Contents lists available at ScienceDirect

Journal of Environmental Chemical Engineering

journal homepage: www.elsevier.com/locate/jece

Synergistic effects of catalytic co-pyrolysis *Chlorella vulgaris* and polyethylene mixtures using artificial neuron network: Thermodynamic and empirical kinetic analyses

Tshun Li Yap^a, Adrian Chun Minh Loy^{b,c,d}, Bridgid Lai Fui Chin^{a,*}, Juin Yau Lim^e, Hatem Alhamzi^f, Yee Ho Chai^{c,d}, Chung Loong Yiin^g, Kin Wai Cheah^h, Melvin Xin Jie Wee^a, Man Kee Lam^{c,d}, Zeinab Abbas Jawadⁱ, Suzana Yusup^j, Serene Sow Mun Lock^k

^c HICoE - Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

^e Integrated Engineering, Dept. of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do 17104, Republic of Korea

^f National Center for Environmental Technology (NCET), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, 11442 Riyadh, Saudi Arabia
^g Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia

h Teesside University, School of Science and Engineering, Borough Road, Middlesbrough TS1 3BA, United Kingdom

ⁱ Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box: 2713, Doha, Qatar

^j Generation Unit (Fuel Technology & Combustion), Tenaga Nasional Berhad (TNB) Research Sdn Bhd, No.1, Kawasan Institusi Penyelidikan, Jln Ayer Hitam, 43000 Kajang, Selangor, Malaysia

^k CO2 Research Center (CO2 RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia

ARTICLE INFO

Editor: Apostolos Giannis

Keywords: Catalytic pyrolysis Kinetic analysis Empirical modelling Artificial neural network Genetic algorithm Microalgae Chlorella vulgaris

ABSTRACT

The catalytic pyrolysis of *Chlorella vulgaris*, high-density polyethylene (Pure HDPE) and, their binary mixtures were conducted to analyse the kinetic and thermodynamic performances from 10 to 100 K/min. The kinetic parameters were computed by substituting the experimental and ANN predicted data into these iso-conversional equations and plotting linear plots. Among all the iso-conversional models, Flynn-Wall-Ozawa (FWO) model gave the best prediction for kinetic parameters with the lowest deviation error (2.28–12.76%). The bifunctional HZSM-5/LS catalysts were found out to be the best catalysts among HZSM-5 zeolite, natural limestone (LS), and bifunctional HZSM-5/LS catalyst in co-pyrolysis of binary mixture of *Chlorella vulgaris* and HDPE, in which the E_a of the whole system was reduced from range 144.93–225.84 kJ/mol (without catalysts) to 75.37–76.90 kJ/mol. With the aid of artificial neuron network and genetic algorithm, an empirical model with a mean absolute percentage error (MAPE) of 51.59% was developed for tri-solid state degradation system. The developed empirical model is comparable to the thermogravimetry analysis (TGA) experimental values alongside the other empirical model proposed in literature

1. Introduction

Energy plays an irreplaceable role in human's daily lives for

centuries and also being regarded as the main principal factor for a country's socio-economic development. According to the International Energy Agency (IEA), the total world's energy from non-renewable fossil

* Corresponding author.

https://doi.org/10.1016/j.jece.2022.107391

Received 21 November 2021; Received in revised form 26 January 2022; Accepted 11 February 2022 Available online 15 February 2022 2213-3437/© 2022 Elsevier Ltd. All rights reserved.

^a Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia

^b Department of Chemical Engineering, Monash University, Victoria 3800, Australia

^d Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

E-mail addresses: 700017566@student.curtin.edu.my (T.L. Yap), adrian.loy@monash.edu (A.C.M. Loy), bridgidchin@gmail.com, bridgidchin@curtin.edu.my (B.L.F. Chin), juinyau95@gmail.com (J.Y. Lim), halhazmi@kacst.edu.sa (H. Alhamzi), yeeho.chai@utp.edu.my (Y.H. Chai), clyiin@unimas.my (C.L. Yiin), cheahkinwai@hotmail.com (K.W. Cheah), melvinweexj@postgrad.curtin.edu.my (M.X.J. Wee), lam.mankee@utp.edu.my (M.K. Lam), zjawad@qu.edu.qa (Z.A. Jawad), suzana.yusup@tnb.com.my (S. Yusup), sowmun.lock@utp.edu.my (S.S.M. Lock).