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Abstract

Recently, deep learning methods have had a tremendous impact on com-
puter vision applications. The results obtained were unimaginable a few years
ago. The problems of greatest interest are image classification, semantic seg-
mentation, object detection, face recognition, and so on. All these tasks have in
common the necessity of having a sufficient quantity of data to be able to train
the model in a suitable manner. In fact, deep neural networks have a very high
number of parameters, which imposes a fairly large dataset of supervised ex-
amples for their training. This problem is particularly important in the medical
field, especially when the goal is the semantic segmentation of images, both due
to the presence of privacy issues and the high cost of image tagging by medical
experts. Themain objective of this thesis is to study newmethods for generating
synthetic images along with their label–maps for segmentation purposes. The
generated images can be used to augment real datasets. In the thesis, in order
to achieve such a goal, new fully data–drivenmethods based on Generative Ad-
versarial Networks are proposed. The main characteristic of these methods is
that, differently from other approaches described in literature, they are multi–
stage, namely they are composed of some steps. Indeed, by splitting the gener-
ation procedure in steps, the task is simplified and the employed networks re-
quire a smaller number of examples for learning. In particular, a first proposed
method consists of a two–stage image generation procedure, where the seman-
tic label–maps are produced first, and then the image is generated from the
label–maps. This approach has been used to generate retinal images along with
the corresponding vessel segmentation label–maps. With this method, learn-
ing the generator requires only a handful of samples. The method generates
realistic high–resolution retinal images. Moreover, the generated images can be
used to augment the training set of a segmentation algorithm. In this way, we
achieved results that outperforms the state–of–the–art for the task of segmenta-
tion of retinal vessels. In the second part of the thesis, a three–stage approach is
presented: the initial step consists in the generation of dots whose positions in-
dicate the locations of the semantic objects represented in the image; then, in the
second step, the dots are translated into semantic label–maps, which are, finally,
transformed into the image. The method was evaluated on the segmentation of
chest radiographic images. The experimental results are promising both from a
qualitative and quantitative point of view.
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Chapter 1

Introduction

The advent of Machine Learning (ML) can be considered an evolution of computer
science. In fact, while in the classical framework the program of an application is
written by humans, in ML computers are able to automatically learn meaningful
features, relationships and patterns from a series of examples and observations, so
that at the end even the program is learnt. Like children, ML algorithms try to learn
from their mistakes. The goal is to obtain a model along with its parameters, by
minimizing an ad hoc loss function. The history of ML is not very recent, and it has
alternated between periods of great popularity and periods of total darkness. Its
rebirth and its definitive affirmation took place with the advent of Deep Learning
(DL).

Deep Neural Networks (DNNs) are feedforward networks with more than one
hidden layer. DNNs are also characterized by the presence of several types of lay-
ers, e.g. convolutional and pooling layers. These characteristics, which differentiate
DNNs from classical neural networks, allowed to overcome important problems of
ML algorithms and to implement sophisticated functions such as those encountered
in computer vision and natural language understanding. In fact, the techniques
used before DL relied on complex feature extraction methods. Instead, with DNNs,
raw data can be fed directly into the network, which automatically extracts the rep-
resentation needed to solve the assigned task. Another characteristic of modern
DNNs is that they have become very large and complex, use a large number of pa-
rameters, and require a huge amount of data. Since nowadays it is increasingly easy
to collect and share data, there has been the definitive outbreak of these networks.
In addition, the availability of increasingly performing GPUs, which allow the use
and faster training of complex networks, has also had a great influence.

Three types of frameworks characterize DL: supervised, unsupervised and re-
inforcement learning. Supervised learning exploits a labeled dataset, while un-
supervised learning attempts to determine predetermined or unknown structures
without the need for human intervention. Also reinforcement learning uses labeled
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datasets, but the labels are not immediately available for each pattern and its main
goal is to find a compromise between unexplored territories (exploration) and cur-
rent knowledge (exploitation). For each of these approaches, a fair amount of data
is essential to obtain acceptable results, especially with regard to generalization, i.e.
the ability of the network to make the right decision on new data. However, most of
the success of deep architecture is based on supervised learning.

One of themain problemswith this approach is the availability of data annotated
by experts. There are many fields where collecting a huge amount of labeled data
is difficult, one of which is the medical field. In recent years, the number of collabo-
rations between machine learning experts and clinicians have grown exponentially,
particularly for computer vision tasks. Classification, semantic segmentation, object
detection are the main problems applied to Magnetic Resonance Imaging (MRI),
Computed Tomography (CT) and X–Ray scans. In addition to the problem of shar-
ing images due to the privacy of patients, who must give their consent, there is the
difficulty in labeling the images. Consider the problem of semantic segmentation.
Roughly speaking, the goal here is to classify every pixel in the image. In order
to train a semantic segmentation network we need images and the corresponding
label–maps, in which we associate each pixel with a class. To obtain these label–
maps, a doctor or an expert will have to manually examine the image pixel by pixel.
This work is very expensive both in terms of time (in some cases could take hours
for a single image) and resources.

Several techniques have been used to overcome the lack of data over time. Clas-
sic data augmentation techniques include flips, rotations, scales, crops andGaussian
noise. Obviously, in this way the number of images is easily multiplied, but in some
cases this is not enough. A possible alternative is to generate new images from real
ones using ML techniques. Actually, machine learning algorithms are able to im-
plicitly acquire a specific domain model from real data, which can be used to gener-
ate new data. A popular approach is the Generative Adversarial Network (GANs)
(Goodfellow et al., 2014).

In this thesis, we propose new methods, based on GANs, to generate both real-
istic images and the corresponding label–maps. The main characteristics of those
methods is that, differently from other approaches described in literature, they are
multi–stage, namely they are composed of some steps. By splitting the generation
procedure in steps, we simplify the generative task so that simpler GANs can be
used and, more importantly, a smaller number of examples are required to train
those GANs. The experimentation of the methods have confirmed that they can
produce high quality images and they can be used to augment datasets for segmen-
tation algorithms.

The thesis is focused on two tasks in medical field with different characteristics:
the segmentation of retinal images and the segmentation of Chest X–Ray (CXR)
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images. In particular, in the former task, the goal is to identify blood vessels in
retinal images while, in the latter, the goal is to determine which pixels belong to
the lungs and the heart in CXR images.

For the former application, which is a binary classification problem, we propose
a Two–Stage generation approach, while for CXR images, which involves the identi-
fication ofmultiple classes, a Three–StageGAN is applied. The proposed Two–Stage
method consists of two distinct phases. In the first stage, a GAN learns fromdata the
typical distribution of blood vessels in the image, thus defining the semantic label–
map. In the second phase, an image–to–image translation algorithm is trained to
transform the blood vessels produced in the first phase into a synthetic image.

For CXR images, the proposed Three-Stage approach includes an extra step at
the beginning of the generative procedure. In the first stage, the position of each
anatomical part is generated and represented by a “dot” within the image; in the
second stage, semantic labels are obtained from the dots; finally, the CXR image is
generated. Interestingly, notice that, while in the above procedure the positions of
the dots are automatically generated, in another possible use of the Three-Stage ap-
proach the dotsmay bemanually positioned in order to have a tool that can generate
objects at given positions.

The approaches described above, in addition to being able to generate high res-
olution images with a limited amount of data, allow us to improve the performance
of Deep Learning models for segmentation when few data are available for train-
ing. In fact, a correct segmentation, in both types of images, is essential to obtain a
correct diagnosis. In the case of retinal fundus imaging, we are mainly concerned
with cardiovascular and ophtalmologic diseases. However, a visual analysis of the
retinal fundus image is time–consuming. Therefore, it is necessary to develop auto-
matic analysis tools for the retinal fundus images. Certain features of retinal blood
vessels, such as width, tortuosity, and branching, are important symptoms of circu-
latory disease, so achieving good segmentation is the first step towards an accurate
diagnosis. The correct automatic segmentation of the lungs and heart can also help
physicians in detecting diseases and abnormalities. Similarly, the proper identifica-
tion of the lungs can be used to extract clinically relevant features. Subsequently,
these features can be used to train other networks that deal with classification tasks,
making the diagnosis phase fully automatic and supporting the physician in the
final decision.

The experimental results show that our methods can generate images that are
true to reality. The images have been judged both from a qualitative and a quantita-
tive point of view. For the former evaluation, the images have been visually assessed
by experts. For the latter, some segmentation networks have been trained using the
generated images and the results of the segmentation has been compared with the
literature showing that we can reach the state-of-the-art and possibly outperform it,
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when the train set is small. In addition to comparing the results with those already
present in the literature, we compared theMulti–Stagemethods with a Single–Stage
approach, in which images and label–maps are generated simultaneously. In partic-
ular, an improvement can be observed as the number of steps increases: in fact, the
Two–Stage method outperforms the Single–Stage method just as the Three–Stage
method outperforms the Two–Stage one.

1.1 Major contributions of the thesis
The main contributions of this thesis can be summarized as follows.

1. Development of two new general methods for generating images and the cor-
responding label–maps. Both methods allow to obtain a potentially infinite
number of synthetic images from a dataset composed of a limited number of
images.

a) The first approach consists of a two–stage image generation procedure.
In the first phase, the generation model learns to reproduce the semantic
label–maps, while, an image–to–image translation algorithm is used to
obtain the final synthetic image (based on (Andreini et al., 2022)).

b) The second method extends a) by adding an initial step that generates
dots corresponding to the objects in the image. Then image–to–image
translation algorithms are used to translate first the dots into a label–map
and, finally, the label–map into the synthetic image (based on (Ciano
et al., 2021a)). With this approach, we can set objects within the image
by simply setting the position of the related dot.

2. Application of the Multi–Stage generation methods in representative medical
fields.

a) Use of the Two–Stage method for generating high–resolution retinal im-
ages and the corresponding label–maps. The generated images have been
used to train a semantic segmentation network, that improves the state–
of–the–art (Andreini et al., 2022).

b) Use of the Three–Stage method for generating high–resolution CXR im-
ages and the corresponding label–maps. A semantic segmentation net-
work has been trained by exploiting generated images, obtaining the re-
sults discussed in (Ciano et al., 2021a).
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1.2 Structure of the Thesis
The thesis is organized as follows.

Chapter 2 introduces Machine Learning and Deep Learning techniques applied
to relevant computer vision tasks. In particular, we explain how the gradual tran-
sition from the single neuron models to modern networks, with millions of units,
has occurred. Subsequently, we describe the techniques applied to computer vision
tasks, so that we deal with classical problems concerning semantic segmentation,
generation of synthetic images and image–to–image translation algorithms. More-
over, the literature related to the methods employed in this thesis are discussed.

In Chapter 3, we present a two–stage approach for the generation of both im-
ages and semantic label–maps. In this chapter, the method is explained in detail,
highlighting its advantages from both a qualitative and quantitative point of view.
Two–Stage GANs are capable of generating high–resolution synthetic images while
being trained with few real images. The developed method was applied on retinal
images, with the final goal of demonstrating the usefulness of the generated images
for training a semantic segmentation network. Finally, we describe the results, com-
paring themwith a single–stage generation method and with previous works in the
literature.

Chapter 4 describes a three–stagemethod. It is explained how an additional step
added to the image generation procedure can improve performance and how, start-
ing from the generation of simple dots, corresponding to objects within the image,
we are able to obtain a final high–resolution image. The method proposed in this
chapter has been applied to a dataset of CXR images. Examples of generated images
are presented together with the obtained quantitative results.

Chapter 5 briefly presents activities in which I have been involved during my
PhD period, that are not strictly linked to my thesis.

Finally, Chapter 6 summarizes the contribution of the thesis and discusses mat-
ters for future research.



Chapter 2

From the single neuron to Deep
Learning

2.1 Machine Learning Techniques
The beginning of the Artificial Intelligence (AI) goes back further than we might
think. Since the creation of the “Turing Test” in 1950 (Turing and Ince, 1992), for
many decades there have been alternating periods of great popularity of AI and
related disciplines (Shannon, 1948; von Neuman et al., 1994) and periods of little
interest from the scientific community. In recent years, this alternation has been in-
terrupted. The availability of a huge amount of data and of increasingly performing
GPUs — to train more and more complex models —, have sparked the interest in
this sector, now present in every area of our life.

In this chapter, we will start from the simplest single–neuron models and then
describe the more advanced Deep Learning techniques, in particular those used in
Computer Vision.

2.1.1 Neuron model and architecture
AnArtificial Neural Network (ANN) is a graph (oriented or not) A = (V, E)whose
vertices, v ∈ V, are called neurons or units, and whose arcs, e ∈ E, are called connec-
tions or synapses. Indeed, each connection, like the synapses in a biological brain, can
transmit a signal to other neurons. The graph is labeled on both vertices and arcs.
The labels on the arcs, called weights, are the network parameters, while the labels on
the vertices are real values computed using an activation function. This function de-
pends on both the input of the neuron and the values of theweights of each incoming
connection.

The first ANNmodel— called perceptron and created by Frank Rosenblatt in 1958
(Rosenblatt, 1958; McCulloch and Pitts, 1943) — was a single–neuron architecture.

6
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The perceptron is the basic computational unit for the creation of networks with
different architectures and various levels of depth, which have led, time after time,
to modern Deep Neural Networks (DNNs). A Multi Layer Perceptrons (MLPs)
is an architecture that consists of layers of neurons, called input (I), hidden (H)
and output (O) layers (see Figure 2.1). Each layer consists of one or more units,

Figure 2.1: Example of an MLP with one hidden layer.

while the arcs connect neurons belonging to consecutive layers, with the information
flowing from the input to the output layer. An MLP with several hidden layers is
called a DNN. Regarding the activation functions, the Rectified Linear Unit (ReLU)
(Krizhevsky et al., 2012) (and its variants) is mainly used in modern architectures
while, in shallow MLPs, Threshold Logic Functions, Linear Functions, Sigmoids,
Hyperbolic Tangent and Gaussian functions are the most common.

2.1.2 Dynamics
The dynamics of an MLP can be defined as the flow of information from the input
to the output, a signal that propagates through the entire network. If the data to
be processed are d–dimensional, X = (x1, x2, . . . , xd), the MLP has d input neurons
(|I| = d). The neurons that belong to the layer I act as buffers, so their job is to pass
the signal from the input to the neurons of the first hidden layer. Let i be a generic
neuron. It receives as many signals, oi1 , oi2 , . . . , oin as the number of its incoming
connections. Then, the activation function, f (·) : R → R, associated with unit iwill
produce a scalar, based on the weighted sum of all the input signals:

ai =
n

∑
j=1

wij · oij , (2.1)

where wij are the weights. Finally, we obtain the output of neuron i, yi = f (ai)

that will be propagated to the next layer. This mechanism will be repeated for each
neuron in each layer up to the output neurons. Let k be an output neuron (k ∈ O), yk
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is assumed to be the k–th output of the network. If the MLP has m output neurons,
its outputs are considered as an m–dimensional vector Y = (y1, y2, . . . , ym).

2.1.3 Learning
For the sake of simplicity, we initially consider a single neuron network. In theANN,
each input xi is multiplied by the corresponding weight wi, then a term b, called
bias, is added and, finally, all the contributions are summed (see Figure 2.2). At this
point, the weighted sum will be used as the input to the activation function, that
will provide the output of the neuron.

Figure 2.2: Perceptron.

As mentioned above, neurons can be grouped into one or more layers making
an MLP. Let wij be the weight of the connection between the i–th unit of layer l and
the j–th unit of layer l − 1; the output of neuron i, yi, can be calculated as:

yi = f (ai) = f (
n(l−1)

∑
j=1

wij · xj) (2.2)

where n(l) indicates the dimension of layer l. If f : R → R is linear, then yi can be
rewritten as:

yi =
n(l−1)

∑
j=1

wij · xj = WT · X (2.3)

where W ∈ Rn(l−1),n(l). Given a training set τ = {(Xp, Yp) : Xp ∈ Rd, Ŷp ∈ Rm, p =

1, . . . , P}, we need to determine an error measure over the training samples with
an appropriate Loss Function (LF). There are several LFs in the literature: Mean
Squared Error (MSE), Binary Cross Entropy, Categorical Cross Entropy, Hinge Loss,
etc. Obviously, each of these LFs has its own characteristics, so that in the design
phase of the network it is essential to choose the appropriate function to obtain opti-
mal results. Let us consider, for simplicity, a network without hidden layers and the
MSE loss. Therefore, we have a function L(τ, W), where W = {wij|i = 1, . . . , m; j =
1, . . . , d}. The LF can be defined as L(τ, W) = 1

2 ∑p ∑m
i=1(ŷi − yi)

2, with p = 1, . . . , P
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and P = |τ|. To train the network and thus minimize the LF, we use a gradient
descent procedure. At each step t, the weights are updated as follows:

wij(t + 1) = wij(t) + ∆wij(t), (2.4)

where ∆wij(t) depends on the partial derivative of the loss w.r.t. the weight wij:

∆wij(t) = −µ
∂L

∂wij
. (2.5)

The value µ is called learning rate and defines the step size at each iteration. There are
two different learning approaches: batch and on–line. The main difference between
these two approaches is that, in batch mode, the weights are updated after the pre-
sentation of all the training patterns to the network, whereas for on–line learning
such a change is realized after each training sample. The repeated application of Eq.
(2.4) implements the Gradient Descent iterative algorithm, which allows to find a
local minimum in the loss function.

Let us now describe how the gradient of Eq. (2.5) can be calculated in networks
with many layers. Thus, let fi(ai) be the activation function associated with the i–th
output unit, then for on–line weight updating, we can calculate ∂L

∂wij
as follows:

∂L
∂wij

=
∂

∂wij

{1
2

m

∑
k=1

(ŷk − yk)
2
}
=

1
2

m

∑
k=1

∂

∂wij
(ŷk − yk)

2

=
1
2

∂

∂wij
(ŷi − yi)

2 = −(ŷi − yi)
∂yi

∂wij

(2.6)

From Eq. (2.5), we obtain:

∆wij = µ(ŷi − yi)
∂yi

∂wij
(2.7)

Let us proceed with the calculation of ∂yi
∂wij

:

∂yi

∂wij
=

∂ fi(ai)

∂wij
=

∂ fi(ai)

∂ai

∂ai

∂wij

= f ′i (ai)
∂

∂wij

n(l)

∑
k=1

wikxk = f ′i (ai)xj.
(2.8)

Finally, the so called delta–rule takes the form:

∆wij = µ(ŷi − yi) f ′i (ai)xj = µδixj (2.9)
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having defined δi = (ŷi − yi) f ′i (ai). For any weight wjk of any layer, the delta–rule
described in Eq. 2.9 can be applied, based on the following definition for δj:

δj =

{
(ŷi − yi) f ′j (aj), if j ∈ Ll

(∑i∈Lk+1
wijδi) f ′j (aj), if j ∈ Lk with k = l − 1, . . . , 0

(2.10)

assuming a network with l layers, where L0 denotes the input layer, L1, . . . , Ll−1
the hidden layers, and Ll the output layer. The Back–Propagation (BP) algorithm
computes the gradient in this way, starting from the output layer and propagating
the error signal back to the input layer.

Using the batch modality, the network training proceeds by epochs. An epoch
consists in presenting all the patterns of the training set in the forward phase, back-
propagating an error contribution which is the sum of all the errors accumulated
during the epoch to update the weights.

Over time, additional modifications have been made to the BP algorithm, allow-
ing, for example, to (partially) avoid local minima or to favor the generalization
capacity of the network. Some example are as follows.

• Weight–decay: weigths are maintained numerically smaller which implies sim-
pler solutions. The loss is defined as L = 1

2 ∑i(ŷi − yi)
2 + α

2 ∑i,j(w2
ij), where

the second term is the regularization term. For a generic w we obtain:

∆w = −µ
∂L
∂w

= −µ
∂

∂w

[
1
2 ∑

i
(ŷi − yi)

2
]
− µαw (2.11)

that is, when calculating the new value of w, in addition to the usual ∆w due
to the delta–rule, a µα portion of the same w is subtracted.

• In order to make learning more stable, an inertia or momentum term can be
introduced into the delta–rule:

∆w(t + 1) = −µ
∂L

∂w(t)
+ ρ∆w(t), ρ ∈ (0, 1) (2.12)

The momentum term allows us to overcome the risk to be trapped in small
local minima. Indeed, momentum helps in reducing the noise in gradient up-
date term and thus helps to converge faster to the optimal (or near optimal)
value.

2.2 Deep Learning
The term Deep Learning comes from the depth of the network used and thus the
number of layers present in the designed architecture. AnMLPwith a single hidden
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layer is a universal approximator (Cybenko, 1989): under appropriate assumptions
on the activation functions, an MLP can approximate any continuous function on
a compact subset of Rn. DNNs extend this propriety of MLPs and are able to ap-
proximate more complex functions (Bianchini and Scarselli, 2014). In this Section,
we describe some DNN architectures that are particularly used in Computer Vision
tasks.

2.2.1 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are one of the most famous and widely
used DNNs, particularly in the field of computer vision. The term “convolutional”
refers to the mathematical operator that is used instead of the simple matrix mul-
tiplication. This kind of architecture is very useful for processing data with a grid
structure, such as 2D images. First, we need to see what a convolution is, from a
mathematical point of view, and then how this operation is used in some layers of
a CNN. A convolution between two functions f and g is indicated by f ∗ g and is
defined as:

( f ∗ g)(t) =
∫

f (τ)g(t − τ)dτ . (2.13)
Intuitively, the above value represents the area under the function f (τ)weighted by
the function g(−τ) shifted by an amount t. Of course, we need to discretize the time
t, since we process data on a computer. So we have:

s(t) = (x ∗ w)(t) =
+∞

∑
a=−∞

x(a)w(t − a), (2.14)

where x and w are defined only on integer t, and are often referred to as the input
and the kernel, respectively. In machine learning applications to computer vision,
both the input and the kernel are multidimensional arrays, namely tensors. As we
mentioned earlier, in computer vision, if we consider 2D images, we would also like
to have a bidimensional kernel. Therefore, if we consider a bidimensional image I
as input, we have:

S(i, j) = (I ∗ K)(i, j) = ∑
m

∑
n

I(m, n)K(i − m, j − n), (2.15)

where (m, n) is the grid dimension, and for the commutative property of convolu-
tion we can write

S(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i − m, j − n)K(m, n). (2.16)

Finally, if we don’t flip the kernel, we get a function implemented in many neural
network libraries, called cross–correlation

S(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i + m, j + n)K(m, n). (2.17)
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Just as we have established a correlation between a brain neuron and a single
perceptron, we can observe a similarity between CNNs and our visual cortex. In
particular, we can observe a similar connectivity pattern. Indeed, a single neuron
responds to stimuli in a narrow region of the visual field, known as its receptive field,
and a set of such overlapping fields covers the entire visual area. This is what, more
or less, happens in CNNs.

A convolutional layer consists of three blocks. In the first block, a convolution
operation is performed which produces linear activations. Subsequently, always
taking the images as an example, some non–linear operations are calculated, using
activation functions such as sigmoid, hyperbolic tangent or, as more often happens,
the ReLU function. In the third block, a pooling function is used to further modify
the output of the layer. The pooling function replaces the output of the convolu-
tional layer by computing some statistics in a rectangular neighborhood of the out-
put. Two common functions used in the pooling operation are: average pooling and
max pooling. The former returns the average of a neighborhood of the output, the
latter computes its maximum value. The pooling functions allow to reduce the spa-
tial dimension of the representation, and consequently to reduce the computational
cost of the operations to be performed later. Apart from their practical implementa-
tion, the most important properties that have made CNNs crucial in the Computer
Vision field are: their capacity to produce sparse interactions, to realize parameter
sharing and equivariant representations. Let us discuss these three fundamental
aspects of CNNs.

• Sparse interactions – Using a smaller kernel than the input avoids the inter-
action of all output units with all input units. For this reason, this situation
is also called sparse connectivity. In this way, not only a reduction in mem-
ory requirements is obtained, since there are less parameters to store, but also
a significant decrease in the number of operations and, consequently, in the
computational cost. By considering the example of images, we can immedi-
ately see the improvement we get by using this approach. An image can have
thousands or millions of pixels but, with a kernel composed of a limited num-
ber of parameters, we can detect important image features, such as edges, at a
reduced computational cost.

• Parameter sharing – In a traditional ANN, each element of the weight matrix
is used once. In CNNs, the main assumption is the following, if at a certain
location (x1, y1) a given weight is useful to compute a feature, then it should
also be useful at another location (x2, y2). Thus, some neurons will be forced
to share the same weights and biases.

• Equivariant representations – One consequence of parameter sharing is equiv-
ariance to translation. This means that if an input image is translated by a cer-
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tain amount, the output feature map is translated by the same amount. This
cannot be said for other transformations, such as rotations and scale changes.
Therefore, to capture such a variability, we need to modify the input data with
multiscale resize, flips and rotations, increasing the number of training images.

2.2.2 Semantic Segmentation
With the advent of DNNs and particularly CNNs, the number of studies performed
on images has grown exponentially. Humans are able to classify images, detect ob-
jects and segment. This list of possible activities is sorted by difficulty. In fact, if
in image classification, the goal is to return a label for each image, a further step is
needed for the localization of the objects in an object detection task. Finally, with
the segmentation, we try to classify every single pixel. There are two types of seg-
mentation techniques:

• Semantic Segmentation: it consists of classifying each pixel assigning it a par-
ticular label, without making distinctions between different instances of the
same object.

• Instance Segmentation: we try to assign a unique label to each instance of a
particular object in the image. Therefore, if there are three cars in an image,
each car will have its own label, while in the case of semantic segmentation
each car would have the same label.

Before DNNs, techniques such as SVMs, K–Means Clustering, and Random Forest
were used to solve image segmentation problems. However, the results obtained by
DNNs have virtually eliminated competition from these classical techniques. Let
us see which networks are most commonly used for the semantic the segmentation
problem.

Fully Convolutional Network— The general architecture of CNNs consists of con-
volutional and pooling layers, followed by fully connected layers, to obtain the net-
work output. Fully Convolutional Networks (FCNs) (see Figure 2.3) are used for
classification tasks (e.g. AlexNet, VGGs andGoogLeNet), and theymust be suitably
modified to be transformed into semantic segmentation networks. The main differ-
ence concerns the last layer, as it is replaced by a 1× 1 convolutional layer that covers
the entire image. Indeed, it has been shown that exchanging the final dense layer
with a convolutional layer yields the same or even better results. The main advan-
tage of FCNs, however, is their ability to process any type of image, in terms of size,
without the need of a predefined dimension. This removes the constraint on image
size that is present in CNNs with final fully connected layers. In fact, when dealing
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Figure 2.3: Scheme of the Fully Convolutional Network.

with dense layers, the size of the input is constrained and thus, when an input im-
age has a different size, it must be resized. Even when a larger image is provided as
input, the output produced will be a feature map. Moreover, the final feature map
represents not just a class but a heatmap of the requested class. Obtaining the loca-
tion of the objects with this heatmap is an useful information for the segmentation
task. Convolutions in the final layer produce a down–sample (encoder), so that we
need an up–sample (decoder). Interpolation techniques work well, but the authors
of the FCNmodel argued that in–network upsampling is fast and effective for learn-
ing dense prediction. In this way, we are able to learn non–linear up–sampling as
well. Going into more detail, the decoder employs transposed convolution for up–
sampling and uses skip connections between layers at different resolution to recover
details that have been lost due to the use of sub–sampling layers.
U–Net — The U–Net model (Ronneberger et al., 2015) is based on FCNs, so it con-
tains a down–sample phase and an up–sample phase. These two phases of contrac-
tion and expansion form a “U” shape, from which the architecture takes its name
(see Figure 2.4). The main advancement of the U–Net architecture consists in the
inclusion of shortcut connections. To solve the problem of information loss during
the down–sample phase, we concatenate the features of the decoder with the corre-
sponding maps of the encoder. In particular, since the layers at the beginning of the
encoder havemore information, theywould be able to support the up–sampling op-
eration of the decoder by providing fine details corresponding to the input images,
thus greatly improving the results. Another important contribution of this architec-
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Figure 2.4: Scheme of the U–Net.

ture concerns the loss function used. It is a kind of “improved” Cross–Entropy, in
which there is a weighted loss for each pixel in order to have higher weights on the
edges of the segmented object.
DeepLab—Agroup of researchers fromGoogle –DeepLab – proposed a set of tech-
niques to improve semantic segmentation while trying to reduce the network com-
plexity. The three main improvements of the DeepLab network are: atrous convo-
lutions, Atrous Spatial Pyramidal Pooling (ASPP) and Conditional Random Fields
(CRFs) (Chen et al., 2017a). As wementioned earlier, the main problemwith FCNs
is the down–sampling phase, wherewe have a large loss of information. With atrous
convolutions or dilated convolutions, we can process a large context using the same
number of parameters. In simple terms, dilated convolutions increase the size of the
filter by inserting “holes” in the filter, corresponding to zeros in the parameters. The
dilation rate d indicates the number of zeros to be added between the parameters.
Therefore, with d = 1 we have a classic convolution, with d = 2 we insert a zero
between two parameters, then from a 3 × 3 filter we pass to a 5 × 5 filter, and so
on. ASPP is an improvement of the Spatial Pyramidal Pooling (SPP) network and
exploits atrous convolution. The SPP network permits to overcome the constraints
on the fixed size input dimension of CNNs by adding an SPP layer on top of the last
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convolution layer. In this way, the features are grouped together and fixed–length
outputs are generated, that are later used as input to fully connected layers. In ASPP,
different dilation rates are used for the inputs and the outputs are fused together,
obtaining information from different scales which allows to achieve better results.
Finally, a Conditional Random Field (CRF) operates a post–processing step. With
the CRF we obtain a more refined segmentation of object edges than that produced
by a pooling operation. This is possible by exploiting not only the label of the pixel
to be classified, but also that of the neighboring pixels.
Global Convolution Network — Semantic segmentation can be viewed as a com-
petitive game between classification and location. Indeed, while classification net-
works are invariant with respect to rotations and translations, they do not give any
importance to object positions, which contradicts the task of determining the ob-
ject location for the final segmentation. However, most segmentation algorithms
give more importance to location. Global Convolution Networks (GCNs) try to bal-
ance these two aspects using the classification part more, but without diminishing
the contribution of the localization task. This is made possible by the introduction
of GCN blocks. Each of these blocks employs a combination of 1 × k + k × 1 and
k × 1 + 1 × k convolutions, which allows for dense connections within a large k × k
region in the feature map. Thus, as the value of k increases, more and more context
is captured. In (Peng et al., 2017), also based on (Zhou et al., 2014), it is argued
that GCNs are able to obtain information from much smaller regions of the recep-
tive field, which are called Valid Receptive Fields (VRFs). So, the kernel size of the
convolutional structure should be as large as possible. By using symmetric and sep-
arable filters, the number of model parameters is reduced so as the computational
cost.
Pyramid Scene Parsing Network— The Pyramid Scene Parsing Network (PSPNet)
leverages both local and global information to make the final decision. A pretrained
CNNwith dilated convolution is used to extract the featuremap and, on top of it, we
have a Pyramid Pooling Module (PPM). A PPM solves a typical problem of CNNs:
when the receptive field is larger than the input image, the empirical receptive field
is smaller than the theoretical one, especially in the higher layers. PPM contains in-
formation with different scales which varies among different sub–regions, success-
fully incorporating the global scenery prior. This is possible by merging features on
different pyramid scales, from the coarsest to the finest. Thus, the outputs of the
different layers of the PPM represent features of different size and, to maintain the
overall weight of the features, use a 1 × 1 convolution after each layer, to reduce the
size of the context representation to 1/N from the original size (if the pyramid layer
size is N).
SMANet — The Segmentation Multiscale Attention Network (SMANet) is a deep
fully convolutional neural networkwith a ResNet backbone encoder. In the SMANet
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architecture, a convolutional decoder is employed to recover fine details, which are
lost due to the presence of pooling and strided convolutions. A multiscale attention
mechanism is also used to focus on the most informative part of the image. This
topic will be dealt with in more detail later in the thesis.

2.2.3 Generative Adversarial Networks
Acommon limit of deep learning is the large amount of data needed to train amodel.
The number of parameters that the model must learn is usually large, so that also a
large amount of data is necessary. For these reasons, we need either more data or
a method that allows us to enlarge the training set. A few classic and widely used
data augmentation techniques are:

• Flip – horizontally or vertically.

• Rotation – we can rotate the image by any angle, but taking care to preserve the
image dimensions.

• Scale – the image can be scaled outward or inward.

• Crop – crop differs from scaling because in this case only a portion of the im-
age is taken and then resized to the original image size. A crop is often cut
randomly and, therefore, the related procedure is called random cropping.

• Translation – simply moves the image along the X and Y direction (or both).
This method is very useful for forcing CNNs to look anywhere in the image,
since objects can be anywhere.

• Gaussian Noise – adding the right amount of noise can improve the learning
capability. Most of the time, overfitting may be due to patterns occurring too
often. Gaussian noise distorts frequent patterns.

These classic techniques often work well, but the image distribution they generate is
limited. Generative Adversarial Networks (GANs) provide an alternative solution
to generate images similar to those available in a real dataset. A GAN (see Figure
2.5) (Goodfellow et al., 2014) is an architecture that uses two neural networks, a
generator G and a discriminator D, which are trained one against the other, hence
the term “adversarial”. G is trained to map a latent random variable z ∈ RZ into a
fake image x̃ = G(z), whereas D aims at distinguishing the fake samples from the
real ones, x ∈ pr(x). In otherwords,D andG play the following two–playerminmax
game with respect to the function V(D, G):

min
G

max
D

V(D, G) = Ex∼pr(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (2.18)
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The goal of this competitive game between G and D is to achieve the Nash equilib-
rium (Nash Jr, 1950). While the discriminator has to figure out if an image belongs to
the training set or is a fake, the generator creates new synthetic images to try to fool
the discriminator. The steps are the following: the generator returns an image from
a randomvector; this generated image is fed as input to the discriminator, alongwith
an image stream taken from the current ground–truth dataset. Finally, the discrim-
inator returns a probability value, where 1 represents a prediction of authenticity
and 0 represent a fake image. Let us see which networks are most commonly used
for synthetic image generation.

Figure 2.5: Scheme of a Generative Adversarial Network.

Progressive Growing of GAN— The Progressive Growing of GAN (PGGAN) (see
Figure 2.6) (Karras et al., 2017) is an extension of the GAN architecture that allows
a more stable training and is capable of producing HD images. This is possible by
starting the training with very small images, adding blocks that increase the size of
the generator output and the input size of the discriminator, until the desired image
size is reached. Once the generator has reached a resolution of 16 × 16, a new layer
to generate 32 × 32 images is added. An up–sample of the previously generated
image (16 × 16 pixels) is performed and the two images are summed by weighting
the two terms by α and 1 − α. When the new 32 × 32 output layer is added to the
network, the output of the 16 × 16 layer is projected onto the 32 × 32 dimension
with a simple nearest neighbor interpolation. More precisely, the projected layer is
multiplied by 1 − α and concatenated with the new output layer, multiplied by α,
to form the new 32 × 32 generated image. The α parameter scales linearly from 0
to 1 and when reaches 1, the nearest neighbor interpolation from the 16 × 16 image
is not taken into account. This smooth transition mechanism greatly stabilizes the
training.
StyleGAN — The PGGAN architecture was successively modified obtaining two
different versions of the StyleGAN. In the first version (Karras et al., 2019), the
changes affect only the generator (see Figure 2.7), while the discriminator remains
unchanged. The first change is the inclusion of a Mapping Network (MP). This net-
work takes in input a latent vector z and produces another vector w that will be the
input for the synthesis network. The goal of the MP is to create an intermediate
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Figure 2.6: Scheme of the PGGAN.

vector whose different elements control different features. Then, also some Style
Modules were introduced. After each convolutional block there is another convolu-
tional block that performs anAdaptive Instance Normalization (AdaIN). The vector
w, i.e., the output of the MP, is called a Style Vector and is given as input to each
AdaIN block. Before doing this, however, it is further transformed through a Fully–
Connected layer (called A). In addition to this transformed vector, the output of
each normalized convolution is put as input in the AdaIn block. Compared to, for
example, Batch Normalization, AdaIN has no parameters to learn. Thus, the vector
w controls some parameters, called scaling and shifting parameters (Ys and Yb), of
the feature normalization. Another difference between PGGAN and StyleGAN is
represented by their input. Most of the models, as well as PGGAN, use a random
input to create the initial image; instead, the StyleGAN uses a vector of constant val-
ues. This is because the features of the images are controlled by w andAdaIN, so the
initial random input can be omitted and replaced by constant values. One final up-
date introduced in the StyleGAN concerns the introduction of noise. In many cases,
it is difficult to control the effect of noise due to feature entanglement, i.e., the model
cannotmap part of the input to the features. So, some noisewas added to each chan-
nel before the AdaIN block, obtaining single–channel images with Gaussian noise
(different for each layer). Then, some noise is also added after each convolutional
layer, to have variations that are also seen in real life, such as the hair placement in
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Figure 2.7: Scheme of the StyleGAN.

the generation of artificial faces. The main advantage of this architecture is that, by
using different style vectors at different points in the synthesis network, it is possible
to control the “style” of the resulting image, with various levels of detail. The results
obtained are very good, but there are some problems, solved by the second version.
StyleGANv2 — Two main problems afflict StyleGANs. The first one is the produc-
tion of spots that look like water drops in the image, which can appear anywhere.
The second, again using the problem of synthetic face generation as a case study, is
the position of the eyes and mouth, which remains almost always the same, or the
teeth that do not follow the pose of the face. According to the authors, the water
droplet problem is due to the AdaIN block. In fact, both the mean and variance of
each feature map are normalized, potentially destroying any kind of information
regarding the magnitude (order of magnitude, absolute value) of the features. To
overcome this problem, the noise was moved out of the Style Block, while AdaIN
was substituted by a different approach, called demodulation. A Style Block consists
of modulation, convolution, and normalization (see Figure 2.8). After modulation
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and convolution, the outputs are scaled by the L2 normof the correspondingweighs.
The goal of demodulation is to restore outputs with unit standard deviation. An-

Figure 2.8: Comparison between the original StyleGAN and StyleGANv2.

other technical change is the addition of the Perceptual Path Length Regularization
(PPLR) to the loss function of the generator, to enforce smoother latent space in-
terpolation. The idea is that, if the latent vector is slightly changed, also a smooth
change in the semantic of the generated images occurs. As mentioned above, Style-
GAN images have a strong location preference for facial image features like noses
and eyes, which is attributed to the progressive growing architecture. Inspired by
Multi–Scale Gradient for Generative Adversarial Networks (MSG–GAN), a new ar-
chitecture was designed to solve the problem. Better results are obtained but the
total complexity of the architecture increases significantly.

2.2.4 Image–to–image Translation
Let us consider for amoment the problemof classifying landscapeswithin an image.
As we know, a landscape can be composed of an enormous variety of plant species.
What the neural network does not know is that some landscapes exist only under
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certain conditions, for example depending on seasons. Without this knowledge,
a classifier might mistake the shores of a frozen lake for a glacier. To overcome
this problem one could take pictures of the same landscape at different times of the
year, but this requires a huge amount of work. In addition to the data augmentation
techniques seen above, there are other GANs, suitably modified, that allow us to
translate an image from one domain to another. These particular kind of GANs are
called Conditional GANs (CGANs). For an example, Pix2Pix (Isola et al., 2017) is a
CGAN that operates with supervision, and Pix2PixHD (Wang et al., 2018) employs
a coarse–to–fine generator and discriminator, along with a feature–matching loss
function, to translate images with higher resolution and quality.

2.3 Short review on image generation and
segmentation

Since this thesis is focused on image generation and segmentation, in this section
we will present a brief review of the literature on these topics.

2.3.1 Synthetic Image Generation
Methods for generating images can be classified into two main categories: model–
based and learning–based approaches. The most conventional procedure is to for-
mulate a model of the observed data and to render the images using a dedicated
engine. This approach has been used, for example, to extend the available datasets
of driving scenes in urban environments (Richter et al., 2016; Ros et al., 2016) or
for object detection (Hodaň et al., 2019). In the field of medical image analysis,
synthetic image generation has been extensively employed. For example, realistic
digital brain–phantom has been synthesized in (Collins et al., 1998), while more
recently, synthetic agar plate images have been generated for image segmentation
(Andreini et al., 2018, 2020). The design of specialized engines for data generation
requires an accurate model of the scene and a deep knowledge of the specific do-
main. For this reason, in recent years, the learning–based approach has attracted in-
creasing research resources. In this context, machine learning techniques are used to
capture the intrinsic spatial variability of a set of training images, so that the specific
domain model is acquired implicitly from the data. Once the probability distribu-
tion that underlies the set of real images has been learned, the system can be used
to generate new images that are likely to mimic the original ones.

If the synthetic images are close enough to the real ones, they can be used to en-
large existing datasets for training machine learning models. For example, GANs
have been used in (Kugelman et al., 2021) to augment data for a patch–based ap-
proach to OCT chorio–retinal boundary segmentation. In (Waheed et al., 2020),
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synthetic chest X–ray (CXR) images are generated by developing an Auxiliary Clas-
sifier Generative Adversarial Network (ACGAN) model, called CovidGAN. Syn-
thetic images produced by CovidGAN were used to improve the performance of a
standard CNN for detecting COVID–19. In (Frid-Adar et al., 2018), different GANs
have been used for the synthesis of each class of liver lesion (cysts, metastases and
hemangiomas). In (Hu et al., 2018), Wasserstein GANs (WGANs) and InfoGANs
have been combined to classify histopathological images, whereas in (Yi et al., 2018)
WGAN and CatGAN generated images were used to improve the classification of
dermoscopic images

In (Shin et al., 2018), synthetic abnormalMR images containing brain tumors are
generated. An image–to–image translation algorithm is employed to construct se-
mantic label–maps of realMR brain images, distortions are introduced on the gener-
ated segmentation (i.e., tumors are shrunk or enlarged, or their position is changed),
and then the segmentation is translated back to images. Indeed, manually introduc-
ing distortions on the generated label–maps is not trivial because they can alter the
image semantic — for instance, in the case of retinal image generation, enlarging or
reducing blood vessels is not meaningful. We solve this issue directly by learning
the semantic label–map distribution with a GAN.

2.3.2 Image–to–Image Translation
Recently, beside image generation, adversarial learning has also been extended to
image–to–image translation, in which the goal is to translate an input image from
onedomain to another. Many computer vision tasks, such as image super–resolution
(Ledig et al., 2017), image inpainting (Pathak et al., 2016), and style transfer (Gatys
et al., 2015) can be casted into the image–to–image translation framework. Both un-
supervised (Liu et al., 2017; Liu and Tuzel, 2016; Yi et al., 2017; Zhu et al., 2017)
and supervised approaches (Isola et al., 2017; Karras et al., 2017; Chen and Koltun,
2017) can be used. For the proposed applications the unsupervised category is not
relevant. Supervised training uses a set of pairs of corresponding images {(si, ti)},
where si is an image of the source domain and ti is the corresponding image in the
target domain. In addition to the previously mentioned contributions, belong to the
class of supervised approaches also the most recent BycicleGAN (Zhu et al., 2018),
SIMS (Qi et al., 2018), and SPADE (Park et al., 2019) architectures.

2.3.3 Semantic Segmentation
The goal of semantic image segmentation is to infer the class of each pixel in an
image. Many studies are aimed at semantic segmentation of natural scenes with
fully convolutional deep neural networks (Long et al., 2015; Zhao et al., 2017; Chen
et al., 2017a). Providing pixel–level oversight is difficult and expensive, however,
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relatively large datasets have been created for segmentation in natural images: for
example, PASCAL VOC 2012 (Everingham et al., 2015) and MS-COCO (Lin et al.,
2014), which collectively contain more than 100000 images with pixel–wise anno-
tations. In medical imaging, the number of available samples is generally smaller,
and the only viable alternative seems to be the use of small networks with a reduced
number of parameters. In fact, one of the most successful deep learning methods
in biomedical imaging is the U–Net architecture (Ronneberger et al., 2015), which
uses a standard convolutional network, followed by an up–sampling part of up–
convolutions combined with skip–connections.



Chapter 3

Two–stage image generation

This chapter presents the first approach to generating image data to be used for
semantic segmentation. We show that by dividing the procedure into two steps,
the generation task is considerably simplified, while it is possible to obtain good
quality images with fewer examples. The approach is applied to the segmentation
of retinal images, an important task in medicine with several possible applications,
not limited to ophthalmology.

The retinal microvasculature is the only part of human circulation that can be
directly and non–invasively visualized in vivo (Patton et al., 2006). Hence, it can
be easily acquired and analyzed by automatic tools. As a result, retinal fundus im-
ages have a multitude of applications, including biometric identification, computer-
assisted laser surgery, and the diagnosis of several disorders (Fraz et al., 2012a;
Patil and Manza, 2016). One important processing step in such applications is the
proper segmentation of retinal vessels. Image semantic segmentation aims to make
dense predictions by inferring the object class for each pixel of an image and, in-
deed, the segmentation of digital retina images allows us to extract various quan-
titative vessel parameters and to obtain more objective and accurate medical diag-
noses. In particular, the segmentation of retinal blood vessels can help the diagnosis,
treatment, and monitoring of diseases such as diabetic retinopathy, hypertension,
and arteriosclerosis (Kanski and Bowling, 2015; Abràmoff et al., 2010). Most of the
leading approaches for semantic segmentation, in fact, rely on thousands of super-
vised images, while supervised public datasets for retinal vessel segmentation are
very small (most datasets contain fewer than 30 images).

To face the scarcity of data, we propose a new approach for the generation of
retinal images along with the corresponding semantic label–maps. Specifically, we
propose a novel generation procedure based on two distinct phases. In the first
phase, a generative adversarial network (GAN) (Goodfellow et al., 2014) generates
the blood vessel structure (i.e., the vasculature). The GAN is trained to learn the
typical semantic label–map distribution from a small set of training samples. To
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generate high–resolution label–maps, the Progressively Growing GAN (PGGAN)
(Karras et al., 2017) approach has been employed. In a second, distinct phase, an
image–to–image translation algorithm (Wang et al., 2018) is used to translate blood
vessels structures into realistic retinal images.

The rationale behind this approach is that, in many applications, the semantic
structure of an image can be learned regardless of its visual appearance. Once the
semantic label–map has been generated, visual details can be incorporated using an
image–to–image translation algorithm, thus obtaining realistic synthesized images.
The benefits of using this generation strategy are listed below.

• Reduced GPU memory requirement – since the training is carried out in two
separate stages, the computational demands of each individual step are re-
duced compared to the simultaneous generation of the label–map and the re-
lated image.

• Reduced number of sample required – by separating the whole process into
two stages, the generation task is simplified.

• Better control of the generation procedure – each generation phase can be
defined and fine–tuned independently, so that, for example, it is possible to
use different architectures and different sets of hyperparameters.

• Visually enhanced image quality – the training is very effective and we ob-
tained retinal images with unprecedented high resolution and quality, along
with their semantic label–maps.

To assess the usefulness and correctness of the proposed approach, the generation
procedure has been applied on two public datasets (i.e., DRIVE (Staal et al., 2004)
and CHASE_DB1 (Fraz et al., 2012b)). Moreover, the two–step generation proce-
dure has been compared with a single–stage generation, in which label–maps and
retinal images have been generated simultaneously in two different channels. In-
deed, in our experiments, the multi–stage approach allows us to significantly im-
prove performance of vessels segmentation when used for data augmentation. In
particular, the generated data have been used to train a SegmentationMultiscale At-
tention Network (SMANet) (Bonechi et al., 2020). Comparable results have been
obtained by training the SMANet on the generated images in place of real data. It
is interesting to note that, if the network is pre–trained on the synthesized data and
then fine–tuned on real images, the segmentation results obtained on the DRIVE
dataset come very close to those obtained by the best state–of–the–art approach
(Sekou et al., 2019). If the same approach is applied to the CHASE_DB1 bench-
mark, the results overcome (to the best of our knowledge) those obtained by any
other previously proposed method.
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3.1 Retinal Images

3.1.1 Retinal Image Synthesis
One of the first applications of retinal image synthesis has been described in the
seminal work (Sagar et al., 1994), in which an anatomic model of the eye and of the
surrounding face has been implemented for surgical simulations. More recently, in
(Fiorini et al., 2014), a large dictionary of small image patches containing no ves-
sels, has been used to model the retinal background and fovea. A parametric in-
tensity model, in which the parameters have been estimated from real images, is
used to generate the optical disk. Complementary to (Fiorini et al., 2014), the con-
tribution in (Menti et al., 2016) focuses on the generation of the vascular network,
based on a parametric model, in which the parameters are learned from real vessel
trees. While these methods give reasonable results, they are complex and heavily
dependent on domain knowledge. To reduce the knowledge requirements, a com-
pletely learning–based approach has been proposed in (Costa et al., 2017a), where
an image–to–image translation model has been employed to transform existing ves-
sel networks into realistic retinal images. Vessel networks used for learning have
been obtained using a suitable segmentation technique applied to a set of real reti-
nal images. However, the quality of the generated images heavily depends on the
segmentation module performance. In (Zhao et al., 2018), a generative adversar-
ial approach, together with a style transfer algorithm, is used to reduce the need
for annotated samples and to improve the representativeness (e.g., the variability)
of synthesized images. The model still relies on pre–existing vessel networks (ob-
tained manually or by a suitable segmentation technique). In (Costa et al., 2017b),
an adversarial auto–encoder for retinal vessel synthesis has been adopted to avoid
the dependence of the model on the availability of pre–existent vessel maps. Never-
theless, this approach is able to generate only low–resolution images, and the perfor-
mance in vessel segmentation using synthesized data is far below the state–of–the–
art. Higher–resolution retinal images, along with their segmentation label–maps,
have been generated in (Beers et al., 2018), using ProgressivelyGrowingGANs (PG-
GANs) (Karras et al., 2017). This method allows for the generation of images up to
a resolution of 512 × 512 pixels. A set of 5550 images segmented by a pre–trained
U–Net (Ronneberger et al., 2015) have been used during training. Unfortunately,
the usefulness of the generation for image segmentation is not demonstrated.

The present thesis improves previous approaches generating synthetic images
up to a resolution of 1024 × 1024 pixels. The generation is based on a very small set
of pre–existing images (actually, 20 images with supervised segmentation maps).
Both the retinal images and the corresponding semantic label–maps (the vascula-
ture) are generated. Furthermore, we prove that combining real retinal images with
synthesized ones for training a segmentation network improves the final segmenta-
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tion performance.

3.1.2 Retinal Vessel Segmentation
During recent decades, several approaches for retinal vessel segmentation have been
proposed, both supervised andunsupervised. Unsupervisedmethods dependheav-
ily on prior knowledge on the vessel structure. For example, the so called vessel
tracking techniques define an initial set of seed points and, thereafter, by chaining
pixels that minimize a given cost function, iteratively extract the vasculature (Liu
and Sun, 1993; Yin et al., 2012). In (Hoover et al., 2000), retinal images are con-
volved with a 2D filter to produce a Gaussian intensity profile of the blood vessels,
that is subsequently thresholded to give the vessel map. Adaptive thresholding has
been used in (Roychowdhury et al., 2015) and in (Neto et al., 2017). An active con-
tour model that combines intensity and local phase information is used in (Zhao
et al., 2015). In (Khan et al., 2020), a hybrid unsupervised approach was proposed.
To obtain the vessel location map, the composition of two preprocessed images is
fused with the enhanced image of B–COSFIRE filters followed by thresholding. In-
stead, an ensemble strategy automatically combining multiple segmentation results
is presented in (Liu et al., 2019). Moreover, since the retinal blood vessels’ diame-
ter significantly changes based on the distance from the optic disc, multi–scale ap-
proaches can be particularly effective for the vessel segmentation (Khawaja et al.,
2019; Shah et al., 2019). Supervised methods are currently the leading techniques
in semantic segmentation. In this framework, true annotations are used to train a
classifier aimed at distinguishing the vessels from the background. Various classi-
fication models have been employed for blood vessel segmentation based on a pre-
liminary feature engineering stage (Niemeijer et al., 2004; Soares et al., 2006; Toptaş
and Hanbay, 2021), which, however, has a fundamental impact on performance.

Conversely, deep learning methods automatically learn an increasingly complex
hierarchy of features from input data, bypassing the need for problem–specific know-
ledge and generally providing better results. Indeed, a deep convolutional neural
network (DCNN) for retinal image segmentation has been used in (Liskowski and
Krawiec, 2016), while the training examples are subjected to various forms of pre-
processing and augmented based on geometric transformations and gamma cor-
rections. A neural network that can be efficiently used in real–time on embedded
systems is proposed in (Hajabdollahi et al., 2018). In (Jiang et al., 2018), a fully con-
volutional network (Long et al., 2015) was described, with an AlexNet (Krizhevsky
et al., 2012) encoder. Fully convolutional networks have also been used in (Das-
gupta and Singh, 2017; Feng et al., 2017). In (Li et al., 2016), the segmentation task
was remolded into a problem of cross–modality data transformation from retinal
images to vessel maps. A modified U–Net (Ronneberger et al., 2015) was used in
(Yan et al., 2018) to exploit a combination between segment–level loss and pixel–
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level loss to deal with the unbalanced ratio between thick and thin vessels in fundus
images. A Holistically Nested Edge Detection (HED) network (Xie and Tu, 2015)
— originally designed for edge detection — followed by a conditional random field
was employed for the retinal blood vessel segmentation in (Fu et al., 2016). Deep
supervision was incorporated in some intermediate layers of a VGG network (Liu
and Deng, 2015) in (Mo and Zhang, 2017; Maninis et al., 2016). In (Oliveira et al.,
2018), a fully convolutional neural network used a stationarywavelet transform pre-
processing step to improve the network performance. Finally, in (Sekou et al., 2019),
a CNN was pre–trained on image patches and then fine–tuned at the image level.

In this thesis, we use the SegmentationMultiscaleAttentionNetwork (SMANet),
which allows us to obtain excellent results, comparable with the state–of–the–art.

3.2 Single–stage method
In addition to comparing the results obtained with the state–of–the–art techniques,
we also felt it necessary to consider a direct approach. With the Single–Stage (see
Figure 3.1) method the label–map and the retinal image are generated simultane-
ously. Specifically, the retinal images and the label–maps, corresponding to the
blood vessels, are stacked in two different channels and placed as input to the PG-
GAN.

Figure 3.1: Single–Stage image generation scheme.

3.3 Two–stage method
Themain goal of this work is to generate realistic retinal images and the correspond-
ing semantic segmentationmasks by using a very small number of training samples.
The proposed generation procedure is composed of two steps (see Figure 3.2): the



3.3 Two–stage method 30

first one involves the generation of semantic label–maps of the vessels while, during
the second, the synthesis of realistic images based on label–maps is carried out. The
quality of the generated images was validated by an expert and their usefulness was
verified by the performance obtained on two public benchmark datasets, using the
synthesized images to train a segmentation network.

In Section 3.3.1, we give an overview of the approach used to generate the se-
mantic label–maps, while Section 3.3.2 describes the image–to–image translation al-
gorithm that synthesizes retinal images from the semantic label–maps.

Figure 3.2: The proposed two–step image generation method.

3.3.1 Vessels Generation
The generation of the vessel structure is based on the use of PGGANs, which are
capable of learning the distribution of the semantic label–maps. The label–maps are
processed to encode both the retinal fundus and the vasculature (i.e., the vessel dis-
tribution). To reduce the risk related to the lack of an adequate descriptive power,
due to the very limited number of available training samples, data augmentation
was applied. Specifically, the semantic label–maps were slightly rotated (±15◦) and
flipped in different ways (horizontal, vertical, and horizontal followed by vertical
flips). The generation started at low resolution, and then, the resolution was pro-
gressively increased by adding new layers to the networks. The generator and the
discriminatorwere symmetric and grew in sync. The transition from low–resolution
image generation to high–resolution image generation followed the procedure de-
scribed in (Karras et al., 2017), to avoid problems related to sudden transitions. The
training started with both the generator and the discriminator having a spatial res-
olution of 4 × 4 pixels, progressively increasing until the final resolving power was
reached. The Wasserstein loss, with a gradient penalty (Gulrajani et al., 2017), was
used as the loss function for the discriminator. The learning procedure is illustrated
in Figure 3.3.

It can be observed that the global structure of the vessel distribution was learned
at the beginning of the training, whereas finer details were added as the resolution
increased. The generation procedure allows us to obtain a virtually infinite number
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Figure 3.3: Training scheme for the generation of the semantic label–maps. The res-
olution of the generator (G) and the discriminator (D) was progressively increased
until the final resolving power was reached.

of different vasculatures. To reduce the probability of introducing artifacts, a simple
post–processing was carried out. Specifically, we improved the circularity of the
retinal fundus by applying amorphological opening (Serra, 1983). Small holeswere
filled, and segments of small dimension were removed from the generated vessel
structure.

3.3.2 From Vessels to retinal images
Once the vessel networks were obtained, they were transformed into realistic color
retinal images. Ourmethod is based on Pix2PixHD (Wang et al., 2018), a supervised
image–to–image translation framework derived from Pix2Pix (Isola et al., 2017). In
Pix2Pix, a conditional GAN learns to generate the output conditioned on the cor-
responding input image. The generator has an encoder–decoder structure, takes in
input images belonging to a certain domain A, and generates images in a different
domain B. The discriminator observes pairs of images, and the image of A is pro-
vided as input alongwith the corresponding image of B (real or generated). The dis-
criminator aims to distinguish between real and fake (generated) pairs. Pix2PixHD
improves upon Pix2Pix by introducing a coarse–to–fine generator composed of two
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subnetworks that operate at different resolution. A multiscale discriminator was
also employed, with an adversarial loss that incorporates a feature–matching loss
for training stabilization. In our setup, the semantic label–maps, previously gener-
ated, were fed into the generator, which is trained to generate retinal images. An
overview of the proposed setup is given in Figure 3.4.

Figure 3.4: Scheme of the Pix2PixHD training framework employed to translate
label–maps into retinal images.

3.4 Semantic segmentation network
The semantic segmentation network employed in this thesis is a Segmentation Mul-
tiscale AttentionNetwork (SMANet) (Bonechi et al., 2020). The SMANet, originally
proposed for scene text segmentation, comprises three main components: a ResNet
encoder, a multi–scale attention module, and a convolutional decoder (see Figure
3.5).

The architecture is based on the PSPNet (Zhao et al., 2017), a deep fully con-
volutional neural network with a ResNet (He et al., 2016) encoder. In the PSPNet,
to enlarge the receptive field of the neural network, a set of standard convolutions
of the ResNet backbone has been replaced with dilated convolutions (i.e., atrous
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Figure 3.5: Scheme of the SMANet segmentation network.

convolutions (Papandreou et al., 2014)). Moreover, in the PSPNet, a pyramid of
pooling layers, with different kernel size, has been employed to gather context in-
formation. The pooled feature maps are then up–sampled at the same resolution
as the ResNet output, concatenated, and fed into a convolutional layer to obtain an
encoded representation. In the original PSPNet, this representation is followed by
a final convolutional layer that reduces the feature maps to the number of classes.
The desired per–pixel prediction is obtained directly up–sampling to the original
image resolution. In the SMANet, a multi–scale attention mechanism is adopted to
focus on the relevant objects present in the image, while a two–level convolutional
decoder is added to the architecture to better handle the presence of thin objects.

3.5 Training details
The SMANet, used in this work was implemented in TensorFlow. Random crops
of 281 × 281 pixels were employed during training, whereas a sliding window of
the same size was used for the evaluation. The Adam optimizer (Kingma and Ba,
2014), based on an initial learning rate of 10−4 and amini–batch of 17 examples, was
used to train the SMANet. Early stop was employed using a validation set of three
images, randomly extracted from the real data training set. Additionally, the PG-
GAN was realized in TensorFlow, while Pix2PixHD was implemented in PyTorch.
The PGGAN architecture is similar to that proposed in (Karras et al., 2017), but to
speed up the computation and to reduce overfitting, the maximum number of fea-
ture maps for each layer was fixed to 128. Moreover, since the aim of the generator
is to produce a semantic label–map, the output image has only one channel, instead
of three. The PGGAN and Pix2PixHD hyperparameters were tuned by visually in-
specting the quality of the generated samples. The images were resized to the near-
est power–of–two resolution (i.e., the retinal images in the DRIVE dataset, which
have a resolution of 565 × 584 pixels, were resized to 512 × 512 pixels, whereas the
CHASE images that have a resolution of 999× 960 pixels were resized to 1024× 1024
pixels).

All experiments were conducted in a Linux environment on a single NVIDIA
Tesla V100 SXM2 with 32 GB RAM.
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3.6 Experiments and results

3.6.1 The benchmark datasets
• DRIVEdataset—TheDRIVEdataset (Staal et al., 2004) includes 40 retinal fun-

dus images of size 584 × 565 × 3 (20 images for training and 20 for test). The
images were collected by a screening program for diabetic retinopathy in the
Netherlands. Among the 40 photographs, 33 showed no diabetic retinopathy,
while 7 showed mild early diabetic retinopathy. The segmentation ground–
truth was provided both for the training and the test sets.

• CHASE_DB1 dataset — The CHASE_DB1 dataset (Fraz et al., 2012b) is com-
posed by 28 fundus images of size 960× 999× 3, corresponding to the left and
right eyes of 14 children. Each image is annotated by two independent human
experts. An officially defined split between training and test is not provided
for this dataset. In our experiments, we adopted the same strategy as (Li et al.,
2016; Yan et al., 2018), selecting the first 20 images for training and the remain-
ing 8 for testing.

3.6.2 Experimental Results
We provide both qualitative and quantitative evaluations of the generated data. In
particular, some qualitative results of the generated retinal images for the DRIVE
and CHASE_DB1 datasets are given in Figures 3.6 and 3.7.

In Figure 3.8, a zoom on a random patch of a high–resolution generated image
shows that the image–to–image translation allows us to effectively translate the gen-
erated vessel structures in retinal images by maintaining the semantic information
provided by the semantic label–map. It is worth noting that, although most of the
generated samples closely resemble real retinal fundus images, few examples are
clearly sub–optimal (see Figure 3.9, which shows disconnected vessels and an un-
realistic optical disc).

To further validate the quality of the generation process, a sub–sample of 100
synthetically generated retinal images were examined by an expert ophthalmolo-
gist. The evaluation showed that 35% of the images are of medium–high quality.
The remaining 65% is visually appealing but contains small details that reveal an
unnatural anatomy, such as an optical disc with feathered edges — which actually
occur only in the case of specific diseases — or blood vessels that pass too close to
themacula—while usually, except in the case of malformations, themacular region
is avascular or at least paucivascular.

Table 3.1 compares the characteristics of the proposed method with respect to
other learning–based approaches for retinal image generation found in the litera-
ture.
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(a) Generated DRIVE images with our two–step method.

(b) Generated DRIVE images with the single–step method.

(c) Real DRIVE images.
Figure 3.6: Examples of real and generated DRIVE images.

(a) Generated CHASE_DB1 images with our two–step method.

(b) Generated CHASE_DB1 images with the single–step method.

(c) Real CHASE_DB1 images.
Figure 3.7: Examples of real and generated CHASE_DB1 images.
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Figure 3.8: Example of a generated image (resolution 1024 × 1024) with the corre-
sponding label–map from the CHASE_DB1 dataset.

Figure 3.9: Examples of generated images with an unrealistic optical disc and vas-
culature from DRIVE (top) and CHASE _DB1 (bottom).

It can be observed that our approach is able to synthesize higher resolution im-
ages, with less training samples, with respect to methods that generate both the im-
age and the corresponding segmentation. Moreover, for such methods, the useful-
ness of the inclusion of synthetic images in semantic segmentationwas not assessed.
Instead, in this thesis, we demonstrate that synthetic images can be effectively used
for data augmentation, which indirectly guarantees the high quality of the gener-
ated data.

Indeed, the quantitative analysis consists of assessing the usefulness of the gen-
erated images for training a semantic segmentation network. This approach, similar
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Methods Gen. Vessels Max Res. Samples
(Costa et al., 2017a) No 512 × 512 614
(Zhao et al., 2018) No 2048 × 2048 10–20
(Costa et al., 2017b) Yes 256 × 256 634
(Beers et al., 2018) Yes 512 × 512 5550

Our Yes 1024 × 1024 20

Table 3.1: Comparison with other generation approaches.

to (Shmelkov et al., 2018), is based on the assumption that the performance of a deep
learning architecture can be directly related with the quality and variety of GAN–
generated images. The generation procedure described in Section 3.3 was employed
to generate 10,000 synthetic retinal images for both the DRIVE and the CHASE_DB1
datasets; the samples were generated in a single run without any selection strategy.

To evaluate the usefulness of the generated data for semantic segmentation, we
employed the following experimental setup:

• SYNTH — the segmentation network was trained using only the 10,000 gen-
erated synthetic images;

• REAL—only real data were used to train the semantic segmentation network;

• SYNTH + REAL — synthetic data were used to pre–train the semantic seg-
mentation network and real data were employed for fine–tuning.

Tables 3.2 and 3.3 report the results of the vessel segmentation for the DRIVE
and CHASE_DB1 datasets, respectively.

Methods AUC Acc
SYNTH 98.5 % 96.88%
REAL 98.48% 96.87%

SYNTH + REAL 98.65% 96.9%

Table 3.2: Segmentation performance using the generated and real images from the
DRIVE dataset.

It can be observed that the semantic segmentation network, trained on synthetic
data, produces results very similar to those obtained by training on real data. This
demonstrates that synthetic images effectively capture the training image distribu-
tion, so that they can be used to adequately train a deep neural network. Moreover,
if fine–tuning with real data is applied after pre–training with synthetic data only,
the results further improve with respect to the use of real data only. This fact indi-
cates that the generated data can be effectively used to enlarge small training sets,
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Methods AUC Acc
SYNTH 98.64% 97.49%
REAL 98.82% 97.5%

SYNTH + REAL 99.16% 97.72%

Table 3.3: Segmentation performance using the generated and real images from the
CHASE_DB1 dataset.

such as DRIVE and CHASE_DB1. Specifically, the AUC is improved by 0.17% and
0.34% on the DRIVE and CHASE_DB1 datasets, respectively.

Another set of experiments was designed to compare the proposed two–stage
generation procedure with a traditional single–step approach (described in Section
3.2). In particular, in the single–step method, the label–maps and the retinal im-
ages were generated simultaneously. The results of the single–step approach on the
DRIVE and CHASE_DB datasets are shown in Tables 3.4 and 3.5.

Methods AUC Acc
SYNTH 93.49 % 91.01%
REAL 98.48% 96.87%

SYNTH + REAL 98.57% 96.88%

Table 3.4: Segmentation performance, using the single–step method, on the DRIVE
dataset.

Methods AUC Acc
SYNTH 66.96% 92.62%
REAL 98.82% 97.5%

SYNTH + REAL 98.87% 97.65%

Table 3.5: Segmentation performance, using the single–step method, on the
CHASE_DB1 dataset.

Tables 3.6 and 3.7 allows us to quickly visualize the differences between the two
methods. It can be observed that better results are obtained in all the setups by
employing the two–stage generation approach. In particular, if only synthetic data
are used, the AUC increases by 5.01% (31.68%) with the two–stage method in the
DRIVE (CHASE_DB1) dataset. As expected, the difference between the two meth-
ods is smaller if fine–tuning on real data is applied. Finally, we observe that the
gap increases with higher image resolution. In the CHASE_DB1 dataset, in which
the images have twice the resolution of the DRIVE dataset, the one–step generated
images cannot be effectively used as data augmentation.
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Methods AUC Acc
One–Step (S) 93.49 % 91.01%
Two–Step (S) 98.5% 96.88%

One–Step (S + R) 98.57 % 96.88%
Two–Step (S + R) 98.65% 96.90%

Table 3.6: A comparison of the vessel segmentation results on the DRIVE dataset
between the one–step and the two–step methods.

Methods AUC Acc
One–Step (S) 66.96% 92.62%
Two–Step (S) 98.64% 97.49%

One–Step (S + R) 98.87% 97.65%
Two–Step (S + R) 99.16% 97.72%

Table 3.7: A comparison of the vessel segmentation results on the CHASE_DB1
dataset between the one–step and the two–step methods.

Finally, Tables 3.8 and 3.9 compare the proposed approach with other state–of–
the–art techniques.

Methods AUC Acc
(Jiang et al., 2018) 96.80% 95.93%
(Li et al., 2016) 97.38% 95.27%

(Dasgupta and Singh, 2017) 97.44% 95.33%
(Yan et al., 2018) 97.52% 95.42%

(Mo and Zhang, 2017) 97.82% 95.21%
(Liskowski and Krawiec, 2016) 97.90% 95.35%

(Feng et al., 2017) 97.92% 95.60%
(Oliveira et al., 2018) 98.21% 95.76%
(Sekou et al., 2019) 98.74% 96.90%

Our 98.65% 96.90%

Table 3.8: A comparison with the state–of–the–art vessel segmentation methods on
the DRIVE dataset.

The results show that the proposed approach reaches the state–of–the–art on
the DRIVE dataset, where it is only outperfomed by (Sekou et al., 2019), based on
the AUC, and outperforms all of the other methods on the CHASE_DB1 dataset.
It is worth remembering that the experimental setups adopted by the previous ap-
proaches are varied and that a perfect comparison was impossible. For example,
CHASE_DB1 does not provide an explicit training/test split, and in (Li et al., 2016;
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Methods AUC Acc
(Jiang et al., 2018) 95.80% 95.91%
(Li et al., 2016) 97.16% 95.81%
(Yan et al., 2018) 97.81% 96.10%

(Mo and Zhang, 2017) 98.12% 95.99%
(Liskowski and Krawiec, 2016) 98.45% 95.77%

(Oliveira et al., 2018) 98.55% 96.53%
(Sekou et al., 2019) 98.78% 97.37%

Our 99.16% 97.72%

Table 3.9: A comparison with the state–of–the–art vessel segmentation on the CHA-
SE_DB1 dataset.

Yan et al., 2018), the same split as in this paper was employed, while in (Sekou et al.,
2019; Mo and Zhang, 2017; Oliveira et al., 2018) a fourfold cross–validation strategy
was applied (in (Oliveira et al., 2018), where each fold included three images of one
eye and four images of the other). Moreover, in (Liskowski andKrawiec, 2016), only
patches thatwere fully inside the field of viewwere considered. However, evenwith
those inevitable experimental limits, the results of Tables 3.8 and 3.9 suggest that the
proposed method is promising and is at least as good as the best state–of–the–art
techniques.



Chapter 4

Multi–stage image generation

The natural extension of the two–stage approach presented in Chapter 3 provides
for the inclusion of an additional step in the image generation procedure. Indeed,
in this chapter, we present a three–stage generation method in which the first addi-
tional step defines the positions of the semantic objects included in the image. The
rest of the generation procedure is similar to the two–stage approach: first, the se-
mantic labels are generated from the object positions and then the final image is
produced. Such a three–stage approach has been applied to a multi–class medical
image segmentation task, namely the segmentation Chest X–Ray images, in which
the goal is to segment pixels belonging to the lungs and heart.

Chest X–ray (CXR) is one of the most used techniques worldwide for the diag-
nosis of various diseases, such as pneumonia, tuberculosis, infiltration, heart failure
and lung cancer. Chest X–rays have enormous advantages: they are cheap, X–ray
equipment is also available in the poorest areas of the world and, moreover, the in-
terpretation/reporting of X–rays is less operator–dependent than the results of other
more advanced techniques, such as computed tomography (CT) andmagnetic reso-
nance (RMI). Furthermore, undergoing this examination is very fast andminimally
invasive (Mettler Jr et al., 2008). Recently, CXR images have gained even greater im-
portance due to COVID–19, which mainly causes lung infection and, after healing,
often leaves widespread signs of pulmonary fibrosis: the respiratory tissue affected
by the infection loses its characteristics and its normal structure. Consequently, CXR
images are often used for the diagnosis of COVID–19 and for the treatment of the
after–effects of SARS–CoV–2 (Hussain et al., 2021; Ismael and Şengür, 2021; Nayak
et al., 2021).

With the rapid growth in the number of CXRs performed per patient, there is an
ever–increasing need for computer–aided diagnosis (CAD) systems to assist radiol-
ogists, since manual classification and annotation is time–consuming and subject to
errors. Deep Learning (DL) has radically changed the perspective also in medical
image processing, and deep neural networks (DNNs) have been applied to a vari-
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ety of tasks, including organ segmentation, object and lesion classification (Bonechi
et al., 2019a), image generation and registration (Van Ginneken et al., 2006). These
DLmethods constitute an important step towards the construction ofCADs formed-
ical images and, in particular, for CXRs.

Semantic segmentation of anatomical structures is the process of classifying each
pixel of an image according to the structure to which it belongs. In CAD, segmenta-
tion plays a fundamental role. Indeed, segmentation of CXR images is usually nec-
essary to obtain regions of interest and allows the extraction of size measurements
of organs (e.g., cardiothoracic ratio quantification) and irregular shapes, which can
provide meaningful information on important diseases, such as cardiomegaly, em-
physema and lung nodules (Qin et al., 2018). Segmentation may also help to im-
prove the performance of automatic classification: in (Teixeira et al., 2021), it is
shown that, by exploiting segmentation, DL models focus their attention primar-
ily on the lung, not taking into account unnecessary background information and
noise.

Modern state–of–the–art segmentation algorithms are largely based on DNNs
(Long et al., 2015; Chen et al., 2017a; Zhao et al., 2017). However, to achieve good
results, DNNs need a fairly large amount of labeled data. Therefore, the main prob-
lem with segmentation by DNNs is the scarce availability of appropriate datasets
to help solve a given task. This problem is even more evident in the medical field,
where data availability is affected by privacy concerns and where a great deal of
time and human resources are required to manually label each pixel of each image.

As mentioned above a common solution to cope with this problem is the gener-
ation of synthetic images, along with their semantic label–maps. In this thesis, we
present a newmodel, based onGANs, to generatemulti–organ segmentation of CXR
images. Unlike other approaches, the main feature of the proposed method is that
generation occurs in three stages. In the first stage, the position of each anatomical
part is generated and represented by a “dot” within the image; in the second stage,
semantic labels are obtained from the dots; finally, the chest X–ray image is gener-
ated. Each step is implemented by a GAN. More precisely, we adopt Progressively
Growing GANs (PGGANs) (Karras et al., 2017), an extension of GANs that permits
the generation of high–resolution images, and Pix2PixHD (Wang et al., 2018) for the
translation steps. The intuitive idea underlying the approach is that generation ben-
efits by the multi–stage procedure, since the GAN used in each single step faces a
subproblem, and can be trained using fewer data. Actually, the generalization ca-
pability of neural networks, and more generally of deep learning approaches, has a
solid mathematical foundation (see, e.g., the seminal work (Vapnik, 1998) and the
more recent papers (Neyshabur et al., 2017; Kawaguchi et al., 2017)). Themost gen-
eral rule states that the simpler the model the better its generalization capability. In
our approach, the simplification lies in that, in the three–stage method, the tasks to
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be solved in each of the three steps are simpler and require less effort.
In order to evaluate the performance of the proposed method, synthetic images

were used to train a segmentation network (here, we use the SMANet (Bonechi
et al., 2020), described in Chapter 3), subsequently applied to a popular benchmark
for multi–organ chest segmentation, the Segmentation in Chest Radiographs (SCR)
dataset (VanGinneken et al., 2006). The results obtained are very promising and ex-
ceed, to the best of our knowledge, those obtained by existing methods. Moreover,
the quality of the produced segmentation was confirmed by physicians. Finally, to
demonstrate the capabilities of our approach, especially having little data available,
we compared it to two other methods, using only 10% of the images in the dataset.
In particular, the multi–stage approach was compared with a single–stage method
— in which chest X–ray images and semantic label–maps are generated simultane-
ously— andwith a two–stage method—where semantic label–maps are generated
and then translated into X–ray images. The experimental results show that the pro-
posed three–stage method outperforms the two–stage method, while the two–stage
overcomes the single–stage approach, confirming that splitting the generation pro-
cedure can be advantageous, particularly when few training images are available.

4.1 Chest X–ray images

4.1.1 Chest X–ray Image Synthesis
Only in a few cases have GANs been used to generate chest radiographic images, as
in (Madani et al., 2018), where images for cardiac abnormality classification were
obtained with a semi–supervised architecture, or in (Srivastav et al., 2021), where
GANswere used to generate low resolution (64× 64) CXRs to diagnose pneumonia.

In this thesis, chest X–ray images were generatedwith the corresponding seman-
tic label–maps, which correspond to different anatomical parts. We then used such
images to train a segmentation network, with very promising results.

4.1.2 Organ segmentation
X–rays are one of the most used techniques in medical diagnostics. The reasons
are medical and economic, since they are cheap, noninvasive and fast examinations.
Many diseases, such as pneumonia, tuberculosis, lung cancer, and heart failure are
commonly diagnosed from CXR images. However, due to overlapping organs, low
resolution and subtle anatomical shape and size variations, interpreting CXRs ac-
curately remains challenging and requires highly qualified and trained personnel.
Therefore, it is of a great clinical and scientific interest to develop computer–based
systems that support the analysis of CXRs. In (Candemir et al., 2013), a lung bound-
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ary detection systemwas proposed, building an anatomical atlas to be used in com-
bination with graph cut–based image region refinement (Boykov and Funka-Lea,
2006; Candemir and Akgül, 2011; Boykov and Jolly, 2001). A method for lung field
segmentation, based on joint shape and appearance sparse learning, was proposed
in (Shao et al., 2014), while a technique for landmark detection was presented in
(Ibragimov et al., 2016). Haar–like features and a random forest classifier were com-
bined for the appearance of landmarks. Furthermore, a Gaussian distribution aug-
mented by shape–based random forest classifiers was adopted for learning spatial
relationships between landmarks. InvertedNet, an architecture able to segment the
heart, clavicles and lungs, was introduced in (Novikov et al., 2018). This network
employs a loss function based on the Dice Coefficient, Exponential Linear Units
(ELUs) activation functions, and a model architecture that aims at containing the
number of parameters. Moreover, the U–Net (Ronneberger et al., 2015) architec-
ture has been widely used for lung segmentation, as in (Wang, 2017; Oliveira and
dos Santos, 2018; Islam and Zhang, 2018). In the Structure Correcting Adversarial
Network (SCAN) (Dai et al., 2018) a segmentation network and a critic network
were jointly trained with an adversarial mechanism for organ segmentation in chest
X–rays.

4.2 Chest X–Ray Generation
The main goal of this study is to prove that by dividing the generation problem into
multiple simpler stages, the quality of the generated images improves, so that they
can bemore effectively employed as a form of data augmentation. More specifically,
we compare three different generation approaches. The first method, described in
Section 4.2.1, consists of generating chest X–ray images and the corresponding label–
maps in a single stage. In the second approach, presented in Section 4.2.2, the gen-
eration procedure is divided into two stages, where the label–maps are initially gen-
erated and then translated into images. The third method, reported in Section 4.2.3,
consists of a three–stage approach, that starts by generating the position of the ob-
jects in the image, then the label–maps and, finally, the X–ray images. The images
generated employing each of the three approaches are comparatively evaluated by
training a segmentation network.

To increase the descriptive power of real images, especially with regards to the
position of the various organs, standard data augmentation has been applied in ad-
vance. Therefore, the original X–ray images, along with their corresponding masks,
were augmented by applying random rotations in the interval [−2, 2] degrees, ran-
dom horizontal, vertical and combined translations from −3% to +3% of the num-
ber of pixels, and adding a Gaussian noise, with zero mean and variance between
0.01 and 0.03× 255. For the generation of images, we essentially used two networks
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well known in the literature, namely PGGANs (Karras et al., 2017) and Pix2PixHD
(Wang et al., 2018).

4.2.1 Single–stage method
As in the case of retinas (Section 3.2), our baseline is a single–stage approach in
which label–maps and CXR images are generated simultaneously (see Figure 4.1).

Figure 4.1: Single–stage image generation scheme.

4.2.2 Two–stage method
The two–step procedure used for retinal images (Section 3.3) was exploited for the
label–map and CXR image generation (see Figure 4.2).

Figure 4.2: Two–stage image generation scheme.
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4.2.3 Three–stage method
This section describes how the three–stage approach works. It comprises a further
subdivision of the generation procedure, with a first phase consisting of generat-
ing the position and type of the objects that will be generated later, regardless of
their shape or appearance. This is obtained by generating label–maps that contain
“dots” in correspondence with different anatomical parts (lungs, heart, clavicles).
The dots can be considered as “seeds”, from which, through the subsequent steps,
the complete label–maps are realized (second phase). Finally, in the last step, chest
X–ray images are generated from the label–maps. The exact procedure is described
in the following. Initially, label–maps containing “dots”, with a specific value for
each anatomical part, are created. The position of the “dot” center is given by the
centroid of each labeled anatomical part. The label–maps generated in this phase
have a low resolution (64× 64), as a high level of detail is not necessary, because the
exact object shapes are not defined— but only their centroid positions. It should be
observed that this also allows a significant reduction in the computational burden
of this stage and speeds up the computation. The generated label–maps must be
subsequently resized to the original image resolution — required in the following
stages of generation (a nearest neighbour interpolation was used to maintain the
original label codes) — and translated into labels, which will be finally translated
into images, using Pix2PixHD (see Figure 4.3).

Figure 4.3: Three–stage image generation scheme.

4.3 Training details
The PGGANarchitecture, proposed in (Karras et al., 2017), was employed for image
generation; the number of parameters were modified to speed up learning and re-
duce overfitting. More specifically, the maximum number of feature maps for each
layer was reduced to 64. Furthermore, since the PGGANwas used to generate seeds
and labels, obtaining only the semantic label–maps in both cases, the output im-
age has only one channel instead of three. The generation procedure (PGGAN and
Pix2PixHD) was stopped by visually examining the generated samples during the
training phase. The images, generated in the various steps for all the methods, have
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a resolution of 1024 × 1024, except in the case of the “dot” label maps, which, as
mentioned before, are generated at a 64 × 64 resolution.

The SMANet is then used for image segmentation. Random crops of 377 × 377
pixels were employed during training, whereas a sliding window of the same size
was used for testing. The Adam optimizer (Kingma and Ba, 2014), based on an
initial learning rate of 10−4 and a mini batch of 17 examples, was used to train the
SMANet. All the experiments were carried out in a Linux environment on a single
NVIDIA Tesla V100 SXM2 with 32 GB RAM. The SMANet’s goal is to produce the
semantic segmentation of the lungs and heart. The network is trained by a super-
vised approach, both in the case of real and synthetic images. In particular, for the
images generated by the three different methods, we are able to use this approach
thanks to the generation of both the images and the label maps.

4.4 Experiments and results
In this section, after describing the dataset on which our new proposedmethodwas
tested, we evaluate the results obtained, both qualitatively—based on the judgment
of three physicians — and quantitatively, comparing them with related approaches
present in the literature.

4.4.1 Dataset
Chest X–ray images are available thanks to the Japanese Society of Radiological Tech-
nology (JSRT) (Shiraishi et al., 2000). The JSRT dataset consists of 247 chest X–ray
images. The resolution of the images is 2048 × 2048 pixels, with a spatial resolution
of 0.175 mm/pixel and 12 bit gray levels. Furthermore, segmentation supervisions
for the JSRT database are available in the Segmentation in the Chest Radiographs
(SCR) dataset (Van Ginneken et al., 2006). More precisely, this dataset provides
chest X–ray supervisions which correspond with the pixel–level positions of the dif-
ferent anatomical parts. Such supervisions were produced by two observers who
segmented five objects in each image: the two lungs, the heart and the two clavicles.
The first observer was a medical student and his segmentation was used as the gold
standard, while the second observer was a computer science student, specialized in
medical imaging, and his segmentation was considered that of a human expert.

The SCR dataset comes with an official splitting, which is employed in this paper
and consists of 124 images for learning and 123 for testing. We use two different
experimental configurations. In the former, called FULL_DATASET, all the training
images are exploited. More precisely, the PGGAN generation network is trained
on the basis of 744 images, available in the SCR training set and obtained with the
augmentation procedure described above. The SMANet is trained on 7500 synthetic
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images, generated by the PGGAN, and fine–tuned on the 744 images extracted from
the SCR training set, while 2500 synthetic images are used for validation. For the
second configuration, called TINY_DATASET, only 10% of the SCR training set is
used and the PGGAN is trained on only 66 images (obtained both from SCR and
with augmentation); furthermore, the SMANet is trained exactly as above, except
for the fine–tuning, which is carried out on 66 images.

Generated images were employed to train a deep semantic segmentation net-
work. The rationale behind the approach is that the performance of the network
trained on the generated data reflects the data quality and variety. A good perfor-
mance of the segmentation network indicates that the generated data successfully
capture the true distribution of the real samples. To assess the segmentation results,
some standard evaluation metrics were used. The Jaccard Index, J, also called Inter-
sectionOverUnion (IOU),measures the similarity between twofinite sample sets—
the predicted segmentation and the target mask in this case — and is defined as the
size of their intersection divided by the size of their union. For binary classification,
the Jaccard index can be framed in the following formula:

J =
TP

TP + FP + FN
where TP, FP and FN denote the number of true positives, false positives and false
negatives, respectively. Furthermore, the Dice Score, DSC, is defined as:

DSC =
2 × TP

2 × TP + FP + FN
DSC is a quotient of similarity between sets and ranges between 0 and 1.

The experiments can be divided into two phases: first, we evaluated the gen-
eration procedure described in Section 4.2.3 using the FULL_DATASET, then, we
compared this approach with the other two methods described in Sections 4.2.1
and 4.2.2 using the TINY_DATASET. The purpose of this latter experiment was to
evaluatewhethermulti–stage generationmethods are actuallymore effective in pro-
ducing data suitable for semantic segmentation with a limited amount of data. In
particular, in the experimental setup based on the FULL_DATASET, for the three–
stage method, the generation network was trained on all the SCR training images,
to which the augmentation procedure described in Section 4.2 was applied. Then,
10,000 synthetic images were generated and used to train the semantic segmenta-
tion network. Moreover, we evaluated a fine–tuning of the network on the SCR real
images after the pre–training on the generated images. The results, shown in Table
4.1, are compared with those obtained using only real images to train the semantic
segmentation network, which can be considered as a baseline.

Next, the TINY_DATASET was used in order to evaluate the performance of the
methods with a very small dataset. More precisely, the following experimental se-
tups, the results of which are shown in Table 4.2, are considered:
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Real
Three–Stage

Synth 3 Finetune

J
Left Lung 96.10 95.30 96.22
Heart 90.78 87.25 91.11

Right Lung 96.85 96.15 96.79
Average 94.58 92.90 94.71

DSC
Left Lung 98.01 97.6 98.07
Heart 95.17 93.19 95.35

Right Lung 98.40 98.04 98.37
Average 97.19 96.28 97.26

Table 4.1: Evaluation of the proposed methods based on the FULL_DATASET, us-
ing 2500 generated images for the validation set. Real corresponds to the results
obtained using the official training set; Synth 3 corresponds to the results obtained
using only the generated images, while in the Finetune column, real data are em-
ployed for fine–tuning.

• REAL — only real images are used for training the semantic segmentation
network;

• SINGLE–STAGE — the segmentation network uses the images generated by
the single–stage method (Synth 1 in the tables) for training while real images
are employed for fine–tuning (Finetune in the tables);

• TWO–STAGES — the images generated with the two–stage method are used
to pre–train the segmentation network (Synth 2) while real images are used
for fine–tuning;

• THREE–STAGE— the images generatedwith the three–stagemethod are used
for training the segmentation network (Synth 3), while real images are em-
ployed for fine–tuning.

In this case, the PGGANwas trained on 66 images, based on 11 images randomly
chosen from the entire training set to which the augmentation described above was
applied.

In general, we can see that the best results are obtained with the three–stage
method followed by fine–tuning. From Table 4.1, we observe a small improvement
in results using a fine–tune on a network previously trained with images generated
using the three–stage method. Therefore, the three–stage method provides good
synthetic data, but the advantage given by generated images is low when the train-
ing set is large.
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Real
Single–Stage Two–Stage Three–Stage

Synth 1 Finetune Synth 2 Finetune Synth 3 Finetune

J
Left Lung 93.70 55.59 74.11 94.91 94.4 94.96 95.29
Heart 85.50 0.07 37.47 86.98 85.21 87.27 87.47

Right Lung 93.70 52.78 79.99 95.90 95.44 95.90 95.92
Average 90.97 36.15 63.86 92.60 91.68 92.71 92.89

DSC
Left Lung 96.75 71.46 85.13 97.39 97.12 97.42 97.59
Heart 92.18 0.13 54.51 93.04 92.02 93.20 93.32

Right Lung 96.74 69.09 88.89 97.91 97.66 97.90 97.92
Average 95.22 46.89 76.18 96.11 95.60 96.17 96.28

Table 4.2: Evaluation of the proposed methods based on the TINY_DATASET, us-
ing 2500 generated images for the validation set. Real corresponds to the results
obtained using the official training set; Synth 1, Synth 2, Synth 3, correspond to the
results obtained using only the generated images, while in the Finetune columns,
real data are employed for fine–tuning.

Conversely, when few training images are available, in the TINY_DATASET setup,
multi–stage methods outperform the baseline (column REAL of Table 4.2) and this
happens even without fine–tuning. Thus, in this case, the advantage provided by
synthetic images is evident. Moreover, the three–stage method outperforms the
two–stage approach, even with fine–tuning, which confirms our claim that splitting
the generation procedure may provide a performance increase when few training
images are available.

Finally, it isworth noting that fine–tuning improves the performance of the three–
stage method, both in the FULL_DATASET and in the TINY_DATASET framework,
which does not hold for the two–stage method. This behaviour may be explained
by some complementary information that is captured from real images only with
the three–stage method. Actually, wemay argue that, in different phases of a multi–
stage approach, different types of information can be captured: such a diversifica-
tion seems to provide an advantage to the three–stagemethod, which develops some
capability to model the data domain with more orthogonal information.

4.4.2 Comparison with Other Approaches
Table 4.3 shows our best results and the segmentation performance published by all
recent methods, of whichwe are aware, on the SCR dataset. According to the results
in the table, the three–stage method obtained the best performance score both for
the lungs and the heart.

However, it is worth mentioning that Table 4.3 gives only a rough idea of the
state–of–the–art, since a direct comparison between the proposedmethod and other
approaches is not feasible, our primary focus being on image generation, in con-
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trast with the comparative approaches that aremainly devoted to segmentation, and
for which no results are reported on small image datasets. Moreover, the previous
methods used different partitions of the SCR dataset to obtain the training and the
test set, such as two–fold, three–fold, five–fold cross–validation or ad hoc splittings,
which are often not publicly available, while, in our experiments, we preferred to
use the original partition, provided with the SCR dataset (note that, compared to
most of the other solutions used in comparative methods, the original subdivision
has the disadvantage of producing a smaller training set, which is not in conflict,
however, with the purpose of the present work). Finally, a variety of different im-
age sizes have also been used, ranging from 256× 256, to 400× 400, and to 512× 512
— the resolution used in this work.

Method Image Size Augmentation Evaluation Scheme
Lungs Heart

DSC J DSC J

Human 2048 × 2048 No – – 94.6 – 87.8
U–Net 256 × 256 No 5–fold CV – 95.9 – 89.9

InvertedNet 256 × 256 No 3–fold CV 97.4 95 93.7 88.2
SegNet 256 × 256 No 5–fold CV 97.9 95.5 94.4 89.6
FCN 256 × 256 No 5–fold CV 97.4 95 94.2 89.2
SCAN 400 × 400 No (209/38) 97.3 94.7 92.7 86.6
Our 512 × 512 Yes official split 98.2 96.5 95.36 91.1

Table 4.3: Comparison of segmentation results among different methods on the
SCR dataset (CV stands for cross–validation). Human expert (Van Ginneken et al.,
2006), U–Net (Wang, 2017), InvertedNet (Novikov et al., 2018), SegNet (Islam and
Zhang, 2018), FCN (Islam and Zhang, 2018), SCAN (Novikov et al., 2018). The val-
ues in parentheses in the evaluation scheme of the SCANmethod correspond to the
split between training and testing.

4.4.3 Qualitative Results
In this section, some examples of images and corresponding segmentations, gener-
ated with the approaches described in Section 4.2, are qualitatively examined. We
also report some comments from three physicians on the generated segmentations,
to provide a medical assessment of the quality of our method.

Figures 4.4 and 4.5 display some examples — randomly chosen from all the gen-
erated images — of the label–maps and the corresponding chest X–ray images gen-
erated with the three methods described in Section 4.2, using the FULL_DATASET
and the TINY_DATASET, respectively. We can observe that, with the single and
two–stage methods, the images tend to be more similar to those belonging to the
training set. For example, in most of the generated images there are white rectan-
gles, which resemble those present in the training images, used to cover the names of
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both the patient and the hospital. Instead, the three–stagemethod does not produce
such artifacts, suggesting that it is less prone to overfitting.

Figure 4.4: Examples of three–stage generated images based on the FULL_DATA-
SET.

Moreover, in order to clarify the limits of the three–stage method, we assessed
the quality of the segmentation results based on three human experts, who were
asked to check 20 chest X–ray images, along with the corresponding supervision
and the segmentation obtained by the SMANet. Such images were chosen among
those that can be considered difficult, at least based on the high error obtained by the
segmentation algorithm. Figures 4.6 and 4.7 show different examples of the images
evaluated by the experts. The first column represents the chest X–ray image, while
the second and the third columns, the order of which was randomly exchanged
during the presentation to the experts, represent the target segmentation and our
prediction, respectively. The three physicianswere asked to choose the best segmen-
tation and to comment about their choice. Apart from a general agreement of all the
doctors on the good quality of both the target segmentation and the segmentation
provided by the three–stage method, surprisingly, they often chose the second one.
For the examples in Figure 4.6, for instance, all the experts shared the same opinion,
preferring the segmentation obtained by the SMANet over the ground–truth seg-
mentation. To report the results of the qualitative analysis, we numbered the target
and predicted segmentation with numbers 1 and 2, respectively, while doctors were
assigned unordered pairs to obtain an unbiased result. Then, with respect to Figure
4.6a, the comments reported by the experts were: (1) “In segmentation 1, a fairly
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(a) Single–stage 10% of generated images.

(b) Two–stage 10% of generated images.

(c) Three–stage 10% of generated images.

Figure 4.5: Examples of generated images based on the TINY_DATASET.

large part of the upper left ventricle is missing”; (2) “I choose the segmentation
number 2 because the heart profile does not protrude to the left of the spine pro-
file”; (3) “The best is number 2, the other leaves out a piece of the left free edge of
the heart, in the cranial area”. Furthermore, for Figure 4.6b, we obtained: (1) “The
second image is the best for the cardiac profile. For lung profiles, the second image
is always better. The only flaw is that it leaks a bit on the right and left costophrenic
sinuses”. (2) “Image 2 is the best, because the lower cardiac margin is lying down
and does not protrude from the diaphragmatic dome. Image number 1 has a too
flattened profile of the superior cardiac margin”. (3) “Number 2, for the cardiac
profile which is more faithful to the real contours”.

Furthermore, they reported conflicting opinions or decided not to give a prefer-
ence with respect to the examples in Figure 4.7. When they agreed, they generally
found different reasons for choosing one segmentation over the other. With respect
to Figure 4.7a, the comments reported by the experts were: (1) I prefer not to indi-
cate any options because the heart image is completely subverted; (2) Segmentation
number 2 is better, even if it is complicated to read because there is a “bottle–shaped”
heart. The only thing that can be improved in image 2 is that a small portion of the
right side of the heart is lost; (3) Number 1 respects more what could be the real
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(a) NODULES001.

(b) NODULES066.
Figure 4.6: Examples of segmented images for which doctors shared the same opin-
ion. The first column represents the chest X–ray image, while the second and third
columns are the target and our predicted segmentation, respectively.

(a) NODULES014.

(b) NODULES015.
Figure 4.7: Examples of segmented images for which doctors gave conflicting opin-
ions. The first column represents the chest X–ray image, while the second and third
columns are the target and our predicted segmentation, respectively.



4.4 Experiments and results 55

contours of the heart image. Furthermore, for Figure 4.7b, we obtained: (1) I prefer
number 2 because the tip of the heart is well placed on the diaphragm and does not
let us see that small wedge–shaped image that incorrectly insinuates itself between
heart and diaphragm in image 1 and which has no correspondence in the RX; (2)
Both are good segmentations. Both have small problems, for example, in segmenta-
tion 1 a small portion of the tip (bottom right of the image) of the heart is missing, in
segmentation 2 a part of the outflow cone (the “upper” part of the heart) is missing.
It is difficult to choose, probably better number 1 because of the heart; (3) Number 2
because number 1 canal probably exceeds the real dimensions of the cardiac image,
including part of the other mediastinal structures.

These different evaluations, albeit limited by the small number of examined im-
ages, confirm the difficulty of segmenting CXRs, a difficulty that is likely to be more
evident in the case of the images selected for our quality analysis, whichwere chosen
based on the large error produced by the segmentation algorithm.



Chapter 5

Related research topics

This chapter presents some research, conducted during the doctoral period, not in-
cluded in themain stream of the thesis, but related to its contents. The contributions
presented here can be divided into two main categories: theoretical properties and
biological applications of GraphNeural Networks (GNNs), and deep learning tech-
niques for image processing. In particular, in Section 5.1, GNNs are studied from
a theoretical point of view, trying to understand how transductive learning can be
advantageous in a graph processing framework, while Section 5.2 describes the ap-
plication of GNNs to the problem of predicting protein–protein interfaces. In Sec-
tion 5.3 and 5.4, instead, DL tecniques are explored for solving problems related to
medical image processing and action recognition, respectively.

Finally, in Section 5.5, the project of an application usable by students with vi-
sual impairments is described, which was ranked among the top thirty (out of over
250 proposals) at the Rare Disease Hackathon 2020 (organized by Forum Sistema
Salute).

5.1 On Inductive–Transductive Learning with Graph
Neural Networks

In this section, we describe the work whose results has been published in (Ciano
et al., 2022).

A graph G is defined as a pair G = (V, E), where V represents a finite set of nodes
and E ⊆ V × V denotes a set of edges. Both edges and nodes can be enriched by
attributes that are collected into feature vectors. Graphs are powerful and versatile
data structures and constitute a natural way of representing information coming,
for instance, from social networks, cybersecurity, and computational biology. The
main advantage of graphs is that they easily allow to represent entities (nodes) and
interactions between them (edges), possibly attaching further information on the

56
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nature of the existing relationships. Generally speaking, graph data are widespread
inmost real–world applications, where existing relations between basic information
entities cannot be ignored without affecting the very nature of the problem.

GraphNeuralNetworks (GNNs) are a class of connectionistmodels that canpro-
cess input data encoded as general labeled graphs. This characteristic is sharedwith
other machine learning approaches, such as support vector machines for graphs
(Kondor and Lafferty, 2002; Gärtner et al., 2004; Ramon and Gärtner, 2003; Sher-
vashidze et al., 2011; Costa and De Grave, 2010; Orsini et al., 2015), random fields
(Lafferty et al., 2001), and RecursiveNeural Netowrks (RNNs) (Frasconi et al., 1998;
Sperduti and Starita, 1997).

The GNN is a supervised architecture able to face classification and regression
tasks, where inputs are encoded as graphs (Scarselli et al., 2008b). The computation
is driven by the input graph topology. To each node, a state vector is attached, which
is updated as a function of the node label and of the informative contribution of
its neighborhood based on an information diffusion mechanism. Indeed, GNNs are
supposed to capture the local information relevant to the given task — which is
stored into the node state — and, finally, thanks to the diffusion process, to collect
the whole information attached to the input graph. Afterward, the state is used to
compute the node output, f.i. its class or a target property.

More formally, let xn(t) ∈ Rs and on(t) ∈ Rm be the state and the output of
node n at time t, respectively. Then, the computation locally performed at each node
during the diffusion process can be described by the following equations

xn(t + 1) = ∑
v:(n,v)∈E

fw(ln, l(n,v), xv(t), lv) , (5.1)

on(t + 1) = gw(xn(t), ln) , (5.2)
where fw is the state transition function, which drives the diffusion process, while
gw represents the output function. Moreover, ln ∈ Rq, and l(n,v) ∈ Rp are the labels
attached to n and (n, v), respectively. As previously stated, the computation consid-
ers the neighborhood of n, defined by its edges (n, v) ∈ E. In particular, for each
node v adjacent to n, the state xv and the label lv are used in the state and (indirectly)
in the output calculation. The summation in Eq. (5.1) allows us to deal with any
number of neighbors without specifying a particular position for each of them.

Usually, both fw and gw are implemented by multilayer perceptrons, with a sin-
gle hidden layer. Eq. (5.1) is replicated on all the nodes of the graph and defines
a non–linear dynamic system that describes the unfolding of the encoding network.
Actually, the encoding network is a recurrent network such that, for each node of the
input graph, twomodules exist: the fw module, which is in charge of computing the
node state; the gw module, which calculates the node output. The connectivity in the
encoding network, namely how the fw modules exchange the node states, depends
on the graph connectivity.
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In order to guarantee the convergence to a steady state in Eqs. (5.1)–(5.2), the
original GNNmodel forced the dynamics of the system to be contractive (Scarselli
et al., 2008b). In this case, the Banach Theorem ensures the existence of a unique
fixed point and the independence of such point from the initial state. During train-
ing, the network weights are adapted to reduce the error between the network out-
puts and the expected targets on a set of supervised nodes, namely nodes for which
the desired output is available. The gradient computation is performed applying the
BackPropagation Through Time algorithm on the unfolded encoding network, ob-
taining the so–called BackPropagation Through Structure (see (Bianchini andMag-
gini, 2013; Scarselli et al., 2008b) for more details). More recent implementations
of GNNs, f.i. (Li et al., 2015; Rossi et al., 2018), relax the state convergence con-
straint, just computing the output after iterating Eq. (5.1) for a fixed number of
steps. This demands more memory requirements for the gradient calculation with
respect to (Scarselli et al., 2008b), though it removes the need to constrain parame-
ters to ensure convergence.

Underweak assumptions, the GNNmodel can approximate in probability all the
functions on graphs with any required precision (Scarselli et al., 2008a), showing a
generalization capability similar to that of recurrent neural networks (Scarselli et al.,
2018). A recent theoretical study on GNN properties can be found in (Xu et al.,
2018).

Interestingly, GNNs can naturally exploit both inductive and transductive learn-
ing. In the inductive learning framework, a parametric model Iw is learnt by adjust-
ing its weights w based on a training set. Then, the model can be applied to novel
test patterns without further accessing the training set. With transductive learning
instead, the training set patterns and their targets are used in conjunction with the
test patterns. The decision on the test set is taken using a diffusion mechanism, e.g.,
exploiting the intuition that patterns with similar features are expected to be similar
and belong to the same class.

The aim of this work is to study the properties, together with advantages and
limitations, of the two learning frameworks applied to GNNs. To this end, we pro-
pose a mixed inductive–transductive model that can reproduce the peculiarities of
both the frameworks at the same time. This paradigm allows us to use the training
patterns both as the source of the transduction, in transductive learning, and to train
the network parameters, in inductive learning.

To disentangle the contributions of the inductive and transductive parts of the
model, we used an experimental methodology, based on the addition of noise on
the node labels and on the repetition of experiments with different quantities of in-
ductive–transductive patterns. The experiments were carried out using the original
GNN model (Scarselli et al., 2008b) and the Graph Convolutional Network (GCN)
model (Kipf and Welling, 2016), based on synthetic and real datasets. The results
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revealed interesting properties of the inductive–transductive model and have sug-
gested that it could provide some advantages over the original inductive model.
Furthermore, they evidenced interesting examples of conditions when one of the
two parts, the inductive or the transductive component, is predominant on the other.
These conditionsmaydependon the data characteristics, e.g., groups of nodeswhich
are “clustered” within the graph, or on the problem peculiarity, e.g., its complexity.

Let us now try to better understand the difference between inductive and trans-
ductive learning. In the common inductive learning framework, amodel Iw is learned
by adjusting its weights, w, based on a set of supervised examples, collected in the
training set. The overall learning procedure is aimed at minimizing a suitable loss
function that induces the model to capture the statistical distribution of training
data. After training, the model Iw can be applied to new patterns, never seen be-
fore, completely neglecting the training set, whose related information is collected
into the learned parameters w. Conversely, in the transductive framework, learning
may not be based on any form of parameter tuning but, instead, both training and
test examples can be exploited at the same time, taking advantage of their mutual
relationships, such as, for instance, some spatial regularization in the feature space
(e.g., manifold regularization). Relationships between data can be exploited either
in the learning or in the prediction phase, or in both of them. The prediction on
the unsupervised data is obtained by propagating the information available on the
neighboring examples, through a “diffusion mechanism” induced by the existing
relations. For instance, if n is a test example, then the targets available on its neigh-
boring patternsmay be exploited as inputs— together with the local features of n —
to compute its output. This approach is particularly useful and natural when only a
small set of supervised data, which comes from an unknown stochastic process, is
available.

It is worth noting that, in transductive learning, the information useful for pro-
cessing a particular example is collected by exploring the examples related to it.
For this reason, for plain data, the use of pattern relationships is often considered
a distinctive feature of transductive learning. Nevertheless, this feature cannot be
considered as distinctive when the input domain is constituted by graphs. For re-
lational data, indeed, the difference between the two frameworks must be defined
focusing on how the training set targets are used. Thus, we can adopt the follow-
ing definition: in inductive learning, the targets are used for tuning the parameters,
whereas in transductive learning, they are used for the information diffusion.

Modern neural network approaches to graph processing, including GNNs and
the derived methods, are naturally prone to be used either for transductive and in-
ductive learning. In order to understand, by simple experiments, advantages, disad-
vantages and peculiarities of the two learning approaches, and to clarify what hap-
penswhen they are used in conjuction, we introduce amixed inductive–transductive
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approach. In the proposed model, first the dataset is divided into training, valida-
tion and test sets. Then, for each of these sets, three disjoint sets of nodes are em-
ployed:

• The set of inductive nodes L, whose targets are used to compute the loss func-
tion and to adapt the parameters during the inductive network training;

• The set of transductive nodes T, whose targets are used in the transductive
learning phase;

• The set of unsupervised nodes U, whose targets are not available.
The union of the sets of inductive and transductive nodes, S = L ∪ T, constitutes
the set of supervised nodes, for which a target is available.

In a pure inductive approach, only the inductive and the unsupervised sets of
nodes exist. When graphs to be learnt are fed into the model, the targets of nodes
in L are used only to learn the network parameters. The trained model can then be
exploited to process both the original graph(s) in the learning set, or to compute
the output for the unsupervised nodes in U. In other words, during learning, the
model exploits only the graph topology and the information disseminated through
the graph. Once the model has been trained, it can be used to generalize to unsu-
pervised patterns; even in this phase, the prediction is based only on the node labels
and on the graph topology, without any knowledge of the neighboring node targets.

Instead, in the mixed inductive–transductive learning framework, both the in-
ductive and the transductive set of nodes are taken into account for learning. In
particular, the labels of the nodes in T are enriched with their targets, to be explic-
itly exploited in the diffusion process, yielding a direct transductive contribution.
Conversely, for the nodes in L and U, a special null target is attached (f.i. a vector of
zeros). Formally, for a node n, the enriched label l̄n will be defined as:

l̄n =

{
[ln, tn, 1] if n ∈ T
[ln, 0, 0] if n ∈ U ∪ L,

(5.3)

where the last scalar value of the label defines whether the node is transductive or
not. Moreover, the targets of the inductive nodes in L are used to define the training
loss, for tuning the network parameters. Thus, in the mixed framework, the model
has to learn to diffuse the information provided by the targets of the transductive
nodes, which must be combined with the information coming from the node labels
and from the graph topology.

The experiments have been carried out on two synthetic benchmarks, here called
subgraph matching (SGM) and distance from the source (DfS), and on four real–world
datasets, namely Web Spam, Cora, Citeseer and ogb–Arxiv. In both synthetic bench-
marks, data consist of randomly generated graphs. The goal of the subgraphmatch-
ing problem is that of localizing a given subgraph inside a larger graph, while the
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objective of the distance from the source problem is that of computing theminimum
distance between each node and a given target node, in terms of the number of arcs
to traverse to go from one to the other. Instead, the Web Spam benchmark consists
of a subset of the Web graph on which Web hosts have to be classified as spam or
non–spam. Cora and Citeseer are datasets related to citation networks for scientific
publications, widely used for testing graph based algorithms. Finally, the ogb–Arxiv
dataset represents the citation network of all Computer Science (CS) Arxiv papers
indexed by Microsoft Academic Graph (MAG) (Wang et al., 2020).

Intuitively, in order to study the properties of the proposed model, it is essential
to distinguish between the inductive and the transductive contributions to its out-
put. Notice that, actually, the mixed inductive–transductive paradigm aggregates
two types of information, provided by the labels of the unsupervised nodes inU and
by the targets of the transductive nodes in T, respectively. In the experiments, these
two contributions are disentangled by two methods. On the one hand, several trials
have been carried out using different percentages of unsupervised and transductive
nodes. In this way, we can observe how the performance of the network changes
when learning is transformed from pure inductive to increasingly transductive. On
the other hand, experiments with an increasing amount of noise, added to the labels
of the unsupervised nodes, have also been carried out. In fact, by adding noise to
node labels, we corrupt the information available to the inductive algorithm. In the
extreme case, when the noise is very large, the information in the labels is lost and
the inductive part has no information to use (except for the graph connectivity).
Therefore, in this way, we can switch on and off the contribution coming from the
inductive part of the GNN.

The results obtained are really interesting, because in addition to demonstrating
the effectiveness of the mixed inductive-transductive approach we are able to de-
termine attractive properties for each used dataset. Regarding the subgraph match-
ing problem, the experiments show how the transductive information allows to im-
prove the GNN performance at each noise level, since the best accuracy is always
achieved when the number of transductive nodes is maximal. Conversely, adding
noise produces a general decrease in performance, for each percentage of transduc-
tive nodes, which suggests that a contribution from the inductive information also
exists, rapidly deteriorated by noise. In summary, the obtained results suggest that
the GNN is able to take into account and combine both types of information. On
the contrary, the GCN does not take advantage from the transductive nodes and, in
general, the performance of the GCN is lower than that of the GNN in all the cases.
Perhaps, this is due to the fact that the GCN model suffers from some limitations
in terms of the graphs that it can distinguish (Xu et al., 2018) — a problem that
does not affect GNNs. In the case of the SM dataset, such a limitation is particularly
important and cannot be alleviated by the transductive information.
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The performance achieved by the mixed inductive–transductive framework for
the DfS dataset show that inductive learning — for the chosen GNN and GCN con-
figuration — suffers for the long–term dependency problem, since the error signal
has to be propagated, on long paths, from the target node to the source node. Such
a problem is alleviated in the inductive–transductive model, where the error signal
can be propagated also to the transductive nodes. In fact, the results show how the
pure inductive models perform poorly, which is also confirmed by the observation
that their performance is not influenced by the noise. Finally, the performance of
the inductive–transductive model is boosted by the introduction of more and more
transductive nodes.

The results achieved on the Web Spam benchmark, using both spam and non–
spam hosts as transductive nodes show that the performance increases when more
transductive nodes are included, while it decreases in presence of increasingly noisy
labels. Interestingly, a well–known peculiarity of the Web is that spam pages tend
to refer each other, while it is rare for a non–spam page to have hyperlinks to some
spam pages (Castillo et al., 2007). More generally, we expect that spam pages are
more clustered than non–spampages. In order to understand how such a peculiarity
can influence the proposed model, two different experiments were performed, in
which the set of transductive nodes T has been chosen to collect only spam hosts or
only non–spam hosts, respectively. The results confirmed such an asymmetry and
show that the proposedmodel can take advantage of transductive spamhosts, while
the advantage provided by the non–spam hosts is low.

Also the results obtained on the datasets Cora and Citeseer confirm that both the
models (i.e., GNN and GCN) can take advantage from the presence of transductive
nodes. In particular, we can see that most of the times the highest scores for a certain
level of noise are reached by the largest number of transductive nodes.

For the ogb–arXiv dataset we used two different approaches to define the induc-
tive and transductive nodes. In the first approach, during testing, all the nodes in
both the training and validation sets are used as transductive, whereas during train-
ing we use the same procedure as for the other datasets, where the nodes belonging
to the training and validation sets are randomly split into transductive and induc-
tive. The second approach is the one used also in the previous experiments, where
even the test nodes are randomly split in transductive and inductive. The results
also show that GNNs can take advantage of the transductive information in both
the approaches.

In conclusion, the proposed analysis allowed to highlight interesting properties
of the inductive–transductive model for graphs. These properties, together with the
experimentalmethod adopted, may be useful to design newmodels and algorithms.

A complete description of the proposed method and of the obtained results can
be found in (Ciano et al., 2022).
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5.2 Graph Neural Networks for the Prediction of
Protein–Protein interfaces

In this section, wedescribe thework that has been published in (Pancino et al., 2020).
Proteins are fundamental molecules for life. They are involved in any biological pro-
cess that takes place in living beings, carrying out a huge variety of different tasks.
In these molecules, functionality and structural conformation are strictly correlated
(Hegyi and Gerstein, 1999). Therefore, analyzing structural features of proteins is
often useful in understandingwhich biological processes they are involved in, which
ligands they bind to and which molecular complexes they form.

The structure of a protein can be described at three different levels: the primary
structure corresponds to the sequence of amino acids it is composed of; the secondary
structure corresponds to the local conformation of the peptide chain, in the shape
of α-helices, β-sheets or coils; the tertiary structure represents the three–dimensional
configuration of themolecule. Often, two ormoremolecules bind together to form a
protein complex, whose shape goes under the name of quaternary structure. Dimers
are the simplest protein complexes, as they are composed of just two monomers.
To form such complexes, monomers interact through specialized parts of their sur-
face, called binding sites or interfaces. These interactions can be studied with the
help of graph theory. Indeed, each monomer can be represented as a graph, with
nodes corresponding to secondary structure elements (SSEs), while edges stand
for spatial relationships between adjacent SSEs, which can be parallel, anti–parallel
or mixed. Using graphs of two different monomers, a correspondence graph can be
built, whose nodes describe all the possible couples of SSEs from the two different
subunits (Grindley et al., 1993). Based on the correspondence graph, identifying
binding sites on protein surfaces can be reformulated as a maximum clique search
problem (Gardiner et al., 1997).

The maximum clique problem is known to be an NP–complete problem, mean-
ing that, except for very small graphs, traditional operations research algorithms
(Bomze et al., 1999)will employ a prohibitive amount of time before solving it. From
this consideration stemmed the idea of using a machine learning method to solve
the problem with reasonable computational costs. In particular, Graph Neural Net-
works (GNNs) (Scarselli et al., 2008b) look like the perfect model, with their ability
to process graph–structured inputs. GNNs have seen many recent advances and
have become a leading tool in graph–based applications (Kipf and Welling, 2016;
Veličković et al., 2017; Li et al., 2015; Santoro et al., 2017; Battaglia et al., 2018).

The maximum clique problem consists in a binary classification between the
nodes which belong to the maximum clique and those which do not. Clique de-
tection was already addressed with GNNs in the seminal work (Gori et al., 2005),
and, more recently, also in the transductive learning framework (Rossi et al., 2018).
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Finally, this strategy was also further refined by exploiting the deeper version of
GNNs, namely Layered Graph Neural Networks (LGNNs) (Bandinelli et al., 2010).
In this model, each layer is a standalone GNN which is trained separately, using al-
ways the same target. The solution proposed by the previous layer — in the form of
node states, outputs or both — is integrated to the input of each layer after the first,
significantly addressing the long–term dependency issue.

We developed a binary GNN classifier for the detection of maximum cliques in
the correspondence graphs, which addresses the problem as a node–focused clas-
sification task — which means that supervision is known on all nodes. The archi-
tecture of the MLP module dedicated to the output function was kept fixed, using a
single level MLP and the softmax activation function. On the contrary, a 10–fold
cross–validation was performed in order to determine the best hyperparameters
for the MLP implementing the state transition function. According to the cross–
validation results, the MLP architecture with better performance has got a single
hidden layer with logistic sigmoid activation functions. This setup was used also to
test a 5–layered GNN network, where each GNN layer shares the same architecture.
In order to evaluate the performances of the LGNN, a 10–fold cross–validation was
carried out again. The LGNN is composed of 5 GNN layers, with state dimension
equal to 3. The state is calculated by a 1–layer MLP with logistic sigmoid activa-
tions, while the output is calculated with a 1–layer MLP with softmax activation.
Since the negative/positive examples ratio is quite large, the weight of positive ex-
amples is fixed to the 10% of this ratio, against a weight of 1 for negative examples,
in order to balance the learning procedure. The model is trained with the Adam
optimizer (Kingma and Ba, 2014) and cross–entropy loss function.

The best performance is obtained with LGNNs integrating only the state in the
node labels. There are slight improvements in precision andmore tangible improve-
ments in recall, which gains more than 10 percentage points in the second GNN
level, and then continues to grow and stabilize in the following levels. This archi-
tecture is the only one in which we observe a significant increase of the F1–Score,
getting more than 6 percentage points from nearly 35% of the first GNN level to
more than 40% in the final GNN level. Contrariwise, integrating in the node labels
only the output or both the state and the output, the F1–score decreases through the
LGNN layers. The other parameters remain almost stable, except for recall, which
slightly increases through the LGNN layers. However, the standard deviation of the
recall tends to grow, suffering from a marked dependence on the initial conditions
of the experiment. The results confirm the expectations based on biological data
and show good performances in determining the interaction sites, recognizing on
average about 60% of the interacting nodes.

In conclusion, our method, based on GNNs, can find the maximum clique in an
affordable time. The performance of the model was measured in terms of F1–score
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and show that our approach is very promising, though it can be further improved.
One key idea in this direction is that of using graphs in which the nodes correspond
to single amino acids, rather than to SSEs. Although this latter approach would
increase the complexity of the problem, it would avoid the loss of information we
encounter in compressing amino acid features into SSE nodes. Moreover, predic-
tions obtained in this setting would be more accurate, describing the binding site at
the amino acid level.

A complete description of the proposed method and of the obtained results can
be found in (Pancino et al., 2020).

5.3 Fusion of visual and anamnestic data for the
classification of skin lesions with deep learning

In this section, we describe a work whose results has been published in (Bonechi
et al., 2019b).

Recently, the results obtained by Deep Learning techniques, and in particular
by Convolutional Neural Networks (CNNs), have had a vast impact on the field of
image processing (He et al., 2016; Chen et al., 2017b). Many applications have been
developed based on CNNs, ranging from automatic analysis reporting (Andreini
et al., 2018), to age estimation based on brain NMRs (Rossi et al., 2019) and to skin
lesion prognostic classification (Esteva et al., 2017; Yap et al., 2018).

In this study, we propose a new CNN–based tool, capable of classifying skin
lesions, which can help dermatologists in the diagnosis of malignant pathologies.
Skin cancer is one of the most common tumors in the world and its incidence is
increasing worldwide. The main types of skin cancer are non–melanoma skin can-
cer (NMSC) and malignant melanoma (MM) (Leiter et al., 2014). NMSC includes
basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), which usually de-
velop in the epidermis, the outermost layer of the skin. Both tumors, BCC and SCC,
tend to occur in over–65 patients, on healthy skin or precancerous skin lesions. In
contrast to melanoma, BCC and SCC have a low grade of malignancy and rarely
spread to other parts of the body (Apalla et al., 2017). BCC clinically appears as
ulcerations, nodules, reddish plaques or scars. Although BCC is locally invasive, it
tends to grow slowly, and if diagnosed early and treated appropriately, in almost all
cases, it is easily resolved (Paolino et al., 2017). SCC is the secondmost common skin
cancer after BCC. SCC usually starts as a small nodule and grows until it becomes
an ulcered lesion. It may present as papules or cutaneous horns. The metastasis
incidence of SCC is estimated between 0.5–16% (Apalla et al., 2017). Unlike BCC
and SCC, melanoma is an aggressive form of cancer, triggered by an uncontrolled
proliferation of melanocytes, pigment–producing cells of neuroectodermal origin.
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Cutaneous melanoma is the 20th most common cancer worldwide. It occurs most
frequently in adults aged between 40 and 60, while it is rarely observed before pu-
berty (Rastrelli et al., 2014). It is slightly more common in men than in women.
Although cutaneous melanoma comprises less than 5% of all skin tumor cases, it
causes the majority (75%) of skin cancer deaths.
The worldwide incidence of this pathology has risen sharply over the last decades
(Schadendorf and Hauschild, 2014). Globally, 287,723 new cases of cutaneous me-
lanoma have been reported in 2018, and 466,914 new cases are expected to occur un-
til 2040, according to the estimates of Globocan (https://gco.iarc.fr/tomorrow/
en). Furthermore, the incidence trends vary significantly across different geographic
locations and ethnic groups (Matthews et al., 2017). According to data from Globo-
can, the highest incidence rateworldwide is recorded inAustralia andNewZealand,
where melanoma is the third most common form of cancer. In Europe the high-
est incidence rates occur in Norway and Denmark, with 29.6 and 27.6 cases per
100,000 people per year, respectively. Regular clinical screenings and head–to–toe
self–examinations are recommended to detect melanoma in its earlier stages, when
the lesion is smaller than 2mm and can be easily removedwith surgery. Ifmelanoma
is diagnosed in a more advanced stage, in which the cancer has already spread to
lymph nodes, the excision is insufficient. To treat these cases, surgery must be com-
bined with radiotherapy, immunotherapy or targeted therapy (Domingues et al.,
2018). The ABCDE rule is a common screening tool used to distinguish malignant
melanoma from a benignmole. The characteristics of a lesionwhich can help in clas-
sifying it as a melanoma include Asymmetry, Border irregularity, Color variegation,
a Diameter longer than 6 mm and the Evolution of its shape. The development of
cutaneous melanoma is a complex phenomenon. It is based on a series of interac-
tions between environmental and endogenous factors, including phototype, num-
ber of nevi, presence of atypical nevi, genetic alterations and UV exposure, which
is thought to be the major risk factor for this pathology (Gandini et al., 2005). In
the diagnosis of melanoma, the dermatologist’s expertise is a key element to recog-
nize all the typical elements of a malignant lesion and put them together to set up a
correct care path.

Recently, the results obtained by deep learning techniques and, in particular,
by Convolutional Neural Networks (CNNs), in the field of image processing, have
pushed the use of these methods to develop medical decision support tools. There-
fore, our proposal is to implement a CNN–based tool capable of classifying lesion
images, which can help dermatologists in diagnosing melanoma. More specifically,
this study aims at improving the efficiency in the early detection of skin cancers,
developing a classifier capable of integrating the information coming from both
dermoscopic images and anamnestic data. Experimental tests were carried out on
the freely downloadable International Skin Imaging Collaboration1 (ISIC) Archive

https://gco.iarc.fr/tomorrow/en
https://gco.iarc.fr/tomorrow/en
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(Codella et al., 2018), showing the importance of the exogenous patient data for the
correct classification of lesions.

Using the anamnestic data of the patient together with the visual inspection of
the skin lesion is the standard procedure in dermatological diagnostics. In fact, it
has proven to be fundamental even in the case of the automatic analysis of dermo-
scopic images with CNNs. Actually, the proposedmodular architecture was trained
separately with respect to the two types of data — making each module act as an
informed feature extractor—whose responses can be properlymerged to define the
prognosis. The impact of using also clinical data is clearly evidenced by our prelim-
inary experimental results, which show a significant improvement in performance.

A complete description of the proposed method and of the obtained results can
be found in (Bonechi et al., 2019a).

5.4 Deep Learning Techniques for Dragonfly Action
Recognition

In this section, we propose the work whose results has been published in (Monaci
et al., 2020).

Odonata are an order of medium/large hemimetabolous insects, composed of
more than 5000 species which differ in color and size. Odonata are morphologi-
cally divided into two main infraorders: Zygoptera and Anisoptera. Commonly,
Anisoptera are also referred to as “Dragonflies”. They live mainly in freshwater
environments, such as ponds, rivers and lakes. They are characterized by a long
and thin body, two large multifaceted eyes — made up of thousands of elementary
eyes called ommatidia —, two pairs of transparent wings and six legs. They can
move the four wings in a fully independent way. This feature, unique in the world
of insects, allows them to reach speeds of up to 50 km/h and to obtain formidable
performance in flight and hunting, where they can perform backward movements,
very narrow turns of death and stops in mid–air. Although the biology of drag-
onflies has been widely surveyed, there are still very few studies on the kinematic
analysis of these insects. In 1975, the Swedish biologist Norberg was the first to
study their flight by filming a dragonfly in the open field (Norberg, 1975). He mea-
sured parameters such as the width and frequency of the wing flapping, revealing
that dragonflies keep their body in an almost horizontal position during flight. A
decade later, Azuma et al., using a more advanced video camera, showed that the
flaps of the dragonfly’s wings follow a trajectory which can be well represented by
a sinusoidal function (Azuma et al., 1985), thus confirming the vortex theory, pos-
tulated since 1979. Moreover, by collecting both morphological and kinematic data,
they were able to define the first mathematical expression of the wing speed. Since
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then, numerous experiments have been carried out in this particular research con-
text. New technologies (Wang et al., 2003) were exploited, for instance, to analyze
the muscle movements during flight (Faller and Luttges, 1990, 1991), in order to
produce prototypes of robotic drones capable of accurately simulating the flight of
a dragonfly (Couceiro et al., 2010). These simulations, however, failed to fully re-
produce the dexterity, capacity, flexibility and freedom of maneuver of dragonflies
(Hu et al., 2009).

This work aims at creating an action recognitionmodel capable of distinguishing
the different phases of the dragonfly flight, using deep learning techniques. Given
the wide interest of the biological research community in the study of dragonflies,
we assume that it is quite useful to develop a reliable system for recognizing drag-
onfly actions. Indeed, research in different fields could benefit from the recognition
system to test hypotheses on dragonfly anatomy, flight dynamics and predatory be-
haviors. In this project, we propose a dragonfly action recognition system capable
of classifying video frames in five classes: take–off, flight, landing, stationary and
absent (frames in which the dragonfly is not present). Deep learning requires a
huge set of fully annotated data, but, unfortunately, we are not aware of a publicly
available labeled dataset of dragonfly images. To train a deep learning architecture,
we first collected a suitable number of samples from online videos, which were ap-
propriately preprocessed and labeled frame by frame. Then, different classifier net-
works for action recognition were compared. First of all, a standard Convolutional
Neural Network was tested: this model elaborates one frame at a time, discarding
the information of previous frames. To correctly identify the action, the information
contained in the previous frame could be fundamental. Therefore, we also trained
an LSTM model, which is capable of elaborating frame sequences.

In conclusion, apart from the collection of a large labeled dataset, some guide-
lines for the calibration, design and implementation of deep models to face this task
have been provided. It will be a matter of future research to improve the classifica-
tion performance of the proposed models, for instance by collecting a larger dataset
— in particular providing more frames for the take–off/landing classes — or em-
ploying data augmentation techniques in order to extend the available data. A fur-
ther improvement could be brought by the introduction of more pre–processing op-
erations, compatible with the data type, in order to reduce the disturbing elements
in the images and to facilitate the classification task.

A complete description of the proposed method and of the obtained results can
be found in (Monaci et al., 2020).
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5.5 SlAIde2Voice: A new educational tool for students
with visual disabilities

In this section, we propose the work that has been published in (Ciano et al., 2021b).
Due to the Covid–19 outbreak, the role played by technology in teaching and learn-
ing activities is becoming more and more predominant. School closures has re-
quired the implementation of distance learning solutions. All around the world,
millions of students experimented for the first time with this new way of attending
school. This way of participating lessons involves not only students, but also their
families, providing extra difficulties for some types of disabilities, such as visual
impairments.

The impact of COVID–19 on students with disabilities could be manifold. In fact
such students might suffer due to the lack of accessible software, teaching materials
and tutor direct support (WHO, 2020b). The World Health Organization (WHO)
has estimated that globally 285 million people of all ages are visually impaired, of
which 39 million are blind. Furthermore, almost 18.9 million children below the age
of 16 have visual disabilities (WHO, 2020a). Generally, blind or visually impaired
students need teachingmaterial presented through other channel, bymeans of a tac-
tile sign language interpreter to facilitate communication and learning in the school
environment.

Thiswork addresses the problemof replacing the visual channel in remote lessons,
since vision is fundamental to fully comprehend online presentation, even more
considering that a tutor could not be available due to Covid restrictions. Accord-
ing to (Bustamante, 2020), a large portion of students feels Sars–CoV–2 influenced
the decision to continue their educational path (11% students decided to not en-
roll in college and 24% of students claimed they were likely to change their minds
about what college to attend) and the majority of college students (63%) think on-
line classes are less effective with respect to traditional in–person lectures. More-
over, parents pointed out the difficulty to reach the teaching staff and to be assisted
by it. Finally, it is important to emphasise that distance education courses have been
largely used also in pre–pandemic years and may increase in the next years (Busta-
mante, 2020). It is clear, therefore, that allowing visually impaired students to have
the same material of the rest of the class is necessary, especially when dealing with
distance learning.

This is not a problem that affects only people at young age, since videoconfer-
encing programs, and remote presentations, are largely used also in work environ-
ments. Therefore, the ability of access completely the material provided by the
teacher, or by colleagues in a company, could be game–changing for people around
the world who are visually impaired, counting both blindness and low vision.

We proposed SlAIde2Voice, a new framework to improve the fruition level of
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online lectures for visually impaired students. Thanks to precise design choices,
our tool is completely independent from the conference platform, making the en-
vironment extendable to every person affected by visual disabilities who would
like to join an online meeting. Moreover, it allows to reproduce slides in an offline
way, something particularly useful for self–study or reasoning after the presenta-
tion. Finally, the use of open–source slide making software avoids the problems
related to licensed suite, indeed reducing the realization costs to the Braille tablet
purchase only. We believe that SlAIde2Voice could fill the gap in learning tools for
visually impaired people, especially in conditions in which real lectures and con-
ferences are not possible, as in the case of Covid–19. Our proposed software can
increase the self–independence of the user and therefore reduce the need of help
from parents or tutors. Moreover, thanks to the acquaintance of self–independence,
national money devoted to instantiate special dispositions for visually impaired pa-
tients can be saved. Costs, could be even more reduced with the availability of
cheaper Braille tablets in the market. We think that our system could be very useful,
also when Covid–19 pandemic will be over, for normal lecturing or already existing
online university courses (i.e Coursera, Udemy1). The approach used to develop
the SlAIde2Voice architecture can easily be extended to support learning with other
disabilities. For instance, the integration of a simple speech recognition systemmake
the software useful for hearing impaired people.

A complete description of the proposed method can be found in (Ciano et al.,
2021b).

1https://www.coursera.org, https://www.udemy.com

https://www.coursera.org
https://www.udemy.com


Chapter 6

Conclusions and future perspective

In this thesis, we investigated the use of GAN–based deep learning techniques for
synthetic image generation along with the corresponding label–maps for segmenta-
tion purposes. In the proposed procedure, the generation is split into several steps.
The main idea supporting the proposal is that if the difficulty of the problem in-
creases, the generation can benefit from this division into simpler problems. Thus,
compared to other generationmethods, we can generate the label–maps and images
with a simpler network and a smaller number of examples. The generated images
can be used to augment the training set of semantic segmentation networks. To
demonstrate the effectiveness of the multi–stage method, we applied the method
on two important applications in medical image analysis. In the first case, we used
a two–step approach for the generation of retinal images. In this case, the segmen-
tation network has to decide whether a pixel belongs to a retinal vessel or to the
background. The second application is a multi–class task, aimed at creating CXR
images, which is more complex and which is faced based on a three–stage genera-
tion procedure.

More detailed conclusions for both these applications are presented below.
Generation and segmentation of retinal images— In Chapter 3, we proposed a

two–stage procedure to generate synthetic retinal images. During the first stage, the
semantic label masks, which correspond to the retinal vessels, were generated by
a Progressively Growing GAN. Then, an image–to–image translation approach was
employed to obtain the retinal images from the labelmasks. The proposed approach
allowed us to generate imageswith unprecedented high resolution and realism. The
reported experiments demonstrate the usefulness of synthetic images, which can
be effectively used to train a deep segmentation network. Moreover, if fine–tuning
based on real images is applied, after a preliminary learning phase based only on
synthetic images, the performance of the segmentation network further improves,
reaching the performance of or even outperforming the best methods in literature.

Generation and segmentation of Chest X–Ray images— In Chapter 4, we pro-
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posed a multi–stage method based on GANs to generate multi–organ segmentation
of chest X–ray images. Unlike existing image generation algorithms, in the proposed
approach, generation occurs in three stages, starting with “dots”, which represent
anatomical parts, and initially involves low–resolution images. After the first step,
the resolution is increased to translate “dots” into label–maps. We performed this
step with Pix2PixHD, thus making the information grows and obtaining the labels
for each considered anatomical part. Finally, Pix2PixHD is also used for translat-
ing the label–maps into the corresponding chest X–ray images. The usefulness of
our method was experimentally demonstrated, especially when there were few im-
ages in the training set, making such a problem affordable thanks to the multi–stage
nature of the approach.

Future perspective
The approach proposed in this thesis is general and can be applied to different

tasks, not only to the medical field. Indeed, it is future matter of research the exper-
imentation of the multi–stage methods on different application fields.

In fact, both the two–stage and the three–stage method can be applied to other
domains, where the the latter approach is likely more suitable for more complex
tasks. Another advantage of the three–stage method is its use of "seeds", which can
be employed to generate objects in given positions in any type of image. For exam-
ple, regarding the generation of the Chest X–Ray images, we can generate cancer
nodules, in addition to the anatomical parts. The images generated in this way can
be used to expand the dataset and to train a segmentation network, the aim of which
is to work out whether there is a nodule in a chest X–ray image or not and, possibly,
localizing the nodule. Moreover, since dots can be posed in any position inside the
image, CXRswith nodules in rare locations can be generated. It is worthmentioning
that, currently, we already started experimenting nodule generation for CXR images
both based on random and manually located nodules.

Finally, as we said before, the proposedmethods are general. Thus, we can apply
them to natural images. Currently, we are running experiments on the Cityscapes
Dataset (Cordts et al., 2016). The number of images in this dataset is high, but the
possibility of moving objects in a natural scene is an interesting and demanding
task.
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