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ABSTRACT
A method is proposed for testing stationarity in an opera-

tional sense, i.e., by both including explicitly an observation
scale in the definition and elaborating a stationarized refer-
ence so as to reject the null hypothesis of stationarity with
a controlled level of statistical significance. While the ap-
proach is classically based on comparing local vs. global
features in the time-frequency plane, the test operates with a
family of stationarized surrogates whose analysis allows for
a characterization of the null hypothesis. The general prin-
ciple of the method is outlined, practical issues related to its
actual implementation are discussed and a typical example
is provided for illustrating the approach and supporting its
effectiveness.

1. INTRODUCTION

Testing stationarity is an important issue in several re-
spects. As far as methods are concerned, signal processing is
equipped with many powerful algorithms devoted to station-
ary processes, whose applicability should therefore be first
assessed prior using them. Turning to interpretation, reject-
ing stationarity (and measuring some degree of nonstationar-
ity) is of primary importance in numerous applications rang-
ing from exploratory data analysis to diagnosis or surveil-
lance.

However, whereas the concept of (weak, or second-order)
stationarity is well-defined in theory, it turns out that it gen-
erally cannot be used as such in practice. Indeed, stationarity
refers to a strict invariance of statistical properties over time,
but common practice generally considers this invariance in
a looser sense, relatively to some (explicit or implicit) ob-
servation scale. This certainly agrees with the physical intu-
ition according to which a signal might appear, e.g., as both
“short-term stationary” and “long-term nonstationary” (think
of speech), but this also calls for a well-defined framework
encompassing the observation scale as part of the definition
as well as the possibility of testing such a stationarity with a
controlled level of statistical significance.

Several attempts in this direction can be found in the lit-
erature, mostly based on concepts such aslocal stationarity
[12]. Most of them however share the common philosophy
of comparing statistics of adjacent segments, with the objec-
tive of detecting changes in the data [4, 8] and/or segmenting
it over homogeneous domains [9] rather than addressing the
aforementioned issue. Early attempts have nevertheless be
made in this direction too by contrasting local properties with
global ones [10, 11], but not necessarily properly phrased in
terms of hypothesis testing.

It is therefore the purpose of this contribution to propose
and describe an approach aimed at deciding whether an ob-

served signal can be considered as stationary,relatively to a
given observation scale, and, if not, to give anindexas well
as a typicalscaleof nonstationarity.

The paper is organized as follows. In Sect. 2, the general
framework of the proposed approach is outlined. Sect. 2.1
details the time-frequency rationale of the method, whereas
Sect. 2.2 is concerned with the introduction ofsurrogate
datafor characterizing the null hypothesis of stationarity and
constructing the test. The test itself is discussed in Sect.
2.3, from which both an index and a scale of nonstationar-
ity are defined in Sect. 2.4. The actual implementation of
the method is discussed in Sect. 3, with elements regarding
test signals in Sect. 3.1, distance measures in Sect. 3.2 and
thresholds in Sect. 3.3. An illustration is given in Sect. 3.4
for supporting the efficiency of the method and, finally, some
of the many possible variations and extensions are briefly
outlined in Sect. 4.

2. GENERAL FRAMEWORK

Second order stationary processes are a special case of the
more general class of (nonstationary) harmonizable pro-
cesses, for which time-varying spectra can be properly de-
fined [5]. When the analyzed process happens to be sta-
tionary, those time-varying spectra may reduce to the classi-
cal (stationary, time-independent) Power Spectrum Density
(PSD) when suitably chosen: this holds true, e.g., for the
Wigner-Ville Spectrum (WVS) [5]. In the case of more gen-
eral definitions that can be considered as estimators of the
WVS (e.g., spectrograms), the key point is that stationar-
ity still implies time-independence: the time-varying spectra
identify, at each time instant, to some frequency smoothed
version of the PSD. The basic idea underlying the approach
proposed here is therefore that, when considered over a given
duration, a process will be referred to asstationary relatively
to this observation scaleif its time-varying spectrum under-
goes no evolution or, in other words, if the local spectra at all
different time instants are statistically similar to the global
spectrum obtained by marginalization. This idea has already
been pushed forward [10, 11], but the novelty is to address
the significance of the difference “local vs. global” by elab-
orating from the data itself astationarizedreference serving
as the null hypothesis for the test.

2.1 The Time-Frequency Approach

Given a signalx(t), we compute a multitaper spectrogram
estimate of its WVS according to [2]

Sx,K(t, f ) =
1
K

K

∑
k=1

S(hk)
x (t, f ),
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where the{S(hk)
x (t, f ),k = 1, . . .K} stand for theK spectro-

grams computed with theK first Hermite functions as short-
time windowshk(t):

S(hk)
x (t, f ) =

∣∣∣∣∫ x(s)hk(s− t)e−i2π f sds

∣∣∣∣2 .

The multitaper approach is preferred to a classical spec-
trogram in order to reduce the level of statistical fluctuations
of the nonstationary spectrum without recoursing to a time-
averaging step which would be unsatisfactory in the context
of (non-)stationarity estimation. The multitaper spectrogram
is in fact evaluated only atN time positions{tn,n= 1, . . .N},
with a spacingtn+1− tn which is an adjustable fraction of
the temporal widthTh of theK windowshk(t). Given there-
fore the set of spectral “slices”{Sx,K(tn, f ),n = 1, . . .N}, we
can compute an average spectrum via the marginalization in
time:

〈Sx,K(tn, f )〉n=1,...N =
1
N

N

∑
n=1

Sx,K(tn, f )

and compare it to each spectral slice according to some dis-
similarity measureκ(., .) (possible choices for this measure
will be discussed in Sect. 3.2), thus leading to the series of
“distances” over the time interval fromt1 to tN:

{c(x)
n := κ (Sx,K(tn, .),〈Sx,K(tn, .)〉n=1,...N) ,n = 1, . . .N}. (1)

In the idealized case wherex(t) would be stationary and
the estimation perfect, all those coefficients would be zero.
In practice however, they of course fluctuate and the issue is
to determine whether the observed fluctuation is significant
or not: this is wheresurrogatesenter into the play.

2.2 Surrogates

The time-frequency interpretation of stationarity described
above amounts to say that, for a same marginal spectrum
over the same observation interval,nonstationaryprocesses
differ from stationaryones by some structured organization
in time. Distinguishing between stationarity and nonstation-
arity would therefore be made easier if, besides the analyzed
signal itself, we also had at our disposal some reference hav-
ing the same marginal spectrum while being stationary. Since
such a reference is generally not available, one possibility is
to create it from the data: this is the rationale behind the idea
of “surrogate data”, a technique which has been introduced
and widely used in the physics literature, mostly for testing
nonlinearity [14, 16]. Up to some related proposal reported
in [7], it seems to have never been used as proposed here for
testing nonstationarity, i.e., in the following sense: given the
observed signalx(t), a set ofJ “surrogates” is computed in
such a way that each of them has the same PSD as the origi-
nal signal while being “stationarized”.

As mentioned before, this can be achieved by destroying
the organized phase structure controlling the nonstationarity
of x(t), if any. In practice,x(t) is first Fourier transformed
to X( f ), and the modulus ofX( f ) is then kept unchanged
while its phase is replaced by a random one, uniformly dis-
tributed over[−π,π]. This modified spectrum is finally (in-
verse) Fourier transformed, leading to as many (stationary)
surrogate signals as phase randomizations are operated.

2.3 Stationarity Test

Let us label{sj(t), j = 1, . . .J} the J surrogate signals ob-
tained as just described. When they are analyzed as ex-
plained above for the original signalx(t), we finally end up
with a new collection of distances

{c(sj )
n := κ

(
Ssj ,K(tn, .),〈Ssj ,K(tn, .)〉n

)
,n= 1, . . .N, j = 1, . . .J},

depending on both time indexes and randomizations.
In order to measure the fluctuations in time of the diver-

gencesc(.)
n between local spectra and global ones, we can use

the l2-distance defined by

L(g,h) :=
1
N

N

∑
n=1

(gn−hn)
2 , (2)

for any pair of sequences{(gn,hn),n = 1, . . .N}.
As far as the intrinsic variability of surrogate data is con-

cerned, the dispersion of divergences under the null hypoth-
esis of stationarity can be measured by the distribution of the
J empirical variances{

Θ0( j) = L
(

c(sj ),〈c(sj )〉n=1,...N

)
, j = 1, . . .J

}
. (3)

This distribution allows for the determination of a thresh-
old γ above which the null hypothesis is rejected. The effec-
tive test is therefore based on the statistics

Θ1 = L
(

c(x),〈c(x)〉n=1,...N

)
(4)

and takes on the form of the one-sided test:{
Θ1 > γ : “nonstationarity”;
Θ1 < γ : “stationarity” . (5)

2.4 Index and Scale of Nonstationarity

Assuming that the null hypothesis of stationarity is rejected,
an index of nonstationaritycan be introduced as a function
of the ratio between the test statistics (4) and the mean value
(or the median) of its stationarized counterparts (3):

INS :=

√
Θ1

1
J ∑J

j=1 Θ0( j)
. (6)

If the signal happens to be stationary, INS is expected to
take a value close to unity whereas, the more nonstationary
the signal, the larger the index.

Finally, it has to be remarked that, whereas the tested sta-
tionarity is globally relative to the time intervalT over which
the signal is chosen to be observed, the analysis still depends
on the window lengthTh of the spectrogram. GivenT, the
index INS will therefore be a function ofTh and, repeating
the test with different window lengths, we can end up with a
typicalscale of nonstationaritySNS defined as:

SNS :=
1
T

argmax
Th
{INS(Th)} , (7)

with Th in the range of window lengths such that the pre-
scribed threshold is exceeded in (5).
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3. THE TEST IN ACTION

The principle of the test having been outlined, its actual im-
plementation depends on a number of choices that have to be
made and justified, regarding distances, surrogates, thresh-
olds, etc.: addressing such issues is the purpose of this Sec-
tion. Many options are however offered, that are moreover
intertwined. A complete investigation of all possibilities and
their combinations is clearly beyond the scope of this paper.
Nevertheless, key features that are important for the test to
be used in practice will be highlighted here.

3.1 Test signals

Setting specific parameters in the implementation is likely to
end up with performance depending on the type of nonsta-
tionarity of the signal under test. Whereas no general frame-
work can be given for encompassing all possible situations,
two main classes of nonstationarities can be distinguished,
which both give rise to a clear picture in the time-frequency
plane: amplitude modulation (AM) and frequency modula-
tion (FM). We will base the following discussions on such
classes. In the first case (AM), a basic, stochastic representa-
tive of the class can be modelled as:

x(t) = (1+α sin2πt/T0)e(t), t ∈ T, (8)

with α ≤ 1 and wheree(t) is white Gaussian noise,T0 is
the period of the AM andT the observation duration. In the
second case (FM), a deterministic model can be defined as:

x(t) = sin2π( f0t +α sin2πt/T0), t ∈ T, (9)

with α ≤ 1 and wheref0 is the central frequency of the FM,
T0 its period andT the observation duration.

3.2 Distances

Within the chosen time-frequency perspective, the proposed
test (5) amounts to compare local spectra with their average
over time thanks to some “distance” (1), and to decide that
stationarity is to be rejected if the fluctuation of such descrip-
tors (as given by (4)) is significantly larger than what would
be obtained in a stationary case with a similar global spec-
trum. The choice of a distance (or dissimilarity) measure is
therefore instrumental for contrasting local vs. global fea-
tures.

Many approaches are available in the literature [1] that,
without entering into too much details, can be broadly classi-
fied in two groups. In the first one, the underlying interpreta-
tion is that of a probability density function, one of the most
efficient candidate being the well-known Kullback-Leibler
(KL) divergence defined as

κKL (G,H) :=
∫

Ω
(G( f )−H( f )) log

G( f )
H( f )

d f, (10)

where, by assumption, the two distributionsG(.) andH(.) to
be compared are positive and normalized to unity over the
domainΩ. In our context, such a measure can be envisioned
for (always positive) spectrograms thanks to the probabilistic
interpretation that can be attached to distributions of time and
frequency [5].

A second group of approaches, which is more of a spec-
tral nature, is aimed at comparing distributions in both shape
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Figure 1: Choosing a distance. The inverse of the maxi-
mum value (overTh) of the index of nonstationarity INS de-
fined in (6) is used as a performance measure. Comparing
the Kullback-Leibler (KL) divergence with the log-spectral
deviation (LSD), a better result (i.e., a lower value) is ob-
tained with KL (black) in the FM case (left, withα = 0.03),
and with LSD (blue) in the AM case (right, withα = 0.5).
A better balanced performance is obtained when using the
combined distance (red) defined in (12): in the FM case, this
measure performs best, and in the AM case it achieves a good
contrast whenλ ≥ 1. In the AM case, the boxplots resulting
from 10 realizations of the process are displayed.

and level. One of the simplest examples in this respect is the
log-spectral deviation (LSD) defined as

κLSD(G,H) :=
∫

Ω

∣∣∣∣ log
G( f )
H( f )

∣∣∣∣ d f. (11)

Intuitively, the KL measure (10) should perform poorer
than the LSD one (11) in the AM case (8), because of nor-
malization. It should however behave better in the FM case
(9), because of its recognized ability at discriminating distri-
bution shapes. In order to take advantage of both measures,
it is therefore proposed to combine them in some ad hoc way
as

κ(G,H) := κKL (G̃, H̃).(1+λ κLSD(G,H)) , (12)

with G̃ andH̃ the normalized versions ofG andH, and where
λ is a trade-off parameter to be adjusted. In practice, the
choiceλ = 1 ends up with a good performance, as justified
in Fig. 1 (the performance measure used in this Figure is
the inverse of the maximum value (overTh) of the index of
nonstationarity INS defined in (6), i.e., an inverse measure of
contrast).

3.3 Distribution of Surrogates and Threshold

The basic ingredient (and originality) of the approach is the
use of surrogate data for creating signals whose spectrum is

©2007 EURASIP 2022
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Figure 2: Distribution based on surrogates. The top row su-
perimposes empirical histograms of the variances (3) based
on J = 5000 surrogates (grey) and their Gamma fits (red),
in the case of a white Gaussian noise without (left) and with
(right) a sinusoidal AM (withα = 0.5). The bottom row
compares the corresponding probability density functions, as
parameterized by usingJ = 50 (blue) and 5000 (red) surro-
gates. The values of the test statistics (4) computed on the
analyzed signal are pictured in both cases as green lines.

identical to that of the original one while being stationarized
by getting rid of a well-defined structuration in time. Since
those surrogates can be viewed as distinct, independent real-
izations of the stationary counterpart of the analyzed signal,
the central part of the test is based on the statistical distribu-
tion of theJ variances given in (3).

When using the combined distance suggested above in
Sect. 3.2, an empirical study (on both AM and FM signals)
has shown that such a distribution can be fairly well approx-
imated by a Gamma distribution. This makes sense since,
according to (2), the test statistics basically sums up squared,
possibly dependent quantities which themselves result from
a strong mixing likely to act as a Gaussianizer. An illus-
tration of the relevance of this modeling is given in Fig. 2,
where Gamma fits are superimposed to actual histograms in
the asymptotic regime (J = 5000 surrogates). Assuming the
Gamma model to hold, it is possible to estimate its 2 param-
eters directly from theJ surrogates, e.g., in a maximum like-
lihood sense. In this respect, Fig. 2 also supports the claim
that the “theoretical” probability density function (more pre-
cisely, its estimate in the asymptotic regime) can be reason-
ably well approached with a reduced number of surrogates
(typically, J ≈ 50). Finally, the value of the test (4), com-
puted on the actual signals under study, is also plotted and
shown to stand in the middle of the distribution in the sta-
tionary case while clearly appearing as an outlier in the con-
sidered nonstationary situation.

Given the Gamma model for the distribution based on
surrogates, it becomes straightforward to derive a threshold
above which the null hypothesis of stationarity is rejected
with a given statistical significance.
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Figure 3: AM example (α = 0.5). In the case of the same sig-
nal (8) observed over different time intervals (left column),
the indexes of nonstationarity INS (right column, black)
are consistent with the physical interpretation according to
which the observation can be considered as stationary at
macroscale (top row), nonstationary at mesoscale (middle
row) and stationary again at microscale (bottom row). The
threshold (red) of the stationarity test (5) is calculated with
a confidence level of 95% and represented in term of INS as√

γ/(∑ j Θ0( j)/J), with J = 50 . In the nonstationary case,

the position of the maximum of INS also gives an indication
of a typical scale of nonstationarity.

3.4 Illustration

In order to illustrate the proposed approach and to support
its effectiveness, a simple example is given in Fig. 3. The
analyzed signal consists of one realization of an AM process
of the form (8). Depending on the relative values ofT0 and
T, three regimes can be intuitively distinguished:
1. if T � T0 (macroscale), many oscillations are present

in the observation, creating a sustained, well-established
quasi-periodicity that corresponds to a form of stationar-
ity;

2. if T ≈ T0 (mesoscale), emphasis is put on the local evo-
lutions due to the AM, suggesting to rather consider the
signal as nonstationary, with some typical scale;

3. if T � T0 (microscale), no significant difference in am-
plitude is perceived, turning back to stationarity.
What is shown in Fig. 3 is that such interpretations of

relative stationarityare precisely evidenced by the proposed
test. They are moreover quantified in the sense that, when the
null hypothesis of stationarity is rejected (middle diagram),
both anindexand ascaleof nonstationarity can be defined
according to (6) and (7). In the present case, the maximum
value of INS is obtained for SNS= Th/T ≈ 0.2, in qualitative
accordance with the 4 AM periods entering the observation
window.

In this specific example, the data could have been be re-
ferred to ascyclostationaryand analyzed by tools dedicated
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to such processes [15]. However, it has to be stressed that no
such a priori modeling is assumed in the proposed method-
ology, and that the existence of a typical scale of stationarity
(related to the periodic correlation) naturally emerges from
the analysis.

4. CONCLUSION

A new approach has been proposed for testing stationar-
ity from a time-frequency viewpoint, relatively to a given
observation scale. A key point of the method is that the
null hypothesis of stationarity (which corresponds to time-
invariance in the time-frequency spectrum) is statistically
characterized on the basis of a set of surrogates which all
share the same average spectrum as the analyzed signal while
being stationarized.

The basic principles of the method have been outlined,
with a number of considerations related to its implementa-
tion, but it is clear that the proposed framework still leaves
room for more thorough investigations as well as variations
and/or extensions. In terms of time-frequency distributions
for instance, one could imagine to go beyond spectrograms
and take advantage of more recent advances [17, 19]. Turn-
ing to the test itself, the way the estimated time-frequency
spectrum fluctuates in time has been considered here by com-
paring local features (frequency “slices”) to a global one (the
average spectrum resulting from marginalization) thanks to
some distance measure. This is a classical approach, but it
has the drawback of calling for the choice of a (more or less
arbitrary) distance and the evaluation of associated distribu-
tions. A different possibility would be to look at the statisti-
cal decision problem from a learning perspective [3, 6, 13],
and to consider surrogates as defining a learning set. Ex-
traction of suitable descriptors from this learning set may
therefore allows to make use of the powerful machinery of
kernel methods, and especially of one-class support vector
machines. This is under current investigation and will be re-
ported elsewhere [18].
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