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Abstract
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Noise sources unavoidably affect any quantum technological device. Noise’s main features are expected to strictly depend
on the physical platform on which the quantum device is realized, in the form of a distinguishable fingerprint. Noise sources
are also expected to evolve and change over time. Here, we first identify and then characterize experimentally the noise
fingerprint of IBM cloud-available quantum computers, by resorting to machine learning techniques designed to classify
noise distributions using time-ordered sequences of measured outcome probabilities.
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1 Introduction

In the quantum technologies context, no quantum device
can be considered an isolated (ideal) quantum system. For
this reason, the acronym Noisy Intermediate-Scale Quantum
(NISQ) technology has been recently introduced (Preskill
2018) to identify the class of early devices in which noise
in quantum gates dramatically limits the size of circuits and
algorithms that can be reliably performed (Deutsch 2020;
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Bharti et al. 2022). As early quantum devices become more
widespread, a question that naturally arises is to understand,
at the experimental level, whether in a generic quantum
device the signature left by inner noise processes exhibits
universal features or is characteristic of the specific quantum
platform. Moreover, one may wonder to determine if such
a noise signature has a time-dependent profile or can be
effectively considered stable, in the sense of constant over
time, while the device is operating.

The answers to these questions are expected to be crucial
in defining a proper strategy to mitigate the influence of
noise and systematic errors (Degen et al. 2017; Szafikowski
et al. 2017; Do et al. 2019; Miiller et al. 2020; Wise et al.
2021), possibly going beyond standard quantum sensing
techniques (Cole and Hollenberg 2009; Bylander et al.
2011; Alvarez and Suter 2011; Yuge et al. 2011; Paz-
Silva and Viola 2014; Norris et al. 2016) and overcoming
current limitations on probes dimension and resolution
(Cole and Hollenberg 2009; Bylander et al. 2011; Frey
et al. 2017; Miiller et al. 2018; Hernandez-Goémez et al.
2018; Hernandez-Gémez and Fabbri 2021). On top of that,
it gains even more importance in case one proves that
noise signatures are peculiar to the single device, with the
consequence that the issue of attenuating noise effects may
be harder than expected. Indeed, each quantum technologies
platform, ranging from superconducting circuits (Devoret
et al. 2004; Clarke and Wilhelm 2008) to trapped ions
quantum computers (Wineland et al. 2003), photonic chips
(Spring et al. 2013; Metcalf et al. 2014) and topological
qubits (Freedman et al. 2003), could need ad hoc solutions
that usually are expensive and incompatible from a device
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to another. In addition, if the noise properties of a quantum
device happen to be time-dependent, the system necessarily
requires continuous calibrations, thus hindering not only
the available runtimes, but also the accessibility from
the external user and the replicability of the experiments
performed on it. Furthermore, in case the noise fingerprint
of the considered device can be easily discerned and remains
unchanged over time, one could be able to identify from
which specific quantum device certain data were generated
just by looking at the noise fingerprint. However, this aspect
might create problems, in principle, for possible future
usages of the device in privacy-sensitive applications.

In this paper, we aim to shed light on the previously
discussed aspects by providing a powerful tool, based on
Machine Learning (ML) techniques, for the classification of
noise fingerprints in quantum devices with same technical
specifications but physically placed in different environ-
mental conditions. ML (Bishop 2006; Hastie et al. 2009)
— originally introduced in the classical domain to learn
from data, identify distinctive patterns, and then make
decisions with minimal human intervention — has been
already proven useful to characterize open quantum dynam-
ics (Youssry et al. 2020; Luchnikov et al. 2020; Fanchini
et al. 2021) and to carry out quantum sensing tasks (Niu
et al. 2019; Harper et al. 2020; Martina et al. 2021; Wise
etal. 2021), as for example the learning and classification of
non-Markovian noise (Niu et al. 2019; Martina et al. 2021)
or the detection of qubits correlations (Harper et al. 2020).

Here, we first design a quantum circuit that operates
over 4 qubits belonging to the basis {|0000), |0001), ...,
[1110), [1111)} composed of 16 states. The designed quan-
tum circuit is measured (by locally applying the Z Pauli
operators on some qubits of the circuit) in 9 distinct parts
that, from now on, we denote as measurement steps. The
routine allowing to record all the outcome in each measure-
ment step is instead denoted as execution. Moreover, the
repetition of a given number of executions is called run.
Employing the open-access quantum computers offered by
the IBM Quantum Experience!, we experimentally clas-
sify a set of quantum devices by executing in all of them
the same testbed circuit. The classification is enabled by
the presence of a peculiar noise fingerprint associated with
each quantum machine. In more details, the ML models
are trained by taking as input the distributions of the out-
comes recorded at the 9 measurement steps of the testbed
circuit. As shown in the next sections, the classification is
successfully achieved with a test accuracy greater than 99%,
both on diverse IBM machines and on single devices but
at different times from one execution to another. Indeed,
from our experiments we can observe that the noise fin-
gerprint of each tested quantum devices has also a clear
time dependence, meaning that executions of a quantum

Thttps://quantum-computing.ibm.com/ (visited on 2021)
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circuit, implemented at different times, can be associated
with distinctive main traits.

These experimental evidences lead us to the conclusion
that different IBM quantum devices exhibit distinctive, and
thus distinguishable, noise fingerprints that can be char-
acterized and predicted by ML methods. Therefore, the
proposed solution might be pivotal to certify the time-
scheduling and the specific machine on which a given quan-
tum computation is executed. Moreover, learning the noise
fingerprint of the quantum device under analysis could play
a key role both for diagnostics purposes — especially in all
those contexts where logic quantum operations cannot be
error-corrected (Deutsch 2020) — and to accomplish bench-
marking and certification (Eisert et al. 2020) of quantum
noise sources within a pre-established error threshold.

2 Experimental platform

For our experiments we employ the IBM Quantum cloud
services to run remotely quantum circuits on several
machines. To interact with the remote services, we use the
Qiskit Software Development Kit (SDK) (Aleksandrowicz
and other 2019), which is an open-source Python SDK, use-
ful both to simulate quantum dynamics (with or without
noise) and to program a given set of operations on a real
quantum device. Overall, we have at our disposal up to 11
superconducting quantum computers ranging from a single
qubit up to 15 qubits, with different topology and calibration
routines. For all the available devices and their characteris-
tics, we direct the reader to the IBM documentation?.

The accessibility and availability of the IBM devices
allow to carry real experiments having the flexibility of
taking either a lot of samples in a short amount of time,
or collecting samples from the same circuit but at longer
time intervals. As it will be shown below, both these aspects
will be properly exploited in carrying out our experiments.
Moreover, one can also run the same exact circuit not only
on a single device but on multiple machines, thus enabling
the creation of complete datasets of quantum experiments
to be fed in ML algorithms. Regarding the generation of
our datasets, we refer the reader to the source codes at the
address provided at the end of the manuscript.

Overall, several experiments (explained in detail later)
have been conducted on different IBM chips (specifically,
“Yorktown’, ‘Athens’, ‘Bogota’, ‘Casablanca’, ‘Lima’,
‘Quito’, ‘Santiago’, ‘Belem’, and ‘Rome’). The chips differ
by two main aspects. The first is the architecture (or
connectivity) of the qubits, which ranges from a simple
line topology to a ladder or a star topology. The second
important difference is the so-called quantum volume

Zhttps://quantum-computing.ibm.com/ (Visited on 2021)
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(Cross et al. 2019) (8, 16, 32 for the machines used in our
experiments) that quantifies the maximum dimension of a
circuit that can be effectively executed, and is correlated
also with the noise affecting each device. Indeed, some
quantum machines are inherently noisier than other, and
even single qubits inside a machine can have a distinctive
noise profile. All these peculiar differences in noise and
topology represent the fingerprint that we aim to exploit
using our method.

Before proceeding, it is worth stressing that, albeit the
proposed experiments are carried out on gates-based super-
conducting devices, the approach adopted here is valid in
principle for a larger class of NISQ devices, even not
circuit-based.

3 Testbed quantum circuit

To learn the noise fingerprint of IBM quantum devices, we
design a quantum system whose evolution can be decom-
posed over the 16 states |0000), |0001), ..., |1110), |1111)
according to the quantum circuit in Fig. 1. Notice that, for
our purposes, the number of qubits of the testbed circuit can
be just a few; however, this does not imply that the pro-
posed solutions cannot be applied to circuits with generic
dimension.

After repeating the quantum circuit a certain number of
times (3 times in our experiments), the outcomes of the
measurements are recorded and then used to create the
dataset for the training of ML classifiers. The aim of the
latters is to discriminate the noise fingerprint of different
quantum machines, as pictorially shown in Fig.1. The
details about the classifiers will be given in the next section,
while here we focus on the implementation of the quantum
circuit.

The quantum circuit is initialized in the state |0000)
and the resulting computations are performed by the action

. =

qs
2 0 1

of local operations and of controlled NOT (CNOT) and
Toffoli gates (denoted in Fig.1 by a light blue and light
purple rounds, respectively, with the symbol ‘plus’ inside).
We recall that the CNOT is a two-qubit quantum operation,
commonly used to entangle/disentangle Bell states, that
flips the second qubit when the first qubit is in |1). Instead,
the Toffoli gate is a universal ‘controlled-controlled-not’
(3-qubit) operation where a third qubit is flipped when
two control qubits are both in |1). In our circuit in Fig. 1,
two qubits (i.e. g3 and g in the figure) are used to get
information on the quantum system, providing at each
measurement the pair of bits (0, 0), (0, 1), (1,0), (1, 1),
where the first and second bits correspond, respectively, to
the outcomes measured on g3 and g». Conversely, qubits gg
and g are employed as ancilla qubits. Then, this quantum
circuit is repeated 3 times, with the aim to collect data
on the quantum dynamics in each IBM device. As already
mentioned in the Introduction, the resulting quantum circuit
(given by repeating 3 times the circuit in Fig.1) is
locally measured in 9 distinct parts (corresponding to the
measurement steps) thanks to the simultaneous application
of Z Pauli operators o, on the qubits g3 and ¢, from which
the measurement outcomes are collected. Specifically, the 9
measurements are performed right after the implementation
of each CNOT and Toffoli gates in the full quantum circuit.
It is worth noting that the procedure we are proposing
is not based on repeated measurements as in a quantum
monitoring protocol or in Zeno quantum dynamics (Fischer
et al. 2001; Schifer et al. 2014; Gherardini et al. 2017; Virzi
et al. 2021), since, each time a measurement is performed
at a given measurement step (say the kth, with k =
1,...,9), the whole testbed quantum circuit is regenerated
and then (locally) measured at the subsequent step, i.e.
the (k + 1)-th.

In a single repetition, the quantum circuit is initialized
in |0000) that corresponds to the measurement outcomes
(0,0), and then two Hadamard gates (blue squares ‘H’
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Fig. 1 On the left, circuit implementation of the quantum dynamics
employed as a testbed. The quantum circuit, which involves 4 qubits,
is repeated more than once, and 2 of the 4 qubits are measured at reg-
ular steps. In our experiments the circuit is repeated 3 times and the
measurement steps are in correspondence of each CNOT and Toffoli

gates. The outcome probabilities obtained by our measurements, which
together form the datasets to train, validate and test the used ML mod-
els, are fed into a Support Vector Machine (SVM) — schematically
represented on the right — in order to be classified
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in Fig. 1) are applied to both go and g;. Thus, since the
two CNOT gates are conditioned to gg and g; respectively,
the probability to get 1 or O in g and g3 after the
CNOTs is 0.5. In this way, after the Pauli-X rotation (green
squares ‘X’ in Fig.1) and the Toffoli gate, the system
is in the state %(lOllO) + [0111) + [1001) + [1100))
before that the qubits g2, g3 are measured along the z-
axis (black squares in Fig. 1). This entails that, at the end
of the circuit, measuring g3 and g» provides the results
{(0,0), (0, 1), (1,0), (1, 1)} with probabilities respectively
{0, 0.5, 0.25, 0.25}. Of course, such a dynamic only occurs
under ideal unitary evolution, which is not the case of the
implementation on real experimental devices. In our case,
the noisy environment, in which the machines are immersed,
alters each realization of the simulated quantum dynamics,
thus making the latter stochastic. As we will prove below,
this randomness is a specific feature of each machine
and changes from one device to another, thus allowing
us to perform classification tasks. Specifically, are the
discrepancies between the measured outcome probabilities
(from qubits ¢> and g3) on one or more IBM machines
that enable to learn the corresponding noise fingerprint,
and then classify from which device the input data have
been generated. Here, it is worth noting that, despite from
one implementation to another a slight different physical
Hamiltonian may be implemented in the chips of each
quantum device, the variations observed in the measurement
outcome distributions — having a prominent random nature
— are not ascribable to such a deterministic aspect, but
to a stochastic cause thus pertaining to an external noise
source. However, a same stochastic process can affect
differently two equivalent quantum dynamics but originated
by two distinct physical Hamiltonian operators. Therefore,
the fingerprint that we leverage for the classification can be
due not only to differences in the noise profiles affecting the
quantum devices, but also on their dependence on the way
the testbed circuit is physically implemented.

Our results ( shown in the following) are quite general,
since they do not depend on specific dynamics and do
not require initial assumptions. Accordingly, we expect
that such results may be re-obtained in other quantum
devices, even ones not necessarily designed to carry out
computing tasks. However, it is worth observing that this
generality is gained by using a black-box ML model that
provides us little to no information about the specific
sources of error that are present in the noise fingerprint.
This is in stark contrast with conventional techniques for
device benchmarking that employ lots of resources and very
specific protocols (thus lacking of generality), but they are
able to extract information about the microscopical structure
of noise sources affecting the device.

@ Springer

4 Machine learning model

Let us provide some details on the adopted ML model, i.e.
the popular Support Vector Machine (SVM) (Hastie et al.
2009).

The dataset yielded as input to the SVM is a set of n
points X, € R?, with g =1, ..., n, each of them living in
the p-dimension space of the data features, where a feature
is a distinctive attribute of the data set elements.

In binary classification problems, to each x; with g =
1, ..., n is associated a class ¥4 € {—1, 1} that represents
the desired output of the SVM. By contextualizing it to
our problem, the binary classes y, denote if a given set
of points x; have been generated (+1) or not (—1) by a
specific machine or in a time window/interval. A SVM for
binary classification is trained such that the two classes of
points (provided as input to the ML model) are separated
by the hyperplane that maximizes the distance between
the hyperplane itself and the nearest points of the classes
(commonly denoted as margin). If the points x,, of the data
set are not linearly separable (which is most often the case),
then the value of the margin is negative and the points
cannot be classified. To circumvent this problem, SVMs
employ a clever mapping in an higher-dimensional space
(called feature-space) with polynomial or Radial Basis
Function (RBF) kernels that allows for an easy classification
as in Fig. 1. The extension to multiclass classification
problems is then obtained by associating a class with
multiple values to each x,. In our experiments, part of the
generated dataset is used as a validation set to choose the
best mapping among the kernels: linear (meaning that the
data is already linearly separable), polynomial with degree
2, 3 and 4, and RBF. In many cases, just the simple linear
kernel is enough to successfully perform the classification,
but in other cases (e.g. in multiclass classification) the more
complex kernels may be beneficial.

Finally, in our experiments, the classification accuracy is
computed by comparing the predictions y returned by the
ML models with the desired classes y of the test set:

R |,
accuracy(y, y) = — E 1{yi =vi}
i (H

where L{-} is the indicator function such that 1{c} = 1if
cis true, and 1{c} = O otherwise. In this regard, to clarify
the naming convention for the reader, we refer to ‘training’,
‘validation’ and ‘test’ sets, to identify three non-overlapping
partitions of the data. These partitions are used respectively
to: train the model, validate the best parameters, and test
the performance on unseen data. In the experiments we
randomly select 60% of the data to train the SVM model,



Quantum Machine Intelligence (2022) 4:8

Page50f12 8

20% to validate different configurations (i.e. SVM kernel
type), and 20% to report the results on unseen data.

5 Experiments description

The results, which we are going to show, concern three
series of ML experiments that use two different datasets,
obtained from the IBM quantum chips mentioned previ-
ously.

In the first two experiment series, the ML models are
trained both to discriminate the noise fingerprint of different
quantum devices and to identify a time dependence in each
of them. The training of some of the models is performed on
the dataset here denoted as FAST that collects the outcome
distributions measured in temporally-close executions of
the testbed quantum circuit on 7 different IBM quantum
machines (i.e. ‘Athens’, ‘Bogota’, ‘Casablanca’, ‘Lima’,
‘Quito’, ‘Santiago’, ‘Yorktown’). In these experiments, 20
parallel tasks (corresponding to the maximum allowed
number) are appended to the IBM fair-share queue, and,
once a task is concluded, another task is immediately added.
For each task the testbed circuit is run 8000 times for
each one of the 9 different steps, and the probabilities to
get the measurement outcomes are computed over 1000
shots among the total 8 000 to obtain 8 different outcome
probabilities times 9 steps per task. Here, we recall that
the outcomes recorded in the 9 consecutive measurement
steps k = 1, ..., 9 are obtained by locally measuring, after
each CNOT and Toffoli gate, the quantum circuit composed
repeating 3 times the one depicted in Fig. 1 . Moreover, the
outcome probabilities of each step are obtained by sampling
the outcomes from 1000 shots of the full quantum circuit,
stopped each time in correspondence of the considered
kth measurement step. For the sake of clarity, at the first
measurement step the quantum circuit is composed only of
the Hadamard gates in go and ¢g; and the CNOT linking go
and ¢g7; at the second step, the quantum circuit contains all
the previous gates that are then followed by the CNOT from
g1 to g3; at the third step, the circuit is composed by the
circuit at the second step and the additional NOT gates on
qo0, q1 and the Toffoli gate, and so on for the subsequent
measurement steps.

Conversely, in the third ML experiment series, we
perform a robustness analysis by making stricter the time
constraints on the employed datasets. Specifically, in those
experiments, and in part of the previous ones, we employ
a second dataset, called SLOW, which is composed of
measurement distributions extracted from executions in two
different quantum machines (‘Belem’ and ‘Quito’) more
‘slowly’ than the data in the first dataset. As represented in
Fig.2, more ‘slowly’ means that only one task per time is
appended to the queue and then run, waiting at least 2 min

from the conclusion of the previous task. Moreover, for each
task the testbed circuit is executed, for each one of the 9
steps, 1000 times that corresponds to the number of shots
set to compute the outcome distributions.

Overall, for each machine, we have collected 2000
sequences of 9 probability distributions built with the mea-
surement outcomes from the qubits g3 and g5 of the testbed
circuit. This means that a total of 2000000 x 9 single exe-
cutions have been run on each quantum machine that we
employed to generate the FAST dataset, and similarly for
the SLOW one.

As final remark, let us note that the FAST dataset is
employed for the experiments illustrated in Section 6 and
part of Section 7, while the SLOW dataset to complete
the experiments in Section 7 and perform in Section 8 a
robustness analysis at different time scales.

6 Quantum devices classification

As first, we present binary classification experiments. For
each pair of IBM machines, a SVM model is trained using
the dataset FAST (introduced in Section 5) with the aim
to identify on which device the executions of the testbed
quantum circuit are run. The inputs of the SVM model
are the distributions of the measurement outcomes from
qubits g3 and ¢» recorded at the discrete measurement steps
k=1,...,9. Specifically, two different kinds of inputs are
set: In the first we consider only the outcome distributions
measured at the single step k with £ € [1, 9], while in the
second we concatenate all the measurement probabilities in
ordered sequences 1, ..., k. Then, our ML experiments are
performed by alternatively taking the two types of inputs;
we will report below the resulting accuracy values for both
of them.

From the results of our experiments — reported in
Table 1 — we observe that it is sufficient to use only
the outcome probabilities corresponding to the first three
measurements at k = 1,2, 3 to reach more than 99% of
accuracy in discriminating all the pairs of tested machines.
This implies that, in a realistic deployment scenario, one
needs less data than the amount acquired here to reach good
classification performances. An additional observation we
can make is that the accuracy is not monotonic in k when
considering the classifier using single measurement data.
This can be due to the fact that, at various measurement
steps, to distinguish the noise fingerprint from a single
measurement probability might be easier or harder. On the
other hand, we can also observe that the accuracy is steadily
increasing when as input is set the sequence of all outcome
distributions up to any measurement step k. Hence, from
this we can deduce that, to identify the noise fingerprint of
IBM quantum devices, sequences of outcome distributions

@ Springer



8 Page6of12

Quantum Machine Intelligence (2022) 4:8

Elapsed hours

0 500 )
Runs (x 9 stepsx 1000 executions)

Fig. 2 Elapsed hours to collect all the measurement outcomes on the
IBM machines ‘Belem’ and ‘Quito’ (solid blue and dashed red lines,
respectively) for the dataset SLOW. Each point of the curves, obtained
over 1000 executions of the testbed quantum circuit for each measure-
ment step k = 1,...,9, is associated with the relative physical/real
time in which the measurement probabilities are computed in a single

recorded at more than one measurement steps need to be
taken into account. This is also the reason why we deem
important to frame the issues addressed in this paper as
belonging to a noise fingerprint in time instead of single run
measurements.

Let us now extend the binary SVM algorithms to mul-
ticlass classification problems, in which more quantum
devices are simultaneously discriminated. In our experi-
ments, the so-called one-vs-rest strategy is adopted (Bishop
2006), where for n distinct classes we train n different
binary classifiers that discriminate the elements of a class
from the others. In particular, our multiclass SVM is trained
with the aim to identify to which IBM quantum machines,
among the 7 that have been used, belongs a given set of
measured outcome probabilities (from the testbed quantum
circuit) of the FAST dataset. The results in Table 2 report the
test accuracy values returned by the models that are trained
with different input data. As in binary classification, for one
kind of input data, the model is trained with the outcome
distributions obtained at single step k with k € [1, 9] (3rd
column of Table 2), while another set of input data is pro-
vided by concatenated measurement probabilities 1, ..., k
(8th column). Moreover, for the purpose of multiclass clas-
sification, further input are also adopted: At each step k
the model is trained not only with the outcome distribu-
tions at the kth step, but also with a window of preceding
measurement probabilities belonging to [k — s, k] with s
integer number. Regarding s, the range from 1 (4th column
of Table 2) to 5 (7th column of Table 2) is considered. As for
the binary case, the SVM is able to successfully discriminate
between the tested machines just by using the measure-
ment outcomes taken in few measurement steps. While the

@ Springer
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1500 2000

run. Notice that, if compared with the time scale of the vertical axis
(y-axis), which is expressed in hours, the computation of the 9 000 exe-
cutions of each run can be considered practically instantaneous, i.e. in
the order of some seconds. Moreover, the anomalous behaviour of the
curves after 1500 runs has to be attributed to the policy of the IBM
fair-share queue

accuracy using the outcomes at single-time measurement
steps oscillates, the time-ordered sequence monotonically
increases. That confirms our previous observations about
the need of a time sequence to have a reliable fingerprint.
In addition, the models trained with the input data on slid-
ing windows allow us to understand the effective need of
outcome distributions taken from more than a single mea-
surement step for the classification of the noise fingerprint.
In such case, we observe that the accuracy at each step
k steadily increases with the size of the set of considered
steps, and this holds also by looking at the average of the
accuracy values computed over all the measurement steps.
It is worth noting that the last column on Table 2 expresses
a similar strategy, where the single accuracy values are pro-
vided as output of the models trained on a window (with
increasing dimension) that always starts from the 1th to the
kth step. In other words, the first accuracy values on top of
columns from 3 to 7 correspond to the elements of the last
columns for k from 1 to 5.

The high-level of accuracy (even more than 99%) in
carrying out binary and multiclass classification of the IBM
quantum machines is an evidence for the presence of a strong
underlying noise fingerprint in the dynamics of NISQ devices.
Indeed, this is the key feature that can allow one to identify,
basically in a deterministic way, from which quantum machine
a given set of measurement has been obtained.

7 Noise fingerprint at different time scales

Since the environment of the IBM quantum devices
changes quite often (e.g. the machines are calibrated up
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to multiple times in an hour), we have slightly modified
our experiments to prove also the existence of a noise
fingerprint that pertains to the temporal evolution of the chip
on which a given quantum circuit is executed.

To confirm this hypothesis, we have designed a temporal
classification setting that we employ with data from both the
FAST and SLOW datasets.

Regarding the experiments using the FAST dataset, two
sets of measurement outcome distributions are collected
for the machine ‘Casablanca’, one temporally separated
from the other by 24 h. After that, similarly to what done
in the previous experiments, a SVM model is used to
discriminate the executions implemented the first day on
the IBM device from the ones performed on the second
day. From these experiments, whose results are shown in
Table 3, we observe that the designed ML algorithms are
able to detect a characteristic fingerprint, still induced by the
presence of noise sources, in a single quantum device but
in measurement steps separated by a quite long (24 h) time
interval. In such classification tasks, an accuracy of 95%
is achieved by the ML models, just by taking as input the
sequence of outcome distributions at the first measurement
steps k = 1,2, 3.

Analogously to the previous experiments, the single mea-
surement outcomes do not seem to carry enough informa-
tion on the noise fingerprint and the classification accuracy
depends on the choice of k. Instead, when we consider the
sequences of outcomes for all the steps, we can observe that
the noise fingerprint in the first window of runs can be much
better distinguished from the corresponding fingerprint in
all the subsequent windows, except the neighbouring one.

Table 3 Classification accuracy, denoted as «(-), of SVM- — trained
with two sets of outcome distributions from the dataset FAST,
temporally separated by 24 h — to predict in the IBM machine
‘Casablanca’ which executions were implemented the first day and
which the second day. Also in this case, the inputs to the SVMs
at the measurement steps k (2nd column of the table) are the
outcome distributions at single steps (3rd column) or the sequences of
measurement probabilities computed at each k (4th column). A color
gradient representing the accuracy is given to facilitate the reading of
the table (in red the lowest, green the highest)

Machine &k a(k)  a([1,k])
1 0.882 0.882
2 0815 0.917
3 10757 0.948
4 10974 0.994
Casablanca 5 0.969 1.000
6 0.895 0.999
70917  0.999
8 1 0.859 0.999
9 [0721  0.999

@ Springer

The window from run 1401 to run 1600 seems more chal-
lenging to classify with respect to the others. One possible
reason for this can be that, as one can see from Fig. 2,
around the run 1500 the policies of the IBM fairshare queue
caused a discontinuity in time. This means that the data
distribution inside the aforementioned window has more
variance with respect to the data in the other windows and
for the ML models can be find more difficult to classify the
data. However, even in that case the classification accuracy
reaches 100% when using the sequence of measurement
probabilities for all the steps k =1, ..., 9.

In order to better quantify the evolution in time of the
noise fingerprint, we use data from the runs of ‘Belem’ in
the SLOW dataset. Respect to the previous dataset, the data
from the runs in SLOW are more evenly distributed in time
so that we have decided to split the data in 10 adjacent
windows, each of them containing 200 consecutive runs.
Subsequently, the SVMs models are trained to classify if
a run has been computed on the first window (from run
1 to run 200) or in another window of the remaining 9.
From the results in Table 4, we can observe that is difficult
to distinguish the runs pertaining to the first window from
the runs in the adjacent window (i.e. runs from 201 to
400 in the third column), either considering as input the
single outcome distributions at the kth measurement step
(the top part of Table 4) or the sequences of measurement
probabilities from step 1 to step k (bottom part). As a matter
of fact, we do not reach 90% in neither case. Conversely,
when we consider the subsequent windows (runs after 400
on the next columns), thus at a greater distance from the first
window, the classification task becomes easier.

In these experiment, the execution times for all the runs
in each window is approximately 12 h (except for the
previously-discussed window from run 1400 to 1600). Thus,
we can deduce that 12 h of time distance between the
windows are sufficient to distinguish the noise fingerprint
at different times with 100% of accuracy. To find the
minimum necessary hours gap, in Fig. 3 we report the
reached accuracy of a SVM model trained to distinguish the
runs in the first window (from run O to 200) of ‘Belem’
within the SLOW dataset from the runs in another window
with an increasing time gap among them. We can observe
that, in this case, already after 6 h the noise fingerprint
is distinguishable with an accuracy of 100%. In general,
we can observe that even starting from different windows
in time, and using different window sizes, more than 95%
of accuracy is reached after a few hours (in the order of
one day).

Overall, we can thus conclude that a clear temporal
dependence of noise fingerprint is present in our experi-
ments, even when the same quantum machine is taken into
account.
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Table 4 Binary classification accuracy, denoted as «(-), of SVM
trained to classify the outcome distributions belonging to distinct two
sets of data. One set is composed by the runs of ‘Belem’ in the SLOW
dataset by numbering them from 1 to 200 in temporal ordering. Also
the other set is composed by runs of ‘Belem’ in the SLOW dataset,
but collected within temporal windows specified on the columns title

(from run 201 to run 400, from run 401 to run 600, etc...). In the top
sub-table the models are trained with the outcome distributions taken
at the kth measurement step, while in the bottom sub-table the inputs
are the sequences of measurement probabilities from step 1 to step
k. A color gradient representing the accuracy is given to facilitate the
reading of the table (in red the lowest, green the highest)

[1,200] vs [201,400] [401,600] [601,800] [801,1000] [1001,1200] [1201,1400] [1401,1600] [1601,1800] [1801,2000]
Machines k a(k) a(k) a(k) a(k) a(k) a(k) a(k) a(k) a(k)
1 0.838 0.975 0.975 0.950 0.938 0.938 0.750 0.950 0.963
2 0.812 0.850 0.912 0.875 0.975 0.925 0.800 0.863 0.875
3 0.688 0.812 0.688 0.738 10.650 10500 0.738 10.613 0.700
4 0.738 0.800 0.700 0.750 0.700 0.713 0.863 0.875 0.875
Belem 5 01662 0.700 0.800 0.800 0.725 0.863 0.762 0.838 0.812
6 0.700 0.700 0.938 0.950 0.838 0.762 0.800 0.750 0.800
7 0.675 0.850 0.887 0.975 0.912 0.887 0.713 0.875 0.950
8 0.775 0.800 0.900 0.912 0.938 0.988 0.787 0.938 0.938
9 0.750 0.900 0.912 0.988 0.850 0.838 0.787 0.812 0.838
Average 0.738 0.821 0.857 0.882 0.837 0.824 0.778 0.835 0.861
[1,200] vs [201,400] [401,600] [6OL,800] [801,1000] [1001,1200] [1201,1400] [1401,1600] [1601,1800] [1801,2000]
Machines ko oo(Lk])  a(Lk]) a1,k]) a([1,k]) a([1,k]) a([1,k]) a([1,k]) a([1,k]) a1, k)
1 0.838 0.975 0.975 0.950 0.938 0.938 0.750 0.950 0.963
2 0.850 0.963 0.988 0.975 1.000 0.950 0.825 0.988 0.988
3 0.887 0.975 0.988 0.975 0.988 0.988 0.850 1.000 0.988
4 0.850 0.950 1.000 0.988 0.988 0.975 0.975 0.988 1.000
Belem 5 0.850 0.963 1.000 0.988 0.988 0.975 0.963 1.000 1.000
6 0.850 0.988 0.988 0.988 1.000 0.988 0.975 1.000 0.988
7 0.863 0.988 1.000 0.988 1.000 1.000 0.988 1.000 1.000
8 0.850 1.000 1.000 0.988 1.000 1.000 0.975 1.000 1.000
9 0.875 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

8 Robustness analysis

Finally, we investigate the robustness of the learned finger-
print at different time scales. For this purpose, taking the
IBM machines ‘Belem’ and ‘Quito’, we temporally order
all the executions of the testbed quantum circuit, by divid-
ing them in 10 distinct windows of 400 consecutive runs,
i.e. 200 runs per machine. The elapsed time between runs
has been already reported in Fig. 2. In this way, after have

100

generated the SLOW dataset (introduced in Section 5) with
2000 runs per machine, the SVMs are trained to classify
on which device, among ‘Belem’ or ‘Quito’, the testbed
quantum circuit has been executed. Specifically, in any
experiment designed for the robustness analysis, the ML
model is trained over the data collected in a time window
of 200 consecutive runs (overall, we consider 10 distinct
time windows), and then tested in all the considered time
windows including the one used for the training.

Accuracy
(@)
o

(0}
(@)
\

D1 2

4 5 6

Hours of gap

Fig. 3 Maximum reached accuracy for SVM models trained on
sequences of measurement outcomes for all the steps k = 1,...,9
taken from the ‘Belem’ quantum machine and collected in the dataset
SLOW. The model is trained to classify the executions in the win-
dow of runs from 1 to 200 from the ones in a subsequent window of

200 runs. Initially, the latter is adjacent to the first window, then it is
moved by increasing the gap between the two windows. The plotted
curve is then obtained by drawing the accuracy values for the corre-
sponding gaps, expressed in hours. Note that a gap of 6 h correspond
to approximately 90 runs
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Table 5 Classification accuracy of SVMs trained to classify on which
quantum device, among ‘Belem’ or ‘Quito’, a given set of data has
been generated. The training of the models is performed with the out-
come distributions collected in the dataset SLOW, and then divided
in 10 distinct time windows of 200 runs (the first window includes
the runs from 1 to 200, the second from 201 to 400, etc). We recall
that each run contains the outcomes from all the 9 measurement steps

in each execution. The row and column indexes denote, respectively,
the number of time windows whose data are used to train and test
the ML model. Finally, the reported accuracy values are calculated by
using the outcome distributions computed at all the measurement steps
k =1,...,9. A color gradient representing the accuracy is given to
facilitate the reading of the table (in red the lowest, green the highest)

1 2 3 4 5) 6 7 8 9 10
1 1.000 1000 0995 0925 0.880 0.865 0.995 1.000 1.000 1.000
2 1.000 1.000 0.995 0925 0920 0.910 0980 1.000 1.000 1.000
3 1.000 1.000 1.000 0.970 0.950 0.950 0.980 1.000 1.000  1.000
4 1.000 0.8 0.995 1.000 1.000 1.000 1.000 1.000 1.000  1.000
5 0980 0935 0955 0995 1.000 0.995 1.000 1.000 1.000 1.000
6 0995 0995 0995 1.000 1.000 1.000 1.000 1.000 1.000 1.000
7 1000 1.000 0.995 0.985 1.000 0.990 1.000 1.000 1.000  1.000
8 1.000 1.000 0.995 0.995 1.000 0.990 0.995 1.000 1.000  1.000
9  1.000 1.000 0.995 0.995 0.970 0.960 1.000 1.000 1.000 1.000
10 1.000 1.000 0.995 0.995 0.995 0.995 0.995 1.000 1.000 1.000

All the obtained results — summarized in Table 5 —
point out the following peculiar feature. Unsurprisingly,
the SVM reaches 100% of accuracy in the time window
used for the training of the ML model (corresponding
to the diagonal of the table), and then, in proximity of
the time windows on the diagonal, the accuracy decreases
monotonically. This corresponds to the intuition that the
machine-related noise fingerprint ‘fade’ with time, due to
the evidence — discussed in the previous section — that
the noise fingerprint of the IBM quantum devices exhibits
a quite prominent time dependence. However, surprisingly,
we observe that the accuracy returns to 100% for time
windows of runs far from the training one. We conjecture
that this counter-intuitive phenomenon may be due either to
the periodic calibration of the machines or to the slowdown
induced by the fair-share queue. The latter, indeed, may
be also observed in the last part of the SLOW dataset in
Fig.2, and is supported by the evidence that, if we restrict
the experiment to the runs from 1 to 1000 (i.e. the range
where the execution times of the tested machines are more
homogeneous as shown in Fig.2), the resulting accuracy
values decrease with time.

The general result that can be deduced from the exper-
iments of the robustness analysis is that, by training our
ML model on just 200 runs (corresponding to the diago-
nal time windows of the table), we are able to identify the
device-related noise fingerprint with high accuracy for all
the 1800 remaining ones. In this regard, it is worth noting
that, between the training samples and the last test ones,
there is up to a week in real-time execution (as one can see

@ Springer

in Fig. 2). This means that we can consider our classifier to
be fairly robust in time, despite the changes in the environ-
ment and calibration of the machines that might occur even
at time-scales of weeks.

9 Conclusions

In this work we prove the existence of a noise fingerprint
— also admitting a clear time-dependent profile — in the
tested IBM quantum machines, which are just a particu-
lar class of NISQ devices. We have also demonstrate that
such noise fingerprints can be exploited to reliably distin-
guish the machines by means of SVM models. As general
results, our experiments confirm that (i) all the analysed
quantum devices exhibit a clear machine-related noise fin-
gerprint that is robust, in the sense that the fingerprint is
highly predictable over time in windows of consecutive
runs; (ii) the noise fingerprint has also a time dependence,
namely it changes over time and after few hours becomes
different enough to be distinguished from fingerprint in the
past; (iii) in each quantum device, sequences of measure-
ment outcome distributions are required for the accurate
learning of the corresponding noise fingerprint. One may
conjecture that possible reason behind the latter aspect may
be that the noisy dynamics in the IBM machines can be
non-Markovian due to the presence of time-correlations
among consecutive samples of the noise field. However, it
is worth observing that the SVMs we successfully used in
this work are memory-less ML models, which thus ignores
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possible temporal relations across the measurement steps.
Therefore, the gathered data and the adopted ML mod-
els are not indicated to validate any hypothesis on non-
Markovianity. These aspects, deserving further investiga-
tions, will be addressed in another contribution in which
memory-less ML models will be compared with other ML
architectures processing time series data with variable mem-
ory length. In conclusion, despite the microscopic reasons
for the existence of a machine-related noise fingerprint are
still unknown (indeed, the IBM machines are partly inac-
cessible), we can now affirm that one can reliably leverage
such noise profiles to distinguish, and possibly in the future
characterize, different NISQ quantum devices.

As an outlook, learning the noise fingerprint of quan-
tum devices from time-ordered measurements of testbed
quantum circuits is expected to open the way, in the next
future, to many other experiments and ideas. The pro-
posed methodology, indeed, may be applied not only to
IBM quantum machines, but even to a larger class of quan-
tum devices, both in commercial or laboratory scenarios.
In all of them, classification ML model, exploiting the
presence of intrinsic noise sources that give rise to an iden-
tifiable noise fingerprint in the devices, may be employed
to predict on which machine, and at which time, a given
quantum circuit or algorithm was executed. Moreover, our
procedures could be adopted to predict if and when the
noise fingerprint of a specific quantum device changes
over time, e.g. due to calibration actions. Such a knowl-
edge will help in mitigating (time-varying) errors occurring
in the computation and, possibly, performing ad hoc error
corrections.
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