175330. 

3. Lort, M.; Aguasca, A.; Lopez-Martinez, C.; Fabregas, X. Impact of Wind-Induced Scatterers Motion on GB-SAR Imaging. IEEE 

J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3757–3768. https://doi.org/10.1109/jstars.2018.2863369. 

4. Monti-Guarnieri, A.; Manzoni, M.; Giudici, D.; Recchia, A.; Tebaldini, S. Vegetated Target Decorrelation in SAR and Interfer-

ometry: Models, Simulation, and Performance Evaluation. Remote Sens. 2020, 12, 2545. https://doi.org/10.3390/rs12162545. 

5. Touzi, R.; Lopes, A.; Bruniquel, J.; Vachon, P.W. Coherence estimation for SAR imagery. IEEE Trans. Geosci. Remote Sens. 1999, 

37, 135–149. https://doi.org/10.1109/36.739146. 

6. Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A review. 

ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. https://doi.org/10.1016/j.isprsjprs.2015.10.011. 

7. Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. 

https://doi.org/10.1109/36.898661. 

8. Goodman, J.W. Statistical Properties of Laser Speckle Patterns. In Laser Speckle and Related Phenomena; Dainty, J.C., Ed.; Springer: 

Berlin/Heidelberg, Germany, 1975; pp. 9–75. https://doi.org/10.1007/978-3-662-43205-1_2. 

9. Chitroub, S.; Houacine, A.; Sansal, B. Statistical characterisation and modelling of SAR images. Signal Process. 2002, 82, 69–92. 

https://doi.org/10.1016/s0165-1684(01)00158-x. 

10. Gao, G. Statistical Modeling of SAR Images: A Survey. Sensors 2010, 10, 775–795. https://doi.org/10.3390/s100100775. 



Remote Sens. 2022, 14, 3039 16 of 16 
 

 

11. Luzi, G.; Pieraccini, M.; Mecatti, D.; Noferini, L.; Guidi, G.; Moia, F.; Atzeni, C. Ground-based radar interferometry for landslides 

monitoring: Atmospheric and instrumental decorrelation sources on experimental data. IEEE Trans. Geosci. Remote Sens. 2004, 

42, 2454–2466. https://doi.org/10.1109/tgrs.2004.836792. 

12. Wei, M.; Sandwell, D.T. Decorrelation of L-Band and C-Band Interferometry Over Vegetated Areas in California. IEEE Trans. 

Geosci. Remote Sens. 2010, 48, 2942–2952. https://doi.org/10.1109/tgrs.2010.2043442. 

13. Iglesias, R.; Fabregas, X.; Aguasca, A.; Mallorqui, J.J.; Lopez-Martinez, C.; Gili, J.A.; Corominas, J. Atmospheric Phase Screen 

Compensation in Ground-Based SAR with a Multiple-Regression Model Over Mountainous Regions. IEEE Trans. Geosci. Remote 

Sens. 2013, 52, 2436–2449. https://doi.org/10.1109/tgrs.2013.2261077. 

14. Iannini, L.; Guarnieri, A.M. Atmospheric Phase Screen in Ground-Based Radar: Statistics and Compensation. IEEE Geosci. Re-

mote Sens. Lett. 2010, 8, 537–541. https://doi.org/10.1109/lgrs.2010.2090647. 

15. Izumi, Y.; Nico, G.; Sato, M. Time-Series Clustering Methodology for Estimating Atmospheric Phase Screen in Ground-Based 

InSAR Data. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–9. https://doi.org/10.1109/tgrs.2021.3072037. 

16. Hu, C.; Deng, Y.; Tian, W.; Zhao, Z. A Compensation Method for a Time–Space Variant Atmospheric Phase Applied to Time-

Series GB-SAR Images. Remote Sens. 2019, 11, 2350. https://doi.org/10.3390/rs11202350. 

17. Deng, Y.; Hu, C.; Tian, W.; Zhao, Z. A Grid Partition Method for Atmospheric Phase Compensation in GB-SAR. IEEE Trans. 

Geosci. Remote Sens. 2021, 60, 1–13. https://doi.org/10.1109/tgrs.2021.3074161. 

18. Falabella, F.; Perrone, A.; Stabile, T.A.; Pepe, A. Atmospheric Phase Screen Compensation on Wrapped Ground-Based SAR 

Interferograms. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. https://doi.org/10.1109/tgrs.2021.3055648. 

19. Rocca, F. Modeling Interferogram Stacks. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3289–3299. 

https://doi.org/10.1109/tgrs.2007.902286. 

20. Tang, P.; Zhou, W.; Tian, B.; Chen, F.; Li, Z.; Li, G. Quantification of Temporal Decorrelation in X-, C-, and L-Band Interferometry 

for the Permafrost Region of the Qinghai–Tibet Plateau. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2285–2289. 

https://doi.org/10.1109/lgrs.2017.2761900. 

21. Morishita, Y.; Hanssen, R.F. Temporal Decorrelation in L-, C-, and X-band Satellite Radar Interferometry for Pasture on Drained 

Peat Soils. IEEE Trans. Geosci. Remote Sens. 2014, 53, 1096–1104. https://doi.org/10.1109/tgrs.2014.2333814. 

22. Guarnieri, A.; Prati, C. SAR interferometry: A “Quick and dirty” coherence estimator for data browsing. IEEE Trans. Geosci. 

Remote Sens. 1997, 35, 660–669. https://doi.org/10.1109/36.581984. 

23. Lee, J.-S.; Cloude, S.; Papathanassiou, K.; Grunes, M.; Woodhouse, I. Speckle filtering and coherence estimation of polarimetric 

sar interferometry data for forest applications. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2254–2263. 

https://doi.org/10.1109/tgrs.2003.817196. 

24. Carter, G.; Knapp, C.; Nuttall, A. Estimation of the magnitude-squared coherence function via overlapped fast Fourier trans-

form processing. IEEE Trans. Audio Electroacoust. 1973, 21, 337–344. https://doi.org/10.1109/tau.1973.1162496. 

25. Hinich, M.J.; Clay, C.S. The application of the discrete Fourier transform in the estimation of power spectra, coherence, and 

bispectra of geophysical data. Rev. Geophys. 1968, 6, 347–363. https://doi.org/10.1029/rg006i003p00347. 

26. Blasch, E.; Yang, C. FFT-based auto-correlation estimation (FACE) for extended radar pulse integration subject to large doppler 

change. In Proceedings of the 2012 11th International Conference on Information Science, Signal Processing and their Applica-

tions (ISSPA), Montreal, QC, Canada, 2–5 July 2012; pp. 1153–1158. https://doi.org/10.1109/isspa.2012.6310465. 

27. Holzner, J. Analysis and statistical characterization of interferometric SAR signals based on the power spectral density function. 

IEEE Trans. Geosci. Remote Sens. 2004, 42, 1116–1121. https://doi.org/10.1109/tgrs.2004.826554. 

28. Qiu, Z.; Ma, Y.; Guo, X. Atmospheric phase screen correction in ground-based SAR with PS technique. SpringerPlus 2016, 5, 

1594. https://doi.org/10.1186/s40064-016-3262-6. 

29. Noferini, L.; Pieraccini, M.; Mecatti, D.; Luzi, G.; Atzeni, C.; Tamburini, A.; Broccolato, M. Permanent scatterers analysis for 

atmospheric correction in ground-based SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1459–1471. 

https://doi.org/10.1109/tgrs.2005.848707. 

30. Tough, R.J.A.; Blacknell, D.; Quegan, S. A statistical description of polarimetric and interferometric synthetic aperture radar 

data. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1995, 449, 567–589. https://doi.org/10.1098/rspa.1995.0059. 

31. Donati, S.; Martini, G. Speckle-pattern intensity and phase: Second-order conditional statistics. J. Opt. Soc. Am. 1979, 69, 1690–

1694. https://doi.org/10.1364/josa.69.001690. 

32. Bamler, R.; Just, D. Phase statistics and decorrelation in SAR interferograms. In Proceedings of the IGARSS’93—IEEE Interna-

tional Geoscience and Remote Sensing Symposium, Tokyo, Japan, 18–21 August 2002. 

https://doi.org/10.1109/igarss.1993.322637. 

33. Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Probl. 1998, 14, R1–R54. https://doi.org/10.1088/0266-

5611/14/4/001. 

34. Pieraccini, M.; Miccinesi, L. ArcSAR: Theory, Simulations, and Experimental Verification. IEEE Trans. Microw. Theory Tech. 2016, 

65, 293–301. https://doi.org/10.1109/tmtt.2016.2613926. 

35. Di Pasquale, A.; Nico, G.; Pitullo, A.; Prezioso, G. Monitoring Strategies of Earth Dams by Ground-Based Radar Interferometry: 

How to Extract Useful Information for Seismic Risk Assessment. Sensors 2018, 18, 244. https://doi.org/10.3390/s18010244. 


