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Abstract
Between-individual differences in coping with stress encompass neurophysiological, cognitive and behavioural reactions. The
coping style model proposes two alternative response patterns to challenges that integrate these types of reactions. The “proactive
strategy” combines a general fight-or-flight response and inflexibility in learning with a relatively low HPA (hypothalamic–
pituitary–adrenal) response. The “reactive strategy” includes risk aversion, flexibility in learning and an enhanced HPA response.
Although numerous studies have investigated the possible covariance of cognitive, behavioural and physiological responses,
findings are still mixed. In the present study, we tested the predictions of the coping style model in an unselected population of
bank voles (Myodes glareolus) (N = 70). We measured the voles’ boldness, activity, speed and flexibility in learning and faecal
corticosterone metabolite levels under three conditions (holding in indoor cages, in outdoor enclosures and during open field
test). Individuals were moderately consistent in their HPA response across situations. Proactive voles had significantly lower
corticosterone levels than reactive conspecifics in indoor and outdoor conditions. However, we could not find any co-variation
between cognitive and behavioural traits and corticosterone levels in the open field test. Our results partially support the original
coping style model but suggest a more complex relationship between cognitive, behavioural and endocrine responses than was
initially proposed.

Significance statement
Understanding the proximate mechanisms regulating the individual variation in responses to environmental challenges and
changes is fundamental in ecological and evolutionary research. Theory predicts correlations between behavioural, cognitive
and physiological traits to form alternative strategies named coping styles but recent studies report contrasting and mixed
findings. We examined the relationship between a measure of endocrine state (concentrations of faecal glucocorticoid metabo-
lites), two behavioural traits (boldness and activity) and two cognitive traits (speed and flexibility of learning) in 70 unselected
bank voles (Myodes glareolus) under three different conditions. The findings partially support the original coping style model’s
hypothesis and predictions. We found individual consistency of all traits. However, correlations between behavioural and
cognitive aspects and endocrine state were found only in two of the three tested conditions, highlighting the need for further
investigations and testing of theory.
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Introduction

An individual’s response to social and environmental chal-
lenges (i.e. stress, Koolhaas et al. 2011; LaDage 2015) influ-
ences its short- and long-term prospects of fitness via rank
(e.g. Blanchard et al. 2001; Sapolsky 2004), reproductive suc-
cess (e.g. Holberton and Wingfield 2003; Buchanan et al.
2013), as well as its risk of cardiovascular diseases,
depression-like diseases and immunodeficiency (e.g. Sgoifo
et al. 2005; Henry and Stephens 1977). How successfully an
individual copes with challenges and changes has therefore
relevance for individual fitness (e.g. Naguib et al. 2006; Cyr
and Romero 2007; Maestripieri and Hoffman 2011; Razzoli
et al. 2018). Adaptive responses encompass behavioural, cog-
nitive and neuroendocrine adjustments that will enable the
individual to respond while maintaining organismal function-
ing (e.g. Wingfield 2006; Øverli et al. 2007; Romero et al.
2009; McEwen and Wingfield 2010; Houslay et al. 2018).
However, there is no single optimal way to respond to chal-
lenges. Koolhaas et al. (1999) described alternative response
patterns, named coping styles, in reaction to a stressor, which
integrate neuroendocrine, cognitive and behavioural traits and
place individuals along a proactive-reactive axis. Proactive
individuals are characterised by behavioural traits such as ag-
gressiveness, boldness, neophilia and a general fight-flight
response (Koolhaas et al. 1999; Carere et al. 2010). They are
also expected to display cognitive traits such as quickly
forming routines and being relatively insensible to environ-
mental change; they would be challenged in reversal learning
tasks as well as aversion learning (e.g. Benus et al. 1990;
Koolhaas et al. 1999; Carere et al. 2010; de Lourdes Ruiz-
Gomez et al. 2011; Sih and Del Giudice 2012). The reactive
strategy instead combines low aggressiveness, risk aversion,
neophobia and flexibility, as well as freezing behaviour in
response to stress (e.g. Koolhaas et al. 1999; Carere et al.
2010). Reactive individuals are highly sensitive to environ-
mental cues and changes, and quickly learn avoidance and
reversal tasks (e.g. Benus et al. 1990; Koolhaas et al. 1999;
Carere et al. 2010; de Lourdes Ruiz-Gomez et al. 2011; Sih
and Del Giudice 2012). These patterns could be considered
basic personality traits (e.g. Carere et al. 2010), defined as
between-individuals differences in behaviour consistent
across time and contexts (Réale et al. 2007). These suites of
traits were shown to correlate with different physiological re-
sponses. Compared with reactive individuals, individuals
displaying proactive behavioural and cognitive traits often
have lower basal levels of glucocorticoids (e.g. cortisol or
corticosterone) and lower increases in these hormones under
challenging conditions than reactive individuals (e.g. Carere
and van Oers 2004; Cockrem 2007; Koolhaas et al. 2010). At
the same time, they show a stronger sympathetic activation in
terms of plasma noradrenaline and adrenaline (e.g. Koolhaas
et al. 1999) and a higher heart and breathing rate (e.g.

Koolhaas et al. 1999; but see van Reenen et al. 2005; Ferrari
et al. 2013).

Although the coping style model was supported, complete-
ly or partially, by several studies proving consistent individual
differences in stress response strategies (reviewed in Carere
et al. 2010), the adaptive value and evolutionary maintenance
of such different phenotypes are still under debate (Carere
et al. 2010). Furthermore, the relationship between cognitive
and personality traits and the HPA (hypothalamic–pituitary–
adrenal) axis is still not clear. Recent studies found no evi-
dence of direct co-variation between responses to challenges
and personality or cognitive traits as initially proposed by the
coping style model (e.g. van Reenen et al. 2005; Boulton et al.
2015; Bebus et al. 2016; Qu et al. 2018; Razzoli et al. 2018).
Besides, only a few studies assessed the repeatability and con-
sistency of the behavioural, cognitive and physiological re-
sponses to stress (but see Ellis et al. 2004; Sebire et al. 2007;
Ferrari et al. 2013; Boulton et al. 2015; Qu et al. 2018), which
are a prerequisite for any kind of among-individual variation
assessment (e.g. Dingemanse et al. 2010). Lastly, only a few
recent studies (e.g. Ferrari et al. 2013; Boulton et al. 2015;
Bebus et al. 2016; Qu et al. 2018) measuring differences in
stress response considered wild, free-roaming or unselected
populations and their results suggest a more complex relation-
ship between the behavioural, cognitive and physiological do-
mains. Furthermore, most of these studies report a continuous
variation of traits along a proactive-reactive gradient, rather
than a distinct categorisation of individuals as seen in selected
laboratory lines (e.g. Wilson et al. 1994; Koolhaas et al. 1999;
Brockmann 2008).

The aim of this study was to investigate the relationships
between cognitive and behavioural traits consistent with a
proactive-reactive axis and HPA axis reactivity in an unselect-
ed population. Our study species was the bank vole (Myodes
glareolus), a small rodent common in central and northern
Europe (e.g. Spitzenberger, 1999). Bank voles display repeat-
able personality and physiological traits (e.g. Labocha et al.
2004; Korpela et al. 2010; Eccard et al. 2011; Mazza et al.
2018; Schirmer et al. 2019) and some indication of co-
variation between the two was recently reported (e.g.
Šíchová et al. 2014). Personality in bank voles is also related
to cognitive aspects such as learning speed and flexibility (e.g.
Mazza et al. 2018). Here, we expanded our previous work on
the relationship among personality, learning and flexibility to
investigate whether behavioural, cognitive and endocrine pro-
files were integrated in a manner consistent with the coping
style model. We measured the voles’ faecal corticosterone
metabolite (FCM) levels related to the challenges induced by
three different environmental conditions: indoor in cages, out-
door in semi-natural enclosures and after the open field test.

The analysis of corticosterone metabolites excreted via fae-
ces is a non-invasive and feedback-free technique to assess the
adrenocortical response as a function of stress (Touma et al.
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2003), and has recently been validated also for bank voles
(Sipari et al. 2017). The measured stress response can thus
be disentangled from the stress associated with capturing
and handling the animals when collecting the sample (e.g.
Palme 2019). The method is sensitive enough to detect the
stress response associated with brief acute stressors as well
as prolonged chronic stress, i.e. the exposure to a novel envi-
ronment (e.g. Harper and Austad 2000; Bosson et al. 2009;
Eccard et al. 2011; Sheriff et al. 2011; Fauteux et al. 2017).

We predicted that individuals show consistent endocrine
profiles across different stress situations, i.e. endocrine pro-
files to be repeatable across contexts. We also predicted that
individuals with proactive traits (i.e. bold, active, fast but in-
flexible in learning) show lower HPA axis activity and reac-
tivity compared to individuals with more reactive-like traits
(i.e. shyer, less active, slower and more flexible in learning).

Methods

Animals and housing

We used 86 captive-bred voles (45 males and 41 females),
born of parents that were either wild-caught or removed from
the wild for 1 to 4 generations, thus representative of their
natural source population. A maximum of four individuals
from the same litter (twomales and two females) was included
in our sample. At 3–5 weeks of age, juveniles were weaned,
sexed and assigned a unique identity that was reported on the
cage/enclosure at all times. From then on, animals were
housed and tested individually.

Indoor conditions

Animals were housed in standard polycarbonate cages (Typ
III, Ehret GmbH, Germany; dimensions: 42 cm × 27 cm × 16
cm). Light, temperature and humidity mirrored the natural
conditions occurring outside the lab. Cages were provided
with wood shavings and hay as bedding, and cardboard rolls
for shelter. Water and food pellets (Ssniff V1594 R/M-H Ered
II, Germany) were available ad libitum. Bedding was changed
every 2 weeks.

Association learning and reversal learning tests

A detailed description of testing procedures is provided in
Mazza et al. (2018). Briefly, we tested the voles for their
olfactory associative learning speed and flexibility in a reward
contingency. The test consisted of two tasks: an initial learning
task and a reversal learning task. The cues were neutral odours
that are not normally present in the voles’ natural environ-
ment. The reward was the chance to return to the safety of
the home cage through an opening in a Y-maze. The Y-maze

had bent arms, so that the animals could not see from where
they were released which arm ended in a blocked door and
which lead to the opening. The side of the open door and
associated positive cue were alternated each time a vole en-
tered the maze, to avoid arm bias effects. For reversal learning,
we switched the reward contingency, so that the previously
rewarded odour now led to the blocked door. This required the
animal’s attention to external cues and flexible updating of the
response to changed conditions; it was therefore considered a
measure of cognitive and behavioural flexibility. Both tasks
were considered successfully solved when the vole learned the
association between the neutral odour cue and the reward, and
chose the arm leading to the home cage in seven out of 10
consecutive trials. Learning and reversal learning were
expressed as scores based on the number of trials necessary
to reach the criterion in the two tasks.

Personality assessment

We tested for consistent between-individual differences using
two standardised behavioural tests (Réale et al. 2007): the
open field test and the novel object test. Voles were tested
between 20 and 50 weeks of age, 2 days after the conclusion
of the learning trials (see timeline in the Supplementary
material). Both tests were repeated after 15 days to calculate
repeatability of the behavioural response. A detailed descrip-
tion of testing procedures is provided by Mazza et al. (2018).
The open field test (Archer 1973) is one of the most widely
used tests in personality research to measure activity and ex-
ploration (Réale et al. 2007). However, it was originally intro-
duced to measure anxiety-related behaviours, exploiting the
natural aversion of rodents of exposed spaces (e.g. Archer
1973; Carola et al. 2002; Lecorps et al. 2016). Previous studies
have used this test as stressor to measure not only exploratory
behaviour but also physiological responses to induced stress
(e.g. Bats et al. 2001; Boulton et al. 2015; Lecorps et al. 2016).
A novel, empty, circular arena (100 cm wide, walls 40 cm
high) was virtually divided into two areas (Herde and Eccard
2013; Mazza et al. 2018): a peripheral area of 10 cm width,
and a central area of 80 cm width. Each animal was placed in
the peripheral area of the arena and its behaviour was observed
and recorded via a video camera (Logitech Quick Cam Pro
9000, PID LZ727BA, Logitech international S.A., Morges,
Switzerland) for 10 min. From these videos, we quantified
the following variables: (i) the latency to enter the central area
for the first time (with the full body, excluding the tail), (ii) the
proportion of time spent the central area assessed instanta-
neously every 10 s and (iii) the proportion of time spent active
(i.e. walking, running or jumping) assessed instantaneously
every 10 s.We took subjects from their home cage only during
their active phase (e.g. Ylönen 1988), i.e. when they were
perceived moving in the cage; this allowed us to test all ani-
mals during similar activity levels.
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We assessed the animals’ approach towards a novel object
that was introduced in the home cage, which is usually con-
sidered a measure of boldness and neophilia (e.g. Réale et al.
2007; Crane and Ferrari 2017). We used two different novel
objects, one for each round of testing: a plastic toy horse (8 × 4
× 6 cm) and a plastic toy duck (6.5 × 5 × 6 cm). The subjects’
behaviour was monitored with a video camera (as above) for
30 min. We quantified the following variables from the
videos: (i) the latency to leave the shelter (full body, excluding
tail), (ii) the latency to approach the novel object (advancing
the head closer than 2 cm), (iii) the number of interactions
with the novel object (sniffing, touching and nibbling) and
(iv) the overall duration of the interactions. These variables
were then reduced and summarised with principal component
analyses (PCA).We ran PCAs for the open field and the novel
object test separately. PCA gave a composite score for each
round of testing of the open field and for each round of testing
of the novel object. We then calculated the individual mean
PCA scores for the first factor for the open field and the novel
object tests, respectively. These average scores were termed
“activity” and “boldness” and used for all further analyses
(further details in Mazza et al. 2018).

Outdoor conditions

A subsample of 48 voleswas also tested in outdoor conditions 2–
4 months after the conclusion of the indoor and open field as-
sessments, between June and September 2016 (see
Supplementary material). For this part of the experiment, we
selected the animals which showed the most pronounced proac-
tive and reactive traits, i.e. had the highest and lowest boldness
and activity scores, and were the fastest and slowest to reach the
criterion in an association learning test. The change from indoor
to outdoor, semi-natural conditions was intended to detect possi-
ble different reactions to the challenge of adjusting to an unfa-
miliar environment. We tried to recreate as much as possible the
characteristics and challenges of bank voles’ natural environment
without actually releasing them in the wild, which would have
decreased our chances of retrieving them due to predation and
dispersal. Voles were kept individually in 3 × 4 m semi-natural
enclosures, which had a concrete base filled with a 40 cm soil
layer, mesh wire walls and a plastic roof cover to provide pro-
tection from unfavourable weather and comparable conditions
for all animals. Enclosures were located close to agricultural
fields at the Julius Kühn Institute in Münster. They were sown
with a local grass mix to mimic perennial grassland. Vegetation
height was kept at ca. 2 cm in one half of the enclosures and ca.
20 cm in the other half, which was additionally covered by
camouflage netting, in order to mimic the heterogeneous condi-
tions and exposure voles might experience in their natural habi-
tat. In each enclosure, a plastic nest box (32 × 22 × 16 cm)
provided with hay was buried level with the enclosure surface
in one corner to provide a nesting opportunity. Food was

provided in plastic trays (20 × 15 × 5 cm) containing a mixture
of crushed hazelnuts (2 g) and sand (0.75 l), so that voles would
have to actively search for it. Voles remained in the enclosures for
5 days. They were then retrieved using Ugglan multiple-capture
live-traps (Ugglan Special Traps n. 2, Grahnab AB, Hillerstorp,
Sweden).

Faecal samples collection

Faecal pellets were collected following procedures by
Liesenjohann et al. (2013) and Gracceva et al. (2014) to de-
termine FCM concentrations that reflected basal values for
holding conditions in indoor cages and outdoor enclosures
and values during the second round of open field tests (see
Supplementary material). Voles were tested in the open field
arena between 08:00 am and 10:00 am. They were then trans-
ferred from the arena into plastic cages with mesh floor (20 ×
39 × 15 cm). The cages were provided with the usual food and
water and a cardboard shelter that allowed faecal pellets
to drop through the bottom of the cage into a plastic tray lined
with paper towels. This allowed us to easily collect them
without moving, handling and therefore stressing the animals.
Paper towels were changed after sampling and whenever they
were stained with urine. Voles remained in the cages for ca. 8
h.

In bank voles, corticosterone metabolites take about 6–8 h
to complete the passage through the intestinal tract and to be
excreted with the faeces (Sipari et al. 2017). We collected the
faecal pellets excreted within the first 2 h after the open field
test, and considered them as indicative of the conditions the
animals experienced approximately 6–8 h before (Sipari et al.
2017), which we presumed to represent undisturbed basal in-
door conditions. We then collected the pellets excreted 6–8 h
after the open field test and considered them indicative of the
stress response to the open field test (Sipari et al. 2017). Of the
86 tested animals, 72 produced the quantity required for anal-
yses (ca. 15–20 faecal pellets). This quantity, once dried and
homogenised, allowed collecting a 0.05 g aliquot of sample.
We collected the outdoor samples after retrieving the voles
from the enclosures (see Supplementary material). Traps were
equipped with sensors that allowed us to retrieve the voles
immediately after capture (Notz et al. 2017). The glucocorti-
coid metabolites measured in their faeces should therefore
reflect the outdoor conditions voles were experiencing in the
enclosures. Voles were trapped between 08:30 am and 12:00
pm. Samples were collected within the first 2.5 h after capture.
The vole was then transferred to a normal cage with hay and
bedding (see “Indoor housing conditions” above). Six of 48
voles did not produce enough pellets for analyses within the
first 3 h from capture. All faecal samples were collected from
the paper towels into plastic Eppendorf tubes (1.5 ml) using
tweezers and stored at − 20 °C. Pellets clearly contaminated
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with urine (e.g. lying in urine spots) were not collected.
Tweezers were cleaned with 70% alcohol after each sampling.

Analysis of faecal corticosterone metabolites

Extraction of steroids was conducted according to the method
described by Palme et al. (2013). Briefly, each faecal sample
was homogenised with mortar and pestle and an aliquot of
0.05 g was mixed with 80% methanol (1 ml) and shaken in
a multi-vortex. We completed the extraction only when the
sample mass was sufficient to provide a 0.05 g aliquot (e.g.
Millspaugh and Washburn 2004; Blondel et al. 2016). The
suspension was then centrifuged for 10 min at 2500 G. An
aliquot of the supernatant was diluted (1:10) with assay buffer
(Tris/HCl 20mM, pH 7.5) and stored at − 20 °C until analysis.

To determine the amount of corticosterone metabolites, we
used a 5α-pregnane-3β,11β,21-triol-20-one enzyme immunoas-
say (EIA). This EIA utilises a group-specific antibodymeasuring
steroids with a 5α-3β,11β-diol structure. A detailed description
of the procedures is given in Touma et al. (2003). The intra- and
inter-assay coefficients of variation were 9.3 and 13.6%, respec-
tively (N = 9 plates). The samples were grouped so that all the
samples from one individual were on the same plate, and each
plate had a similar number of samples coming from voles with
different cognitive and behavioural profiles. The person doing
the grouping of the samples was not the same that ran the EIA
analysis. This part of the analysis was performed blind to the
cognitive and behavioural profiles of the voles from which the
samples were collected. The EIA has recently been validated for
bank voles (Sipari et al. 2017).

Statistical analyses

Data were normalised through square-root transformation and
analysed with R, version 3.2.3 (R Core Team 2015). We re-
moved from the dataset two outliers that had indoor and open
field values > 3 standard deviations higher than the means.We
tested whether individual FCM levels were repeatable, i.e.
consistent across contexts, using the ‘rtpR’ package and
adjusting for treatment (Nakagawa and Schielzeth 2010;
Stoffel et al. 2017). Repeatability is the proportion of pheno-
typic variation that can be attributed to between-individual
variation (Nakagawa and Schielzeth 2010; Dingemanse and
Dochtermann 2013). Adjusted repeatabilities are repeatabil-
ities that control (adjust) for fixed effects (Stoffel et al. 2017)
and describe the repeatability once the effect of the treatment
has been removed, such that repeatabilities are calculated as if
all measures were taken in the same conditions. We used re-
stricted maximum-likelihood linear mixed models to evaluate
the relationship between the FCM levels in each treatment and
the behavioural and cognitive variables (activity, boldness,
learning and reversal learning scores), considered as fixed
effects. We ran separate models for each variable. In all

models, sex, age and weight were added as fixed effects.
The EIA plate and the litter identity were added as random
factors in each model, specified as random intercept to control
for inter-assay variation and to check for the possible effect of
having siblings (maximum of four per litter) in our sample
(e.g. Macrì and Würbel 2006; Rödel et al. 2010). We stepwise
compared nested models with both random factors with sim-
pler models. When a simpler model had a better fit (indicated
by 2 ≥ AICfull–AICconstrained, where AIC is the Akaike infor-
mation criterion) the second random factor was dropped (Zuur
et al. 2009). We included all possible two-way interactions
between the explanatory variables and excluded them step-
wise if they were non-significant based on log-likelihood ratio
tests (Zuur et al. 2009). We used the R packages nlme, version
3.1-131, and lme4, version 1.1-12 (Bates et al. 2015; Pinheiro
et al. 2017). Visual inspection of residual plots did not reveal
any obvious deviations from homoscedasticity or normality.

We tested for phenotypic correlations between the physio-
logical response to a change in environmental conditions (i.e.,
delta FCM, outdoor minus indoor FCM levels) and behaviour-
al and cognitive variables using Spearman rank correlation
tests. We could not run multivariate mixed models
(MCMCglmm) to estimate covariances and correlations be-
tween traits due to the heterogeneity in place and time of the
sampling. Given the different time of day at which the samples
were collected, a similar comparison could not bemade for the
open field FCM levels because the corticosterone levels in-
crease naturally during the day (Sipari et al. 2017). Since we
selected extreme fast/inflexible and slow/flexible voles for the
outdoor experiment, we also compared the difference in FCM
levels of voles in indoor and outdoor conditions (outdoor -
indoor) between these two groups with a Mann-Whitney U
test to assess whether the two groups responded differently to
the change in holding conditions. The accepted significance
level was ≤ 0.05 throughout.

Results

At the population level, mean (± SD) concentrations of faecal
corticosteronemetabolites (FCMs) were 42.7 ± 23.9 ng/50mg in
indoor holding conditions, 38.3 ± 23.5 ng/50 mg in the outdoor
holding conditions and 66.4 ± 48.8 ng/50 mg after the open field
test. FCM levels did not differ between indoor and outdoor con-
dition. Given the different time of day at which samples were
collected, FCM levels could not be compared between open field
test and the other two conditions. FCM levels were repeatable
across contexts (Radj = 0.25, 95% CI = 0.08–0.43, P = 0.004;
unadjusted R = 0.21, CI = 0.04–0.38, P = 0.008), indicating that
the rank order differences between individuals are maintained
(Dingemanse and Wolf 2010). Both activity in the open field
(R = 0.74, CI = 0.65–0.84, P < 0.001) and boldness towards a
novel object (R = 0.67, CI = 0.68–0.89, P < 0.001) were
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repeatable over time. Bolder and less flexible individuals had
lower FCM levels than shyer, more flexible individuals both in
indoor and outdoor holding conditions (Table 1; Fig. 1). Activity
and initial learning score were not related to FCM levels in any
condition (Table 1). FCM levels after the open field were unre-
lated to any measured behavioural or cognitive variable
(Table 1). The difference between FCM levels in holding condi-
tions (outdoor-indoor) correlated negatively with boldness (Rs =
− 0.48, P = 0.002; Fig. 2a) and reversal learning scores (Rs = −
0.33, P = 0.04; Fig. 2b). Reactive and proactive bank voles
differed in their FCM level change between conditions (out-
door-indoor), with proactive voles having a lower Δ than reac-
tive ones (Mann-Whitney U test:W = 116, P = 0.02, Fig. 3).

Discussion

Bank voles showed consistent differences between individ-
uals in their physiological response to three different experi-
mental conditions. We could detect relationships between

FCM levels, boldness and flexibility (measured in reversal
learning) but only in indoor and outdoor conditions.
Individuals showing different personality and cognitive pro-
files were also shown to respond differently to the change
from indoor to outdoor conditions, with proactive voles hav-
ing lower FCM levels in the enclosures than in the cages, and
reactive ones showing an opposite pattern. However, contrary
to our expectations, all measured traits were independent from
the HPA axis response induced by the open field test. Overall,
our results provide only partial support for phenotypic corre-
lation between behavioural, cognitive and HPA profiles pre-
dicted by the initial coping styles model.

According to our first prediction, individual FCMs were
moderately repeatable across three different environmental
conditions. These results are in line both with the assumptions
of the coping style model and with previous studies conducted
on bank voles (Eccard et al. 2011) and other vertebrates
(reviewed in Taff et al. 2018). This is also the case for the
study by Ferrari et al. (2013), which found repeatable
within-individual consistency in physiological profiles in a

Table 1 Faecal corticosterone metabolites (ng/50 mg of dry faeces) in
relation to activity, boldness, learning, reversal learning, age, sex, body
mass and treatment of bank voles (Myodes glareolus) in indoor cages,

outdoor enclosures and open field test. Statistically significant effects are
highlighted in bold. Reference levels for categorical predictors are given
in ()

Indoor (N = 70) Outdoor (N = 40) Open Field (N = 67)

Variable Estimate SE F P Estimate SE F P Estimate SE F P

Boldness

Intercept 5.88 1.83 960.4 < 0.001 8.77 2.49 181.6 < 0.001 2.81 2.84 592.7 < 0.001

Boldness − 0.58 0.22 9.4 0.003 − 1.04 0.21 23.2 < 0.001 0.34 0.33 0.2 0.689

Age − 0.004 0.03 0.3 0.616 − 0.04 0.02 2.1 0.15 0.08 0.05 1.1 0.293

Sex (M) 1.19 0.62 8.6 0.005 0.46 0.73 0.2 0.66 2.35 0.96 16.1 < 0.001

Body mass 0.001 0.07 0.0003 0.985 − 0.05 0.08 0.3 0.56 0.03 0.11 0.1 0.775

Activity

Intercept 6.08 1.98 889.4 < 0.001 7.01 2.97 211.7 < 0.001 2.32 2.97 589.1 < 0.001

Activity − 0.32 0.23 2.8 0.100 − 0.45 0.26 3.3 0.081 0.30 0.34 0.02 0.901

Age − 0.002 0.03 0.2 0.678 − 0.02 0.03 0.5 0.502 0.08 0.05 1.1 0.303

Sex (M) 1.40 0.64 9.0 0.004 0.65 0.83 0.6 0.448 2.20 0.95 15.7 < 0.001

Body mass − 0.02 0.07 0.1 0.794 − 0.02 0.10 0.04 0.834 0.05 0.11 0.2 0.635

Learning

Intercept 5.00 1.98 867.1 < 0.001 5.38 3.10 178.4 < 0.001 4.27 2.95 579.9 < 0.001

Learning 0.03 0.06 1.0 0.324 0.13 0.07 4.0 0.054 − 0.12 0.09 0.2 0.669

Age 0.01 0.03 0.1 0.819 − 0.03 0.03 1.0 0.331 0.08 0.05 1.2 0.275

Sex (M) 1.36 0.65 9.1 0.004 0.50 0.84 0.3 0.599 2.30 0.95 16.1 < 0.001

Body mass − 0.01 0.07 0.0 0.912 − 0.03 0.10 0.1 0.800 0.05 0.11 0.2 0.668

Reversal learning

Intercept 7.27 2.18 906.6 < 0.001 12.31 3.08 154.8 < 0.001 0.98 3.23 599.4 < 0.001

Reversal learning − 0.11 0.06 4.3 0.043 − 0.23 0.07 10.7 0.003 0.12 0.09 1.0 0.325

Age 0.01 0.03 0.0 0.923 − 0.03 0.03 1.0 0.332 0.07 0.05 1.1 0.305

Sex (M) 1.32 0.63 9.3 0.004 0.80 0.81 0.6 0.464 2.30 0.95 16.2 < 0.001

Body mass − 0.01 0.07 0.0 0.936 − 0.07 0.09 0.6 0.450 0.04 0.11 0.1 0.738
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natural population of marmots (Marmota marmota), even af-
ter years. In our study, we assessed the corticosterone secre-
tion of the voles within hours (open field and cage conditions),
and 2–4 months afterwards, which can be considered a long
interval in the case of a short-lived small mammal (e.g.
Bujalska 1975; Boratyński and Koteja 2009).

However, our prediction regarding the correlation of endo-
crine, behavioural and cognitive traits was only partially sup-
ported. We found some, but not all, of the correlations we
expected between behavioural and cognitive traits and HPA
axis activity and reactivity in different conditions. Proactive
individuals (bolder, faster to learn but slower to reverse)
showed indeed lower FCM levels compared with reactive
individuals (shyer, slower to learn but flexible) when FCMs
were measured when undisturbed in their indoor home cages
and in outdoor enclosures. This supports the original coping
style model, showing a direct connection between boldness
and flexibility and HPA axis activity. However, there was no
link between FCM levels and the behavioural and cognitive
variables in the open field test. The original coping style mod-
el, predicts both lower HPA activity and reactivity to stressful
challenges, therefore our results provide only partial support.
Furthermore, we found no relation between activity and FCM

levels in any condition. Previous studies, conducted both in
laboratory and semi-natural conditions, offer mixed findings
on this issue. Whereas several studies demonstrated correla-
tions between various personality traits and responses to an
acute stressor (e.g. Korte et al. 1992; Carere et al. 2003; Kralj-
Fišer et al. 2007), others found that individuals with proactive
personality traits had the highest HPA response to a stressor
(e.g. Martins et al. 2007; Boulton et al. 2015), suggesting a
non-linear connection between coping styles and HPA axis
activity and reactivity (Koolhaas et al. 2010). Moreover, van
Reenen et al. (2005) found no correlation between Holstein
Friesian heifer calves’ (Bos taurus) glucocorticoid levels and
activity. Similarly, Westrick et al. (2019) found no correlation
among FCMs and three behavioural measures of coping styles
(activity, aggression and docility) in North American red
squirrels (Tamiasciurus hudsonicus). Bebus et al. (2016)
found no connection between corticosterone levels at the time
of testing, learning and reversal learning in Florida scrub-jays
(Aphelocoma coerulescens), although corticosterone levels
during development predicted the cognitive performance.
Similarly, Ferrari et al. (2013) showed that cortisol production
under restraint was totally independent of other types of reac-
tions to a stressor, both behaviourally and physiologically

Fig. 1 Faecal corticosterone
metabolites (ng/50 mg of dry
faeces) of bank voles (Myodes
glareolus) in relation to boldness
(a) and reversal learning scores
(b) in indoor (white symbols) and
outdoor (black symbols) holding
conditions. Represented are
effects obtained from LMs (R2:
0.19 (a); R2: 0.15 (b)) for visual
representation and raw data of
individuals (dots)

Fig. 2 Changes in concentrations
of faecal corticosterone
metabolites (ng/50 mg of dry
faeces) between outdoor and
indoor holding conditions
(outdoor-indoor) in relation to
boldness (a) and reversal learning
scores (b). Represented are effects
obtained from LMs (R2: 0.18 (a);
R2: 0.13 (b)) for visual represen-
tation and raw data of individuals
(dots)
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(e.g. locomotion, heart and breathing rate). Based on these and
other findings, some authors have suggested that there might
be at least two independent components of the stress response:
the quantitative component (stress response) that describes the
physiological aspects of the glucocorticoid production, and
the qualitative component (coping style) comprises the behav-
ioural and cognitive strategies employed in coping with the
stressor (e.g. van Reenen et al. 2005; Koolhaas et al. 2010; Qu
et al. 2018; Westrick et al. 2019). Thus, individuals showing
similar behavioural responses (e.g. activity) may produce very
different levels of glucocorticoids (van Reenen et al. 2005;
Westrick et al. 2019). Our results regarding the HPA axis
reactivity to challenges seem more in line with this two-tier
model. Thus, further studies are needed to conceptually refine
the coping style model and to investigate the relationship be-
tween behavioural, cognitive and endocrine profiles in more
detail.

An alternative explanation for these mixed findings could
be that the predictions made based on results obtained with
selection lines might not hold for natural or non-selected pop-
ulations. Similar to previous studies in wild, free-roaming or
unselected populations (e.g. Dingemanse et al. 2004; Found
and St Clair 2016; Bonnot et al. 2018; Zidar et al. 2019), the
behavioural and cognitive traits we measured were distributed
along a continuous proactive-reactive gradient. It is also worth
noting that the more robust results in the present study refer to
the outdoor condition. The voles assessed for their response to
the new environment were chosen among those showing the
more extreme proactive and reactive behavioural and cogni-
tive traits. The responses of the individuals with intermediate
behavioural and cognitive profiles might therefore have

clouded the results for indoor holding condition and open field
trials. If this is the case, future research would have to focus
more on natural, unselected populations, preferably
employing the natural stressors the animals experience in the
wild (e.g. using predator cues or simulating predator attacks).
Interpretation of findings and insights into apparently mixed
results will also benefit from the investigation of responses to
challenges presenting varying levels of complexity.

All animals in this experiment were born and raised in
captivity and experienced semi-natural condition for the first
time during the enclosure trials. This could have resulted in
either an increase in the FCM levels due to the challenge of
adjusting to a novel environment (e.g. Teixeira et al. 2007;
Dickens et al. 2010; Parker et al. 2012) or in a decrease of
FCM levels due to not being confined in a cage (e.g.
Cooperman et al. 2004; Davis and Maerz 2011; Blondel
et al. 2016). However, the direction of the change in FCM
levels differed between proactive and reactive individuals.
Proactive individuals’ FCMs decreased or remained stable
when moved outdoor, whereas reactive individuals’ FCM
levels mostly increased. Previous studies have found that after
a period of adjustment and habituation, individuals show con-
sistent and significant lower stress levels when kept in more
natural conditions compared with cages (e.g. Schumann et al.
2014; Blondel et al. 2016). This has important consequences
for animal welfare as well as for the reliability of behavioural
and cognitive studies conducted with caged animals (e.g.
Schumann et al. 2014; Blondel et al. 2016). One possible
explanation for our results might be that individuals with dif-
ferent coping styles need different amounts of time to adjust to
a new environment (e.g. Lowry et al. 2013; Sol et al. 2013).
Proactive individuals are bolder, more active animals, relative-
ly insensible to change, they explore a new environment faster
(albeit superficially) and quickly form coping routines (e.g.
Koolhaas et al. 1999, 2010; Sih and Del Giudice 2012).
Theymight therefore have responded to the change of housing
conditions with a lower corticosterone production to begin
with, and took less time to adjust to more natural conditions.
Reactive individuals, highly sensitive to environmental
changes and slower in gathering information (e.g. Koolhaas
et al. 1999, 2010; Sih and Del Giudice 2012), might have
reacted more strongly to the change and have been retrieved
from the enclosures while they were still in the process of
adjusting (e.g. Schumann et al. 2014; Blondel et al. 2016).
This is a rather speculative suggestion, although other obser-
vations imply that reactive individuals went through a change
in their foraging behaviour, concentrating effort to the more
protected areas and showing a significantly higher proportion
of vigilance behaviour compared with proactive ones (Mazza
et al. 2019). Further studies should investigate whether the
change from cages to natural conditions affects proactive
and reactive individuals differently and whether this is only
a matter of habituation time.

Fig. 3 Changes in concentrations of faecal corticosterone metabolites
(ng/50 mg of dry faeces) between outdoor and indoor holding
conditions (outdoor-indoor) for proactive (N = 18) and reactive (N =
22) bank voles (Myodes glareolus). Horizontal lines within box plots
represent median values, boxes represent the interquartile range, and
whiskers represent the range of values within 1.5 times the interquartile
range. Individual data points are jittered
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Conclusions

HPA axis activity proved to be a repeatable trait in bank voles
and correlated with some personality traits, at least under
some conditions. HPA axis response to induced stress, how-
ever, did not correlate with any other trait and our results
might therefore be better explained by the updated coping
styles model involving two different and separate axes
(Koolhaas et al. 2010). Determining whether or not this two-
tier model is generally true across species and/or environmen-
tal contexts will require further studies, more attention to nat-
ural populations, and wider adoption of repeated measures
designs to allow within- and among-individual sources of
co-variation to be disentangled.

This study also highlights that experiments conducted in
what are supposed to be controlled and protected conditions,
might reveal patterns that are not consistent with natural con-
ditions and that the sole fact of being confined might differ-
entially affect individuals and their responses to stressors and
other environmental effects.
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