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Abstract
Recently, the efficient numerical solution of Hamiltonian problems has been tackled
by defining the class of energy-conserving Runge-Kutta methods namedHamiltonian
Boundary Value Methods (HBVMs). Their derivation relies on the expansion of the
vector field along a suitable orthonormal basis. Interestingly, this approach can be
extended to cope with more general differential problems. In this paper we sketch this
fact, by considering some relevant examples.
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1 Introduction

The numerical solution of Hamiltonian problems has been the subject of many investi-
gations in the last decades, due to the fact thatHamiltonianproblems are not structurally
stable against generic perturbations like those induced by a general-purpose numerical
method used to approximate their solutions.

The main features of a canonical Hamiltonian system are surely the symplecticness
of the map and the conservation of energy. It is well-known that these two properties
aremutually exclusivewhenRunge-Kutta or B-seriesmethods are considered [1]. This
is the reason why numerical methods have been devised in order of either defining a
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symplectic discrete map, giving rise to the class of symplectic methods (see, e.g., the
monographs [2–5], and references therein, and the review paper [6]), or being able
to conserve the energy, resulting in the class of energy-conserving methods (see, e.g.,
[7–14] and the monograph [15]).

The methods we shall deal with belong to the class of energy-conserving methods:
they are named Hamiltonian Boundary Value Methods (HBVMs) [12, 13, 15, 16].
HBVMs, in turn, can be also regarded as a local projection of the vector field onto a
finite-dimensional function space [17]. It is worth mentioning that the same idea has
been also named in different ways (e.g., functionally fittedmethods [18]). Remarkably,
this strategy is even more general and can be adapted to other classes of problems,
also allowing the use of the methods as spectral methods in time [19–22]. This means
that the accuracy of the approximation is attained by increasing the dimension of
the functional space, rather than reducing the timestep. Test problems, comparing the
computational cost of such methods w.r.t. collocation or other standard methods, can
be found in [22], showing the good potentialities of the spectral approach. Wemention
that spectral methods have been also extensively used in other settings [23–26].

In this paper, we sketch how the approach resulting into HBVMs can be extended
to cope with additional differential problems: for some of such instances a thorough
analysis is still in progress, but the general framework can be outlined even at this
stage.

With this premise, the structure of the paper is as follows: in Sect. 2 we provide
a brief introduction to HBVMs; in Sect. 3 the approach is extended to cope with
general initial value problems (ODE-IVPs), including special second-order problems
and delay differential equations (DDEs); Sect. 4 is devoted to implicit differential
algebraic equations (IDEs/DAEs), including linearly implicit DAEs; Sect. 5 concerns
the case of fractional differential equations (FDEs); a few conclusions are given in
Sect. 6.

2 Hamiltonian problems

A canonical Hamiltonian problem is in the form

ẏ = J∇H(y), y(0) = y0 ∈ R
2m, J =

(
Im

−Im

)
= −J�, (1)

with H : R2m → R the Hamiltonian function (or energy) of the system.1 As is easily
understood H is a constant of motion, since

d

dt
H(y) = ∇H(y)� ẏ = ∇H(y)� J∇H(y) = 0,

being J skew-symmetric. The simple idea on which HBVMs rely on is that of refor-
mulating the previous conservation property in terms of the line integral of ∇H along

1 In fact, for isolated mechanical systems, H has the physical meaning of the total energy.
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the path defined by the solution y(t):

H(y(t)) = H(y0) +
∫ t

0
∇H(y(τ ))� ẏ(τ )dτ.

Clearly, the integral at the right-hand side of the previous equality vanishes, because
the integrand is identically zero, so that the conservation holds true for all t > 0. The
solution of (1) is the unique function satisfying such a conservation property for all
t > 0. However, if we consider a discrete-time dynamics, ruled by a timestep h, there
exists infinitely many paths σ such that:

σ(0) = y0, σ (h) =: y1 ≈ y(h),

0 = h
∫ 1

0
∇H(σ (ch))�σ̇ (ch)dc. (2)

The path σ obviously defines a one-step numerical method that conserves the energy,
since

H(y1) = H(y0) + h
∫ 1

0
∇H(σ (ch))�σ̇ (ch)dc = H(y0),

even though now the integrand is no more identically zero. The methods derived
in this framework have been named line integral methods, due to the fact that the
path σ is defined so that the line integral (2) vanishes. Such methods have been
thoroughly analyzed in the monograph [15] (see also the review paper [27]). Clearly,
in the practical implementation of the methods, the integral is replaced by a quadrature
of enough high-order, thus providing a fully discrete method. However, for the sake
of brevity, we shall hereafter continue to use the integral, and not the quadrature, so
that the exposition is greatly simplified and more concise.2

After some initial attempts to derive methods in this class [8–10, 12, 30], a sys-
tematic way for their derivation was found in [17], which is based on a local Fourier
expansion of the vector field in (1). In fact, by setting

f (y) = J∇H(y), (3)

and using hereafter the more convenient notation, depending on the needs, one may
rewrite problem (1), on the interval [0, h], as:

ẏ(ch) =
∑
j≥0

Pj (c)γ j (y), c ∈ [0, 1], y(0) = y0, (4)

2 This amounts to study HBVMs as continuous-stage Runge-Kutta methods, as it has been done in [28,
29].
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where {Pj } j≥0 is the Legendre orthonormal polynomial basis on [0, 1],

Pi ∈ �i ,

∫ 1

0
Pi (x)Pj (x)dx = δi j , i, j ≥ 0, (5)

�i is the vector space of polynomials of degree at most i , δi j is the Kronecker symbol,
and

γ j (y) =
∫ 1

0
Pj (τ ) f (y(τh))dτ, j ≥ 0, (6)

are the corresponding Fourier coefficients. The solution of the problem is formally
obtained, in terms of the unknown Fourier coefficients, by integrating both sides of
Eq. (4):

y(ch) = y0 + h
∑
j≥0

∫ c

0
Pj (x)dx γ j (y), c ∈ [0, 1]. (7)

A polynomial approximation σ ∈ �s can be formally obtained by truncating the
previous series to a finite sum,

σ̇ (ch) =
s−1∑
j=0

Pj (c)γ j (σ ), c ∈ [0, 1], σ (0) = y0, (8)

and

σ(ch) = y0 + h
s−1∑
j=0

∫ c

0
Pj (x)dx γ j (σ ), c ∈ [0, 1], (9)

respectively, with γ j (σ ) defined according to (6), upon replacing y with σ . Whichever
the degree s ≥ 1 of the polynomial approximation, the following result holds true,
where the same notation used above holds.

Theorem 1 Assume that the Hamiltonian H has continuous partial derivatives. Then,
H(y1) = H(y0).

Proof In fact, one has:

H(y1) − H(y0) = H(σ (h)) − H(σ (0)) = h
∫ 1

0
∇H(σ (ch))�σ̇ (ch)dc

= h
∫ 1

0
∇H(σ (ch))�

s−1∑
j=0

Pj (c)γ j (σ )dc

= h
s−1∑
j=0

[∫ 1

0
Pj (c)∇H(σ (ch))dc

]�
γ j (σ )
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= h
s−1∑
j=0

[∫ 1

0
Pj (c)∇H(σ (ch))dc

]�
J

[∫ 1

0
Pj (c)∇H(σ (ch))dc

]

= 0,

due to the fact that J is skew-symmetric. �	
The next result states that the methods has order 2s.

Theorem 2 Assume that the function (3) is of class C (2s+1)[0, h]. Then, y1 − y(h) =
O(h2s+1).

Proof See [17, Theorem 1]. �	
Remark 1 It is worth noticing that, due to the fact that (see (5))

∫ 1

0
Pj (x)dx = δ j0, (10)

the new approximation (see (2) and (9)) is given by

y1 := σ(h) ≡ y0 +
∫ h

0
f (σ (t))dt,

which can be regarded as an approximation of the Fundamental Theorem of Calculus.

3 Initial value problems

The result in Theorem 2 does not depend on the Hamiltonian structure of the problem.
This suggests that the above procedure also makes sense for a generic initial value
problem which, on the interval [0, h] can be cast, without loss of generality, as

ẏ(ch) = f (y(ch)), c ∈ [0, 1], y(0) = y0 ∈ R
m . (11)

To cope with more general problems, hereafter we consider an alternative but equiv-
alent approach to devise this family of methods. Consider again

σ̇ (ch) =
s−1∑
j=0

Pj (c)γ j , σ (ch) = y0 + h
s−1∑
j=0

∫ c

0
Pj (x)dx γ j , c ∈ [0, 1]. (12)

We determine the unknown coefficients

γ j ≡ γ j (σ ), j = 0, . . . , s − 1,

in order that the residual function

r(ch) := σ̇ (ch) − f (σ (ch)), c ∈ [0, 1], (13)
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be orthogonal to �s−1, namely

0 =
∫ 1

0
Pi (c)r(ch)dc =

∫ 1

0
Pi (c) (σ̇ (ch) − f (σ (ch))) dc, i = 0, . . . , s − 1.

Substituting the expansion for σ̇ (ch) in (12) and taking into account the orthogonality
relations (5) again lead to the equations defining the unknown coefficients γi (compare
with (6)):

γi =
∫ 1

0
Pi (c) f

⎛
⎝y0 + h

s−1∑
j=0

∫ c

0
Pj (x)dx γ j

⎞
⎠ dc, i = 0, . . . , s − 1. (14)

Remark 2 As was anticipated above, in order to get a fully discrete problem, the inte-
grals appearing in (14) need to be approximated by suitable quadrature formulae: to
this purpose, a Gauss-Legendre quadrature of order 2k is employed. The resulting inte-
grator, first devised in the context of Hamiltonian systems, is denoted by HBVM(k, s)
to highlight the dependence on the two discretization parameters. When k = s the
method reduces to the s-stage Gauss-Legendre collocation method but, if necessary,
one can choose k large enough to ensure that the integrals are approximated to within
machine precision. This, in turn, can be done without increasing too much the overall
computational cost: as matter of fact, the discretized problem (14) has (block) dime-
sion s, independently of k. This fact is an important feature, in the case of Hamiltonian
problems, as the next Example 1 will show. The resulting set of s nonlinear equations
(14) can be efficiently solved by means of the blended iteration described in [31],
adapted from [32, 33] (see also [34] for related approaches): in fact, such iteration
only requires the factorization of one matrix of the size of the continuous problem,
whichever is the value of s considered. We mention that the state-of-art Matlab code
hbvm.m, implementing HBVMs, is available at the website of the monograph [15].

We observe that, in light of (14) and (12), the new approximation can be written as

y1 = y0 + hγ0, (15)

which is easily evaluated, once the system (14) has been solved.
It is worth mentioning that, in the actual implementation of (12), it is conveniently

exploited the known relation between the Legendre polynomials and their integrals:

∫ c

0
P0(x)dx = ξ0P0(c) + ξ1P1(c),

∫ c

0
Pj (x)dx = ξ j+1Pj+1(c) − ξ j Pj−1(c), j ≥ 1,

ξi = 1

2
√|4i2 − 1| , i ≥ 0. (16)
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Example 1 Let us consider the Hamiltonian problem defined by [15]:

H(q, p) = (q2 + p2)2 − 10(q2 − p2), q, p ∈ R. (17)

When the initial point is chosen as

(q0, p0) = (0, 10−5), (18)

the solution trajectory, in the phase space, is a Cassini oval, as is shown on the left of
Fig. 1, with very close branches near the origin (see the right-plot in the same figure).
The solution is then periodic, with period T ≈ 3.131990057003955. However, when
numerically solving the problem, if the Hamiltonian is not precisely conserved, then
the numerical branches may intersect, thus giving a wrong simulation. If we fix s = 2
in (14) and we use a Gauss-Legendre formula of order 8 (k = 4), then the HBVM(4,2)
method is exactly energy conserving (according to Theorem 1), since the integrals are
exact. We use this method and, for comparison, the 2-stage Gauss collocation method
(i.e., HBVM(2,2)), with a timestep h = 10−2. This latter method, though symplectic,
is not energy-conserving. As is clearly shown in Fig. 2, the former method (left-
plot) provides a correct numerical solution, whereas the latter (right-plot) does not.
The two simulations have been done by using the Matlab code hbvm.m on an Intel
3GHz Intel Xeon W10 core computer, with 64GB of memory, running Matlab 2020b.
Despite the very different outcomes, the computational time for the two simulations
is approximately the same (about 10 sec.). This fact confirms that using values of k
larger than s, for a HBVM(k, s) method, is not a big issue.

3.1 Special second-order problems

A relevant instance of ODE-IVPs is the case of special second-order problems, namely
problems in the form

ÿ(ch) = f (y(ch)), c ∈ [0, 1], y(0) = y0, ẏ(0) = z0 ∈ R
m . (19)
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Fig. 1 Left-plot: solution of problem (17)–(18); right-plot: zoom near the origin
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Fig. 2 Numerical solution of problem (17)–(18) by using HBVM(4,2) (left) and HBVM(2,2) (right) with
timestep h = 10−2

As an example, separable Hamiltonian problems fall in this class. The particular struc-
ture of the problem allows to gain efficiency, with respect to just recasting the problem
as the following first order problem of doubled size:3

{
ẏ(ch) = z(ch),

ż(ch) = f (y(ch)),
c ∈ [0, 1], y(0) = y0, ż(0) = z0 ∈ R

m . (20)

Proceeding as before, we introduce the polynomial approximations

ẏ(ch) ≈ σ̇ (ch) :=
s−1∑
j=0

Pj (c)dx γ̂ j , (21)

ż(ch) ≈ μ̇(ch) :=
s−1∑
j=0

Pj (c)dx γ j , c ∈ [0, 1], (22)

satisfying the initial conditions σ(0) = y0, μ(0) = z0, and require the residual

r(ch) :=
(

σ̇ (ch) − μ(ch)

μ̇(ch) − f (σ (ch))

)
, c ∈ [0, 1],

be orthogonal to�s−1. The s orthogonality conditions imposed on the first component
of r(ch) allow us to remove the unknowns γ̂i :

γ̂i =
∫ 1

0
Pi (c)μ(ch)dc, i = 0, . . . , s − 1,

3 Runge-Kutta-Nyström methods are in fact devised for this purpose.
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so that, integrating both (21) and (22) from 0 to c, we get the two polynomial approx-
imations of degree s for the solution and its derivative,

σ(ch) = y0 + h
s−1∑
j=0

∫ c

0
Pj (x)dx

∫ 1

0
Pj (τ )μ(τh)dτ, (23)

μ(ch) = z0 + h
s−1∑
j=0

∫ c

0
Pj (x)dx γ j , c ∈ [0, 1], (24)

involving only the s unknown coefficients γ j , j = 0, . . . , s − 1. Such coefficients are
determined from the orthogonality conditions imposed on the second component of
r(ch):

γi =
∫ 1

0
Pi (c) f (σ (ch))dc, i = 0, . . . , s − 1. (25)

By taking into account (16) and (23)–(24), the expression of the polynomial σ , in
terms of the above coefficients, turns out to be:

σ(ch) = y0 + chz0 + c
h2

2

(
γ0 − γ1√

3

)

+h2
s−2∑
j=1

∫ c

0
Pj (x)dx

(
ξ jγ j−1 − ξ j+1γ j+1

)

+ h2
∫ c

0
Ps−1(x)dx ξs−1γs−2. (26)

Once the system (25)–(26) has been solved, the new approximations are obtained, as
done before, as

μ(h) =: z1 ≈ ẏ(h), σ (h) =: y1 ≈ y(h),

i.e., recalling (10),

z1 = z0 + hγ0, y1 = y0 + hz0 + h2

2

(
γ0 − γ1√

3

)
.

Remark 3 Also in this case, there exist efficient iterative procedures for solving the
discrete counterpart of (25) (see [31]).4 In particular, the modified blended iteration
follows from the analysis in [35] (see also [33]).

We conlclude this section by mentioning that the whole approach can be extended,
in a straightforward way, to higher-order equations [29].

4 This discrete counterpart, as usual, is obtained by approximating the involved integrals by using a
Gauss-Legendre quadrature of order 2k, thus resulting into a HBVM(k, s) method for special second-order
problems.
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3.2 Delay differential equations

Delay differential equations have been the subject of many investigations in the past
years (we refer to the monographs [36, 37] and references therein for further informa-
tions). Here, we extend the approach described in the previous sections to cope with
delay differential equations in the form

ẏ(t) = f (y(t), y(t − τ)), t ≥ 0, y(t) = φ(t), t ∈ [−τ, 0], (27)

with τ > 0 a fixed delay, and φ : R → R
m a known function. In fact, by using a

timestep

h = τ

K
,

for a suitable K ∈ N, and setting

σn(ch) = yn−1 + h
s−1∑
j=0

∫ c

0
Pj (x)dx γ n

j , c ∈ [0, 1],

the approximation to the solution over the interval 5

[tn−1, tn], tn = nh, n ≥ 1 − K , yn−1 := σn−1(h),

then, for n ≥ 1, the unknown coefficients γ n
i , i = 0, . . . , s − 1, solve the system of

equations:

γ n
i =

∫ 1

0
Pi (c) f

⎛
⎝yn−1 + h

s−1∑
j=0

∫ c

0
Pj (x)dx γ n

j , σn−K (ch)

⎞
⎠ dc,

i = 0, . . . , s − 1, (28)

with the new approximation given by σn(h) =: yn ≈ y(tn), i.e.,

yn = yn−1 + hγ n
0 .

We refer to [38] for full details on this approach.

4 Implicit differential algebraic equations

The procedure defined above to cope with ODE-IVPs and DDE-IVPs can be quite
easily extended to solve implicit differential equations, too. For sake of simplicity we
continue to deal with initial value problems, even though different kind of conditions

5 Actually, the solution is known from the initial condition in (27), for n = 1 − K , . . . , 0.
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could in principle be used, as seen in [39] in the Hamiltonian case. Let us then consider
the problem

F(ẏ(ch), y(ch)) = 0, c ∈ [0, 1], y(0) = y0 ∈ R
m, (29)

with F : Rm×R
m → R

m .We can then look for a polynomial approximation of degree
s in the form (12), with the new approximation at h given by σ(h) =: y1 ≈ y(h),
formally still given by (15). As was done before, by requiring the corresponding
residual be orthogonal to �s−1, the unknown coefficients γi , i = 0, . . . , s −1, are the
solution of the system of equations:

0 =
∫ 1

0
Pi (c)F

⎛
⎝s−1∑

j=0

Pj (c)γ j , y0 + h
s−1∑
j=0

∫ c

0
Pj (x)dx γ j

⎞
⎠ dc,

i = 0, . . . , s − 1. (30)

This approach, which is still under investigation, will be fully analyzed elsewhere.

4.1 Linearly implicit DAEs

An important simplification is obtained in the case of linearly implicit DAEs, for which
the problem is assumed to be in the form

Mẏ(ch) = f (y(ch)), c ∈ [0, 1], y(0) = y0 ∈ R
m, (31)

with M ∈ R
m×m a (possibly singular) known matrix. In this case, in fact, one may

look again for a polynomial approximation of degree s in the form (12). As a result,
we obtain that the unknown coefficients γi , i = 0, . . . , s − 1, solve the system of
equations:

Mγi =
∫ 1

0
Pi (c) f

⎛
⎝y0 + h

s−1∑
j=0

∫ c

0
Pj (x)dx γ j

⎞
⎠ dc, i = 0, . . . , s − 1. (32)

Remark 4 It is worth mentioning that the iterative solution of (32) can be carried out
via a modified blended iteration, w.r.t. that defined in [31] for HBVMs, by following
similar steps as done in [40].

5 Fractional differential equations

Fractional differential equations deserve a separate treatment, due to the fact that the
underlying differential operator differs from the usual one (see, e.g., [41]; moreover,
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we refer to [42] for a review on numerical methods for such problems). Let us then
consider, for a given α ∈ (0, 1], the FDE

Dα y(ch) = f (y(ch)), c ∈ [0, 1], y(0) = y0 ∈ R
m, (33)

where Dα is the Caputo fractional derivative. This latter derivative is defined, for a
given differentiable function g : R → R

m , as

Dαg(t) = 1


(1 − α)

∫ t

0
(t − x)−α ġ(x)dx .

The corresponding Riemann-Liouville integral of order α is defined as

I αg(t) = 1


(α)

∫ t

0
(t − x)α−1g(x)dx .

It is known that:

Dα I αg(t) = g(t), I αDαg(t) = g(t) − g(0).

With this premise, the polynomial approximation to the solution of (33) is now looked
in the form

Dασ (ch) =
s−1∑
j=0

Pj (c)γ j , σ (ch) = y0+hα
s−1∑
j=0

I αPj (c) γ j , c ∈ [0, 1], (34)

instead of (12).

Remark 5 Clearly, when α = 1 (12) and (34) coincide, due to the fact that

D1g(t) = lim
α→1− Dαg(t) = ġ(t), and I 1g(t) =

∫ t

0
g(x)dx .

As was done before, by formally plugging Dασ (ch) and σ(ch) into (33), the
unknown coefficients γi , i = 0, . . . , s − 1, are determined by requiring the resid-
ual be orthogonal to �s−1, thus leading to the system of equations:

γi =
∫ 1

0
Pi (c) f

⎛
⎝y0 + hα

s−1∑
j=0

I αPj (c) γ j

⎞
⎠ dc, i = 0, . . . , s − 1. (35)

In the actual implementation of (35), it is useful knowing how to compute the
fractional integrals of the Legendre polynomials.6 For this purpose, the following
known result will be useful:

6 I.e., we need a result similar to (16) for the problem at hand.
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I αxη = 
(η + 1)


(α + η + 1)
xα+η, η ≥ 0. (36)

In fact, by recalling the explicit expression of the Legendre polynomials,

Pj (c) = √
2 j + 1

j∑
i=0

(−1) j+i ( j + i)!
( j − i)!(i !)2 c

i , j ≥ 0,

from (36) one derives:

I αPj (c) = √
2 j + 1 cα

j∑
i=0

(−1) j+i ( j + i)!
( j − i)!i !
(α + i + 1)

ci .

This approach for solving FDEs, at first sketched in [19], will be analysized in detail
elsewhere. We mention that a related approach can be found in [43].

6 Conclusions

In this paper we have recalled the basic facts about the numerical solution of dif-
ferential problems via the expansion of the derivative, either integer or fractional,
along the Legendre polynomial basis. Integrating such an approximation then pro-
vides a polynomial approximation to the solution.7 The coefficients of the polynomial
approximation, in turn, are determined by imposing the orthogonality of the residual
to a suitable polynomial space. In addition, we mention that the obtained methods
can be also used as spectral methods in time, as was described in [20–22] in the case
of Hamiltonian problems (see also [19, 44–46]). Future directions of investigation
will concern the extension of this framework to different kinds of differential prob-
lems. Also the numerical solution of integral equations could be a further subject of
investigation.
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