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Abstract

Recognizing evolutionary trends in phenotypic means and rates requires the application of

phylogenetic comparative methods (PCMs). Most PCMs are unsuited to make full use of

fossil information, which is a drawback, given the inclusion of such data improves, and in

some cases even corrects, the proper understanding of trait evolution. Here we present a

new computer application, written in R, that allows the simultaneous computation of tempo-

ral trends in phenotypic mean and evolutionary rate along a phylogeny, and to contrast such

patterns among different clades within the tree.

By using simulation experiments, we show the new implementation, names search.trend

is as powerful as existing PCM tools in discerning macroevolutionary patterns in phenotypic

means and rates, but differently from any other PCM allows comparing individual clades to

each other, and provides rich information about trait evolution for all lineages in the tree.

Introduction

Recognizing evolutionary trends in phenotypic means and rates has always been a major topic

in evolutionary biology [1–4]. Phenotypic patterns such as Cope’s rule [5–7], the Island Rule

[8–10] and morphological stasis [11,12] attract continuing interest from students of pheno-

typic evolution. Similarly, the rate of phenotypic change is intensely investigated [13–15]. The

adaptive radiation theory predicts the rate should decrease over time [16,17]. However, it

might be accelerated by the introduction of phenotypic innovations [18–20], by ecological

release after mass extinctions [21,22], and by major tectonic and climatic events [23,24]. The

detection of such temporal patterns in phenotypic means and rates is complicated by the pres-

ence of phylogenetic effects. Phylogenetically close species share similar phenotypes, meaning

they resemble each other more than expected by chance. Hence, the magnitude and direction
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of trait change must be contrasted to null models which take phylogenetic relatedness into

account. Phylogenetic comparative methods (PCMs) offer the opportunity to understand the

tempo and mode of trait evolution while controlling for phylogenetic effects. Unfortunately,

PCMs are not always well-suited to deal with extinct phylogenies, and most of those that are,

do not allow comparing trends in rates and trait means between clades within a single tree.

Still, most PCMs rely upon a priori, necessarily low-dimensional evolutionary models to be

compared to each other. The recently developed RRphylomethod Castiglione et al. [25] allows

computing phenotypic evolutionary rates for all branches in the tree and phenotypic estimates

at nodes (i.e. the ancestral states). It is especially meant to work with phylogenies of extinct

species, and assumes no specific a priori evolutionary model, depending entirely on the distri-

bution of phenotypes on the phylogeny. While this might complicate the straightforward inter-

pretation of the tempo and mode of phenotypic change, RRphylo permits taking full advantage

from fossil information, which is always welcome, since this provides better and more realistic

interpretation of trait history than with phylogenies restricted to living species [26–29].

Here, we show a new implementation based on RRphylo, named ‘search.trend’ which allows

computing simultaneously the temporal trends in phenotypic rates and means, and to com-

pare trends among different clades within the phylogeny.

We tested search.trend performance by using simulations, measuring both Type I and Type

II error rates. We provide the R code (‘search.trend’) and data for the method, and embedded

it in the ‘gitHub’ version of the R package RRphylo (available at https://github.com/pasraia/

RRphylo).

Materials and methods

The search.trend function takes an object produced by the R package namesake function. Such

RRphylo function computes rates and phenotypes for all branches and nodes of the tree,

respectively, by applying normalized phylogenetic ridge regression [25].

The search.trend algorithm regresses the absolute value (i.e. the magnitude) of the pheno-

typic evolutionary rates calculated by RRphylo against their ages, meant as the distance of the

branch from the tree root. A second, separate regression is performed between the vector of

phenotypes (obtained by collating ancestral phenotypic estimates to trait values at the tree

tips) and their ages. Throughout the rest of the manuscript, we refer to the former as the

regression to test for the existence of a ‘trend’ in the rates, and to the latter as a test for the

‘drift’ in the phenotypic mean, over time. For both regression slopes (i.e. trend and drift), sig-

nificance is assessed as the probability that the actual slopes differ from a family of 100 regres-

sion slopes (BMslopes) generated according to the Brownian motion model of evolution, by

using the function fastBM in the R package phytools [30].

The Brownian motion has two free parameters, the phenotypic value at the tree root (herein

named rootV) and the Brownian rate σ2. RRphylo estimates ancestral states (including rootV)

as the products of the matrix of branch lengths multiplied to the vector of rates (the latter are

normalized as to avoid extreme rate values, which makes ridge regression different from ordi-

nary least squares regression [25]). By default, rootV is computed as the average value of the

10% most ancient tips in the tree, weighted by their squared distance from the root (meaning

that older species have more influence on rootV estimation). This means that the estimation of

unknown phenotypes is entirely dependent on the tree known (tip) phenotypes, rather than

depending on the assumption of a particular mode of evolution, such as BM. Rather than a sin-

gle rate such as in the Brownian motion, RRphylo assigns a rate to each branch of the tree, esti-

mated via phylogenetic ridge regression [25,31]. Such ‘rates’ actually represent regression

coefficients, describing the pace of phenotypic change between two consecutive nodes in the
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tree. As such, rates represent the phenotypic change per unit time between consecutive nodes

in the tree. Hence, with a phenotype evolving according to the Brownian motion model, the

magnitude of RRphylo rates increases with the distance from the root (i.e. towards the present)

in keeping with the increase in phenotypic variance (Fig 1).

Ideally, when a positive trend in the rate of evolution towards the present applies (Fig 1,

middle), the slope of the rates versus age regression would be larger than any BMslopes (Fig 2).

Fig 1. The distribution of phenotypes simulated according to the Brownian motion model of evolution (“Brown”). This same Brownian motion phenotypic vector

is transformed by applying to it a trend for increasing phenotypic evolutionary rate towards the present (“Trend”) or increasing its phenotypic mean towards the present

(“Drift”).

https://doi.org/10.1371/journal.pone.0210101.g001

Fig 2. Trend (left) and drift (right) regressions. The green and blue dots represent the actual distribution of rates and phenotypes (respectively), obtained after

applying a trend to the rate and a drift to the phenotypes, as illustrated in Fig 1. The gray shaded area represents the distribution of values (either rates, left, or

phenotypes, right) generated under the Brownian motion model for the same tree. Notice that both rates and phenotypes are rescaled to the 0–1 range. Rates are logged

before running the trend regression.

https://doi.org/10.1371/journal.pone.0210101.g002
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However, three sources of uncertainty impinge upon this ideal situation. First, since rates are

proportional to the actual the phenotypic values rates must be rescaled into the 0–1 range

before running regressions to make the real regression slope entirely comparable to BMslopes.

Secondly, in the presence of a temporal trend in the evolutionary rates, rootVmight assume an

extreme value within the distribution of phenotypes, which will generate a heavily skewed dis-

tribution of RRphylo rates. Thirdly, the distribution of rates is influenced by variation in

branching times across the phylogeny. Since closely related species tend to have similar pheno-

types, evolutionary rates will be small where the tree is dense with species. This could produce

a declining slope of the trend regression line if the dense part of the tree coincides with a single,

large, recent clade, even under a regime of increasing rates over time. To account for these

caveats, the rates versus age regression in search.trend runs with logged data (to reduce the

skewness of the rate distribution). Still, to properly assess the direction of rate variation

through time, search.trend checks whether the standard deviation of the rates in the branches

falling in the first (older) half of the tree is significantly smaller than the corresponding figure

for the second (more recent) half of the tree, as compared to BM simulations, which is

expected to occur if a positive trend in the evolutionary rate is present in the data.

With the drift regression (phenotypes versus age, Figs 1 right and 2 right), the original phe-

notypes as well as those producing the BMslopes should be rescaled to the 0–1 range as well, to

account for the actual value range of the individual variables. For all the BMslopes, regardless of

whether rates or phenotypes are used, simulated phenotypes are produced by imposing σ2 = 1

in fastBM.

Simulation experiments

We performed a number of simulation experiments to assess the sensitivity of search.trend to

both Type I and Type II error rates, and to the intensity of the simulated pattern. We started

by producing 200 random, non-ultrametric trees by using the function sim.bdtree in the pack-

age geiger [32], setting the birth rate at 0.5 and the death rate at 0.2, but retaining only trees

with at least 80 species. In each iteration, we started by simulating on the tree a phenotype

evolving according to Brownian motion (BM), by using the function fastBM in the package

phytools [30]. In producing the BM phenotypes the phylogenetic mean was randomly chosen

from a uniform distribution spanning from -10 to 10 and the Brownian rate was randomly

picked from a uniform distribution of 300 values spanning from 0.01 to 10. To assess the

power of search.trend to recognize the actual phenotypic pattern, this Brownian phenotype

was then transformed according to 1) a trend of exponential increase or decrease of the pheno-

typic variance over time (representing time-dependent changes in the phenotypic evolutionary

rate, ‘trend’, Fig 1, middle) and 2) a phenotypic drift (Fig 1, right). In order to transform the

BM phenotype, in the former case, the age distances from the tips to the root (the tip times) are

elevated to the power es, and the resulting phenotype will thus be equal to y �(times^es)/times;
where y is the original Brownian motion phenotype. With es = 1 the simulated phenotype rep-

resents the brownian motion, with es>1 the variance of the phenotypes grows exponentially

with the distance from the root, and the converse with es< 1 (Fig 1 middle). To simulate a

drift in the phenotypic mean over time, the vector of times was multiplied by a scalar ds,
according to the equation y + times � ds, where y is the original BM phenotype. This way, with

ds> 0 there will be a positive drift (an increase in the phenotypic mean over time) and the

other way around with ds< 0.

We assessed the sensitivity of search.trend to variations in either es and ds (setting the for-

mer to vary randomly between -1 and 3 and the latter to vary randomly in between -2 and 2).

By using these parameters, we simulated both a trend-ed and a drift-ed phenotype on each of
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the 200 random trees. At each simulation, we recorded for both trend and drift regression the

rank P of the real regression slope among the BMslopes, either the starting es or ds, the σ2 of the

transformed phenotypes, and a metric representing the magnitude of the phenotypic deviation

from Brownian motion as imposed by the ds (or es) transform. For the former, the metric (dev,
Fig 3 left) represents the deviation of the phenotypic mean from the root value in terms of the

number of standard deviations of the trait distribution (dev is zero under the Brownian

motion). dev necessarily grows with the distance from the root and the (absolute) value of ds.
In the case of ‘trend’, we computed the metric spread. It represents the ratio between the range

of phenotypic values and the range of such values halfway along the tree height, divided to the

same figure under Brownian motion (Fig 3 right).

After the simulations, we regressed the 200 P values against the corresponding es and ds, in

order to find the specific values of the phenotypic transforms (named essig and dssig, respec-

tively) that mathematically coincide with significant Ps (that is P > 0.95 or P < 0.05, for either

declining or increasing rates and phenotypic means). For the trend cases this generates an

essig+ for P < 0.05 and an essig- for P < 0.95. The same applies to dssig for the drift case.

We compared the performance of search.trend to existing methods to assess the presence of

phenotypic drift and rate trends. The exponential change in phenotypic variance provided by

es is similar to application of the delta transform [33]. We thus used the R package geiger func-

tion fitContinuous to fit and then compare to each other (by means of the likelihood ratio test)

other the “delta” and “BM” model of evolution on Brownian motion phenotypes modified by

applying essig+ and essig-. The same was repeated at dssig (again for both positive and negative

drift patterns) to compare the BM and the “drift” model in fitContinuous’. Two hundred such

comparisons were run. This allows comparing Type II error in both fitContinuous and search.

trend at the two essig and the two dssig respectively. Eventually, we applied both search.trend
and fitContinuous to 200 additional phenotypes simulated according to the Brownian motion

(by using fastBM) in order estimate Type I error rates for both functions.

Contrasting different clades to each other and to the rest of the tree

Differently from any existing PCM, search.trend is designed to contrast different clades within

the tree to find significant differences in the pattern of phenotypic evolutionary rate and phe-

notypic mean change over time. In the case of phenotypic drift, individual clades are tested for

Fig 3. The application of phenotypic drift (left) and trend in rate variation (right) develped by the RRphylo function setBM and used in the simulations

described in this study. For both transformations, a metric (dev for phenotypic drift, spread for rate trend) measures the deviation of the transformed phenotype from

the Brownian motion model.

https://doi.org/10.1371/journal.pone.0210101.g003

Testing macroevolutionary trends with extinct species phylogenies

PLOS ONE | https://doi.org/10.1371/journal.pone.0210101 January 25, 2019 5 / 13

https://doi.org/10.1371/journal.pone.0210101.g003
https://doi.org/10.1371/journal.pone.0210101


the hypothesis the drift slopes do not depart from the Brownian motion expectation. However,

in the case of trend regressions the actual regression slope depends on the relative position

(age) of the focal nodes respective to the root, given the exponential nature of phenotypic vari-

ance change in time. Because of this, for the trend case search.trend compares estimated mar-

ginal means predictions from the linear regressions (of the rate versus age regression) by using

the function emmeans embedded in the package emmeans [34].

To test the power of the group (clade) comparison module of search.trend, we used the

same trees as in the simulation experiments described above. We first simulated a BM phe-

notype. Then, we randomly selected a node in the tree subtending to twenty species at least

and applied to this clade twice as much as essig or dssig (separately) depending on whether

trend or drift are being tested. For the latter, since the actual drift depends on both ds and

the total time of evolution (i.e. the height of the tree) we further accounted for the differ-

ences between the tree height and the subtree (the drift-ed clade) height by multiplying ds
for the ratio between the two heights. This means individual clades being tested for trend

are transformed according to the equation y �(times^2essig/times); those being tested for

drift are transformed according to the equation y + times � 2dssig � Hratio, where y is the BM

phenotype, the vector times is the vector of tip to root distances, and Hratio is the ratio of

tree height to the subclade height.

To test the power of seach.trend to find significant differences in the patterns of rate or phe-

notypic mean change over time we separately selected two non-overlapping nodes in the tree

subtending to at least 20 species each, and proceeded as above, applying twice as much as essig
or dssig for the trend and drift case, respectively. In both the single-clade and two clades modi-

fied experiments, the sign of the es(ds) transform was random, meaning the that focal clades

phenotypes might be altered either in the same, as well as in opposing directions (Fig 4).

Eventually, we tested the unmodified, Brownian motion phenotypes for the same set of sub-

clades, to find the frequency of false positives (i.e. clades that appear as evolving differently

from the rest of the tree or from each other) restituted by search.trend.

Fig 4. Illustration of the simulation experiments performed to test the power of search.trend function to correctly identify clades evolving at different

regimes from the rest of the tree. The gray shaded area represent the idealized distribution of phenotypes and rates according to the Brownian motion model

of evolution. In the simulations, individual clades are selected and then transformed by imposing a distinctive phenotypic rate regime (upper row) or

phenotypic mean change regime (lower row).

https://doi.org/10.1371/journal.pone.0210101.g004
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Results

Simulations

The search.trend function performs well in terms of finding the simulated patterns. As applied to

phenotypes simulated according to the Brownian motion the function error rate is close to the

nominal level (5%) in both the trend and the drift cases (Table 1). The distribution of signifi-

cance values plotted against the intensity of the applied transform (i.e. either es or ds, Fig 5,

upper row) indicates search.trend gives significant results at ds>.25 and ds< -0.25 and es>1.6

and es< 0.3 for the drift and trend case, respectively. These values thus correspond to the dssig
and essig pairs, respectively. A dssig of 0.25 (or -0.25) the dev statistics is ± 0.18, which means the

phenotypic mean deviates some 0.18 standard deviations from the root value per unit time,

which is a modest phenotypic drift (Fig 6). At applying a regime of rate variation over time (the

trend case) the spread statistic (the ratio between the range of phenotypic values and the range of

such values halfway along the tree height) at essig 84% to 112% of the spread which occurs under

the Brownian motion model (Fig 6). As a guidance, we empirically found this is equivalent to

apply modest delta transform to the tree with delta values of 0.3 and 1.4, respectively (S1 Fig).

Despite the simulated trees differ considerably from each other in terms of size (the average

number of tips is 165, range 128–226) tree size bears no influence on the power of search.

trend. In the case of trend-ed phenotypes, the relationship between P (the rank P of the real

regression slope among the BMslopes) is not significant (p = 0.794, R2 = 2.5 � 10−4). The same

applies to drift-ed phenotypes (p = 0.160, R2 = 0.03).

As compared to geiger’s package fitContinuous, search.trend is at least as powerful and accu-

rate. For the trend-ed phenotypes, simulated at essig, search.trend works better than fitContinu-
ous, especially when negative trends in the rate over time are simulated (Table 1). The power

of the two functions is very similar when drift-ed phenotypes (as dssig) are simulated.

Contrasting different nodes

search.trend applied to nodes evolving at different regimes from the rest (Brownian motion) of

the tree is able to recognize the simulated patterns. When a single node is transformed at twice

dssig over search.trend successfully recognized the phenotypic transformation in > 80% of the

cases (Table 2). With the trend case, this percentage rises above 90%. The corresponding Type

I error rates (instances of reportedly significant phenotypic change on nodes which were left,

Table 1. Performance of search.trend for both rate trend and phenotypic drift recognition, compared to geiger’s fitContinuous function.

fitContinuous search.trend

Phenotype BM Delta Drift BM Trend Drift

Brownian Motion 0.95 0.05 - 0.93 0.07 -

Trend+ 0.26 0.74 - 0.21 0.79 -

Trend- 0.32 0.68 - 0.02 0.98 -

Brownian Motion 0.97 - 0.30 0.98 - 0.02

Drift+ 0.30 - 0.70 0.26 - 0.74

Drift- 0.22 - 0.78 0.28 - 0.72

The simulated phenotypes correspond to Brownian motion, a positive trend in the rates at essig+ (Trend+), a negative trend in the rates at essig- (Trend-), a positive drift

in the phenotypic mean at dssig+

(Drift +), a negative drift in the phenotypic mean at dssig- (Drift -). The numbers refer to the percentage of correct pattern identification. For instance, with a phenotype

evolving according to the Brownian motion model the fitContinuous power is 95% and the error rate (the percentage of iterations where the delta model was recognized

better than BM) is 5%. The corresponding figures for search.trend are 93% and 7% (first row).

https://doi.org/10.1371/journal.pone.0210101.t001
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in fact, untransformed) is as low as 6 (trend) and 2% (drift). When two different, non-overlap-

ping clades are transformed at one time, the function power still remains close to 90% if the

two nodes are transformed in opposite directions (i.e. by applying es or ds transformations

with different signs, Table 2) but becomes much less powerful if the two clades are transformed

in the same direction (Table 2). Under all conditions, the Type I error rate remains close to the

nominal alpha level (Table 2). This is particularly robust considering individual node heights

vary in between 20 to 97% of the tree height and might include as many as 20 to 84 species.

Discussion

Fossil information provides fundamental insight about the evolution of traits, so much that the

absence of such information might lead to erroneous inference and low power in detecting the

Fig 5. Upper row, the relationship between the intensity of the simulated phenotypic pattern (obtained applying the es and

ds transforms) and the power of search.trend. Lower row, the effect of the ds and es transforms on the original (untransformed)

Brownian motion phenotype. For the phenotypic drift (lower row, right) we plotted the standard phenotypic deviation (dev) from

the root at dssig (i.e. at ds = 0.25 and ds = -0.25). For the rate trend (lower row, left), we plotted the spreadmetrics after applying the

es transform at essig (orange full dots, es = 0.3 and 1.6). The orange dots represent the values of es or ds either where search.trend
finds no significant differences from Brownian motion.

https://doi.org/10.1371/journal.pone.0210101.g005
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real signal in phenotypic evolution [26,35,36]. Secular patterns in specific traits such as body

size and the degree of encephalization are given exceptional attention by students of trait evo-

lution. Yet, unfortunately, they are often investigated without using PCMs [6,37–40]. Even

when fossil phenotypes and phylogeny are considered, comparisons between clades are usually

Fig 6. The change in phenotypic values occurring by transforming a Brownian motion generated phenotype (gray dots) by applying a trend in the rate of

evolution (upper row, green dots) or a drift to the phenotypic mean (lower row, purple dots). The shaded areas represent the distribution of values

generated after 100 random iterations. The gray shaded area represents the distribution of Brownian motion simulations. The green shaded area represents the

distribution of trend-ed phenotypes. At essig- the phenotype is simulated according to a declining rate of phenotypic evolution. On the opposite, the rate

increases at essig+ (right upper corner). At dssig- the phenotypic mean becomes smaller over time (left lower corner), the opposite applies at dssig+ (right lower

corner).

https://doi.org/10.1371/journal.pone.0210101.g006
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not performed, and the simultaneous estimation of evolutionary trends in phenotypic means

and rates are, to our knowledge, even rarer. The method we propose here, search.trend, pro-

vides a way to estimate straight away the existence of such patterns, and to compare individual

clades within the to each other. The search.trend function demonstrated to have high power

and consistently low Type I error (Table 1), and to be at least as accurate as geiger’s fitContinu-
ous suite of functions. The latter is admittedly much faster than search.trend (we averaged the

time to completion on the same phenotype and tree for the two functions over ten iterations

getting an mean of 2.55 seconds for fitContinuous and 20.19 seconds for search.trend). Yet,

search.trend provides information about the direction and intensity of the two patterns, writes

figures as pdf files to let the experimenter gauge the exact meaning and distribution of the pat-

terns which are found, provides confidence intervals around the estimates for both rates and

phenotypes, restitutes the phenotypes and rates per age and per branch (which allows further

inspection of the distribution of such metrics per clade and per age and, if desired, the applica-

tion of regression models different from the linear model which the function uses by default)

and, on top of all, search.trend allows comparing directly individual clades within the phylog-

eny with each other and against the rest of the tree. This latter, fundamental feature means that

individual clades can be compared to each other for the existence of either drifts or trends in

the phenotypic mean and variance, respectively, even when the actual phenotype is a complex

admixture of different evolutionary regimes (Table 2). We found that search.trend has good

power in finding the designed pattern and shows small Type I error rates even under small

deviation from Brownian motion (Table 1). The group (clade) comparison module of the

function provides evidence that it effectively recognizes whether two clades in the tree evolve

into different directions (either in terms of phenotypic mean or change in the evolutionary

rate) when they are designed to be (Table 2, ‘opposed sign’). When the two selected clades do

evolve into the same direction (Table 2, ‘same sign’), the function power to detect deviations of

these clades from the Brownian motion decreases dramatically. However, rather than a limita-

tion, this depends on the fact that when two clades in a tree are simulated to evolve according

to a certain pattern in the phenotype (or in the rate either) the original BM phenotypic pattern

of the tree as a whole is erased altogether (Table 2, ‘same sign’). We deliberately chose to build

greatly variable random phenotypes and trees. In our simulations, tree size is 165 species on

average (range 129–203), the selected nodes within these trees subtend to clades which include

38 species on average (range 20–84), and they are some one quarter the height of the tree they

belong to (average = 28%, range 9%-97%). The starting value of the BM phenotypes (which is

Table 2. search.trend performance as assessed by transforming individual clades (either one clade or two clades) within the tree.

One clade Two clades

Tested Individually Against each other

Simulated phenotype Opposite sign Same sign

BM 0.060 0.070 0.060

Trend+ 1.000 0.984 1.000 0.275

Trend- 0.920 0.875

BM 0.020 0.010 0.050

Drift+ 0.882 0.935 0.956 0.148

Drift- 0.857 0.882

The distribution of Type I and Type II error rates for search.trend assessed on complex phenotypes simulated to exhibit different patterns in different parts of the tree.

Two kinds of patterns are simulated, indicating either an increase (indicated with plus symbol), or a decrease (indicated with the minus symbol) in either ‘trend’ or

‘drift’, pertaining to either a single, or two clades within the tree.

https://doi.org/10.1371/journal.pone.0210101.t002
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allowed to vary in between -10 and 10) has no influence on the function performance. Simi-

larly, the starting Brownian rate does not influence performance. It is noteworthy that after

transforming the BM phenotype by applying the es (or ds) transform, the actual Brownian rate

covers 10 orders of magnitude (S2 Fig), still indicating the initial Brownian rate has no bearing

on search.trend functioning.

Fossil information provides unique opportunity to look at phenotypic variation in the past

and its change over time. While the relevance of such information to the proper understanding

of trait evolution is well known, its full integration to the vast and powerful array of PCMs is

limited by the unease of most PCMs to deal with paleontological phylogenies, and their limited

description of macroevolutionary patterns. Here we provide a new, powerful addition to the

existing PCM toolbox, which is appropriate to use when a full description of macroevolution-

ary patterns as captured by paleontological data and tree, and the simultaneous comparison

between clades within the tree is the goal.

Supporting information

S1 Fig. Delta transformations to be applied in order to derive a phenotypic vector having as

much spread as essig- (left) and essig+ (right).

(TIF)

S2 Fig. P-values plotted against the Brownian rate (sigma2) for both ‘trend’ and ‘drift’

cases. Vertical dashed lines mark significant p-values. Orange dots represent the non-signifi-

cant simulations (i.e. phenotypes recognized to evolve according to the Brownian motion).

(TIF)

S1 File. R code. The computer code, written in R, to perform the set of simulations illustrated

in the manuscript.

(R)
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