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ABSTRACT 

The sago palm (Metroxylon sagu Rottboll) is a halophytic tree and the ultimate solution to 

two major global issues: food security and the rapid loss of saline free agricultural lands. 

This palm can produce high amount of starch, besides being resistant to saline and almost 

disease free. Unfortunately, this valuable palm is currently underappreciated by the 

scientific community and the genomic landscape of this palm remained scarce to date. The 

aim of this study is to sequence and characterise the sago palm chloroplast genome, 

document the organellar genome copy number changes across various developmental 

stages, organs, localities and phenotypes as well as sequence the entire nuclear genome of 

sago palm. The sago palm chloroplast and nuclear genome sizes determined in this study 

are 157,300 bp and 616,599,600 bp respectively, yielded via next generation sequencing 

technologies. The organellar genome copy number investigation employing the 

combinatorial approach of both qPCR and long-PCR assays had unearthed that the mature 

leaf is generally most enriched with unimpeded plastome and mitogenome among other 

organs. The Plawei Manit growth stage was discovered to have the highest unimpeded 

organellar genomes copy numbers (over 180,000) among the five major growth stages. The 

trunking phenotype was proven to be superior to that of the spiny and non-trunking 

phenotypes in terms of organellar genomes copy numbers (over 188,000). Interestingly, the 

organellar genome copy numbers across four main Sarawak localities in Malaysia are 

indifferent statistically. This study serves as a groundwork for preliminary sago palm 

genomic landscape to support future haplotype and genome wide association studies.  

Keywords: Metroxylon sagu, chloroplast genome, nuclear genome, organellar genome, 

genomic landscape 
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Lanskap Genomik Palma Sagu (Metroxylon sagu Rottb.)  

ABSTRAK 

Palma sagu (Metroxylon sagu Rottboll) ialah pohon halofit dan penyelesaian dua masalah 

global utama: keselamatan makanan dan kehilangan tanah pertanian bebas garam yang 

pantas. Pokok palma ini dapat menghasilkan banyak kanji, selain lasak terhadap garam 

dan hampir bebas penyakit. Malangnya, palma ini kini kurang dihargai oleh komuniti 

saintifik dan landskap genomik palma ini masih belum ada. Tujuan kajian ini adalah untuk 

menjujuk dan mencirikan genom kloroplas sagu, mendokumentasi perubahan bilangan 

salinan genom organel di pelbagai peringkat perkembangan, organ, kawasan dan fenotip 

serta menjujuk keseluruhan genom nuklear palma sagu. Saiz genom kloroplas dan nuklear 

palma sagu yang ditentukan dalam kajian ini ialah 157,300 bp dan 616,599,600 bp, 

dihasilkan melalui teknologi penjujukan generasi depan. Penyelidikan salinan genom 

organel menggunakan cara kombinatori ujian qPCR dan PCR panjang telah menemukan 

bahawa daun matang pada umumnya paling diperkaya dengan plastom dan mitogenom 

antara organ-organ lain. Tahap Plawei Manit didapati mempunyai salinan genom organel 

tertinggi antara lima peringkat pertumbuhan utama (melebihi 180,000). Fenotip berbatang 

terbukti lebih unggul daripada fenotip berduri dan bukan berbatang dari segi salinan 

genom organel (melebihi 188,000). Menariknya, nombor salinan genom organel di empat 

kawasan utama Sarawak di Malaysia tidak berbeza secara statistik. Secara keseluruhan, 

kajian ini berfungsi sebagai landasan dalam membentuk lanskap genomik awal palma 

sagu untuk menyokong kajian haplotaip dan seluruh genom pada masa depan. 

Kata kunci: Metroxylon sagu, genom kloroplas, genom nuklear, genom organel, lanskap 

genomik 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background 

The sago palm (Metroxylon sagu Rottboll) is one of the most underutilised and 

underrated eco-economic food crop of the future. It has several superior characteritics that 

are unique and advantageous as compared to other commercial and conventional food 

crops. To name a few, its high starch yield as well as its hardy characteritics like salt 

resistance and disease tolerance (Karim et al., 2008; Ehara, 2009). Its starch is completely 

protected within the woody trunk of the tree and it is less vulnerable to pest manifestation. 

Previously, many researchers have been focusing on studying its starch quality, salt 

resistance, pest resistance as well as disease resistance physiologically (Schuiling & Flach, 

1985; Haryanto & Pangloli, 1992; Notohadiprawiro & Louhenapessy, 1992; Djoefric, 

1999; Purwani et al., 2006; Agus & Subiksa, 2008; Bintoro et al., 2010; Okazaki & Sasaki, 

2018; Purwoko et al., 2019; Roslan et al., 2020) but the focus on the genomic aspect is still 

lacking to date.  

 The genetic and genomic aspects of plants have been proven powerful in 

elucidating various underlying functional pathways and mechanisms (Li et al., 2006; 

Kumar et al., 2014; Ma & Li, 2015). The success of employing both organellar and nuclear 

genome data in enhancing our comprehension and elucidation of the essential crop 

metabolic pathways was observed in various key crops like rice, corn, cassava, wheat and 

sorghum. Distinctive starch bioproduction pathways of cassava were unearthed across 

varying root developmental stages by Saithong et al. (2013) with the availability of the 
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entire genomic sequences. Campbell et al. (2016) had successfully identified the effects of 

domestication on the starch biosynthesis pathway based on whole sorghum genome data. 

The identification of the contributors towards the starch content regulation pathway in corn 

kernels was also succeeded through the genome-wide association study (Liu et al., 2016).  

The detection of the differential starch accumulation rate in endosperm of different rice 

cultivars, japonica and indica, was also made possible with the presence of whole genome 

data (Inukai, 2017). The genome-wide approach had also magnificently assisted in the 

discovery of key transcription factors orchestrating the reserve starch biosynthesis in wheat 

(Gu et al., 2021).  

 

1.2 Problem Statement 

The sago palm is one imperative player in various fields of industry, contributing 

significantly towards food security and economy in the past, present and future. However, 

there is several gaps in research on this cash crop that remained earthed to date and this had 

impeded the progress to establish this food crop as one of the most promising commodities 

to human race. Two significant aspects that requires dire attention are none other than the 

genetic and genomic aspects of the sago palm whereby there is only a handful of research 

tapping on only the tip of the iceberg.   

Interestingly, the sago palm starch yield was previously found to be three to four 

times more than that of corn, wheat and rice as well as 17 times more than that of the 

cassava (Karim et al., 2008). Adding to its advantage is that the sago palm is highly 

tolerable to brackish environment unlike all the aforementioned conventional food crops. 

The research question is whether the genomic landscape of sago palm could provide us 
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with more information on the mystery behind its high starch yield coupled with high salt 

and disease resistance. It is hypothesised that understanding the basic food-producing and 

defence capability of the sago palm would lead to the comprehension of the contributors 

orchestrating the metabolic pathways that caused the large discrepancy in starch yield, salt 

tolerance and disease resistance. This is where the genetic and genomic aspects of the sago 

palm come into picture as indispensable puzzle pieces in deciphering its unknown starch 

biosynthesis and salt resistance pathways that make it superior of other food crops.   

 

1.3 Objectives 

The genetic and genomic aspects of the sago palm are huge knowledge gaps 

waiting to be filled urgently. To answer the research question above, the hypothesis of this 

research was centered around deciphering the genomic landscape of the sago palm via 

sequencing and characterization approaches. The scope of this study covers various 

genomic aspects of the sago palm. Therefore, the objectives of this present study are:  

i. To sequence and characterise the entire chloroplast genome of the sago 

palm; 

ii. To elucidate the organellar genomes copy number at different organs, 

growth stages, localities and phenotypes of the sago palm; and 

iii. To conduct genome survey on the entire nuclear genome of the sago palm. 
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1.4 Sago Palm (Metroxylon sagu Rottb.) 

The sago palm (Metroxylon sagu Rottb.) is a true palm grouped in the order 

Arecales, family Palmae and subfamily Calamideae (Johnson, 1977). Native to Southeast 

Asia including Indonesia, Papua New Guinea and Malaysia, this palm can thrive well in 

clumps and in pure stands, in low-land freshwater swampy areas and tropical rain forests 

(Johnson, 1977; Husaini et al., 2016). It is deemed as one of the potential underutilised 

food palms that stores starch right within the stem of palm, unlike other crops that 

normally store starch in the form of cereals, legumes or tubers (Husaini et al., 2016). Its 

hardy characteristics are probably one of the reasons that explains for its high starch yield 

per unit: three to four-fold higher than that of corn, rice and wheat and astonishingly 17 

times greater than that of cassava (Karim et al., 2008; Ehara, 2009).   

 The sago palm can grow up to the height of 15 metres and 75 centimetres thickness 

topped with a massive crown, trunk formation is only initiated at the third to fourth year of 

palm growth (Kiew, 1977; Kueh, 1977). Within their vegetative phase of seven to fifteen 

years, photosynthetically produced nutrients from the leaves are channelled to the trunk for 

storage in the form of starch which upon palm maturity, saturates the trunk up till the 

crown (Lim, 1991). Flowering occurs at maturity (15 years) and is followed by fruit 

formation, the falling of mature fruits off the palm is an early indication of palm death 

(Kueh et al., 1987). In Sarawak, five growth stages have been characterised on mature sago 

palm, namely “Plawei” (palm at maximum vegetative growth), “Plawei Manit” (emergence 

of inflorescence), “Bubul” (development of inflorescence), “Angau Muda” (flowering) and 

“Angau Tua” (fruiting) (Lim, 1991). The “Angau Muda” stage scores the greatest starch 

content per trunk (39% to 41% on dry weight basis) (Lim, 1991; Pei-Lang et al., 2006) 

among all other stages, yielding 216 to 219 kg of starch per dry weight (Hamanishi et al., 
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1999) whereas the other three stages before the “Angau Tua” stage had showed no 

significant differences in terms of starch yield (Lim, 1991).  

  The sago palm is a palm with high economic value where different parts such as 

the pith, sap, leaf petiole, frond and even the “hampas” (fibrous residue) can be harvested 

for valuable uses (Singhal et al., 2008). The living tree itself is considered as a 

countermeasure to the greenhouse effect (Quat Ng, 2007). The sago starch had been placed 

into the limelight of the food, textile, polymer and pharmaceutical industries with 

promising potentials (Radley, 1976; Nuttanan et al., 1995; Ishiaku et al., 2002; Purwani et 

al., 2006). Besides, the sago fronds are excellent materials for papermaking and thatching 

with amazing durability (Jamaludin et al., 1995). The sago “hampas” is nothing close to 

what its name suggests because of its wide potential ranging from substrate for microbial 

conversion via solid state fermentation (Kumaran et al., 1997) to its role as biosorbent 

(Vickineswary et al., 1994) and activated carbon for industrial wastewater treatment 

(Kardirvelu et al., 2004; Vennilamani et al., 2005). With more functions of this palm being 

added to the list at an unprecedented pace, the genetic makeup of this palm might be the 

key towards better understanding of the driver behind these superb phenotypes of the sago 

palm.  

 

1.5 Organellar Genomes  

The organellar genomes, namely the mitogenome and plastome, are indispensable 

in various biological and developmental processes. These genomes are exposed to damage 

caused by various reactive by-products such as reactive oxygen species (ROS) and UV 

light, because of the metabolism pathways they are involved in (Boecsch et al., 2010; 
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Alexeyev et al., 2013; Kumar et al., 2014). Unlike their nuclear counterpart, their highly 

polypoid nature favour for the degradation of damaged molecules instead of the DNA 

repair pathway as seen in the nuclear genome (Liu & Demple, 2010). This accounts for 

their varied copy numbers in terms of mitochondrial DNA and plastid DNA across various 

developmental stages of plant.  

 The high copy number of organellar DNA is a strong indication of great demand 

for organellar ribosomes and the possible way to fulfil this demand is no other than the 

elevation of rRNA level from the event of genome multiplication (Bendich, 1987). The 

copy number variations in plants are one of the major drivers in phenotypic variations, 

orchestrating heritable dissimilar traits between individuals (Zhang et al., 2009; Iskow et 

al., 2012). These traits enable plants to possess efficient maintenance pathways essential 

for the battle against oxidative pressure, environmental damage and replication defaults 

(Gualberto et al., 2014). Along the process, when not lethal to host plant, mitogenome 

rearrangements takes place, which can lead to severe phenotypes or induce cytoplasmic 

male sterility (CMS) (Gualberto et al., 2014).  

 Energy metabolism impacts the mitochondrial and chloroplast genome greater than 

the nuclear genome. Both fully functional organellar DNA and nuclear DNA are required 

for photosynthesis and respiration processes at early stages of organellar development 

(Kumar et al., 2014; Lim et al., 2020). The high copy of organellar DNA deviates from that 

of the stable nuclear copy, depicting a decrement trend as leaves start to develop and 

physiological roles of organellar DNA changes (Kumar et al., 2014). Fully functional 

plastome is preserved to contribute to chloroplast development until the greening of plant 

where its degradation is facilitated by ROS. Similarly, the fully functional mitogenome is 

maintained up till the photosynthesis stage before it is not required anymore in mature 
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green cells (Kumar et al., 2014). In general, the relinquishment of organellar DNA from 

the plastome is drastic in maize and gradual in other dicot plants such as tobacco, pea and 

barrel medick (Oldenburg et al., 2006; Shaver et al., 2006; Rowan & Bendich, 2009).    

 

1.5.1 Chloroplast Genome 

The chloroplast is one important metabolic powerhouse that generates 

carbohydrates from solar energy via the process known as photosynthesis. This organelle 

also plays indispensable roles in essential plant development and physiology processes, 

namely in the synthesis of phytohormones, fatty acids, amino acids, nucleotides, vitamins 

and a myriad of other metabolites as well as in the assimilation of nitrogen and sulphur 

(Daniell et al., 2016; Lim et al., 2020). These metabolites are utilised greatly in aiding the 

host plant to interact with its environment, for instances, in response to salt, heat, drought, 

light and viral invasions (Daniell et al., 2016; Lim et al., 2020).  

 The first chloroplast genome that was sequenced was that of the tobacco (Nicotiana 

tabacum), which was completed in the year 1986 (Shinozaki et al., 1986). Since then, the 

number of chloroplast genomes available in the public gene database had elevated 

exponentially with the aid of the advancement of high-throughput sequencing technologies. 

The chloroplast genome is one massive reservoir with the complete collection of essential 

genes involved in plant biology and diversity. Furthermore, it provides the resolution in 

plant species identification and evolutionary relationship. It is also one important puzzle 

piece to the comprehension of adaptation mechanism of the host plant towards threats like 

climate and salinity stress, especially in crops. The chloroplast genome is also made 

interesting with the study of gene transfer events across the other two genomes, 

mitogenome and nuclear genome.  


