
 

Abstract: Acoustical analysis is widely used in the 

diagnosis of speech disorders related to several 

pathologies and helps in defining the severity of 

their clinical pictures. Recently it was proved that 

some genetic syndromes may have a specific 

language phenotype. In this work we apply 

acoustical analysis to the discrimination between 

four genetic syndromes: Down, Noonan, Costello 

and Smith-Magenis. The analysis is performed with 

Praat and BioVoice tools. Several estimated 

acoustical features are applied as input to machine-

learning models. Though preliminary, the results 

are encouraging: the acoustical analysis of the 

sustained vowel /a/ give an average accuracy > 50% 

with both tools. Our findings confirm that for some 

syndromes a specific “vocal phenotype” exists that 

might support the clinician in highlighting 

syndrome’s characteristics not yet studied. 
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I. INTRODUCTION 
 

Genetic syndromes have been extensively studied 
for a better definition of their clinical manifestation, 
natural history and etiopathogenetic mechanisms. 
Nevertheless, some relevant but still unexplored 
aspects of these multisystemic conditions are not yet 
fully exploited, one of them being the characterization 
of vocal production. Genetic factors play a pivotal role 
not only in the determination of distinct phenotypes 
and neurobehavioral profiles, but also in establishing 
voice patterns with recognizable sound characteristics. 
Therefore, perceptual and acoustical analysis of voice 
could be helpful for the evaluation of specific voice 
characteristics as a non-invasive approach to the 
assessment of genetic syndromes [1]. More than 240 
genetic syndromes have distinctive abnormalities of 

voice quality, significant enough to be considered as 
diagnostic indicators [2]. For some genetic syndromes 
the existence of a specific language phenotype 
obtained by acoustical analysis was already discussed 
in the literature. For example, young subjects affected 
by Down Syndrome may have differences concerning 
tremor, biomechanical behaviour and vibration of the 
vocal folds as compared to normative subjects [3]. For 
the Smith-Magenis Syndrome, acoustical and 
biomechanical analysis was recently performed to 
detect possible differences between pathological 
subjects and control groups [4]. Also, for the Cornelia 
de Lange Syndrome, anomalies in speech such as high 
levels of speech impairment were found [5]. For the 
Noonan Syndrome some preliminary evaluation was 
made with acoustical and biomechanical analysis to 
explore different aspects of the syndrome [6]. These 
findings might contribute to the differential diagnosis 
between Noonan Syndrome and some RASopathies [7] 
that share several aspects with them, such as the 
Costello Syndrome [8]. Indeed the Costello Syndrome 
may have specific acoustical characteristics due to the 
craniofacial anomalies often related to this syndrome 
that could alter the process of phonation and 
articulation [9]. Finally, acoustical analysis could be 
helpful for an early intervention in patients with speech 
impairments, to improve their communication skills 
and reduce speech deficits [10]. Based on the above 
mentioned evidences, some genetic abnormalities of a 
recognizable phenotype are expected to determine a 
specific vocal phenotype. Therefore, vocal 
characterization could represent a useful tool in the 
diagnostic process and in defining the severity of some 
clinical pictures [4]. 

To this aim, machine-learning methods and 
supervised classifiers are applied here to acoustical 
parameters estimated with two analysis tools: Praat and 
BioVoice [13, 14]. Being based on non-invasive and 
easily administered tests, this approach could be 
helpful for obtaining additional features useful for 
diagnosis and for the automatic classification of 
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different syndromes. The paper is organized as 
follows: in Section II the dataset and machine-learning 
experiment are described. In Section III the main 
results obtained are presented. Section IV is devoted to 
the discussion of results, limits and possible future 
developments. Conclusions are reported in Section V. 
 

II. MATERIAL AND METHODS 
 

Data were collected at the Università Cattolica del 

Sacro Cuore, (Roma), Faculty of Medicine and 

Surgery. Machine-learning methods are applied to 

several acoustical parameters estimated from the vocal 

emissions of a set of 72 subjects (36 male and 36 

female, age range 4-33 years, mean 14±7 years), 

affected by 5 different genetic syndromes. Specifically, 

the dataset consists of: 22 subjects with Down 

syndrome (DS); 17 with Noonan syndrome (NS); 19 

with Costello Syndrome (CS); 10 with Smith-Magenis 

syndrome (SMS) and 4 with Cornelia de Lange 

syndrome (CdLS). However, the CdLS syndrome was 

excluded from the analysis due to the small number of 

subjects in this class. The vocal samples come from a 

previous study based on the SIFEL protocol [11], [12]. 

After a training phase of the subject, the recorded 

audio files consist of the vowel /a/ sustained for at least 

4 seconds. Recordings were obtained using a portable 

DAT (Digital Audio Tape) in a controlled environment 

(environmental noise < 40dB), with the microphone set 

at 15 centimetres from the subject’s lips and with an 

angle of 45°. The sampling rate was 44100 Hz. 

Moreover, in the same sessions, the Italian word 

/aiuole/ (flower beds) as well as the vowels /i/, /u/ /o/ 

and /e/ were recorded. However, in this work we did 

not perform the acoustical analysis of these data with 

BioVoice, because some of them were corrupted or no 

more available. Only the acoustical analysis previously 

performed by Praat [11, 13] was available. The quasi-

stationary central part of each sustained vowel (about 

3s of duration) was manually extracted by an expert, 

disregarding onset and offset [11]. 

For the acoustical analysis and classification we 

considered here both the previously collected dataset of 

parameters estimated with Praat and new estimates 

obtained with the BioVoice tool [14, 15]. Only the 

sustained vowel /a/ was considered. With Praat, the 

following 34 acoustical parameters were taken into 

account: mean, standard error, coefficient of variation, 

maximum and minimum of the fundamental frequency 

F0; Jitter (local, absolute, Relative Average 

Perturbation, DDP and PPQ5, where PPQ is Period 

Perturbation Quotient); Shimmer (%, dB, APQ3, 

APQ5, APQ11, DDA, where APQ is the Amplitude 

Perturbation Quotient); mean Noise to Harmonic Ratio 

(NHR); mean Harmonic to Noise Ratio (HNR); the 

first four formants (F1, F2, F3 and F4); four clinical 

features: gender, age, weight and body mass index. 

With BioVoice we extracted 24 acoustical features. 

Analysis is performed distinguishing between infants 

(<14 years) and adults [14] and in the case of adults 

between male and female. The 24 acoustical 

parameters from BioVoice are: maximum, minimum, 

mean, median and standard deviation for F0 and 

formants F1, F2 and F3; T0min and T0max for F0; jitter; 

Normalized Noise Energy (NNE). As before, the four 

clinical features: gender, age, weight and body mass 

index (BMI) were also included. In a first step, we 

compared the acoustical parameters in common 

between BioVoice and Praat.  Then, we used those 

parameters considering separately each syndrome 

subgroup. All features except gender (0=male, 

1=female) were normalized to zero mean and unit 

variance and the corresponding feature matrix was 

applied as input to the following supervised classifiers: 

k-nearest neighbours (KNN), support vector machine 

(SVM) and ensemble methods (we considered 

RUSBoost, AdaBoost and Random Forest). These 

methods are implemented under MATLAB 2020b 

computing environment [16]. K-fold cross validation 

(k=5) and Bayesian Optimization were applied for the 

selection of the hyper-parameters of the models. The 

optimization was performed considering the highest 

global Accuracy as validation metric (i.e. the average 

Accuracy between the four classes). To improve the 

classifier’s performance the ReliefF algorithm [16] was 

used as feature selection method. During the model 

selection process we also varied the number of input 

features for the classifiers. All the experiments were 

repeated 5 times, to take into account possible 

variations of the performance due to the random 

selection of the subjects during cross-validation. We 

did not find significant differences in the performances 

(<5% Accuracy). Finally, we performed the same 

experiment on the Praat dataset, considering also 

features from the vowels /a/, /i/ and /u/. In this case the 

features given by the formant ratios between vowels 

were added (e.g., F1[a]/F1[u]) [13]. As said before, this 

analysis could not be performed with BioVoice due to 

missing data. 

 

III. RESULTS 

 

Table 1 shows the comparison between Praat and 

BioVoice concerning the vowel /a/. We used a two-

sample t-test with level of significance α=0.05. We 

checked the hypothesis of normality by Shapiro-Wilk 

Test (level of significance α=0.05). Table 2 shows the 

True Positive Rate (TPR) and the False Negative Rate 

(FNR) for the four genetic syndromes. 

With BioVoice the 10 features obtained for the best 

model were: T0maxF0 /a/, gender, age, median F3 /a/, 

BMI, min F1 /a/, T0minF0 /a/, min F0, jitter and weight. 

The best model for BioVoice was a KNN with a 



Global Accuracy of 53.1%. Instead with Praat the best 

model was made of 15 features: gender, mean F1 /a/, 

age, mean F2 /a/, BMI, max F0 /a/, min F0 /a/, weight, 

mean F0 /a/. median F0 /a/, Shimmer /a/ APQ11, 

Shimmer /a/ APQ5, Shimmer local /a/, mean F4 /a/, 

Shimmer /a/ DDA. The best model with Praat was a 

KNN with 52.9% of Global Accuracy. 

The features used after the selection process are 

listed in descending order according to their relevance. 

 

Table 1 – Vowel /a/ - Comparison between BioVoice 

and Praat on the 4 syndromes. Statistically significant 

differences are highlighted in bold. 

 
Syndrome 

(p-value) 

Feature DS NS CS SMS 

Median F0 /a/ 0.91 0.74 0.99 0.77 

Mean F0 /a/ 0.80 0.80 0.95 0.66 

Min F0 /a/ 0.01 0.05 p<0.01 0.13 

Max F0 /a/ p<0.01 0.44 0.02 0,16 

Mean F1 /a/ 0.55 0.43 0.92 0.56 

Mean F2 /a/ p<0.01 p<0.01 0.03 0.11 

Mean F3 /a/ p<0.01 0.12 0.23 p<0.01 

 

Table 2 – Vowel /a/ - Comparison between BioVoice 

and Praat - Results of k-fold cross validation. 

Genetic  

Syndrome 

BioVoice Praat 

TPR FNR TPR FNR 

DS 61.9% 38.1% 63.6% 36.4% 

NS 26.7% 73.3% 17.6% 82.4% 

CS 68.4% 31.6% 73.7% 26.3% 

SMS 55.6% 44.4% 40.0% 60.0% 

 

Table 3 shows the results obtained for the four 

genetic syndromes considering all the available Praat 

features for vowels /a/, /u/ and /i/.  

 

Table 3 - Vowels /a/, /i/ and /u/ - KNN’s Multiclass 

confusion matrix with Praat parameters. Main 

diagonal: TPR for each class. Other values: FNR for a 

single class. 

 Predicted Class 

True Class DS NS CS SMS 

DS 68.2% 13.6% 18.2% 0% 

NS 17.6% 64.7% 17.6% 0% 

CS 31.6% 5.3% 63.2% 0% 

SMS 20.0% 10.0% 10.0% 60.0% 

 

The best model was a KNN with Global accuracy 

64.7%. In this case, the following 15 features were 

selected: mean F1 /a/, age, gender, formant ratio 

F1[a]/F1[u], max F0 /a/, mean F2 /a/, Shimmer APQ11 

/a/, mean F0 /a/, median F0 /a/, min F0 /a/, Shimmer /a/ 

(dB), BMI, Shimmer APQ5 /a/, weight, Shimmer /a/ 

(local). 

 

IV. DISCUSSION  

 

This work presents preliminary results concerning 

the discrimination among some genetic syndromes: 

Down Syndrome, Noonan Syndrome, Costello 

Syndrome and Smith-Magenis Syndrome. The analysis 

was performed with acoustical parameters estimated on 

the sustained vowel /a/ with BioVoice and Praat and 

applying machine-learning models. The aim of this 

work was the definition of a proper language 

phenotype able to distinguish the genetic syndromes 

considered. The results shown in Table 2 and 3 

confirm a possible relationship between genetic 

syndromes and their specific acoustical characteristics. 

The results obtained with BioVoice and Praat are 

comparable. Statistical analysis highlights some 

differences between the two tools as far as the 

estimation of formants F2 and F3 for some syndromes 

is concerned (Table 1, p-values <0.05). This might be 

related to different techniques for formants estimation 

implemented in the two tools, as discussed in [14]. 

Moreover, differences between BioVoice and Praat 

exist concerning F0 max and min. This could be due to 

different ranges for F0 estimation defined by the two 

software tools. We remark that with BioVoice the 

selection of the frequency range for adults (male or 

female), infants and newborns is automatically made 

by BioVoice, while Praat requires some skill of the 

user to manually set the best frequency range. 

However, the results shown in Table 2 are preliminary, 

suggesting that the analysis of the vowel /a/ alone 

might not be enough for defining a vocal phenotype 

(TPRs<50%). This is confirmed in Table 3, where the 

acoustical analysis of vowels /i/ and /u/ performed with 

Praat was added for all the syndromes, giving 

Accuracy>50%. In particular, the formant ratio 

F1[a]/F1[u] was classified as one of the most relevant 

features by the ReliefF algorithm. This result suggests 

that a multi-vowel analysis might add more 

information than a single vowel analysis and should be 

preferred for the characterization of these genetic 

syndromes. Our results also confirm evidences 

previously found for some genetic syndromes. Indeed, 

for DS, NS and SMS acoustical analysis was already 

proved useful to find differences between pathological 

and control groups [3, 4, 6]. Table 3 also shows that 

SMS has the lowest false negative rate (0%), 

confirming that acoustical analysis can provide 

characteristics strictly related to the pathology [4]. Our 

results suggest that acoustical analysis could be useful 

also for CS. Indeed, as shown in Table 3, the false 

negative rates between CS and NS were 5.3% and 



17.6% respectively, thus acoustical analysis might be 

useful to discriminate between these two syndromes. 

Our results are preliminary and further study is 

required to confirm them. First, the number of subjects 

was poor, thus more cases must be recruited especially 

for SMS and CdLS. Moreover, we did not perform a 

comparison between pathological subjects and control 

cases. This will be done in future work, also taking into 

account previous studies that already presented such 

differences for some genetic syndromes [3,4,6]. 

Considering the promising results obtained, further 

studies will be made to investigate if some of the 

acoustical features could be specific of a single genetic 

syndrome. The acoustical analysis of vowels /i/ and /u/ 

made with the Praat dataset was found useful, therefore 

we are planning to perform the same analysis with 

BioVoice on the same recordings, when available, 

and/or new ones. Another limit of the work presented 

here is the wide age range of the subjects, also due to 

the low number of cases in some syndromes (e.g. 

CdLS or SMS). If other subjects will be available, a 

more detailed analysis at different age ranges will be 

made. If successful, acoustical analysis may be 

included in the process of differential diagnosis as a 

completely non-invasive approach to detect specific 

acoustical characteristics related to speech or 

phonation impairment for several genetic syndromes, 

along with e.g. the analysis of facial characteristics and 

expressions [17]. 

 
V. CONCLUSIONS 

 

The work presented here is a first step towards the 

analysis and disentangle of the complex mosaics 

behind the detection of “voice” phenotypes related to 

some genetic syndromes. Preliminary results suggest 

that acoustical parameters and supervised classifiers 

might provide additional information about genetic 

syndromes through the characterization of voice. 

Future work will be devoted to the definition of a 

protocol for data recording and will concern a larger 

number of subjects and syndromes, as well as different 

supervised classifiers and feature selection approaches. 
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