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Abstract. The most time-honoured tool for understanding the processes of the human past is 

represented by archaeological excavation. By examining an area at discrete temporal periods, 

archaeologists are literally able to look backwards in time: they can analyse incomplete material 

records in order to understand and reconstruct the cultural history of an area at particular 

moments in time. Since the digging process destroys the site forever, great care must be paid 

during both the excavation and the documentation. In general, after a stratum has been 

completely excavated, both the floors and walls are cleaned and made ready for documentation. 

Photos of both the sides and bedrock of a given excavation are collected, and several sketches of 

what the archaeologists have seen in the trenches are made. In these drawings are delineated the 

features and shapes of artefacts on the horizontal plane. In addition, depending on the colours 

and similarities of the textures, drawing are also made of the archaeological layers. This approach 

is time-consuming, is affected by human ability, and does not make possible a prompt 

digitization of the results. Within this context, the automatized identification of archaeological 

stratigraphy during excavation work is welcomed by archaeologists. Here, a k-means 

unsupervised machine learning algorithm has been used for colour clustering digital images of 

excavation sites. The algorithm that we have developed attempts to enhance the colour similarity 

while keeping the colours separate one from another as much as possible. The main idea is that 

pixels belonging to the same colour cluster are a part of the same layer. Once the layer has been 

identified, a statistical approach based on Haralick features is used to characterize each strata in 

terms of texture. Unsupervised machine learning combined with texture analysis could become 

a good practice in speeding up the documentation work of archaeologists and paving the way 

towards the creation of an “automated archaeologist”.  

1.  Introduction 

One of the key concept in modern archaeological theory and practice is stratigraphy. Although it derives 

from geology, it refers to the long-term build-up of consecutive layers of soil material that are due to 

both human and geological activities. Since archaeological findings are generally located below the 

surface of the ground, the most important tool for understanding the human past is represented by  a 

controlled exploration of the layers below the surface: in other words, by means of excavation. After the 

said excavation has been completed, the archaeologist studies these layers in order to comprehend the 

historical processes of the site formation. In modern archaeology, lithological criteria are used to 

characterize the basic archaeological levels: these generally include colour, texture, hardness of the soil, 

etc. Since excavations come across different layers at various elevations under the surface, one of the 

main tasks of the archaeologist during an excavation is to distinguish the various layers. Once a layer 
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has been completely excavated, both the wall and the floor of the trench are cleaned and then prepared 

for documentation. In general, archaeologists take photos of both the sides and the bedrock of the 

excavation, and then make a sketch of what they see. The extent, shape of the features, artefacts and 

layers in the horizontal plane are delineated by means of these drawings. However, this part of the 

archaeologist’s work is not only considerably time-consuming and may be affected by human skill, but 

it also complicates the digitalization of the results. Therefore, any attempts at automatizing the 

identification of layers during excavation work are welcomed by the community. The aim of this work 

is to explore the possibility of creating an “automated archaeologist” [1] who can offer a prompt guide 

for “human archaeologists” in recognizing the archaeological layer during the excavation and in 

providing digital images of it. This, in turn, would simplify the drawing step and hence speed up the 

documentation of excavations. The “automated archaeologist” that we are imagining is based on image 

clustering created by Machine Learning (ML). This approach has been considered suitable for 

classifying regions (of excavation images) that may be considered similar (cluster identification). The 

potential of ML has been demonstrated in a variety of different fields [2-7]. However, very few examples 

of ML used in archaeology are known in the literature. Nonetheless, it has been applied to assessing the 

complementary value of geochemistry and machine-learning on predictive modelling in archaeology 

[8], in order to offer a complete methodology for the classification of archaeological data [9], as well as 

to a content-based image retrieval system for historical glass and to an automatic system for medieval 

coin classification [10].  

 In this work, ML has been used for speeding up layer identification that provides digital images 

of the archaeological excavation site. Among the different types of ML tasks we have considered 

unsupervised learning and, in particular, image clustering. The algorithm that we have developed is 

based on k-means. This makes it possible to enhance colour similarity and to keep colours separate from 

one another as far as possible: in other words, it divides the original image into k regions in which similar 

data points are grouped together, and these groups differ significantly one from the other. The work is 

divided as follows: section 2 introduces the images considered for colour clustering, the k-means 

algorithm, and the texture analysis performed in order to characterize the colour clusters obtained. 

Section 3 describes the experiments performed on the images and the results obtained. Lastly, Section 

4 presents our conclusions as well as future perspectives. 

2.  Materials and methods 

2.1.  Images for colour clustering 

In this work, two types of images have been colour clustered: namely, a mockup and several 

archaeological sites. The mockup was prepared in such a way as to simulate an excavation site 

characterized by different colours and textures. A green plastic dustsheet was spread under a wooden 

box; the box was then filled with soil (A) and peat (B1-B6) (figure 1). 

A pebble circle was introduced on the soil layer (A) to simulate the case of a uniform soil 

background in which the anthropic environment was marked out by areas with different textures and 

 

Figure 1. Mockup prepared in order to simulate 

an excavation site characterized by different 

texture and colours. A) six pebbles were placed on 

an almost uniform soil layer. A peat layer was 

partially covered by: B1) sand and a circle of 8 

pebbles, B2) sand and a large quantity of gravel, 

B3) sand and a small quantity of gravel, B4) 

randomly-placed pebbles, B5) a large quantity of 

gravel, B6) a small quantity of gravel. 
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colours (pebbles). Moreover, six different areas were prepared on the peat background to simulate 

different combinations of texture and colour. A digital camera was used to image the scene with a 

1280x960 resolution. Three actual archaeological sites were also considered for colour clustering. The 

images were photographed during excavation campaigns in central Italy. On the first site, a portion of 

ancient stone pavement (stratigraphic unit) emerges from the background of the excavation site. The 

second site represents a portion of a building, two orthogonal walls of which are recognizable. The third 

site represents another portion of that particular building: in the background are bricks that probably 

resulted from the collapse of the roof. The excavation limit is also visible. 

2.2.  Archaeological texture 

In general, the archaeological surface may contain minute variations in colour, texture, composition and 

hardness. Some of them have a visual nature and others, a tactile nature. In archaeology, texture is 

considered a surface attribute that has a visual or tactile variety that may characterize its appearance. On 

the other hand, in image processing, texture describes the amplitude patterns and quantifies the spatial 

arrangement of colour or intensities in an image or in a selected portion of one. Within this framework, 

one of the most effective tools for quantifying the perceived texture of an image is based on the grey-

level co-occurrence matrix (GLCM, [11]).  

 The elements of the co-occurrence matrix measure the number of times that different 

combinations of pixel pairs of a specific grey level occur in an image for various directions () and 

different distances () [12]. Given an M×N neighbourhood of an input image with G grey levels, let 

f(m,n) be the intensity at pixel (m,n) of the neighbourhood. The element (i,j) of the GLCM is 

consequently defined as follows: 

 𝑃(𝑖, 𝑗|∆𝑥, ∆𝑦) =
1

(𝑀−∆𝑥)(𝑁−∆𝑦)
∑ ∑ 𝐴𝑀−∆𝑥

𝑚=1
𝑁−∆𝑦
𝑛=1  (1) 

where 

 𝐴 = {
1 if f(m,n)=i and f(m+∆x,n+∆y)=j
0 elsewhere

 (2) 

and =(x2+y2)1/2, =arctg(yx In this way, the matrix element P contains the second-order 

statistical probability values for changes between grey levels i and j at a particular displacement distance 

d and at a particular angle . For this study, we considered images with G=256 and =1. A normalized 

symmetrical matrix was computed by summing up the four matrices =0°, 45°, 90°, 135° and 

normalized by dividing each entry by the total number of pixel pairs. This made it possible to avoid a 

dependency of direction. The corresponding normalized co-occurrence values are in the [0, 1] interval, 

and this enabled them to be considered as probabilities. A number of textural features can be extracted 

from the co-occurrence matrices. Here, we considered energy to be defined as follows: 

 𝐸 = ∑ ∑ 𝑃𝑖,𝑗.
2

𝑗𝑖  (3) 

 It returns the greyscale distribution homogeneity of images, and measures the textural uniformity 

of an image. Information on the random nature of the spatial distribution is then supplied. Energy 

assumes its highest values when grey-level distribution has either a constant or a periodic pattern. In a 

homogeneous image, very few dominant grey-tone transitions are expected, and the corresponding co-

occurrence matrix has fewer entries of a larger magnitude, thus resulting in a sizable value for the energy 

feature. Because this feature is generally useful for highlighting continuity and geometry, it was 

considered suitable for this work [13, 14].  

 Moreover, the size of the neighbourhood partly determines the success of a texture-based image 

analysis. If the window size is too small, not enough spatial information can be extracted to distinguish 

between various different features; on the contrary, if it is too large, it could overlap different features 

and introduce spatial errors [15]. In this work, the same aspect ratio of the original image was used for 
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neighbourhood areas. For each neighbourhood size considered here, ten calculations chosen randomly 

from different areas of the same cluster were performed and their mean value was considered. The 

associated errors were estimated as the maximum deviations.  

2.3.  K-means colour clustering algorithm 

ML is a powerful tool for solving a variety of problems, ranging from the visualization of high 

dimensional and cluster identification to pattern recognition. The basic aim of ML is to learn to identify 

automatically valid and potentially useful patterns and to make intelligent decisions based on data. In 

this work, we have considered unsupervised ML. This approach makes it possible to model a hidden 

structure or distribution in unlabelled data in order to learn more about given data. Clustering represents 

one of the main approaches of unsupervised learning: it assigns a set of inputs into subsets called 

clusters, so that each subset ideally shares some common characteristic and is able to place any new 

input within the appropriate cluster. Therefore, clustering can recognize different patterns in a dataset. 

In image processing, ML is used to divide a digital image into different regions for border detection or 

object recognition. In particular, it has been applied for different purposes in medicine [16-20], biology 

[21, 22], agriculture [23, 24], geophysics [25, 26], remote sensing [27, 28], security and crime detection 

[29], marketing and consumer analysis [30, 31], document clustering [32, 33], and automatic image 

annotation [34].  

 One of the simplest unsupervised algorithms that can be used to solve a clustering problem in 

digital images is represented by k-means. The algorithm developed in this work is based on k-means. It 

follows a simple and rapid way to cluster a digital image by means of a certain number of clusters 

established a priori. For each cluster, the main idea is to define a centroid (barycentre). The next step is 

to consider each point in the dataset and to associate it with the nearest centroid. This step is concluded, 

and an early groupage is completed, when no point is pending. New k centroids are then recalculated as 

the barycentre of the k clusters obtained in the previous step. The centroids are calculated according to 

the Euclidean distance between the colour dimensions and the centroids. Once new k centroids have 

been calculated, a new linking has to be established between the same dataset and the nearest new 

centroid (minimum distance). The iteration stops when the location of the k centroids no longer changes.  

 As described above, clustering enables dataset points to be grouped with some similarity along a 

dimension, while the points that differ from each other are kept further apart. In the case of digital 

images, the dimension used is generally colour, because the human vision system chooses colour, rather 

than shapes and texture, as its main discriminant feature. In this work, we have considered RGB, HSL 

and CieLab colour space. Images of excavation sites have been clustered using k-means in such a way 

that the different regions of the image are marked by k colours and the boundaries are revealed by 

separating the different regions. The outputs of the algorithm are k images in which all the non-zero 

pixels represent the object in the cluster. By assigning an 8-bit number to each pixel in a cluster, a 

composite image (in a false colour) is then produced: this helps the drawing of the layer contour using 

standard edge-detection techniques. 

3.  Results and discussions 

 The number of clusters (established a priori) is one of the main issues of the k-means algorithm: 

a poor colour clustering and, hence, a poor archaeological level identification may be the result of an 

underestimation of the k number. The best number of colours should be recognized by performing some 

preliminary tests. To this end, we performed colour (RGB) clustering on a portion of area A of the 

mockup, using different k values. In the case of k=2, it was observed that both the plastic dustsheet and 

the pebbles circles were considered as belonging to the cluster of the same colour, and the wooden box 

and soil, to the other. The wooden box in the corresponding composite was scarcely visible, and this 

underestimation of the colours number determined a mistake in the identification of the contour. The 

same held true for k=3 and k=4. The best colour clustering (for the portion of area A considered) was 

achieved with k=5. In this case, the anthropic environment (pebbles) was clearly separated from the 
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background (dustsheet and soil). The contour of pebbles circle and of the wooden box could thus be 

drawn accurately.  

 In these preliminary tests we considered RGB colour space. In general, situations are likely to be 

found in which other colour spaces might be more suitable for colour clustering. To this end, we also 

considered HSL (Hue Saturation Lightness) and CieLab [35] for colour clustering of the portion of area 

A in the mockup. The results obtained with k=5 are presented in figure 2. It is interesting to note that, 

in this case, the best clustering was obtained with RGB colour space, because all the details were clearly 

separated. In both clusterings with HSL and CieLab colour spaces, the green dustsheet was considered 

to belong to the same cluster of the upper part of the wooden box, and the white pebbles, to the left part 

of the wooden box. The results of these preliminary tests led us to make two considerations: first, not 

only the k number, but also the colour space, may have impact on the cluster contour; secondly, since 

these two features should be tested before drawing the contour, this preliminary tests could be considered 

to be part of a good practice. 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 Analogous tests (number of colours and colour space) were performed on the other areas of the 

mockup: for the B areas, the best colour clustering was achieved with RGB and k=4. In particular, in 

the B1 case, the colour clustering has clearly separated the anthropic environment (pebbles) from the 

background. This represents a demanding case for colour clustering, because there is no strong colour 

difference between sand, gravel background, and the pebbles circle as there is in the A and B4 areas. 

This result may suggest that the algorithm could be useful also in cases in which the main differences 

are in the texture, rather than in the colour. In the B2 case, the background is fairly uniform (a sand layer 

partially covers the gravel); the texture is practically uniform, but is made with materials of two colours. 

The clustering brought out the two materials quite well, even if it was not possible to draw a contour. 

The same held true also for cases B3, B5 and B6, in which different combinations of sand, gravel and 

peat were considered for the background.  

 The texture clustering is considered by archaeologists to be equally interesting as colour 

clustering. Once the image of an archaeological excavation site has been colour clustered, it is 

remarkable for characterizing each cluster in terms of mean texture.  

 

 

 

 

 

Figure 2. First row: portion 

of the mockup (original 

image), from second to 

fourth rows, RGB, HSL and 

CieLab colour clustering 

with k=5 respectively. 
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 To this end, the energy (as one of the Haralick features that can be obtained from GLCM) was 

calculated with different neighbourhood sizes in the dustsheet and soil regions (in a portion of area A of 

the mockup). The results obtained are summarized in figure 3. With smaller neighbourhood sizes, the 

mean energy was greater than with ones of a larger size, and a downward trend was then established; 

then, with larger neighbourhood sizes, the mean energy values tended to be constant. In this work, we 

have suggested to use these values to characterize each colour cluster and, hence, the archaeological 

level. It is interesting to note that the dustsheet had greater energy than the soil. This corresponded to a 

greater degree of uniformity in the image and, therefore, to a smoother texture.  

 Moreover, colour clustering was also performed on images of two excavation sites. Figure 4 

shows the composite image (RGB, k=3) and the original image (site 1) with, overlaid, the regional 

contours obtained by means of edge-detection. Even if the processing of the image is of poor quality, 

the stones of the pavement have been highlighted quite well. Analogously for site 2, the two portions of 

wall have been contoured quite well (figure 5). 

 

 

 

 

 

 

 

Figure 3. Mean energy calculated with 

different neighbourhood sizes in the 

dustsheet and soil areas in a portion of area 

A. 

 

 

Figure 4. Excavation site 1: (a) 

composite image obtained with k=3 

and RGB colour space; (b) original 

image with overlaid contours of the 

layer. 

 

 

Figure 5. Excavation site 2: (a) 

composite image obtained with k=4 

and RGB colour space; (b) original 

image with overlaid contours of the 

archaeological layer. 

(b) (a) 

(b) (a) 
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 The case of site 3 is particularly interesting. In figure 6 two layers are contoured: the excavation 

limit (3), a portion of a wall (4) and a region with a different texture (5) placed between (4) and (3). The 

stone (1) is also identified. This is interesting, since the algorithm may spread its potential to findings 

that are not actually levels, but are of natural interest to archaeologists.  

 Moreover, the colour clustering of site 3 highlights a layer (1) that seems to have a smoother 

texture than that of the background (2) (figure 6). The colour clusters have been characterized in terms 

of texture by calculating the corresponding mean energy. As each neighbourhood area should be 

included in the colour clusters, it is not possible to perform a texture analysis with larger-sized 

neighbourhoods. For this reason, for the image of site 3 (1100x1120 pixel) we have considered an area 

of 44x45 pixels. In addition, the results of the mean energy calculations are reported in figure 6. This 

site is extremely interesting, because different combinations of texture and colours can be observed. The 

results show that the two layers (labelled as cluster 4 and cluster 5) have approximately the same texture, 

even if they are chromatically different. Clusters 3 and 5 seem to be similar in terms of colour, but show 

different textures.  

4.  Conclusions  

In this work, we aimed to explore the use of machine learning to automatize some tasks of 

archaeologists. This approach could help in identifying archaeological levels during an excavation 

campaign and in reducing the time spent for digitalizing the results. To this end, an unsupervised ML 

algorithm has been developed to colour-cluster digital images of archaeological excavation sites. The 

results obtained with a k-means algorithm and edge detection represent the first demonstration that 

layers can be readily and properly identified. The layers contoured have been characterized in terms of 

textural uniformity by calculating the corresponding energy. This proves that the combination of ML 

and texture analysis can serve to become a valid practice for speeding up the documentation work of 

archaeologists.  
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